AD=AOBO 625 PATTERN ANALYSIS AND RECOSNITION CORP ROME N Y
MULTICS REMOTE DATA ENTRY SYSTEM., VOLUME I.(V)
OCT 79 D BIRNBAUM: J J CUPAKe, J D DYAR
PAR=T9=89

UNCLASSIFIED

|0 &0 2

"" =ik
L, o
lle&

lizs flis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Pl

-
=
=
.
-4
-~
N

g

ot

Al
"

b A S,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
" 4
» A REPORT DOCUMENTATION PAGE BEF%%%DC‘gS;EggggNFSORM
T_EEFq 2. GOVT ACCESSION NO. 3. RECIFIENT'S CATALOG NUMBER
RADC}TR-79—265,.V0% (of two)
[r 8 FITF B A MRS Subiitle) e TN / 5. TYPE OF RE ERED
\é MULTICS REMOTE DATA ENTRY SYSTEM , | 7 Final Jéchnical Kepigt.,)
S~ eeeee———y = iE / - ING ORG. REPORT NUMBER
_ { VO?Jti pof /y/ PARF19-5)

f 7. AUTHOR(e) e 8. CONTRACT OR GRANT.NUMBER(s)

)0 David /Birnbaum Janet D. /Dyar — F3¢6¢2‘77‘C‘¢174
John J./ Cupak, Ty, Richard/]ackson /2

9. PERFORMING ORGANIZATION NAME AND ADDRESS /7 10 ﬂ:oG':Ax ERLEMSPTTNPU14°;§CT TASK
Pattern Analysis ‘ Recognition Corpesetton i
228 Liberty Plaza

s 62702F
o\ : /7
11, CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISCP) / Oct 79
Griffiss AFB NY 13441 BT e

Lo m——

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

S b UNCLASSIFIED

(P 258

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report))

Same

18. SUPPLEMENTARY NOTES

RADC Project E}gineer: Patricia J. Baskinger (ISCP)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Pattern Recognition OLPARS
Pattern Analysis Data Entry
Classification

Clustering

b 0. ABSTRACT (Continue on reverse side If necessary and identify by block number)

/ This report contains the user's manuals and software documentation for the Re-
mote Data Entry System which is the front-end to the MULTICS Pattern Recognition
Facility and the Cluster Analysis package which was added to MULTICS OLPARS.

The Remote Data Entry System was designed to allow users of the MULTICS Pattern
Recognition Facility the ability to input their data over the ARPANET from a
Tektronix remote storage device. Once the data is input into the MULTICS Sys-
tem, routines are provided so that the user can easily restructure or cluster
his database to perform different classification experiments._~

DD , 728" 1473 Msn*um

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

390 407

FINAL REPCRT REMCTE DATA ENTRY

Preface

This is a Final Report by Pattern Analysis and Recognition
Corporation, 228 Liberty Plaza, Rome, New York, and it represents work
performed under Contract F36602-77-C-0174, Job Order Number 55971234

for the Rome Air Development Center, Griffiss Air Force Base, New

York,

Mrs, Patricia J. Baskinger was the RADC Project Engineer.

“Accession For
NTIS Ghs&I
DDC TAB

Unannounced
Justification

———————

By

Dictritution/

Aveilability Codes

Availaud/or
Dis special

FINAL RFEPORT

EAGE

3-18
3-19

€ ot 7 s N o

3-34
3-3¢
3-338

CCRTENT

REMCTE CATE ENTE
TABLE

Preface

vy
GF CCHRTEKTE

TABLE CF CCHTERTS

INTRCCUCTION

REDE GSER"S HENUAL

Sl Ceneral =emnarks

Za2 ASCII data file forrat
2.3 reccte _to multics, rtom
Z.4 multics_to_rermote, ntor
2.5 naketree

2.6 dumngtree

28 ungpack_tree, upt

2,8 pack. tree,; pt

CTS USER'S HALUAL

3.1 Cverview

3.2 Lefinitions

3.3 CTS Initiation

3.4 Keyword Erecification
3.€ Chanje Comrand

3.7 Celete Comiand

3.8 Insert Conmand

3.9

“ove Command

ii

L

FINAL REPCRT

PAGE

3-44
3-44

3-47
4-1

4-11
4-13

T
NS AT

%

3
:
R

REMCTE CATA ENTRY
TABLE OF CCNTENTS

CONTELT

3.16@ Extract Command

g Command Sumniary
3.12 Modes of Omeration

RDE FCNCTICNAL LESCRIPTICN

4.1 I1/C Focule Introduction
4.2 remote_to_rultics, rtom
4.3 multics_to_remote, mtor
4.4 remote_cdata_attach
4,5 open_cevice
4.6 terminal_modes
4.7 device_control
4,8 disk_seek
4.9 read_first_record
4.10 read_next_record
4,11 write_first_record
4.12 write_next_record
4,13 close_device
4.14 detach
4,15 maketree
4,16 treeiput
4,17 durptree
4.18 treeoput
4,19 any
4,26 delay
iig

FINAL REPGRT REMOTE DATA ENTRY
TABLE CF CONTENTS

FAGE CONTENT
4~42 4,20 floating point general remarks
4-46 4,21 convert
4-4¢ 4,22 CDC_to_IBM
4=-54 4,23 CLC_to_MULTICS
4-52 4,24 CDC_to_PLP
4=54 4,25 IBM_to_CDC
4-56 4,26 IEM_to_MULTICS
4-52 4,27 IRM_to_PDP
4-60 4,28 MULTICS_to_CDC
4~62 4,29 MULTICS_to_IBM
4-64 4,30 MULTICS_to_PLP »
4~60 4,31 PCP_to_CDC é
4568 4,32 PDE_to_IBM !
4=7¢ 4.33 PDP_to_MULTICS g
4-72 4,34 ada §
4-<75 4.35 add_one
4-76 4.36 subtract
4-78 4.37 sub_one
4=79 4,38 shift_left
4-31 4,39 shift_right
4-83 4.4¢ ones_complement
4~84 4.41 twos_complement
4-35 4,42 round

| 4-36 4,43 nornmalize

: 4-88 4,44 base2_to_baselé6

iv
%

FINAL REPORT REMCTE CATA ENTRY
TABLE OF CCNTENTS 4

PAGE CONTELT |
3~-44 3.31¢8 Extract Conmand
3-44 3,11 Command Sumniary ‘
3-47 3.12 Modes of COreration
4-1 PDE FUNCTIONAL LESCRIPTICH
4~-1 4,1 I/C Focule Introduction !
4~4 4,2 remote_to_rultics, rtom /
4~6 4,3 nultics_to_remote, mtor
4-8 4.4 rerote_data_attach
4-11 4.5 open_cevice
4-13 4.6 terminal_modes
15 4,7 device_control

! 4-17 4,8 disk_seek
4-19 4.9 read_first_record
4-21 4.10 read_next_record
4-23 4,11 write_first_record .
4-25 4.12 write_next_record ;
4-27 4,13 close_device |
4-29 4,14 detach :
4-30 4,15 maketree L
4-32 4,16 treeiput
4-35 4,17 duriptree
4-37 4,18 treeoput

any

delay

iii

FINLAL REPGRT REMOTE DATA ENTRY
TABLE CF CONTENTS

FAGE CONTENT
4=-42 4,29 floating point general remarks
4-46 4,21 convert
4~-4¢ 4,22 CDC_to_IBM
4=-58 4,23 CLC_to_NULTICS
4-52 4,24 CDC_to_BLP
4-54 4,25 IBM_to_CDC J
4-56 4,26 IBM_to_MULTICS
4-5¢ 4,27 IBM_to_FDP
4-60 4,28 MULTICS_to_CDC
4-62 4,29 HMULTICS_to_IBM
4~64 4,38 MULTICS_to_PLP
4=€G 4,31 PCP_to_CDC
4-68 4,32 PDE_to_IRM
4=7¢ B Sk PDP_to_MULTICS
4-72 4,34 add
4=75 4,35 add_one
4-76 4.36 subtract
4=78 4.37 sub_one :
4-7¢9 4,38 shift_left |
4-31 4,39 shift_right :
4~-€3 4.4¢C ones_complement |
4-84 4.41 twos_corplement
4-85 4,42 round
é 4-36 4,43 normalize -
G 4-85 4,44 base2_to_basel6 L
iv

FINAL REPORT REMCTE LATA ENTRY |
TABLE CF CCHTENTS |
PAGE" CONTENT
' é
5-1 CTS Functional Description
5-1 5.1 CTS Structure i
5~5 5¢2 cts %
5-1¢ 5.3 cts_process_args - |
S5=13 5,4 cts_process_keywords
5=16 5.5 cts_process_commands y
5=22 5.6 cts_process_program
5~25 5.7 cha_nge
5=39 5.8 in_sert é
5-33 5.9 de Tete " X
5=36 5.1 mo_ve
; 5=39 5.11 ext_ract
5=42 5.12 bool_term
5-45 5.13 bool_fac
5-48 5.14 boel_pri
5~54 5,15 get_char ;
5-56 5.16 advance
5-65 5.17 error é‘
5=70 5.18 cts_gquery_user 5;
A-1 Appendix A - Table of Figures gi

E-1 Aprendix B - References

EVALUATION

This report contains the user's manual and software documentation for
the MULTICS Remote Data Entry System (RDE) developed under Contract F30602-
77-C-0174. The RDE System was developed to allow the users of the MULTICS
Pattern Recognition Facility the ability to enter data remotely from a
Tektronix 4921 floppy disk or a 4923 tape cassette which are attached to
their 4014 terminal.

The MULTICS Pattern Recognition Facility, which includes the MULTICS
versions of WAVES, a waveform processing system, and OLPARS (On-Line Pattern
Analysis and Recognition System), is available to remote users via access
over the ARPANET.

Once the data is in the MULTICS System, programs are provided which
give the user the ability to restructure the data set on-line or to perform
clustering analysis on the data set. Volume I of this report contains the
documentation for RDE, and Volume II contains the user's manual for the
clustering analysis additions to MULTICS OLPARS. This system is a major
enhancement to the MULTICS Pattern Recognition Facility which provides the %
Air Force with a powerful capability for solving a wide range of target

identification problems in the areas of command, control, communications and

intelligence.

el

%Rxcm 3. L}As?lgnssn > T

Project Engineer

FINAL REPORT REMOTE DATA ENTRY
SECTION 1 - INTRODUCTICN

1 INTRODUCTION

OLPARS (On Line Pattern Analysis and Recogntion System) was
conceived and implemented by RADC and PAR corporation as an
interactive pattern analysis and recognition tool. Implementation of
OLPARS on the Honeywell Information Systems (HIS) 6180 Computer
facility at RADC (MOOS - MULTICS OLPARS Operating System), has made
the system available through the ARPANET. Consequentially, users
throughout the country have used OLPARS 1in the solution of their

pattern recognition problems,

The Remote data Entry (RDE) system was designed to permit persons
using OLPARS through the ARPANET to transmit and receive vector and
waveform data to and from a remote storage device, Waveform data to
be analyzed using WAVES (Long Waveform Analysis System) may also be

transmitted and received using the RDE system,

This report contains a description of the RDE system, its use,

and the programs it contains,

The RDE user's manual is described in section 2 and gives
complete instructions on how to send data back and forth to MOOS and
WAVES, The Command Translator System (CTS) is described in Section 3,

CTS 1is designed to enable a user to edit his data once it is in the

MULTICS system, Sections 4 and 5 give functional descriptions of the

e At

e S B i

FINAL REPORT REMOTE DATA ENTRY

SECTION 1 = INTRODUCTION
RDE and CTS systems and are designed for software maintenance
personnel., Section 4 also contains a description of floating point

conversion routines that were implemented under this effort,

e ki

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

2 RDE USER'S MANUAL

-~

2.1 General Remarks

This section contains descriptions of all RDE user functions., It
is designed to provide a novice user of the system with sufficient
information to allow for easy use of the system capabilities,
Description of the computions performed by each system program is

documented in section 4.

The standard terminal from which RDE commands are executed is the
Tektronix 4614-1 storage tube display. Attached to the 4614-1 are a |
4921 single disk drive, a 4922 double disk drive, or a 4923 tape §
cassette device, The 4923 device can control the 4¢14~1 screen only if :
there is an attached 4921/4922 device. A hard~-copy unit may also be
attached to the 4014-1 terminal, but 1is not essential for the

operation of the RDE systenm,

User function calls are entered through the terminal keyboard,

and consist of simple program names followed by any required or
optional parameters. Within the system programs, dialogue concerning
additional information recuired for program operation is handled by

standard terminal input/output operations as specified in this : 1

section,

B2 i s T T (TR

FINAL REPORT REMOTE CATA ENTRY
SECTION 2 = RDE USER'S MANUAL
In the MULTICS system, program-calling arguments are specified as
"-arg" or “"-arg parameter", The first form is used to set or reset
specific program switches or perform specific action. The second form
is generally used to specify a file, where the "=-arg" identifies the

file type.
For example, the program dumptree may be called as:
dumptree ~in treepath ~out datapath

This convention was used in the RDE system, Missing arjuments are

solicited from the user. The possible arguments are described in the

individual program descriptions,

To create an OLPARS tree from the data on a remote device:

o The user calls the program "remote_to_multics" (rtom),

(o} The program "rtom"™ invokes the gprogram "remote_data " to

control I/0,

o Data is transmitted to an ASCII data file in the users’

default working directory (the directory he logs on under).

o The user may elect to edit the data file and/or create

2=2

A AT e

P SR

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

subfiles by wusing the program "Command _Translator_System"

(CTS) »

o The user calls the program "maketree" to create an
intermediate file in the users' process (temporary)

directory. 3

o The maketree program calls the program "treeiput" to create

a MOOS tree file in the users' process directory,

The creation of an OLPARS tree from data stored on a remote

device is shown in Figure 1,

2=3

s R R A S S S ORI i S

FINAL REPORT REMOTE CATA ENTRY
SECTION 2 - RDE USER'S MANUAL

Program Datafile
Called
| |
| REMOTE |
; | DEVICE |
| |
|
|
| | €=m=m=m -+
+--| RTOM |
Sk |
P {mem————et
oE
|
| \ 4 =y, A
B | | |
) cTsS |=--»| AsCII |
§o Ié--{ FILE |
L | |
| I I
f v |
+->] MAKE |
| TREE |
] |mmmm———t
|
| |
| mMoos |
! TREE |
| |

Figure 1 Remote Data File to MOOS Tree

AT el T

FINAL REPORT REMOTE DATA ENTRY

SECTION 2 - RDE USER'S MANUAL

To transfer an OLPARS tree to a remote device:

The

The user calls the program "dumptree",

The program "dumptree” «calls the program "treeoput" to
convert a MOOS treefile to an intermediate file in the

users' process directory.
The program "dumptree" then converts the intermediate file
to an ASCII datafile 1in the users' default working

directory.

The user may elect to edit the data file using the program
"CESD S

The user calls the program "multics_to_remote” (mtor).

The program "mtor" invokes the program “remote_data_" to

control 1/0,

The data is transferred from the ASCII data file to the

remote device.

creation of a remote device data file from a MOOS tree is

2=5

NPT ——

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL
shown in Figure 2,

To create a WAVES tree the user first calls rtom to create the
ASCII file 1in his working directory and then calls the WAVES command
unpack_tree. This command then creates the WAVES tree. To transfer a
WAVES tree to a remote device the WAVES command pack_tree is used
followed by the RDE command mtor. CTS may also be used to edit the
intermediate file. Description of the WAVES commands can be found in

Sections 2.7 and 2.8 and in the Final Technical Report to the MULTICS

Long Waveform Analysis System, RADC-TR~78-218,

PRI

e

Lo

FINAL REFORT

REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

Program Catafile
Cailed
] !
| Mcos |
| TREE |
| |

i | €=mmme +
+-~| DUMP |
| | TREE |
sl |mmm—————t
T o |
i i
| \ v
s !]]
= CTS |=-=~>»| ASCII |
| ety |€=~] FILE |
g | | |
| I
| |
food | {mmmmm—t
+=->| MTOR |
| |
| B & e o -
|
!
A
| |
| REMOTE |
| DEVICE ;
}

Figure 2 HOOS 1ree to Remote LData File

=7

i N ot et A0 e e

TPy

S

FINAL REPOCRT REMOTE DATA ENTRY
SECTION 2 ~ RDE USER'S MANUAL

24k ASCII data file format

Figure 3 shows the format of the ASCII data file, The file
consists of a series of vectors, separated by semi-colons (";"). The

last vector is followed by a slash-star terminator ("/*"),

Each vector consists of an optional class-name field, any number
of optional keyword fields, an optional class-id field, and a fixed
number of data fields., Each field is delimited by a blank, a comma
(","), or both characters. All vectors in the same file consist of

the same number of fields, known as the vector dimension.

Keywords, which are optional and do not appear in the MOOS tree
file, are used to describe the class vectors. They usually represent
human~readable attributes such as color, size, date, time, data

source, etc,

The id numbers serve to identify each vector uniquely., 1If
missing, they are gJenerated by the program maketree for use by

treeiput.,

Class names, which may be only 4 characters in the MOOS file, can
be inserted by the CTS program if not present in the ASCII file, Any
attempt to use the ASCII data file without the class names by maketree

would result in errors.

2~¢

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

An example of two vectors which contain all the fields is:
classl,car,1,3.7,4.9;class2,tank,2,3.2,5,7;/*

An example of two vectors contaiﬁing only data is:
3.7,4.9:;3.2,5.7;/*

The ASCII data is written on the remote device storage media in
128~-character blocks. The last data block must be padded with stars
("**) if it contains 1less than 128 characters, including the

"slash-star"” terminator ("/*"),

NOTE: Data is written to the 4923 tape cassette device in 128
character blocks containing 126 data characters, a "stop read" control
character (DC3), and a "dispensable" character (LF). The last block
indicating end of file consists of 126 stars ("*"), a ‘"stop device"
character (DC4), and a “dispensable"™ character (LF). The device
control characters (DC3 and DC4) permit the rtom program to read one

block at a time from the device. The LF character signals end of

transmission to the terminal,

FINAL REPORT REMCTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

]
| <NAME(1),> Optional class name

e v

| <KEYWORDS,> Optional Keyword(s)

<Ip(}) > | Optional Class 1d

it eadant
S

VECTOR(1); | Data,Data,...,Data;

| <NAME(2),>

| <KEYWORDS,>

<ID(2),>

om0

e e e e e e e o e o

!

!

I

= VECTOR(2) ;
]

I

AT 0500,

| <NAME(N),> | iz

| <KEYWORDS,> |

b I '

| VECTOR(N);/*|

| A i Pad and EOF Characters
|

Figure 3 ASCII data format

2-10 : q
i
]
|

B I A P AT A

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 ~ RDE USER'S MANUAL

2.3 remote_to multics, rtom

Function: rtom (device) (=debug)

Parameters:

device name of attached remote device

~debug, =db test switch

Description:

The user function rtom transfers an ASCII data file from a remote

device to a MULTICS file.

The test switch "~debug” or "~db" is used by maintenance

personnel to trace the program execution and data values. It should

not be specified by the normal user.,

User Interaction:

If the remote device is incorrectly specified on the call, the

following error message is displayed:

(1) Remote device must be "4921", "4922", "4923", or "tape".

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

At

If the remote device 1is 1incorrect or missing, the following

request will be displéyed:

(2) Enter remote device type: xxxXLF

Type in the remote device type followed by a line-feed (LF).

After the information has been accepted, the system will

display the following message:

(3) Enter output data file name: nameLF

Type in the d

(1]
n
I~
~
(13
Q
[o}
=
ot
o]
=
s
h
-~
.—J
(®
o
D
3
(]

name f

(6]

llowed by a LF.

If the output data file exists in the user's default working

directory, the fcllowing message is displayed:

(4) Data file already exists. Do you wish to overwrite it? replyLF

Type in "yes" or "no", followed by a LF. A reply of “no"

will cause the following guestion to be asked:

(5) Do you wish to continue? replyLF

2-12

2 At AU R A e s

R A B ol

FINAL REPGCRT REMCTE UCATA ENTRY
SECTION 2 - RDE USER'S #ANUAL

Tyge in "yes" or "no", followed by a LF, A reply of "no"
terminates the program, A reply of "yes" displays the following

message pefore returning to question (3),
Choose another file name.
£ thg remnote device is "4922", the following cuestion is asked:
(6) Enter disk number: nLF
Type a “l".0t a "2", followed by a LF,
(7) Do you want the screen on duriny data transmission? replyLF

Type "yes" or "no", followed by a LF., The user should be
aware that the screen can display only 644y characters (64 lines
times 132 chars per 1line) before overwriting the displayed

information. This represents approximately 66 sectors, or 2

tracks of data.

If the remote device is "4921" or "4922", questions (8) and (95)

are displayed.

(8) Enter starting track number: nnLF

FINAL REPORT RENMOTE DATA ENTRY
SECTION 2 = RDE USER'S MANURL
Type a two=-digit number bLetween 00 and 63, followed by a LF,
(9) Enter starting sector number: nnLF
Type a two-digit number between #0¢ and 31, followed by a LF,
If the remote device is "4923", guestion (18) is displayed,
(19) Do you wish instructions? replyLF

Type "yes" or "no", followed by a LF.

After the instructions are displayed, the user is asked if

he 1is ready to continue., Type a "yes", followed by a LF. The

projram will then display the following message, and wait for 26

seconds for the user to comply before initiating data transfer:
Depress the RUN button once,
If the remote device is "tape", gquestions (11) through (17) will
be asked,

(11) Enter volume id: VVVVVVLF

w ot

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

Type 6-digit tape reel number with leading zeroes, followed

by a LF.
(12) Enter optional console message: messageLF

Type LF for no message, or up to 64 characters (including

blanks) followed by a LF, A message greater than 64 characters

will be truncated,
(13) Enter file name: nameLF

Enter up to 17 characters followed by a LF, A name field greater
than 17 characters will be truncated, and a message informing the user

will be printed.

At this point, all required information has been entered or
Jenerated, If the user wishes to change fields, enter new fields, or
delete any fields in the tape attach description, the program will

permit editing. The following question is asked automatically:

(14) Do you wish to change any fields? replyLF

Type "yes" followed by a LF if you wish to edit any of the

fields in the attach description.

If the user types "yes" in response to question (14), the program

continues with questions (15) through (17).

2~-15

ot A o 3N

NIRRT ——

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

(15) Enter literal to be changed: literalLF

Type in any string to be changed, followed by a LF (the

literal string may contain blanks),
(16) Enter literal to be changed to: literalLF

Type in replacement literal (a null string or a literal with

imbedded blanks is permissible), followed by a LF.

The edited attach description is now displayed.

