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PREFACE

This repor: describes work perforined by ITT Gilfillan for Roie
Air Development Center {RADC) under Contract Mo F30692-78-C-0F 19
The Project Engineers for RADC were Mr. Vincent Vannicoda and
Russeil Brown. The objective of this study was to opiimize radar
sysiems by using the properiies of the scattering matrix, including
poiarizativn and stalistical, to design the waveform and receiver. The
report contains results of computer simulatior:s which compare target

detection performance for derived ducl channel systems which incor-

porate processing technigues viilizing the scastering matrix, against rhat

e A of conyentional singlz channel systems.

=, E Analytical and systematic approaches are described for five

techniques which lead to dual channel optimum processing. Finally .
LR

= 5 the s:atistical targer and chaff medels are formudatcd and described as

B thes are appiied to computer simulatior for system evaluciion.

The report veas edited by Mr. Alpert Klein who also contribuied io

kitiraiiat

: ~ & Sections 3. 3, and 6. Dr. David Hamuiers supervised the signal nrocessine
= g and anglvsic rasks. which werc performed by Mr. Masaaki (T..m) Fiuiita,
E . 73 Dr. George loannidis. and Dr. Nhan Levar. Dr. Jefiery Bell wroie
-3 Secticn 4 on medeling and simulation: and contribuicd i Scctizng 1
5 and 2. M. Charles Lucas was responsible for the signal processor design.
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= - Air Force radar systems must operate against natural and man-made
e ;

: interference, particularly clutter and chaff. This program has investi-
T

z = gated new metheds of target detection n dual polerization radar systeams.
' A {ontrasting scetter in polarization between targets and chaff is

X <
e exploited to enhance target detection.
S

= . ’{ 0f significance in this study are design metheds for poiarization
= =i

= coded trarsmit waveforms and matched receivers. A sirulation wss per-
s 7 i formed for analysis of potential improvemesnt factor. This contract
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Section 1}
INTRODUCTORY SUMMARY

1.1 BACKGROUND AND PROBLEM

Conventional radar signal precessing techniques use Doppler and polarization
inforination in discriminating 1arget retumns from chaff and cther forms of mizricrence.
These two discriminants are used independently: most often in singl: channel svsiem:. For
example. the poiarizations of the transmit and receive antennas are fixed 2nd determined by
the combiner. On thc other hand, speciral processing is performed by the receiver processer
on signals that have alrcady been combined by the antenna. As o resalt, such syvsiems do
not zxploit the statistical properties of the target zpd cheff scatiering matrices. which include
both spectrs! and polarization information.

The utilizaiion of this information which exists in the scattering matrix should be
mere {ully exploitable in 2 dual<hannel system, reistive to the more conventional single
channel system. Thus the basic «ujective of this effort was to explore the merits of per-
forming the signal processing in z dualchannei system, to develop the opilimum combined
spectral anag polanzation processing zpproach. T intolves determining the optimum irans-
mit waveform and coherent rcceive polanization and time weizhts for each pulse in a burst.
The criterion of optimality is ¢ maximize the probability of target detection for a given
false alarm ratle attributed to the interference.

12 APPROACH

Tae basi: of our approach was to formulate the system ir an operator theoretic
manner. st~k that the resulting approachk would be readily emenable 1o be validated
by computer simulation. We star‘ed dy develeping 2 rangeDoppler spread dua! channel
scattering formulation. since this affords complete information on the tarzei operaic.. iHow-
ever, we reduced ihe problem to a Doppler spread point target in & dual channel formulation
for computer simulation. and concentrated on this during the bulk of the study.

Severai sysiem models were developed and uszé in the analysis. They mclede a
matnx receiver weighting method. a vector receiver weighting method {essentially a2 subset of
the matrix method) a state space approach. a Fredholm integral approach. and a Stokes
vector approach. (The Stokes approach is 2 single pulse polarization processing scheme.
which has no spectral procassing capabifity. It was investizaied in 3 prior study and reported
lizre only for the sake of compleicness.) The matrin and vector methods. as well as the
Stokes approach were simulated on a digital computer io evaluate their performance. The
state space zpproach was carried to the point of an optimum receiver design. given the
transmit waveform and target/cluties scattering properties. The Fredholm integral squations
were fonmuiated to the extent of developing the system of cquations with target clutter
scattering matrnices.
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In order to perform the simulations, it was necessary to have adequate modzls of
the target and chafi. We chose the BQM-34A as our target medel since we have validated
simulated ros plots with actual measurement cata. This target model is deterministic. and
censists of mathematical expressions for the elements of the scattering matnix which are
functions of the target orientation with respect 10 the radar, and to the carrier {requency of
the emitted signai.

