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ABSTRACT

—
~~~~~~~~ Although it is often the case that the parameters of the distribution of

demand are not known with certainty and that a Bayesian formulation would be

appropriate, such an approach is generally not used in inventory calculations

for computational reasons. Since one often resorts to a non—Bayesian formula-

tion, it is of interest to compare Bayesian policies with a comparable non—

Bayesian policy. It was anticipated that the non—Bayesian policy (quantity

ordered) would be an upper bound to the Bayesian policy. This result is es-

tablished for a two—period standard inventory model and for the n—period non—

depletive inventory model. However, a counterexample is given in the standard

inventory model for an alternative comparable non—Bayesian formulation.

1
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I. INTRODUCTION

The bulk of the development of stochastic dynamic optimization models has

been based on the assumption that the underlying probability distribution func-

tions are known with certainty. However, in most real—world applications a cer-

tain degree of uncertainty exists about these functions. Being in a dynamic

situation provides additional information via observations of the random vari-

ables under consideration. Thus, when faced with such uncertainty, it would be

de~.irahle if on~ can incorporate into the op timiza tion model th~ initial state

of knowledge as well as the additional Information as it becomes available.

A Bayesian approach is often appropriate In these cases, and dynamic program-

ming is the standard solution technique. A Bayesian dynamic program gives rise

to adaptive policies which are dependent on the past history. The state space

is expanded to include a new state variable that represents past information.

In [17], Rieder shows how such an expansion of the state space reduces the

Bayesian dynamic program to one with a completely known transition law. The op-

timal policy may then be determined by solving the resulting optimality equa-

tions that are in terms of the augmented state variable.

Among the advantages of a Bayesian approach are the following:

(1) The decision maker can express his/her intuition and previous experi-

ence by choosing a prior distribution.

(2) The prior distribution expresses the past experience and prior beliefs

in a quantifiable form which can be formally Included in the optimization model.

(3) Bayes rule provides a well defined procedure to revise, or update,

the prior beliefs as new information becomes available.

However, a Bayesian approach is not without disadvantages. We let $(tlw)

represent the partially specified distribution with w being the unknown para—

u~ ter. We also let g(w) denote the prior distribution of w. Bayes rule is

I ‘4
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applied to update g(w). In most optImization models the prior distribution

g(w) Is chosen from the conjugate family for ~(t~w). This choice is desirable

since it results in an updated g(.) within the same family, and hence simpli-

fies its determination. On the other hand , the dIsadvantage lies in the fact

that representation of prior beliefs is restricted to a choice from the con-

jugate family. This, generally, is not a serious problem when the conjugate

family is rich; that is when it includes distributions with different location,

d~~ persion , and shape , so as to represent a wide variety of states of prior

beliefs.

A much more serious disadvantage, however, is that the Bayesian dynamic

program has a multi—dimensional state variable, and it Is rarely cost—effective

to compute optimal solutions. In inventory applications this computational

intractability is typically “resolved” by assuming that the underlying proba-

bility distributions are known with certainty. This non—Bayesian formulation

can be thought of as an approximation to the Bayesian inventory model. The

question this paper considers is the relationship between the optimal policy

of the Bayesian inventory model and the non—Bayesian approximation.

In comparing the Bayesian with the non—Bayesian model a major difference

is that further Information will be forthcoming in the Bayesian case. There-

fore, it appears that one wants to avoid committing oneself in the Bayesian

case. In the inventory model committing means purchasing inventory, since if

too little is purchased more can be purchased in the next period, while if

too much is purchased there Is nothing to do but wait for subsequent demand

to lower inventory to a proper amount. Therefore, the anticipated result Is

that the quantity ordered for the Bayesian model is always less than or equal

to the non—Bayesian approximation.

The details of the model are presented in Section 2 and two alternatives

2
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for the formulation of the non—Bayesian approximation to the Bayesian model are

given. Section 3 is a counterexample which shows the Bayesian model ordering

more, using the first alternative formulation of the non—Bayesian approximation.

Section 4 establishes the expected result in a two—period model using the second

alternative formulation of the non—Bayesian approximation. Section 5 considers

the non—depletive inventory model which differs from the standard model in that

demand does not reduce the inventory level, Examples are repairable inventory

items and capacity expansion models where capacity plays the role of inventory.

For the non—depletive model, the expected result is obtained for the n—period