(17) Do you wish to continue editing? replyLF

Type "yes" followed by a LF to continue. The program will !
' then display questions (15) through (17) again. Type "no" to

terminate editing,

After completion of the data transfer, the program will display
the number of 128-character records read., If the remote device was i

"tape”, the program will display the number of 2568~-character blocks

(20 128-character records) read.

o _ =

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

A i LM N

2,4 multics_to_remote, mtor

Function: mtor (device) (=-debug)

Parameters: i
device name of attached remote device i
-debug, =db test switch

Description:

The user function mtor transfers an ASCII data file from a
F MULTICS file in the users' default working directory to a remote

device.

The test switch "-debug" or "-db" 1is used by maintenance

personnel to trace the program execution and data values, It should

not be specified by the normal user.

User Interaction:

:
¥

If the remote device is incorrectly specified on the call, the

following error message is displayed:

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

(1) Remote device must be "4921", "4922", "4923", or "tape".

If the remote device 1is incorrect or missing, the following

request will be displayed:
(2) Enter remote device type: XxxxXLF

Type in the remote device type followed by a line~feed (LF).
(3) Enter input data file name: nameLF

Type in the desired input file name followed by a LF,

If the data file does not exist, the next two responses are

displayed:
(4) Data file does not exist,
(5) Do you wish to try another file? replyLF
Type in "yes” or "no", followed by a LF. A reply of "no"
terminates the program, A reply of "yes" displays the following

message before returning to guestion (3).

Choose another file name,

2~-18

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

If the remote device is "4922", the followinj guestion is asked:

(6) Enter disk number: nLF

Type a "1" or a "2", followed by a LF,

PP ——

(7) Do you want the Screen on during data transmission? replyLF

Type "yes" or "no", followed by a LF. Tne user should be
aware that the screen can display only 8448 characters (64 lines
times 132 chars per 1line) before overwriting the displayed

} information. This represents approximately 66 sectors, or 2

tracks of data.

If the remote device is "4921" or "4922", guestions (8) and (9)

are displayed,

(8) Enter starting track number: nnLF

NS RS ST T S

Type a two=digit number between 80 and 63, followed by a LF,

(9) Enter starting sector number: nnLF

Type a two=-digit number between @@ and 31, followed by a LF,

Lt Vi TR A e < oy TN L B P

FINAL REPORT REMOCTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

If the remote device is "4923", question (14) is displayed.

(1) Do you wish instructions? replyLF

Type "yes" or "no", followed by a LF.

After the instructions are displayed, the user is asked if he |is
ready to continue. Type a "yes", followed by a LF. The program will
then display the following message, and wait for 20 seconds for the

user to comply before initiating data transfer:

Depress WRITE and RUN buttons,

The user must follow the instruction within 20 seconds, or the
device will not be able to accept the data transmitted by the program,
In such case, the program should be allowed to terminate normally,

then re-executed.

If the remote device is "tape", questions (11) through (17) will

be asked,

(11) Enter volume id: VVVVVVLF

Type 6-digit tape reel number with leading zeroces, followed

by a LF,

2=-20

L TENR

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

(12) Enter optional console message: messageLF

Type LF for no message, or up to 64 characters (including
blanks) followed by a LF. A message greater than 64 characters

will be truncated.

(13) Enter file name: nameLF

Type up to 17 characters followed by a LF. A name greater

than 17 characters will be truncated.

At this point, all required information has been entered. If the
user wishes to correct misspelled fields, enter new fields, or delete
any fields in the attach description, the program will permit editing,

The following guestion is asked automatically:
(14) Do you wish to change any fields? replyLF
Type "yes" followed by a LF if you wish to edit any of the
fields in the attach description.
If the user types "yes" in response to question (14), the program
continues with questions (15) through (17).

(15) Enter literal to be changed: literalLF

Type in any string to be changed, followed by a LF (the

FINAL REPORT REMOTE DATA ENTRY

(16)

(17)

SECTION 2 - RDE USER'S MANUAL
literal string may contain blanks).

Enter literal to be changed to: literallLF

Type in replacement literal (a null string or a literal with

imbedded blanks is permissible), followed by a LF,

The edited attach description is now displayed.,

Do you wish too continue? replyLF

Type "yes"™ followed by a LF to continue, The program will
then display gquestions (15) through (17) again. Type "no" to

terminate editing.,

After completion of the data transfer, the program will
display the number of 128-character records written, If the
remote device was "tape", the program will display the number of

256d~-character blocks (20 128-character records) written,

2-22

e

S L TR e

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

245 maketree

Function: maketree (~control_arguments)

Control arguments:

-in path input ASCII data file path name
=-out path output MOOS tree name
~-debug, =db test switch

Functional Description:

This program reads the named ASCII input data file from the
user's default working directory, writes an intermediate data file
(treedata) in the user's process directory, and then calls the program
treeiput to convert the intermediate file to MOOS format. See treeiput

for a description of the treedata file format.

The test switch "-debug" or "-db" is used by maintenance

personnel to trace the program execution and data values. It should

not be specified by the normal user,

User Interaction:

TS S S

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

If the input ASCII data file is not specified in the call to

maketree, the following question is asked:

(1) Enter default working directory input ASCII data file name: nameLF

Enter the input file name, followed by a LF,

If the program cannot 1locate the input file, the following

question is asked:

(2) Input ASCII file <name> does not exist. Do you wish to try another

input file? replyLF

A reply of "yes", followed by a LF will cause the program to

branch to question (l1). A reply of "no" terminates the program,

If the output MOOS data file is not specified in the call to

maketree, the following question is asked:

(3) Enter 5 to 8_character output MOOS data file name: nameLF

Type the file name, followed by a LF. A name less than 5

characters or greater than 8 characters will cause the program to

return to question (3), The MOOS data file 1is checked for

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

existence in: the program treeiput. Therefore, it is not checked

by maketree,
(4) Enter number of keywords in input data file <name>, numberLF
Enter the number of keywords to skip, followed by a LF.
(5) Are class id's present? replyLF
Type "yes" or "no", foliowed by a LF, A "yes" will cause
the program to use them in the file conversion. A "no" will cause
the program to generate them for the file conversion.
The accompanying Figure 4 shows the relationship between the
input ASCII data file, the intermediate data file (treedata), and the

resultant MOOS tree.

As described earlier, the program maketree calls the program

treeiput to convert the intermediate file to the MOOS tree, it is

never necessary for the user to call the program treeiput,

AT

s eSS At € ot S A St B s A 35 A

it 2o

FINAL REPORT

REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL

RDE - Datafile
Program
| f
| ASsCII |
; FILE ;
|
|
| | €mmmemmt
| MAKE |
| TREE |
) jem———+
lier ol
: | |
| | TREE | -
| : DATA :
|
: :
e S |
) | Gmmmmmmt
| TREE |
| I1PUT |
| I--*----?
| |
| Moos |
: TREE :

Figure 4 ASCII File to MOOS Tree Conversion

P

RORORRN 2 o vy

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 - RDE USER'S MANUAL 2/

2.6 dumptree

Function: dumptree (-control_arguments)

Control arguments:

-in path input MOOS tree path name
-out path output ASCII data file path name

-debug, =db test switch
Functional Description:

This program calls the program treeoput to convert the input MOOS
tree in the wuser's process directory to an intermediate file
(treedata) in the wuser's process directory, then processes the

intermediate fifé to create an putp&t ASCII data file in the user's
default working directory. :

¥

The test switch "=-debug" or "~db" is used by maintenance

personnel to trace the program execution and data values, It should

%
not be specified by the normal user. -

User Interaction:

A —————————

FINAL REPCRT REMOTE CATA ENTRY
SECTICN 2 =~ RDE USER'S MANUAL

If the input MCOS data file is not specified in the call to

cdunptree, the following cuestion is asked:

(1) inter 5 to &_character input NOOS data file name: nameLF
Enter the input file name, followed by a LF. A name of less
than 5 characters or greater than 8 characters will cause ﬁhe
program to return to question (l). The existence of the input
MOOS data file is checked by the program treeoput. Therefore, it

is not checked by dumptree.

If the output ASCII data file is not specified in the call to

dumptree, the following question is asked:
(2) Enter output ASCII data file name: namelLF
Enter the output file name, followed by a LF,

-

If the output file exists, the program will ask the following

question:
(3) Do you wish to overwrite existing file <name>? replyLF

If the reply is "yes", processing continues, If the reply is

"no", the program asks the following question:

FINAL REPORT REMOTE DATA ENTRY
SECTION 2 ~ RDE USER'S MANUAL

(4) Do you want to try another file? replyLF

If the reply is "yes", the program branches to guestion (2),

If the reply is "no", the program terminates,

If the treedata file cannot be found in the user's process
directory after executing the program treeiput, the following message

is displayed before the program terminates:

(5) “treedata" file does not exist in process directory - program

terminated,

Figure 5 shows the relationship between the input MOOS tree, the
intermediate data file (treedata), and the resultant ASCII data file,

As mentioned before, the program;ﬁhmptree first calls the program
treeoput to convert the MOOS tree to the intermediate data file, Then
the program dumptree converts the intermediate data file to an ASCII
file. The program treeoput 1is displayed first in Figure 5 only
because this program is the first to do a file conversion. In actual

execution, the user calls dumptree only, and need never call the

program treeoput.

PR AL 8 A D

FINAL REPORT

REMOTE DATA ENTRY
SECTICN 2 ~ RDE USER'S MANUAL

RDE Datafile
Program
| |
| MoOs |
| TREE |
| |
|
]
|
| | €=mmmmmt
| TREE |
| opur |
| |——————+t
! %
| A4
| | |
| | TREE |
| | DATA :
| |
: !
¥ |
| |{mmmm——t
| bpump |
| TREE |
| |=—————t
.'
| |
| ASCII |
: FILE |

o)

Figure 5 MOOS Tree To ASCII File Conversion

} Generates a WAVES tree from the ASCII file treename.rde located in the

FINAL REPORT REMOTE UATA ENTRY
SECTION 2 - RDE USER'S HANUAL

2,7 unpack_tree, upt
Calling Sequence:

unpack_tree treename
Arguments:

treename is the name of a WAVES tree to be unpacked.

Function Description,

user's default working directory,

If a format or data error occurs while executind unpack_tree, the
operation is halted. An error will be reported to the user. If any
waveforms were successfully unpacked (up to the last semicolon
passed) , then the tree will be fouhd in the user's file and will be

selected (put on the data set stack).

The format of a WAVES RDE ASCII file is given in figure 5A. For

more information on the use of unpack-tree and pack-tree, the user is

referred to the MULTICS Long Waveform Analysis System User's Manual,

(RADC-TR-78-218), A062111. ﬂ

FINAL REPORT REMOTE LATA ENTRY
SECTION 2 - RDE USER'S MANUAL

File Items

nodenare, /* from 1 to 27 characters, no periods */
id, /* from 1 to 10 characters, representing valid

positive integer */
£f, /* domain: "time” or "freq" */
units, /* display units: "s", "ms", "us"”, "ns”, "Hz", "kHz",

"MHZ", "GHz" */
st_sf, /* start time in seconds or fregquency in hertz */
st fr, /* sampling interval in seconds or hertz xJ
type, /* waveform type: "real" or "complex" */
text, /* waveform text */
tree_text, /* tree text: assigned to the tree only if text

is non=-null */

nsey_marks, /* number of segmentation marks */ :
mark (1), /* segmentation marks word coordinates marked */ 5

.

mark (nseqg_marks),

X(1), /* First waveform point */

A(N); /* semicolon marks end-of-waveform */

nodenare, /* rereat of above for each waveform */
.

X (i) s

/* /* "slash~star" marks end~of~tree */

Figure 5A WAVES I(o File Format

FINAL REPQRT REMOTE DATA ENTRY
SECTICN 2 ~ RDE USER'S MANUAL
2,8 pack_tree, pt
Calling Sequence:
pack_tree (tree)
Arguments:
tree is the name of a WAVES data tree. (optional)

Function Description,

Converts a WAVES data tree into an ASCII formatted file whose

format is specified in Figure 5A.

Detailed Description:

If a tree is not specified, the current tree is used,

This command does not affect the data set stack,

FINAL REPORT REMOTE LCATA ENTRY
SECTION 3 - CTS USER'S MANUAL

3 CTS USER'S MANUAL
S Cverview

The editing and extraction of data is achieved through computer
programs which do the following: 1) scan ga%a for specific keywords,
2) scan data for specific fields, and 3) evéluate boolean expressions
which are functions of the data measurements,

A syntax (grammar) hnhas been designed as a format by which the
user should structure his commands, These commands must be recognized
as beinjy in the correct format before the editing specified by the
commands 1s actually performed. The editing is accomplished through

} recognition of the commands, input by the user, There are four ;
editing commands: "change", "move", "insert”" and "delete". Briefly,
the "change" command will change keywords or fields within a vector,
the "move" command will move a field to either the head or tail of the
vector, the "insert" command will insert a field anywhere in the
vector, and the "delete" command will delete any field within a
vector, A more detailed description of each command will follow later
in this section. Once a command.is recognized, it is translated into
a PL/1 statement which is placed into a PL/1 program, This program
can be compiled and executed. Provisions have been made controlling
both the compilation and the execution of the program, which will also

be discussed later in this section,

If the user mistypes a command, CTS will attempt to continue

%@ﬁﬂ?ﬁf“*?V

.

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 ~ CTS USER'S MANUAL

processing the command, making corrections as it encounters the
errors. When an error is detected, depending on the type of error,
CTS will either make the correction itself or guery the user for the
correction. The corrected command is displayed to the user, who is
then asked 1if the corrected command is acceptable, The user should
reply "yes" or "no". If the reply 1is ‘“yes", CTS will continue
processing the corrected command from the point of*the error. If the
user replies "no", then CTS will respond with the question "Enter
either ""cease"" or ""quit"":". Only at this stage in CTS can the user
use the terms "cease" which terminates processing of all commands, or
"quit" which terminates processing of the current command,

The original data file, located in the user's default working
directory, 1is read, one vector at a time, into a buffer within CTS.
Any editing (where editing consists of changing, moving, inserting and
deleting data, keywords or fields within a vector) 1is then done on
each vector individually. After each vector is edited, it is written
into a file located in the process working directory., After the 1last
vector of the original data file has been edited and written into the
file, the original data file is then replaced by the edited data file
(i.e, the original data file is written over by the edited data file),

The extraction of vectors, if any, occurs after the original data
file has been replaced by the edited data file. Extractions are
accomplished through recognition of the "extract" command as a CTS
command. This command extracts pertinent vectors from the edited data

file. Once recognized, the command will be translated into PL/1

3=2

R A SN 5 A S A S R S s

FINAL REPORT REMOTE DATA ENTRY

SECTION 3 - CTS USER'S MANUAL
statements which will then be appended to the same PL/1 program
containing the editing commands. This program will not only edit the
original data file, but also extract pertinent vectors and place them
into a separate, user-named file located 1in the user's working
directory for subseguent input to MOOS.,

In processing each command, the PL/1 program will operate as a
two-pass, multi-operational system, In the first pass, each "edit"
cormmand (where an "edit" command is any of the four commands listed
above) will examine each individual vector to determine if the command
can be applied to it. If it can, the necessary editing in done,
After each edit command has examined a vector, the next vector is
examined, This process continues until all the vectors have been
examined, The second pass will then do any extractions by examining
each vector and extracting the pertinent ones,

CTS will operate 1in one of two modes. It will operate
interactively with the user as he is sitting at a terminal keyboard,
or as in batch processing, with all commands read from a file with the
editing done according to the given cpmmands. The user must specify,
yhen calling CTS, which mode of operation he wishes to use, More
information concerning the two modes will be discussed later in this
section,

CTS was designed as a fairly machine-independent system, There

are, however, a few Multics syster subroutines included in CTS. They

are:

e e R AN S5 A e

b,

o i eI
e i bl o -

R

FINAL REPORT

1)

2)

3)

4)

5)

6)

7)

8)

6)

REMOTE CATA ENTRY

SECTION 3 = CTS USER'S iANUAL

com_err_

cu_S$arg_count

cu_Sarg_ptr

cu_scp

get_default_wdir_

get_pdir_

hcs_$delentry _file

hcs_$star

prints the actual system error message

instead of just the error nurter,

returns the number of argunents a subroukine

is called with,

a pointer to the arguments of a command,
command processor which passes commands
from within a program to the command level.

It 1is used for the compilation and

execution of the user's program,

gets the default working directory.

gets the process directory,

deletes a file in a specified directory,

returns the entry count of a segment

or directorye.

used for formatting a character string fronm
fixed_point numbers, floating-point numbers,

character strings, bit strings, and pointers,

O B 1 ek g

FINAL REFCRT

7)

7)

7)

9)

16)

iox_Sattach

iox_$close
iox_S$detach_iock

iox_$find_ioch

iox_$oran

REMOTE DATA ENTRY
SECTICN 3 = CTS USER'S MANUAL

attaches the i/o switch "error-output”,
closes the i/o switch,
detaches the i/o switch "error-output”,

gets a pointer to the i/o

"error~output”,

opens the i/o switch,

switch

S S—

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 -~ CTS USER'S MANUAL

3.2 Definitions

The important terms used within CTS are defined here,

1) .command -~ a statement which tells CTS what type of editing to do

on the data file,

a

2) control arguments - arguments which specify the function of CTS =~
ises if the wuser wants a 1listing of the generated PL/1

program, or just a syntax check of the commands, etc,

3) data - a measurement of some attribute of an item under analysis,

I a vector 1ID is given, it ©precedes the data.
V\‘ T m—
Otherwise the data immediately follows the keywords,

4) default working directory - the workinj directory of a user when he

. 4
first logs on to the system.

5) degree of severity - Compilation of a program produces a 1list of
errors, if any exist, Each error has a level of

severity; which range from @ to 4 as follows:

$ - indicates no errors were detected,

1 -~ indicates a minor error.

Compilation continues with no ill effect.

FINAL REPORT : REMOTE CATA ENTRY
SECTION 3 - CTS USER'S MANUAL

2 - indicates a correctakle proktlem error, The compiler j
remedies the.ﬂ: and usually continues with no ill
effect,
3 - indicates a fatai'ﬂ error has been detected. - |
4 - indicates an unrecovérgble error has been detected. %
The compiler cannot coﬁtinue beyond this point, 2
A progran having a degree oﬁ‘severity of 2 or 1less A
can be compiled. However, 1if tﬁe degree of severity

is greater than 2, compilation of the program is

terminated.
; 6) delimiters ~ the following delimiters are recognized in CTS:
\
\
comma (,) - separates fields within the vector, i

dash (=) = indicates a CTS pathname or control argument

& immediately follows,

2 period (.) - indicates the end of an edit or extract 7

i
command,

semi=-colon (;) = denotes the end of & vector,

slash-asterisk (/*) = denotes the end of the data file.

field - a data vector 1in the data file has the format

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

classname, keywordl,keyword2,...,vector IC,data,...;

Each char string between commas 1is called a field. In this

example, field(3) is keywbtdZ.

8) keyword - a particular word or character string which the user
has designated as important, Keywords follow the classname and
precede the vector ID (if one is given) and any data.

9) parse - resolving a CTS command into its grammatical parts,

10) path - name of a file.

| 11 pathname arguments =~ arguments which specify an input, output or

PSS M T FSL) S

- d ¢
,ﬁave:d Flle. ‘f ¥ ;

12) process working directory =~ a directory containing those
segments that are meaningful only during the life of a group

of programs in execution,

13) production - rules of a grammar. l

14) recursive = procedures are recursive if they can call themselves

either directly or indirectly through a chain of other procedure

TP T AT R T om i A e o

FINAL REPCRT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

calls,

15) subfield ~ a substring within a field.

16) token = a word or character of the input command line.

17) top down processing - a processor which recognizes syntax

productions higher up in the grammatical tree before those lower

down,

3-9

AR,
2

e A e I R4 e A N b e

FINAL REPORT REMOTE LCATA ENTRY
SECTION 3 = CTS USER'S MANUAL

3.3 CTS Initiation
Function:
Accepts commanas to gJgenerate a PL/1 program

processes an ASCII RDE data file,

Syntax:

- cts {-pathname_args} {-control_args}

Pathname Arguments:

-0ld path

path is the file name of the input segment

which

or

multi_segment ASCII RDE data file, If not present, the

program will query the user for the input data file segment

name,

~new path

file name of ASCII RDE data file to be created from applying

cts to the input data file, Default path name will be

"empty" .

~-in path

name of the segment from which CTS control arguments and

commands are to be taken, This segment must have ".cts" as

iy

B3 IR o ey

FINAL REPCRT REMCTE DATA ENTRY
SECTION 3 -~ CTS USER'S MANUAL

a suffix, but is not required in the command 1line, May be

used only as a calling argument,

=out path

name of the segment to which CTS control arguments and
commands are be copied. If missing, a suffix of ".cts"
will be applied by the program. This argument is
incompatible with the ~-in argument above. The default is

no output control segment,

~-save path, =-sv path

causes the generated PL/1 program to be saved in the

current working directory., A suffix of ".pll” is

appended to the segment but is not requiied in the command

line.

Control Arguments:

~list
causes a listing of the generated PL/1 program, Default is

no listing,

-check, =ck

checks syntax of input. No translation or program

generation,

e /s NN B S DL < % 43S S

FINAL REPORT REMOTE DATA ENTRY

SECTION 3 ~ CTS USER'S MANUAL

-noxgt, =nx

Used with the =-save argument to generate, but not execute

the program,

-arguments argstring, =args argstring

~nogquery,

passes the PL/1 compilation arguments "argstring” to the
PL/1 compiler. If this argument 1is used, it must be the
last control argument., The format for “argstring” is "~-argl
-arg2 ...=argn", The severity level argument, if specified,

is ignored. Default is no compilation arguments,

inhibits message soliciting user for control arguments, PL/1
arguments, and commands, Implies that all arguments and

commands will be read from a file, Default is to query the

user for all arguments and commands,

~-echo
causes the input control arguments and commands to be
echoed back to the terminal as they are read in, Default
is no echo.

~debug, ~-db

causes a trace of statements executed, Default is no trace.

FINAL REPORT REMOTE DATA ENTRY i
SECTION 3 - CTS USER'S MANUAL {

-menu

prints a listing of all the arguments available in CTS.
~panic

will notify the user if he attempts to put a vector in two %
different classes and will terminate execution of the é
generated PL/1 program. Default 1is notification of this '
occurrence, creation of a file containing all vectors placed
in more than one class, and continued execution of the
generated PL/1 program,

‘ Note:

Control arguments may be specified at the time of the call "
to cts or as input commands from either the terminal or the
file specified by the "-in" arguments. When both modes are

used, arguments specified at calling time take precedence

over input arguments,

' User interaction:

If the input data file name is not specified when CTS is called,

the program displays the following questions:

1) Enter missing input (~old) data file name:

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 -~ CTS USER'S MANUAL

Type in segment name of the data file followed by a linefeed(lf).

2) Enter control arguments:

Type in control argument followed by a linefeed(lf).

The wuser will continue being prompted for control arguments until he
either types only a linefeed(lf) or types in the argument "=-args" at
which point question (3) is displayed.