Chaff was modeled as a coliection of dipoles with sclectabie preferred orientations.
The dipole cloud was further described by Doppler and dipole rotation statistics. From the
distnibution of the dipoie crientations and the spectiral stctistics, a theoretical covanance
matrix was derived. This matrix was thea used in conjunction with the charf modslt  Sirs-
ulated signatures were derived from the target model by sampling its scatiering matrix at
various aspecl angles correspending fo a trajectory. The simulated chafi signatures were
derived from the same sample rates. Once these simulated signatures were gensrated.
correlation functions (covariance matrices) were created. The cptimum dual-channel
waveforms and receivers were then computed through application of the various techniques
developed {matrix. vector, and Stokes approaches).

The figures of merit used in the evaluation were probtability of detectior and
target-tochaff ratio improvement. The various optimum dual channel systems were simulatcd
and compared with single channel simulation results, and with the single pulse Stokes
formulasion results.

1.3 RESULTS AND CONCLUSIONS

The most significant resuits are piots of probability of detection vs signal-to-chaff
power ratio generated from simulation outputs which comparas duai channel perfermance
againsi single channel. An example is shown in Figure 1-1. Here we see the probabitity
of detection vs input signzi-to-chaff ratio for a dual channel svstem using matnx recesver
weighting. Three curves are also shown for conventiona! single channel systums. The
conventional systems are assumed to have the sam: polarization during both transmit 2nad
receive. Vertical. horizonial. and right circular polarizations zre shown. Each of the con-
venilonal svstems is assumed to have a filter matchad to the transmit waveform. The dipole
distribution of *45 degrees means that the dipoles in the chaff cloud are uniformly distributed
beiween =43 degrees from the horizontal: vielging a part'ally preferred orfentation in that
direction. The pulse sample rate was 3 msec, such that the target model scatiering matrix
is reasonably Jecorrelated pulse-to-pulse (approaching a Swerling 11 model). the cumves show
that the piobability of detection s {ar greater in the dual channel system than in any of the
three conveational single channe: systems.

All of the simulatior resulis reported upon yield to the samwe basic conclusion:
tha. 5. the 2xploitaiion of the polarization and spectral spread scaitering propertics
of the target amd cnaff in a dual channel matrix configurution. provides superior
farget detection performance compared to conventional single channe! matched fiiter svstems.
The degree of target detection cahancement is a strong function of the pulse-to-pulse
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’ 3 correlation property of the target scattering covariance matrix. A Swerling 1f type target
| which is uncorrelated pulse-to-puise. will perform better than a Sweding . which is
=" completely comrzlated pulse-to-pulse. In the latter case howeve:. dual channel performance
5 is still betier than the conventiongl single channel.
B~ o In view of the results, it is recommenced that further study be performed to
38 more fully define the practical advantages of the dual chanree] configuration. This would
= 3 involve application of a typical surscillance radar implementation incorporating MTI tyge
processing in conjunction with the pelarizction disciminant. A preliminary design of the
= 7 dual channel systzm would be undertaken to provide qualitative cost assessmrent against
3 single channel systems. -
S ’_ 1_ Further analytical work is also recommei.ded to develop the state space apnroach
B, o for waveform design and computer simuiation. Finally, the rangc spread properties of the
= '_r target should be considered as an added discnminant toward optimizing target detcction
3 2 in clatter.
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Section 2

PROBLEM FORMULATION

The purposc of this section is to mathematically formulate the problem with the aid
of scattering operator theory. Usinz this approach, we treat the target as a system which is

characterized by a scattering matrix (operator). The function of this scattering matrix is to
operate on incoming or incident radar signals (waves) to produce backscatiered or output
signals. This represznts a linear coherent dual or two port svstem which can account for
the horizonial and vertical polerizations. If the transmitted radar signal is a2 two-clemeni
pelarization vector which s operated on by the 2 x 2 target scztiening matnx. ik-a the cor-
responding iwo-glement vecior scatiered back io ihe radar is considered to be the

radar
receiver input. This receiver input is then operaied on by the radar in processing

the signal.

A block diagram ¢l this 1o7al process is depicted in Figure 2-1. Here we see dual
channel signal mcdulanon during the transmitting process. Liaewisc. the dual channel receiver
process is shown operating on the backscaticred signal from both the desiied target and the
undesired clutter. The basic problem treated in this study is to determine the optimum
combination of dual channei signal waveforms (including the transmut antenna polarization) and
the dual channel signal processing {inciuding the receive antennz polarization). By optimum
we mean that waich vields the maximum probability of detection for a given false alarn rate.

The approach is to solve for the dual channel transmit wavelorm foptimum) which
provides the maximum scparation of received target and clutiter covariance functions. This
requires a vector formm of the scattering operator to effectively manipulate the mathomatical
functions inherent in the covasiance matrices, so as to properly isolate the clutter retumn
from the tareet plus clutter retum. Once this is obtained, the receiver function is denved 1o
maximize the prehability of detection.

Since a key clement in designing the optimum dual channel system is knowledge of
the target and chaff covariance matrices, we will also develop a methedology in this section
for computing these mairices for use in opti.nizing the system desien.

21 POLARIZATION PROPERTIES CF TARGETS AND CLUTTER

It should be fairly obvious that more information atout a target and backgrouad
exists in 3 dual channel polarization sensitive system than in the conventional single channel
system. Since our goal here is 1o includs dual channel scattering characteristics into a system

design, let us bricfly review a few important known bolaxization sensilive characteristics about
targets and clutter.

