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,Lemoiao—4494%)>studies sojourn times in acyclic, Jackson networks as,
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X
part of hﬁe survey of equilibrium results. iﬂ—hés—pepe;y—he—e;guéb that a
A

particular customer has a sojourn time at node i that is independent of his
remaining sojourn time in the network given that the customer transfer from
node i to node j. This assumption is then used to derive a set of equations
involving the Laplace-Stieltjes transform of the sojourn times at each node
from which several properties of sojourn times are determined.,16:‘_\‘\s
In a private communication, Mitrani (1978) argues that Lemoine's

independence assumption is in error and provides a heuristic argument based
on a four node, acyclic, Jackson network. From this, Mitrani concludes

that the sojourn time is such networks is still an unsolved problem. We
make Mitrani's argument rigorous, using some new results on sojourn times

in Jacksen networks.
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Continuation of Abstract.

In a private communication, Mitrani (1978) argues that Lemoine's
independence assumption is in error and provides a heuristic argument
based on a four node, acyclic, Jackson network. From this, Mitrani
concludes that the sojourn time in such networks is still an unsolved
problem. We make Mitrani's argument rigorous, using some new results
on sojourn times in Jackson networks.
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SOME RESULTS ON SOJOURN TIMES

IN ACYCLIC JACKSON NETWORKS

1. Background. Lemoine (1977) analyzes the sojourn time of a customer in

an acyclic Jackson network. His analysis relies on the sojourn time of a
particular custo;er at server i being independent of the customer's remaining
sojourn time in the network, given the customer transfers from server i to
server j. Using this independence assumption, Lemoine derives the Laplace-
Stieltjes transform for the sojourn time of an arbitrary customer in the network.

In a private communication, Mitrani (1978) challenges Lemoine's assertion
that the sojourn time at server i and the remaining sojourn time in the network
are independent given that the customer transfers from i to j. In particular he
concludes that the distribution of the sojourn time of the customer in an acyclic
Jackson network is still an unsolved problem.

We resolve these issues in this paper. Through the use of a counter-example,
we substantiate Mitrani's claim. This work culminates with Theorem 4.3. In
section 5 we will summarize our results very briefly and point out related
literature. We assume the reader is familiar with Jackson (1957) and Lemoine

(1977).

2. Statement of Problem. In this section we construct a three node, acyclic

Jackson network with the property that a customer's remaining sojourn time is not
independent of his sojourn time in node 1, given that he goes through node 2. The
network has the following form.

(1-p)
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Figure 2.1




There is a Poisson stream with rate A arriving at node 1. When a customer
leaves node 1 he goes directly to node 3 with probability (1-p), or goes to node
2 with probability p. If the customer goes to node 2, he goes directly to node 3
when his service is completed. The customer leaves the network after service at
node 3. Service times at node i are exponentially distributed with parameter My

To show that Lemoine's argument in section 1 is faulty, it suffices to show
that the sojourn time in the first queue, Tl’ and the total sojourn time in the
second and third queue, T2 + T3, are dependent random variables for a customer
who goes through the second queue. For such a customer we will show that for
certain values of ), Mys Hos Has Ps and t; the expected sojourn time in the third
queue given that the sojourn time in the first queue is t, E[T3|Tl=t], is greater
than the unconditional expected sojourn time in the third queue E[T3]. By Theorem
3.3, below, the expected sojourn time in the second queue is independent of Tl.

Thus, for the above parameters,

E(T, + T2|T1 =t) = E(’I‘3|Tl = t) + E(T))
@D
> E(T,) + E(T,) = E(T5 + T,).

This fact verifies that the remaining sojourn time (after leaving queue 1) and
the sojourn time in queue 1 are not independent. In turn this verifies the

Mitrani conjecture.

3. Preliminary Results. In order to formally show that the sojourn times in

the first and third queues are dependent, we need the following results. Theorem
3.3 is proven in more generality than is necessary for the problem at hand, but
gives an intuitive reason for believing that sojourn times in Jackson networks

are not independent in general.