3) Enter target program PL/1 argument:

Type 1in compilation arguments which will be used in compiling the
generated PL/1 program., The user will continue being prompted for
individual compilation arguments until he types in only a

linefeed(1f),

Question (4) is displayed if after compiling the generated PL/1

program, an error of severity >2 has been found.

4) Do you want to execute the generated PL/l1 program?

Type in "yes" or "no" followed by a linefeed(l1f). If no compilation

errors were found, or an error of severity <2 was found, then the

3~-14

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S_ MANUAL
generated PL/1 program is automatically executed, unless the user has

specified the argument "-noxgt",

Following are examples of how CTS may be called, and the results

of the call,

1) cts =-o0ld vehicles ~new cars

If the optional control argument "-out” was specified with the
pathname "auto", the commands entered from the terminal would also be
saved in the file "auto.cts".

Once the commands to CTS have been saved in a file, the user may

choose to then use them instead of entering_them at the terminal,

For example, if the commands to extract vectors from a file were

in the entry "auto.cts", the following call to CTS would function as

in example (1), but the user would not have to list the commands:

2) cts ~old vehicles =-new cars =-in auto

Statements read from the input file may be echoed at the terminal
(i.e. displayed) by including the argument "-echo", as shown in

example (3):

3) cts -old -new cars =in auto =-echo

FINAL REPORT REMOTE CATA ENTRY
SECTION 3 = CTS USER'S MANUAL

fach read by CTS is preceded by a guery to the user., This query
may be disabled by including the argument "=-noguery" or "~-ng" as shown

in example (4):
4) cts -old vehicles ~-new cars -in auto =-echo ~noquery

If the user simply wants to check the syntax of his commands, he
should include the argument ”-check" or "~-ck", No translation of the

commands or program generation is performed.

If the user expeéts to use the same program with various input
data sets, he may elect to save the program rather than delete it
after the execution. This is accomplished by including the argument
"-save" or "-sv", and the name the program is to be saved under.
Example (5) would cause the generated program to be saved in the file

"extract_cars.pll”:

5) cts ~old vehicles ~new cars -in auto =-echo -sv extract_cars

Upon completion of CTS, the user may then use the MULTICS command "pr"

to print a copy of the saved source segment,

If the user elects not to execute the jenerated program, he should

include the argument “"~-noxgt" or "-nx", as shown in exanple (6):

3~16

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

6) cts -old vehicles =-new cars =in auto -echo =-sv extract_cars =-nx

The user may then elect to submit the saved program as part of an
absentee job by using the MULTICS command "ear",
Should the wuser decide to see the generated program listed, he

should include the argument "=list", as shown in example (7);

7) cts =old vehicles -new cars -in auto -echo -sv extract_cars -list

Should the user wish to see the flow of the program, he should

include the argument "~-debug" or "=-db" as illustrated in example (8):

8) cts =old vehicles ~new cars =-in auto =~echo =-list =db

It 1is not recommended to use the argument "-debug" or "-=db"
since it was 1included specifically as a debugging and maintenance
tool. However, the option is there for the user.

If the user wants a table or a map of the compiled program [see
the MULTICS Programmers' Manual - Commands and Active Functions -
"PL/1" function for explanations on how to compile a program with a
map and/or table option], he should include the argument "=-arguments
argstring" or "-args argstring" where "argstring" is the string of
arguments used for compilation purposes, These arguments will be
passed to the PL/1 compiler with the program the user wants executed,

If this argument "=-args argstring"™ is wused, it must be the last

S e X ke

S —

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 ~ CTS USER'S MANUAL

control argument as shown in example (9):

9) cts ~old vehicles -new cars ~in auto ~list ~args -map =-sv3

If-the "=~arg" argument is not specified, the program will be compiled

with only the argument "-sv4",

One of the convient features of CTS is the way in which commands

in the "-in" file are overridden by the calling arguments, Any

argument which is set by the call may not be reset by "-in" file

commands. Thus, the call may specify a different "-save" file name

than what 1is in the "-in" file, Additionally, the call may set

switches not specified in the "-in” file., Thus, if the "-in" file
does not specify "-nx", but the call does, the program will not be

executed,

3~18

.. RS-

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

3.4 Keyword Specification

Keywords are words within a vector which help distinguish one
vector from another. If the vector data contains keywords, it is
helpful in the editing and extraction process to specify and use these
keywords to identify the correct vector, The purpose of
process_keywords 1is to obtain these keywords and store them in an
array for later reference. Subfields can also be specified, but are
optional., Subfields are substrings of characters within the keywords.
If a user would rather not have to refer to the whole keyword, but
only a few characters, he can specify this through the use of
subfields, If subfields are given, they should be in the form "a,b”
where "a" and "b" are integers., The first subfield, "a", represents
the beginning position within a field where the substring should
begin, This field has been defined by the keyword denoted by the
user, The second subfield, "b", represents the length or the number
of characters to be considered., If "b" is not given, then beginning
with "a”, the rest of the string is extracted. If no subfields are
given, the whole field is extracted.

Upon entering process_keywords, the the following questions are

displayed to the user: 1) How many keywords?

Type 1in an integer representing the number of keywords in each vector

in the data file.

3~-19

S ——g e e

P

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

2) Enter keyword and optional subfields:

User types in the keyword, If there are subfields, the user can
follow the keyword by a space and then the subfields, If the user
wants to skip naming the keywords, he types in "skip" followed by a
linefeed (1f). CQuestion (4) will be displayed prompting the user for
subfields for each keyword. If he mistakenly hits only a

linefeed(1f), question (3) will be displayed.

3) Please enter a keyword or "skip”:

User types 1in either a keyword or "skip" followed by a linefeed(lf).

4) Enter keyword(n) subfields:

where n runs from the current keyword number to the total number of
keywords, User types in the subfields followed by a linefeed(1lf). For
examples of keyword subfields, refer to the program

cts_process_keywords documentation,

I1f a keyword subfield is not an integer or not in the correct format,

then guestion(5) will be disoplayed.

5) Enter keyword subfield(s):

3-20

U £k

I—————

ez, I AL L YRR

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

User types in keyword subfield or subfields for the current keyword,
To illustrate the use of subfields, let the vector
blue-purpel,oval,brown,5.6,.5,1.6;

be the one the user is interested in correcting. Note the incorrect
spelling of the first keyword, "blue-purpel”. The user wants to
change the last two letters from "el” to "le", but would rather not

type in the complete keyword, He is able to do this by specifying,

when he is asked for the first keyword and subfields, the following:

color 16,2

When CTS examines the first keyword, it will skip to the tenth
character and begin its examination from that point for two
characters, which in this case is the end of the word. If the user

had typed in the command:

&

=

change color 18,2 ="el"™ to "le".

the first keyword of the vector would now look like this:

blue=putrple,oval,brown,5.6,.5,1.0;

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

If the user is more concerned with the location of the keyword in
the vector rather than the actual keyword, he can type in "skip" when
he 1is asked to enter a keyword and optional subfields, Once this is
done, the remaining keywords will be generated as keyword(i) where 1
is }<i<n and n is the number of keywords, For each generated keyword,
the user 1s asked for optional subfields. If the user is not
concerned with all or some of the subfields, he should type "nsubs”,
This will indicate to process_keywords that there are no subfields for

the remaining keywords that are to be generated.

For example:

The wuser is asked for the number of keywords and he types in "3", He
is then asked for the first keyword along with its subfield, He types
in "plane 2,3", He is asked for the second keyword, He types “skip
nsubs” . He 1is specifying that there are no subfields for the
generated keywords. So the keywords that will be recognized are: 1)

plane 2,3 2) keyword(2) and ~3) keyword(3) where keyword(2) and

keyword(3) refer to the second and third keyword in a vector.

o Lo

v

R

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

3.5 CTS Command Syntax

CTS generates a PL/1 program based on the user-supplied CTS
commands which will operated on the data file, During the process of
generating the Pl/1 program, CTS obtains edit and extraction commands
and passes these commands to the corresponding subroutines for further

processing.

User interaction:

1) Do the vectors in the data file have a classname located as the

first point of the vector?

Type in either "yes" or "no" followed by a linefeed(lf).

2) Is there a vector ID following the keywords?

Type in either "yes" or "no" followed by a linefeed(1lf).

If the user fails to answer yes or no to questions (1) and (2), the

following question is displayed.

3) Please answer "yes" or "no":

Type in either "yes" or "no" followed by a linefeed(lf),

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 -~ CTS USER'S MANUAL

4) Enter command line:

Type in a command(s) followed by a linefeed(l1f)., For the format of
cammands, see the syntax charts, Once the syntax of the command
line has been checked, and if the line does not end in "end", then the
subroutine "get_char" will ask the user for the next command line. If
there 1is an uneven number of guotes in the line, an error subroutine

"error" notifies the user of the erroneous command line,

There are five commands that will be recognized. They are: "change",
"extract"”, "move", "delete" and "insert",. A syntax, as mentioned
earlier, has been designed as a guide to the user in formating his
commands., It is a context~free LL(l1) grammar having recursive
procedures and top down processing, The grammar is presented in the
following figure and deﬁonstrates the manner in which CTS will parse
each command. Any term enclosed within "<...>" is a nonterminal while
all other terms are terminals, Ly nonterminal is parsed until a
terminal is encountered, indicating the end term (a terminal) which
is acceptable to CTS, The terminals "and" and "or" are represented
as "&" and "|" respectively in the grammar,

The following figures represent the syntax graphs of each
production of the grammar. In the syntax graphs, all nonterminals are
enclosed within "<,,.,>" and all terminals are enclosed within

"hoin) e Optional terminals are enclosed within "{ }"., In both the

3-24

Ty

FINAL REFPORT REMOTE DATA ENTRY

SECTION 3 -~ CTS USER'S MANUAL
grammar and the syntax graphs, the term "null" indicates a nullable
production meaning that the production may not be needed in every
command or series of commands.

NOTE: It is important that the user enter all the "edit" commands
before any "extract" commands are entered. If not, CTS will
terminate, Each command must end in a per;od. If it does not, the
user will be told of the error, a period appended to the end of the

command, and CTS will continue to the next command. After the user

has entered all his commands, he should enter the word "end"

indicating to CTS that all the commands have been entered.,

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

<{syntax> ::= <command>end

<command>

<change> <move> <insert> <delete> <extract>

| <move> <insert)> <deleted <extract)

<change> ::= change <change expression>,
<extract> ::= extract <Boolean term> <change_class>,
lnull
<move> ::= move <field loc>=<string> to <loc>,
Inull
<insert> ::= insert <field_loc>=<string> <string>.
Inull
<delete> ::= delete <field_loc>=<string>.
fnull
<change expression> ::= <relation> to <string>
<Boolean term> ::= <Boolean factor> <or_term>
<or_term> ::= . | <Boolean term>
Inull é
<Boolean factor> ::= <Boolean secondary> <and_fac> ?
<and_fac> ::= & <Boolean factor> f
Inull %
<Boolean secondary> ::= <Boolean primary> :

{“<Boolean primary>
<Boolean primary> ::= <relation>

| (<Boolean term>)

Figure 6 CTS Command Syntax

3=26

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

<change_class> ::= class=<string>
<relation> ::= <data> <relational operator> <value> |
<data> ::= <predefined keyword> <position> {

I<field> <position>

<relational operator> ::= <|">|={"<{>{"=

<position> ::= <integer><more integer>
Inull

<more integer> ::= <integer>
fnull

<predefined keyword> ::= keyword (<integer>)

luser-defined keyword

<field> ::= data

|fie1d(<integ§r>)
<value> ::= <number>

I<string>
<number> ::= any type of number
<field_loc> ::= field(<integer>)
<string> ::= "string of ASCII_chars"

{excluding control chars}

& <loc> ::= head

z ftail

%f <integer> ::= any combination of the following
B

3

integers = 01112(13141516171819

Figure 6 CTS Command Syntax (continued)

3-27

e 52,V A N A S Yol Wl ORI e 0 (2B e

FINAL REPORT REMOTE LCATA ENTRY
SECTION 3 - CTS USER'S MANUAL

<{syntax>==> <command>=~> (end)=-=>

{command>=> <change>==> <move>==> <insert>=-=> <deleted=~> <extractd>-~>
/

\ / / ; /’ ’
\=> <moved==mmm~- ~—-/ / / /
\=> <insertd==e~eeeccccccnc~-s/ / /
\=> <deletedm===m==mmmmmcemmmmm—eememe/ /
\=> <extractd==-=~~me~emcemec——-- e i -~/

<change>~=> (change)=-=> <change expressiond>==> (,)~=-=>
<move>~=> (move)=> <field_loc>=> (=)=> <string>=> (to)=> <loc>=> (.)=>
\

\=====mmmemeemmeeonullem———————————— ————-- e /

<insert>-{ (insert)~> <field_loc>=> (=)=> <string>=> <string>=> (.)=>

\~ null--~~~ e L ————— /
<de1ete>-;> (delete)==> <field_locd==> (=)==> <string>==> (,)=-=>
A et 2 10D I ~emmmm——~/

<extract>-=> (extract)=~> <Boolean term>=-~> <change_class>==> (,)~~>
5 /

\==m==mmceeememmemeeeemeonulle===-nn s T ———— /

<change expression>-=> <relation>=-> (to)=~> <string>~-> i
<relation>--> <data>=-~> <relational operator>==> <valued>~-->
<data>=~=> <predefined keyword>=-> <positiond>==>

\

\=> <fielddwmmm=== -/

<relational operatord>==> {(7)}-==~~ > (L) mmm———= >

/
\==> (>)==~/
\~=> (=)=-=/

Figure 7 Ci5 &£yntax Gragh

FItAL EEPCURT FEMOTE CATA ERNTRY
SECTION 3 = CTS USER'S MANURL

Kvalued====> <nunkerd===->
N
\=> <string>=/
{vredefined xeyword>=--=> (keyword)==> (()==> <integerd>==> ())~~>

\~> (user~defined keyword)====e====<~/

<fielG>==--=> (data)=--~ - T S N
\=> (field)==> (()==> <integer>==3 ())~-=/
<position>====> <integer>=--~> <more integer>=-~-=>

\===mmm- ~~==-null=======mmmmmmean/

<integer>--> (any comb, of the following integers)==-==>

(6111213141516171819) §
<more integer>-=~--~=> (,) ==--=> <integer>==-=~-> %
; i
} \=======null==m=~~eeee=/

<field_loc>-=> (field)~=> (()==> <integer>=~> ())==>
<loc>====> (head)=~===>
\ /
| \=-> (tail)=/
<Boolean term>==> <Boolean factor>--> <or_term>-~>

<Eoolean factor>==> <Boolean secondary>~=> <and_fac>=-~->

<or_t$rm>-—> (1)==> <Boolean term>==>
\=-=====null=m~=-- ————/
<Boolean secondary>==> {(")}==> <Boolean primary>=->

& <and_facy>~==-=-=> (&)==-=-=> <Boolean factor>===~>

\~ null~- -/

Figure 7 CTS Syntax Graph (continued)

FINAL REFORT REMCTE LATA ENTRY

SECTICH 3 -~ CTS USER'S MANUAL

<Boolean primary>==> <relationd===-=====-< ~——-

\=> (()==> <Eoolean term>==> ())=~/
<number>-=> (any type of number)~-~>
<string>=~> (")~=--> (string of ASCII chars)~=~> (")=-~>

<change_class>-~> (class)=-=> (=)=-=> <string>-->

Figure 7 CTS Syntax Graph (continued)

3-38

FINAL REPORT REMCTE DATA EMNTRY
SECTICN 3 - CTS5 USER'S MARUAL

3.0 Change Command

chanye <cata> {<position>} <rel op> <value> to <string>,

where

1) <data> - consists of one of the four following terms:

a) user-cdefined keyword - a keyword the user has

specified earlier when asked for the keywords,

b) keyword(i) - i 1is an integer and refers to the

i-th keyword in the vector, The i should be

enclosed in parentheses,

c) data =~ refers to the data fields in the vector,

d) field(i) - i is an integer and field refers to the
i-th field in the vector The i should be enclosed in

parentheses,

2) <position> - is an ogtional entry and refers to the 1location
within a field plus the number of characters to consider.

It is an optional entry since it may not be needed in

every "change" command. The format of "position" is

FINAL REPORT REMOTE CATA ENTRY
SECTION 3 ~ CTS USER'S MANUAL

"a,b" or "a" where "a" and "b" are integers, The

position has the same meaning as the keyword subfields

mentioned earlier,

3) <rel op> ~ consists of one of the following:

The relational operators "<" and ">" are to be

used only with data or field(i) relations.,

4) <value> =~ consists of either a string of ASCII characters

enclosed within quotes or a number,

5) <string> - a string of ASCII characters enclosed within

quotes.
Command Description:

The "change"” command is used to change either keywords, fields,

or data within a vector. All changes occur on the current version of

the vector, An example follows using various "change" commands to

demonstrate its use.

The given vector is:

3=32

e
W e i

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

jeaps,foutwheel,@125,4.236E-14,56.05,-32,-.5068E-BS;

If the first command given were: change data=56,05 to "5,605",

the resulting vector would look like this:
jeaps,fourwheel,0125,4,236E~14,5,605,~32,~,5068E~05;
Suppose the next command given was: change field(l) 3,1="a" to "e", |
the vector would look like this: I

jeeps,fourwheel,ﬂ125,4.236E—14,5.605,-32,~.5@68E~55: l

The third command given is: change keyword(2) 1,4="four" to "",

the vector becomes this:

jeeps,wheel,ﬂ125,4.2363-14,5.605,-32,-.5@68E-05:

FINAL REPGCRT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL
3.7 Delete Command
delete field(i)=<string>.

where

1) field(i) - refers to the i-th field in the vector, The

[oN

should be 1in parentheses,

2) <string> - is a string of ASCII characters enclosed within
double quotes. If the character within the quotes is "*"

then all field(i)'s will be deleted,

Command Description:

The "delete" command is used to delete fields within the vector, This

conmand states that the i-th field containing a certain string is ¢to

be deleted, as in the "change" and "insert" commands, all deletions

of fields are relative to the current version of the vector,

For example:
Suppose the original vector is:

planes,silver,jet,twoseater,159,375,8,24E49;

3-34

. p———

ey

FINAL REFORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

and the first command given is: delete field(2)="silver", The

resulting vector would be:
planes,jet,twoseater,156,375,@.24399;

If the next command given were: delete field(4)="158", the vector

becomes:

rlanes,jet,twoseater,375,6,24E69;

If the last command given was: delete field(2)="x*", then all

e,

vectors would have field(2) deleted,

TN A A e

S R 1y AT PR g

' ; Sty ; Lt 2
R B T s s

FINAL REPCRT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

3.8 Insert Command

insert field(i)=<string> <string>,

where

1) field(i) - refers to the i~-th field 1in the vector., The i

should be enclosed in parentheses,

2) <string> ~ is a string of ASCII characters enclosed within
double quotes, If the first string within quotes

is "*" then all field(i)'s will have the second string inserted before

them,

Command Description:

The "insert™ command is used to insert fields in a vector. This
command states that the second string of characters "string” is to be
inserted before the i~-th field containing a certain string so that the
string originally located in the i-th field is relocated to the i+l
field and the i-th field will contain the new string., It is important

to remember that all insertions are relative to the current version of

the vector,

FINAL REPCRT REMOTE DATA ENTRY
SECTICN 3 = CTS USER'S MAKUAL

For example:
Suppose the original vector given is:
cat,stripes,grey,bobbed,32.5,2.97,15;

The command: insert field(3)="grey”" "multitoed", would yield the

followingy vector:
cat,stripes,multitoed,grey,bobbed,32.5,2.97,15;

If the next command given were: insert field(6)="32,5" "2", the

following vector would be produced:

cat,stripes,multitoed,grey bobbed,2,32,5,2.97,15;

If the next command given were: insert field(2)="*" "blue~-eyed”.

the following vector would be produced:

cat,blue~eyed,stripes,multitoed,grey,bobbed,2,32,5,2,97,15;

3=37

el A ik in

e -

LY T

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

3.9 Move Command

move field(i)=<string> to <loc>,

where

1) field(i) -~ refers to the i-th field in the vector, The i

should be enclosed in parentheses,

2) <string> - is a string of ASCII characters enclosed within

double gquotes. If the string within the quotes is "*" then

all field(i)'s will be moved tc the position specified by

<loc>,

3) <loc> - consists of one of the following:

a) head - refers to the first field 1in the vector,

b) tail - refers to the last field 1in the vector.

Command Description:

The "move" command is used to move a field within a vector to either
the head or tail of the vector, This command states that the i-th
field containing a certain string is to be repositioned to either the

head or the tail of a vector. As mentioned earlier in the "change",

"insert” and "delete" commands, all moving of fields is relative to

FINAL REPORT RENCTE DATA ENTRY
SECTION 3 -~ CTS USER'S MANUAL

the current version of the vector.
For example: Suppose the original given vector is:

and the first command given is: nove field(5)="beta" to head. the

resulting vector would look like this:
beta,tanks,.188E~85,2,68,62;

If the second command given were: move field(3)=".lG0E-85" to tail.

the resulting vector would look like this:
beta,tanks,2.68,62,.100E~05;

If the third command given were: move field(2)="*" to head., the b

vector would look like this: !

tanks,beta,2.63,62,.193E‘ﬂ5;

o s ekt Sl

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS CSER'S MANUAL

3.12 Extract Command

extract {"}(<data> {<position>} <rel op> <value>
{& {"}(<8ata> {<position>} <rel op> <value>)}
{1 {"}(<data> <position>} <rel op> <value>)})

class=<string>,

where

1) anything enclosed within braces 1is an optional string. Not

all "extract" commands will be as complicated as the format

illustrated above,

2) parentheses are optional except when an integer follows the

word "field" or "keyword", In this 1instance, parentheses are

required around the integer. If parentheses are used, they must be

in pairs.
3) the symbol """ is optional and means "not".

4) there 1is no 1limit to the occurrences of the strings

"& <data> <position> <rel op> <value>" and

"| <data> <position> <rel op> <valued>",

3-40

QO RRISE MR
3

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

5) the string "class=" is a required string, It refers to the

class name given to the extracted vector,

6) <string> - is a string of ASCII characters enclosed within

double guotes,

Commané Description:

The "extract" command is used to extract certain vectors from the
edited data file and relocate them into a user~-named file for
subseguent input to MOOS. The extracted vectors are placed into the
file, located in the user's workinj directory, which was specified
earlier in CTS with the "~new" argument, The extractions are based
upon fulfillment of certain criteria found in the Boolean expressions
in the "extract" commands, The extracted vectors are placed into
classes specified in the "extract" command. In the following example
all the extracted vectors have been categorized into the same class,

"vehicles". There could, however, be many vectors extracted with many

‘different classes created, Note in the syntax above, that the star

convention used in the commands "move", "insert", and "delete" is not
useable in the "extract" command. Also, "and" is represented as "&"

and "or" is represented as "|" in both the syntax diagrams this

commiand.

