
671 CALI?O*N1A UNIV BERKELEY pie
~~~ IN FLUENCE OF THE COMPILER ON THE COST OF MATHEMATICAL SOff TW ——E TC (U)
~fl 74 S N •ANLEtT . Y WAN. N000tN.49.A—OlOO 1017

UNCLASSIFIED ML

Mi
ENI D

D~ TL
fliNt

3 — 80

I
I
I

a



1.0 ~~~ ~ 25

_ _ _  

l~ ~2.2

I ~ lllO~
IIIII~8

11111’ 25 

~ wI,~
.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDA RDS- 1963-A



i The~[nfluence of the Compiler on the Cost of
(~~athematica1~~oftwa re—rn Particular on theID c

•~ ~~~ 
of ~~1anguIar Factorizati~~,, 

~(

~~~~~~~~~~~ARLEU~~~~~~~~A~~~7 ~~~4tT~ i/ FEB 7 1960

~~~~~~~~~~~~~~~~~~~~~ er eley 

.— It is suggest ed that it is almost impossible to compare two sensible implementations of a numer-
ical algorithm in Fortran or in Algol and assert that one of them will lead to a more efficien t
program in machine language. This is so because the way the computer makes use of registers in

~~ the arithmetic unit has a strong influence on running time. Further, the writer of a subprogram to
be used by other people is faced with the fact that his program will be used in a variety of compilers
and computers .
Key Words and Phrases : compilers, mathematical software, efficiency, portability, triangular
factorization

~

‘ 

~~~~~ CR Category : 4.0

i~~iL LU 1. INTRODUCTION

Those who interest themselves in disseminating scientific subprograms suffer int various ways from an inherent contradiction in their work. They wish to produce
C.13 good programs. Two aspects of the adjective good, namely, recognition of failure

and adequate accuracy, do not concern us here. Two other aspects are mac/l ine
independence (portability) and efficiency (execution time) . Since efficiency depends,
to a certain extent, on the computer there exists the possibility of conflict between
these two goals.

Sometimes there is no difficul ty . There are production codes, written entirely in
machine language, whose portability is of no interest to the users. At the other
extreme are large scale programs of which numerical subprograms form only a tiny
part, both in length of code and in execution time. Here the efficiency of the sub-
program is of no importance ; the adjective good has lost this component in this

Copyright © 1973, Association for Computing Machinery, Inc. General permission to republish
but not for profit , all or part of this material is granted provided that ACM ’s copyright notice is
given and that reference is made to the publication , to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery .
A ~~z~j2p of this paper was presented at Mathematical Software H, a conference held at Purdue
University, West Lafayette, Indiana , May 29—31, 1974. .

in part by the Office of Naval Research under Contrac 4-6 ~~~~~~

Authors ’ addresses: B.N. Parlett, Computer Science Division, University of California , Berkeley
CA 94720; Y. Wang, Department of Mathematics, Univ4rsity of California, Berkeley, CA
94720.

ACM Tranesotiass on Mstb nisilesl Soitwirs1 Vol. 1, No. 1, M.rob 1976, Pages 36-4A

_ _ _

s 31
_ _ _

~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~

— —



36 B.N. Porlett and Y. Wang

particular environment. Often the environment, or scope, of an application will
det~rmine the balance between portability and efficiency.

‘
~ ~t~~fortunately the producer of library subprograms which are to be used fre-

qu~nt1y b~ ~~herpeople does stand (or sit) on the horns of this dilemma. It is no
escape tow ~~ 4ifferent program for every conceivable environment. There exists
a large body of~i~ rs of standardized numerical subprograms who would like to have
reliabiflt~ and1 t execution from their (portable) Fortran subroutines. Can they

- ‘ 
-- r e horns of the dilemma really sharp? Can an expert not produce a

~J .:~J ~.i rogram which is adequately efficient on all relevant computing
s~~pms?

~~he run time efficiency of a Fortran or Algol program depends on the compiler
that translates it and on the computer which executes the machine code. One pur-
pose of our study is to show the strength and variability of this dependence.

We took several variants of the fundamental triangular factorization algorithm
for a square matrix and tested them on several compilers on two different computers.

