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PREFACE
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Griffiss Air'fg;gé*53§e, New York. Mrs. Patricia J. Baskinger was the
RADC Project Engineer. This report describes the clustering algorithms

added to the MULTICS OLPARS Operating System under this effort.
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SECTION 1

INTRODUCTION

As its name implies, OLPARS (On-Line Pattern Analysis and Recognition A
System) combines graphic and statistical routines for the analysis of pattern
recognition data. In the current version of MOOS (the OLPARS version under
the MULTICS operating system), a clustering routine was not included among
the repertoire of statistical procedures but would be most appropriate in a

pattern recognition environment.

A study [18] was thus initiated to determine which clustering algorithm(s)

would be most appropriate to add to OLPARS to complement the existing capa-
bilities. It was important to select an algorithm which was not already

represented in the MOOS system in some form to avoid duplication.

Algorithms considered were those which most successfully complemented

the functioning of the MULTICS OLPARS system (MOOS), were consistent with the

S i 8

purposes of the MOOS system, were accurate, and had time and storage factors

practical for data sets of the size typically input to MOOS.




The set of clustering algorithms that were considered appropriate for
inclusion in MOCS can be classified as either hierarchical or partitioning.
Hierarchical algorithms tend to be agglomerative in nature, starting (concep-
tually) with one cluster for each data element and sequentially combining
the clusters until all the data elements are contained in a single cluster.
Partitioning algorithms start with a specific number of clusters, typically
defined a priori. During successive iterations, the number of clusters
remains relatively constant while their membership changes. In reviewing
the clustering literature, it became evident that neither approach was
necessarily better. Rather, it was decided that twc complementary algorithms,
one from each of the major algorithm classes would be appropriate for inclusion

in MOOS. The two algorithms are ISODATA and a variant of the minimal spanning

tree (MST) approach.

This report contains detailed design and user-oriented information
concerning the clustering functions ISODATA and MST. These two functions
are additions to the currently implemented version of MOOS existing on
the Honeywell 6180 MULTICS Computer System at RADC. Section 2 contains
a description of each function and an overview of why the particular algorithm
was chosen. Also included in Section 2 is a description of the distance
functions available to the user. Section 3 is the User's Manual for the
two added functions. It is assumed here that the user has a working kncwledge {
of the basic system capabilities of M0OOS. Section 4 contains file descriptions ?

and program documentation.
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SECTION 2

ALGORITHM DESCRIPTION

2ok DISTANCE FUNCTIONS

Clustering is typically performed by grouping the data elements together
on the basis of the distance between the elements. How cne defines distance
is quite independent of the clustering algorithm to be used. Yet the par-
ticular distance function used may have a significant bearing on the ultimate
clustering solution [1, 8, 11]. In this section, three of the distance
functions are discussed. Based on what is currently available in MOOS and on
what functions are most frequently used, these distance functions were selec-

ted to give the user several options by which distance may be definec.

2kl Number of Dimensions

Sets of data are usually entered into the MOOS system as data vectors,
where an element of a data vector represents the value of the item of data on
that particular measure (dimension). A user may want to define the distance
between two data vectors using the full data vectors or only some lower
dimensional projection of the vectors. Using a subset of the measures may be
a reasonable approach when several of the measures are significantly cor-
related, or when subsets of measures represent very different aspects of the
data. In any case, it should be possible for a user to specify (optionally)
what subset of measures shoculd be used to d« ‘ine the inter-element dis-

tances.,

S E—
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7.0 S (S Euclidean Distance

Perhaps the most familiar distance metric is the Euclidean distance

between two data vectors, Xi’ Xj:
N
= 2:1/2
d.. =iy G i e
1j i ik ik

where

xik = value of data vector Xi on measurement k,
anc

N = number of measures.

A generalization of the Euclidean distance, often used in multidimen-

sional scaling [e.g., 13] as well as in clustering, is the Minkowski distance

function

where

R R —




When c=2, this reduces to the Euclidean distance. For c=1, the result is the

"city-block" metric.

In a recent evaluation of cluster analytic methods [14], the differences
in performance between various clustering algorithms were much greater than

the within differences due to using either the Euclidean or city-block

metric; in fact, differences due to the metric were minimal. Because of this,

result, and Lecause there were no compelling reasons why a generalized
Minkowski distance function should be made available, only c=2 (Euclidean

distance) was implemented.

2.1.3, Weighted Distance

Quite often the dimensicns of a data vector will represent measurements
from significantly different scales (e.g., milliseconds and kilometers). In
such cases, an absolute difference in scale values will have a differing
meaning across the various measurements. One way of equating the dimensions
to eliminate these differences is to normalize (standardize) each measurement
by dividing the corresponding elements in the data vectors by the standard
deviation of the measurement. This normalization procedure is equivalent to
the normxfrm function in MOOS (and to the inverse variance weighting found in

the nearest mean vector function).

The computational form of the metric used in this option is

bt . s




where

X * UNknOWD VeCtor = X , X, . .+ . X))
: . i

= tor of class i = (ul,p >
u; = mean vector of class i = (ul,u, , « . . b,

and

1

vT = variance of the jth component of the ith class.

Faciine Ll Mahalanobis Distance

When there is a possibility that the various measurements comprising the
data vectors are correlated, one might consider using the Mahalanobis dis-

tance to define the proximity of two data vectors, Xy and xj:

where zfl is the inverse of the vovariance matrix for the measures.

When the set of measures are all uncorrelated, V reduces to a diagonal matrix
of variances, and the result is the normalized Euclidean distance. When the
measures are correlated, this distance function will, in addition, compensate
for the redundant information by orthogonalizing the space in which the data

vectors reside,




2.2, ISODATA - A PARTITIONING ALGORITHM

In examining the various partitioning schemes, the ISODATA routine was
evaluated positively on the performance criteria (see, for example [14]), and
was chosen as the most appropriate partitioning algorithm. The algorithm is
more comprehensive than many of the other routines examined. In fact, sev-
eral of the other clustering procedures can be considered special cases of
the ISODATA routine, Moreover, it is an algorithm that has been extensively
tested and improved [2-6, 10 ,14], is well-known in the pattern recognition
community, and was even implemented in an early version of OLPARS, under a
contract with RADC [15]. It is an algorithm that is suitable for an inter-
active environment as provided by MOOS where a user can evaluate and act on

intermediate results between iterations.

The version of ISODATA implemented combines features from several
different versions, and is discussed in Anderberg [1]. The main algorithm
consists of successive iterations of obtaining seed points (cluster cen-
troids) for the clusters and assigning each data element to the cluster with
the nearest centroid. After every data element is assigned to a cluster, the
centroids are computed and the processes are repeated. The calculaticn/
allocation cycle continues until convergence or until the maximum number of
iterations has been exceeded. Clusters may also be split apart or merged,

based on several criteria. The specific algorithm is cescribed below:

Al
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1. A set of parameters is defined explicitly. The parameters are:

MAXCY

NSPLIT

MAXMER

THETAC

THETAE

MINCL

ITERMAX

inc

Maximum number of calculation/allocation cycles

Splitting/Merging criterion

Maximum number of merges per iteration

Maximum intercentroid distance for merging

Splitting parameter

Minimum cluster size

Maximum number of iterative cycles

Starting number of clusters to be found

Maximum centroid distance for initial cluster

assignments

The meanings of these parameters will become clear from the descrip-

tion of the algorithm.

