
IT AD AOSO 626 PATTERN ANALYSTS AND RECOGNTTTON CORP ROME N V fl~ •fl1 MULTICS REMOTE DATA ENTRY SYSTCU . VOLUME TI. CLUSTERIF.IG AODzrTo——Eyctu,
OCT 79 .i 0 DYAR F30602—77—C—017;UNCLAS$IFI(O PM—fl—fl RAOC—Th—79—fl$—vOt—R NI

iii!!

H ii _

i • c::~ :~ ~III~
8

~~

JUII~

I I
IJIIl~8

1101’ ~ IIIII~ wII~
.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU 01 ST ANDARDS 9b3 A

LEVEL~RADC.TR.79.265, Vol II (of two)
_ _ _ _ _ _ _ _ _

Final Tichnical R.port
Octob.r 1979

MULTICS REMOTE DATA
ENTRY SYSTEM

> Cluster ing Additions to MOOS
I 8~att.rn Analysis & R.cognition Corporation

LI..1, Janet D. Dyar

F

[h~~ovEo FOR PUBLIC RELEA SE; OI57lI$U710pj UNLIMITEDJ

D D C

E~ e
ROME AIR DEVELOPMENT CENTERL Air Force Systems Command

L Griffin Air Forc• Base, New York 13441

80 2 1~ O98~

This report has been reviewed by the RADC Public Affairs Office (PA)and is releasable to the National Technical Inf ormation Service (NTIS) .At NTIS it will be releasable to the general public , including foreignnations.

RADC—TR—7 9—265 , Vol II (of two) has been reviewed and is approv ed forpublication.

APPROVED:

PATRICIA J. BASKINGER
Project Engineer

APPROVED: ~~~~~~~~~~~~~~
“~~~~~~~(‘ ~

WENDALL C. BAUMAN , Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER:

JOHN P. RUSS
Acting Chief, Plans Off ice

If your address has changed or if you wish to be removed from the RADCmailing list, or if the addressee is no longer employed by your organiza-tion, please notify RADC (ISCP), Griffiss AFB NY 13441.. This will assistus in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

___________ III ’)

UNCLASSIFIED
S E C u R I°y ~$S..A S S t F l C A ” D N OF ~‘ s ’ S P A G E ‘l Iken Dat. E n t e r e d)

- -_______ __-
~ (5~~T rSr~l ’i l l iT ATI (%kJ A!’ REAl) INSTRUCTIONS
r~ ~~~~ i i,,j ’...un, r~ ‘?‘ I I J~~ U BEFORE C0MPLET 1Nc~ FORM

I R P ~~~~~~~~~~~~~~lI ~~~~~ ‘ 2 GOVT ACCE SSION NO. 3 R E C I P I E N T S C A T A L O G NUMBER

~~~~ ~~~~R-~79-255 ’Jo1” (of two) 
________________________

-. 5~~~~~ yP~~~~~~~ R~~P3Ri & PE I V E R E

~~~ LTICS REMOTE~~ ATA ENTRY ~YSTEM~ ~~~~~ ~~ / Final ~~~hnical e p t ,
Cluster ing Addi t ions to MOOS

- . { . - - -

I. _P&&F NO ORG ~~~~~~~~~ N~~M3 E N

77,~~ 79~ 5~7M
_ _ _ _

6

1
T~~ t D./DYa7

_ _ _ _ _ _ _ _

9 P E R F ORM I N G O R G A N I Z A T I O N N A M E AND A D D R E S S / 10. PROGRAM E L E Y E N ~~~~~~~~~~~~ A SE
—

Pa t t e rn Analysis and Recogni t ion Corporat ion/ I
A R E A A *OR- (~~N ’~~

228 Liber ty Plaza 62702F
Rome NY 13440 ‘_j~i~_ ss~ fr324 17/ L-

1 1 CONTROL LING O F F I C E NA M E AND ADDRESS
—

2 PEPO~~~~~~.~ T E

Rome Air Development Center (ISCP)
,
~, , V Oct~~~~n~~ 79J

Griffiss AFB NY 13441 ~~F O A ~~~~~c

II MON I lOPING A G E N C Y N A M E & A C D R E S S ’ ’l j,ffrreot Iron, Controlling 011 cr) 15 S E C U R I T Y C L A S S ‘~~f •5,~
—

Same 2~~
) () fl / UNCLASS IFIED

F 15& DEC .4S SI~~I C A i I O N

NIA~~~~~

11, D)ST RIBJT ION 51 ATENENT (.5 ! tIlls Rep orI)

Approved for public release; distribution unlimited .

1 D I STRI8JTION STATEMENT ‘~~l the ab,ttact entered in Olock 20, II differe nt 1r.~n- lSer~~r

Same

9 S U P P L E M E N TA R Y N OT E S

RADC Project Engineer : Patricia J. Baskinger (ISCP)

‘9 t (E Y W O R D S ‘ onuour or, reverse ,,de if n vese.rv arId denllfy b y b l o c k oun,S~
r ,

Pa t te rn Recognition OLPARS
Pa t t e rn Anal ysis Data Entry
Classification
Clustering

2,) A B S T R A C ‘ConIln,,e on reverse side If necessary and identify by block number ’
- __________

This report contains the user ’s manuals and software documentation for the Re-
mote Data Entry System which is the front—end to the MULTICS Pattern Recogniti
Facility and the Cluster Analysis package which was added to MULTICS PLPARS.
The Remote Data Entry System was designed to allow users of the MULTICS Pattert
Recognition Facility the ability to input their data over the ARPANET from a
Tektronix remote storage device. Once the data is input into the MULTICS Sys—
tern, routines are provided so that the user can easily restructure or cluster
his database to perform different classification experiments. - .

• DD ~~~~~~~ 1473 UNC1.~SSIF1ED

SECu~~’TY C L A S S I F I C A n IOII OF iwis PAGE WIles l).ts Fotere,l ’

~ -~~~
) /~ I ru

PREFACE

This is Volume II of the Final Report by Pattern Analysis and

Recogn ition Corpora tion, 228 W. Dominick Street, Rome, New York wr itten

under Contract F30602—77—C—0174, for the Rome Air Development Center ,

Griff iss Air Force -~a~ e, New York. Mrs. Patricia J. Baskinger was the

RADC Project Engi~~~~T~ Thi s repor t descr ibes the clustering algor ithms

added to the MULTICS OLPARS Operating System under thi s effort.

~~
- t~~~~~~t~ l2C: d

- 1

- - - V -
-

-
- —~ -

-
~~~ :~ )E~

- !2~ .

to



TABLE OF CONTENTS

Section

1. Introduction 1-1

1.1. References 1—3

2. Algorithm Description 2-1

2.1. Distance Functions 2-1

2 . 2 .  ISODATA - A Partitioning Algorithm 2-5

2 . 3 .  MST - A Hierarchical Algorithm 2-9

3. User’s Manual 3—1

3.1. General Remarks 3-1

3.2.  ISODATA 3—5 j

3.3. MST 3—6

4.  Program Specifications 4—1

4.1. Functional Overview 4-1

11



S CTION 1

I~ T RL~LU CT TO!~

A s its ~ar~e i~~ 1i~ s, ~LPAP .~ (On-Line Pattern Analysis and Recognition

System ) combines ~r~~ hic and statistical routines for the analysis of .attern

recogr.ition ~ata. In t~ e current version cf MOOS (the OLPARS version under

the MU TICS o:eratir 0 syst~ n ) , a clustering rou tine was not included among

the repertoire of statistical procedures but would be most appropriate in a

~attern recognition environment.

A v - tudy [18] was thus initiated to determine which clustering algorithm (s)

would be most appropriate to add to OLPARS to complement the existing capa-

bilities. It was important to select an algorithm which was not alrea.±y

represented in the MOOS system in some form to avoid duplication .

Algorithms considered were those which most successfully complemented

the func t ioning  of the MULTICS OLPARS system (MOOS )~ were consistent with the

purposes of the MOOS system , were accurate , and had tine and storage factors

practical for data sets of the size typically input to MOOS.

1-1 

. . Ii,_ _ . . _ _ . _ _ . . .. ~. ...J.I. . . .~~~~~~ -- ~~~~~~ I. .1



The set of clustering algorithms that were considered appropriate for

inclusion in ~CCS can be classified as either hierarchical or partitioning .

Hierarchical algorithms tend to be agglomerative in nature , starting (concep-

tually) with one cluster for each data element and sequentially comb in ing

the clusters until all the data elements are ccr.tair.ed in a single cluster.

?artitioning algorithms start with a specific number of clusters , typically

~efir,ed a :riori. During successive iterations , the number of clusters

remains relatively constant while their membership changes. Ir. reviewing

the clustering litera ture, it became evident that neither approach was

necessarily better . Rather , it was decided that two complementary algorithms ,

or.e bron each of the major algorithm classes would be appropriate for inclusion

it’. Ml ~~S. The two algorithms are ISODATA arid a variant of the minimal spanning

tree (MiT) approach .

Th is  recor t  contains detailed design and user—oriented information

concerning tne :lc-;rering functions ISODATA and N~ST. These two functions

ar e add~ ticrs to the currently implemented version of MOOS existing on

the -~oney wel 6 8O H~ LTICS Computer System at RADC . Section 2 contdins

e descri j~t lcr .  of each function and an overview of why the particular algorithn

was chosen . Also included in Section 2 is a description of the distance

func t~ :ns available to the user . Section 3 is the User ’s Manual for the

two a~..ied ~c:ctions . It is assumed here tha t  the user has a working kncwled ge

of the  basic syst em ca~ ab il it i e s  of MOOS . Section 4 contains f i le descriptions

ar,~ progra~ ~~cunentat ior . .

_______________________ - —~~~~~



—w-- ------- ------ --- -------- -------------- -------
~~
---

-

1.1. ~-LPE~ ENCES

_ .  Anberberg, ~~~ . Thuster Aria ysis for App lications , New York :

Press ,

:. SaIl , ~ .H. A comparis on of some cluster—seeking techniques ,

ke::rt Number iA2 -TR-66—5l4, Stanford Research Institute , Menlo

Pa rk , ~tli~ crnia , l-~6€. ( A 6 ~~3 2 8 7 )

3. Sa~~~, -l.H . lsssificstic-r . Analysi s, Technical Note , Stanford

~.esearch in s ti t u te , ~enlo Park , California, 1970. (A07l6482)

Sail, C . H .  -~ H aL , D.J. Some fundamental concepts and s3althesis

;-rocedures for pattern recognition preprocessors , Paper- presented

at th e International Conference on Microwaves, Circuit Theory , and

Informatio r. Thecry , Tokyo , Japan , Sept . 1964.

5. Sail, C.H. t HaIl , P . S .  ISODAT A , A Novel Method of Data Analysis

ar.b Pattern Classification , Stanford Research Institute , Menlo

Park , Californ ia , 1965. (A0699616 )

6. Ball , 3.H. & Hall , P.S. PROMENADE--An On-Line Pattern Recognition

Sys tem , Peport Number RADC-TR-67-310, Stanford Research Institute,

Menlo Park , California , 1967. (AD822174)

__ - -- - -



7. 3 .ashfield , P.K. Mixture model of cluster analysis: accuracy

of four agglomerative hierarchical methods , Psychological

BulLetin , 1976, 83 , 377 — 388.