It is surprising how sensitive execution time is to tiny, and reasonable, variations
in the Fortran program. We hope that others will try similar experiments on other
compilers and other machines. Explanation of the anomalies which occur is an
enlightening enterprise.

In the last section we draw some conclusions, but we wish to emphasize that we
are not criticizing Fortran compilers nor are we advocating a return to assembly
language for scientific programming. We do want users to appreciate the com-
plexities involved in writing standard Fortran subroutines for a variety of users.

A program finely tuned for machine X may run on machine Y but be very in-
efficient. With the advent of fourth generation computing systems, the situation will
become even more complicated.

2. TRIANGULAR FA CTORIZATION ALGORITHMS

The reader may consult Forsythe and Moler [2] for details concerning the solution
of Ax = b, given A and b. The major part of the computation is the triangular
decomposition PA —

~ LU , where P is an aptly chosen permutation matrix, L is
unit lower triangular with 1,, I � 1, and U is upper triangular. Then x is obtained
by solving Lc = b and Us = c. The factorization may be done either by Gaussian
elimination (GE) or by the compact method (Crout) . Normally L and U are
written over A.

By definition , (PA )~, = E ~~~~ k = 1, . . . , min(i, j ) .  Thus Uq = (PA)~, —E l ik USj , k = 1, .  . . , i — 1. Gaussian elimination subtracts one term l~ku~J at a
time, whereas the Crout algorithm computes the whole expression as soon as all
the terms are known.

GE Algorithm
Forj — 1, 2,. . . , a — I , repeat the following five steps:

1. Find the smallest index p such that Ja,~J — max Ja~iI for i � j .
2. If ~~ — 0, skip the remaining steps for this value of j.
3. If p > j, interchange elements j, .. ., a of rows j  and p.

ACM Transactions on Mitbematic~I Software, Vol. 1. No. 1, March 1975.

V

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

The Infl uence of the Comp iler on the Cost of Mathematica l Software 37

4. Compute the multi pliers: a,1 — a ,1/a11, i j + i , . . ., n.
5. 1.— aj,, i j + ~~, . . ., a; if I ~ 0 then row i — row i — X row j (oitly clementsj + 1,a in each row).
Alternatively, step 5 may be replaced by
5 . I — a ,,, i i + 1, . . . , a; if t � 0 then ccl i #- ccl i — t X co1~ (only elemen ts j + 1,a in each column).

We call the first version elimination by rows, and the second, elimination by
columns.

Gout Algorithm
Forj — 1, 2, ..., a — 1, repeat the f ollowing f ive steps.

1. Find the smallest p such that a,~! — max a~1I for i � j .
2. If ~~ 0, skip the remaining steps for this value of j .
3. If p > j, interchange the whole of rows j and p.
4. Compute the multi pliers: a ,, ~—. a0/a~ , I j + 1, . . ., n.
5. Update column j + 1: ~~~~ — a~j 4t — a,.~ ~~~~ 1 2 n(the sum runs from k — I

torn — min(i — 1, j)).

Compar ison of GE and Crout
Note that steps 1, 2, and 4 are identical in the two processes. However, at step 3
Crout involves more interchanges than does GE; this is mandatory if the inner
product in step 5 is to have this simple form. Hence, an advantage for .GE. One
reward for the extra labor in the Crout reduction is that the matrix L is explicitly
available upon termination , whereas in GE the multipliers in each column may not
be aligned by rows because of the interchanges. However, for many applications ,
including the solution of Ax = b, L is not needed explicitly. Crout’s claim to fame
is that it permits the double precision addition of the single precision products
in step 5.

If inner products are not so accumulated , then the two algorithms will produce
the same results and so are indistinguishable on grounds of accuracy. Moreover ,
they require the same number of arithmetic operations on the elements of A.

