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Abstract

.e..aMO.G O.4. studies sojourn times in acyclic, Jackson networks as

part of 4o survey of equilibrium results. in his papor, ha arg,_= that a

particular customer has a sojourn time at node i that is independent of his

remaining sojourn time in the network given that the customer transfer from

node i to node j. This assumption is then used to derive a set of equations

involving the Laplace-Stieltjes transform of the sojourn times at each node

from which several properties of sojourn times are determined. _ _

In a private communication, Mitrani (1978) argues that Lemoine's

independence assu:iption is in error and provides a heuristic argument based

on a four node, acyclic, Jackson network. From this, Mitrani concludes

that the sojourn time is such networks is still an unsolved problem. We

make Mitrani's atgument rigorous, using some new results on sojourn times

in Jackso, networks.

Accsi --r

D- . , " / . . .

V



Continuation of Abstract.

In a private communication, Mitrani (1978) argues that Lemoine's
independence assumption is in error and provides a heuristic argument
based on a four node, acyclic, Jackson network. From this, Mitrani
concludes that the sojourn time in such networks is still an unsolved
problem. We make Mitrani's argument rigorous, using some new results
on sojourn times in Jackson networks.



SOME RESULTS ON SOJOURN TIMES

IN ACYCLIC JACKSON NETWORKS

1. Background. Lemoine (1977) analyzes the sojourn time of a customer in

an acyclic Jackson network. His analysis relies on the sojourn time of a

particular customer at server i being independent of the customer's remaining

sojourn time in the network, given the customer transfers from server i to

server j. Using this independence assumption, Lemoine derives the Laplace-

Stieltjes transform for the sojourn time of an arbitrary customer in the network.

In a private communication, Mitrani (1978) challenges Lemoine's assertion

that the sojourn time at server i and the remaining sojourn time in the network

are independent given that the customer transfers from i to j. In particular he

concludes that the distribution of the sojourn time of the customer in an acyclic

Jackson network is still an unsolved problem.

We resolve these issues in this paper. Through the use of a counter-example,

we substantiate Mitrani's claim. This work culminates with Theorem 4.3. In

section 5 we will summarize our results very briefly and point out related

literature. We assume the reader is familiar with Jackson (1957) and Lemoine

(1977).

2. Statement of Problem. In this section we construct a three node, acyclic

Jackson network with the property that a customer's remaining sojourn time is not

independent of his sojourn time in node 1, given that he goes through node 2. The

network has the following form.

p ,p
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Figure 2.1
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There is a Poisson stream with rate X arriving at node 1. When a customer

leaves node 1 he goes directly to node 3 with probability (l-p), or goes to node

2 with probability p. If the customer goes to node 2, he goes directly to node 3

when his service is completed. The customer leaves the network after service at

node 3. Service times at node i are exponentially distributed with parameter i.

To show that Lemoine's argument in section I is faulty, it suffices to show

that the sojourn time in the first queue, Ti, and the total sojourn time in the

second and third queue, T2 + T3, are dependent random variables for a customer

who goes through the second queue. For such a customer we will show that for

certain values of X, pi' P2' 113' p, and t; the expected sojourn time in the third

queue given that the sojourn time in the first queue is t, E[T 3ITI=t], is greater

than the unconditional expected sojourn time in the third queue E[T 3]. By Theorem

3.3, below, the expected sojourn time in the second queue is independent of TI.

Thus, for the above parameters,

E(T3 + T2 1T, = t) = E(T3 IT, = t) + E(T2)

(1)

> E(T3 ) + E(T2) = E(T3 + T2 ).

This fact verifies that the remaining sojourn time (after leaving queue 1) and

the sojourn time in queue 1 are not independent. In turn this verifies the

Mitrani conjecture.

3. Preliminary Results. In order to formally show that the sojourn times in

the first and third queues are dependent, we need the following results. Theorem

3.3 is proven in more generality than is necessary for the problem at hand, but

gives an intuitive reason for believing that sojourn times in Jackson networks

are not independent in general.
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Let J be an acyclic Jackson network with nodes (1,2,...,N) and switching

matrix P. Let

i = exogenous arrival rate to node i,

a. = total arrival rate to node i (which is given by the solution of
1 the traffic equation),

.= service rate at node i.

Mi(s) - the number of customers at node i at time s,

For a fixed customer ("our customer") who goes through nodes (rl, r2 ,-. ,rk), let

ai = the time of arrival at node i,

t. = the time of departure from node i,1

T. = t. - a. - the sojourn time of our customer at node i,
1 I 1

D.(s) = the number of departures from node i in the interval (ti,t + s],

1 iDr(s) =the number of departures from node i in the interval (ai,ai + s].