N
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Select the initial seed points. These are generated by the system,
The generation method is the oﬁe suggested by Ball and Hall [5],
where the overall mean vector of the data set is taken as the first
seed point, The data elements are then read in one at a time, If
a data element is more than some distance, d, from all previously
cnosen seed points, then it will be chosen as an additional seed
point. The process continues until some number, inc, of seed
points are chosen. This procedure is simple enough that it can be
repeated several times if the seed point sets are not adequate,
either because too few seed points were chosen, or because not

enough of the data set was examined.
Assign each data element to the cluster with the nearest centrcid.

Calculate new centroids based on the means of the data elements in
each of the clusters, Steps 3 and 4 are repeated until no data
element changes cluster membership or the number of Iterations

exceeds MAXCY,.

Delete any clusters containing less than MINCL data elements. The
elements in these clusters will not be considered further, but will

be put on a list of outliers for future reference.

N
I
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6. Attempt to either split or merge clusters according to the follow-

ing conditions:

a. Attempt to merge clusters if the number of clusters is greater

than twice NSPLIT,

b Attempt to split clusters if the number of clusters is less

than one half NSPLIT.

c. Otherwise alternate merging and splitting on even and odd

iterations, respectively.

Do Repeat steps 3 and 4 up to MAXCY times or until convergence.

gl Repeat steps 5, 6 and 7 up to ITERMAX times or until the process

converges.,

For a merging operation, all intercentroid distances are computed. If
the distance between the two nearest centroids is less than THETAC, then the

two clusters are merged. This process is repeated up to MAXMER times.

For a splitting operation, a cluster is tentatively chosen for splitting
if the within cluster standard deviation for any dimension exceeds the product
of THETAE and the standard deviation of that dimension in the original data
set. In this case, two clusters are formed, with data elements assigned

according to whether they are above or below the mean on that dimension. The
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centroids of these two new clusters are computed, and if the distance Letween

them is at least 1.1 times THETAE, then the split is accepted.

As is pointed out by Anderberg [1], the effects of this splitting opera-
tion is to constrain the cluster widths in every direction; it is highly
unlikely that elongated clusters will be found. This potential shortcoming
will be addressed by the hierarchical clustering algorithm, which was inten-
tionally chosen to complement the ISCDATA routine., The hierarchical algo-

rithm will be discussed in the next section.

2.3. MST - A HIERARCHICAL ALGORITHM

Most of the hierarchical clustering routines require the calculaticn and
storage of the matrix of all pairwise distances among the data vectecrs. As
the data set becomes large, this distance matrix can become much larger than
the original data set. As a result, most hierarchical clustering algecrithms
are not practical for pattern recognition applications where relatively large
data sets are often encountered. However, there is one algorithm which can
operate on large data sets and is complementary to the ISODATA algcrithm, the
single linkage algorithm, also known as the minimal spanning tree approach
fi, 12, ¢, 11, 12, 15, 17]. Although this algorithm is not one of the more
robust procedures in any general sense [7, 14], it does have the unigue
ability to detect elongated clusters, an ability lacking in ISODATA and in

most other clustering routines.

W RS it
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In general, single linkage clustering is also inefficient for large data

sets; however, Anderberg has develcoped a novel approach in which the distance

matrix search and evaluation procedures are replaced by a partition-exchange

sort on the distance matrix [1]. The algorithm is rather simple and is

outlined below:

The distances between all pairs of data elements are calculated and
output to a system storage device (e.g., disk file or tape) as
triples consisting of the twc data element identifiers and the
value of the distance between them. For N data elements, there

will be N(N-1)/2 of these triples.

A partition-exchange sort routine is used to sort the triples on

the distance field in ascending order.

The first link is formed between the pair of data elements closest

together: 1i.e., the first triple in the sorted list.

Each triple is then read in order and one of the following

actions occur:

a. If the two data elements in the triple are not already con-

nected through one or more links, then link these two data

elements.

2-10
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B, If the two data elements are already linked together, then
ignore the triple and read in the next one,
5 Continue reading in the triples from the sorted list until N-1

links have been formed. At this point, all N data elements will be

contained in this minimal spanning tree.

For small data sets, one can often look at the resulting tree structure
3

to evaluate the clusters inherent in the data set. However, for data sets of
even moderate size (N > >100), there is too much information ir the tree to
examine visually. Thus, a postprocessing operation is needed in which the
clusters are made explicit., According to Zahn [17], the basic idea is to
detect inherent separations in the data by deleting links from the minimal

spanning tree which are significantly longer than nearby links, Such a link
is called inconsistent. Operationally, & link will be considered incon-
sistent if its length (i.e., the distance between the two data elements) is
more than K times the mean of the length of the nearby links. (For rost
applications, K=2 would appear to be a reasonable choice,) For purposes o
implementation, nearby will be defined as any link containing either cof the
data elements in the link under evaluation.

Although by varying the strictness of the criteria for defining an
inconsistent link, it is possible to influence the ultimate rnumber of clus-
ters detected, the user is not really able to specify the number cf clusters
desired a priori., Unlike the partitioning algorithms, the hierarchical

clustering algorithm is influenced much more by the inherent structure of the




data then by the interests and bias of the user.

Thu
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» Dot only does

;5

e

complement the ISCDATA algorithm relative to the types of clusters it detects

best, but it is also complementary relative to the amount of influence that

the user can bring to bear on the analysis.
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dals GENERAL REMARKS

This manual contains descriptions of the two user functions, ISODATA and

A a

Mom
ST

. It is designed to provide & potential user of the MOOS system with

sufficient information to allow functicnal utilization of the two functions.

The standard terminal from which MOOS commands are executed is the

ety m

Tektronix 40lu storage tube display interfaced to the Honeywell 6180 MULTICS

processor. The MULTICS control larnguage has been utilized to the fullest

possible extent in the development of MCOS, and therefore & working knowledge
of the MULTICS environment i1s essential. Fcr further information, consult
the MULTICS Programming Manual. The user function calls are input via the
console keyboard and consist of a simple program name followed by any re-
quired or optional parameters. Dialogue concerning additicnal information
required for program operation is handled by standard terminal input/output

operations as specified within this manual.

Initiation of the MOOS Environment

Entrance into the MOOS program envirorment can be accomplishec by &

MULTICS user via the execution of the command hello-mcos. Upon completicn,

e ap—

this function provides the user with an orientation to the standard system

display. The hello-moos command is not a MULTICS functicn and may te

b
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utilized only by users for whom linkage to the MOOS directories has already

been provided.

The Standard Data Set Selection Parameters

Each of the two user programs may be called by the user with up to twe
cptional parameters, which represent the tree name and the name of the data
class upon which the operation is tc be performed. Rules for these para-

meters follow:

o \11 tree names are required to be five to eight characters in
length. Data class names are four characters in length (the final

character is used as a display symbol).

o If two parameters are input, the first will represent the tree
name. The tree name input must currently exist within the system.
The second parameter must Le a legal data class name within the

selected data tree,.

o} If cne parameter is input, it may represent either a tree name or a

lata class name. If it is five to eight characters in length, it
is taken to he a tree name, and the current data class is set by
default to the senior node (symbolized by "&&&&'") A four-charac-
ter input is assumed to be a data class name within the current

data tree.

