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In this paper a new subset selection rule for selecting a subset containing

the least probable nultinomial cell is defined . The rule is slx wn to be

miniina x and admissible in the class of rules which have a preassigned proba-

bil ity of at least ~* of selecting the least probable cell provided that P*

is zufficiently large . The loss used is the iunber of non-best cells selected .
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A Mini.max and Admissible Subset Selection Rule
for the Least Probable j~kiltinomial Cell

1. I~ff1~ WCr ICN. In this paper , subset selection problems for the multinomial

distribution are considered . In these problems , the aim is to select a non-

empty subset of the cells wnich contains the cell with the lowest cell probability.

Having restricted attention to ruler i-thich have a high probability of including

the least probable cell , the go~il is to find a rule which effectively excludes

the cells associated with the larg t~r cell probEbilities. This leads to the

use of the nun~ er of non-best cells selected as a measure of the loss to the

experimenter. In this paper , a subset selection rule is presented which is

mininiax and admissible for this problem. The rule is simple and easy to imple-

cent and in some cases is similar to a rule proposed and studied by Nagel (1970) .

Alam and Thompson (1972) considered the problem of selecting the single

least probable cell . The subset selection problem for the niultinomial distribu-

tic i has beezi previoi.isly considered by Gupta and Nagel (1967) , Nagel (1970) ,

Panthapakesan (1971) and Grpta and 1-luang (1975) . Berger (1979b) described a

class of mini,~x ir~ltincmial selection riles. Minimax selection rules for

nr~l~inoinial and c~her distribut ions have been considered by Berger (1979a) and

~jcrnstad (1978) . Berger and C ipta (l~7~)) found minimax and admissible subset

selection rules for locat ion para:eters but the class of selection rules

considered was rc~trjctcd. To this author’s knowledge, this is the first

time miniw.ax and adi~.issible subset selecticn rules have been derived for the

multinomial or any other problem.

Section 2 contairs the necessary notation for a formulation of the problem.

The select ion rule is defined in Section 3. The minimaxity and admissibility of

• the rule is proven in Section 4. 

~~~~~~~~~~~~~~~~~~~~~~~ - -



Y~ATICP~I P~NJ P3RMJLATION. Let X = (X1, ..., X~) be a nultinanial random

vector with 
~~~ 

X1 ~ n. and will denote vectors in the sample space ~of ~~ .

Let = (p1, 
~~~~~~~~ 

p~) be the unknown cell probabilities with 
~~~~~~~~~, 

p1 1. The

ordered cell probabilities will be denoted by ~ 13 ~ ~~~~ 

~ kY The goal of

the experimenter is to seloct a subset of the cells including the best cell ,

the cell associated with p~. ~~~~~~ 

A correct selection , CS, is the selection of any

subset which contains the best c~ll.

The act iet; space A for a subset selection problcm is the 2k 
- 

~~ non-empty

subsets of {l , 2, ..., k}. In gener al a selection nile is, for each ~~~, a

probability distribution cii ii. But as de~crib sd in Berger (1979a) , for our

purposes a selection rule can be defined by the individual s~lectic’n probabilities ,

- 
w~ere *~~ ) is the probability of including the ~th

coil 1-.aving observed = x. A necessar y and sufficient condition on $ to

i~is’ure th~ e.dsLer:e of relection rule which always select s a non-empty subset

is ~~ ‘Y j f~) ~ 1 2cr aU x.
Let ~* b•.~ . r assigned f ixed nuther such that 1/k c P~ c 1. As is

t.ra dition.~.a. , t:-ie o:Aiy selection rules to be considered are those which satisfy

the P*~ CCndi ti~~~, v~~., inf1, P•.(CSk,) ~ P~. The set of all selection rules

which satisfy the ?~‘ -cc.~ditic~ will be denoted by D~~ .

The lcss to be used herein is the numbeT of no~-best cells selected, S’ .