Lemma 3.1 Let J be a steady state, acyclic, Jackson network. Suppose our

customer enters node j from outside the system (an exogenous arrival). Then

(ajs) k eJ

P(D'(s) kIT. 0 = t) k , V s C (O,T).
J k!j

Proof.

P(D:(s) - kIT - t) E P(D-(s) - kT= t, M (a-) = m)P(M (a) - mIT t )
m=k

t) m mL

-or (ajrt-s()m
OD k r-k k

m sM 
.

rn-k G )

eca t sk 0c (t-,))m

k.(A) rk (rn-k)!

k e-CL(a~S) e
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Using Theorem 1.18 inlar (1975:p.77), one immediately has

Corollary 3.2. The departure process from node j is a Poisson process

with rate a in (a.,t ) for any T..

This result also follows from the Sojourn Time Theorem in Burke (1972).

Theorem 3.3. Suppose an exogenous arrival enters node j (of a steady state,

acyclic, Jackson network) at time aj. Then

P(M (t. ki M 2(t k 29-0 M o(t k +l, ... MN(ti)kNITtj 0

(a0k e j-a t k, _i

k -aje i j

Proof. Let J2 be the set of nodes which can be reached after leaving

node j either directly or after passing through other nodes in J2. Let

C
Jl = (j}U J 2) . Without loss of generality, assume the nodes in J are

numbered i,'', j-1 and the nodes in J2 are j+l,''., N. We will call a

customer flow a departure process from J1 if it originates at a node k c Jl

and either leaves the system entirely or goes to some node m J Jl"

At time a the network is in steady state. Hence,

P{M 1 (a) kl,..., MN(a)= } (1 -

The arrival processes to Jl after time a are Poisson processes independent of

T F In addition, the service times of customers in Jl after time aj are in-

dependent of T .

Thus, V 

k i 

(aj,()

P~f1 (s) - . M 1 (s) k k I-T t}
1 J-1 JA i
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In particular for s = t., we have
J k i

P{M (t)= k1,9 IM.- (t) k k 1 T. = t} (l- )( )

Since the network is acyclic, by Beutler and Melamed (1978) the departure

processes from J before time t. are mutually independent Poisson processes, and

independent of the state of the queues in J at time t . Hence,
a- .t k.

e 3(u.t) 3

P{M.(t.) = k. + l1T. t= t, t = k =. M (
3 i I -1 i -1 k.j!

Let DC(s) be the number of departures from node j in the intervalJ

(ai,ai+s]. For s < T, Di(s) is completely determined by M.(aj), Tj and the

service times at j. Since M.(a.), T. and the service times at queue j are

independent of the departure processes from Jl in the interval (aj,t.), Di(s)

is independent of the departure processes from J1 during (aj, ti). From

Corollary 3.2, DC(s) is a Poisson process. Thus D(s) and the departure

processes from Jl before time t. are mutually independent Poisson processes.J

Thus the arrival processes to J2 are independent of T. and we conclude that:

mj+l(t = k+j+l,..., (tj = kiTJ = tMl(t) = k,.., . (t ) = k. + l}

k.
N 1

i=j+l 1(1

Combining these conditional probabilities, yields our result. 0

Since an exogenous arrival sees a steady state queue length distribution,
A

it is well known that -(j-a )t

By unconditioning (2) by (3) over all possible values of t, one gets

the usual Jackson steady state results.
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4. Main Results. Our main result is the construction of an acyclic Jackson

network where a customer's sojourn times at the queues in his path are not in-

dependent random variables. It should be clear from the construction that

acyclic networks with independent sojourn times are the exception and not the

rule.

Consider the ne i'}rk described in 2. Choose A > 0, p F (0,1), i2 > 0,

u3 > 0 so that pA < L2 and 3 < 3" From Disney, et al. (1973), the arrival .

stream to node 2 is Poisson with rate pA and the stream of customers going

directly from node 1 to node 3 is Poisson with rate (1 - p)X. Thus E(T3) does

not depend on the value of pl" We will show that with a suitable choice of

and t we can make E(T3 1T1 = t) arbitrarily large. In particular we can

make E(T31T1 = t) > E(T3) so T1 and T3 are not independent.

Fix r > 0 and choose

21 u3U2()
Wi > Max A,(r + 1  P3-2 -

(12-p )(l-e -0 2 e  -2)( -p) I

The values of A, Ii' 02' 143 and p assure that a steady state exists. Now

fix E > 0 and choose n* large enough so that

n* (PlS)j e-PlS

E Je 1 - Vs E (0,1]. (5)

Since (5) is bounded below at s 1, it suffices to choose n* so that

>1

J.0.

irno
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Given c and n*, now choose t large enough so that

P(MI(t > n*IT = t) > i - (6)

This can be done since

P(M1 (tl) > n*ITl = t) j + (t)Jet ast
j=n*+l

Let

D number of departures from node I in (t, a3].