~~~. Jormack , P . M .  A review of classification, Journal of the Royal

Stacistical Society , Section A , 1971, 134, 321 — 367.

5. lub e , P .1. 6 Hart , P.E. Pattern Classification and Scene Analysis.

New York : Wiley , 1973.

10. Hall, D.J., Ball, G.H., Wolf , D.E., 6 Eusebio , J. PRoMENADE : Ar .

Improved Interactive-Graphics Man/Machine System for Pattern

Recognition, Report Number RADC-TT-68-572, Stanford Research

Ins t i tu te, Menlo Park , California, 1969 . (A D 692752)

11. Hartigar., J.A. Clustering Algorithms , New York : John Wiley,

1975 .

12. Johnson , S.C. Hierarchical Clustering Schemes , Psychcmetrika,

1967 , 32 , 241 — 254 .

13. lKoopman, R.F. 6 Cooper, M. Some problems with Minkowski distance

models in multidimer.sional scaling, Paper presented at the

Psychometric Society Meeting , March 1974, Stanford , CA.

_ __ _ _

: .
~~~~~~~



l~~. Mezzich , S.E. Comparative rerformance of cluster analytic

metnods, workshop or. classifying cultural and social data,

Charles ton , icuth Sarolina , March 2 3 — 27 , 1977.

15. Sammo n , S.h. Cm-Line  Pattern Analysis and Recognition System

(OLPARS ), Report Number PADC—TR-68-263 , Rome Air Development

Center , U SA F , 1968 (AD675212)

16. Sokal, R .F.. & Sneath , P.H. Principles of Numerical Taxonomy ,

San Francisco: Freeman , 1963.

7. Zahn, C.T. Graph-theoretic methods for detecting and describing

Gestalt clusters , IEEE Transactions on Computers , 1971, C-20,

68 — 86.

18. Hersh, H.M ., Clustering Algorithm Evaluation for Pattern Analysis

Applications , PAR Report No. 79-6 , Submitted to RADC Jan 1979.



SECTIO N 2

A L O C R I T H M  DES CRIPTION

2 .1. D I S T A N C E  PJNC T JN S

Clus t e r ing  is typ ically performed b y grouping the data elements together

on the basis of the distance between the elements . How one defines distance

is quite independent of the clustering algorithm to be used. Yet the par-

ticular distance function used may have a significant bearing on the ultimate

clustering solution [1, ~~, ilL In this section , three of the distance

functions are discussed. Based on what is currently available in MOOS and on

F 
what functions are most frequently used , these distance functions were selec-

ted to give the user several options by which distance may be defined .

2 .1.1. Number of Dimensions

Sets of data are usually entered into the MOOS system as data vectors ,

where an element of a data vector represen ts the value of the iten of data or.

that particular measure (dimension). A user may want to define the distance

between two data vectors usir.g the full data vectors or c m l v  some Icc-er

dim en sionc~l t ’r o jec t ion  of the vectors . U sing  a subset ot the measures may be

a re~ sonat Le app roac en sever~~L. of the  measures are s icar .t iy  cor-

re atec , or when subsets or measures represer.t ver’.’ ~i:ferent aspects of the

any case , It should be poscihle :or a user to specify Ccrtior.ally )
I

what su~ cc: ci r~~as~ r-es shc-_I’ he used to d~ inc th e r~~- : - I~~ t r .  U -

tances.

- —1

____________  • ~~2 .



2. .2. Euclidean Distance

Perhaps the most familiar distance metric is the Euclidear. distar.ce

between two data vectors , X., X . :
1 ~

d.. 
k=l ~

‘
~ik - x .k )~~

where

x . = value of data vector X . on measurement k,1k 1

and

N = number of measures.

A generalization of the Euclidean distance , often used in multidimen-

sional scaling [e.g., 13] as well as in clustering , is the Minkowski distance

function

N
- c l/cd . .  x . - x . }

k=l ik jk

where

C ~~O

2 — 2  

- —--—-~~ - —



When c 2 , this reduces to the Euclidean distance . For ct., the result is the

“city-block” metric.

In a recent evaluation of cluster analytic methods [14], the differences

in performance between various clustering algorithms were much greater than

the within differences due to using either the Euclidean or city-block

metric ; in fact, differences due to the metric were minimal . because of this ,

result, and because there were no compelling reasons why a generalized

Minkowski distance function should be made available , only c 2  (Euclidean

distance) was implemented.

2.1.3. Weighted Distance

Quite often the dimensions of a data vector will represent measurements

from significantly different scales (e.g., milliseconds and kilometers). In

such cases, an absolute difference in scale values will have a differing

meaning across the various measurements . One way of equating the dimensions

to eliminate these differences is to normalize (standardize) each measurement

by dividing the corresponding elements in the data vectors by the standard

deviation of the measurement . This normalization procedure is equivalent to

the normxfrm function in MOOS (and to the inverse variance weighting found in

the nearest mean vector function).

The computational form of the metric used in this option is

1 (x . -i i .)
2

1 
:3=1 v~

2 — 3



where

x unknown vector x1, x2 , . . . x1
)

1
z mean vector of class i = (p~~,p  ~~ , . . . p 1

and

variance of the jth component of the ith class.

2.1.4. Mahalanobis Distance

I
When there is a possibility that the various measurements comprising the

data vectors are correlated , one might consider using the Mahalanobis dis-

tance to define the proximity of two data vectors , x~ and x~ :

- -la .. = ( x .  - x .)V (x . - x.)
1 J 1 J

where is the inverse of the ~ovariance matrix for the measures.

When the set of measures are all uncorrelated , V reduces to a diagonal matrix

of variances , and the result is the normalized Euclidean distance . When the

measures are correlated , this distance function will , in addition , compensate

for the redundan t information by or’thogonalizing the space in which the data

vectors reside .

2—4

___________ - - .-~~—
, 



2 . 2 .  ISODATA - A P A A T I T I ON I N G  ALGORITHM

In examining the various partitioning schemes, the ISODATA routine was

evaluated positively on the performance criteria (see, for example [14]), and

was chosen as the most appropriate partitioning algorithm. The algorithm is

more comprehensive than many of the other routines examined. In fact , sev-

eral of the other clustering procedures can be considered special cases of

the ISODATA routine . Moreover, it is an algorithm that has been extensively

tested and improved [2—6 , 10 ,l4], is well-known in the pattern recognition

community , and was even implemented in an early version of OLPARS , under a

contract with RAD C [15]. It is an algorithm that is suitable for an inter-

active environment as provided by MOOS where a user can evaluate and act on

intermediate results between iterations.

The version of ISODATA implemented combines features from several

different versions, and is discussed in Anderberg [1]. The main algorithm

consists of successive iterations of obtaining seed points (cluster cen-

troids) for the clusters and assigning each data element to the cluster with

the nearest centroid . After every data element is assigned to a cluster, the

centroids are computed and the processes are repeated . The calculation!

ollocation cycle continues until convergence or until the maximum number of

iterations has been exceeded. Clusters may also be split apart or merged ,

based on several criteria. The specific algorithm is described below:

3: 
_ _ _ _ _ _ _ _ _ _



1. A set of paraxr~eters is defined explicitly . The parameters are :

MAXCY - Maximum number of calculation/allocation cycles

NSPLIT - Split ting/Merg ing criterion

MAXMER - Maximum number of merges per iteration

THETAC - Maximum intercentroid distance for merging

THETAE - Splitting parameter

MINCL - Minimum cluster size

ITERMAX - Maximum number of iterative cycles

inc - Starting number of clusters to be found

d - Maximum centroid distance for initial cluster

assignments

The meanings of these parameters will become clear from the descrip-

tion of the algorithm .

I

2— f

~ 
•



2 . Select the initial seed points. These are generated by the system .

The generation method is the one suggested by Ball and Hall [5] ,

where the overall mean vector of the data set is taken as the f i rst

seed point . The data elements are then read in one at a time .

a data element is more than some distance , d , from all previously

chosen seed points , then it will be chosen as an additional seed

point. The process continues until some number , m c , of seed

points are chosen. This procedure is simple enough that it can be

repeated several times if the seed point sets are not adequate ,

either because too few seed points were chosen , or because not

enough of the data set was examined.

I.

3. Assign each data element to the cluster with the nearest cer.troid.

4. Calculate new centroids based on the means of the data elements in

each of the clusters . Steps 3 and 4 are repeated until no data

element changes cluster membership or the number of iterations

exceeds MAXCY .

5 . Delete any clusters containing less than MINCL data elements. The

elements in these clusters will not he considered further , but will

be put on a list of outliers for future reference .

I 2-7



e .  Attempt -to either split or merge clusters according to the follow-

ing conditions :

a. Attempt to merge clusters if the number of clusters is greater

than twice NSPLIT .

5. Attempt to split clusters if the number of clusters is less

than one half NSPLIT.

c. Otherwise alternate merging and splitting on even and odd

iterations, respectively .

F
7 . Repeat steps 3 and 4 up to MAXCY times or until convergence .

8. Repeat steps 5, 6 and 7 up to ITERMAX times or until the process

converges .

For a merging operation , all int~rcentroid distances are computed . If

the distance between the two nearest centroids is less than THETAC , then the

two clusters are merged. This process is repeated up to MAXMER times.

For a splitting operation , a cluster is tentatively chosen for splitting

if the within cluster standard deviation for any dimension exceeds the product

of THETAE and the standard deviation of that dimension in the original data

set . In this case , two clusters are formed , with data elements assigned

— according to whether they are above or below the mean on that dimension . The

2-8



centroids of these two new clusters are computed , ar.d if the distance between

them is at least 1.1 times THETA , then the split is accepted.

As is pointed out by Anderberg [1], the effects  of th i s  splitting opera-

tion is to constrain the cluster widths in every direction; it is highly

unlikely that elongated clusters will be found . This potential shortcoming

will be addressed by the hierarchical clustering algorithm , which was inten-

tionally chosen to complement the ISODATA routine . The hierarchical algo-

rithm will be discussed in the next section .

2.3. MST - A HIERARCHICAL ALGORITHM

Most of the hierarchical clustering routines require the calculation and

storage of the matrix of all pairwise distances among the data vectors. As

the data set becomes large, this distance matrix can become much larger than

the original data set. As a result, most hierarchical clustering algorithms

are not practical for pattern recognition applications where relatively large

data sets are often encountered. However, there is one algorithm which can

operate on large data sets and is complementary to the ISODATA algcrithm , the

single linkage algorithm , also known as the minimal spanning tree approach

[1~ 12, 9, 11, 12, 15, 17]. Although this algorithm is not one of the more

robust procedures in any general sense [7, 14], it does have the unique

ability to detect elongated clusters , an ability lacking in ISODATA and in 4

most other clustering routines.

2—

___ ~--- - __ ---

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - •
~~~~~~~~