Discussion
Here, it seems to us, is the borderline between numerical analysis and mathematical
software. One of us has been teaching for some years that, in the absence of special
treatmer~t of inner products, there is nothing to choose between good implementa-
tions of either algorithm. Indeed, a major factor in the development of languages
such as Fortran and Algol is the idea that the scientif ic programmer should not have
to know the idio8yncracies of his computer and the vagaries of the compiler in order to
write a decent program. Numerical analysts are encouraged to publish por toble
programs. Indeed, it is nice when a Fortran program written elsewhere actually
runs on one’s own Fortran system. However, this joy is somewhat dampened if
there is a strong possibility that the program will run 50 percent slower than a
Fortran implementation which makes the right decisions with respect to the local
environment.

ACM Transaction, on Mstheinatlcal Softwa,., Vol. 1, No. I , March 1975.

— ~~~~~~~~~~~~~~~~~~~~~~~
. .

~~~~~~~~~~~~~~~ ~~~~~~~~
.

~~~~~~~~~~~~~~~~ ~~~~~~~~5 .

%~~‘ I

38 B.N. Parlett and Y. Wang

3. QUESTIONS CONCERNING IMPLEMENTATION

We now descend to the third level and look at various ways in which the GE and
Crout algorithms may be turned into computer programs.

Here are some questions that the programmer must consider. We emphasize again
that our aim is not to produce an optimal implementation but to illustrate the
effect of certain choices.

Question 1. Should rou ’s be interchanged p hysically or by indirect addressing ?
Question 2. The inner loop in Crout may be implemented in three different ways

(see Section 7 for details). Are these difference8 important? A scheme for computing
an a posteriori error bound , which led us to this study, requires that a particular one
of the three be used. We had assumed that there would be little to choose between
the implementations. Of course the precision in which the sum is accumulated will
influence the outcome.

Question 3. Should GE be done by rows or by columns? In [3], Moler pointed out
that on the IBM 360/67 Compiler H, the column implementation is never slower
than the row implementation. When page pulls are involved , it is much faster.

Question 4. How does GE compare with Crout? We made a study of each question
and , where the results surprised us, we inspected the assembly language code to find
an explanation. We compared just two computers, the CDC 6400 and the IBM
360/50. On the 6400 we tried five Fortran compilers, RUN , RUNW , FUN , FTN,
FTN 3.0. On the 360/50 we tried the G and H compilers at maximal efficiency.
We used randomly generated full test matrices of orders 25, 50, and 75.

4. THE COMPUTERS AND THE COMPILERS

IBM 360 Model 50

The model 50 is in the middle range of the computers in the 360 family. The execu-
tion times relevant to our study are

Operation Time
(in microseconds)

fetch or store 5
comparison 5
integer add 5
(short) floating add 10
(long) floating add 10
integer multiply 25
(short) floating multiply 20
(long) floating multiply .50

Short word integers have more significant bits (31) than short floating point num-
bers (24) and so take longer to multiply.