model using the first alternatiave formulation of the non—Bayesian approxima-

tion.

Other work in Bayesian inventory models has been mainly concerned with de-

riving the equations of optimality and the characterization of the optimal

policy. This work Includes Dvoretskey, Kiefer, and Wolfovitz [8], Scarf [19],

Karlln [14], Iglehart [13] , Hayes [12], Fukuda [11], Van Hee [22], and Waldinan

(23]. A fascinating computational result was obtained by Scarf [20] who showed

how the state variable In the Bayesian inventory model can be reduced to one

state variable in the case of linear costs, and a gannna demand with a conjugate

gamma prior. This result has been obtained by Azoury (2] for other demand dis-

tributions for both the standard and the non—depletive inventory models.

II. The Model

We will consider a finite horizon Inventory model with N periods and with

a linear ordering, holding, and shortage costs described by parameters c, h, and

p respectively . Following Scarf [19] we will usually assume that the demand

T is a continuous random variable, and that it may be described by a density

•(t~
w). For expository purposes we will assume that this density is from the

exponential class so that
—tw ‘1’$(tlw) — b(w)e r(t). ~

. ,
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We will assume that set of t such that r(t) > 0 is convex so that the distribu-

tion function of T is strictly increasing. Also we shall assume that an a

priori distribution for w , g(w) , is given.

At the beginning of the nth period, n < N, the information available

to the decision maker is the present stock level x, and the previous demand

observations t1.. .,t~_1, which may be summarized in the sufficient statistic
n—i

S = 
~~ 

Li
/n_i. The variables x and S will be the state variables of the

i=l
Bayesian dynamic program.

By Bayes rule the posterior density of w g iven (S ,n—l) is

n—i —w(n—l)S
g(w~S,n—1) = ~ b (w)e g(w) 

. (2)I ~~~~~~~~~~~~~~~~~~~~

Hence the probability density function of t given (S,n—l) Is

c~(tJS ,n—l) = r(t) f b(0)e Otg(0~s,n_1)do. (3)

If we introduce the notation c~ (tIS) = $(tIS,n—l), then 
~ (tIS) represents

the probability density of demand that faces the decision maker in period n given

that S is the mean of the previous n — 1 demands. Thus from (2) and (3) above

we get that

r (t)j~ b~ (8)e_Ote
_O (fl_l)S

g(9)de
—~~~ 

• (4)

.1’ b l(G) e
_O
~~

_i)S
g(0)de

Let f ( x ,S) denote the expected value of discounted costs from period n to

the end of the horizon, where the inventory level before order ing is x, the suf—
flcient statistic is 5, and an optimal ordering policy is followed. The func—

tional equa tion for f~(x ,S) is:

f5(x,$) = mm .{c(Y_x) + L(y~S)
y.~.x (5)

+ ~,/
“ f5÷1&_t~sct s~(t I s)dt}

~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~
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with fi~+i(x,S) E 0, and L~ (yIS), representing the expected one—period holding

and shortage costs , given by

I h(Y_t)
~n

(tIS)dt +f (t_Y)~~ (tIS)dt if y > 0
L~ (yI S) 0 y (6)

.J~ 
p(t_y)~~ (t~S)dt if y < 0

0
The parameter ~ represents the one period discount factor. The notation Sot is

the updated sufficient statistic which equals {(n—l)S+t}/n S + (t—S)fn for the

exponential case. It will cause no difficulty in what follows to allow the para-

meters c, h and p to vary with the period , or to permit the salvage funct ion ,

f
N+l

(x ,S), to be linear.

As indicated in the Introduction, it is often not cost—effective to solve

(5) for the optimal policy and instead a non—Bayesian formulation is solved.

This raises the question of what the non—Bayesian demand distribution should be

and we will give two possibilities.

For both alternatives of the non—Bayesian models we restrict attention to

a planning horizon of two periods, and we assume that the demand random vari-

ables are independently distributed , These variables will be denoted by T
1 
and

T
2 
with densities 4~

(.) and

The first non—Bayesian formulation called Case I defines the independent

demand distributions to be such that

= ~2(t) 
=~/‘4 ( tI ~~~~)g(w)d~~~~. (7)

So, in each period , the demand distribution of this non—Bayesian model equals

the Bayes estimate of the unknown demand distribution q ( t f ~) with respect to

the initial prior. This Case I non—Bayesian model, therefore, assumes that the

first estimate of the unknown distribution is the true one. In perIod 1 the

Case I non—Bayesian model and the Bayesian model have identical demand distrl—

but ions.

The second non—Bayesian model called Case II is formulated as follows.

5
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The distribution of demand 
~l 

in period 1 is given by ~1(t) as defined in

(7). In period 2, the demand random variable T2 is Independent of and

sat isf Ies
-

= T1 + T 2 (8)

So, the Bayesian model and the Case II non—Bayesian approximation have equal

distributions for both the demand in period 1 and the sum of demands over the

two periods. The difference between the two models is that T
1 

and T
2 are de—

~end~nt, while and T
2 
are independent . The existence of a random variable

T2 satisfying (8) is a non—trivial issue. In Section 4, it will be shown that

(8) holds for the normal random variable.

For either non—Bayesian case let f (x) denote the expected value of dis-

counted cost from period n to the end of the horizon where the inventory level

before ordering is x, and an optimal ordering policy is followed. The func-

tional equation for fn
(x) is:

= m m  ~c(y—x) + L (Y) + 

~/ 
?
n+i

_t
n
(t)dt

~
k (9)

with fN+l (x) = 0, and