For example:

3-41

FINAL REPORT REMCTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

th

Suppose the edited data file consists of the followingy vectors:
jeeps,wheels,#125,4,236E-14,5,6(5;
cat,strired,multitoed,32.,5,2,97;
planes, jet,twoseater,375,0,24E09;
beta,tanks,2.68,62,,183E~55;/%

If the first "extract" command given is:

extract keyword(l)="jeeps"” | keyword(l)="planes" class="vehicle",

the extracted vectors based upon this command would be:

vehicle, jeeps,wheels,$125,4,236E~14,5,665;

vehicle,planes,jet,twoseater,375,%.24E039;
leaving these two vectors remaining in the edited data file:

cat,striped,rultitoed,32.5,2.,97;

teta,tanks,2.68,62,,160E~35;/%

If the next command given is:

extract field(2) 1,4="tank" & data>2.,5 class="vehicle", e

3-42

FINAL REFGRT REMCTE CATA ENTRY
SECTICN 3 =~ CTE USER'S MANUAL

tnis vector would be extracted:
vehicle,beta,tanks,2.63,62,,180E-05;
leaving only one vector remaining in the edited data file:
cat,striged,multitoed,32,5,2.97;/*
It is important to note that the word "data" in the extract command
does not have a substring position following it. Only the words

"field(i)", "keyword(i)" and a user~defined keyword are allowed to use

a substring position.

3-43

D E————

FINAL REPORT REMOTE DATA ENTRY
SECTIGN 3 -~ CTS USER'S MANUAL

3.11 Command Summary

To summarize the commands, there are four "edit" commands and one
"extract" command, The four "edit" commands are "change", "insert",
"move", and "delete". The only "extract” command is "extract"™, An

example using one of each command follows,
Suppose the original data file consists of the following vectors:

cats,grey,blue,4,4,20;
mules,brown;blue,12,4,59;
cycles,fourspeed,sixcylinder,25,126,12,25;
trainer,jet,white,115,250,,185E~06;

fighter,jet,green,375,115, .82E~32;/* |
If the following commands were given to CTS:

change field(3) 7="inder” to "",

move field(2)="jet™ to head,

insert field(3)="white" "strmline",
delete field(4)="white",

extract keyword(2)="jet" | data>75 class="vehicle".

the results would be as follows:

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

e o e A A

1) The first command “change" would examine each vector and edit any
that it pertained to. The only one it pertains to is the third vector
in the file. The resulting vector is:

cycles,fourspeed,sixcyl,25,120,12,25;

2) The next command “"move"™ examines each vector and can operate on two
P

vectors. The new vectors are: |

jet,trainer,white,115,250,,1085E~06;

jet,fighter,green,375,115, ,825E~82;

3) The third command "insert" pertains to only one vector. ' The new

vector is:
trainer,jet,strmline,white,115,258,,105E~26;

4) The fourth command "delete"” pertains to only one vector creating

the vector:

trainer,jet,strmline, 115,256, ,185E~06;

S G

5) The fifth command "extract"” can be applied to three vectors. The

new vectors placed into a file for input to MOOs are:

oy 3=45

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

vehicle,cycles,fourspeed,sixcyl,25,1206,12,25;
vehicle,jet,trainer,strmline,115,258,.,165E~06;
vehicle,jet,fighter,green,375,115, ,82E~32;

In this command, any vector having either a keyword(2)="jet" or any
data>75 will be extracted. The vectors remaining in the edited data

file are:

cats,grey,blue,4,4,20;

mules,brown,blue,12,4,56;

-
gy

g 3=-46

A e S PRI T e

b . L AR B il i 74

FINAL REPORT REMCTE DATA ENTRY
SECTION 3 = CTS USER'S MANUAL

3.12 Modes of Operation

It was mentioned earlier that CTS could be used interactively or
in batch. In the interactive mode, the user must be at the terminal
keyboard. In the batch mode, all data is read from a file,

As CTS scans for arguments in the interactive mode, the user will
be asked for the arguments if none have been found in the call. He is
then asked for the number of keywords . If the number is greater than
z2ro, the wuser is asked to input each keyword and subfields of the
keyword, if any. At this stage, CTS 1is ready for receiving the
conmands, If both editing and extraction commands are used, all
editing commands must be input first., The user will be queried for a

command, which will be input one line at a time, regardless of the

length of the command. It is permissible to have more than one

command per line, and a command which occupies more than one line,
CTS will process each command and upon completion of processing a
command 1line, the wuser 1is queried for a new command line. This
cycle continues until CTS encounters the word "end" which indicates
that all commands have been entered. If while processing a command,
an error is detected, the user will be immediately notified of the
error, told where the error occurs in the line, and either asked to
correct it or told of its correction. Processing will then continue,

The wuser has two options 1in terminating commands., The first
option is "qguit" which means to terminate processing of the current

command, skip to the next command, and begin processing the new

3-47

o o

FINAL REPORT REMOTE DATA ENTRY

SECTION 3 ~ CTS USER'S MANUAL
command, The second option is "cease" which indicates that processing
of all commands and consequently, the routine process_comrands, are to
terminate,

As mentioned earlier, the only time the user may use "cease" or
"quit" is when an error has been corrected in the command line and the
user 1is queried as to the acceptability of the corrected command. 1If
the user indicates that the corrected command is unacceptable, then he
will be asked to enter either "cease" or "quit",

In the batch mode, as stated above, all dJdata is read from a
file, If while processing, an error is detected, the error and its
location in the line are written into a file for the user to refer to
at the termination of CTS, The processor will continue processing the
commands until it encounters an uncorrectaktle error or it gets
completely 1lost 1in parsing the commands, preventing it fron
continuing, If this occurs, the grogram will automatically terminate,

The format for the input argument file is shown in a few examgles
below. The various examples illustrate the different ways the argument

file can be set up.

Example 1:

~noguery
~old data_file
~save newfile

~new newfilel

FINAL REPORT REMOTE DATA ENTRY
SECTION 3 - CTS USER'S MANUAL

~-args
-rap

-table

ot e e i A e

S—

3

color ’
shape

texture

no

no

extract keyword(l)="blue" class="sanme",

extract (keyword(l)="blue" & keyword(3)="hard") class="special”,

P end

Exanple 2:

I

~noguery

-noxqt

BN A IR T

-check

skip nsubs
no

no

3~-49

FINAL REPORT REMOTE ODATA ENTRY

SECTION 3 = CTS USER'S MANUAL
move field(3)="rat" to head. delete field(l)="rat".
insert field(2)="pie" "grasshopper",

end
Example 3:

-noguery
-noxgt

-old data_file
-save nffile
-new nffilel i
-panic

-args -map ~table

skip

2,4

3,1

2

no

no

extract field(1l)="blue" class="first",

extract data>6,.,5 class="second", end

3=50

AD=ADBO 625 PATTERN ANALYSIS AND RECOSNITION CORP ROME N Y F/6 9%/2
MULTICS REMOTE DATA ENTRY SYSTEM, VOLUME I.(U)

ocT 7 D BIRNBAUM: J J CUPAKe v D M’M FMI-"-C-Ol‘N
UNCLASSIFIED

1.0 0 g
|||| NN
= |
lizs flis pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

w

FINAL REPORT REMCTE DATA ENTRY
SECTION 4 -~ RDE FUNCTIONAL DESCRIPTION

4 RODE FUNCTIONAL DESCRIPTION

4,1 I/C Module Introduction

An I/0O module was written in order to transmit the correct
control characters required to turn the Tektronix 4¢14-1 screen on or
off during data transmission, or start and stop a specific remote
(peripheral) device under program control. This 1/0 module, called
"remote_data_", generates an I/C switch which then controls the data

transmitted through the terminal system,

"An I/O switch is like a channel in that it controls
the flow of data between program accessible storage and
devices, files, etc. The switch must be attached before it
can be used. The attachment specifies the source/target for
I1/0 operations and the particular I/0 module that performs

the operations." [1, Section 5]

The attachment of the I/C switch is performed when the program
"rerote_to_multics (rtom)" or "multics_to_remote (mtor)" calls the
MULTICS system subroutine "iox_S$attach_ioname" with the name of the
I/0 module and its related remote device name, This attachment

mechanism 1is described further under the remote_data_attach program

documentation, below.

FINAL REPORT REMOTE LCATA ENTRY
SECTION 4 - RDE FUNCTIONAL DESCRIPTION
The attachment of an I/0 sgwitch generates an associated 1I/0
control block (iocb) which is used by the I/C module to determine what

operation is to be performed when called.

"The principal components of an I/0 control block are
the pointer variables and entry variables whose values
describe the attachment and openiny of the I/C switch, There
is one entry variable for each 1/0 operation with the
exception of the attach operation, which does not have an
entry variable since there can be only one attach entry
point in the I/0 module. To perform an I/0 operation through
the switch, the corresponding entry value in the control

block is called.” [4, Section 4]

The 1location of the iocb 1is returned as the pointer variable
"iocb_ptr" by the iox_$attach_ioname system subroutine. This pointer
is used in all subsequent calls to any iox_ subroutine to identify the
1/0 module and its internal entries, Thus, any call to an iox_
subroutine which uses the iocb_ptr variable will cause the appropriate

related 1/0 module entry to perform the specified work.

For example, once the I/O switch has been opened for sequential
output, a call by mtor to iox_Swrite_record with the iocb_ptr, will

cause the remote_data_ I/0O module entry "write_first_record" to be

executed. This is a result of the I/0 module jiocb_ptr variable for the

FINAL REPORT REMOTE DATA ENTRY
SECTICN 4 = RDE FUNCTIONAL DESCRIPTION

write_record routine being specified as:
"iocb_ptr~>jiocb.write_record = write_first_record;"

All functions that are performed by specific entries in the I/O module
are thus indicated in the iocb., The particular pointer values for each
iocb entry is further described in the following documentation, and in

greater detail in the program listing documentation.

The MULTICS control 1language has been utilized to the fullest
possible extent in the development of the RDE system therefore a
working knowledge of the MULTICS environment is essential for anyone
considering modification of this system. The user is referred to the
manuals 1listed in Appendix B for a more completé description of the

MULTICS system and its usages.

Information regarding the system subroutines "iox_" may be found
in references [3] and (4]. During testing, the MULTICS command
"io_call" is used to verify the various I/0 module entries, For
further information on the use of this command consult [2].
Additionally, MULTICS system error codes of the form "error_table_ "
were used, and their description may be found in [1]. Finally, the
user is referred to the Tektronix manuals listed in Appendix B for

further information regarding the Tektronix devices and related

required control characters.,

R A e S

SN Aty

FINAL REPORT REMOTE LCATA ENTRY
SECTION 4 = RDE FUNCTICNAL DESCRIEFTION

4,2 remote_to_multics, rtom

Entry: remote_to_multics, rtom

Description:

begin rtom;
get input remote_device name;
get output ASCII multi-segment file (msf) name;
open output file;
if remote_device = "4922" then get disk number;
attach input switch "data_input” to "remote_data_" I/C module;
open input switch;
if remote_device = "4921" or "4922" (disk) then do;
instruct user;
get starting track number;
get starting sector number;
end;
if remote_device = "4923" (cassette) then instruct user;
if remote_device = "tape" then do;
query user for attach description parameters;
edit attach description;

attach output switch "tapefile"™ to "tape_ansi_" I/0 module;

open the tapefile switch;

end;

L S

FINAL REPCRT REMOTE CATA ENTRY
SECTION 4 = RDE FUNCTIONAL DESCRIPTION

get pointer to start of msf buffer;
read data from remote_device or tape through appropriate switch;
append data to msf buffer;

close input switch(s);

detacn input switch(s);
set msf bit count;
close msf;

write statistics;

PO ——

end rtom;

FINAL REPCRT REMOTE LATA ENTRY
SECTION 4 - RDE FUNCTICNAL DESCRIPTION

4.3 rmultics_to_remote, mtor
Entry: multics_to_remote, mtor

Description:

begin mtor;
get output remote_device name;
get input A3CII multi-segment file (msf) name;
if remote_device = "4922" get disk number;
attach output switch "data_output” to "remote_data_" I/0 module;
open output switch;
if remote_device = "4921" or "4922" (disk) then do;
instruct user;
get starting track number;
get starting sectét number ; f
position seek head; |
end;
if remote_device = "4923" (cassette) then do;

instruct user;

end; ‘
if remote_device = "tape" then do;
query user for attach description parameters;

edit attach description;

attach input switch "tapefile® to "tape_ansi_" I/0 module;

FINAL REPORT REMOTE LATA ENTRY
SECTION 4 -~ RCE FUNCTIONAL DESCRIPTION

open "tapefile" switch;
end;
open msf;
get pointer to msf buffer;
write data from msf to remote_device or tape through appropriate switch;
close msf;
close output switch(s);
detach output switch(s);

write statistics;

end mtor;

PSR S —

RS e 2 W 4

FINAL REPORT REMOTE LCATA ENTRY
SECTICN 4 ~ RDE FUNCTIONAL DESCRIPTION

4,4 renote_data_attach
Entry Name: remote_data_attach
Usage:

declare iox_Sattach_ioname entry (char(*), ptr, char(*), fixed

bin (35));

call iox_Sattach_ioname (switch_name, iocb_ptr,

attach_description, error_code);
switch_name "data_input" for rtom, "data_output" for mtor

iocb_ptr switch's control block pointer (Output)

attach_description "remote_data_ XXXX", where "XXXX" is "4921",

®4922%, "4923%, or "tape”
error_code system status code (Output)

The attach entry is the most crucial operation of the I/0 module,

It must set up and initialize the iocb, and return a pointer to the

iocb (tne iocb_ptr) for use by all subsequent iox_ calls,

The user program rtom or mtor must call the system subroutine

FINAL REPORT REMOTE LCATA ENTRY

SECTION 4 = RDE FUNCTIONAL DESCRIPTICN

iox_Sattach_ioname with the value for the arguments as described

above. The system will then attempt to locate the attach routene by

concatenating the word “attach" to the name of the I/C module, Thus

for the remote_data_ I1/0 module, the attach routine is

"remote_data_attach". This attach routine must have a very specific

entry declration in order to be located and attached correctly,

The format for this entry is:

module_nameattach: entry (iocb_ptr, option_array, error_switch,

error_code) ;

Arguments:

iocb_ptr switch's control block pointer (Input)
option_array device_type attach argument (Input)
error_switch initiates verbose error messages (Input)
error_code system status code (Output)

Description:

iy e M SR N s P S

e i i

FINAL REPORT REMOTE CATA ENTRY
SECTION 4 - RDE FUNCTIONAL DESCRIPTION
Called by the system subroutine "iox_S$attach_ioname"™ or the

system command "io_call attach" to attach the I/O switch,

If the device type is missing, the error_code 1is set to

error_table_Snoarg, and the entry returns,

If the iocb ptr is wunattached, the error_code is set to

error_table_Snot_attached, and the entry returns,

If the device_type 1is incorrect, the error_code 1is set to

error_table_$bad_arg, and the entry returns.

If no errors are detected, then the attach description is
generated, the iocb pointers are set to the appropriate I/0 module
entries, and the control is returned to the calling program. See the

program listing documentation for specific and detailed information.

4~18

- e

FINAL REPORT REMOTE CATA ENTRY
SECTION 4 - RDE FUNCTIONAL DESCRIPTION

4.5 open_device E

Entry: open_device

declare iox_Sopen entry (ptr, fixed bin, bit (1) aligned, fixed

bin (35));

call iox_Sopen (iocb_ptr, open_rode, extend_option, error_code);

Arguments:

iocb_ptr switch's control block pointer (Input)
open_mode sequential/direct input/output (Input)
extend_option always "@"b (Input)

error_code system status code (Cutput)

Description:

Called by the system subroutine "iox_$open" or the system command

"io_call open™ to open the switch designated by the iocb_ptr.

4-11

| 58

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 - RDE FUNCTICNAL DESCRIPTION

If the open mode is incompatible with the attached device type,

the error_code is set to error_table_$bad_mcde, and the entry

If the switch 1is not attached, the error_code is

error_table_Snot_attached, and the module returns,

LE the switch is not closed, the error_code is

error_table_S$not_closed, and the module returns,

Ctherwise, the open description is generated, the iocb

are set to additional I/0 module entries, and the control is

returns,

set" to

set to

entries

returned

to the calling program. See the program 1listing documentation for

detailed information,

S P s o e

“E‘cfi;,‘. S

FINAL REPCRT REMOTE CATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION
4,6 terminal_modes

Entry: terminal_modes

Usage:

declare iox_S$modes entry (ptr, char(*), char(*), fixed bin (35));

call iox_Smodes (iocb_ptr, new_modes, old_modes, error_code) ;

AIS uments:

iocb_ptr switch's control block pointer (Input)
new_modes mode string (Input)

old_modes mode string (Output)

error_code system status code (Outéut)

Description:

Called by the system subroutine "iox_$modes" or the system

command "io_call modes" to set the modes for the switch designated by

the 1iocb_ptr (see the set_tty active function for a discussion of

RS

— p
FINAL REPORT REMOTE DATA ENTRY
SECTION 4 - RDE FUNCTIONAL DESCRIPTION
modes) ,

If the attach description has not been created, the module

returns with an error code of error_tble_$not_attached,

If tae switch is not open, the error code 1is set to

error_table_$not_open, and the module returns,

If the external static switch "rde_debug" is on, no modes are

set.,

Otherwise, this module calls the system subroutine iox_$modes

with the iox_Suser_output iocb_ptr to set the user terminal modes (see

set_tty), and returns to the calling program,

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 - RDE FUNCTIONAL DESCRIPTION
4,7 device_control
Entry: device_control
Usage:
declare iox_S$control entry (ptr, char(*), ptr, fixed bin (35));

call iox_$control (iocb_ptr, order, info_ptr, error_code);

Arguments:

iocb_ptr switch's control block pointer (Input)
order device control command (Input)
info_ptr unused (Input)

error_code system status code (Output)

L Gt S T T R

Description:

Called by the system subroutine "iox_S$control" or the system

command "io_call control" to perform a specified control order on the

1/0 switch designated by the iocb_ptr,

4-15

o AN 0 AR S e bt

FINAL REFORT REMOTE CATA ENTRY
SECTION 4 -~ RDE FUNCTIONAL DESCRIPTION

1t the order is incorrect, the error_code 1is set to

error_table_Sno_operation, and the entry returns.

An order of "next_disk" starts the 4921/2 disk device, instructs

the user to insert the next disk, calls iox_$seek_key (see disk_seek

entry), and returns.
An order of "next_4923" stops the 4923 device, instructs the user
to insert the next cassette, calls iox_S$control with the order

"start_4923", and returns,

An order of "on" sets the external static screen switch to 1 and

returns.

An order of "off" sets the external static screen switch to @,

and returns,

FINAL REPQRT REMOTE DATA ENTRY
SECTION 4 = RDE FUNCTIONAL DESCRIPTION

4.8 disk_seek

Entry: disk_seek

Usage:

declare iox_$seek_key entry (ptr, char(256) varying, fixed bin

{21), fixed bin (35));

call iox_Sseek_key (iocb_ptr, key, rec_len, error_code) ;

Arguments:

iocb_ptr switch's control block pointer (Input)

key disk, track, and sector values (Input)
rec_len set to 128 on return (Output)
error_code system status code (Output)

TR by
Ry

Description:

Called by the system subroutine "iox_$seek_key" or the system

MR D vy

command "io_call seek_key" to position the 4521/2 floppy disk to the

FINAL REPORT REMOTE DATA ENTRY
SECTICON 4 - RDE FUNCTIONAL DESCRIPTION

specified track and sector,

If the key is incorrect, the error_code is set to

error_table_Simproper_data_format, and the entry returns,

The seek command is given by the ESC (escape) & sequence,
followed by an ASCII control character and three track-sector position
characters, The ASCIF control characters are selected from the
characters 33 (decimal) to 92 (decimal) based upon 1) the disk number,
2) whether the screen is to display the data during transmission, and
3) whether the function is read or write. The track-sector position
characters are formed from the numbers 8¢ through 63 for the track
location, and an ASCII character from 65 {(decimal) to 96 (decimal) for
the sector as shown in [6]., Refer to the program listing documentation

for a more detailed description of the seek command generation,

After positioning, the status of the remote device is checked. If
the status code indicates that the disk is write_protected, then the

error_code is set to error_table_$device_not_usatle, and the entry

returns,

4~18

s L e

FINAL REPORT

REMOTE DATA ENTRY

SECTICN 4 - RDE FUNCTICNAL CESCRIPTION

4.9 read_first_record

read_first_record

declare iox_$read_record entry (ptr, ptr, fixed bin (21), fixed

bin (21), fixed bin (35));

call iox_Sread_record (iocb_ptr, buffer_ptr, bytes_to_read,

bytes_read, error_code);

Arguments:

iocb_ptr

buffer_ptr

bytes_to_resad

bytes_read

error_coce

switch's control block pointer (Input)
cata buffer location (Ingput)

tuffer lensth (Inputj

how many were read (Outnut)

systerm status code (Cutpgut)

FINAL REPCRT RELCTE LATA ENTRY
5E8CTICL & - LLE FUNCTICNAL CESCRIPTICH

Lescrintion:

Called bLy the system subroutine "iox_$read_record" or the system
command "io_call read_record" to read stream characters from the

remote device,

This entry attaches a switch named "input_stream” with the attach
description "record_stream_ user_input" as shown in [4]. Subseguent
reads are through this switch in order to remove the CR~LF transmitted
by the Tektronix device., An additional LF is removed by “flushing"

the I/C buffers after the read,

If the remote device is the 4923 tape cassette drive, the ready
mode is turned off, the user is requested toc turn on the device, and
the first read is delayed for 20 seconds to permit the user to prepare

the device.

The jocb entry for read_first_record is changed to use

read_next_record in subsequent calls,

For a more detailed explanation of the read record entry, refer

to the grogram listing documentation,

FINAL REPORT REMOTE DATA ENTRY

SECTION 4 = RDE FUNCTICNAL CESCRIPTICN
4,10 read_next_record
Entry: read_next_record

Usage:

declare iox_$read_record entry (ptr, ptr, fixed bin (21), fixed

bin (21), fixed bin (35));

call iox_S$read_record (iock_ptr, buffer_ptr, tytes_to_read,

bytes_read, error_code);

Arguments:

iocb_ptr switch's. control bhlock pointer (Input)
buffer_ ptr data buffer location (Input)
bytes_to_read buffer length (Input)
bytes_read how many were read (output)
error_code system status code (Cutput)

4-21

i ki i S

FINAL REPCRT REMCTE OATA ENTRY
SECTICN 4 ~ RDE FUNCTICNAL DESCRIPTICN

Cescription:

Called by the system subroutine "iox_$read_record” or the system
command "io_call read_record” to read the next (second and subseguent)

record from the remote device by transmitting the appropriate command

characters before reading.