In a multiprogramming system such as IBM 360/50, it is necessary to distinguish
execution time from elapsed time. Execution times were obtained by making two
separate runs at nighttime and taking the minimum of the elapsed times between
start and finish of the execution. An alternative scheme is to subtract from the
central processing unit (CPU) time for a proper run the CPU time for compiling,
loading, I/O, and generation of the test matrices. The agreement was good.
ACM Tranasetloos on Math.matlcsl Software , vol. 1, No. 1, March *975.

~~~~~~~~~~~ ~~~.“ . . 
. • ,.

t~~ . .
..
~~ ~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The Influence of the Compiler on the Cost of Mathematical Software ‘ 39

CDC 6400

We remark that the IBM long word has 8 bits more than the CDC single precision
word.

The CDC 6400 can perform 10 minor cycles in 1 microsecond. The relevant
execution times are as follows:

Operation Minor Cycles

fetch 12
store 10
comparison 13
integer add 6
floating add 11
integer multi ply does not exist
floating multip ly 57

(high order part)
floating multiply 57

(low order part)

Remark. There is a hidden catch in the CDC multiply. What is called double
precision multiply is simply the lower order part of the product of two single pre-
cision numbers. Thus 114 minor cycles are required to obtain the full product of
two single precision numbers. What is more, for all the compilers to which we had
access, this extra multiplication cannot be invoked without declaring extra double
precision variables. For these reasons the cost of accurate accumulation of inner
products is over 100 percent more.

Of course complete, single precision CDC arithmetic is adequate for many com-
putations simply because half that precision, supplemented by accumulation of
inner products to that precision, would also have been adequate.

Fortran Compilers
The IBM 360 has simpler compilers (which take up less storage) for the smaller
models and more sophisticated ones for the larger models. The G compiler v~ as
designed for systems with 32,000 short words of storage and does not do explicit
optimization. The H compiler goes to the greatest lengths to optimize the object
code. This takes more time to accomplish and is designed for machines with at
least 64,000 short words of memory. Three different levels of optimization may be
selected on the H compiler (0. 1, 2) and we used the highest one (level 2).

On these problems the code produced by the H compiler runs three times faster
than the output of G.

We have purposely avoided student-oriented compilers which are more concerned
with rapid compilation and good diagnostics than with the efficiency of the object
code. t

Almost 90 percent of the Fortran jobs run at our computer center (at the Uni- 4
versity of California, Berkeley) use the RUN compiler on the CDC 8400. This was

‘In Fort ran a typical element 4(1, J) will be found in location a. + I — I ÷ (I — l)eNDI M ,
where NDIM is the row dimension of A and a, is the bnse address of A. None of the compilers
which we used was so naive as to compute this index anew for each reference to an element of A.
Instead , the location of the previous reference to A is updated by an appropri ate index addition.

ACM Transactions on Mathematical SoIIwaz., Vol. 1, No. 1, March 1976

i :,.

—
.

.. it .., ,~~~.
.. ~ ,

—
—

_ _

,

--- ~~~~~~~~~~~~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~ ... 



40 B.N. ParI.fl a,td Y. Wang

issued by CDC in the mid 1960’s (as a general purpose, nonoptimizing compiler),
and we currently have version 2.3.

It is quite probable that , through ignorance or habit , this compiler is being used
for scientific and engineering calculations where the object code produced by a
more sophisticated comp iler would be more economical for production runs.

Almost 10 percent of th~ Fortran job s use RUXW which is a local adaptation
(by D. Lindsay) of the ekaried up, well documented version of RUN produced by
the University of Washington in 1970. Among other things it uses rounded arith-
metic as against RUN ’s chopped calculations.

In the late 1960’s, CDC supplied the FTN compiler which does take the (often
significant) time to optimize its object code. On our problems this optimized code
cut running time by 25 to 30 percent. Very few people use it. We also used a more
recent (1971) version, FTN 3.0, but this is not officially maintained by the com-
puter center, and for us its results were not significantly different from those of
FTN, with one surprise.

Last, we used the FUN compiler which , we believe, was an experimental fore-
runner to FTN. For the most part its results were intermediate between those of
RUN and FFN.

5. ACCUMULAT ION OF INNER PRODUCTS

We would like to make some comments on the accumulation of inner products in
extra precision because the importance of this technique is frequently misunder-
stood. The given precision of most scientific computations is either the double or the
single precision of the local hardware.

The accumulation of the inner products in step 5 of Crout offers a clever alterna-
tive, intermediate between versions 1 and 2. The matrix is retained in the given
precision (no doubling of storage) and simply the additions in E a lkak .J ÷1 are
performed to double accuracy. The assumption here is that the full (doubly precise)
result of the given precision multiplication a~tat .~-,-~ is available at no extra cost.
This is not true on CDC equipment, for example, and cannot be obtained in ANSI
Fortran on any machine.

The reward for the accurate additions is that the error bounds on the process are
both elegant and almost optimally small. However, we must not be beguiled by the
bounds alone. In many, but not all, cases the actual errors in the given precision
implementation will already be almost optimal; only the bounds on these errors
will be larger. The decision to utilize accurate accumulation of inner products
should be made in two stages. Either the extra accuracy is mandatory and the
extra cost must be considered part of a feasible implementation (for example, in the
computation of the residuals b — Ax in iterative refinement; see t2]), or it is not
and the possible benefits must be weighed against the extra cost.

In Wilkinson’s early computations (on the pilot ACE and the DEUCE) this
extra cost was about 5 percent and the case for accurate accumulation was over-
whelming. On the CDC 6000 series the extra cost is at least 100 percent and, it
seems to us, the case is almost overwhelmingly against this feature .

With the IBM 360 series we reach the same conclusion for different reasons. The
fault lies in the software and not in the hardware, for in ANSI Fortran the product
ACM Transact ions on Mstb.matical Software, vol. i, No. 1, MareS 1975.

et s
~ ~~~~

V

.

~ 