- ~~~~~h y—t)~~~t)dt +f p(t_y)~~ (t)dt if y > 0
L (y) = 0 y

.1’ p (t_y)~~(t)dt if y < 0.

III. A Counterexample

This counterexample to the “result” that a Bayesian inventory model will

never order more than its non—Bayesian approximation assumes that demand for

the non—Bayesian approximation is defined by (7) (Case I). We will allow de—

mand to assume three values {0,l,2}. Let p1, I — 0, 1, and 2, represent the
2

probability of demand i, where p0, p1, and p
2 
are unknown, and E i~~~. 

= 1.
- 

1—0
The conjugate prior for p0, p1 and p2 Is the Dirichlet distribution which in this

6

.-
~~~-w 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ITTT i~~~-~



case is described by three parameters N0, N1, and N2. It Is known that the

Bayes estimate of the probability that demand is I is N~/E
J
N .. Let i be the

observed demand. Then the prior is updated by increasing N
1 to N~ + 1 and

leaving ~~ j + i, unchanged.
In this counterexample it is crucial that the distributions have very

small tails and so we let N
0 

= 1, N1 
= 97, and N2 = 1. For the first period

of the Bayesian model and for both periods of the non—Bayesian approximation,

the Bayes estimate of the probability that demand equal3 0 is 1/99, that demand

equals 1, is 97/99 , and that demand equals 2 is 1/99.

For the Bayesian model, the following table lists the probability distri-

butions for demand in period 2 for all possible realizations of demand in

period 1.

Demand in period 2

0 1 2

2 97 1Given 0 100

1 98 1
Given 1

1 97 2Given 2

All costs are linear with the following per unit rates. The ordering cost

c = 3, the holding cost h = 0, the penalty cost p = 3.009, and a piecewise linear

salvage function f
3
(x) = min (O,—1.025x). It was necessary to choose care-

fully the probabilities and the cost structure. The difficulty encountered in

making the right choice of numbers may be taken as an indication that in most

cases the Bayesian critical number in period 1 is not larger than the non—

Bayesian one.

Let J~(). n 1,2 represent the expected value of immediate costs plus the

7
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minimum expected future costs where x is the starting inventory in period n. As

an example say we start with x = 1 at the beginning of period 2. At the end of

period 2, our inventory level may be either 1 or 0 or —1. For the non—Bayesian

model, .12
(1) = (—l.025) (l/99) + (3.009)(l/99) = 0.020040404. For the Bayesian

model, assuming demand in period 1 was 0, then 32(110) 
= (—1.025)(2/100) +

(3.009)(l/lOO) = 0.00959. The following table gives the values of J2
(x) when

x = 2,1,0,—i for both models

inventory Level

2 1 0 —l

Non—Bayesian —1.025 0.020040404 3.009 6.018

L Bayesian —1.03525 0.00959 2.97891 5.98791J2(xIO) _________________________________________

Bayesian —1.025 0.01984 3.009 6.018
32(~~

1)

Bayesian —1.01475 0.04993 3.03909 6.04809
j

2 
(x 12) ______________________________________

The equation of optimality in period n in the non—Bayesian case is

= min~c(y—x) + J (y)}. (11)
y>x

The Bayesian equation is

f~ (xl
i) = ulin{c(y_x) + .J~(yIi)}. (12)

y.~:x

Using the numbers given in the table above, and recalling that c = 3, (11)

and (12) show that the optimal ordering level In period 2 is zero for both the

non—Bayesian case and the Bayesian cases.

In period 1 there is no demand history and the Bayesian as veil as the non—

:: :5

1an model have only one state variable. The values of the functions

8
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Non—Bayesian Bayesian

Ji(2) 0.039675951 0.03968

j
1(l) 3.039505458 3.039703838

j
1
(0) 9.018 9.018

For exailpie for the Bayesian model

= (3.009)(1/99) + (l/99)f2
(l~0) + (97/99)f 2(0l1) + (l/99)f2(—l12)

= 1/99[3.009 + 0.00939 + (97) (3.009) + 6.039091

= 3.039703838.

The equations of optimality (11) and (12) indicate that in period 1 the

Bayesian model with an inventory level of 0 orders 2 while the non—Bayesian

model with an inventory level of 0 orders 1.

IV. The Standard Inventory Model

In this section we will consider the two—period model and assume that the

demand distribution in period 2 for the non—Bayesian approximation satisfies (8)

(Case II). We will show that for the exponential class of distributions satisfy-

ing a single—crossing hypothesis, the Bayesian inventory model will never order

more than its non—Bayesian approximation. The proof will assume continuous ran-

dom variables. It appears that the proof can be modified in a straight—forward

way to hold for discrete random variables of the exponential class.

The single—crossing property we will need is that there is a function

where t
1 
is the observed demand in period 1, such that for any given t1, — ~~~

< ~, the distribution functions of demand in period 2 satisfy the following

~ (t It 1) < ~~(t) t < m(t1)2 — (13)
4’2(tIt 1) > ~2

(t) t > m(t1
).

We will show at the end of this section that the normal distribution satis—

flee (13). In (21 it is also shown that (13) holds for the Poisson distribution.

9 4
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We note that the concept of a single crossing property has proven quite

useful in determining bounds in reliability theory (Barlow and Proschan [3,

Theorem 4.2.18]).

We now state two results of Karlin [14] for the Bayesian inventory model.

Fact 1. The optimal return functions f(x,S) defined by (5) are continuously

differentiable and convex functions of x.

Fact 2. The optimal policy is determined by critical levels x~ (S) ,  such that if

at the beginning of period n the inventory level is x, and the current suff I—

cient statistic is S. then the optimal policy is to order Max(x*(S)_x ,0)

It is well—known that similar results hold for the non—Bayesian inventory

model. The critical levels for the non—Bayesian inventory model depend only on

the period n, and will be dentoed by x .  The following lemma gives expressions

for the derivatives of f2 
and f2 with respect to x where f2 

Is def ined by (5)

and f2 by (9). Note that we ~~
1 iOW the holding and penalty costs to vary with

the period.

Lemma 1. f~ (x ,t1) max{—c,—p2+(p2+h2)~ 2
(x~t1)} and

= mnax{—c,—p2+(p2+h2)~ 2(x)}.

Proof. From Fact 2 and the equation of optimality (5).

— 
if x ~ x~(t1)

2 x,t1 
— (14)( 14(xIt 1) if x > x~(t1)

• 
- 

where L(x~t1) = — p2 + (p
2
+h
2
)~~
f’ 42(tIt 1)dt. The critical level x~(t1

) is

precisely that value of x such that — c — L~ (xJt 1). Since L
~(x!t1) is increas-

ing in x the result Is established for f~(xIt 1). The same approach also works
for which completes the proof.

10
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Lemma 2. In period 1, the optimal critical level for the Bayesian model

is less than or equal to that for the non—Bayesian model, 
~~ 

< x~ , if for any y,

ET 
max{_c,_p2+(p2

+h2)4 2(y_T1~T1)}

>E~ max{—c , —p2+(p2+h2) ~2 ~~~~~ 
~~~•