A non-best ce)l is any ~ l1 for i~~ch p. :~ -
~~~~~~~

,. Thus the risk for a selection

rule * at a parameter point ~~ , i.e., tho expected nuter of non-best cells

selected, can be calculated from the indivi’!ual selection probabil ities by

E ,(S’I.) — Ija~~)
Ep*j(~

) where a(~) (1. c (1, 2, . . . ,  k}: > p~~-~}. This

definition of the loss and risk differs from the definition used elsewhere (see

e.g. Berger (1979a) ) ~~ P 11 ~ 2] but it e ’rees with the usual def inition if

Prj j  < 

~~2] 
and has the aivau t~ge of belag por-~utati -~n-illy invariant . It is

easily checked that the minimax and admissible selection rule

I

~ 

:_ •~~~
_
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to be derived herein is also minirnax and admissible for the definition of S’

used in Berger (1979a) .

The subset selection problem as defined above is invariant under the group

of pernutations on the sample space . See Ferguson (1967) for the general

definitions of invariance . If a selection rule is invariant under the group of

permutations then these t~o relationships are true about the individual

selection probabilities: (1) For every i c (2, ..., k) and every 
~~~, *~(~) —

where y1 - x1, y~ - x1 and y~ = x~ for j  not equal to 1 or i; and (2) For every

i £ (1, ..., k}, 
~~~~~~~~~~~ 

= where x1 = y1 and (y1, ~~~ ~~~~ ~~+r ~~
‘

is a pernutation of (x1, ..., x1_1, x~~1, . . .,  xx). Pernu
tationally invariant

selection rules will be of interest since, by Theorem 2, page 156 of Ferguson

(1967), a selection rule is admissible in the class of all selection rules if it

is admissible in the class of invariant selection rules.

Finally, some results involving Schir functions and stochastic majorization

will be used in the subsequent sections . All the notations , definitions and

conventions will be as presented in Proschan and Setlvraman (1977) and Nevius,

Proschan and Sethuraman (1977) and will not be repeated herein .

3. A CLASS OF SELECTION PJJLES. In thi s section a class of selection rules is

defined . The form of these ru.: ‘~s is examined and the fact that these rul es

satisfy the P*~conditicn for certain values of PA is proven.

Selection rules of the following form will be examined. Let 0 c c ~ 1

be a fixed constant . Define the individual selection probabil ities by

1

(3.1) *~(~) = 
{a 

~~‘ :

_ _  
______________________ 4
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w e r e the n ers 0 <  land 0 c M <  k - 1 a r e chesen so tMt E..*~~ ) ape

where — (1/k, ..., 1/k). The defined by (3.1) satisfy the invariance

property (1) of Section 2 so in the future all the discussion will be in terms

of 
~~~~~

. ~bw further constraints will be placed on c which will further limit

the form of 
~~~~~~ 

For each ~~~, define A(~) - {~: x1 - y1 and (x2, ..., Xk) is a

permutation of (y2, • •
~~~~ ~

‘k~ ~

Leana 3.l. There ex ists c>O such that, i f l - e < c < 1 , then
1 x1 < t o r x1 - t a nd~~3_2 c 3 < M

(3. 2) *tC~
) — A(~)

0 otherwise

for same t £ (0 , ..., ii) and some

Proof. Let fCc , ~) — 
2c~~. Clearly f(c, ~) - f(c, ~) for every c if

~~eA(~). The le~m~a will be true if the fo11owing t~~ facts are true for every

1 - e c c c 1: Ci) f(c , ~
) ~ f(c, ~) if ~ 4 A(~) and (ii) f(c , ~

) > fCc , ~
) if

x.1 > y1. To see (i) , fix and with ~ A(~). Then f(c, ~
) and f(c , ~

) are

ti~~ different polynomials in c. Hence f(c, ~) - f(c , ~
) for only a finite nunber

of values for c. But f(l , ~) — k - 1 - f(l , ~). So there exists e > 0 such

thatif 1-e c<1tMn f(c,~~) # f ( c ,~~) . By considering all such pairs

and ~ (there are only a finite nunber of such pairs in the sampl e space)

and taking the minimun £ obtained , an s > 0 which ~~rks for any pair ~ and

is obtained. To see (ii), note that

~~ f(c, 
~~ c—1 - — - < - — Zj .2 ’j — ~~ f(c, ~2t~—i



S

Since f(c , ~
) and f(c , ~

) are continuous functions of c, inequality (i)

implies either f(c , ~
) > f(c , ~

) for every I - ~ c c c 1 or f(c , ~
) c f(c, ~

)

for every 1 - € c c c 1. The inequality of the derivat ives implies

f(c , ~
) > f(c , ~~ II

Note that every value of c satisfying 1 - ~ < c c 1 gives rise to the same

ordering of the ~ ‘s. That is if the s in the sample space were to be ordered

according to the value of the function ~~_2c ~~~, the same ordering ~~uld result

from every c satisfying 1 - c < c c 1. This (3.2) defines only one selection

rule, not different selection rules for different values of c.