~~~~~~~~~~~~ . 
*

4

The Influence of the Compiler on the Cost of Mathematica l Software 41

of two given precision numbers is given to that precision , even though available
information is discarded in the process. Within the confines of this language one is
forced to do an explicit double length multiply on two double length operands
whose lower order parts are zero. This increases the cost of accumulation by more
than 100 percent. In assembly language the extra cost is negligible because the long
add is as fast as the short add and the long sum can be kept in the registers through-
out the loop. Here lies the attraction of the Crout version,

For these reasons we decided not to complicate our study by letting the precision
of the inner loop be another variable.

6. STUDY 1: HOW SHOULD THE ROW INTERCHANGES BE DONE?

No explicit arithmetic operations are involved in exchanging two elements of an
array, but some indexing may be needed in address calculations and that depends
on the compiler.

Subsubscr ipts

This mode of indirect addressing is closest to the spirit of Fortran. Let a one-
dimensional array P be used to record the row interchanges. Thus P(J) holds the
(original) index of the Jth pivotal row. Initially P(J) = J. The (I , J) element of
the current permuted matrix is given by A (IP, J) where IP = P(I) . In this way
there is no cost to interchanging rows, but the reference to every array element has
been made more complicated. The question is how much?

One-Dimensional Representation

We did choose to implement the implicit technique on the Crout reduction , treating
A as a one-dimensional array . In other words, we took the indexing out of the hands
of the compiler and into our own. This trick violates the spirit of Fortran and is
illegal in Algol. We did it to present the implicit version at its best within the con-
straints of Fortran . In machine language one can do better.

Crout (with Implicit Row Interchanges)

Step 5 of the algorithm in Section 2 may be coded as follows.
JD - J aNDI M
NM ! N — 1
DO 2 I — 1, NM 1

M — I
IF (M.GT.J) M — J + 1
SUM - 0.
K! — P(I) (ps, 1)
IJ 1 — J D + K1 (p~,j+1)
K2 — JD + P(1) (p,,j ÷ 1)
DO I K — 2 , M
SUM — SUM ÷ A(K 1)aA(K 2)
Xl — Ki + NDIM (p., k)

1 K2 — JD -F P(K) (pa,j + l)
2 A(IJI) — A(I J I) — SUM

ACM Transactions on Mathematical Software, VoL. 1, No. 1. March 1975.

,
~~~.

F ~k~. ‘~~~~ 
‘

~~ 
,, 

~~~~~~~~~~~~~ -.-


42 . B.N. Porlett and Y. Wang

Discussion /Table I
On the IBM 360/50 the 13 percent advantage of the implicit technique on the G
compiler turns into a 40 percent handicap on the H compiler (for 50 X 50 matrices) .
Note that H cuts the execution time of the explicit version to one-third of its G
value, whereas it barely halves the implicit technique. This accounts for the switch.

Tables ! and II

IBM 360/50 CDC 6400
execution times execution times

G H
N compiler compiler RUN RUNW FUN FTN 3.0

Table I

Implicit . 2.5 1.225 0.671 0.296 0.295 0.210 0.200
100% 129.0% 100% 100% 112.3 % 117. 0%

50 8.518 4.608 2.032 2.0.58 1.357 1.345
100% 141,1 % 100% 100% 119.3% 133.6%

75 27.312 14.52 6.526 6.614 4.289 4.272
100% 143.2% 100% 100% 124.7% 140.9%

Explicit 25 1.424 0.520 0.353 0.350 0.187 0.171
116.2% 100% 119.3% 118.6% 100% 100%

50 9.674 3.265 2.452 2.~ 18 1.137 1.007
113.6% 100% 120.