Th general , single linkage clusterirg is also inefficient for large data

sets ; however , Anderberg has developed a novel approach in which the distance

matr ix  search and evaluation procedures are replaced by a partition-exchange

sor t on the distance matrix [1]. The algorithm is rather simple and is

outlined below:

1. The distances between all pairs of data elements are calculated and

output to a system storage device (e.g., disk file or tape) as

triples consisting of the two data element identifiers and the

value of the distance between them. For N data elements, there

will be N(N-l)/2 of these triples.

2. A partition-exchange sort routine is used to sort the triples on

the distance field in ascending order.

3. The first link is formed between the pair of data elements closest

together: i.e., the first triple in the sorted list.

4. Each triple is then read in order and one of the following

actions occur:

a. If the -two data elements in the triple are not already con-

nected through one or more links, then link these two data

elements.

2—10

- —

~

-—

~

-

~

——-- - - - 
~~~~

- - - - - -
~~~~~ 

-— - -



b. If the two data elements are already linked togetker , then

ignore the triple and read in the next one.

5. Continue reading in the -triples from the sorted list until

links have been formed. At this point , all h~ data elements will he

contained in this minimal smar .nir.g tree.

For small data sets, one can ofter. look at the resulting tree structure

to evaluate the clusters inherent in the data set. However , for data sets of

even moderate size (N > >100), there is too much. information in. the tree to

examine visually. Thus , a postprocessing operation is needed in which the

clusters are made explicit . According to Zahn [17], the basic idea is to

detect inherent separations in. the data by deleting links from the minimal

spanning tree which are significantly longer than nearby links . Such a link

is called inconsistent. Operationally , a link will be considered incon-

sistent if its length (i.e., -the distance between the two data elements) is

more than K times the near. of the length of the nearby links . (For most

applications, K 2  would appear to be a reasonable choice.) Uor purposes of

implementation, nearby will be defined as any link containing either cf the

data elements in the link under evaluation.

Although by varying the strictness of the criteria fcr defining an.

inconsistent link, it is possible to influence the ultimate number c-f clus-

ters detected , the user is not really able to specif y the number cf clusters

desired a priori . Unlike the partitioning algorithms , the hierarchical

clustering algorithm is influenced much more by the inherent structure of the

~~
- 

- 2-1 1

-I



data then by the interests and bias of the user . Thus , not only does i t

complement the ISC ATA algorithm relat ive to the types of clusters it detects

best , but it is also complementary relative to the amoun t of influence that 
-

the user can bring to bear on the analysis.

2—12



S

I ‘I ~ Ak AL

3.1.

This manual contains descri p t ions  of the  two user functions , S llATA and

- 11. It is designed to mrc-;ide a potential user of the -COS system with

sufficient information to allow functicnal utilization of the two functions .

The standarm terminal from wh ich ~-3 3E comm ands are executef is the

Tektronix 4Ol’~ storage tube display interfaced to the Honeywell 6l8~ :-:11:ICs

processor . The M~J T l l  control language has beer, utilized to the fullest

possible extent in the ce velopmen t of ~CO S , and therefore  a working knowled ge

ci the ~iLTI2S en-z ironmen: is essential.  Fcr further information , consult

the MJLTllS Programming yanual. The user function calls are input via the

console keyboard and consist of a simple program name followed by any re-

çuired or optional parameters . Dialogue concerning additional information

required for program operation is handled by standard terminal input/output

operations as specifies within this manual.

Ir.itlaticm of the -00E Environment

Entrance into the ~-:coS program enviror.ment can be acc o m p lished by a

~-~~~TICS user via the execution of the command he ,ll-mcos. ‘-non comp lcticn ,

this  function provides the user with an orientation to the star,dart ~vsten.

dis:ia ’, . The hello-moos command is not a ~-1~ LTIIE :unc ticr. m l  ~- a - .-

- 

3-~~___ 
-



utilized only by users for whom llr~kage to the ~-~0OS directories has alr ead y

reen provided.

The tandard Data Set Selection Parameters

Each . ci the two user programs may be called by the user with up to two

::tional parameters, ‘~:hich represent the tree name and the name of the data

llass upon . which the operation is to be performed. Rules for these pare-

meter-s follow:

o AU tree names are required to be five to eight characters in

length. Data class names are four characters in length (the f i n a l

character is used as a display symbol).

o If two parameters are input , the first will represent the tree

name. The tree name input must currently exist within the system .

The second parameter must be a legal data class name within the

selected data tree.

o If one parameter is input, it may represent either a tree name or a

.ata class name . If it is five to eight characters in length , it

is taken to I~e a tree name, and the current data class is set Lv

default to the senior node (s~~bolized by “~~~**“)~ A four-charac-

ter input is assumed to be a data class name within the current

data tree.

3—2 

a 

-



o Ii no :arem~:e: are in:st , the  cu r r e n t  la ta  t ree  and dllss a-

meters are no: changed and c;eraticns or the celIa: are

executed upon the sam e data set as the :re-;ious oction.

“Cluster File’ Format

Each cluster f il e  created by isodata and ms:, contains specific informa-

tion regardir.g the number of vectors in the cluster , the  date vectoSs ,

mean of the cluster and either :b~e varianc e or in vers e covarian~ e ci the

cluster , depending on the type of cistance metr ic  used . The format or the

file is as follows (See Fig ure 3 - - I ) :

where

~3P - number of data vectors contained in the cluster file .

- table of floating point numbers representing the mean vector

for the cluster.

M2 - table of floating point numbers representing either the

variance or inverse covariance matrix for the cluster .

- table of floating point numbers representing the data measure-

ments for each vector in the cluster .

- 

3-3



Fi~ ure S—I Clu ster File Format

I word -

MOP

Ml-

words 
—

~
_i I

I

- -

~-~3 V ( l )
~D IM — - — — —

words ~~~~~ — — — — —

L V( 1)
V ( 2 )

1

NVECS
v ( 2 )  UDIM

V(NVECS~~,, j
V(NVECS)2 

—

V(NVECS) NDIM

3-4

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --~~~~ - - - ~~~~~~~ - ~~- - - -~~~~~—---~~— ~



ndim - number of dimensions in the data vectors within the cluster .

The dimension value is obtained from the data class file.

vdjrn - number of dimer.sions in the variance or inverse covariance

matrix in the cluster . The value vdi m is determined by the

distance metric used and the numb-er of dimensions in the date

vectors . If using the weight vector metric , “w” , then. vdiic~

ndim . If using the rnahalanobis metric , then vdim~mdim~ (n d im

+1) 1/2.