Proof. The critical level x~ minimizes G1
(y) = cy + L

1
(y) + 

~
ET f2(y—T11T1

) ,
1

and ~1
minimizes ~1

(y) = cy + 1
1(y) + ~~~ 

f
2
(y—T1

). Since 0
1

(y) and ~1(y) are
1

differentiable and convex in y, then x~ is that value of y for which

G~(y) = c — p
1 + (p1+h1X1

(y) + E
1 
f~ (y—T1~

T
1
) 0

1
and is that value of y such that

~j(Y) = c — + (p1+h1)~1(y) + E~ ?~(y—P1) = 0.
1

By Lemma 1 and the hypothesis ET 
f~(y— T1lT1) > E~ I~ (y—~1

) ,  so that G~ (y) >

1
since ~1

(y) = ~1
(y). Since and are increasing functions, x~ <

which completes the proof.

Therefor e, our objective is to show that the hypothesis of Lemma 2 is sat-

isfied. Our strategy will be to show that the random variable Y = 4’2(y—T1~T1)

is more risky in the sense of Rothschild and Stiglitz [18] than the random vari-

able X = ~2
(y—~1

). The related idea of one random variable being more spread

than another was introduced by Bessler and Veinott [5] and applied to an inven—

tory problem.

Lemma 3. (Karlin [23]). If t~ > t1, then ~D2 ( .I t ~ ) < •2 ( . f t 1) .

Lemma 4. The function m in (13) is non—decreasing.

Proof. Let t~ > t1, we want to show m(tj )  > m(t
1
). Suppose the contrary,

that m(t~) < m(t
1). Then there exists an x such that m(tj ) < x < m(t

1). By

(13), $2(xlt 1
) < I~ (x) and ~2 (x l t ~) > ~~(x) . Hence tD2 (x I t ~ ) > •2 (x j t 1), but

1:Tltlp’I ~1~II ~I1 11 >

~~~~~~ I ~ 1°~II11III ~ ~



Lemma 5. For every y there is a q(y), possibly Infinite, such that

c
~2(y—t 1~t1

) 
-~~ ~2(yt1

) if t1 > q (y)
(15)

> ~~(y—t1) if t1 
< q(y).

Comment. Equation (15) differs from (13) in that t
1 
is fixed in (13) and

varies tn (15).

Proof. Let t~ be such that ~2(y—t~~t~
) < -~2(y—t~7. 

If no such t~ exists

the lemma holds for q = + ~~~. By (13), y — t~ < m (t~). By Lemma 4 for any

t1 
> t~, m (t1

) > m (t~) and thus y — t1 
< y — t~ < m (t~) < m( t

1). We invoke (13) to

obtain ~2(y— t
1 

t
1
) < ~2(y—c 1

). Therefore, (15) holds where q(y) =

Inf {t~ :4’2(y—t~) < ~‘~ (y—t~7). The infimum is achieved since

and ~2(y—t~) are continuous in t~ .

Lemma 6. E
T ~2(y—T1~T1

) = E~ ~2(y—~1).1 1
Proof: ET 

c~2
(y~T, jT1 ) E

T 
P(T 2 < y—T., IT1). By the properties of condi-

1 1 .L

tional expectation, ET 
P(T

2 < y—T
1JT1

) P(T
1

+T2 < y). Similarly E— ~2(y— ~ 
) =

1 1
E— P(T < y—T ).2 1

By the independence of T
1 

and T
V 

E~ P@2 < y—~1
) = P(~1+~2 < y).

1
This concludes the proof using (8).

Lemma 7. Let y be a given arbitrary inventory level. For any z,

> 
~
/‘

~~ 2
(y_t

1
)~1(t1)dt1 - (16)

Proof. If z < q(y) then (16) follows from Lemma 5 and the fact that 
~~~~~~~~~~ 