~~% 117.5% 100% 100%

75 30.892 10.144 7.811 7.713 3.440 3.031
113.1% 100% 119.7% 116.6% 100% 100%

Table II
(0) 25 1.863 0.526 0.243 0.242 0.154 0.152

133.5% 108.2% 104.7% 104.8% 100% 100%

50 14.152 3.552 1.528 1.572 0.931 0.936
149.6% 111.8% 110.4% 115.3% 100% 100%

75 44.833 11.332 4.709 4.817 2.830 2.836
148.7% 117.2% 114.7% 119.0% 100% 100%

(1) 25 1.396 0.486 0.232 0.231 0.176 0.165
100% 100% 100% 100% 114.3% 108.6%

50 9.461 3.177 1.384 1.363 1.060 0.984
100% 100% 100% 100% 113.9% 105.1%

75 30.140 9.668 4.107 4.049 3.199 2.955
100% 100% 100% 100% 113.0% 104.2%

(2) 25 1.424 0.520 0.353 0.350 0. 187 0.171
102.0% 107.0% 152.2% 151.5% 121.4% 112.5%

50 9.674 3.265 2.452 2.418 1.137 1.007
102.3% 102.8% 177.2% 177.4% 122.1% 107.6%

75 30.892 10.144 7.81 1 7.713 3.440 3.031
102.5% 104.9% 190.2% 190.5% 121.6% 106.9%

ACM Transactions on MathematIcal Software, Vai l, No. 1, March 1975.

a

4~ ~~~~~~~~~~~~~~~~~ ~
- —--

~
— - .— —-- -.

-.——— ----

~

__.. -_

The Influence of the Compiler on the Cost of Mathematical Software 43

There is a similar phenomenon in comparing the RUN compilers with the FFN
type compilers. Here a 19 percent advantage becomes a 35 to 40 percent disadvan-
tage for the implicit technique.

The fact is that explicit interchanges are not very expensive; (N — 1) of them
add only negl igibly to the run time. Timings are varied because the number of
required interchanges varies . On our random matrices, over (2/3).V interchanges
occur.

These ratios would change considerably if the two methods of interchanging were
compared in connection with either Gaussian elimination or with Crout using
accumulation of inner products.

7. STUDY 2: THE INNER LOOP IN CROUT

We have to implement step 5 of Crout: a~,~+ 1 ~— a1 .i+ i — alkak .J+1 . Here are
three ways of doing it. Method (j) makes use of j temporary variables.
(0) DO 1K~~~l , M

1 AC! , JP I) — A(I , JP !) — A(I , K) sA(K , JP I)

(1) SUM — A(I , JP I)
DO 1 , K - 1 , M

I SUM — SUM — A(I, K) *A(K , JP I)
A(I , JP L) = SUM

(2) SUM — A(I. JP 1)
DO I K — I, M
T — A(I , K) s A(K , JP 1)

1 SUM — S U M — T
A(! , JP 1) — SUM

Discussion/Table II

IBM 360/50. With both compilers, (1) is the fastest version but (2) is only
2 percent slower on G and 3 to 6.5 percent slower on H. However, (0) is much worse
on G than on H.

CDC 6400. There is no consistent picture here and the variations are large.
RUN and RUNW. (1) is best, with (0) between 4 and 15 percen t slower and

(2) a whopping 50 to 90 percent slower. This is because the operations required
for computing the array locations in the K-loop are done once and for all in (1) but
are repeated each time in (2) . In other words, the ext ra variable forced certain
indices out of the registers.

FUN, FTN, FFN 3.0. (0) is best because A (I, J) is kept in the registers through-
out execution of the whole of the K-loop, and all unnecessary fetches and stores are
avoided. Following is a comparison of minor cycles generated by FUN and FTN.

FUN FTN

(0) (1) (0) (1)

I-loop 411 619 609 801
K-loop 139 161 144 144

The K-loop in (1) also has to fetch and store the temporary variable SUM which
is not held in a register throughout the loop.

ACM Transactions on Mathematiosl Software, Vol. 1, No. 1, March 1975.

-

.
~

~
..
~~~~~~~~~

i s:*;t~:

~~~ ~~~~
.