3 . 2 .  ISO- DATA

Once in the ~00S directory,  isodata is initiated by the call

isodata [(treename )][(nodename)]

with the parameters being input as mentioned earlier in Section 3. The data

set is examined to verify that it is a lowest node . If not , isodata will

notify the user that it can only operate on the lowest node and will then

terminate. Otherwise, isodata calls other subroutines to determine the

clusters of the data set.

Once the clusters have been created , if the user has ir.dicated that he

does not want a tree created from the clusters , then isodata will query the

user about saving the clusters in the process directory . If the user wants

the files saved , then all cluster files are renamed. If the user does not

3-

~ 

a 



want the files saved , then all cluster files are deleted . The deletion or

renaming of the cluster files is to enable the user to call upon isodata

again, in the same process without destroying any existing cluster files.

If the user has indicated that he wants a tree created from the clus-

ters, then isodata will query the user for the new tree name. Treeiput is

then called to create the tree. Isodata terminates by calling “option” thus

preparing the user for his next MOOS option.

3.3. MST

Within the MOOS directory , mst is initiated by the call

mst [(treename)] [(nodename)]

with the parameters being input as mentioned in “General Remarks” of Section

3. The data set is examined to verify that it is a lowest node. If not a

lowest node , then mst will notify the user that operations can only be done

on lowest nodes and mst will then terminate. Otherwise, mst links all the

data points in the data set together as one cluster. Then, based upon the

user-suppliec values for a maximum and minimum link length , links are deleted

if they do not fall between the maximum and minimum link length . The user is

notified of the number of clusters formed as a result of deleting links . He

will -then be asked if he wants to change the maximum and minimum values for

3—6 

- -



the link length. If he does, then the new values are obtainec from the user ,

mst deletes all clusters formed, links all points of the data set together

into 1 cluster and repeats the cycle of deletimg links.

If the user does not want to change the lin.~-: length values and

has specified that he does not want a tree created from the clusters,

the following occurs . The user is asked if he wants the cluster files saved

in the process directory . If so, then all cluster files are renamed . If he

does not want the files saved , then all cluster files are deleted. The

deletion or renaming of the cluster files is to enable the user to call upon

mst again , in the same process , without destroying any existing cluster

files .

If t he user has indicated he wants a tree created from the clusters ,

then inst queries the user for the new tree name and calls upon treeiput to

create the tree. Mst terminates by calling “option” thus preparing the user

for his next MOOS option .

- 

- - - -  ~~~~~~~~~~~~



SECTION 14

PROGRAM SPECIFICATIONS

14.1. FUNCTIONAL OVERVIEW

This section. consists of a description of the functional organization of

the two added features , ISODATA and MST. It is not aimed toward the average

MOOS user , but is for the system programmers who mi ght be interested in modi-

fying or expanding the MOOS system.

The following pages describe the programs added to the existing MOOS sys-

tem . Each program description includes a complete description of input and

output parameters and file settings, a functional description of the program

and an algorithm of the program . Internal subroutines are transparent to the

user and cannot be called from the console directory but are called by the

MOOS functions .

Table 14—1 is a listing of the two MOOS functions added to the MOOS sys-

tem . Table 4-2 is an alphabetic listing and page number index of all rou-

tines used .

4

— 14—1 

- -



Table £4_ i Numerical Inde x of Added MOOS Funct ions

Number Functions

217 isoda ta

218 met

12



Table 4-2 Alphabetic  Listing and Page Number Index cf all Routines

Name Description. Page

asp:s assigns data points to clusters

cdis calculates distance between two 4-10

clusters .

clearpts zeros out all data points in all

clusters .

F

ccmpcent calculates near, of each cluster . 4-13

covc calculates the variance and inverse 4 1 5

covariance matrices of each cluster .

ctrdata creates the f ile “treedata ” f rom the 4-17

clusters , a

dcen deletes all clusters having too few 14-19

data points.

dis calculates the distance between a vector 4-20

of the data set and a cluster , using the

covariance matrix of the original data set.

~~ 14-3



Table 4-2 Alphabetic Listing and Page Number Index cf all Routines

(C ont inued)

Name Description Page

disl calculates the distance betweer. L — 2 3

a vector of the data set and a

cluster, using the inverse covari-

ance matr ix of the cluster .

du nk deletes all inconsistent l inks  in. the  clusters . L ._ 2 E

flinks computes links between all vectors of the 4-27

data set.

getparams queries the user for all parameters 4-30

needed in isodata.

iclc generates the clusters . 4—33

m i t  obtains all parameters from the user 1437

for inst.

isodata determines clusters existing in 4-39

the data set.

4-4 

~~~~~ — - - - --- - -- -~~~~~~~~~~


~

Table 4-2 Alphabetic Listing and Page Number Index of all Routines

(Continued)

Name Description Page

maxdis determines which cluster a vector is

farthest from.

merger attempts to merge two clusters into one. 4-46

mindis determines which cluster a vector is 4-48

closest to.

mindisl determines which cluster a vector is 14_50

closest to.

mst detects elongated clusters in a data set. 4-52

pcfile puts vectors into cluster files and 4-55

calculates mean of each cluster.

reaspts reassigns data points to clusters. 4-56

recomp calculates the mean of any cluster having 4-58

data points which changed clusters .

sorty uses a quick sort to sort an array on the 4-60

distance element .

14-5

_ _ _ _ _

Table 14-2 Alphabetic Listing and Page Number Index of all Routines

(Continued)

Name Description Page

split attempts to split one cluster into two. 4-63

trip creates array of all pairs of data elements 4-65

and the distance between each element of a

pair. -

vdis calculates distance between two vectors . 4-57

L 14—6

a

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-- - -

Internal Subroutine Name: aspts

Calling Sequence : call aspts (tptr , df ptr , ocpt r , aptr , tsptr ,
metflag, classn , itcnt)

Input Parameters:

- pointer to treename file.

dfptr - pointer to data file.

c~~tr - pointer to cluster file.

- pointer to array containing a pointer
to each of the cluster files.

tsptr - pointer to array of temporary symbols
which specify what cluster each vector is
assigned to.

metfiag - distance metric flag.

classn - number of class in treename file.

itcnt - number of iterations isodata has completed .

Program Description: aspts assigns the vectors of the data set to
a cluster. This is accomplished by calling a
distance routine, mindis, to determine which
cluster the vector is closest to, and then
placing the vector in that cluster. If the
user has specified that he wants to see how
isodata is progressing upon completion of
assigning all vectors to a cluster, the user is
notified of the number of vectors in each
cluster.

Algorithm : See following page

4-7 I •

Entry :
-

aspts (-tptr , df ptr , ccptr , aptr , -tsptr ,
rnetflag , classn , itcn.t)

begin aspts ;

if iteration count 1 then examine all vectors ;

call mindis to determine which cluster the vector
is closest to;

set temporary symbol = cluster number ;

get pointer to cluster file ;

increment number of points in file ;

add vector to file;
end ;
else if iteration count A 1 then do;

examine each vector ;

if temporary symbolA= 0 then do;

call mindis to determine which cluster the
vector is closest to;

set temporary symbol = cluster number ;

get pointer to cluster file ;

increment number of points in file;

add vector file;
end ;

en d;
if list flag is on then print the number of points in each

cluster ;

end aspts;

_ _ _ _

__________L

~

~.

:nternal Subroutine ~are : cdis

:allin~ Se~ uence: call cdis (ccptr , aptr , sI , s2 , metflag ,
dist)

Farc~meterc :

ccntr - pointer to cluster file.

- pointer to array containing a pointer
to each cluster file.

si - cluster number of the first cluster .

s2 - cluster number of the second cluster.

~oetflag - distance metric flag.

3u~put Parameters

dist - distance between the two clusters.

Program Description cdis, using the distance metric specified
by metflag, calculates the distance between the
2 clusters specified by si and s2 respectively.

Algorithm~ See following page

‘I

4-9

I ’

Entr: cdis (ccptr , aptr , sl , s2 , metflag , dist)

begin cdis;

get pointer to each cluster file ;

if metf lag = “ e” then

use euclidean distance formula;

else if metf lag “w” then use

weighted vector formula ;

else if metflag = “in” use mahalanobis

distance formula;

calculate distance;

end cdis;

To
-

-

Internal Subroutine ~ane : clearpts

Calling Sequence: call clearpts (ccptr , ap tr , tsptr , dfntr ,
z)

Input Parameters:

ccptr - pointer to cluster fi le .

- pointer to array containing a pointer to
each of the cluster files.

tsptr - pointer to array of temporary synhols vhich
specif y what cluster- each vector is assigned
to.

dfptr - pointer to data f i le .

z - flag indicating whether or not to reset
the temporary symbols of the vectors .

Program Description: clearpts clears out all points fron each
cluster file . Then if z 2, it resets
all negative temporary symbols.

A~~orithm: See following page

4-11

Entry : clearpts (ccptr , aptr , tsptr , df ptr , z)

begin clearpts;

do 1 to number of cJ usters;

get pointer to cluster file ;

set all points to zero ;

set number of points to zero ;

end ;

if z = 2 then do;

examine all vectors ;

if temporary symbol is negative then reset to a positive
number;

end ;

end clearpts ;

I
14—12

Internal Subroutine Name : compcent

Calling SeQuence: call coinpcent (dfptr, ccptr, aptr)

Input Parameters :

dfptr - pointer to data file.

ccptr - pointer to cluster file.

aptr - pointer to array containing a pointer to
each of the cluster files.

Program Description: compcent calculates the mean of each
cluster.

Algorithm: See following page

4-13

______ i~ad

Entry : compcent (df ptr , ccptr , aptr)

begin conlpcent ;

do 1 to number of clusters ;

get pointer to cluster file;

initialize mean to zero;

calcu late mean ;

end;

end compcent ;

I
I

14_lie

- - -

Internal Subroutine Name : covo

Calling Sequence : call covc (ccptr , aptr, metflag)

Input Parameters :

ccptr - pointer to cluster file.

~ptr - pointer to array containing a pointer to
each of the cluster files.

metflag - distance metric flag.

Program Description: covc calculates the variance or inverse
covariance matrix for each cluster . The
inetflag determines which matrix covc needs to
calculate. If the metflag is “w” (for the
weighted vectors) then the variance matrix is
calculated . If the metflag = “m” (for the
mahalanobis distance) then the inverse covari-
ance matrix is calculated .

Algorithm : See following page

I

.~~~~~~~~~

4-15

Entry : covc (ccptr , aptr , metflag)

begin covc ;

if metflag = “w” for weighted distance do;

do for each cluster;

get a pointer to cluster file;

initialize variables;

calculate variance;

end;

end ;

else if metfiag = “m”~ for mahalanobis distance do;

do for each cluster;

get pointer to cluster file;

initialize variables;

compute upper triangle of covariance matrix;

do expand packed covariance matrix to full matrix ;

create an ic region for inverse matrix routine ;

call invertinat to invert covariance matrix;

store only upper triangle of full inverse covariance
matrix;

end ;

end ;

end covc ;

4-16

~ - - -- .

_ _ . —~~~~ — — — — —

Internal Subroutine Name : ctrdata

Calling Sequence: call ctrdata (ccptr, dfptr, aptr, tdptr)

~~put Parameters:

ccptr - pointer to cluster file.

dfptr - pointer to data file.

a~p~~ - pointer to array containing a pointer
to each of the cluster files.

tdptr - pointer to the treedata file.

Output File Settings: creates the file treedata.

Program Description : ctrdata creates the file treedata for
use in the subroutine treeiput, which creates
a MOOS tree from the treedata file. This
routine is used when the user wants a MOOS tree
created from the clusters.

Algorithm : See following page.

1 4-17