For

z > q(y), let A(z) =
j
l~ G2(~—t1Jt1)41

(t
1
)dt

1 
and B(z) ~‘,/‘~~2(y— t

1
)~1(t1)dt1

. 

•

Then A(z) .= J ’ $2(y— t11t1)$1(t1)dt1 
_
Jf’ •2(y—t1It1)~1(t1)dt1

B(z) =/“ ~2(y— t1
)~1

(t
1
)dt1 

_
,J~

°’~ 2
(y— t1

)~1
(t
1
)dt1,

~~~~~~~~~~ r~~~~~~~~ - 

~~~~~~~~~~ T~~~~~~ TT -



and (16) follows from Lemma 6 and Lemma 5.

Lemma 8. Let X = ~2(y—~1) ,  have distribution function F and Y = ~2
(y—T1 IT1)

have distrubution function C. Then for any a, 0 < a < 1

~dG(~ ) >f ~~dF(w)

G
4
(ct) F~~ (a)

where G~~(a) is well—defined since by assumption 
the distribution function of

is strictly increasing. A similar statement holds for

Proof. We note that Y and X are strictly decreasing in T1 
and the for-

mer by Lemma 3. Therefore, Y > G~~(a) If and only if T1 < ~1
1

(a) where is the

common distribution function of T1 
and T

1
. In other words, Y will be in the top

a percentile exactly when T1 
is in the lower a percentile. Also X > F~~ (a) if

I and only if < ç
1(a). Consequently, using Lemma 7,

Co

,/ wdG(w) 
~/ ~2

(y_ t1Jt1
)4~1(t1)dt1 >

G 1(a)

Co

,/‘ l~~~~_ t )~~ (t )dt

~T (a)

which completes the proof.

Definition (Rothschild and Stiglitz [181).

Let X and Y be two random variables with distribution functions F and G

respectively. Then Y is more risky than X if and only if for every z

rz
J F(x)dx < J G(y)dy. (17)

In [18] Rothschild and Stiglitz establish two other equivalent definitions

of risk. We now derive a general result for comparing the riskiness of two

random variables.

4
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Proposition 1. Let X and Y be two continuous random variables with

strictly increasing distribution functions F and C respectively. Also let

E(X) = E(Y) . Then Y is more risky than X if for every a, 0 < a < 1.

ydc(y) ~

G (a) F 1(cz)

Proof. In order to establish (17) for all z it suffices to establish (17)

for z such that min(F~~(0), c~~(0)) < z < max(F~~(l) , G~~(l)). For such z the

fact that F and C are continuous and strictly increasing implies that there is

an a satisfying either F 1(a) = z or G~~(a) = z.
Suppose F~~ (a) = z and C~~ (a) > F~~(a).

• .J
_ Co

ydc(y) — [ l_G(~ )]~~
] 

+ j
” (l—G(y))dy, and

C~
4(a) 

C~~(a) G~~(a)

J=
Co

xdF(x) = -[(l-F(x)]x 
]

Co 

+ (l-F(x))dx.

F 1 
(a) F 1 (a) F (a)

Applying our hypothesis,

(l—a)[G~~(a)—F~~(a) ] +~~/‘ (l—G (y) ) dy — 1
fS (]—F(x))dx > 0.

F~~(a)

Since (l—G(y)) is decreasing,

11 ( 1—G(y))d y >  [G~~ (a) — F~~(c~)3[1—G(G (a))] = [G~~(a) — F~~(u)] [1—a].

F ’ (a)

Therefore by combining the last two inequalities,

Co

J (1—G(y))d y > f  (1—F(x))dx, and
F~~(a) F~~(a)

rF
_l (a) (a)

J G(y)dy > J F(x)dx since E(x) = E(Y) .

J~~~~~ -~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . •. ~~. ~ 
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Now suppose F 1
(ct) — z and F~~(a) > G~~(a) . Since Ex Ey the hypothesis

F~~(a)is equ ivalent to the inequality 
~
/ ‘  xdF(x) > .1 ydG(y)~

Applying intergration by parts we get

—l —l —1~ 
a

~1F (a) F (a) C (a) C~~(a)
xF(x)

j F(x)dx — yG(y)] 
+ ~C C(y) dy > 0.