Let J be an acyclic Jackson network with nodes (1,2,-+.,N) and switching

matrix P. Let

exogenous arrival rate to node i,

Ai = 1
®, = total arrival rate to node i (which is given by the solution of {
i :
the traffic equation),
My = service rate at node i.

Mi(s) = the number of customers at node i at time s,

a

For a fixed customer ("our customer") who goes through nodes (rl,rz,---,rk), let A

(Y
]

i the time of arrival at node i,

(nd
]

the time of departure from node i,

T, = t, - a; = the sojourn time of our customer at node i,

+ s],

Di(s) the number of departures from node i in the interval (ti,t

i

D;(s) the number of departures from node i in the interval (ai,a + s].

i

Lemma 3.1 Let J be a steady state, acyclic, Jackson network. Suppose our

customer enters node j from outside the system (an exogenous arrival). Then

-a,8
(a.s)k e i |
P(D;(s) = k[T, = t) =~ Vsce (0,1)
Proof.
P(DJT(S) = kITj =t) = m)gl,( P(DJf(s) = lej = t, Mj(aj) = m)P(Mj(aj) = mITj = t)
-u,t m
u,(n,)% ] i’l gi
— [/m\/s k t-s -k . jm' L uj uj
- 2 (})E) (52) TR T:
m=k 373
(u,=ade
i3
’ -a,t m
e 3 (_i_)k d (al(t-s))
' k! t-s (m-k)!

m=k




Using Theorem 1.18 ¢inlar (1975:p.77), one immediately has

Corollary 3.2. The departure process from node j 1s a Poisson process

with rate a, in (a.,t
] ( B R

This result also follows from the Sojourn Time Theorem in Burke (1972).

) for any Tj‘

Theorem 3.3. Suppose an exogenous arrival enters node j (of a steady state,

acyclic, Jackson network) at time a,. Then

i
POMy(t) =1y, Mz(tj) = Koy e M(ey) = kj+1,--~,MN(t3) =kN|Tj=t)
k, -a,t k
(a.t) 3 e 3

i
o, o4

- Sy — (- 2R @
3° i43] i i

Proof. Let J2 be the set of nodes which can be reached after leaving

node j either directly or after passing through other nodes in J Let

2°

J1 = ({jlu Jz)c. Without loss of generality, assume the nodes in J, are

1
numbered 1,°*¢, j-1 and the nodes in J2 are j+l,+++, N. We will call a

customer flow a departure process from Jl if it originates at a node k ¢ J1

and either leaves the system entirely or goes to some node m ¢ Jl.

At time a, the network is in steady state. Hence,

b

k
- _ N AV i
P{Ml(aj) = kl’...’ M-N(aj) = k.N]' = r] (1 - ‘u—-)(——)

i=1 1/ \ "1

The arrival processes to J1 after time aj are Poisson processes independent of

Tj’ In addition, the service times of customers in J1 after time a, are in-

]
dependent of T

"
»©)
J
§-1 k

*1\/*1 '
P{HI(B) = kl,'”, Hj-l(s) - kj-llTj =t} = n (1 - __X__) .

Thus, V s ¢ (a

1=l My \M




In particular for s = t;’ we have

) _ j-1 ai Oti
p{Ml(tj) = kl,-..,Mj_l(tJ.) = kj—llTj = t} =‘rT < - T)(U—)

i=1 i i

Since the network is acyclic, by Beutler and Melamed (1978) the departure

processes from J, before time tj are mutually independent Poisson processes, and

1
independent of the state of the queues in Jl at time t.. Hence,
] -a.t k.
e J (a,t)
-3

P{M_(t)) =k, + 1|T, = €, M () = ky,"**,M, () =k, .} =
5(E9) = ky + 1[T, 3 (€ = K&y 51 (89 = Ky ) %

Let Dg(s) be the number of departures from node j in the interval
(ai,ai+s]. For s < Tj’ Da(s) is completely determined by Mj(ag), Tj and the
service times at j. Since Mj(ag), Tj and the service times at queue j are
independent of the departure processes from Jl in the interval (aj,t;), Dg(s)
is independent of the departure processes from Jl during (aj, tg). From
Corollary 3.2, Di(s) is a Poisson process. Thus Dg(s) and the departure
processes from Jl before time tj are mutually independent Poisson processes.