C

44 B.N. Parlett and V. Wang

It is important to note that in this study FTN 3.0 is only marginall y better than
FTX and for both of them (2) is only from 2 to 2.5 percent slower than (1) and
from 2 to 7 percent slower than (0). This is in sharp contrast to the 95 percent cost
with the RUN compiler and it is what one would hope to see.

8. STUDY 3: GE BY ROWS VERSUS GE BY COLUMNS

After the row interchanges have been made, it is necessary to execute ~~ ~—

a,~ — a,, X a~ for i and k from j + 1 to n.

G E (rows): GE (columns):
DO 21 — JP 1, N DO 2 K J P 1, N
T — A (I , J) T — A (J , K)
IF (T.EQ .0.)GO TO 2 IF (T.EQ .o.) GO TO 2
D O 1 K = J P 1 , N D O 1 I — J P 1 , N

I A(I , K) = A(I, K) — T.A(J , K) 1 A(I , K) A(I , K) — A(I , J) .T
2 CON TINUE 2 CONTINUE

The point here is that Fortran stores matrices by columns and GE (columns)
only needs columns j and k in the fast memory at any one time. A clever compiler ,
however, can produce an equally good code for each case where the whole matrix
can be stored in the fast memory.

We draw attention to Moler ’s discussion [3] of the possible effect of the paging
schemes used in time-sharing on the IBM 360/67. He shows that GE (columns)
minimizes page pulls in such an environment and is never slower (and sometimes
faster) than GE (rows) when a reasonably sophisticated compiler is used. Our
results are consistent with this but show that the G compiler cannot be classed as
reasonably sophisticated.

Discussion/Table III
lt is interesting that the differences are not negligible. On the optimizing compilers
(H , FUN , FTN 3.0), GE (rows) is 3 to 10 percent slower than GE (columns).

The RUN compilers cause the usual GE (rows) to be from 20 to 30 percent
slower. This is surprising, especially in conjunction with the fact that the non-
optimizing G compiler on the IBM 360/50 made GE (columns) 6 or 7 percent
slower.

Inspection of the machine code reveals that the slower times are not caused by
any flagrant inefficiencies such as recomputing an index but are solely due to the
fetching and storing of quantities that could have been held in registers.

For each compiler we compared the best versions of GE and Crout as determined
by the previous studies. We omit the timings, which may be found in [4].

9. STUDY 4: CROUT VERSUS GAUSSIAN ELIMINATION

Discussion

There is one anomaly. GE (row) is approximately 10 percent slower than Crout
(1) on the G compiler. Apart from this, GE is a comfortable winner , being an
amazing 25 percent faster for standard compilers and perhaps 8 percent faster f or
optimizing compilers.
ACM Trsneaetãone on Mathematic al Software , Vol. 1, No. 1, March 1975.

f

-
~~~~~~~~~~~~~

-I-
rw_,~j_~

I_, .t_ —
~~~ ~~~~~~~~~~~~~~~~~~~~~ 

-

..
.
— ~~~~~~~~~~~~~~~~~~~~~~

4

The Influence of the Comp iler on the Cost of Mathematical Software ‘ 45

Table III

IBM 360/50 CDC 6400
execution times execution times

G H
N compiler compiler RUN RUNW FUN VFN 3.0

By rows 23 1.463 0.487 0. 212 0.215 0.151 0.148
100% 109.4% 121.1% 121.5% 107.9% 105.0%

50 11.070 3.222 1.367 1.347 0.899 0.907
100% 108.5% 126 .5% 124.5% 104.5% 104.6%

75 33.438 10.208 4.193 4.126 2.732 2.758
100% 106.8% 128.3% 126,3% 105.0% 103.3%

By columns 23 1.540 0.443 0.175 0.177 0.140 0.141
10j.3~~ 100% 100% 100% 100% 100%

50 11.710 2.970 1.081 1.082 0.860 0.867
105.8% 100% 100% 100% 100% 100%

7a 35.929 9.558 3.267 3.268 2.601 2.671
107.4% 100% 100% 100% 100% 100%

Recall that for both processes the standard operation count yields
~N (N — 1) (2N — 1) multiplications and additions (in the inner loop) plus
~N (N — 1) multiplications by the reci procal of the pivot for the multi pliers.
This gives ~N 3 + 0 (N) multiplications in all. For contrast we give some actual
minor cycle counts on the CDC 6400.