Characters following the terminating symbols "/*" are effectively
deleted by returning a reduced byte_count. A block of all stars ("*")

signals the end of file, and causes the bytes_read count to be set to

Z€ro,

oL S 2 P

FINAL REPORT

REMOTE LCATA ENTRY

SECTION 4 ~ RDE FUNCTIONAL CESCRIPTICH

4.11 write_first_record

Entry

Usage:

declare iox_$write_reco;d entry fptr; ptr, fixed bin (21),

bin (35));

write_first_record

fixed

call iox_Swrite_record (iocb_ptr, buffer_ptr, bytes_to_write,

error_code);

Arg uments:

iocb_ptr

buffer_ptr

bytes_to_write

error_code

Description:

switch's control block pointer (Input)

data buffer location (Input)

characters to output (Input)

system status code (Cutput)

Called by the system subroutine "iox_S$Swrite_record” or the system

FINAL REPCRT REMGTE DATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION
command "io_call write_record” to write a record at the first

on the rerote device.

This entry attaches a switch named "output_stream"
attach description "record_stream_ user_output =-nnl" as shown
Subsequent writes are then directed through this switch in

remcve the CR~-LF transmitted by the Tektronix 4614~1 device.

location

with the
in [4].

order to

If the remote device is the 4923 cassette tape drive, the ready

mode is turned off, the user is instructed to turn on the device, and

the first write is delayed for 26 seconds to permit the user

on the device,

to turn

If the bytes_to_write is less than 128, "*"'s are written as pad

characters.,

Lata is written to the 4923 tape cassette device in 128 character

blocks consisting of 126 data characters, a "stop read"

character (DC3), and a "dispensable”™ character (LF).

control

The DC3 character signals the 4923 device to stop data

transmission when reading until a "start read” control character (DC1)

is detected. The LF character signals the Tektronix 4014~1 termincl of

transmission completion,

e T T) L T Tiem e T

FINAL REPORT REMCTE CATA ENTRY

SECTICN 4 ~ RDE FUNCTIONAL CESCRIPTICN

4,12 write_next_record

Entry write_next_record

declare iox_S$write_record entry (ptr, ptr, fixed bin (21), £fixed

bin (35));

call iox_Swrite_record (iock_ptr, buffer_ptr, bytes_to_write,

error_code) ;
Arguments:

iocb_ptr switch's control block pointer (Input)

buffer_ptr data buffer location (Input)

bytes_to_write characters to output (Input)

error_code system status code (Output)

Description:

Called by the system subroutine "jiox_$write_record” or the system

B T . o

FIRAL REPORT REMCTE CATA ENTRY
SECTICK 4 -~ RDE FUNCTIONAL DESCRIPTICN
command "io_call write_record" to write a record at the next

seguential location on the remote device,

If the bytes_to_write is less than 128, "*"'s are written as pad

characters.

Data is written to the 4923 tape cassette device in 128 character
blocks consisting of 126 data characters, a "stop read" control

character (DC3), and a "dispensable" character (LF).

The DEC3 character signals the 4923 device to stop data
transmission when readinj until a "start read” control character (DC1l)

is detected., The LF character signals the Tektronixz 4@14-1 terminal

that transmission is complete.

Al | S RN

TR

FINAL REPORT REMOTE CATA ENTRY
SECTION 4 ~ RDE FUNCTICNAL DESCRIPTION

4.13 close_device
Entry: c;ose_device
Usage:

declare iox_Sclose entry (ptr, fixed bin (35));

call iox_Sclose (iocb_ptr, error_code);

Arguments:

iocb_ptr switch's control block pointer (Input)

error_code system status code (Output)

Description:

Called by the system subroutine "iox_$close" or the system

command "io_call close" to close the remote device,

A file terminator block of 126 stars ("*"), a device stop control
character (DC4), and a LF char is written as the last data block. This

is used to recognize end-of-file during later reads.

N

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION
The appropriate ASCII control character(s) are transmitted to
stop and free the remote device, turn the screen on if it was off,
close the I/0 switch(s), update the iocb, set the open description to

null, and return.

4-28

e S S R

e

REMOTE CATA ENTRY

FINAL REPORT
SECTICN 4 -~ RDE FUNCTIONAL DESCRIPTION

4,14 detach

detach

declare iox_$detach_iocb entry (ptr, fixed bin (35));

call iox_Sdetach_iocb (iocb_ptr, error_code);

Arguments:

iocb_ptr switch's control block pointer (Input)

error_code system status code (Output)

Description:

Called by the system subroutine “"iox_S$detach_iocb" or the
"io_call detach_iocb"™ to detach the i/o switch designated by

system
command

the iocb_ptr.

The attach description is set to null, and the entry returns,

4=29

FINAL REPGRT REMOTE DATA ENTRY
SECTION 4 ~ RCE FUNCTIONAL CESCRIPTION

4,15 maketree

Entry: maketree

Lescription:

begin maketree;
get input ASCII data file name;
Jet nunber of keywords;
guery user for presence of class_id's;
for eacn vector do;
get class_name;
skip keyword(s);
Jet or generate class_id;
if class_nare exists in class_list then increment vector_count;

else allocate next entry a-.d initialize;

B30 ST P T 0l

open temp class_file (new or append);
convert vector data to floating_point
write floating_point data to temp file;
close ternp class file;
end;
open treedata file;
copy class header info from linked class_list to treedata file;
copy class_id and floating_point data from each temp file to treedata file;

delete each temp file;

vikos

——— - S s
|
;
FILAL REPORT REMOTE LATA ENTRY |
SECTICN 4 - RDE FUNCTIONAL DESCRIPTICHN i

clcose treedata file;

SPST——

call treeiput;

end maketree;

v —

1
g
¥
.
&
£
4
;' ;
b
o 28
i
S f«:
Ehess
4-31 =
§

FINAL REPORT REMCTE LATA ENTRY
SECTIONM 4 ~ KCE FUNCTICKNAL CESCRIPTICH

4.16 treeiput

Sukbroutine: treeiput
Call: call treeiput (treenarme);

Arguments:

treename eight character name of the MCOOS tree to ke

created

A file named "treedata" wust be created in the process directory
prior to calling treeiput. The forrmat of the "treedata" file is shown

in Figure 8,

Qutput File

The “"sysdata" file reflects the addition of a new tree in the
MOOS system, a treename file is created, and a dataclass file is

created for each class stored in "treedata",

4-32

it

S ———
FIXAL REEFCRT REMCTE CATA ENTRY |
SECTION 4 -~ RDE FUMCTIONAL DESCRIPTION f
Description: |

The program treeiput creates a 0CS tree named treename from the
data stored in the process directory file "treedata”". The treeiput
srojrar may accert trees with Jreater than 12¢ dimensions, The chief
difference cetween the "treedata" format utilized by treeiput and the
"filedata™ format wutilized by fileinput is that each vector in the

"treedata" file has a unicue user~supplied identification number.

For a more detailed description of the operation of the treeiput
Drogran, see the program 1listing documentation. Also, see the

description of the following treeiputStreeoput program documentation,

Sl e

G T

&
i

>
3

4-33 oyt

FINAL REPORT REMCTE UATA ENTRY
SECTICN 4 -~ RLE FUNCTICHAL DESCRIPTION

4~~ 1 WORD =-=-=>

1 1
] NDIMS | Vector Dimensions (Integer)
! !
| I
{ NCLASSES | Class Count (Integer)
} !
1 r
| KAME (1)] Class(l) Name (4 Chars)
: !
i
: COUNT (1) | Class(l) Vectors (Intejer)
|
1 . P
| . |
3 . |
1 : |
| NAME (N) | Class(N) Nlame i
'
! |
{ COOUNT(N) | Class(N) Vectors {
® |
T !
I ID(1) | Unique Vector Identification (Integer)
| !
! l
| VECTOR(1l) | Data (Floating Point)
| | L
1 . ! \
| . !
* . |
T]
| 1D |
| {
| |
| VECTOR | Last Data Vector
1 |

Figure 8 TREEDATA file format

PRy

FINAL REPORT REMOTE LATA ENTRY
SECTICN 4 =~ RDE FUNCTICNAL DESCRIPTION

4,17 dumptree

Entry: durmptree

Cescription:

begin dumptree;
get input MOCS tree file name;
Jet output ASCII file name;
call treeoput;
query user to write class_id's;
open input file;
open output file;
read ndims;
read nclasses;
do loopl = 1 to nclasses;
read class_name;
read class_count;
allocate class entry;
end;
do loop2 = 1 to nclasses;
get class_count;
do loop3 = 1 to class_count;

write class_name to ASCII file;

write class_id to ASCII file is reguested;

Pp——

oy

FINAL REPORT REMOTE LCATA ENTRY

SECTION 4 ~ RDE FUNCTICNAL DESCRIPTICN

do loop4 = 1 to ndims;
read floating_point word;

write ASCII chars to ASCII file;

end;
end;
end;

write "/*" to ASCII file;

Y,
close files;

end dumptree;

FINAL REPCRT REMCTE CATA ENTRY
SECTICN 4 ~ RDE FUNCTICNAL DESCRIPTION

4,16 treeoput

Subroutine: treeiput$treeoput
Synonym: treeoput
Callz call treeiputStreeoput (treename);

call treeogut (treename);

Arguments:

treename eight character name of MOOS tree file to

output

Input File:

The tree named treefile must exist in the MOOS file system. The

tree may be an excess measurement mode tree,

Gutput File:

A file named "treedata" is created in the user's process

directory and the vectors associated with the MOOS tree named treename

are placed in this file. The format of the "treedata" file is given by

FINAL REPCRT REMCTE LATA ENTRY
SECTICN 4 - RDE FUNCTIONAL DESCRIETION

the usor's description of the treeiput function,

Description:

The grogram treeoput (or treeiputStreeoput) creates a process
directory file named "treedata"” and places the vectors associated with
the MOOS tree treename into this file. The program treeogut may output
trees with greater than 18¢ dimensions, The chief difference between
the "treedata" format created by treeoput and the "filedzta" format
utilized by the program fileinput is that each vector in ttre

"treedata” file has a unigue identification number,

For a rore detailed description of the operations of

treeiput$oput, see the program listing documentatiocn,

=
i

>

g
&
2
A

FINAL FEPCRT PEMOTE OATA ENTRY
SECTICN 4 -~ RDE FUNCTICNAL DESCRIPTION

External Procedure:

any

Declaration:

Geclare any entry (char (*) var, char (*) var) returns (bit

€Xy);

This is a function procedure which returns a true or

false value, Thus its usage is:

if any (choices, arg) then cce.

Arguments:

choices an ASCII string of choices sepérated by -an """
symbol,
arg an ASCII string of characters representing the

value to search for in the choices,

S, SN P

FINAL REPCRT REMOTE DATA ENTRY
SECTION 4 = RDE FUNCTIONAL DESCRIPTION

Description:

This 1is a recursive procedure. The choices must be in the form

""cllc2l...lcn"™, where each choice may be of any length.

.For example, let us suppose that we wish to determine if the

user's reply to a gquery was "yes", "no", or "maybe™, We would test his

reply with the any function as follows:

if any ("yeslinolmaybe"”, reply) then ,...

The procedure is very simple, and is adequately docurented in the

program listing.

L
-

FINRAL REFORT

REMCTE DATA ENTRY

SECTICN 4 = RCE FUNCTIONAL DESCRIPTION

4,20 delay

External Procedure:

delay

Ceclaration:

declare delay entry (fixed binary (17));

call delay (amount);

Arguments:

amount delay time

LCescription:

This procedure is used by the
before the first read or write when
device.

If the amount to pause is
positive value, and the delay clock

purposes,

in seconds (famount] < 68)

I/0 module "remote_data_" to pause

using the 4923 remote cassette

less than zero, it is set to its

values are displayed for debugging

4-41

o R AN b A 5 i

eI

FINAL REPORT REMOTE LCATA ENTRY

SECTION 4 - RDE FUNCTIONAL LCESCRIPTICON

4,20 floating point general remarks

The
need to

floating

The

analyzed

floating point conversion program was written to fulfill a
convert a floating point number from a source machine to a

point number on a target machine,

components of floating point numbers of various machines were

to determine the basic components and necessary operations

for conversions. Working from the concepts expressed by Knuth [10,

Chapter 4], the following precepts were established:

The floating point nurber (e, f) is defined as f*b**(e-qg),
where f is a signed fraction, |f{<l, b is the base, e is the

integer exponent, and q is the bias,

A floating point number is said to be normalized if the most
significant digit of the representation of f is noa-zero.

That is b**(1/2)<f<b**1,

Exponents from (~b**(n-1)) to (+b**(n-1)~1), where n is the
number of exponent bits, are represented by the binary
equivalents of ¥ (zero) through (b**n-1l), For example, if
the bias, ¢, i§ 128 decimal (200 octal), and there are eight
bits in the exponent, then exponents of -128 to +127 are

represented by the binary equivalents of & (zero) through

4=42

FINAL REPCRT REMOTE DATA ENTRY
SECTICN 4 - RCE FUNCTIONAL DESCRIPTION

255 decimal (& through 377 octal).

The floating point conversion program employed several
user~callable procedures, These user~callable procedures are in the
forrm "X to_Y", where "X" represents the source machine, and "y"
represents the target machine. For example, if the user wanted to
convert a MULTICS floating point word to an IBM floating point word,

the call would be to the procedure "MULTICS_to_IBM",

If the user should want to convert a floating point word from or
to a machine that is not defined in the procedures, he may call the
procedure "convert", The use of this entry is described in the next

section. This entry is called by all of the "X_to_Y" entries,

Special procedures were designed to mimic general assembler or
machine~language instructions for bit manipulation, Since they are
written in PL/1, they are naturally slower than they would be if
written in assembler, but are more easily understood. They are
described in more detail 1in the following documentation and in the

orogram documentation listing,

Conversion of exponent bases (such as from IBM base 16 to base 2)
was accomplished through an algorithm described by Perry (5]« The

interested user 1is referred to the source paper and the program

listing documentation for further information,

FINAL REPORT REMOTE CATA ENTRY
SECTICON 4 - RDE FUNCTIONAL DBESCRIPTICH

The general structure of the floating point conversion

shown in Figure S,

progran

is

FINAL REPCRT

REMOTE DATA ENTRY

SECTION 4 ~ RCE FUNCTIONAL CESCRIPTION

¥
| CBC_to IB% . jvi
! U

f
i 14
| CBC_to_NMULTICS (=]
I =

[
3 14
| CDC_to_PDP : {
|

f
K e
| IBM to CDC |~|
! ik

!
¥ Vol
| 1B%_to_MNULTICS : :
!

f

e

| I3M_to_PDP |=!
! | ;
i J a8 f
| #ULTICS_to_CLC : } % conver {
l

!
I Fo
| MULTICS_to_IBM |~ ;
] I

I
[& T
| MULTICS_to_PLP % %

f
= P
! DP_to CBC: =}
f)

f
! [
| POP-to~IEM =]
L ! :
! o
| PDP_to_MULTICS :-l
1

I T
| add |
! !
T]
| add_one |
! !
;B ai |
| subtract |
! !
@)
| sub_one |
! !
58 J
; shift_left :
1 I
} shift_right ;
1 !
| ones_complement |
! |
| i -
i_twos_pomplement {
b ey
f round 1
! !
£ 3
| normalize |
L |
L7 {
| base2_to_kaselé |
!

Figure 9 Floating point system structure

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL CESCRIPTICHN

4,21 convert

2
)
3
D

convert

Usage:

declare convert entry (bit (*) unaligned, fixed bin, fixed bin,
fixed bin, fixed bin, fixed bin, fixed bin, fixed bin,

fixed bin, bit (*) unaligned, bit (1), fixed bin (35));
call convert (bits_in, ‘exp_size_in, exp_base_in, exp_bias_in,
neg_type_in, exp_size_out, exp_base_out, exp_bias_out,

neg_type_out, bits_out, debug, error_code); :

Arguments:

bits_in bit string to be converted (input)
3
exp_size_in nuriber of bits in exponent (input)
exp_base_in radix of exponent (input)
exp_bias_in : bias of exponent (input)

neg_type_in type of negative fraction: 2 for two's

FINAL REPORT REMCTE LATA ENTRY
SECTICN 4 = RCE FUNCTIONAL CESCRIPTICN

b e o R 5 i A

complement, 1 for one's complement, and ¢ for

signed true form (input)

exp_size_out nurber of bits in exponent (output)

exp_base_out radix of exponent (output)

exp_bias_out bias of exponent (output)

neg_type_out type of negative fraction (output) %
bits_out bit string to be created (output)

debug test switch to monitor program flow and

variable values (input)

error_code result of operations (output)

Description:

This 1is the floating_point conversion routine, As such, it uses

information about the input and output floating point number formats

to convert an input bit string to an output bit string,

FINAL REPORT
SECTION

4,22 CDC_to_IBM

REMOTE LCATA ENTRY

4 -~ RDE FUKCTIONAL CESCRIPTICN

Name: CbC_to_1IBM

Usage:

declare CDC_to_IBY entry (bit’(*), fixed bin, bit (*), bit (1),

fixed bin (35)):

call CDC_to_IBM

error_code) ;

Arg uments:

bits_in

precision

bits_out

(bits_in, precision, bits_out, debug ,

bit string to be converted., It must be in the
form of: fraction sign, exponent, fraction

(input)

nufiber of words of precision, usually 1 = 4

(input)

bit strinjy for output machine, #ill be in
format of: fraction sign, exponent, fraction

(output)

4-48

Y R B e

FINAL REPORT REMCTE CATA ENTRY
SECTICN 4 ~ EDE FUNCTIONAL DESCRIPTION

debug logical switch to trace proyram flow and

variable assignments {(input)
error_code ; indicator of error in system (output)

LCescription:

e e e e st

This entry converts a floating point word bit string (bits_in)

from CDC machine format to IBM machine format (bits_out).

Care should ke taken to insure correct format of the input bit

string cefore the call.

e e A T s+

FINAL REPORT REMOTE CATA EXTRY
SECTICN 4 = RLE FUNCTIONAL CESCRIPTIOWN

4.23 CCC_to_MULTICS

(1), fixed bin (35));

Name : CDC_to_MULTICS
1
Usage: ‘
!
declare CCC_to_MNULTICS entry (bit (*), fixed bin, bit (*), bhit 4
i

(output)

call CBC_to_MULTICS (oits_in, precision, bits_out, debus,
error_code) ;
. Arguments: |
bits_in bit string to be converted, It must be in the
form of: fraction sign, exponent, fraction
(input)
precision number of words of precision, usually 1 - 4 1
(input) 3
A {
bits_out bit striny for output rachine, %ill be in %'
format of: fraction sign, exponent, fraction i
L
i

FIRAL REPORT FPEMCTC LATA ENTRY
SECTION 4 - RDE FUNCTICNAL CESCRIPTION

cebug logical switch to trace program flow and {

variakle assignments (input)

.

error_code indicator of error in system (output)

Description:

This entry converts a floating point word bit string (bits_in)

from CCC machine format to MULTICS machine format (bits_oat). J

Care should be taken to insure correct format of the input bit

string before the call.

AT

FINAL REPORT REMOTE LCATA ENTRY
SECTION 4 - RDE FUNCTICNAL DESCRIPTION

4,24 CDC_to_PDP

Name: CDC_to_PDP i
Usage:

3

declare CDC_to_PDP entry (bit (*), fixed bin, bit (*), bit (1), A

fixed bin (35));

call CDC_to_PCP (bits_in, precision, bits_out, debug,

error_code) ;

A[g uments:

bits_in bit string to be converted. It must be in the

form of: fraction sign, exponent, fraction

(input)

precision number of words of precision, usually 1 - 4 i }
(input)

bits_out bit string for ocutput machine. Will be in

format of: fraction sign, exponent, fraction

(output)

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 -~ RDE FUNCTIONAL CESCRIPTION

debug logical switch to trace program flow and

variable assignments (input)

error_code indicator of error in system (output)

Description:

This entry converts a floating point word bit string (bits_in)

from CDC machine format to PDP machine format (bits_out).

Care should be taken to insure correct format of the input bit

string before the call.

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 - RLE FUNCTIONAL DESCRIPTION

4,25 1IBM_to_CDC

Name: IBM_to_CDC

declare IBM_to_CDC entry (bit (*), fixed bin, kit (*), bit (1),
fixed bin (35));

call IBM_to_CDC (bits_in, precision, bits_out, debug,

error_code) ;

Arguments:

bits_in bit string to be converted. It rnust be in the

form of: fraction sign, exponent, fraction

(input)

precision nunber of words of precision, usually 1 - 4
(input)

bits_out bit string for output machine. w%ill be in

format of: fraction sign, exponent, fraction

(output)

R————

FINAL REPORT REMOTE LATA ENTRY
SECTION 4 - RDE FUNCTIONAL DESCRIPTION

éebug logical switch to trace program flow and

variable assignments (input)
error_code indicator of error in system (output)

Description:

This entry converts a floating point word bit string (bits_in)

from IBM machine format to CDC machine format (bits_out).

Care should be taken to insure correct format of the input bit

string before the call.

- e

SR

4-55

FINAL KEPORT REMCTE CATA ENTRY
SECTION 4 - RDE FUNCTIOWAL CESCRIPTICH

4,26 13M_to_MULTICS

name: IBM_to_KMULTICS

Usage:

declare IBM_to_lNULTICS entry (kit (*), fixed bin, bit (*), bit

(1), fixed bin (35));

call IBM_to_MULTICS (oits_in, precision, bits_out, debus,

error_codge) ;

Arguments:

bits_in bit string to be converted. It must be in the |

form of: fraction sign, exponent, fraction

(input) l
precision nurber of words of precision, usually 1 - 4 !
{input) ;
|
!
bits_out bit string for output machine. Will be in

format of: fraction sign, exponent, fraction

(output)

FIRAL REPGRT REMOTE LATA ENTRY
SECTICN 4 - RCE FUNCTIONAL DESCRIPTION

\ debug lojzical switch to trace program flow and

variable assignments (input)

error_code indicator of error in system (output)
Cescription:

This entry converts a floating point word bit striny (bits_in)
from IRM machine format to MULTICS machine format (bits_out).

Care should ke taken to insure correct format of the input bit

t : stringy kefore the call,

v 457 : o

FINAL REPORT REMOTE UATA ENTRY
] SECTION 4 = RDE FUNCTICNAL DESCRIFTION

4,27 IBM_to_PDP

Name: IEM_to_PDP

declare IEM_to_PDP entry (bit (*), fixed bin, bit (*), bit (1),

fixed bin (35));

call 1IBM_to_PDP (bits_in, precision, bits_out, debug,

error_code);

Arguments:

oits_in bit string to be converted. It must be in the

form of: fraction sign, exponent, fraction

(input)

precision number of words of precision, usually 1 - 4
(input)

bits_out bit string for output machine, Will be in

format of: fraction sign, exponent, fraction

(output) |

1 4-58

-

AT

FINAL REPORT REMCTE DATA ENTRY
SECTION 4 ~ RDE FUNCTICNAL DESCRIPTION

debug logical switch to trace program flow and

variable assignments (input)

error_code indicator of error in system (output)

Cescription:

This entry converts a floating point word bit string (bits_in)

from IBY machine format to PDP machine format (bits_out).