Thus the arrival processes to J, are independent of Tj and we conclude that:

2

P{Mj+1(tj) =k, 1,°°", MN(tj) = kN}Tj = t,Ml(tj) = k00, Mj(tj) = kJ. + 1}

(]
 E
—
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Combining these conditional probabilities, yields our result. O
Since an exogenous arrival sees a steady state queue length distribution,

it is well known that —(“j—aj)t
P(T, <t) =1-ce . 3)

3

By unconditioning (2) by (3) cver all possible values of t, one gets

the usual Jackson steady state results.

a




4., Main Results. Our main result is the construction of an acyclic Jackson
network where a customer's sojourn times at the queues in his path are not in-
dependent random variables. It should be clear from the construction that
acyclic networks with independent sojourn times are the exception and not the
rule.

Consider the ne :9rk described in 2. Choose » > 0, p ¢ (0,1), u, > O,

2
bq > 0 so that phi < Hy and A < e From Disney, et al. (1973), the arrival
stream to node 2 is Poisson with rate p) and the stream of customers going
directly from node 1 to node 3 is Poisson with rate (1 ~ p)X. Thus E(T3) does
not depend on the value of My We will show that with a suitable choice of

My and t we can make E(T3|T1 = t) arbitrarily large. In particular we can

1
make E(T3|T1 =t) > E(T3) so T, and T

1 3 are not independent.

Fix r > 0 and choose

2
1 H3ko
Wo=PA ) “Hy ay) ) @
(uz-p)\) (1-e “-uge ) (1-p)

Wy Max{ A, (r +

The values of X, His Vys Mg and p assure that a steady state exists. Now

fix ¢ > 0 and choose n* large enough so that

n* . =H,.S

(uls)J e 1
2———j,——— >1-¢, Vs e (0,11]. (5)
=0 ’

Since (5) is bounded below at s = 1, it gsuffices to choose n* so that

=H
* 3.1
Lj'_ >1 - g,

=0

e R gl e il £
C ke o
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Given ¢ and n*, now choose t large enough so that
PMM (E]) > n*|T, =1) > 1 -¢ (6)
1'71 1 :

This can be done since

o

j =it
+ (At)Je
P(Ml(tl) > n*lTl =t) = Z ——'-j—!—-——‘* las t > =»,
J':n*«}»l
Let
D = number of departures from node 1 in (tl’ a3].
D* = number of departures from node 3 in (tl, a3].
2 —H i
Lemma 4.1 E(D}T =t) > (1 - E)Z(U - pA) -1 (1l-e z—u e 2).
—_— 1 2 UZ 2
2

Proof. E(D]Tl = t)

20 E®IT, = (6D = PROLED = 3]T, = 0.
=0

h|
By Theorem 3.3, P(M,(t7) = j[T, = t) = CEA) (1~ EA), so
271 1 uz “2

Ay
2

oo _ . A j
E(D]Tl t) = Z E(Dl'rl =t My(t)) = J)(%z-) Q-4
j=0

A - uypA 28
(1-5;) E(D|T) = ¢, My(t]) =0) = ™ EMy(s)|T; = hupe “ ds
0

v

oo [ -Uu.s
(uy=pH) f Z E(Dl(s)[Tl= t,Ml(tI) =j)I"(Ml(tI) =j|T1= t)e 2 4s.
0 j=0

e - - 3 o PRt o =1 o A, .|
o i s )
= .o MR .