~~~~~~~ 
.
~~~.


—
~~~~~~~~

.— — —

Entry: ctrdata(ccptr, dfptr , aptr, tdptr)

begin ctrdata ;

initialize tvecs to zero ;

do for each cluster ;

get pointer to cluster file ;

sum the number of points in cluster file and tvecs ;

end;

create treedata file;

do for each cluster ;

name each cluster and put in treedata file ;

put number of points in cluster in treedata file;

end ;

do for each cluster;

put points of cluster in treedaca file ;

put vector id in treedata file;

end;

end ctrdata ;

£4.18

__  _ _ _ _  H~~.



Internal Subroutine Name: dcem

Callir~~Sequence : call dcen (ccptr, aptr , tsptr , m ind , nodl)

Inp~t Parameters:

ccptr - pointer to cluster file.

~p~r - pointer to array containing a pointer to
each cluster file.

tsptr - pointer to array of temporary symbols which
specify what cluster each vector is assigned
to.

mind - indicates the minimum number of vectors
needed to constitute a cluster.

Output Parameters:

nodl - number of deleted clusters.

Program Description: dcen examines the number of vectors in each
cluster. If the number of points in the
cluster is less than the user-specified minimum
cluster size (mind ), then the cluster is
deleted. The temporary symbol of each vector
in the deleted cluster is set to zero. If the
user has indicated that he wants to see how
isodata is progressing , then the number of
deleted vectors is printed .

Algorithm: See following page

I
4-19

__________________ -

~~~~~


Entry: dce n (ccptr , aptr , t spt r , rind , nodl)

begin dcen ;

initialize number of deleted clusters to zero;

get process directory ;

do i = I to number of clusters;

get pointer to cluster file ;

if number of points < maximum cluster size , then do;

do j = I to number of vectors;

if temporary symbol = i, then reset temporary
symbol to zero ;

end ;
-

get cluster file name ;

~.e1ete cluster f ile;

:‘enaine all cluster files;

turn decrement switch on;

end;

if decrement switch on, then do;

decrement i ;

turn decrement switch off ;

end ;
4

end ;

if l flag, then print the number of deleted clusters ;

end dceri ;

4—20

Internal Subroutine Name: dis

Calling Sequence: call dis (tptr, ccptr, dfptr, vn, classn,
metfiag , dist)

I~gut Parameters:

- pointer to treenam e file .

cc ptr - pointer to cluster file.

afptr - pointer to data file .

vn - element number of vector in data file .

classn - number of data class in treename file.

netflag - distance metric flag .

Output Parameters:

dist - distance between the vector specified by
vn and the cluster pointed to by ccptr.

Program Description : dis , using the distance metric specified
by metflag, calculates the distance between
the vector specified by vn and the cluster
pointed to by ccptr .

Algorithm : See following page

4-21

~~~. 
::~:_

1: 
~~
~.



Entry : dis ( tptr , ccptr , dfptr , vn , classn ,
inetflag , dist)

begin dis ;

if metfiag = “e” then use euclidean distance formula ;

else if metflag = “w” then use weighted vector formula; )
else if metf lag “in” then use mahalanobis distance formula ;
calculate distance;

end dis;

4

14-22



Internal Subroutine Name: disl

Call inj Sequence: call disi ( ccptr , df ptr , vn , metfiag ,
dist)

input Parameters:

ccptr - pointer to cluster file .

dfptr - pointer to data file .

vn - number of vector in data file .

metflag - metric distance flag .

Output Parameters:

dist - distance between the vector specified
by vn and the cluster specified by ccptr .

Program Description: disl, using the appropriate distance
formula specified by metfiag, calculates
the distance between the vector, vii, and
the cluster pointed to by ccptr .

Algorithm: See following page.

4—23 

- -~~~~~~



Entry: disl (ccptr, dfptr, vn, metflag, dist)

begin disi ;

if metf lag aa ~~a a then use euclidean distance formula;

else if rnetf lag = “w’ then use weighted vector formula;

else if metflag = “in” then use mahalanobis distance formula;

calculate distance ; -

end disi;

14—24 
a___ 

~~~-- -~~~~~~~~~~ .- - - . - - - - -.


Internal Subrou tine ~ame: dlunk

Calling Sequence : call du nk (lmnax , 1mm , trptr , pptr , cptr ,
theta , cc ptr , aptr)

Input Parameters:

lmax - maximum link length .

lmir. - minimum link length.

trptr - pointer to tarray .

- pointer to p array .

c~ tr - pciflter to c array .

t~ieta - variable used in determining inconsistent links .

ccptr - pointer to cluster file .

aptr - pointer to array of pointers to cluster files.

Output File Settings: creates cluster files.

Program Description: du nk is used to delete any inconsistent links
in the cluster as dete rmined by lmax , 1mm ,
and theta, and to create the files for each
cluster found .

Al gori thm:

Entry : dlink(lmax , 1mm , trptr , ppt r , cptr , theta ,
ccptr, aptr)

begin dlink;

number of cluste r s 1;

= number of vectors - 1;

do loop ;

if d istance between 2 points is < m a x and > 1mm then link is okay ;

else do ;--

create new cluster file ;

4-25

I

reset value in c array ;

determine mean of nearby links;

if distance > theta * mean , then do;

create new cluster file ;

reset value in c array ;

end ;

end ;

decrement i; -

if i = 1, quit loop;

end;

end dlink ;

$

$

I
14—2 6

aI ________ ___________ -
.: ~~~~

Internal Subroutine Name: flinks

Calling Sequence : call flunks (trptr, cptr , pptr ,
metflag)

Input Parameters:

trptr - pointer to tarray.

cptr - pointer to c array.

pptr - pointer to p array .

metflag - distance metric flag .

Program Description: flinks determines the links in the data set
while , at the same time creating c array
and the p array. The c array is in 1-1
correspondence with the data f ile and
indicates which cluster the vector is in.
The p array is used as an index back into
the tarray.

Algorithm : See following page.

f

4—27

Entry : f l inks (trptr , cptr , ppt r , metflag)

beg in flunks ;

initialize index i to zero ;

initialize index 1 to one ;

do where 1 < number of vectors ;

increment i by 1;

Kl = value of c array of tarray (i) , vecl ;

K2 = value of c array of tarray (i) , vec2 ;

if Kl=K2 then do;

if K1=O then do;

set c (Ku) = 1;

set c (K 2) = 1;

set p (1) = i;

increment 1 by 1;

end;

end;

else if Y l 0 then do;

set c(K 1) K2 ;

set p(l)

increment 1 by 1;

end ;

else if K 2 0 then do;

set c (K 2) K1;

set p (1)

increment 1 by 1;

end ;

4— 2 8

else do;

do i l to number of vectors ;

if c(~~) 1(2 then c(j) = K1;

end;

set p(l)=i ;

increment 1 by 1;

end;

end ;

number of clusters = 1;

end flunks;
-

- i

L

Internal Subroutine Name: getparams

Callun~ Sequence: call getparams (mnetf lag , maxcy , nsplit ,
maxmer , thetac , thetae , m u d , itermax , d ,
if lag , t flag)

Output Parameters:

mnetfiag - distance metric flag

maxcy - maximum number of calculation-allocation
cycles .

nsplit used in determining whether to split or
merge clusters .

maxmer - maximum number of merges per iteration .

thetac - maximum intercentroid distance for merg ing
clusters .

thetae - used in determining whether a split is
acceptable or not .

m u d - minimum number of points which will keep
a cluster from being rieleted .

itermax - maximum number of iterations through isodata .

d - maximum centroid distance for determining
initial clusters .

- if on , specifies that user wants to see
how isodata is progressing at various
points.

tf lag - if on , specifies that user wants a tree made
of the resulting clusters.

Program Description: getparams queries the user for all parameters
used in isodata that help determine how
to group elements of the data set into
clusters.

‘I

Algorithmn: See following page

3

14—30

Entry: getparams (metflag ,maxcy, rsplit , maxer, thetac,
thetae , mune l , itermax , d , iflag , tf iag);

begin getparams;

query user for maxcy;

read reply ;

query user for maxmer;

read reply;

query user for thetac ;

read reply ;

query user for thetae ;

read reply ;

query user for mind ;

read reply;

query user for itermax ;

r ead reply ;

query user for metf lag ;

read reply;

query user for d ;

read reply ;

query user if wants iflag turned on?

if reply t~ = “yes”/orA= “no” then do until correct reply;

query user to reply with “yes ” or “no ” ;

end;

if reply “yes” turn if lag on;

else turn if lag off ;

query user if he wants a tree of resulting clusters;
if reply A = “yes”/ A “no” then do till correct reply;

4—31

query user to reply with “yes” or “no ” ;

end ;

if reply = “yes” then turn tfiag on;

else turn tflag off;

end getparams;

1 4 — 32

-

_ _ _ - - - ~~~~~ --- _ _ _ _ _ _--- -~~~~~- ~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Internal Subroutine Name : iclc

Calling Se quence: call iclc (tptr , dfptr , ccptr , aptr ,
tsptr , metflag , d , classn , m d , itnct )

Input Parameters:

- pointer to treename file

dfptr - pointer to data file

ccptr - pointer to cluster file

aptr - pointer to array containing a pointer
to each of the cluster files.

tsptr - pointer to array of temporary symbols
which specify what cluster each vector
is assigned to.

metflag - distance metric flag.

d - maximum centroid distance for deter-
— 

mining initial clusters.

classn - number of class in treename file

inc - initial number of clusters to be found.

itcnt - number of iterations isodata has
completed.

Output File Settings : A file for each cluster is created iii
the process directory . The name of each
file is derived us ing the treename , node-
name , “isod” and the cluster number.

Pr~gram Description: iclc generates the initial clusters by
starting with the mean of the data set as
the first cluster center. The distance
between each vector and the cluster cen-
ter(s) is calculated . If the calculated
distance is greater than the user-specified
distance , that vector becoines the mean of
a new cluster. This cycle of calculating
the distance between vectors and all
cluster centers is repeated until~~Tther 4
all vectors have been searched through or
the number of clusters found is equal to
the user-specified parameter ( m c) .  Upon
completion of the search for clusters , the

4-33

_ _ _ _  
_ _ _ _  =



user is told the number of clusters foun c~,the number of vectors examined , and asked
if he wants to continue with the current
number of clusters . If no , then iclo
deletes all clusters and starts again.

Al~gorithm : See following page

.4

14J -