~azm
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o If no parameters are input, the current data tree and class para-
meters are not changed and operations cof the called function are

executed upon the same data set as the previous option.

"Cluster File" Format

Each cluster file created by isodata and mst, contains specific informa-
tion regarding the number of wvectors in the cluster, the data vectors, the
mean of the cluster and either the variance or inverse covariance of the

cluster, depending on the type of distance metric used. The format of the

file is as follows (See Figure 3-1):

where

NOP - number of data vectors contained in the cluster file,
M1l - table of floating point numbers representing the mean vector

for the cluster.
M2 - table of floating point numbers representing either the

variance or inverse covariance matrix for the cluster.

s

M3 - table of floating point numbers representing the data measure-

ments for each vector in the cluster.

o B B .

3-3
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VDIM
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NDIM
words

Figure 3-1 Cluster File Format

V(1) NDIM

V(NVECS) NDIM
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ndim - number of dimensions in the data vectors within the cluster.

The dimension value is obtained from the data class file,

vdim - number of dimernsions in the variance or inverse covariance
matrix in the cluster. The value vdim is determinec by the
distance metric used and the number of dimensions in the da*s
vectcrs. If using the weight vector metric, "w'", then vdim=
ndim. If using the mahalanobis metric, then vdim=ndim®* (ndim

+1)1 /2.

w
.
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. ISODATA

Once in the MOOS directory, isodata is irnitiated by the call

isodata [(treename)][(nodename)]

with the parameters being input as mentioned earlier in Secticn 3. The data
set is examined to verify that it is a lowest node., If not, isodata will
notify the user that it can only operate on the lowest node and will then
terminate. Otherwise, isodata calls other subrcutines to determine the

clusters of the data set.

Once the clusters have been created, if the user has indicated that he
does not want a tree created from the clusters, then isodata will query the
'S

user about saving the clusters in the process directory. If the user wants

the files saved, then all cluster files are renamed. If the user does not

Fiteeribon
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want the files saved, then all cluster files are deleted. The deletion or
renaming of the cluster files is to enable the user to call upon isodata

again, in the same process without destroying any existing cluster files.

If the user has indicated that he wants a tree created from the clus-
ters, then isodata will query the user for the new tree name. Treeiput is
then called to create the tree. Isodata terminates by calling '"option" thus

preparing the user for his next MOOS option.

3.3, MST

Within the MOOS directory, mst is initiated by the call

mst [(treename)] [(nodename)]

with the parameters being input as mentioned in "General Remarks' of Section
3. The data set is examined to verify that it is a lowest node. If not a
lowest node, then mst will notify the user that operations can only be done
on lowest nodes ;nd mst will then terminate. Otherwise, mst links all the
data points in the data set together as one cluster. Then, based upon the
user-supplied values for a maximum and minimum link length, links are deleted
if they dc not fall between the maximum and minimum link length. The user is

notified of the number of clusters formed as a result of deleting links. He

will then be asked if he wants to change the maximum and minimum values for




the link length., If he does, then the new values are obtainec from the user,
mst deletes all clusters formed, links all points of the data set tcgether

into 1 cluster and repeats the cycle of deleting links,

If the user does not want to change the link length values and
has specified that he does not want a tree created from the clusters,
the following occurs. The user is asked if he wants the cluster files saved
in the process directory. If so, then all cluster files are renamed, If he
does not want the files saved, then all cluster files are deleted., The
deletion or renaming of the cluster files is to enable the user to call upon
mst again, in the same process, without destroying any existing cluster

files.

If the user has indicated he wants a tree created from the clusters,
then mst queries the user for the new tree name and calls upon treeiput to
create the tree. Mst terminates by calling "option" thus preparing the user

for his next MOOS option.
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SECTION 4

PROGRAM SPECIFICATIONS

4.1. FUNCTICONAL QVERVIEW

This section consists of a description of the functional organization of
the two added features, ISODATA and MST. It is not aimed toward the average
MOOS user, but is for the system programmers who might be interested in modi-

fying or expanding the MOOS system.

The following pages describe the programs added to the existing MOOS sys-
tem. Each program description includes a complete description of input and
output parameters and file settings, a functional description of the program
and an algorithm of the program. Internal subroutines are transparent to the
user and cannot be called from the console directory but are called by the

MOOS functions.

Table 4-1 is a listing of the two MOOS functions added to the MOOS sys-
tem. Table 4-2 is an alphabetic listing and page number index of all rou-

tines used.
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Table 4-1 Numerical Index of Added MOOS Functions

Number

217

218

Functions
e e e T

4-2
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isodata

mst

i
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Table 4-2 Alphabetic Listing and Page Number

Name

aspts

cdis

clearpts

ccmpcent

ceve

ctridata

dcen

Description

assigns data points to clusters

calculates distance between twc

clusters.

zeros out all data points in all

clusters.

calculates mear. of each cluster.

calculates the variance and inverse

covariance matrices cf each cluster.

creates the file '"treedata" from the

clusters.

deletes all clusters having too few

data points.

calculates the distance between a vector
cf the data set and a cluster, using the

covariance matrix of the original data set.

4-3

Index cf all Routines

Page

4-13

4-15

4-17

4-19

4-20




Table 4-2 Alphabetic Listing and Page Number Index

Name

disl

dlink

flinks

getparams

icle

init

isodata

(Contirued)

DescriEtion

calculates the distance between
a vectcr of the data set and a
cluster, using the inverse covari-

ance matrix of the cluster.

deletes all inconsistent links in the clusters.

computes links between all vectors of the

data set.

queries the user for all parameters

needed in isodata.

generates the clusters.

obtains all parameters from the user

for mst.

determines clusters existing in

the data set.

of all Routines

Page

L-23

4-30
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Table 4-2 Alphabetic Listing and Page Number Index of all Routines

Name

maxdis

merger

mindis

mindisl

mst

pcfile

reaspts

recomp

sorty

(Continued)

Descrigtion

determines which cluster a vector is

farthest from.
attempts to merge two clusters into one.

determines which cluster a vector is

closest to.

determines which cluster a vector is

closest to.
detects elongated clusters in a data set.

puts vectors into cluster files and

calculates mean of each cluster.
reassigns data points to clusters.

calculates the mean of any cluster having

data points which changed clusters.

uses a quick sort to sort an array on the

distance element.

e E————
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Table 4-2

Name

split

trip

TS T———————

Alphabetic Listing and Page Number Index of all Rcutines

(Centinued)

Description Page
attempts to split one cluster into two. 4-63
creates array of all pairs of data elements L4-65
and the distance between each element of a
pair.
calculates distance between twc vectors. L-67

4-6
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Internal Subroutine Name: aspts

Calliqggﬁeqpence: call aspts (tptr, dfptr, ccptr, aptr, tsptr,
metflag, classn, itcnt)

Input Parameters:

tptr - pointer to treename file.

dfptr - pointer to data file.

ceptr - pointer to cluster file,

aptr - pointer to array centaining a pointer
to each of the cluster files.

tsptr - pointer to array of temporary symbols
which specify what cluster each vector is
assigned to.

metflag - distance metric flag.

classn - number of class in treename file.

itent - number of iterations isodata has completed.