Hencefort h it will be assuned that c has been cbosen so that has the

form given in (3.2) .

To insure that the selection rule ~* will always select at least one cell ,

the individual selection probabilities must satisfy ~
1
~_l ~4(~

) 1 for all

This will be true if PA > P (X1 < n/k) + P (~ (n/k , ..., n/k) )/k . This

lower bound converges to 1/2 as n ~ —. Thus the rule ~p* cannot be used for

very small PA. In oractice PA is usually chosen to be near one so this is not

a serious restrict ion. In the following theorem the range of possible PA values

is restricted even further in order to ~nsure that ~~~ satisfies the PA-condition .

Theorem 3.1. Let PA > P (X.1 < n(k - 1)/k) . Then

inf~ P~(CSI**) - inf~~1, E~ *t(~
) - ot(~

) -

where P1 
a (~ : p1 —

Proof. The first equal ity is true by the invariance of f” . The last equali ty

is true by the definition of i~~~. The last equality is true by the definition

of .*. Only the middle equality remains to be proven . 
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Let p c P1. Define p ’ by p~ = ... = 
~k l = p1 and p~ - 1 - (k - l)p1. First

it will be shown that I3~4~ (X) > E ~1*~(~). Since c > 0 , c~ is a convex function

of x. Thus ~1 2 c is a Schur convex function of (x2, ... , xx) .  ~~~~

~ (t, x2, ... , Xk) is a Schur concave function of (x2, ... , x~) on the set

{ (x2, ..., xx):  ~~~2xk = n - t }. The conditional distribution of (X2, • • •
~~

given X1 a ~ is a multinomial distribution. So, by Application 4.2a of

Nevius, Proschan and Sethuraman (1977), E~(~ CX) 1X1 - t) is a Schur concave

function of (p2, 
~~~~~~~ 

p~) for fixed p1. Thus E~ (~ 
(
~) Jx1 = t) > ~~ (*~ (~

) I X1 = t)

since (p~, . . .,  p~) majorizes ~P2’ ~~
••

~~ 
Pk~ 

O?i~ the other hand ,

< t) = P~~(X.1 .c t) and P~(X1 = t) = P~ ,(X1 
= t) since these probabilities

depend only on p1 and p1 
a 

~~ Hence

= P~(X.1 c t) + E~(~~(~) I X 1 = t)P~(X1 = t)

> P ~~(X1 < t) + E~ ,(*~(X) IX. 1 = t)P~~(X1 t)

= ~~~~~~~

It remains to show that , for any p of the form (p, ..., p. q) where

q = 1 - (k - l)p and p < 1/k; E > E  ~~~~~ By examining the derivative
f l Xkof p (1 - (k - l)p) with respect to p, it is easily verified that this

expression is a non-decreasing function of p on 0 c p ~ 1/k if xk n/k. If

PA > P (X1 < n(k - 1)/Ic) then t > n - n/k. Thus ig,~(~) < 1 implies x~ < ri/k.
fl X~This further implies that if ~~~ 

< 1 then P(~ = = n~ p ~(l - (k - 1)p) /

(xi).. .x~!) < n! (l/k)~~~ (l - (k - l)(l/k))~~/ (xi). . .x)~.) - P ( ~ - ~). Let

T — (~: *~
(
~

) — 0}. Then
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P ( ~ - 

~) - (1 - ~~~~~~ P~(~ =

1 - 

~~ ~~~ 
= ~

) - (1 - cz)Z
~E:A(x;) P~~(~ -

= ~~~~~~~

This verifies the middle ecç~ility. fl
The result of Nevius, Proschan and Sethuraman used in the above proof

was also proved by Rinott (1973) .

Further values of PA for which ** will satisfy the ~ * condition are given

by Theorem 3.2.

Theo:~in 3.2. Let PA = P (X1 < t) for some t. Then inf P(CS I q,*) a PA.

i’roof. If ~* = P~ (X1 < t),  then ~~ (~
) — 1 if x1 c t and 

~~~~ 
(~

) — 0 if x.1 > t.