Care should be taken to insure correct format of the input bit

string before the call,

FINAL REPCRT RENMOTE DATA ENTRY
SECTICN 4 ~ RDE FUNCTIONAL DESCRIPTION

4,28 MULTICS_to_CCC

Kame: MCLTICS_to_CDC

declare MULTICS_to_CDC entry (bit (*), fixed bin,

(1), fixed bin (35));

i

bit: {*), bik

call MULTICS_to_CDC (bits_in, precision, bits_out, debug,

error_code) ;

Arguments:

bits_in bit string to be converted. It must be in the

form of: fraction sigr, exponent, fraction

(input)

precision number of words of precision, usually 1 = 4
(input)

bits_out bit string for output machine, W#ill be in

format of: fraction sign, exponent, fraction

(output)

------"-1-.-.----I-IIIII-I-lIlIIIII-IIIIIII-IIIIUIIIL_

e

FINAL REFGRT REMCTE CDATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION

debug logical switch to trace program flow and

variable assignments (input)

error_code indicator of error in system (output)

Description:

A AT N A

This entry converts a floating point word bit string (bits_in) i

-

from MULTICS machine format to CDC machine format (bits_out).

Care should be taken to insure correct format of the input bit

string before the call.

FINAL REPORT REMCTE DATA ENTPRY
SECTICN 4 = RDE FUNCTICNAL DESCRIPTICH

4,29 MULTICS_to_IRK

Name: MULTICS_to_IBM

Usage:

declare MULTICS_to_IPM entry (bit (*), fixed bin,

(1), fixed bin (35));

bit A#) 5 bt

call MULTICS_to_IEN (bits_in, precision, bits_out, Gebug,

error_code) ;

Arguments:

bits_in bit string to ke converted., It

form of: fraction sign, exponent, fraction

(input)

precision nurber of words of grecision, usually 1 = 4
(input)

bits_out bit string for outgut machine, %ill be in

format of: fraction sign, expcnent, fraction

(output)

must he in the

FINAL REPCRT REMOTE CATA ENTRY
SECTICH 4 = RLE FUNCTICNAL DESCRIPTION

debug lojical switch to trace program flow and

variable assigynments (input)

error_code indicator of error in system (output)

Lescription:

This entry converts a floating point word bit string (bits_in)

from HULTICS machine format to IRM rachine format (bits_out).

Care should be taken to insure correct format of the input bit

strinyg before the call.

FINAL REPORT REMOTE CATA ENTRY,
SECTION 4 - RDE FUNCTICMNAL DESCRIPTION

4,36 MULTICS_to_PDP

Name: MULTICS_to_PLP

Usage:

declare MULTICS_to_PDP entry (bit (*), fixed bin, bit (*), bit

(1), fixed bin (35)); /

call MULTICS_to_PDP (bits_in, precision, bits_out, debug,

error_code);

Arguments:

bits_in bit string to be converted. It must be in the

form of: fraction sign, exponent, fraction

(input)
precision number of words of precision, usually 1 - 4

(input) ‘
bits_out bit string for output machine, Will be in

format of: fraction sign, exponent, fraction

(output) |

FINAL REPGRT REMOTE LCATA ENTRY
SECTICK 4 ~ RDE FUNCTIONAL DESCRIPTION

debug logical switch to trace program flow and

variable assignments (input) |

error_code indicator of error in system (output)

Cescription:

This entry converts a floating point word bit string (bits_in)

from MULTICS machine format to PDP machine format (bits_out). i

Care should be taken to insure correct format of the input bit

string before the call.

FINAL REPORT REMOTE CATA ENTRY
SECTION 4 - RDE FUNCTIONAL DESCRIPTICN

4,31 PDP_to_CDC

Name: PDP_to_CDC

declare PDP_to_CDC entry (bit (*), fixed bin, bit (*), bit (1),

fixed bin (35));

call PDP_to_CDC (bits_in, precision, bits_out, debug,

error_code);

Arguments:

bits_in bit string to be converted, It must be in the

form of: fraction sign, exponent, fraction

(input)

precision number of words of precision, usually 1 - 4
(input)

bits_out bit string for output machine, Will be in

format of: fraction sign, exponent, fraction

(output)

FINAL REPORT REMOTE LATA ENTRY
SECTION 4 -~ RDE FUNCTICNAL DESCRIPTION

debug logical switch to trace program flow and

variable assignments (input)

error_code indicator of error in system (output)

Description:

9

This entry converts a floating point word bit string (bits_in)

from PDP machine format to CDC machine format (bits_out).

Care should be taken to insure correct format of the input bit

‘ string before the call,

¢ RN

PRl e e AV T

Gt A et e T

FINAL REFORT REMOTE LCATA ENTRY
SECTICN 4 - RDE FUNCIICNAL CESCRIPTICH

4,32 PDP_to_IBK

Name: PCP_to_IBM

Usage:

declare FDP_to_IEM entry (bkit (*), fixed bin, bit (*), bit (1),

fixed bin (39));

call PLP_to_IBH (bits_in, nrecision, Lits_out, debug, :
error_code) ;
Arguments:
bits_in bit string to be converted, It wust be in the

form wof: frection sign, exponent, frection

(input) !
t
rrecision nurber of words of crecisicn, usuelly 1 - 4 i
. !
{input) i
bits_cut bit string for outiut vechine.s ©ill bLe in

forwmat of: fraction sign, exgonent, fractiocn

(cutrut)

FINAL REPCFT FPEMCTE LATA ENTRY
; SECTICNI 4 = RCE FUNCTICHNAL LESCRIPTION

debug logical switch to trace program flow and

variable assigninents (input)
error_code indicator of error in system (output) i - |

Cescription:

This entry converts a floating point word kit string (bits_in)

from PCP nachine format to IF¥ machine format (bits_out).

Care should ke taken to insure correct format of the input bit

string before the call,

PO

S

TR DR S PR !

£ L

4=69 R |

5

dilisiis

FINAL REPORT REMOTE DATA ENTRY
SECTICON 4 ~ RDE FUNCTIONAL DESCRIPTION

4,33 PDP_to_MULTICS"

Name: PDP_to_MULTICS

Usage:

declare PDP_to_MNULTICS entry (bit (*), fixed bin, bit (*),

(1), fixed bin (35));

call PDP_to_MULTICS (cits_in, precision, bits_out, dekug,

error_code);

Ats uments:

bits_in bit string to be converted. It must be in the

form of: fraction sign, exponent, fraction

(input)

precision nuriber of words of precision, usually 1 - 4

(input)

bits_out bit string for output machine, Will be in

format of: fraction sign, exponent, fraction

(output)

4=70

S —————————————

ey

FINAL REPCRT REMOTE DATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION

N Suseu——

debug logical switch to trace program flow and

variable assignments (input)

error_code indicator of error in system (output)

Cescription:

This entry converts a floating point word bit string (bits_in)

from PLP machine format to MULTICS machine format (bits_out).

Care should be taken to insure correct format of the 1input bit

string before the call.,

AN

3 e

FINAL REPORT PENMOTE LATA ENTRY
SECTICN 4 - RCE FUNCTICKAL DESCRIPTIOR

4,34 add

Name: add

declare add entry (bit (*), bit (*), bit (1), fixed bin (35));

call add (bitsl, bits2, debug, errcr_code);

Arguments:

bitsl bit string to add (input/output)
bits2 bit string to add (input)

debug test switch (input)

error_code system error (output)

Description:

This procedure adds two bit strings serially from the right

(least significant bit, 1lsb) to the left (most significant bit, msb)

FINAL REPORT REMCTE DATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION

using the concept of a one~bit full adder [11].

A one-bit full adder must be capable of accepting three inputs,
Two are the original bits (shown as "a" and "b" in Figure 16,), and
the third input "c" is the carry out from the previous bit addition,
For the first add, the c¢ input is initialized to "#"b. There are two

outputs of the adder: the sum bit, "s", and the carry out bit, "c'".

The canonical minterm form for s using the EXCLUSIVE OR operation

(o8
10}
.

Exasfb¥c

The carry out term is derived from:

c' = bc V ac V ab. ("V" denotes "OR")

FINAL REPORT

S

C

REMCTE UATA ENTRY
SECTION 4 = RCE FUKNCTICHAL CESCRIPTIGi

a b +==- ¢ (carry in)
S
Yvy

|
| FULL |
| ADDER |

! I
5 s
S

i (carry out) c'<~-+ s

a#bi#c

bc V ac V at (V dGenotes OR)

(# denotes EXCLUSIVE CR)

Figure 10 Full Adder Design

4-74

FINAL REPORT

REMOTE DATA ENTRY

SECTICN 4 -~ RDE FUNCTIONAL DESCRIPTION

4,35 add_one

lame: add_one

Usage:

declare add_one entry (bit (*), bit (1), fixed bin (35));

call add_one (bits,

Atg urients:

bits

debug

error_code

Description:

This procedure adds

algebra. Addition of the

to the left-most (msh)

debug, error_code);

bit stringy to be incremented (Input/output)

test switch (Input)

set to 1 if overflow, else set to € (output)

one bit to the input bit string using Boolean
carry_bit continues from the rignt-most (lsb)

bit until the carry bit is zero or the msb is

reached, 1f the carry bit is set after the addition is complete, the

error_code is set to 1 to indicate overflow,

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION

4,36 subtract

Name: subtract

Usa_ge:

declare subtract entry (bit (*), fixed bin, bit (1), fixed bin

{35)):;

call subtract (bits, value, debug, error_code) ;

Arguments:

bits bit string to subtract value from !
(input/output) {
value value to subtract from bit string (input)
debug test switch (input)
error_code procedure result (output)
{

4=76

FINAL KEPCRT RENCTE DATA ENTRY
SECTION 4 - RCE FUNCTIONAL DESCRIPTICN

Cescription:

This procedure subtracts the given value from the bit string by
adding the one's comglerment bit representation of te value to the bit

string,

ok B IO R

FINAL REPORT REMOTE LUATA ENTRY
SECTION 4 - RDE FUNCTICHKAL DESCRIPTICHK

4,37 sub_one

Name: sub_one

declare sub_one entry (bit (*), bit (1), fixed bin (35));

call sub_one (bits, debug, error_code);

Arguments:

bits bit striny to be decremented@ (Input/output)
debug test switch (Input)
error_code set to 1 if overflow, else set to & (output)

Description:

This procedure subtracts one bit from the input bit string using

Boolean algebra. .

4~-78

FINAL PEPCRT RENCTE LATA ENTRY

SECTICH 4 =~ RDE FUNCTIONAL DESCRIPTION

4,38 shift_left

i A A A AN R AN

1
Name: shift_left i
\

Usage:
declare shift_left entry (bit (*), fixed bin, bit (1), fixed bin : A

(35));

call shift_left (bits, places, debug, error_code) ;

T

&Ig uments:

bits bit string to' subtract value from

(input/output)
places

nuriber of places to shift left (input)

debug test switch (input)

error_code procedure result (output)

Cescription:

This procedure shifts the bit array left the number of specified

FINAL REPORT RENMOTE DATA ENTRY

SECTION 4 ~ RDE FUNCTIONAL DESCRIPTICHN

places. The bit string is zero filled on the right,

If the number of places to snift is greater than the size of the

bit string, the error_code is set to 1,

If any of the bits shifted off the left end are equal to "1"b,

the error_code is set to 2 to indicate truncation.

4-80

FINAL REPCRT REMCTE LCATA ENTRY
SECTICN 4 ~ RDE FUNCTICNAL CESCRIPTION

4.39 shift_right

Name: shift_right

Usage:

declare shift_right entry (bit (*), fixed bin, bit (1), fixed bin
(35)) ; : ‘

call shifr_right (bits, places, debug, error_code);

Ats uments:

F bits bit striny to subtract value from
(input/outgput)
|
places nurnber of places to shift right (input)
debug test switch (input) ,
¥ error_code procedure result (output)

Description:

This procedure shifts the bit string right the number of places

FINAL REPORT REMOTE CATA ENTRY
SECTICN 4 - RDE FUNCTICONAL DESCRIPTION

specified. The string is zero filled on the left,

If the number of places to shift is greater than the size of the

bit string, the error_code is set to 1.

If any of the bits shifted of the right end are equal to "1"b,

the error_code is set to 2 to indicate truncation.

FINAL REPCRT ' REMOTE CATA ENTRY
SECTICN 4 - RCE FUNCTIONAL DESCRIPTION
4,40 ones_comglement
Name: ones_conmplerent
Usage:
declare ones_complement entry (bit (*), bit (1), fixed bin (35));

call ones_complement (tits, debug,.error_code);

Arguments:

bits bit string to complement (input/output)
debug test switch (input)
error_code procedure result (output)

Description:
This procedure produces the one's complement of the input bit

string by replacing each bit in the string with its complementary

(negated) value,

4-83

o b

FINAL REPORT REMOTE DATA ENTRY
SECTION 4 ~ RCE FUNCTIONAL CESCRIPTICHN

4,41 twos_complement

Name: twos_conplenent

Usage:

declare twos_complement entry (bit (*), bit (1), fixed bin (35));
call twos_complement (bits, debug, error_code);

Argunents:

bits bit string to complement (input/output)
debug test switch (input)
error_code procedure result (output)

Description:

This procedure converts the given bit string to the two's

complement representation by adding the value of one to the one's

complement representation of the bit string.

D

FINAL REP

e

T REMCTE DATA ENTRY
SECTIOH 4 - RDE FUNCTICNAL CESCRIPTION

C

4,42 round

PRI

Lame: round

Usage:
declare round entry (bit (*), bit (*), fixed bin, bit (1), fixed

bin (35});

R L1572 b T S S A AT

4
call round (exgonent, fraction, places, debug, error_code); g
:
i
:
Arguments: -
|
exponent exponent (input/output)
4
fraction fraction (input)
places number of places to round (input)
|
debug test switch (input)
? error_code procedure result (output)
4 -
1 . : l ;
E Description: |

The floating_pvoint nunber is rounded to the specified number of

places by adding one and then normalizing the result,

4-85

FIRAL REPORT REMOTE LATA ENTRY
SECTION 4 - RDE FUNCTIONAL LDESCRIPTICH

4,43 normalize

Name: normnalize

Usage:

declare normalize entry (cit (*), bit (*), bit (1), fixed ¢tin

(35));

call normalize (exponent, fraction, debug, error_code) ;

Arquments: |

exponent exponent (input/output) 2
i
fraction fraction (input) ;
1)
debug test switch (input) ;
|
i
error_code procedure result (output) E
i

Description:

This procedure normalizes a floating pgoint number by shifting the

'; fraction bits left one bit and addiny one to the exponent bits until

4-86

L SR e T ARNA e ey il

FINAL REFPORT PEMOTE DATA ENTRY
SECTION 4 - RDE FUNCTICKAL DESCRIPTION

the leftmost fraction bit is set ("1"b). This is described by [10,

p«181]s

e A P St i A S A, S

"a floating~point number (e, f) 1is said to be
normalized 1if the most significant digit of the
representation of £ is non~-zero, so that

/b < 1£] < 1;

or if f = & and e has its smallest possible value" ,

4-87

FINAL REPORT REMOTE LCATA ENTRY

SECTION 4 ~ RDE FUNCTIONAL DESCRIPTION
4.44 Dbase2_to_baselé6
Name: base2_to_baselé6

Usage:

declare base2_to_basel6 entry ((*) bit (1) unaligned, (*) bit (1)

unaligned, bit (1), fixed bin (35));

call base?_to_baselé (exponent, fraction, debug, error_code);

Arguments:
exponent bit array representation (ingput/output)
fraction bit array representation (input/output)
debug test switch (input)
error;podg : p;ocedure result (output)

Description:

This procedure is used to convert base2 floating point numbers

v

to the basel6 format used by IBM,.

4-88

LT oy ey

FINAL REPCRT REMCTE CATA ENTRY
SECTICKN 4 - RDE FUNCTIONAL DESCRIPTION

The algorithm used in this procedure was taken from [9],

The rational approximant, p/q, mentioned in the paper was chosen
so that d = (bl(p/q)) (dTepsilon) was exact. That is, with p/q = 1/4

and b = 16, bT(1/4) is exactly equal to d (2). Thus, epsilon is =zero.

The baselé exponent (u, in the paper) is derived by multiplying
the base2 exponent (s, in the paper) by p/q. Since p/g = 1/4, the
base2 exponent was divided by 4 (shifted right by 2). The
multiplier (FP(ps/g), in the paper) was obtained by "catching" the

tits as they shifted off the right end during the division.

This multiplier, which will have only the values 8, 1, 2, or 3,
is then used to compute the non~normalized baselé fraction,

bTFP(ps/q), by multiplying (shifting left) the base2 fraction,
The fraction bits are checked for overflow, and normalized by

dividing the fraction by 16 (shifting right by 4), and subtracting

one from the exponent for each division,

4-89 : :

oo T S

FINAL REPORT RENOTE CATA ENTRY
SECTICN 5 = CTS FUNCTIONAL DESCRIPTICHN

5 CTS Functional Description
5.1 CTS Structure

There are four major subroutines within CTS: process_args,
process_keywords, process_corrands, and process_program., Each of these
have been broken down into smaller modules, each having a specific
function., Process_commands, has been broken into the greatest nurker
of modules: nine in all.

The first major subroutine, process_args, receives all
controlling and paﬁhname arguments input by the user, verifies that
they are legal arguments, and set switches accordingly. The second
major subroutine, process_keywords, obtains vector keywords from the
user. The third major subroutine, process_cormands, uses § smaller
modules, five of which are command routines, which process the
commands individvally, The sixth module that process_commands uses,
advance, 1s wused to return each token or word to the five command
routines. It does so, by using a seventh module, get_char, which
returns individual characters, Advance combines the individual
characters to form a word of the command line. The eighth nmodule is
an error routine which can be called by process_five commands, by the
five command modules, by advance, or by get_char when an error is
encountered while processing a command, The ninth module, query_user,
is used to obtain the commands and any corrections from the user, The

fourth major subroutine is process_ program which indents and conpiles

"
e NN D N G Y R Y e 1

o

FINAL REPCRT REMOTE DATA ENTRY
SECTICI! 5 ~ CTS FUNCTIONAL DESCRIPTION

the generated PL/1 program,

The names in the structural design of CTS are shown in the
accomganying figure. The names of the routines and modules are in

capital letters while the functional aspects are in lower case

letters,

FINAL REPORT REMOTE DATA ENTRY
SECTIOK 5 =~ CTS FUNCTICNAL DESCRIPTION

I get f
|==<~| calling |
! | args !
: | ! {
| TPROCESS | ! | get | ! J
f=-=| ARCS |==~~|---| input | !
|] | | args | i
| | ! | |
| ! !
| | | set | !
| |=~~|switches |
| | & files |
{ |]
|
|
| i e
| | —get -]
| {4 j===~| count |
| CTS |==~| ! ! | user~ |
i £] |=--=-1 defined |
| el] | | |
| | PRCCESS|] ! ! !
f~~=| REYWORDS | ==~|~~=] name J ey S IR i
! ! | | | | | !
i i j==<] default |
| | e CoRa At
| | E A O [
| | | | ;
] | |---1 entire | t
£ | | ! | L
£ | f==~1 length |[=-==~]
£ | ! | { | | 3
£ I I=~~| subfield | |
& ! oo
4 Figure 11 CTS Structure S
=5 o
3
4 5~3 !

! <
5 e e S M

|
-~} EXTRACT |=-~
|

I

indent

l

|
|
| PROCESS| |
~~] PROGRAV|=-~|
|

|

A
e
FINAL REPCRT REMOTE DATA ENTRY
SECTICN 5 ~ CTS FUNCTIONAL CESCRIPTION

f

| | |

{ | |

| A P

i |]~=1 CHANGE |[~=~|

| b3 b

| |]

] | |

| bl e

| j=~f MOVE |=~| | i |

| E = { | |=={ ADVANCE |~=-| GETCHAR |

| | T |]

! | b -4

| | PROCESS! | | e ol e |

|-~ICCMMANDS j~={~~| INSERT |=~|{~~{=-| ERROR |

A - g B g -8 8

] | =

i | | il Ko |
| I fei il { 1| == QUERY !
| cTs |-~ {=~| DELETE |-~} | |
{ b o 3 Y3

| | |

| | |

| | |

{ | |

|

|

{

}

|

|

|

|

|

| {
--% compile %

Figure 11 CTS Structure (continued)

5=4

FINAL REPORT REMOTE LDATA ENTRY
SECTION 5 ~ CTS FUNCTICNAL DESCRIPTION

5.2 cts

Function: cts {-pathname arguments} {~control argjunents}

Parameters: arguments may be specified when calling CTS, If omitted,

user will be prompted for then,

~o0ld pathname required pathname of the input segment or wmultisegrent
ASCII RDE data file, If not present, CTS will cuery the

user for the data file segment name,

-new pathname pathname of ASCII RCE data file to be created fromw
applying CTS to the input data file. If no pathname is

entered, the default pathname is "empty".

~in pathname pathname of the segment from which CTS control arguments

and commands are to be taken., This segment name must have

".cts" as a suffix, but is not required in the command line.

May be used only when calling CTS.

~out pathname pathname of the segment to which CTS control arguments

and commands are to be copied to, A suffix of ",cts" will

RN e <ot

be appended to the pathname. This argument is Llncompatible

with the "-in" argument, Default is no output segment,

5=5

FINAL REPCRT REVMOTE LATA ENTRY
SECTION 5 - CTS FUNCTICNAL DESCRIPTION
~save pathname, =-sv pathnamevcauses generated PL/1l program to be saved
in the current working directory, A suffix of ",pll" is
appended to the pathname, kut is not required in the command

line.

-list causes a listing of the generated PL/1 program. Default is no

11'.Sting .

-check, =-ck checks syntax of input commands. There is no translation

or program generation.

-noxgt, -nx Used with the “"~save" argument to just generate the PL/1

program
-noguery, =nq inhibits message asking user for control arguments and
commands., Should only be used when working in the batch

mode.

~echo causes a display at the terminal of the input control arguments

and commands as they are read in., Default is no echo.

~debug, =db causes a trace of statements executed, Is

mainly for use by a systems maintenance person,

-menu prints a listing of all the arguments available in CTS.