Program Description: aspts assigns the vectors of the data set to
a cluster. This is accomplished by calling a
distance routine, mindis, to determine which
cluster the vector is closest to, and then
placing the vector in that cluster. If the
user has specified that he wants to see how
isodata is progressing upon completion of
assigning all vectors to a cluster, the user is
notified of the number of vectors in each
cluster.
Algorithm: See following page
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Entry: aspts (tptr, dfptr, ccptr, aptr, tsptr,
metflag, classn, itent)

begin aspts; 1
if iteration count = 1 then examine all vectors;

call mindis to determine which cluster the vector
is closest to;

set temporary symbol = cluster number; A
get ﬁointer to cluster file;
increment number of points in file;
add vector to file;

end;

else if iteration count A = 1 then do;

examine each vector;

if temporary symbol A= O then doj

call mindis to determine which cluster the
vector is closest to;

set temporary symbol = cluster number;
get pointer to cluster file;
increment number of points in file;

add vector file;

end;
end;
if list flag is on then print the number of points in each
cluster;

end aspts;




Internal Subroutine Name:

Calling Segquerce:

n
[

0n
N

metflag

Cutput Parameters

dist

Program Description

Algorithm:

cdis

call cdis (ceptr, aptr, sl, s2, metflag,
dist)

pointer to cluster file.

pointer to array containing a pointer
to each cluster file,

cluster number of the first cluster,
cluster number of the second cluster.

distance metric flag.

distance between the two clusters,

cdis, using the distance metric specified

by metflag, calculates the distance between the
2 clusters specified by sl and s2 respectively.

See following page
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Enge

cdis (ccptr, aptr, sl, s2, metflag, dist)

begin cdis;

end cdis;

get pointer to each cluster file;

if metflag = "e" then
use euclidean distance formula;

else if metflag = "w'" then use
weighted vector formula;

else if metflag = "m" use mahalanobis
distance formula;

calculate distance;
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Internal Subrocutine Name:

Calling Sequence:

Input Parameters:

ccEtr

'g
ot
=

Program Description:

Algorithm:

clearpts

call clearpts (ccptr, aptr, tsptr, dfptr,
Z)

pointer to cluster file,

pointer to array containing a pointer to
each of the cluster files.

pointer to array of temporary symbols which
specify what cluster each vector is assigned

to.
pointer to data file.

flag indicating whether or not to reset
the temporary symbols of the vectors.

clearpts clears out all peints from each
cluster file. Then if z = 2, it resets

all negative temporary symbols,

See following page
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Entry: clearpts (ccptr, aptr, tsptr, dfptr, z)
begin clearpts;
do 1 to number of clusters;
get pointer to cluster file;
set all points to zero;

set number of points to zero;

if z = 2 then do;
examine all vectors;

if temporary symbol is negative then reset to a pesitive
number; :

end;

end clearpts;
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Internal Subroutine Name: compcent

Calling Sequence: call compcent (dfptr, ccptr, aptr)

Input Parameters:

dfptr - pointer to data file.

ccptr - ointer to cluster file,

L P

aptr i - pointer to array containing a pointer to

each of the cluster files.

Program Description: compcent calculates the mean of each
cluster.
Algorithm: See following page
4-13
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Entry: compcent (dfptr, ccptr, aptr)
begin compcent;
do 1 to number of clusters;
get pointer to cluster file;
initialize mean to zero;
calculate mearn;

end;

end compcent;




Internal Subroutine Name:

Calling Segquence:

Input Parameters:

CCEtP
aptr

metflag

Program Description:

Algorithm:

covce

call cove (ccptr, aptr, metflag)

pointer to cluster file.

pointer to array containing a pointer to
each of the cluster files,

distance metric flag.

cove calculates the variance or inverse
covariance matrix for each cluster. The
metflag determines which matrix covc needs to
calculate. If the metflag is "w'" (for the
weighted vectors) then the variance matrix is
calculated. If the metflag = "m" (for the
mahalanobis distance) then the inverse covari-
ance matrix is calculated.

See following page




covc (ceptr, aptr, metflag)

Entry:
begin covc;
if metflag = "w'" for weighted distance do;
do for each cluster;
get a pointer to cluster file;
initialize variables;
calculate variance;
end;

end;
else if metflag = "m'": for mahalanobis distance do;
do for each cluster;
get pointer to cluster file;
initialize variables;
compute upper triangle of covariance matrix;
do expand packed covariance matrix to full matrix;
create an ic region for inverse matrix routine;

call invertmat to invert covariance matrix;

store only upper triangle of full inverse covariance
matrix;

end;
end;

end covc,

P
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Internal Subroutine Name:

Calling Seguence:

Input Parameters:

ceptr
detr
Etr

[

tdetr

Qutput File Settings:

Program Description:

Algorithm:

ctrdata

call ctrdata (ccptr, dfptr, aptr, tdptr)

pointer
pointer

pointer
to each

pointer
creates

ctrdata

to

to

to
of

to

cluster file.
data file,

array containing a pointer
the cluster files,

the treedata file,

the file treedata.

creates the file treedata for

use in the subroutine treeiput, which creates
a MOOS tree from the treedata file. This
routine is used when the user wants a MOOS tree
created from the clusters,

See following page.
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Entry: ctrdata(ccptr, dfptr, aptr, tdptr)
begin ctrdata;
initialize tvecs to zero;
do for each cluster;
get pointer to cluster file;
sum the number of points in cluster file and tvecs;
end;
create treedata file;
do for each cluster;
name each cluster and put in treedata file;
put number of points in cluster in treedata file;
end;
do for each cluster;
put points of cluster in treedata file;
put vector id in treedata file;
end;

end ctrdata;

4-18
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Internal Subroutine Nare:

Calling Seguence:

Input Parameters:

CCE'tI‘

mincl

Output Parameters:

nodl

Program Description:

AlEorithm:

dcen

call dcen (ccptr, aptr, tsptr, mincl, nodl)

i

pointer to cluster file,

pointer to array containing a pointer to
each cluster file,

pointer tc array of temporary symbols which
specify what cluster each vector is assigned
to.

indicates the minimum number of vectors
needed to constitute a cluster.

number of deleted clusters.

dcen examines the number of vectors in each
cluster, If the number of points in the
cluster is less than the user-specified minimum
cluster size (mincl), then the cluster is
deleted. The temporary symbol of each vector
in the deleted cluster is set to zero., If the
user has indicated that he wants to see how
isodata is progressing, then the number of
deleted vectors is printed.

See following page
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Entry: dcen (ceptr, aptr, tsptr, minc
begin dcen;
initialize number of deleted clusters to zero;
get process directory;
do i = 1 to number of clusters;
get pointer to cluster file;
if number of points < maximum cluster size, then do;
do j = 1 to number of vecters;

if temporary symbol = i, then reset temporary
symbol to zero;

end;

get cluster file name;

.elete cluster file;

rename all cluster files,

turn decrement switch on;

end;

if decrement switch on, then do;
decrement 1i;
turn decrement switch off;

end;

end;
if 1flag, then print the number of deleted clusters;

end dcen;
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Internal Subroutine Name:

Calling Sequence:

Input Parameters:

classn
metflag

Output Parameters:

dist

Program Description:

Algorithm:

dis

call dis (tptr, ccptr, dfptr, vn, classn,
metflag, dist)

pointer to treename file,

pointer to cluster file.

pointer to data file.

element number of vector in data file.
number of data class in treename file,.

distance metric flag.

distance between the vector specified by
vn and the cluster pointed to by ccptr.

dis, using the distance metric specified

by metflag, calculates the distance between
the vector specified by vn and the cluster

pointed to by ceptr.