Since Dl(s) is conditionally independent of T1 given Ml, we have

s

il -u
EQ|T)=t) > (uy-ph) f Za(nl(s)lul(q)ﬂ) P(M,(£]) = 3|T, = D)e 2 4s

0 j=0
- + . + . THo®
> e [ D E® @) Iy (e) = pRoL (D =31 = e 2 ds
0 j=n*+1 '
and since E(Dl(s)lMl(t.;) = j) is an increasing function of j,
o« @ + + —UZS
s e [ X B0@ ) smray ch =31 = 0e 2 s,

0 j=n*+1
and by (6) this is

r + THS
> (1-¢€) (uy-pR) fE(Dl(s)|M1(t1) = n*)e ds
0

L + -DZS
> (1-¢) (uz—p)\) f E(Dl(s)|M1(t1) = n¥)e ds.
0

(-]

Note that, E(nl(s)tml(t‘;) = n*) = jz; 3 P(D, () = jinl(c‘{) = n*)

* +
> i 3 PO (s) = §|M (£]) = n%)
=1
-l,s
n* (uls)je 1

- — o '

i=1

which by (5) 1is > (1 - e)uls. Thus,




2 1 ~U,S
E(DIT1 =t) > (1 - ¢) (u2 - p)) f Hyse ds
0

H ~u -y

_ 2 Y1 2 2

-(l-e)(uz-pk)uz(l-e - Hpe ). O
2

Lemma 4.2 E(D*l'r1 = t) < uy/(uy - pA).
Proof. E(D*|T; = t) < EQugT,|Ty = t).

By Theorem 3.3 and (3) we have

p: ~{uy - PM)s
E(T2|T1 =t) = Jf (u, = PA)se ds, so
0
~ -Gy - PV)s
E(D*|T1 =t) < u3(u2 - p) /se ds = 113/(142 -pr). O

0

Theorem 4.3 TFor the chosen values of A, Hps Hos Hyo p and t we have

| v

E(T3|T1 =t) > r.
Proof. E(My(ap)|T; = £) = (1 - P)E(D|Ty = £) - E(*|T) = ©)
+ E(Mz(tz)ITl =) + EM(e)) [Ty = 1) +1

> (1 -p) EQ|T; = ¢t) - E(D*|T, = t).

Thus by lemmas 4.1 and 4.2 we have

2
(1-p) (1-€) “ (u,=pA)u -y -u "
+ 2 1 2 2 3
EMy(a)|T) =) > 7 (1-e “-ue 7)- T Thus ,
2 ’

E(T,|T, = t) = EQy(ap)|T; = ©)/uy

(l-p)(l-E)z(uz--pA)u1 =My ) 1 . i

> 7 (1 -e - Hpe ) -
ok
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1 1
)y - o and since ¢ was

HpTPAT

By (4) we have E(T3|T1 =t) > (1 - C)z(r +

arbitrary, we have E(T3|T1 =t) >r. Q

Since r was arbitrary we can choose My and t so that E(T3|Tl =t) > E(T3).
Thus the sojourn times at node 1 and 3 are dependent for customers that go

through node 2. ¢

5. Summary. We have shown in section 4 that the sojourn times T, and T3 are

1
not independent for the network considered here. This proves the Mitrani point.
Independence, of course, is sufficient to Lemoine's formula (18) as occurs, for
example, in tandem queues as studied by Reich (1963). The key difference
between the Lemoine result and the Reich result is that Lemoine's network allows
customers to overtake each other while Reich does not. This overtaking feature
allows events occurring at earlier periods of time (outputs from queue 1 that
occur after our man has left queue 1) to influence events at later periods of
time (the sojourn time of our man at queue 3). Clearly, if the network does

not allow overtaking (e.g. if the graph of the network has at most one path

from node i to node j for every i,j) then one can use results such as Reich's

to show that sojourn times at nodes are mutually independent and exponentially
distributed random variables.

Results related to ours have previously been discussed by Burke (1969 and
1972) and the references therein for tandem queues with multiservers. The
problem discussed by Burke and that discussed by us seems to have the same
underlying behavior. That is, if overtaking can occur in acyclic Jackson

networks then, in general, sojourn times will not be independent.
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