5=6

FINAL REPORT REMOTE DATA ENTRY
SECTION 5 = CTS FUNCTIONAL CESCRIPTICN

~panic will notify the user if he attempts to put a vector into two
different classes and will terminate execution of the
generated FL/1 program, Default 1is notification of this
occurrence, creation of a file containing all vectors placed
in more than one class, and continued execution of the

generated PL/1 program,

-arguments argstring, -args argstring passes arguments "argstring” to
the PL/1 compiler as compilation arguments for compilation

of the generated PL/1 program,

Description:

The user function CTS reads in control arguments either from an
input file or from the terminal, then calls cts_process_args to
process the arguments and set switches, CTS then calls
cts_process_keywords to obtain keywords from the user. The next
subroutine called by CTS is cts_process_commands which processes the
edit and extraction commands, The 1last subroutine called is
cts_process_program which indents and compiles the gJenerated PL/1
program, CTS can then list and execute the generated program if the

user so desires. All switches are then turned off, and CTS is

completed.

5=7

.

AD=ADBD 625

UNCLASSIFIED

3 o

END
DATE
FILMEQ

3 =80

Db

— e s —

PATTERN ANALYSIS AND RECOGNITION CORP ROME N Y
MTICS REMOTE DATA ENTRY SYSTEM, VOLUME I.(U)
D BIRNBAUM: J J CUPAKs J D DYAR
RADC=TR=79=268=VOL.

e _

F/8 9/2
nooo:-'n-c-orn
NL

EEEE
S EEF
EEEFETITN k

2 EFE
Ad3

NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART

k

—g

FINAL REPORT REMOTE OATA ENTRY
SECTION S = CTS FUNCTIONAL DESCRIPTION

begin cts;

Jet default working directory;
Jet number of args from command line when calling cts;
if number of args>Z then do m=1 to number of args;
get a pointer to arg;
verify is a legal argument;
if a double word argument, get second word;
call cts_process_arys;
end;
open ingut file;
if no args in command line then do;
get arg from user or input file;
verify is a legal argument;
if a double word argument get second word;
call cts_process_args;
end;
if user wants args written to outfile, then do;
open outfile;
write each argument to outfile;
end;
if user wants to know flow of cts then do;

print each arjument and value of its switch;

end;

call cts_process_keywords;

FINAL REPORT REMOTE DATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION

call cts_process_commands;

if an error in processiny of commands, then delete jenerated PL/1 program;

else do;
b if pathname of generated FL/1 prograr ="enmgty" then rename to "yfile.pll";
call cts_process_program;
if user wants a listing, then print listing;
if user wants the generated program executed, then do;
if severity of errors<2 then execute program;
else ask user if he wants program executed;

if "yes" then execute program;

end;

end;
i ' close infile;
if opened outfile, then close outfile;
if user does not want generated program saved, then delete program;
turn all argument switches off;

end cts;

5=9

FINAL REPORT REMOTE DATA ENTRY
SECTICI: S = CTS FUNCTIONAL DESCRIPTION

5.3 cts_process_args

Function: call cts_process_args (argl, arg2, old_path, new_path,

in_path, out_path, save_path, ar3j_string)

Parameters:

argl word in a 2 word arjument or only word in a 1 word
argument

arg2 second word in a 2 word argument

old_path pathname of old data_file

new_gath pathname of new data file created from applying cts to old

data file
in_path pathname of file containing all cts arguments and commands
out_gath pathnare of file to which all cts arguments and commands

are written

save_path pathname under which the jenerated PL/1 program is saved

arg_string string of arguments which are passed to the PL/1 compiler

FINAL REFCRT FEMCTE LATA ENTFY
4 SECTICN 5 = CTS FUNCTIONAL LESCRIPTICY

and are used in corzilation of the jenerated FL/1 projram !

Cescription:

The subroutine CTS_process_ar3s sets switches Lbased on the
user-supplied CTS argurnents. If a switch has vreviously been set, the

user is notified of this condition.

bejin cts_process_args;
t if argl is a legal one wcrd arjuxent then do;
if switch is altéady set then do;
print error message;
end;
else set switch;

end;

i if argl is the first word of a legal 2 word arguuent & (argl “=("-save" | "~arg:

if switch is already set then do; ;

print error message;
end; i
else do; :
set switch; {
tyve_path = aryg2;

end;

end;

else if argl = "~save” then do;

o 5 g

FINAL REPORT REMOTE CATA ENTRY
SECTION S = CTS FUNCTICNAL DESCRIPTICK
if switch is already set then do;
print error message;
end;

else do;

verify saved program "= “"cts,pll* | "cts";
if does, notify user is not permissible;
ask user if he wants to try another progran;
if he does, then get new program name;

end;

set switch;

if *.pll”® not in prograr name, add it;

save_path = ar3g2;

i end; 3

else if argl = “-arguments” | "-args" then do;
if switch already set then do:;
print error message;
end;

else do;

e —— 2 Al S A S 1 T

set switch;
arg_string = ar32; |
end;

end;

end cts_process_args;

S

TR PR P e oy

)
e ol

FINAL REFURT

REMCTE DATA ENTRY

SECTION 5 = CTS FUNCTIONAL CESCRIPTION

5.4 cts_process_keywords

Function: call

cts_process_keywords (number_of_keywords,

keyword_table, in, out, echo, noguery, debug)

Farameters:

nunber_of_keywords

keyword_table

in

out

echo

noguery

nunber of keywords in each vector in data file
pointer to table of keywords

switch which determines whether or not to read
from a file containing cts args and commands =~

same as the argument "-in pathname"

switch which determines whether or not to write

to a file the cts args and cormmands - same as

the argument "-out pathname"”

switch which dethermines whether or not to echo

each line read in - same as the "-echo" argument

switch which determines whether or not to query

the user - same as the "-noguery" argument.

FINAL REPORT REMOTE DATA ENTRY
SECTIOK 5 = CTS FUNCTICNAL DESCKIPTICH

debug switch which determines whether or not user {
wants to see the flow of the program = sSaie &s

the "~-debug" argument

Description:

cts_process_keywords function is intended to obtain the number of

keywords(if any), to allocate storage for those keywords, anc then to

. —

ask the user for each keyword and its subfields (if any).

begin cts_process_keywords;

get number_of_keywords;
allocate storage for keywords;
do loop for number of keywords;
if skip_keyword switch on then do;
generate keyword;
get subfields; }
if subfields, add to keyword;
end;
else do;
ask user for keyword and subfields;
if keyword = "skip™ then do;

generate keyword;

if no subfields ask user for subfields;

FINAL REPCRT REHMCTE LCATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION

e et i e

set skip_keyword switch on;
end;
end;
end;
if subfields in keyword, then do;
check if one or 2 subfields;
if 2 subfields then do;
verify subfield before comma is an integer;
verify subfield after conma is an integer;
end;
else if only one subfield verify subfield is an integer;
store keyword and its subfields in array;
end;
if user wants to see flow of program, then do;
print keywords and subfields;
end;
if user wants keywords saved in a file then do;
write keywerd and subfields to outfile;

end;

e b e o e S PR

end cts_grocess_keywords; |

FINAL REPORT REMOTE UATA EGTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTICN

5.5 cts_process_commands

Function: call cts_process_commands (old_path, new_path, save_patn,

in_path, out_path, number_of_keywords, keyword_takle)

Parameters:

old_path pathname of old data_file

new_path pathname of new data file created from applying
cts to old data file

save_path pathname under which the generated PL/1 program
is saved

in_path pathname of file containing all cts arjuments and
commands

out_path pathname of file to which all cts arguments ang

commands are written

number_of_keywords number of keywords in the vectors in the data

file

keyword_table pointer to table containing keywords

FINAL REPORT REMOTE DATA ENTRY
SECTION 5 = CTS FUNCTICONAL LDESCRIPTION

begin cts_process_commands; ?

find out if classname in vectors;

if "yes"™ then turn classname switch on;
find out if vector ID in vectors; |
if "yes" turn vectorid switch on;

get both process and default working directory;

open gfile; |
if conversion error occurs then do;
notify user of conversion error
reset onsource value;
reset token value;
set error_flag_g;
end;

open input file

if not "-check", then jenerate declarations for generated@ PL/1 program;
get first command line; 74
if input line = "end” then do; .
notify user that cts_process_commands is terminated;
set error_code;
set error_flag;
eng;
do while (“even number of quotes);

see if even number of quotes in command line;

o A ot
bt 2 o

5=17

S iT

FINAL REPORT REMOTE LATA ENTRY
SECTION 5 =~ CTS FUNCTICNAL CESCRIPTION
if not, then call error routine;
end;
do while (“end of commands);
call advance subroutine to get token;
depending on token, generate code for generated PL/1 program;
do while (token"="end");
if user uses edit command after extract command then do;
notify user that processing of commands is terminated;
notify user of no execution of generated program;
set noxgt switch;
set ekror_code;
set token = "end";
end;
do while (“correct_token);
if token = "change"{"insert"|"delete"|"move" then do;
call subroutine to process the command;
set correct_token switch to on; |
end;
else if token = "extract" then do;
if not "-check" then do;
set extract switch on;

if edit commands preceded, then do;

Jenerate code to PL/1 program;

turn edit switch to off;

end;

FINAL REPCRT REMOTE CATA ENTRY
SECTICN 5 = CTS FUNCTICNAL DESCRIPTION

end;

call extract subroutine to process command;

set cocrrect_token switch to on;
end; {

else if token = "end" then set correct_token switch on;

else if none of the above then do;
call error subroutine;
if error_flag then set correct_token switch on;
end;
end;
if an error_flag then token = "end";
if token “="end" then do;
} turn command_flag off;
call advance subroutine for new token;
end;
end;
if error_code = 1 then set end_flat on;

if error_flag then set token ="stop”;

& if token = "end" & “end_flag the do;

3_,

¥ notify user that command processing is completed;

§: if “extract_switch and not "-check" then generate code;

set end_flag to on;

end;

if command_flag on, turn it off;

FINAL REPGRT REFKCTE LATA CLTRY

SECTIOK 5 ~ CTS FUNCTIUNAL DESCRIPTICL

if error_flag for gquitting is on, then do;

end;

else

end;

turn error_flay off;
set correct_token to off;
do while (“3ood_token);
call advance for new token;
turn token switch off if on;
if token = ".," then turn good_token on;

else if end of line ther turn 3jood_token on;

end;

if error_flag for ceasing is on then do;

notify user that processing of all commands is terminated;

turn end_flag switch on;

if token = "end" then turn end_flag switch on;

end;

if not "~check®" and error_code = ¢ then do;

close file of generated PL/1 program;

open

open

file of generated PL/lhptogram;

new file;

on endfile condition set endfile flag on;

do while (“endfile flag);

read line of generated grogram file;

if “end of file and line "= a certain declaration then

write line out to new file;

520

ik A PR i s BRI

g

P ey

FINKAL REFORT REMOTE CATA ENTRY
SECTION 5 = CTS FUNCTICNAL DESCRIPTION

else do;
write line out to new file;
write more code to new file; |
end;
end;
if classname switch is on, turn it off;
if classid switch is on, turn it off;
close both generated program file and new file;
delete the generated proyram file;
rename new file to pathname of old generated program;
end;

end cts_process_commands;

g lhcdll £, et "
LA s s i S v i o ekt

FINAL REPORT REMOTE DATA ENTRY
SECTICN 5 = CTS FUNCTIONAL OESCRIPTION

5.6 cts_process_program

Function: call cts_process_projram (program_name, pll_args, sv, cebug,

error_code)

Parameters:

program_name name of generated PL/1 program =~ same as pathname

specified by "=-save pathname"

pll_args compilation arguments - same as “argstring" specified

by "-args argstring”
sv severity of compilation errors

debug same as logic_switch.debug in c¢ts =~ jindicates user

~ wants to see the flow of the program

error_code code which indicates if an error hs occurred within

Ccts_process_program

Description:

| cts_process_program first verifies that the program to be tested

BRI MR

e

s

FINAL REPORT REMOTE CATA ENTRY

SECTICiK 5 = CTS FUNCTICKAL DESCRIPTICN
exists in the working directory. Then if the program does exist, the
projrain is indented and comgiled. Any compilation errors are written
to an error file and once compilation is completed, the error file is
examined to determine the highest severity of compilation errors (if
any). If the severity of errors is >2 then an error_code is set = 2

and the user is notified of the occurrence of compilation errors,

begin cts_process_program;
verify crogram to be tested is not "cts_process_program.pll”;

if it is then do;

notify user that testing of "cts_process_program” is not permissible;

set error_code;
end;
else do;
get default working directory;
verify program exists in working directory;
if it doesn't then do;
notify user that program does not exist;
set error_code;
end;
else do;
indent generated program;
examine pll_args for the argument “~-sv";
if fcund, then do;

notify user that it has been ignored;

5=23

FINAL REPCRT REMOTE DATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION

delete it from the pll_args;
end;
compile generated program;
on end of file then set eof_switch on;
open error file;
read line of error_file;
do while (“eof_switch);
determine the maximum severity of errors in the file;
end;
close error file;
if severity > 2 then do;
notify the user that a compilation error has occurred;
set error_code; i
} end;
| end;

end;

end cts_process_program;

ST ey g -

FINAL REPORT

REMOTE CATA ENTRY

SECTION 5 = CTS FUNCTIONAL DESCRIPTICHN

5.7 cha_nge

Function: call cha_nge (in_line, number_of_keywords, command_index,

char_pos, keyword_table, line_len)

Parameters:

in_line

number_of_keywords

cormand_index

char_pos

keyword_table

‘line_len

input command(s) line

number of keywords in each vector in the data

file

beginning character position of change command

in input command line

position in command line of current character

under consideration

pointer to table containing keywords of the

vectors in the data file

length of input command(s) line

5=25

PO

FINAL REPORT REMOTE CATA ENTRY

SECTION 5 = CTS FUNCTIONAL DESCRIPTION
Description:
Cha_nge parses a change command to verify that the syntax of the

conmand is correct. Once the parsing is done, code is generated for

the save PL/1 program if the wuser has not specified the argument

"-check" when giving cts arguments, If the argument "-check"™ was

given, then no code is generated for the PL/1 program

Eegin cha_nse;
if conversion error occurs then c¢o;
notify user of conversion error and
that crocessiny of current command is terminated;
reset onsource value;
reset token value;
set error_flag_c;

end;

set command value to "change ";

call acdvance subroutine for next token;
do while (“okay):
if token "= "data" | "field" then do;
if token = "keyword" then do;
add token to command value;

call advance subroutine for next token;

if token "= "(" then call error subroutine;

else adé token to command value;

call advance subroutine for next token;

FINAL REPORT

end;

else

end;
end;

else do;

REMOTE CATE LENTRY
SECTICN 5 = CTS FUNCTICN2AL DESCRIPTICN

if token "= intejer then call error sutroutine;

else add token to conmand value;
call advance subroutine for next token;

if token "= ™)™ then call error subroutine;

else add token to command value;

loop through keyword table for token keyword;

if it is, add token to command value;

if token = "data"™ then add token tc command value;

else

end;

end;

if token = "field” then do;

add token to command value;

call acdvance subroutine fcr next token;

if token "= "(" then call error subroutine;
else add token to command value;

call advance subroutine for next tcken;

if token "= integer then call error subroutine;

else add token to commané value;
call advance subroutine for next token;
if token "= ")" then call error subroutine;

else add token to command value;

e 5 AN o i B AR TR N

U

DEEES————

T1nAL REEBCRT REMOTE CATA ENTRY
SECTION 5 - CTS FUNCTICNAL CESCRIPTION
end;
call advance subroutine for next token;
if first character in token = integer then do;
if token "= integer then call error subroutine;
else add token to command value;
call advance subroutine for next token;
if token = "," then do;
add token to command value;
call advance subroutine for next token;
if token "= integer then call error subroutine;
else add token to command value;
end;
else set switch advance subroutine_flag off;
end;
if advance subroutine_flag on then get next token;
if token "= a relational operator then call error subroutine;
else add token to command value;
call advance subroutine for next token;
if token "= a double quote then do;
see if token = number;
if it does, add token to comrmand value;
else conversion condition occurs;
end;

else do;

if token "= double quote then call error subroutine;

R A s e

FINAL REPCRT REMCTE CATA ENTRY
SECTICN 5 = CTS FUNCTICHRL CESCRIFTICHN
else add token to command value;
call advance subroutine for next token;
add token to command value;
call advance subroutine for next token;
if token “= a double guote then call error sutroutine;
else add token to command value;
end;
call advance subroutine for next token;
if token "= "to" then call error subroutine;
else add token to command value;
call advance subroutine for next token;
if token "= a double quote then call error subroutine;
else add token to command value;
call advance subroutine for next token;
add token to command value;
call advance subroutine for next token;
if token “= double guote then call error subroutine;
else add token to command value;
call advance subroutine for next token;
if token "= period then call error subroutine;
else add token to command value;

if out.switch on then write command to outfile;

if "~-check” switch off then generate code PL/1 program;

FIRAL REPCRT REMOTE CATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION

5.6 in_sert

Function: call in_sert (in_line, line_len, command_index, char_pos)

Parareters:
in_line input command(s) line
y
line_len length of input command(s) line
conmand_index beginning character position of insert command in
ingut command(s) line
char_pos ' position in command line of current character under

consideration

Lescription: , [

In_sert parses an insert command to verify that the syntax of the

insert command is correct, Cnce the parsing is complete, code is
Jenerated for the saved FL/1 program if the user has not given the

argument "~-check®”. Otherwise, no code is generated,

£

*

5@? E 1
et ;
A PR

3,
v an
b X

i : % ; BT o
S o ot S T M g ol (i N . Vo RSN

FINAL REPORT REMOTE DATA ENTRY
SECTICN 5 -~ CTS FULCTIONAL CESCRIPTION

begin in_sert;

set command value to "insert ";

call advance subroutine to jet next token;

if token "= "field" then call error cubroutine;
else add token to command value;

call advance subroutine to get next token;

if token "= "(" then call error subroutine;
else aad token to command value;

call advance subroutine to get next token;

if token "= integer ihen call error subroutine;
else add tocken to command value;

call advancg subroutine to get next token;

if token "= ")" then call error subroutine;
else add token to command value;

call advance subroutine to get next token;

if token "= "=" then call error sucroutine;
else add token to command value;

call advance subroutine to get next token;

if token "= double quote then call error subroutine;
else add token to command value;

call advance subroutine to get next token;

add token to command value;

call advance subroutine to get next tcken;

if token "= double quote then call error subroutine;

5=31

‘
-~
et

A

FIKAL REPORT RENCTE DATA ENTRY
SECTION 5 = CTS FUNCTIONAL CESCRIPTION

else add token to command value;

call advance subroutine to get next token;

if token "= Jdouble quote then call error subroutine;
else add token to command value;

call advance subroutine to get next token;

add token tb command value;

call advance subroutine to get next token; A

if token "= double guote then call error subroutine:
else add token to command value;

call advance subroutine to get next token;

ki A A

if token "= period then call error subroutine;
else add token to command value;
if out,switch on then write commané to outfile;

if not "-check" then generate code for FL/l prograr;

end in_sert;

A

FINAL REFCRT RENCTE LATA EiTRY
SECTION 5 = CT8 FUNCTIGHEL LESCEIFTICN

5.8 de_lete

Function: call de_lete (in_line, line_len, comrand_index, char_gos)

Parameters:
in_line input command(s) line
line_len length of input command(s) line
1
command_index beginning character gosition of insert command in
input command(s) line
char_pos position in command line of current character under

consideration

R ST

Cescription:

N I

De_lete parses a delete command to verify that the syntax of the
; delete cormand is correct, Once the parsing is conplete, code is
generated for the saved FL/1 program if the user has not given the

argument "-check", Ctherwise, no code is jenerated,

iz 5=33 &

i) “,7, . .,m,‘r; o LA B i

e

- !