See following page
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Entrz:

dis (tptr, ccptr, dfptr, vn, classn,
metflag, dist)

begin dis;

end dis;

if metflag = "e" then use euclidean distance formula;
else if metflag = "w" then use weighted vector formula;
else if metflag = "m" then use mahalanobis distance formula;

calculate distance;

4-22
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Internal Subroutine Name:

Calling Sequence:

Input Parameters:

ccEtr
dfptr
vn

metflag

Output Parameters:

dist

Program Description:

Algcrithm:

disl

call disl (ccptr, dfptr, vn, metflag,
dist)

pointer to cluster file,
pointer to data file.
number of vector in data file,

metric distance flag.

distance between the vector specified
by vn and the cluster specified by ccptr.

disl, using the appropriate distance
formula specified by metflag, calculates
the distance between the vector, vn, and
the cluster pointed to by ccptr.

See following page.
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Entrx:

disl (ccptr, dfptr, vn, metflag, dist)

begin disl;

end disl;

if metflag = "e" then use euclidean distance formula;
else if metflag = "w" then use weighted vector formula;
else if metflag = "m" then use mahalanobis distance formula;

calculate distance;
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Internal Subroutine Name:

Calling Sequence:

Input Parameters:

=

lmax -

Imin -

tFE Er

Qutput File Settings:

Program Description:

Algorithm:

Entry:

begin dlink;

number of clusters

dlink

call dlink (lmax, lmin, trptr, pptr, cptr,
theta, ccptr, aptr)

maximum link length.

minimum link length.

pointer to tarray.

pointer to p array.

pointer to c array.

variable used in determining inconsistent links.
pointer to cluster file.

pointer to array of pointers to cluster files.
creates cluster files,

dlink is used to delete any inconsistent links
in the cluster as determined by lmax, lmin,

and theta, and to create the files for each
cluster found.

dlink(lmax, lmin, trptr, pptr, cptr, theta,
ccptr, aptr)

= 1y

i = number of vectors - 1;

do loor;

if distance between 2 points is < lmax and > lmin then link is okay;

else doy

create new cluster file;

e a—. S o




reset value in c array;

determine mean of nearby links;

if distance > theta * mean, then do;

end;
end;
decrement
if i = 1,
end;

end dlink;

§
B

create new cluster file;

reset value in c array;

s

quit loop;
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Internal Subroutine Name:

Calling Sequence:

Input Parameters:

trptr

cptr

pptr
metflag

Program Cescription:

Algorithm:

flinks

call flinks (trptr, cptr, pptr,
metflag)

pointer to tarray.

pointer to c array.

pointer to p array.

distance metric flag.

flinks determines the links in the data set
while, at the same time creating ¢ array
and the p array. The c array is in 1-1
correspondence with the data file and
indicates which cluster the vector is in.
The p array is used as an index back into

the tarray.

See following page.
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Entry: flinks (trptr, cptr, pptr, metflag)
begin flinks;
initialize index i to zero;
initialize index 1 to one;
do where 1 < number of vectors;
increment i by 1;

Kl

value of ¢ array of tarray (i), vecl;
K2 = value of c array of tarray (i), vec2;
if K1=K2 then do;

if K1=0 then do;

set ¢ (K1) = 1;

set ¢ (K2) 2
set p (1) = i;
increment 1 by 1;
end;
end;
else if K1=0 then do;
set c(K1l)=K2;
set p(l) = i,
increment 1 by 1;
end;
else if K2=0 then do;
set ¢ (K2)=K1;
set p (1) = ij
increment 1 by 1;

end;
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else do;

do i=1 to number of vectors;

if e(j) = K2 then c(j) = Ki1;

end;
set p(1l)=i;
increment 1 by 1;
end;
end;
number of clusters

end flinks;

1
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Internal Subroutine Name: getparams

Calling Segquence: call getparams (metflag, maxcy, nsplit,
maxmer, thetac, thetae, mincl, itermax, d,
1flag, tflag)

Output Parameters:

metflag - distance metric flag
maxcy - maximum number of calculation-allocation
cycles,
; nsplit - used in determining whether to split or
‘ merge clusters,
maxmer - maximum number of merges per iteration.
thetac - maximum intercentroid distance for merging
clusters,
thetae - used in determining whether a split is

acceptable or not.

mincl - minimum number of points which will keep
a cluster from being deleted.

itermax - maximum number of iterations through isodata.
d - maximum centroid distance for determining
initial clusters,
1flag - if on, specifies that user wants to see
how isodata is progressing at various
points.
tflag - if on, specifies that user wants a tree made
of the resulting clusters.
Program Description: getparams queries the user for all parameters
used in isodata that help determine how
to group elements of the data set into
clusters.
Algorithm: See following page
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Entry: getparams (metflag,maxcy, rsplit, maxer, thetac,
thetae, minel, itermax, d, 1flag, tflag);

begin getparams;
query user for maxcy;
read reply;
query user for maxmer;
read reply;
query user for thetac;
read reply;
query user for thetae;
read reply;
query user for mincl;
read reply;
query user for itermax;
read reply;
query user for metflag;
read reply;
query user for d;
read reply;
query user if wants 1flag turned on?
if reply A = "yes'"/or A= "no" then do until correct reply;
query user to reply with "yes" or 'no';
end;
if reply = "yes" turn 1lflag on;
else turn lflag off;
query user if he wants a tree of resulting clusters;

if reply A = "yes"/ A= "no" then do till correct reply;

4-31
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query user to reply with '"yes" or "no";
end;
if reply = "yes" then turn tflag on;
else turn tflag off; ‘

end getparams; !

ST S
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Internal Subroutine Name:

Calling Sequence:

Input Parameters:

metflag

[[e

classn
inc

itcent

Output File Settings:

Program Description:

icle

call iclc (tptr, dfptr, ccptr, aptr,
tsptr, metflag, ¢, classn, incl, itnct)

pointer to treename file
pointer to data file
pointer to cluster file

pointer to array containing a pointer
to each of the cluster files,

pointer to array of temporary symbols
which specify what cluster each vector
is assigned to,.

distance metric flag.

maximum centroid distance for deter-
mining initial clusters.,

number of class in treename file
initial number of clusters to be found.

number of iterations isodata has
completed.

A file for each cluster is created in
the process directory. The name of each
file is derived using the treename, node-
name, "isod" and the cluster number.

iclc generates the initial clusters by
starting with the mean of the data set as
the first cluster center. The distance
between each vector and the cluster cen-
ter(s) is calculated. If the calculated
distance is greater than the user-specified
distance, that vector becomes the mean of 2
a new cluster. This cycle of calculating
the distance between vectors and all
cluster centers is repeated until elther
all vectors have been searched through or
the number of clusters found is equal to
the user-specified parameter (inc). Upon
completion of the search for clusters, the

T S
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Algorithm:

user is tcld the number of clusters found,
the number of vectors examined, and asked
if he wants to continue with the current
number of clusters. If no, then iclc
deletes all clusters and starts again.