F~~(a)
Since C is increasing, j I’ G(y)dy > [F~~(a) — C~~ (a) ]G (G~1(a) ) =

G 1(a)
[F~~(a) — G~~(a)]a. Combining these two inequalities yields,

F (ci) F (c~)G(y) dy - 
.[

F(x)dx >0.

The proof where G ~(c&) = z is similar and this completes the proof.
Proposition 1 holds where X and Y are integer—valued random variables. In

this case when z is not an integer, there is no a such that either F~~(a) or
—1 —C (a) = z. However , the above proof works by establishing (17) for z and z where

z = max{F~~(a) : F 1(cz) < z, G 1
(ct): G 1(a) < z) and

= min{F~~(a): F 1(a) > z , G~~ (a) : G~~ (a) > z}.

Then we use the fact that F and C are constant on (z ,~ ) to obtain (17) for

z. If X and Y have strictly positive probabilities on the integers then z and

z will be the two integers surrounding z.

Theorem 1. In period 1 the optimal critical level for the Bayesian model

is less than or equal to that of the non—Bayesian model .

Proof. By Lemma 8 and Proposition 1 the random variable ~2(y—T1jT1) is

riskier in the sense of Stiglitz and Rothschild (181 than ~2 (y—~1) .  In (18]

they show that if U is a convex function and Y is riskier than X then E(U(Y) ) >

E(U (X)) .  This is precisely what we need to satisfy the hypothesis in Lemma 2

letting U(x) — max(— c ,—p 2+(p 2+h2)x) .
We conclude this section by giving some results which show that (8) and the

single—crossing property are satisfied by the normal distribution. In [23 it

is shown that (8) as well as (13) hold for the Poisson distribution. The normal

15
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distribution has the drawback as a demand distribution since there is a strictly

positive probability of negative demand. If this probability is sufficiently

small , this should not proscribe its use. This d i f f icu l ty  is really no more

serious than using an unbounded distribution such as the Poisson in a situation

where an absolute bound can be given for demand. In [4] Bather has used a Weiner

process to describe demand , and the increment of a Weiner process over any in-

terval is normally distributed.

Example. The Bayesian demand T in period n, n = 1,2, is a normal random

variable with an unknown mean w and a known variance cr2. The conjugate prior on

v is also normal with mean p0 and variance ~~ DeGroot (7] gives the distribu-

tion of T
1 and (T

21T1=t1
) and Azoury [2] shows that T1 + T2 is normal with a mean

of 2p
0 
and a variance of 4o~ + 2a2. Therefore, (8) is satisfied with T~, T21t1,

and as given in the table below.

Period 1 Period 2

Bayesian Tf_N (P0,G~+c1
2
) (T21t1)—.N (r1P0+r2t1,o

2+a~r1)

Non—Bayesian 
~~~~~~~~ 

N(~0,a~+a~) T2 N(~0, 3a24.~2)

where r1 = ~2, (c~+a2) and r2 =(a~, a
2+a2)

The single crossing property of the normal distribution is established by

the next two results.

Lemma 9. If F and C are ciistribution functions of two normal random vari-

ables with means and 
~G’ and variances 4 and respectively (with 4+c~~) ,

then there exists an x0 ~~~ _o~,co) such that

F(x) < C(x) if x < x0 and

F(x) > C(x) if x > x0

if and only if < a~.

Proof. Let Z represent the standard normal variable.

16



F(x) = p ( Z  < (x_P F)/ O F) and CCX) = P(Z <

Now F(x) < C(x) if and only if (x_1i
F
)/aF ~ 

(x_Pc)/ac or x 
-
< (O

GPF
a
FPG

)/(O
C

GF).

Hence F(x) > G(x) if and only if x > (aGPF
_Cr
FPG

)/(O
G
_O
F). Therefore

x
0 

= (U
GPF

_O
F1JC)/(OG

_O
F
). (18)

Proposition 2. For any given t1, there exists an m(t1) c(—°°,°’) 
such that

~2
(x It1) < ~2

(x) when x t m(t1
), and ~2

(x J t 1) > ~~(x) when x > m (t1).

Proof. This is a direct consequence of Lemma 9 since the variance of

2 ~‘2  -‘ ~) — 2 2(T
2

jt
1
) is a + cy~ o / ( a ~+a) and variance of T2 

is 3ci
0 

+ ci and clearly

a2 
+ cr2cr2/(c~

2+cr2 ) < ~2 + 3a~. From (18) we see

(r
i
p
0
+r
2
t
1
)
~~
’
~~~~

Ic
~ 

— p0Ja
2+a~a2 / ( a~+a2) 