The equality follo~’s from the MLR property of the binomial distribut ion. I I
The values of ~ * specified by Theorem 3.2 correspond to certain simple

rules , investigat ed by Nagel (1970) , for selecting the nx st probable cell .

Henceforth it will be assu~ned that PA was chosen so that the condition of

either Theorem 3.1 or 3.2 is satisfied . The restrictio n used in the proof of

Theorem 3.1 that P~(~ = ~
) c P~~(~ = 

~
) for all with *~(x) c 1 is rather strong .

The fact that p~ sat isfies the”P*~conditi on for some smaller values of PA , as

given by Theorem 3.2 , leads the author to believe that q~ satisfies the

P*~condition for a wider range of values. But this has not been proven .

4. MINIMAXITY AND ADMISSIBILITY OF THE SELECTION RULE q.~~ In this section the

minimaxity and admissibility of the selection rule .*, defined by (3.1) and

(3.2) , in the class of rules with respect to the loss 5’ is proven. First

the nuninmxity of p~ will be investigated.
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Theorem 4.1. If ~* > P  (X1 
< n/2) - (k - l)P (~ 

— (n/ 2 , n/2 , 0 , ... 0))/2
p0 p0

then q~ is miniinax with
”respect to S’.

Remark 4.1. If n is an odd number , the second term in this lower bound for

PA is zero. The only case in which this lower bound is larger (mere restr ict ive)

than the bound given in Theorem 3.1 is if k = 2 and n is even. In this case,

this bound is the same as that given in Section 3 to ensure ~
1
~1]. *~

(
~

) ~ 1.

The following t~~ lemmas will be used in the proof of Theorems 4.1 and

4.2.

Lenina 4.1. (a) If ~ e then E i, (X) > PA for 1 c i < k.p0
(b) The mininiax value for S’ is (i~ - l)P ” .

(c) If ‘~‘ 
is mini.max then ~~ 2E 4’~(~) = (k - 1)P*.

Proof. These facts follow from the observation that E~4i1(~) !s a continuous

function of for any selection rule and p0 can be considered as the limit of

a sequence of parameter points for which Pi = P~~~ <
~~r 23 .  See Theorem 3.1

of Berger (l979a) for a similar proof with mere details. II

Le~r~a 4.2.  If PA > P ~ (X.1 < n/2) - - l)P (
~ 

— (n/ 2 , n/2 , 0 , ... ,

then S(~) - 
~jv1 ij~~ (~~) is a Echur concave funct ion of on the sample space .

Proof. The inequality assumed for PA and the definition (3.2) of ip~ implies

either t > n/2 or t n/2 , y a (n/ 2 , n/2 , 0 , . . . ,  0) and ~ > ½ .  (Recall t

is defined to be an integer) . Suppose ~~ ma~orizes ~~~. Without loss of

generality it will be assumed that x1 > x2 ... > xk and y1 y2 > ... y~.

Let f(c , ~
) - Z1~2 C •

.- . ,

~

-.- .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Case 1: y1 c t or y1 = t and f (c , y) < M. Then S(y) a k ‘ S(~) .

Case 2: y1 = t = n/2, f(c , y) = M. Then y c A(n/ 2 1 n/2 , 0 , ... , 0). Since

majorizes ~~~, either c A(n/ 2 , n/2 , 0, ..., 0) or x1 > t. In the first case

S(Z) — S(~) and in the second case S(y) = (k - 2) + 2cs > (Ic - 1) = S(~) since

ci > ½.