D*= number of departures from node 3 in (tl, a3].

Lemma 4.1 E(DIT I = t) > (1 - - p) --" (l-e -i2 e- 2).

V2

Proof. E(DT I  : t) = 1 E(DIT 1 - t,M2 (t) j)P(M 2 (t1) jIT I  t).
j=0

By Theorem 3.3, P(M2 (t-) =jIT I = t) - ( 1) (1- -n2), so
212 2

E(DIT t) E(D t, M2 (t ) 2 j

j=0

> (1-P-1) E(DITI=t, M2(t) =0) 1 : f E(D(S)IT 1  e tl 2 ds
W'2 2E(D2'0 1T

=(p1 2-PX) f E(I (s) IT1 = tM (t) + I-1 (M (t) + jIT 1 = e W2 ds.

o j=O

VO



Since D (s) is conditionally independent of T, given Ml, we have

E(D IT1  0t > (Wpp) f jE(D (s) 1M1(t) = ) P(M (t') =iT1 = tie 2ds

o gjo

>(G -PX) f a ED()M( )( t+ jI ~ -2ds

o j=n*+l

and since E(D ps)IM (t+) =Dj is an increasing function of J,

> (ii2-px) f E(Dl(s)IMi(ti) =n*)PCMl(t+) =JIT, t)e 2ds,

0 j=n*+l

and by (6) this is

> (1 - 0 ) ( 2-PX) f E(D (s)IM( + =n*)e1
2 ds

0

> (l-) i2-PX) f ECD i(s)IMl (t) 1 n*)e ds.

0

Note that, E(D (s)IM (t) n*) = j P(D,(s) - iIMp(t+) = n*)

jm1

> j P(D 1 (s) - jItMiti) =n*)

J141

- a (J-1)!

which by (5) is > (1 -Ehi s. Thus,
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1

E(DIT 1  t) > (1 - E) 2 - p) f ise ds

0

( - E) 2 (O 2 - p x) --' (1 - e - 2 e  ) .p O
2 22

2

Lemma 4.2 E(D*1T 1  t) . 13/012 - p).

Proof. E(D*jTI = t) < E(pi3T2 IT, = t).

By Theorem 3.3 and (3) we have

f2 - 2 - pA)s

E(T21T, = t) = ( 2 - pX)se ds, so

0

f -( 2- pA)s

E(D*IT 1 = t) < p3(p2 - P) Jse ds = p 3 /( 2 - pA). O

0

Theorem 4.3 For the chosen values of A, pi p29 p3' p and t we have

E(T3 1T, = t) > r.

Proof. E(M3 (a+)IT 1 = t) - (I - p)E(DIT 1 W t) - E(D*1T1  t)

+ E(M2 (t I)IT1 = t) + E(M3 (t1) IT1  t) + 1

> (1 - p) E(DIT 1 = t) - E(D*IT 1 - t).

Thus by lemmas 4.1 and 4.2 we have

+(1-p) (1-c) 2 (p 2 _pA)p I -2

E(M3 (a+)IT 1 = t) > 2 (1 - e - 2e-'
2  .2-P Thus

u2

E(T31T1 - t) - E(M3(a )JT1  t)/p 3

(1-p)(1-E)2 (12 -PX)l -122 1
2 (-e -V e )- px11 2 3

1¢*
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2 1 - 1By (4) we have E(T3 1T, = t) > (1 - E) (r + P i and since E was

arbitrary, we have E(T31T1 = t) > r. 0

Since r was arbitrary we can choose Wl and t so that E(T3 1T1 = t) > E(T 3 ).

Thus the sojourn times at node 1 and 3 are dependent for customers that go

through node 2.

5. Summary. We have shown in section 4 that the sojourn times T1 and T 3 are

not independent for the network considered here. This proves the Mitrani point.

Independence, of course, is sufficient to Lemoine's formula (18) as occurs, for

example, in tandem queues as studied by Reich (1963). The key difference

between the Lemoine result and the Reich result is that Lemoine's network allows

customers to overtake each other while Reich does not. This overtaking feature

allows events occurring at earlier periods of time (outputs from queue 1 that

occur after our man has left queue 1) to influence events at later periods of

time (the sojourn time of our man at queue 3). Clearly, if the network does

not allow overtaking (e.g. if the graph of the network has at most one path

from node i to node j for every i,j) then one can use results such as Reich's

to show that sojourn times at nodes are mutually independent and exponentially

distributed random variables.

Results related to ours have previously been discussed by Burke (1969 and

1972) and the references therein for tandem queues with multiservers. The

problem discussed by Burke and that discussed by us seems to have the same

underlying behavior. That is, if overtaking can occur in acyclic Jackson

networks then, in general, sojourn times will not be independent.
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