. (19)

~~~~+3a~ J~~i.a
2
a
2/(a2+a2)

Note that m(t
1
) In (19) is increasing in t1 

as promised by Lemma 4.

The Non—Depletive Inventory Model

Mathematically, the non—depletive inventory model differs from the standard

inventory model in that demands cause shortages but do not decrease the inventory

level. A consequence of this hypothesis is that the inventory level is non—

decreasIng over time. The problem which motivated this analysis is the inventory

control of recoverable or repairable items (Sherbrooke [21], Miller [15],

Miller and Modarres—Yazdi [16]). Recoverable spare items are purchased to offset

a random number of items that will be in repair. At each time point during the

period if the random number of items in repair (demand) is greater than the number

of spares (inventory level) a shortage results. Next period the spares are avail—

able to meet demand and the decision is whether to purchase more spares.

This model is also applicable to capacity expansion with linear costs - •

(Arrow , Beckman, and ICarlin (pp. 92—105 in (4]) ,  since demands result in short—

ages but do not deplete the capacity (inventory).

17
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Rather than being restricted to a comparison between the Bayesian and non—

Bayesian models we Introduce the computationally valuable idea of a partially

Bayesian model of order N or model where 1 < N < N. A partially Bayesian

model of order N updates the distribution of demand up to period N using ~einand

information of the previous N—i periods.

Therefore, B1 
is the non—Bayesian model (Case I) and B

N is the Bayesian

model. The following exhibits the sequence of demand distribution functions

for the models B
M 

and BM+l.

Periods: 1 2 N N-I-i ... N
model BM ~l ~2 ~M

model B~~1 ~l ~2 ~~ ~~M+l

Its computational usefulness comes from the fact that a partially Bayesian

model is easier to solve than a Bayesian model (especially when the practical

range of the sufficient statistic Is expanding), yet be nearly as accurate in

cases where the estimate of demand parameters stabilizes quickly, and when most

of the ordering takes place in the early periods.

Our objective is to show that when N1 < M
2 the amount ordered with model

BM is never more than with B for the first N
1 periods. The proof will be

2
given for continuous random variables in the exponential class. In [2] the proof

is given for the non—parametric Bayesian case with Dirichiet prior . The proof

uses some results of Ferguson [9 ,10] in non—parametric Bayesian statistics.

Let f~~(x ,S) denote the expected value of discounted costs from period n to the

the end of the horizon for a partially Bayesian model of order H, where the in—

ventory level before ordering is x, the sufficient statistic Is S, and an opti—

mal ordering policy is followed .

The optlmality equation for the model varies depending on whether the

sufficient statistic is updated or not. For periods n 1,..., H—i,

18
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f M (x S) = mm ~c (y—x) + L
M
(yI S) + 

~~~~~~~~~~~~~~~~~~~~~ (20)

where

LM (y~g) = j (t_y)~ (tIS)dt , and Sot = S + (t—S)/n.

Since Inventory is non—decreasing any holding cost can be included in the
N

the ordering cost by c = c
i=n

For

f
M
(x S) = mm {e~ (Y_x) + L~(yIS) + 

~~~+i
(y,S)} (21)

y.?:x
where

L~ (y~S) J
f’P(t_y)4~~(tIS)d t, and f~~1 = 0.

The main difference between (20) and (5) is that in (20) the starting inven-

tory in period n + 1 is y rather than y — t. The same applies to (21) when com-

pared to (9).

We begin with a result analogous to Lemma 1.

Lemma 10. ~~ f
M (x,S) max

where
J~ (x,S) = LM(xI S) + 1~~+l~~80t n (t 1 I t
if n < M and for n > M

J~ (x,S) = LM(xIS) + 8f
M
~1

(x,S).

Proof. From Fact 2 given before Lemma 1 and the equations of optimality

(20) and (21) there exists x*M(S) such that

d N —c ‘if x < x~~(S)
~
.— f (xIS) —x U 

;~~

- J~ (x,S) if x > x M(s

19
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The critical level x*M(S) is precisely that value of x such that

—c = ~~~ — J
M (x,S). It remains to show that ~~ J

M (x ,S) is increasing in x. Now

for n < M—l,

~J
M(x S) = — p+p4~~(xJS) + ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(22)

The convexity of f
M
÷l
(Fact 1) implies that ~~ f

M
1(x 

Sot) is increasing in

x which completes the proof for n < N—i and the proof for n > M is the same

after modifying ~~~J
N(x,S).

Lec~rna 1l. Le. T be the d~zuand in period n. For , 1 < n <

ET~fl÷l
(xISoT)) = ~~(xIS).

Proof. This follows as a basic consequence of conditional expectation.

Chung [6, Theorem 9.1.5.].

Lemma 12. Let T denote the demand in period M. Then for k = N + 1,.. .,N

d M+1 d I,t
ET ~~; ~k 

(x ,SoT) -~ a~ 
fk

(x,
~~~

Proof. We begin the induction for k = N. By Lemma 10, equation (22), and

the fact that ~~~~ = 0,

~T ‘~ f~~
1(x,SoT) = E

T 
maxI_c,_p

~
FØM+l(x~

S T)).

Since U(x) max {—c ,— p+px} is a convex function , by Jensen ’s inequality

~~ f~~~ (x ,SoT) > m x{_c ,—p+pE,~~~~1(x~SeT))}

= max(_c,_p+ØM(xIS)} 
by Lemma 11,

~~ f~ (x,S).