~~~~~~~~~~


Entry: iclc (tptr , dfptr , ccptr , aptr , tsptr ,
metfiag, d, olassn , m c , itcnt)

beg in iclc;

get process directory ;

ask user if he wants the initial clusters generated ;

if “yes ,” then query user for the number of initial clusters
to be found ;

do while user wan ts to loop ;

get cluster name ;

create 1st cluster file;

put mean of data set into mean of first cluster file;

if itcnt = 1, then initialize temporary symbols of
vectors to zero;

search through vectors while number of clusters is less
than user-supplied initial number of clusters;

call mnaxdis to determine distance between vector and
cluster;

if cluster number = 1, then do;

get new clustennamne ;

create new cluster file;

put vector in new cluster as mean of new cluster ;

end ;

end ;

notify user of how many vectors were searched through and how many
clusters were found.

ask user if he wants to continue or try for more clusters ;

if he wants to try for more clusters, do;

ask user for initial number of clusters to be found ;p
14_35

_
_ _ _

delete all clusters crea ted ;

loop through iclc again ;

end ;

end;

end icic;

- -

- k::.~- -

4 —3 6

r.terr.al Subrcutine ~ame: i r i t

Calling Seq uence: call m i t (lmax , 1mm , tflag , metf lag,
theta , x)

Ir~ ut Parameters:

x - indicates what parameters should be
obtained from the user.

Cut:~ut Parameter :~~

m a x - maximum l ink length.

1mm - minimum link length.

tfl~~ - flag indicating user wants a MOOS
tree created from the clusters.

rnetf lag - distance metric f lag.

theta - variable used in determining incon-
sistent links.

Program Description: m i t is used to obtain, from the user, all
parameters needed to determine the clusters
within the data set.

Algorithm : See following page .

—~

L4_ 37

- - - —- -~~~~~~~~~~~~~~
::~~~~~~~~~

-~~~~~~
T1 ~~

Entry : m i t (imax , lmnun , tflag , metfiag ,
theta , x)

begin m it;
query user for lmax ;
get reply;
query user for m m ;
get reply ;

if x 1 , then do;

query user for theta;
get reply ;
query user for metflag ;
get reply ;
ask user if he wants a MOOS tree created from the
clusters;

if yes, then turn tflag on;

end ;
end m it ;

4-38

-
:

MOOS Function Name: isodata

MOOS Function Number: 217

Calling Sequence: Type in “ isodata [(treename)I! [(nodename)]”

Input Parameters: Standard optional data set selection parameters .

Program Description: isodata works only on the lowest node of a data
tree. It takes a current data set or one supplied
by the call to isodata and determines how the ele-
ments tend to group together. This is accomplished
by initializing cluster centers , assigning points ,
computing the near, of the clusters , reassigning
points and recomputing the mean until there are no
changing of points between clusters . Isodata then
deletes any clusters having too few points , and
tries to split or merge clusters based upon a user-
supplied parameter. Isodata is an iterative routine
which will repeat the cycle of assigning and reas-
signing points any number of times specified by the
user. If the user wants a tree of the resulting
clusters, the file treedata is created in the process
directory , with isodata then calling treeiput to
create the tree. Isodata ends by calling ‘ optirr~’ .

Algorithm: See following page.

Entry: isodata [(treename)] [(nodename)]

begin isociata ;

get process directory ;
call cu-$arg—list-ptr for pointers to MOOS files
call u-t$ckparam to get current treename and nodenamne
if no errors then do;

call lnodes to check for lowest node ;
if not lowest node then do;

notif y user that isodata only operates on lowest nodes;
terminate isodata;

end ;

else do;
get data f ile name and a po inter to the dataf ile;
get pointer to treefile;
get number of classes in treefile ;
get dimensions of vectors ;

call mainl - an internal subroutine which allocates storage
for a treefile structure ;

allocate Storage for temporary symbol array and array of pointers
to cluster files;

call getparams to get clustering parameters ;

call main2 to allocate storage for a cluster file structure;

do while (iteration count < maximum number of iterations);

call i d e to get initial clusters ;

call aspts to assign vectors to clusters;

call compcent to comput e the mean of each cluster ;

call covc to compute the variance and inverse covariance
matrices;

call clearpts to clear out data points from cluster files ;

initialize cycle count ;

do while (cycle count < maximum number of cycles) ;

initialize number of changes;

call reaspts to reassign points to clusters ;
if any changes then do;

4—40

call recomp to recompute mean of clusters;

if cycle count ~ maximum number of cycles then
call clearpts to clear points from clusters;

end ;

if user wants to see progress of isodata then print number
of clusters and iteration count;

end ;

call dce n to delete any clusters with too few po ints;

if number of clusters > 2~ splitting-merging parameter
then call merger to try to merge some clusters;

else if number of clusters < l/2~ splitting-merging parameter then
call split to try and split some clusters;

else do;

if iteration count is odd , then call split to try to split some
clusters;

else call merger to try to merge some clusters;

end;

if there are no merges, no splits and no deletions , then set
iteration count = maximum iterations to quit cycle;

end ;

if user has indicated no tree is to be created, then do;

ask user if he wants the current cluster files saved in the
process directory;

if yes, then

rename files;

else delete all files;

end ;

if user has indicated he wants a tree of the clusters then do;

get new tree name from user ;

4-41

call. ctrdata to create treedata file;

call. treeiput to make a MOOS tree:

end,

call option ;

end isodata;

p

j
’N

Internal Subroutine Name: mnaxdis

Calling Seq~ence: call maxdis (tp t r , ccptr , df ptr ,
apt r , vn , classn , metflag , d , dist , scn)

Input Parameters:

~p~r - pointer to treenamn e f i le.

ccptr - pointer to cluster file .

dfptr - pointer to data f i le .

aptr - pointer to array containing a pointer
to each cluster file .

vii - number of vector in data file.

classn - number of class in treename file .

metflag - distance metric flag .

d - maximum distance allowed between vector and
cluster.

Output Parameters:

dist - distance between the vector , vii , and
the cluster pointed to by ccptr.

sen - cluster number vector should be placed
in.

Program Description: rnaxdis determines the maximum distance a
vector is from all clusters . If the
distance is greater than the maximum distance ,
d , then the vector is used to form a new
cluster .