See following page
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Entrz:

begin iclc;

icle (tptr, dfptr, ccptr, &ptr, tsptr,
metflag, 4, classn, inc, itcnt)

get process directory;

ask user if he wants the initial clusters generated;

S £ W 1"
if "yes,

then query user for the number of initial clusters

to be found;

do while user wants to loop;

end;

get cluster name;
create lst cluster file;
put mean of data set into mean of first cluster file;

if itent = 1, then initialize temporary symbols of
vectors to zero;

search through vectors while number of clusters is less
than user-supplied initial number of clusters;

call maxdis to determine distance between vector and
cluster;

if cluster number = 1, then do;
get new clustername; |
create new cluster file;
put vector in new cluster as mean of new cluster;

end;

notify user of how many vectors were searched through and how many
clusters were found.

ask user if he wants to continue or try for more clusters;

if he wants to try for more clusters, do;

ask user for initial number of clusters to be found;




end;

end iclc;

end;

delete all clusters created;

locp through iclec againg
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Irternal Sutrcutine Name:

Calling Seguence:

Input Parameters:

| %

Cutput Parametersg:

lmax

Program Descriptiorn:

Algorithm:

ini
n

95
wdadoo

call init (lmax, lmin, tflag, metflag,
theta, x)

indicates what parameters should be
obtained from the user.

maximum link length.
minimum link length.

flag indicating user wants a MOQCS
tree created from the clusters.

distance metric flag.

variable used in determining incon-
sistent links.

init is used to obtain, from the user, all
parameters needed to determine the clusters

within the data set.

See following page.




Entrz:

init (lmax, lmin, tflag, metflag,
theta, x)

begin init;

query user for lmax;
get reply;
query user for lmin;
get reply,

if x=1, then do;

end;
end init;

query user for theta;

get reply;

query user for metflag;

get reply;

ésk user if he wants a MOOS tree created from the
clusters;

if yes, then turn tflag on;
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MOOS Function Name:

MOOS Function Number:

Calling Sequence:

Input Parameters:

Program Description:

AlEorithm:

isodata

217

Type in "isodata [(treename)] [(nodename)]"
Standard optional data set selection parameters,

isodata works only on the lowest node of a data
tree. It takes a current data set or one supplied
by the call to iscdata and determines how the ele-
ments tend to group together. This is accomplished
by initializing cluster centers, assigning points,
computing the mean of the clusters, reassigning
points and recomputing the mean until there are no
changing of points between clusters., Iscdata then
deletes any clusters having too few points, and
tries to split or merge clusters based upon a user-
supplied parameter, Isocdata is an iterative routine
which will repeat the cycle of assigning and reas-
signing points any number of times specified by the
user. If the user wants a tree of the resulting
clusters, the file treedata is created in the process
directory, with isodata then calling treeiput to
create the tree., Isodata ends by calling "option'".

See following page.
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Entry: isodata [(treename)] [(nodename)]
begin isodata;
get process directory;
call cu-Sarg-list-ptr for pointers to MOOS files
call utSckparam to get current treename and nodename
if no errors then do;
call lnodes to check for lowest node;

if not lowest node then do;
notify user that isodata only operates on lowest nodes;

terminate isodata;
end;
else do;
get data file name and a pointer to the datafile;
get pointer to treefile;
get number of classes in treefile;
get dimensions of vectors;

call mainl - an internal subroutine which allocates storage
for a treefile structure;

allocate Storage for temporary symbol array and array of pointers
to cluster files;

call getparams to get clustering parameters;
call main2 to allocate storage for a cluster file structure;
do while (iteration count < maximum number of iterations);
call iclec to get initial clusters;
call aspts to assign vectors to clusters;
call compcent to compute the mean of each cluster;

call covc to compute the variance and inverse covariance
matrices;

call clearpts to clear out data points from cluster files;

initialize cycle count;

do while (cycle count < maximum number of cycles);
initialize number of changes;

call reaspts to reassign points to clusters;
if any changes then do;
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call recomp to recompute mean of clusters;

if cycle count < maximum number of cycles then
call clearpts to clear points from clusters;

end;

if user wants to see progress of isodata then print number
of clusters and iteration count;

end;
call dcen to delete any clusters with too few points;

> o

if number of clusters 2% gplitting-merging parameter
then call merger to try to merge some clusters;

else if number of clusters < 1/2*% splitting-merging parameter then
call split to try and split some clusters;

else do;

if iteration count is odd, then call split to try to split some
clusters;

else call merger to try to merge some clusters;
end;

if there are no merges, no splits and no deletions, then set
iteration count = maximum iterations to quit cycle;

end;
if user has indicated no tree is to be created, then do;

ask user if he wants the current cluster files saved in the
process directory;

if yes, then
rename files;
else delete all files;
end;
if user has indicated he wants a tree of the clusters then do; i

get new tree name from user; !




——
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call ctrdata to create treedata file;
call treeiput to make a MOOS tree:
end,

call option;

end isodata;

442
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Internal Subroutine Name: maxdis
Calling Sequence: call maxdis (tptr, ccptr, dfptr,

aptr, vn, classn, metflag, d, dist, scn)

Input Parameters:

tptr - pointer to treename file,

ceptr - pointer to cluster file.

dfptr - pointer to data file.

aptr - pointer to array containing a pointer
to each cluster file.

vn - number of vector in data file.

classn - number of class in treename file,

metflag - distance metric flag.

d - maximum distance allowed between vector and
cluster,

Output Parameters:
dist - distance between the vector, vn, and

the cluster pointed to by ccptr.

scn - cluster number vector should be placed
fitie
Program Description: maxdis determines the maximum distance a

vector is from all clusters. If the

distance is greater than the maximum distance,
d, then the vector is used to form a new
cluster.

Algorithm: See following page
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Entry: maxdis (tptr, ccptr, dfptr, aptr, vn,
classn, metflag, d, dist, scn)

begin maxdis;
do for each cluster;

call dis to calculate distance between vector vn and
cluster pointed to by ccptr;

if number of clusters = 1 then do;
if dist < d then do;
maxdist = 0;
cluster number = 1;
end;
else do;
set maxdist = dist;
cluster number = number of clusters +1;
end;
end;
else if number of clusters > 1 then do;
if n = 1 then do;
maxdist = dist;
cluster number = 1;
end;
also do;

maxdist = maximum of maxdist and dist;

if dist = maxdist and dist < d then do;
maxdist = dist;
cluster number = 1;

end;
else cluster number = number of clusters + 1l;
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end;
end;
end;
| dist = maxdist;
end maxdis;
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Internal Subroutine Name:

Calling Sequence:

Input Parameters:

detr
ceptr
aEtr‘

tsptr

Output Parameters

nom

Program Description:

Alsorithm:

merger

call merger (dfptr, ccptr, aptr, tsptr,
metflag, nom, maxmer, thetac)

pointer to data file.
pointer to cluster file.

pointer to array containing a pointer to
each cluster file,

pointer to array of temporary symbols
which specify what cluster each vector is
assigned to.

distance metric flag.
maximum number of merges allowed.

maximum intercentroid distance
for merging clusters,

number of merges perfcrmed.

merger calls cdis to compute the distance
between all pairs of clusters. The clusters
are then sorted, in ascending order, on the
distance measurement by the sort routine,
sorty. If the distance measurement is less
than thetac, then the two clusters are merged,
and the mean of the cluster file recomputed.