Case 3: y1 = t > n/2. Since x1 = n = ~~~ ~~ x1 > y 1 > n/2 implies

x~~< n / 2 < t a n dyi < n / 2 < t f o r Z
~~~

1
~~

)(.

If x1 > y1, ~~~~ > 0 = ~~~~~~~~ If x1 = y1, then (x2, ..., Xk) majorizes

(y2, ..., y~) .  iJ,~ is a Schur concave funct ion of (x2, ..., x~) for fixed

(
~ 

in the proof of Theor~~ 3.1) so *~(y) > ~~~~ In either case , S(y) > S(~) .

Case 4: y1 > t .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S(y) = k - 1 = S(~) .  I I

Proof of Theorem 4.1. S(~) is a Schur concave function of ~ by Lenina 4.2.  By

Application 4. 2a of Nevius, Proschan and Sethuraman (1977), E~S(~) -

is a Schur concave funct ion of ~ and thus is maximized at ~~~~~~. By the definition

of iJ~~ E~0
S(~) = kP*. Fix 

~~~
. Assume P~ =

(k - l)PA = kP* - PA

> E ~S(~) - pA

~ E~,S(~) - P~(CS

a E~S(~) - E~~~Q~)

= _1E~P~ QS) j ca(p)~~*i~~ 
- E~(S t I **).

By Laiina 4.lb , $~ is minimax with respect to St . Il
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Remark 4.2:  The proof of Theorem 4.1 also shows tha t ~~ is miniinax with

respect to the loss S, the number of populations selected , which was investi-

gated by Berger (l979a) , Bjernstad (l97~) and many others . See these ti~~

papers for further references. But no admissibility claims can be made for

•* for the loss S.

Now the admissibility of 4~* will be proved .

Theorem 4.2:  ~ is admissible with respect to 5’ .

Proof. By Theorem 2 , page 156 of Ferguson (1967), it suffices to prove that

~~ is admissible in the class of perrrutation invariant rules in DPA. Let

p - ( p , q, . . . , q ) where ( k - 1 ) q + p — l a n d l - c < p / q c l f o r the~~~specified

by L~ iina 3.1. For any invariant rule ip

I.) =

= ¼~1 ~~~=~~
[11! (p i/x i) (P~

h/x1!) .n2
(~~h /x~ ~)]

j;’i

= ~~~~~~~~~~~~~~~~~~~~~~ .

By Lemma 4.la , every pernutation invariant rule in satisfies E~~*1(~) ~ PA.

By the Neymann-Pearson Lemma (See Lehnann (1959)) any such individual

selection probability, *lt which minimizes E~(S’ f*) mist satisfy

1. q~~~_2 (~,Jq) ~ c C/ks

—
0
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where C is a constan t and the factorials have cancelled from both sides of

the inequalities. This is equivalent to

1 . 2 c~~ < M
(4 .1)

0 >

where c = p / q and M = Cf (qkf’. (4.1) is the form given by (3.1) and , since

1 - c < p/q < 1, (4.1) is of the form (3 . 2) be Lemna 3.1. Furthermore , by

Lemma 3.1 the set of in the sample space for which ~~~~~~ = M is A(y) for

some y. Since q,1(~) is invariant , *1 (~) is constant on A(y) . So *1(’) mist

be exactly of the form (3.2) . (The Neyir.an-Pearson Lenina i~ uld have allowed

different values of a for differen t ~ ‘s in A(~) ) .  Thus 4s~ corresponds to the

unique pernu tat ion invariant rule in which minimizes E (S’ 1*) . This ~P is

admissible ~~~ng the permutat ion invariant rules in DPA .

The results of Sections 3 and 4 show that f~r fixed values of k and n ,

if PA is sufficiently large , t~’~ is minimax and admissible with respect to S’ .

This result could be extended if ~~ could be shown to satisf y the PA -condition

for smaller value s of P* since the bound on PA in Theorem 3.1 is usually the

largest . ?‘bre work is needed to find minimax and admissible selection rules

for smaller values of PA.

The problem oE scl ’cting a subset containing the most probable cell

also leads to rules of the form (3.1) where now c > 1. But the author has been

unable to verify the PA -condition except in certain special cases corresponding

to Theorem 3.2. This problem too requires further investigat ion.

_ _ _ _ _ _ _ _ _ _  - .- 
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