Algorithm: See following page

4-43

_ _ ~~~~~~ - --- -- - - --

Entry : maxdis (tptr , ccptr , df ptr , aptr , vii ,
classn , metflag, d , dist, scn)

begin naxdis;

do for each cluster ;

call dis to calculate distance between vector vii and
cluster pointed to by ccptr;

if number of clusters = 1 then do;

if dist < d then do;

maxdist 0;

cluster number 1;

end ;

else do;

set rnaxdist = dist;

cluster number = number of clusters +1;

end ;

end;

else if number of clusters > 1 then do;

if ii = 1 then do;

maxdist dist ;

cluster number = 1;

end ;

also do;

maxdist maximum of maxdist and dist ;

if dist maxdist and dist < d then do;

maxdist dist ;

cluster number = 1;
end;
else cluster number = number of clusters + 1;

4..4 14

_ _ _ _
_ _ _ _ _ _ _ _ _

t
_____ ____

-
*_.- -. , -4

- - - -~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~
- --

-

- - ~~~~~~~~~~~~~~~~~~ - - _,.~~~~~~~~ . — -— -~~~~~ -—— - - - — — — —

end ;
end;
end;

dist maxdist ;

end maxdi s;

I

4..145

V
_ _ _ _ _ _

—- ---- --_--- - —---- -___ t4

Internal Subroutine Name:
•

merger

Calling Sequence: call merger (d f ptn , ccptr , aptr , tsptr ,
metfla~ , r~om , maxmer, thetac)

Input Parameters:

dfp~~ - pointer to data file.

ccptr - pointer to cluster file .

aptr - pointer to array containing a pointer to
each cluster file.

tsptr - pointer to array of temporary symbols
which specif y what cluster each vector is
assigned to.

metflag - distance metric flag .

maxxner - maximum number of merges allowed.

thetac - maximum unterceritroid distance
for merging clusters.

Output Parameters

nom - number of merges performed.

Program Description: merger calls cdis to compute the distance
between all pairs of clusters . The clusters
are then sorted , in ascending order’, on the
distance measurement by the sort routine ,
sorty . If the distance measurement is less
than thetac , then the two clusters are merged ,
and the mean of the cluster file recomputed .

Algorithm: See following page

1 4-46

Entry : merger (df ptr , ccpt r , aptr , tsptr , metflag ,
non, thetac)

begin merger ;

determine all pairs of clusters ;

compute distance between clusters of each pair ;

do a quicksort in ascending order on the distance measurement ;

do for each pair of clusters;

if distance mea~urement
< thetac , then do;

add vectors of cluster 2 to cluster 1;

reset temporary symbol of vectors in cluster 2 to value of
temporary symbol of cluster 1;

recompute mean of cluster 1;

delete cluster 2 from process directory ;

decrement number of clusters ;

increment number of merges;

rename all cluster files ;

delete all pairs of clusters in array containing either
cluster 1 or cluster 2;

end ;

end;

end merger;

I --

14_147

-- --- -- - - - - - -
-

~~~~~~ : .A’



Internal Subroutine Name: mundis

Calling Sequence: call mindis (tptr, ccptr , dfptr , aptr,
vn, classn, metflag, dist , scn)

Input Parameters:

- pointer to treename file.

ccptr - pointer to cluster file.

dfptr - pointer to data file.

~ptr - pointer to array containing a pointer
to each cluster file.

vii - number of vector in data file.

classn - number of class in treename file.

mnetflag - distance metric flag.

Output Parameters

dist - distance between the vector vn and the
cluster pointed to by ccptr.

sen - number of cluster vector should be placed
in.

Program Description: mindis determines which cluster the vector
vn is closest to.

Algorithm: See following page.

4-48

J 



Entry: mindis ( tptr , ccptr , df ptr , aptr , vii ,
classn , mnetflag, dist , scn )

begin miridis;

mind = large number ;

do for each cluster ;

get pointer to cluster file;

call dis to calculate distance between
vector vn and cluster pointed to by ccptr;

if dist is less than mind then do;

set cluster number ;

mind = dist ;

end;

end;

dist = mind ;

end mindis;

i

L4~~L4g 

--~ • . --..

.

-- - . - . - . --- .-

— 

..
.
,. ~~~ :1 :~~~~



-
~ -

Internal Subroutine Name : mund isl

Calling Sequence : call mindisl ( ccptr , dfptr , aptr , vii ,
metf lag , dist , son)

Input Parameters:

ccptr - pointer to cluster file .

dfptr - pointer to data file.

aptr - pointer to array containing a
pointer to each cluster file .

vn - number of vector in data f i le .

metfiag - distance metric flag.

Output Parameters:

dist - distance between vector vii and
the cluster pointed to by ccptr .

son - number of cluster vector should be
placed in.

Program Description: mnundisi determines which cluster the
vector vii is closest to.

Algorithm: See following page

I
4— 50

L1.



Entry : mundisi ( ccptr , dfpt r , apt r , vii , metf lag ,
dist , scn)

begin mnundisl;

mind = some large number ;

do for each cluster ;

get pointer to cluster file;

call disl to calculate distance

between vector vn and cluster pointed to
by ccptr;

if dist < mind then do;

set cluster number;

mind dist;

end;

end ;

dist mind ;

end miridisl;

N

( 4-51
p

_ _  - ~~~

- 7 :



MOOS Function Name: mst

MOOS Function Number: 218

Calling Sequence: Type in “mst [(treename)][(noder,amre)]”

Input Parameters: standard optional data set selection
parameters .

Program Description: mst works only on the lowest node of a data
set. It takes either a current data set
or one supplied by the call to mst , and detects
elongated clusters within the data set. This
is accomplished by linking all elements in
the data together as one cluster, and then
deleting any links that are either too
short or too long, as specified by the user.
The user has the option of changing the
link length values at the completion of link
deletion. Mst will repeat the cycle of
deleting links if the length value is changed.
If the user wants a tree of the resulting
clusters , the file treedata is created
in the process directory , with mst then
calling -treeiput to create the tree. Mst
ends by calling “option ” .

Algorithm : See following page

4-52



Entry: mst [(treenaTne)] [(nodename)]

begin mst;

get process directory ;

call cu $arg list ptr for pointers to MOOS files;

call utSckparam to get currer .t treenani e and nodename ;

if no errors then do;

call m odes to check for lowest node ;

if not lowest node then do;

notif y user that inst only operates or. lowest nodes;

terminate nst ;

end ;

else do;

get data file name and a pointer to the datafile;

get pointer to treefile;

get dimensions of vectors;

call inaini - an internal subroutine which allocates
storage for a treefile structure;

allocate storage for c~p array and array of pointers
to cluster files;

call m i t  to get clustering parameters;

call maun2 to allocate storage for a cluster file
structure ;

call trip to create triple array of all pairs of
data points £ the distance between the elements of
the pair ;

call sorty to do a quicksort on the distance element
of the triple array~

zero out c-array ;

_ _

__ 
~~~~~~


call flinks to find all links and create both
the c and p array ;

dc while (user wishes);

initialize aU elements of c-array to ;
create first cluster file;

call dUnk to delete any inconsistent links
(i.e. too long or too short);

call pcfile to put elements of data set in
correct cluster file ;

ask user if he wants to change link length valuec;

if yes , then do;

delete all clusters;

call ir.it to get new link length values;
end ;

else quit loop ;

end ;

if user has indicated no tree is to be created then do;

ask user if wants the current cluster files saved in the process
directory;

if yes then rename files;

else delete all files;

end ;

if user has indicated he wants a tree of the clusters ther. do;

get new tree name from user ;

tctal number of vectors in all clusters;

~~ata to create treedata file;

- ~~~~ - ‘ c make a MOOS tree;

- I

:r.terr,a: Subrcutir.e ~ame : pofile

Calling Ee’~
-
~ence : call pcfile (df ptr , ap tr , ccp tr , rnetf ag, cptr)

Ir.put Parameters :

df ptr - pointer to data file .

aptr - ~cinter to array containing a pointer to each
cluster file . 4

ccptr - pointer to cluster file .

metflag - distance metric flag.

- pointer to c array .

Program esor ipt ior .: pcf iCe searches through the data set and places
each vector into the cluster it has been as-
signed to. The mean and variance or covariance
of each vector is then calculated. The user is
notified of the number of clusters found and the
number of points in each cluster .

Algorithm:

Entry : pcfile(dfptr, aptr , ccptr , metflag, cptr)

begin pcfile ;

do 1 to number of clusters;

get pointer to file;

initialize number of points to zero;

search through vectors and place in correct cluster;

end ;

call compcent to calculate the mean of each cluster ;

if inet flag t “e ” then call covo to calculate the variance or
inverse covariance of cluster;

print the number of clusters and the number of points in each
cluster;

en d :cf i le;

L+_ 55

.

,

_ _ _ _
. :~~~~~~~~.

Internal Subroutine Name: reaspts

Calling Sequence: call reaspts (dfptr , ccpt r , aptr , tsptr ,
metflag, tnoc, classn)

Input Parameters :

dfptr - pointer to data file .

ccptr - pointer to cluster f i le .

~ptr - pointer to array containii-~g a pointer to
each cluster file.

tsptr - pointer to array of temporary symbols which
indicate what cluster each vector is assign ed
to.

metflag - distance metric flag.

classn - number of class in treename file .

Output Parameter :

tnoc - counter which indicates the number of
vectors transferring from one cluster to
another.

Program Description : reaspts examines each vector whose temporary
symbol is not zero , calls inindisi to determine
which cluster the vector is closest to , and
assigns the vector to that cluster. If the
user has specified to see the progress of
isodata , then the number of points in each
cluster is printed .

Algorithm: See following page

1~

~1 ~~~

-

Entry : reaspts (dfptr , ccptr , aptr , tsptr , metflag ,
tncc , classn)

begin reaspts;

do for each vectoc;

if temporary symbol of vector -
~ zero, then do;

call mindisl to determine which cluster the vector is
closest to;

if the temporary symbol A~ the new cluster number then reset
temporary symbol to a negative number ;

get pointer to new cluster ;

increment number of points in cluster ;

add vector to cluster file ;

end ;

end ;

If list flag is on, then do;

print the number of vectors which changed clusters ;

print number of vectors in each cluster;

end ;

end reaspts;

I —

3