See following page
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Entry: merger (dfptr, ccptr, aptr, tsptr, metflag,
nom, thetac)

begin merger;
determine all pairs of clusters;
compute distance between clusters of each pair;
do a quicksort in ascending order on the distance measurement;
do for each pair of clusters;
if distance measurement < thetac, then do;
add vectors of cluster 2 to cluster 1;

reset temporary symbol of vectors in cluster 2 to value of
temporary symbol of cluster 1;

recompute mean of cluster 1;

delete cluster 2 from process directory;
decrement number of clusters;

increment number of merges;

rename all cluster files;

delete all pairs of clusters in array containing either
cluster 1 or cluster 2;

end;
end;

end merger;




Internal Subroutine Name:

Calling Sequence:

Input Parameters:

mindis

call mindis (tptr, ccptr, dfptr, aptr,
vn, classn, metflag, dist, scn)

tptr pointer to treename file,

ceptr pointer to cluster file.

dfptr pointer to data file.

aptr pointer to array containing a pointer
to each cluster file.

vn number of vector in data file.

classn number of class in treename file,

metflag distance metric flag.

Output Parameters

dist distance between the vector vn and the
cluster pointed to by ccptr.
scn - number of cluster vector should be placed

in.

mindis determines which cluster the vector
vn is closest to.

Program Description:

Algorithm: See following page.
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Entry: mindis (tptr, ccptr, dfptr, aptr, vn,
classn, metflag, dist, scn)

begin mindis;
mind = large number;
do for each cluster;
get pointer to cluster file;

call dis to calculate distance between
vector vn and cluster pointed to by ccptr;

if dist is less than mind then do;
set cluster number;
mind = dist;
end;
end;
dist = mind;

end mindis;




Internal Subroutine Name:

Calling Sequence:

Input Parameters:

ceptr
fEtr
Etr

o}

u

(5

metflag

Output Parameters:

Program Description:

dist

scn

Algorithm:

mindisl

call mindisl (ccptr, dfptr, aptr, vn,
metflag, dist, scn)

poeinter to cluster file.
pointer to data file,

pointer to array containing a
pointer to each cluster file,

number of vector in data file.

distance metric flag.

distance between vector vn and
the cluster pointed to by ccptr.

number of cluster vector should be
placed in.

mindisl determines which cluster the
vector vn is closest to.

See following page
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Entry: mindisl (ccptr, dfptr, aptr, vn, metflag,
dist, scn)

begin mindisl;
mind = some large number;
do for each cluster;
get polnter to cluster file;
call disl to calculate distance

between vector vn and cluster pointed to
by ccptr;

if dist < mind then do;
set cluster number;
mind = dist;
end;
end;
dist = mind;

end mindisl;
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MOOS Function Name:

MOOS Function Number:

Calling Seguence:

Input Parameters:

Program Description:

Algorithm:

mst
218
Type in "mst [(treename)l[(nodename)]"

standard optional data set selection
parameters.,

mst works only on the lowest node of a data
set, It takes either a current data set

or one supplied by the call to mst, and detects
elongated clusters within the data set. This
is accomplished by linking all elements in
the data together as one cluster, and then
deleting any links that are either too

short or too long, as specified by the user.
The user has the option of changing the

link length values at the completion of link
deletion., Mst will repeat the cycle of
deleting links if the length value is changed.
If the user wants a tree of the resulting
clusters, the file treedata is created

in the process directory, with mst then
calling treeiput to create the tree, Mst
ends by calling "option'".

See following page




Entry: mst [(treename)] [(nodename)]
begin mst;
get process directory;
call cu_Sarg list ptr for pecinters to MOOS files;
call utSckparam to get current treename and ncdename;
if nc errors then do;
call Inodes to check for lowest node;
if not lowest node then do;
notify user that mst only operates on lowest nodes;
terminate mst;
end;
else do;
get data file name and a pointer to the datafile;
get pointer to treefile;
get dimensions of vectors;

call mainl - an internal subroutine which allocates
storage for a treefile structure;

allocate storage for c&p array and array of pointers
to cluster files;
call init to get clustering parameters;

call main2 to allocate storage for a cluster file
structure;

call trip to create triple array of all pairs of
data points €& the distance between the elements of
the pair;

call sorty to do a quicksort on the distance element
of the triple array;

zero out c-array;
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call flinks to find all links and create both
the ¢ and p array;

do while (user wishes);

initialize all elements of c-array to 1;
create first cluster file;

call dlink to delete any inconsistent links
i.e. toco long or too short);

call pcfile to put elements of data set in
correct cluster file;

ask user if he wants to change link length values;
if yes, then do;
delete all clusters;

call init to get new link length values;
end;

else quit loop;
end,

if user has indicated no tree is to be created thern do;

ask user if wants the current cluster files saved in the process
directory;

if yes then rename files;
else delete all files;
end;
if user has indicated he wants a tree of the clusters then do;
get new tree name from user;
get total number of vectors in all clusters;
all ctrdata to create treedata file;

treeiput to make a MOGCS tree;
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Internal Subrcutine Name: pcfile

aa s

Calling Sequence: call pcfile(dfptr, aptr, ccptr, metflag, cptr)

Input Parameters:

dfptr - pointer to data file.

aptr - pointer to array containing a pointer to each
cluster file.

ceptr - pointer to cluster file.
metflag - distance metric flag.
cptr - pointer to c array.
Program Description: pcfile searches through the data set and places

each vector into the cluster it has been as-
signed to. The mean and variance or covariance
of each vector is then calculated. The user is
notified of the number of clusters found and the
number of peints in each cluster.

Algorithm:
Entry: pcfile(dfptr, aptr, ccptr, metflag, cptr)
begin pcfile;

do 1 to number of clusters;
get pointer to filej
initialize number of points to zeroj
search through vectors and place in correct cluster;

end;

call compcent to calculate the mean of each cluster;

if metflagh = "e" then call cove to calculate the variance or .
inverse covariance of cluster;

print the number of clusters and the number of points in each
cluster;

SRS

end pcfile;




Internal Subroutine Name:

Calling Seguence:

Input Parameters:

Output Parameter:

tnoc

Program Description:

Algorithm:

reaspts

call reaspts (dfptr, ccptr, aptr, tsptr,
metflag, tnoc, classn)

pointer to data file,
pointer to cluster file.

pointer to array containing a pointer to
each cluster file,

pointer to array of temporary symbols which
indicate what cluster each vector is assigned
to.

distance metric flag.

number of class in treename file.

counter which indicates the number of
vectors transferring from one cluster to
another.

reaspts examines each vector whose temporary
symbol is not zero, calls mindisl to determine
which cluster the vector is closest to, and
assigns the vector to that cluster. If the
user has specified to see the progress of
isodata, then the number of points in each
cluster is printed.