Therefore, the result holds for k = N. Now assume it holds for some k,

• M + l < k < N , and we show that it holds fo r k — i .  By Lemma lO and (22)

E
T ~~ f~~~ (x,S.T) = ET max{—c,—p+p&~11(x~SoT) + B ~~~~ f~~~(x,SoT)}.
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By Jensen ’s inequality

d M+lET dx fk_l
(x ,SOT) > max~_c ,p+pE~~~1÷1(xISoT) + BET 

_4_ fM+l(x SoT)] >

max{_c,p+p
~M

(xtS) + B ~~ f~ (x ,S)} = ~~ f~~1
(x ,S).

The second inequality uses Lemma 11 and the induction hypothesis Q.E.D.

d M+l dLemma 13. For k = i,2,...,M, 
~~ 

f~ (x ,S) >
~~~~

— f~ (x ,S).

Proof. For k = N and by Lemma 10,

d M+1
~M 

(x ,S) = r.axf—c,—p+p~~(x~S) + 
~
3E

T ~~~ f~~~~ (x ,SoT) }

> maxC c, p+pc
~
)
M(xI S) + B 

~~ 
f
~+i

(x ,S)}

= ~~~~
— f~ (x ,S), the inequality by Lemma 12.

Now we assume the result holds for some k, where 2 < k < N, and show that

it holds for k—i.

d M+l
~~ 

fk_l (x ,S) = maxC_c,_p+p
~k l (xi S) + BET ~~~

— f~~~ (x ,SoT)}

and 
~~~~

— f~~1
(x ,S) = max{_c,-.p+p

~k l (xI S) + BET ~~ ~(s,5°T)}

By the induction hypothesis we have

d M+l 
~ 

> -
~
f-- f~ (x ,Sot) for every t so thatf (x ,Sotdx k

d M+l SoT) > E
T ~~ 

f~ (x ,SoT) and henceET~~~~
fk 

(x ,

d M+l d M
~~ 

fk_l (x ,S) >
~~~~ 

fk l (x ,S),  which completes the proof.

The following theorem compares the critical levels for models B~~1 and B
M

during the first N periods.

Theorem 2. The critical levels satisfy xf~~ (S) < x?(S) for £ = l,2,...,M.

Proof. For £ + N, x~
M
~~(S) satisfies

d M1-ic+
T

J (xx M ,S) O o r

C — p + p M(xiS) + BET ~~- f~~~ (x ,SoT) = 0 (23)p
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while x~
M(S) satisfies c + ~~~~

- J~ (x ,S) = 0 or

c — p + 
~~M
(
~~
S) + B -f-- 

~~+i
(x,5) — 0. (24)

It follows from Lemma 12 that

d M+1 d MET dx fM÷l(x ,SOT) > ~~
— f~~1(x,S)

which implies from (23) and (24) and the fact that ~~~
— J~~

1(x ,S) and ~~ J~(x,S)

are non—decreasing functions of x, that x~
M
~~(S)< x~

M(S).

Similarly for 9. < N, x~~~~(S) satisfies (23) substituting 9. for M since model

B~~1 updates in period 9.,

9. < N, while x~
M(S) satisfies c + i— J~(x,S) = 0 or

c — p + p~9.(x~S) + BET ~~~~~ f~÷1(x,
SoT) = 0.

It follows from Lemma 13 that

d N+1 d N
~~ 

f
9.~1

(x ,Sot) -~ a~ 
f
9.+i(~

c,S0t)

for every t, and thus

f— 4~~(x ,S) > ~~~
— J~(x,S)

which implies that x~~~~(S) < x~~ (S) ,  and this completes the proof.

For 1 < N
1 

< < N, we cart now derive a comparison between the critical

ordering levels for models B~~ and ~~~ during the first N1 
periods.

• Corollary 1. For H.~ > M2, x~N1(S) < x 2c s~ for 9. = 1,2,.. .,M1
. Beyond

period N.~ they are not comparable.

Proof. Apply Theorem 2 (H
2—N1) times.

Corollary 2. In period 1, the optimal critical level for the Bayesian model

is less than or equal to that of the non—Bayesian model.

22
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Proof. Apply Corollary 1 with N1 
= 1 and N2 = N.

The results of Theorem 2 and Corollaries 1 and 2 give a description of the

variation In optimal critical levels in terms of the variation in the number of

Bayesian updatings of the demand distribution. The following table presents the

above results for the various models. The dependence of the critical levels on

the current posterior distribution is suppressed , so write X instead of X Cs).

Model

B
~,+l 

B~q B2 B1

*N_l *M+l *M *2 *11 x
1 

< x
1 

< ... < x
1 

< x1
< ... < x

1
< x

1

*N_l ... *M+l *N+1 ... *22 x
2 

< x
2 < < x

2 
< x

2 
c < x

2

*N_i *M+l *M

Period 
M x~ < x

M 
< ...

*N l  *M+lM+l 
~~~~~ 

X~~~~~1 -~~ ... ~~ N-I-i

*N lN-l XN 1 < XN 1

N

I
I
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