FIRAL REPCRT REVMOTE EATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION

begin de_lete;

set comrand value to "delete ";
call advance subroutine to get next token;
if token "= "field" then call error subroutine;
else add token to command value;
call advance subroutine to yet next token; '
if token "= "(" then call error subroutine;
else add token to command value;
call advance subroutine to get next token;
if token "= integer then call error subroutine;
else add token to command value;
call advance subroutine to get next token;

} if token "= ")" then call error subroutine;

| else add token to compand value;
call advance subroutine to get next token;

‘ if token “= "=" then call error subroutine;

| else add token to command value; E
call advance subroutine to get next token; .
if token "= double quote then call error subroutine;
else add token to command value;
call advance subroutine to get next token;

add token to command value;

call advance subroutine to get next token;

‘ ;; if token "= double quote then call error subroutine;

FINAL REPORT RENMOTE DATA ENTRY
SECTION 5 = CTS FUNCTIONAL CESCRIPTICN
else add token to command value;
call advance subroutine to get next token;
if token "= period then call error subroutine;
else add token to command value;
if out.switch on then write command to outfile;
if not "~-check" then generate code for PL/1 program;

end de_lete;

RESTIRSS s

. 9=35

%
b B s A DA T s

FINAL REPORT REMOTE DATA ENTRY
SECTION 5 = CTS FUNCTICNAL CESCRIPTION

5.16 mo_ve

Function: call mo_ve (in_line, line_len, command_index, char_pos)

Parameters:

in_line input command(s) line

line_len length of input command(s) line

command_index beginning character position of insert command in
input command(s) line

char_pos position in command line of current character under

consideration

Description:

Mo_ve parses a move command to verify that the syntax of the move
command is correct., Once the parsing is complete, code is generated
for the saved PL/1 program if the user has not given the argument

"~check"., Otherwise, no code is generated,

begin mo_ves;

SN R R YENOA 1 WINPT N S 0

35 8 SOTET R

FINAL REPGRT REIIGTE DATA EKRTrRY
SECTION S = CTS FUNCTIOMNAL DESCRIPTICN

set conmand value to "move ";

call advance subroutine to get next token;

if token "= "field" then call error sukbroutine;
else add token to command value;

call advance subroutine to get next token;

if token "= "(" then call error subroutine;
else add token to command value;

call advance subroutine to get next token;

if token "= integer then call error subrcutine;
else add token to command value;

call advance subroutine to get next tcken;

if token "= ")" then call error subroutine;
else add token to command value;

call advance subroutine to get next token;

if token "= "=" then call error subroutine;
else add token to command value;

call advance subroutine to get next token;

if token "= double quote then call error subroutine;

else add token to command value;

call advance subroutine to get next token;

add token to command value;

call advance subroutine to get next token;

if token “= double guote then call error subroutine;

else add token to command value;

FINRAL REFORT REMCTE DATA ENTRY

{ SECTION 5 = CTS FUNCTIONAL CESCRIPTION
call advance subroutine to get next token;

if token “= "to" then call error subroutine;

else add token to command value;

call advance subroutine for next token;

if token “= "head"™ | "tail" then call error subroutine;
else add token to command value;

call advance sucroutine for next token;

if token “= period then call error subroutine;

else adé token to command value;

if out.switch on then write command to outfile;

if not "~check" then generate code for PL/1l program;

end mo_ve;

R S A SN SO I S e

B e e TS SRR

FINAL REPCRT REMCTE LCATRMR ELTRY

-SECTICH 5 = CTS FULCTICEAL CESCRIFTICH

5.11 ext_ract

Function: call ext_ract (in_lire, 1line_len,

cormand_index, char_pos, keyword_table)

Paraneters:

in_line input cormand(s) line

line_len length of input cormand(s) line

nunber_of_keywords nu:ber of keywords in each vector in the dJata
file

cormand_index beyinning character position of extract command
in input command line

char_pos position in command line of current character
under consideration

keyword_table pointer tc table containiny keywords of the

vectors in the data file

o b

nuiker_of_keywords,

FIXAL FEFORT RENCTE CATA ENTRY
SECTIC: 5 = CTS FUKNCTICIAL CESCRIPTIOKN

Lescription:

Ext_ract parses an extract command to verify that the syntax of
the command is correct. Once the parsing is done, code is generated
for the save PL/1 program if the user has not specified the argument
®=check" when jiving cts arjuments. If the arijument "~check" was

given, then no code is generated for the PL/1 progran,
begin ext_ract;

set coamand value to "extract ";

call aévance subroutine to get token;

call bool_terr;

if advance_flag on then call advance subroutine for next token;
else add token to command value;

call advance subroutine to get tokén;

if tqﬁen “= "class" then call error subroutine;

else add token to command value;

call advance subroutine to get token;

if token "="=" then call error subroutine;

else add token to command value;

call advance subroutine to jet token;

if token "= cGouole guote then call error subroutine;

else add token to command value;

call advance subroutine to get token;

o fp

R e s

FINAL REPCRT REMCTE CATA DNTRY
SECTICN 5 -~ CTS FUNCTICKAL CESCRIPTICHN

add token to command value;

call advance subroutine to get token;

if token "= double quote then call error sukbroutine;

else add token to command value;

call advance subroutine to jet token;

if token "= period then call error subroutine;
else add token to command value;

if out.switch on then write commané to outfile;

if "-check" switch off then generate code PFL/1 rrogram;

end ext_ract;

-5=41

%
24y
il

FINAL REFORT REMCTE DATA ENTRY
SECTICH 5 = CTS PUNCTIONAL DESCRIPTION

5.12 bhool_term

Function: call Dbool_term (in_line, 1line_len, number_of_ keywords,
token, token_index, token_length, char_pos, keyword_table,

advance_flag, keywcrd_taktle_code, command)

Parameters:

in_line input command(s) line

line_len length of input comrand(s) line

nurber_of_keywords nunber of keywords in each vector in the data
file

tok=n | a werd or character of the command line

token_index beginning character position of token in command
line

token_length length of token

char_gos position in command iine of current character

under consideration

. WV, P

-

ot
s s

FINAL REPORT RENMOTE DATA ENTRY
SECTICN 5 = CTS FUNCTICNAL CESCRIPTICH

keyword_table nointer to tatle containing keywords of the

vectors in the data file

advance_f13g determines whether or not tc call the sucroutine

"advance" to get the next token
keyword_tatle_code element number of keyword in keyword array

command input 1line sgecifying the tyce of editing to be

done on the data file

Cescription:

Bool_terw is a recursive module which continues the processing of
an extract command, It calls the module boocl_fac, checks for the
token "|", and if it is found then bool_terw calls itself, If it Iis

not found then bool_term ends,

begin bool_term;

if "-debug”™ switch on then prin£ subroutine name;
call bool_fac;

if advance_flag then call advance subroutine for next token;

if token = "|" then do;

Ak

FINAL EEFORT REMOTE CATA ENTRY

SECTICN 5 = CTS FUNCTICNAL DESCRIPTION

add token to command value;

call advance subroutine to get token;
call bool_tern;

end;

else advance_flag is off;

end bool_tern;

e pr——— Y ———

B N e

TINAL REPCRT REMOTE CATA ENTRY
SECTICN 5 = CTS FUNCTICKAL LESCPIPTICH

5.13 Dbool_fac

v

Function: call bool fac (in_line, 1line_len, nurber_of_keywords, |
token, token_index, token_length, char_gos, keyword_takble,

advance_flag, , keyword_takle_code, corrmand)

Earameters: ;
in_line input command(s) line
line_len length of input command(s) line {
number_of_keywords nunber of keywords in each vector in the data
file
token a word or character of the cesmmand line
token_index beginning character gosition of token in command
line
token_length length of token
char_pos position in coumand line of current character

under consideration

5=45

. S

SRR & SR S

FINAL REPOKT REMCTE LATA ENTRY

SECYTICN 5 = CTS FUNCTIGHAL DESCRIPTICHN
keyword_table pointer to table contairing keywords of the
vectors in the data file

advance_flag determines whether or not to call the module
"advance” to get the next token
keyword_table_code element numker of keyword in keyword array

connand input 1line specifyiny the typge of editing to be

Gone on the data file

LCescription:
This module continues processing of an extract command. It calls

the rodule zool_rri, then calls itself if the token "&" is found,

otherwise it exits,

cegin bool_fac;
if "~debug" switch on then print subroutine name;
call kool _pri;
if advance_flay then call advance subroutine for next token;
if token = "&" then do;
add token to command Qélue;
call advance subroutine to get token;
call bool_fac;

end;

i Rt -
TEERARR D g vl

o g

e 25 BE

FINAL REPGRT REMOTE CATA ENTRY
SECTICN 5 = CTS FUNCTICNAL DESCRIPTICW

else advance_flag is off;

end bool_fac;

FINAL KEPORT REMOTE LATA ENTRY
SECTICE 5 = CTS FUNCTIONAL DESCRIPTICH

S.14 Dbool_pri

Function: call bool_pri (in_line, 1line_len, nurber_of_keywords,
token, token_index, token_length, char_pos, keyword_table,

advance_flag, keyward_table_code, command)

Parameters:

in_line input command(s) line

line_len length of input command(s) line

nunber_of_keywords nutber of vector keywords in the data file

token a word or character of the command line

tokeq;index beginning character position of token in command
line

token_length length of token

char_pos position in command line of current character

keyword_table pointer to table of vector keywords in the data
file

5=48

FINAL REPORT REMOTE CATA ENTKRY
SECTICK 5 = CTS FUNCTICNAL DESCRIPTION

advance_flag determines whether or not to call the module

"advance” to get the next token

keyword_takble_code element nurmber of keyword in keyword array

command input line specifying the typve of editiny to te

done on the data file

Description:

Bool_pri continues processing an extract command. It calls
advance for tokens of the command line, and verifies that they are in

the correct format,

begin bool_pri;

if " _debug”™ then print subroutine name;
if conversion error then do;
notify user of conversion error and
that processing of current command is terminated;
reset onsource value;
reset token;

set error_flaj_g;

i R i i

FINAL REFPORT

REMOTE DATA ENTRY

SECTION 5 = CTS FUNCTIONAL DESCRIPTION

end;

if token=""" then
add token to
call advance

end;

if token="(" then
add token to

call advance

do;
command value;

subroutine for next token;

do;
command value;

subroutine for next token;

call bool_term;

if advance_flag call advance subroutine for next token;

if token"=")" then call error subroutine;

else add token to command value:

end;

else do;

do while (“okay);

if token "= "data® | "field" then do;

if

token = "keyword" then do;
add token to command value;
call advance subroutine for next token;
if token “= "("™ then call error subroutine;
else add token to command value;
call advance subroutine for next token;
if token "= integer then call error subroutine;
else add token to command value;

call advance subroutine for next token;

"MMM&M.‘-««'Mim%mﬂwe«mx

FINAL REPORT REMOTE DATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTICN

-~

if token "= ")" then call error subroutine;
else add token to command value;

end;

VP ——

else loop through keyword taktle for token keyword;

if it is, add token to command value;

end;
end;
else do;
if token = "data" then add token to command value;
else if token = "field" then do;
add token to command value;

call advance subroutine for next token;

} if token “= "(" then call error subroutine;

else add token to command value;

\ ; call advance subroutine for next token;
: if token "= integer then call error subroutine;
else add token to command value;

call advance subroutine for next token;

AL

if token "= ")* then call error subroutine;

else add token to command value;

end;

T

end;
end;

add token to command value;

if first character in token = integer then dJo;

‘ FINAL REPCRT RENCTE DATA ENTRY
[SECTICN 5 = CTS FUNCTICNAL DESCRIPTION

call advance sutroutine for next token;
if token “= integer then call error subroutine;
else add token to command value;
' call advance subroutine for next token;
if token = "," then do; .
add token to command value;
call advance subroutine for next token;
if token "= integer then call error subroutine;
else add tdken to command value;
end;
else set switch advance subroutine_flag off;
if advance subroutine_flag on then get next token;
} if token "= a relational operator then call error subroutine;
else add token to command value;
call advance subroutine for next token;
if token "= é double quote then do;
1185a.in =5
end;
see if token = number;
if it does, add token to command value;
else conversion condition occurs;
end;
else do;

“ if token "= dJdouble cuote then call error subroutine;

else add token to command value;

———— m—
|]
!
i 1
| FINAL REPORT REMOTE LATA ENTRY %
SECTION 5 =~ CTS FUNCTIONAL DESCRIPTICN g
%
i
call advance subroutine for next token; i
add token to command value;
4 call advance subroutine for next token;
if token “= a doutle auote then call error subroutine;
else add token to command value;
end;
end;
end; |
end bool_pri; |
i
i
£
B
-
|]
$: f

5=53

i on 5 A e vt i e A s

FINAL REFORT REMOTE CATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION

5.15 get_char

Function: call get_char (Char_char, Char_pos, Char_index, to_ken,

in_line, line_len)

Parameters:
Char_char individual character from input command line '
Char_pos position of character in input line
Char_index index of character in table
to_ken a word or character of the input line !
!
in_line input command(s) line
line_len length of input command(s) line

Description: |

Get_char is a module which returns the individual characters from '

| the input command line to the module advance,

FINAL REPORT REMOTE DATA ENTRY
SECTICK 5 = CTS FUNCTICKAL CESCRIFTICH

begin jet_char;

if "=-cebug" then print subroutine nane;

if end of file occurs do; :

set in_eof switch on;

set command_flag switch on;

end;

if token “="end" & Char_pos=line_len then turn command_flag or;

if command_flaj on then return;

increment Char_pos by 1;

get Character;
get Char_index;

end get_char;

prsan AR W |

S Ny S ST

.,

& 5-55

FIRNAL REPORT REMCTE LATA ENTRY
SECTION S = CTS FUMCTIGNAL CESCRIPTICHN

section

Function: call advance (to_ken, len gth, place, 1in_line, 1line_len,

char_pos, token_switch)

Faraneters: b
4
to_ken word or character of input command line
len_gth length of token
rlace beginning character position of token in input ‘
cormand(s) line, . '
{
in_line input command(s) line
line_len length of input command(s) \
Char_pos position of character in input line {
%
token_switch switch indicating a string is to be enclosed within
cuotes
I
Lescription: :
g7 . 5=86 &
r ; ;
g

FINAL REPORT REMOTE LATA EXNTRY
SECTION 5 = CTS FUNCTICMSAL DESCRIPTICH

This module returns a token, its length, and its position in the

input line to other parsing modules,

begin advance;
if "-debug" then print subroutine name;
if token_switch on do;
reset to_ken; | J
reset place and len_gth;
reset tokenl; 7
reset token2;
if tokenl is a null string then turn token_switch off;
end;

do while (need_char);

call get_char for next character;
if command_flag switch on then turn need_char off;
if period_flag & char “="," then do;

reset to_ken;

reset len_gth and place;

turn need_char off;

et i e

end;

else if char"=" " then do;

e i o

if char is a letter then do;

do while (alpha_char). 1

add char to to_ken valﬁe;

FINAL REFPORT REMOTE DATA ENTRY
SECTICN 5 = CTS FUNCTIONAL DESCRIPTION
reset len _gth and place;
call get_char for next character;
if command_flag on then turn alpha_char switch off;
if char is not a letter then turn alpha_char off;
end;
if command_flag on then turn need_char off;
else if char=" " then turn need_char off; A
else do;
decrement char_pos by 1;
turn need_char off;
reset place;
end;
end; i
else if char=operators then do;
add character to to_ken value;

reset place and len_gth;

call get_char for next character; | o
if char=operators then do; {-
add character to to_ken value;
reset len_gth and place;
end; i'
else do;
decrement char_pos by 1;

reset place;

& end; : F

s 2 et

FINAL REFORT REMOTE LATA ENTRY
SECTION 5 - CTS FUNCTICNAL DESCRIPTION

turn need_char off;

end;

S ——

else if char=caret then do;

add char to to_ken value;

reset len_gth and place;call get_char for next character;

if command_flag then turn need_char off;

if char=operators then do; '
add char to to_ken value;
reset place and len_gth;
call get_char for next char;
if char=operations then do;

add char to to_ken value;

reset len_gth and place;

end;
% else do;
3 decrement char_pos by 1;
&
% reset place; ?4
g end; };
% turn need_char off; F
& b
e end; t
2
& else do;

decrement char_pos by 1;
reset place; |
turn need_char off;

end; wff_g

5-59 =

= s
%,'
*,

)

FINAL REFORT

end;

else

end;

else

end;

else

REMOTE DATA ENTRY
SECTION 5 - CTS FUNCTIONAL CESCRIPTION

if char=paren then do;

add char to to_ken value;

reset place and len_gth;

turn need_char off;

if char=comma then do;

add char to to_ken value;

reset len_gth and place;

turn need_char off;

if char=double quote then do;

add char to to_ken value;

reset len_gth and place;

if no_string switch on then do;

end;

else if

turn token_switch off;
turn need_char off;
® no_string then do;
do while (more);
call get_char for next char;
if command_flag on turn need char off;
else add char to to_ken value;

if char=double guote then do;

reset tokenl;

FINAL REPORT REMOTE CATA ENTRY
SECTION 5 = CTS FUNCTIONAL CESCRIPTICN
reset token2;
turn more off;
turn token_switch cn;

end;

end; 5
if more is off then turn need_char off;
end;
end;
else if char=signs or digits then do;
do while (need_number) ;
add cna? to to_ken value;
reset len_gth and place;
-call get_char for next char;
if command_flag then turn need_number off;
if char “=digits then do;
if char “="e" then do;
: if char “=signs then Jo;
if char “=period then do;
add char to to_ken value;
call get_char for next char;

if'command_flag on

PRSI Q1

then turn need_number off;

in =5
i4 if char “=@igits then do;

reset to_ken, LRy

5=61

FINAL REPORT REMOTE CATA ENTRY
SECTICN 5 = CTS FUNCTICNAL DESCRIPTION

len_gth, and place;

turn need_numker off;

L

end;
else do;
reset to_ken,
length, and place;
end;
end;
else if char=" " then do;
decrement char_pos by 1;
turn need_number off;
end;
else do;
decrement char_pos by 1;
reset place;
turn need_number off;
end;
end;
end;

end;

end;
1f need_number is off then turn need_char off;
end;

else if char=period then do;

‘>% add char to to_ken value;

FINAL REPORT PEMOTE LAT2 ENTRY !
SECTION 5 - CTS FUNCTICNAL DESCRIPTICN
reset len_gth and place;
call get_char for next char;
if command_flag on then turn need_char off;

if char “=digits then do;

decrement char_pos by 1;
reset place;
turn need_char off;

end;

else if char=digits then do;
.adé char to to_ken value;
reset len_gth and place;

end;

h end;

else if char=specials then do;

add char to to_ken value;
reset len_gth and place;

end;

else if char=logics then do; '

add char to to_ken value;

; reset len_gth and place; g
% turn need_char off; i
end; f

else call error subroutine; l

end;

end;

563 e |

—

FINAL REPORT REMOTE UATA ENTRY
SECTION 5 = CTS FUNCTICNAL DESCRIPTION

end advance;

-
R

FINAL REPORT REMOTE CATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION

|
5.17 error 3
|
Description:
This module notifies the user of his errors and makes or obtairs

corrections, It 1is only in this module that the user can use "cease"

or "quit® in terminating commands,

Usage: %
!
call error (error_code, token, token_index, token_length, 1in_line,
char_pos, token_switch, line_len)
Arguments:
error_code nunber of error message in error table
token word or character from input command(s) line
; token_index beginning character position of token in input
% cormand(s) line
i token_length length of token |
in_line input line -fgii
et
Ak, e T
" .'. ﬂ& &
* 5«65 : Pl

it

FINAL PEPORT REMOTE DATA ENTRY
SECTICN 5 = CTS FUNCTIONAL CESCRIPTICN

N e LSRR

char_pos position of character in input command(s) line

token_switch switch indicating that a string is to be enclosed
within guotes

line_len length of input command(s) line

Performance:

begin error;
if "~debug” then print subroutine name;
orint command line;
if error that requires a reply then do;
if "-noquery” then do;
print error message;
notify user that processing of current command is terminated

and processing of next command will begin;

turn is_correct and error_flag_g on;

end;
else call cts_guery_user to print error_message and get reply;
end;
P else if error not reguiring a reply then do;
print error message; : : a
= i ¥
¥ v‘p;’
:
5«66

FINAL REPORT REMCTE CATA FENTRY
SECTICK 5 = CTS FUNCTIONAL CESCRIPTIONM

set input line to null string;

end;

do while (“is_correct);
if input line “= null string then do;

if input line = "cease" or "guit"™ then do;
turn appropriate error_flaj on;
turn is_correct flag on;

end;

else for error_code = 1,6,8, or 12 then do;
add reply to command line;
teset‘line_len,token,token_length,and char_pos;

end;

else for error_code = 13 do;
add reply to command line;
reset line_len and char_pos;

end;

At B O R P e SR ST G702

else for error_code = 14 the do;
set command line = reply;
reset line_len;
turn is_correct switch on;
end;

else for error_code = 15 do;

add reply to command line;

reset token,token_length,and char_pos;

end; i Y

S=€7 £ B

FINAL REFCRT PEMOTE CATA ENTRY
SECTION 5 = CTS FUNCTIONAL DESCRIPTION
else do;
print new command line;
do while (“okay);
ask user if okay;
if yes then turn okay_switch on;
else if no then do;
call cts_query_user for “"cease" or “quit";
turn okay_switch on;
end;
end;
if input line = ®yes®” then turn is_correct switch on;
end;
’ end;
else do;
if error_code = 2,3,4,5,7,9,10,11, or 13 then do;
set token to error-supplied correction; |
reset token_length,line_len,in_line,and char_pos; | f
if error_code = 2 or 9 then reset token_index;
if error_code = 2 then turn period_flag off; *

if error_code = 3,4,0r 9 then turn token_switch off; !

end; i
! if not "-noquery” then do;
print new command line;

ask user if okay;

if yes then turn is_correct switch on;

FINAL rEeCRT REM

FCTE
SECTION 5 = CTS

else if no then do;

call cts_cuery_user to ask user to enter

end;

enc;

if error_flaj on tnen return;
determine.length of o0lé command line and
if corrected line shorter, then pad with

end error;

5=69

CATA ELTRY {
FGNCTICNAL DESCRIFTICH

"cease” or "guit";

corrected command line; i

blanks;

FINAL REPORT REMOTE CATA ENTRY
SECTION 5 =~ CTS FUNCTIONAL CESCRIPTION
5.18 cts_qguery_user
Description:
This module is used instead of MULTICS command_query_ to remove
syster. dependence. It displays a guestion or statement to the user
ané retrieves any reply.

Usage:

call cts_query_user (qguery, echo, noguery)

Arguments:

query question or statement to be displayed to user

echo " switch determining whethere or not to echo the input
line back go the terminal - sare as “"~echo® arjument

noguery switch indicating if in batch or interactive node -~

same as "-noquery” argument

Performance:

FINAL REPCORT REMOTE LATA ENTRY
SECTIOK 5 = CTS FUNCTIOMAL LESCRIPTIOW

begin cts_guery_user;

if not "-noguery" then print question or statement;

get reply; i i
if "-echo"™ then print reply;

end cts_guery_user;

RS SRR R —

HSONSHPSN

R

5-71 T

Bad ~ﬁc'-.‘:‘t)

FINAL REPORT

PAGE

2-4

2=7

2-19
2-26
2=3¢
2-32
3-26
3-28
4-34
4-45
4~-74
5=3

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

REMCTE DATA ENTRY
TABLE OF FIGURES

FIGURE

1 Remote Lata File to MCCS Tree

2 MOCS Tree to Remote Data File

3 ASCII data format

4 ASCII File to MUOS Tree Conversion
5 KOCS Tree To ASCII File Conversion
S5A WAVES I/0 File Format

6 CTS Command Syntax

7 CTS Syntax Graph

8 TREEDATA file format

9 Floating point system structure

10 Full Adder Design

11 CTS Structure

APPENDIX A
A=1

T S———

—— i it

N, SRR

S TS

A AT AR AR R

e R

FINAL REPGRT

(1]

(2]

{3]

(4]

(5]

(7]

(€]

(9]

(1c]

REMCTE DATA ENTRY
REFERENCES

"MULTICS Programmers' Manual (MPM) - Reference Guide" (AG91)
HPM - Commands' (AG92) -

"WMPH - Subroutines®™ (AG93)

"MPii = Subsystens Writers' Guide" (AK92)

"Tektronix 4214 and 4014-1 Computer Display Terminal = Users

Introduction #anual (1974)"

"Tektronix 4921/4922 Flexible Disk HMemory = Users

Instruction tanual (1976)"

"Tektronix 4921/4922 Flexible Disk memory Unit - Service

Instruction Manual (1675)"

"Tektronix Digital Cartridge Tape Recorder - Users

Instruction Manual (1975)"

Perry, Cos "Conversion Between Floating Point

Representations®, Communications of the ACK, Vol, 3, No. 6,
c. 352, March 1560, '

Knuth, Conald, "ihe Art of Computer Programming, Volume 2"

APPENCIX B
B=1

FINAL REPORT REMOTE LCATA ELTRY
REFERERCES

(1973) .

b [11) Aho, &2lfreéd V. and Ullrman, Jeffrey [., 2rircirles of

Compiler Lesiin, 2dcdison-liesley kuklishini Co,, 1477,

[12] cries, Cavid, Ceorpiler Constructicn for (CTizitel Coizuters,

John %iley & Sons,Inc., 1871,

[12] Gries, Cavid, "Tne use of trancsition ratrices in cowgiling®,

Communications of the AC: 2 (Feb, 1268) 26-34,

i [14]) Lewis II, Philip M., Posenkrantz, Caniel J. and Stearns,
Richard E, Compiler Desian Theory, Addison-iesley
Fublishing Co., Inc., 1976,

PP

[15] Lyon, G., "Syntax directed least errors analysis for context
free languages, a practical approach", Coxrurications of the

(16]) wirth, Niklaus, Aljorithms + LCata Structures = Progrewms,
Prentice-Hall, Inc., 1976, !