See following page
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Entry: reaspts (dfptr, ccptr, aptr, tsptr, metflag,
tnoc, classn)

begin reaspts;
do for each vector;
if temporary symbol of vector ! - zero, then do;

call mindisl to determine which cluster the vector is
closest to;

if the temporary symbol A= the new cluster number then reset
temporary symbol to a negative number;

get pointer to new cluster;
increment number of points in cluster;
add vector to cluster file;
end;
end;
If list flag is on, then do;
print the number of vectors which changed clusters;
print number of vectors in each cluster;
end;

end reaspts;
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Internal Subroutine

Name:

Calling Sequence:

Input Parameters:

CCEtP
agtr

tsetr

Program Description:

Algorithm:

recomp

call recomp (ccptr, aptr, tsptr)

pointer to cluster file,

pointer to array containing a pointer
to each cluster file.

pointer to array of temporary symbols which
specify what cluster each vector is assigned
to.

recomp examines the temporary symbols of

all vectors in the data file. A negative
temporary symbol indicates the vector changed
clusters, requiring the mean for both the old
and the new cluster to be recomputed.

See following page
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Entry: recomp (ccptr, aptr, tsptr)
begin recomp;
do for each vector;
if temporary symbol is negative, then do;
get old cluster number;
get new cluster number;
get pointer to old cluster;
initialize mean to zero;
if number of points A = 0, then compute mean;
get pointer to new cluster;
initialize mean to zero;
if number of points A = 0, then compute mean;
end;
end;

end recomp;

QU SR Swe
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Internal Subroutine Name: sorty

Calling Sequence: call sorty(trptr)

Input Parameters:

trptr - pointer to structure being sorted.
Program Description: sorty uses a quicksort to sort an array con-

taining all pairs of vectors of the data set
and the distance between each vector of the
pairs. The sort operates on the distance
element and produces the same array in ascend-

ing order.
Algorithm:
Entry: sorty(trptr)

begin sorty;
determine software stack size and allocate storage for it;
if number of elements to be scrted is > 9 then do;
initialize stack pointer;
initialize maximum boundaries;
do loop;
initialize left and right boundaries;
get key and record to be sorted;
Q3: do while (go);
increment left boundary;
if (distance of left boundary < key), then go = no;
if left boundary = maximum left boundary then go = noj
end;
do while (go);

decrement right boundary;
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if key < right boundary then go = no;
if right boundary = 1, then go = no;
end;
if right boundary > left boundary, then do;
exchange records;

if maximum right boundary - right boundary > right
boundary - left boundary > 9, then do;

increment stack pointer;
decrement maximum right boundary;

set stack;

else if (right boundary - left boundary > max right
boundary - right boundary > §), then do;

increment stack pointer;

set stack;

set maximum left boundary;
end;

else if max right boundary - right boundary > 9 > right
boundary - left boundary, then reset max left boundary;

else if right boundary - left boundary > 9 > max right
boundary - right boundary, then reset max right boundary;

else if stack pointer /= zero, then do;
reset maximum left and right boundaries;
decrement stack pointer;

end;

else if stack pointer = zero then quit loop;

end;




else do;
exchange records;
go to Q3;
end;
end;
end; A

dc j = 2 to end of array;
if key (j - 1) > key (j) then do;
=3 =33
dc while (go);
| if i = 0, then do;
if key(i) > key(j), then do;
let Record (i+l) = Record (i);
decrement i; 3
end;
else go = noj;

end;

else go = no;

§ end;

Record (i+l)

Record (3);
end;
end;

end sorty;
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Internal Subroutine Name: split

Calling Segquence: call split (tptr, dfptr, ccptr, aptr, tsptr,
metflag, nos, thetae, nsplit, classn)

Input Parameters:

Iptr - pointer to treename file.

dfptr - pointer to data file.

ceptr - pointer to cluster file,.

aptr - ointer to array containing a pointer to

P P Y P

each cluster file.

tsptr - pointer to array of temporary symbols which
specify what cluster each vector is assigned
to.

metflag - distance metric flag.

thetae - used in determining when to split a cluster.

nspli - used in determining whether to split or

merge a cluster.
classn - number of data class in treename file.

Cutput Parameters:

nos - number of splits performed.
Program Descriptiou: split examines each cluster and tentatively

chooses it for splitting if the cluster
standard deviation for any dimension

exceeds the product cf thetae and the standard
deviation of that dimension in the original
data set. The vectors are then assigned to
clusters according to whether they are above or
below the cluster mean on the dimension causing
the split. The mean of each cluster is calcu-
lated and if the distance between the two
clusters is at least 1.1 times thetae, then the
split is accepted.

Algorithm: See following page
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Entry: split (tptr, dfptr, ccptr, aptr, tsptr,
metflag, nos, thetae, nsplit, classn)

begin split;
calculate the standard deviation of each cluster;
get the standard deviation of the original data set;
do i = 1 to number of clusters;
get pointer to cluster file;
if cluster standard deviation for any dimension exceeds
thetae® the standard deviation of the original data
set on the same dimension, then do;
increment number of clusters;
create new cluster file;
assign vectors to clusters - those above the mean on the
splitting dimension are put in the new cluster - those
below the mean on the splitting dimension are left in
the old cluster;
calculate new means of both clusters;

call cdis to compute distance between the two clusters;

if distance is < 1.1 times thetae, then split is unacceptable
and do;

put all vectors back in original cluster;
delete new cluster;
decrement number of clusters;
end;
else split is acceptable and do;
increment number of splits;
reset temporary symbols of split cluster;
end;
end;
end;

end split; L-64
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Internal Subroutine Name: trip

Calling Sequence: call trip (tptr, dfptr, trptr,
metflag, classn)

Input Parameters:

tptr - pointer to treename file,

dfptr - pointer to data file.

trptr - pointer to tarray.

metflag - distance metric flag.

classn - number of class in treename file,

Output File Settings: creates the file "tripfile'" in the
process directory.

Program Description: trip creates the file '"tripfile" which
contains all pairs of data elements
in the original data set and the
distance between the two elements
of each pair.

Algorithm: See following page.

PR
2 -
)
D
(5]




Entry: trip (sptr, dfptr, trptr, metflag
classn

begin trip;

determine size of tarray based on number of vectors;
allocate storage for tarray;
create trip file;
do for all pairs of data elements;
call vdis to determine cdistance
between the two elements;
Store elements and distance in
trip file;
end;
end trip;
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Internal Subroutine Name:

Calling Sequence:

Input Parameters:

dfptr

1594

B

classn

<
—

I.

<
N

metflag

Output Parameters:

dist

Program Description:

Algorithm:

vdis

call vdis (dfptr, tptr, classn, vl,
vZ, metflag, dist)

pointer to data file.

pointer to treename file.

number of class in treename file,
vector 1.

vector 2.

distance metric flag.

distance between vl and v2.
vdis calculates the distance between the
two vectors, vl and v2. The distance

metric used is specified by the metflag.

See following page
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Entry: vdis (dfptr, tptr, classn, vl,
v2, metflag, dist)

begin vdis;

if metflag = "e" then use euclidean distance formula;
else if metflag = "w" then use weighted vector formula;

else if metflag = '"m" then use mahalanobis distance formula;
calculate distance;

end vdis;
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