-

~~~~ - 4—57

_ _ _  ~_~~~~1 



— . —

Internal. Subroutine Name : recomp

Calling Sequence : call recornp ( ccptr , aptr , tsptr )

Input Parameters:

ccptr - pointer to cluster file .

~~~~ - pointer to array containing a pointer
to each cluster file.

tsptr - pointer to array of temporary symbols which
specify what cluster each vector is assign ed
to.

Program Description: recomp examines the temporary symbols of
all vectors in the data file . P. negative
temporary symbol indicates the vector changed
clusters, requiring the mean for both the old
and the new cluster to be recomputed .

Algorithm: See following page

L_____ I ________

Entry: recomp (ccptr , aptr , tsptr)

begin recomp ;

do for each vector ;

if temporary symbol is negative , then do;

get old cluster number ;

get new cluster number ;

get pointer to old cluster ;

initialize mean to zero ;

if number of points A = 0 , then compute mean ;

get pointer to new cluster ;

initialize mean to zero;

if number of points A 0, then compute mean ;

end;

end;

end recomp ;

I
4—59

_
~- - - -~~~~~~~~~-- -~~~~~~~~~ - - .~~~ . ~~~: .~~~~~

Internal Subroutine Name : sorty

Calling Sequence : call scrty(-rrp-tr)

Input Parameters:

trptr - pointer to structure being sorted .

Program ~escription: sorty uses a quicksort to sort an array con-
taining all pairs of vectors of the data set
and the distance betweer. each vector of the
pairs. The sort operates on the distance
element and produces the same array in ascend-
ing order .

Algorithm:

Entry: sorty(trptr)

begin sorty;

determine software stack size and allocate storage for it;

if number of elements to be sorted is > 9 then do;

initialize stack pointer;

initialize maximum boundaries;

do loop;

initialize left and right boundaries;

get key and record to be sorted ;

Q3: do while (go);

increment left boundary;

if (distance of left boundary < key), then go = no;

if left boundary = maximum left boundary then go = no;
end;

do while (go);

decrement right boundary ;

4-60

if key < right boundary then go = no;

if ri ght boundary = , then go no;

end;

if ri ght boundary > Thft boundary , then do;

exohange records;

if maximum right boundary - right boundary > right
bo undary - eft boundary > 9, then do;

increment stack pointer ;

decrement maximum right boundary ;

set stack ;

end;

else if (right boundary - left boundary > max ri ght
boundary - right boundary > 9), then do;

increment stack pointer;

set stack ;

set maximum left boundary ;

end ;

else if max right boundary - right boundary > 9 > right
boundary - left boundary , then reset max left boundary ;

else if right boundary - left boundary > 9 > max right
boundary - ri ght boundary , then reset max right boundary ;

else if stack pointer i zero, then do;

reset maximum left and right boundaries;

decrement stack pointer;

end ;

else if stack pointer = zero then quit loop ;

end;

—

else do;

exchange records ;

go to Q3;

end;

end;

end ;

do j = 2 to end of array;

if key (j - 1) > key (~) then do;

i = j — 1;

do while (go) ;

if i = 0, then do;

if key(i) > key (j) , then do;

let Record (if 1) Record (i) ;

decrement i;

end ;

else go = no;

end ;

else go no;

end ;

Record (if 1) Record (j) ;

end ;

end;

end sorty;

14-62

--- . — -_ --~~~~~~~- - - -

- - -
~~~~ 

- - - -

~~~~ 
-

Internal Subroutine Name : split

Calling Sequence : call split (tptr , dfptr , ccptr , aptr , tsptr ,
metflag, nos, thetae, nsplit , classn)

Input Parameters:

- pointer to treenarne file.

dfptr - pointer to data file.

ccptr - pointer to cluster file.

~ptr - pointer to array containing a pointer to
each cluster file.

tsptr - pointer to array of temporary symbols which
specify what cluster each vector is assigned
to.

metf lag - distance metric flag.

thetae - used in determining when to split a cluster.

nsplit - used in determining whether to split or
merge a cluster.

classn - number of data class in treenarne file.

Output Parametero:

nos - number of splits performed.

Program Descripti-~ii: split examines each cluster and tentatively
chooses it for splitting if the cluster
standard deviation for any dimension
exceeds the product of thetae and the standard
deviation of that dimension in the original
data set. The vectors are then assigned to
clusters according to whether they are above or
below the cluster mean on the dimension causing
the split. The mean of each cluster is calcu- ‘-

lated and if the distance between the two
clusters is at least 1.1 times thetae, then the
split is accepted.

Algorithm : See following page
jL

-

4—63

—

Entry : split (tptr , dfptr , ccptr , aptr , tsptr ,
metflag, nos , thetae , nsplit , classn)

begin split;

calculate the standard deviation of each cluster;

get the standard deviation of the original data set;

do i 1 to number of clusters;

get pointer to cluster file;

if cluster standard deviation for any dimension exceeds
thetae* the standard deviation of the original data
set on the same dimension , then do;

increment number of clusters;

create new cluster file;

assign vectors to clusters - those above the mean on the
splitting dimension are put in the new cluster - those
below the mean on the splitting dimension are left in
the old cluster;

calculate new means of both clusters;

call cdis to compute distance between the two clusters;

if distance is < 1.1 times thetae , then split is unacceptable
and do;

put all vectors back in original cluster;

delete new cluster;

decrement number of clusters;

end ;

else split is acceptable and do;

increment number of splits;

reset temporary symbols of split cluster;

end;

end ;

end ;
1

end split ; 4-64

Internal Subroutine Name: trip

Calling Sequence: call trip (tptr , dfptr, trptr ,
metflag , classn)

Input Parameters :

tptr - pointer to treename file.

dfptr - pointer to data file.

trptr - pointer to tarray .

metf lag - distance metric flag.

classn - number of class in treenarne file.

Ou~put File Settings : creates the file “tri pfile” in the
process directory .

Program Description: trip creates the file “tripfile” which
contains all pairs of data elements
in the original data set and the
distan ce between the two elements
of each pair.

Alg~rithm : See following page .

‘ 4-65

I
_ _ _ _ ~ - -___ -

Entry: trip (tptr , dfptr, trptr, metflag
classn)

begin trip;

determine size of tarray based on number of vectors;allocate storage for tarray;
create trip file;

do for all pairs of data elements;
call vdis to determine distance

between the two elements;
store elements and distance in

trip file;
end ;

end trip ;

I
4

‘4—66

Internal Subroutine Name: vdis

Calling Sequence: call vdis (dfp-tr, tptr , classn , vl,
v2 , nietf lag, dist)

Input Parameters:

dfptr - pointer to data file.

~ptr - pointer to treename file.

classn - number of class in treename file.

vl - vector 1.

v2 - vector 2.

metflag - distance metric flag .

Output Parameters:

dist - distance between vl and v2.

Program Description: vdis calculates the distance between the
two vectors , vl and v2. The distance
metric used is specified by the metflag .

Algorithm: See following page

‘4—67

t -

4D A080 626 PATtERN ANALYcTS AND RECOGNITION COfiP 104Sf N Y Ffl ~/2MULTICS REMOTE DATA ENTRY SYSTEM . VOLUME TI. CLUSTERInG ADDTtTO——ETC (U) I
OCT 79 .i 0 DYAR F30602—77—C—017N

UNCLASSIFIED PM 79 53 RAPC—T*—79—tS5—v04.—2 P41.
2nr 2 END

a 3
:
80

‘t i
I

I

4

‘ O ~ ~ 2.8 1112.5
‘. I~ ~~~~ ~~~~~

_ _ _

L~ ~2.2
WI~~~~

I.’ IHII~°
III~8

11111’ .25 IIIII~•~ iiiii~
MICROCOPY RESOLUTION TEST CHART

NATIONM. 8UREP~J OF S1M~OAROS - 1963 - /~

Entry : vdis (df ptr, tptr, classn, vi,
v2, metf lag , dist)

begin vdis;

if metfiag = “e” then use euclidean distance formula;

else if metf lag “w” then use weighted vector formula;

else if metfiag t~~~~~ then use mahalanobis distance formula;
calculate distance;

end vdis ;

I

MISSION
of

Rome Air Development Center
RAVC p!.4~I6 and executeo .te4ea~ h, devetopme,vt, te4t and
4 eLected a~quA~L(A.on p’iogkamo Lit ouppc’i.t o~ Command, ConL/toe
Commwt~ga.tLon6 and In.teWgence (C37 J acavLtLe~. Techn2c~o.L
and engc.nee/cLng 4appon..t uLthi.n Mea.6 o~ te~hnLcaL competence
~c4 p *ovJ4ed ~to ESV Paog .rtam 0~~~ eo (P041 and otite/t ESV
eteme?tt4. The pn2 ,tcL paL £eci utL gaL nta~~on akea4 akt
conlnwti.ga.tLon4, etectkomag netk guAdance and con.ttoL, ou t-
vQALta.nce o6 gn.owid and aQ,~O4pace objecto, LnteWgence da.tg
coUecUon and handUng, J n6on.mvtion 4y4te$t .technotogy,
tono4p kekL4 p.topag&tA.on, 40V4 4 ta.te 6c4.enceo, nkCkOIIktvt
p hy4~c4 and ,2eøj ito,ti..e 4eL~abLUtq, ma2n.taLndbii2ty and

z
- - -. -

_____ 4,.-

I
4~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