RUN: Crout (1) 70N3 + 450N2 + 0 (N)
GE (row) 77N3 + 58N2 + 0 (N)

FTN 3.0: C~out (1) 48N3 -l- 3~8N2 .+ 0 (N)
C*o~t (0) 48N3 + 238N~ + 0(N)

. .
~, ~~~~~ c-I

10. CONCLI.)S~QNS . . .

Discussion of~~iii’_findings with others has pointed up~ ~~ ~i~ ed for~ v~~ 4i~1
claimers . ‘ : ~~.

‘
~~ ~~~~~~~We are not~ssplying that programs ought to be rit t~e~~ih assembly langu age C

in order to avt~&~~~~t use. of registera.~We are not ~~~~~~~~~~~~~~~~~~~~~~
producing im~~~~~ t êode. We are no~~ laming ~~~~~~~~~~~~~~~~~~~~~~~
state of affai~ is deplfrable an4 sTi6iiT~”~e rectified. El

The facts $hat we pave asseg~bled dq indicate the nasty problems ~vhich beset
those who tr3f to disse4ninate hi~ i class n~imerical programs. Isn’t this dissemination
one of the 4ns of tl~ numericftl analysis community? Some proliferation of pro-
grams is inevi~~blë bec~~ oft e ~~?1~ forms (such as positive definite matrices,
banded matrices) of which advantage can be taken. To check this proliferation our
purveyor feels obliged to choose one high level (Fortran) implementation for each

ACM Tranaaetions on Mathemati cal Software, Vol. 1, No. 1, March 1975.

1.

~~~
-: — — 

~~~~~~~~~~~~~~ ~~~~
,... ,- - _._Jr1_•,~~~~~~~- ~ wI%~. .-_..—~~~~~~~ ~—

~

.. — .—
~~~~~

— .— .—



46 B.N. Parlett and V. Wang

case. What are his efforts worth if the user comes back to say that  the new program
seems to be fully as accurate as his 10 year old program but 30 percent slower (or
50 percent slower, or 10 percent slower)? Of course there arc two qualities more
important than efficiency, namely, recognition of failure and adequate accuracy.
Moreover , there are important classes of computation where the scientific cal-
culations are insignificant compared with the other parts. Nevertheless there are a
great many installations which use Fortra n libraries and where certain subroutines
are called repeatedly in other subroutines.

We conclude that the writeups of these subroutines should indicate the difference
made by using an optimizing compiler or the standard one. Also helpful would be
time estimates not based solely on counts of arithmetic operations. What turns out
to be crucial is the way in which the Fortra n program influences the compiler ’s
exploitation of the operand registers .

REFERENCES

1. CHART R ES , B . , ~~~N I) GUE DE R , J. C. Computable erro r bounds for direct solution of linear

equations. J . A( .11 J.~ 1 (Jan . 1967), 63-71.
2. FO RSYTHE , ( L  E., t~~o MO LER , C. Computer Solution of Linear Algebraic Systems. Prentice- FlaIl ,

Englewood Cliffs, N.J., 1967.
3. MOLER , C. B. Matrix computations with Fortran and pag ing. c’omm. ACM 15, 4 (April 1972),

268—270.
4. PASLE DT, B. N., .~xn W~xo , Y. The influence of the compiler on the cost of triangular

factorization. Computer Sd. Tech. Rep. 14, Computer Sci. Div., U. of California, Berkeley,
Calif., June 1973.

Received April 1974; revised September 1974

ACCESSION for

D o C NTIS White Sectlon fr
ODC Buff Sectlcs 0

cJ UN1t~’4NOWICED
JUSTIFICATION

FEB 7~~~~O 
___________

UISIR1BOTION/AYAIUB1UTI t~ES
Dist. AVAIL and/oi 3P:~~~~

- ,,
~,rf ,n~ on ~1nth ,,atj c~I 8,dt wine, Vol. 1, No. I , March 1975.

- S ~~~~~ -

- . 

. ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
,. —. 

~~~~~~~~~~~~~~~~~~~~~~~~ —-I, ~~~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~ -