In the area of dutter suppression we know that polanization sensitivity of rain hac
been well established. and thart circulis polarization can be used to cancel isotropic rain. More
receni appioaches [Beguin (1975). Nathanson (1975)j have improved on this by estimating
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the ellipticity of nonisotropic rain znd ihen adaptively varying the horizontal and vertical

= : polarized receive channel to enhance suppression. For target enhancemaont, it has been found
S o that pulse-to-pulse variation of polarization of a transmitted signal will tend to decorrelate

H E target retums in a manner similar to that achieved by frequency variation. Pozlman (1978)
- analyzes this problem relative to simple 1aggets and shows that considershi: improvement can
= _ be achieved in target detectability through polarization agility. The same concept has ziso

z been applied to improve angle estimation in a aeltipath environment {Ewell. 2t al. (1971)].

E g

5 _-\ The pulse-to-pulse cerrelation phenomena for targets and rain may also be exiecnded

1o other tvpes of gro ad ana sta clutter. For eaample, backscatter ffom manmade clucter,
such as buildings (citizs), tends to exhibit much vadatility (10 to 20 dB) between H and

V responses, whereas mountainous areas tend noi to exhibit such deviations. Angies of
incidence and wuvzlength influence this heavily. More vanaoility exists at smaller aspect
angles and lower frequencies. For example, 3t angles of inciderce less than 10 degrees, the

1 variation in the VV/HH mtio has been measured at C-band to be about 14 éB [ Daley (1968),
& citv of Pheznixi.

3 £
3 3 Chaff drons {of intcrest in this siudy) are characierized by metailic type dipoles
= 2 which arc cut to resonate at the radiated frequencies of the radars they are designea io
& confuse. As with target scatizring suriaces, maximum backscattering occurs when the majonty
E* ' of the dropped dipoles are oriented parallel to the E-field of thz transmitizd siznal.  After
~ E the chaff has bteen dropped dispersion occurs (due <ither to air conditinns or by design) so
= E that the principic planc of the dipoles in the chaff cloud changes with respect to space and
3 timz. The changes that occur can be correiated with wind charecizristics.  Relative 10
3 2 sampling time, it is possible for a polarization divers: radar to make sstimates ¢f the
b 3 polarizalion properties and thus adap. in such a way as to maximize the tarest-toclutier
A é ratio. The bases for utilization of these polarization propertics are formulated in the
o following sections.
= ]
= 22 SCATTERING SYSTEM FORMULATION
: 3 The relatioaship between the polarization sensitivity of targets and backsground as
5 : applied 1o radar sysicms, can be described by a dual chaane! (or 2-peri) opsiator ¢ shown
3 > in Figure 2-1. In this formulation we consider changes in the wideband range dependent
' scattering propsrtics as weil 25 longer time (pulse-to-pulz) scatiening properucs dus to motion.
3 2 As a result, both interpulss and irapulse signal mcdulation and the cemrssponding optimum
= receiver can be derived to maximize the signal-to-background ratio.
]
, Referring to Figure 2-1. =»x find that the transmitied signal is the 2 x 1 complex
& 3 vecter X(1) where clements xj(1) - the wertically polasized component - and xat1) - the
RN horizoatally polarized component — are functions of the time vanabliz 1. o0 < 1 < oo,
z ‘*' Similarly. the received signal wiil be a 2 X 1 wvector denoied by Yit),
5

J
[}
w




The scattering matrix - which relates the relative amplitude and phase of the
incident and backscattered electric field vectors - of a complex radar target is given by a

2 x 2 matnix of the form:

[ hy (L) by 2(t,r,f%
H(tr) = l ] 21
lh:](i.f) h::(l,f)-}

Here, the entrdes hij(!,.‘), i.j = 1,2, are taken o be compiex Gaussisn processes. fis the time
variable, and 7 = the space vardabic — measured in units of fwo-way trave! time 1o the
reflection point on the target.

From: the scatlering approdch. 2 complex radar target then admits the inpui-ouipui
cua! chanznel or two-pors dzscription:

o0

Yy = £ Htr) X (v - 77, (-2
-0
o0

= _f H(‘,t - 7) X (7)ar. 12-2)
-0

These equations jorm the familiar lincar reiationship between the inpul simal (X) and output
(Y} when opersted on by a system. At this peint it is convenient 1o mtroduce 2 scastering
vector wiichr has thie same clements as the matrix {t.7) and is defired by:

.

S(to) = [hyyfLs), hys{t,n), dagdtr), k(i) (2-4)
where ~ denotes matrix transposition.

It thzn follows that (2-27 can be wniten as

pat (x‘-{t -r7) xz(t -7 0 0 ] [-h“(l.f)
i = [ .
Y‘t! , ; h]:{‘t.T) i
—o0 4y 0 X!(I -7) K:(l - T)J d-
L h:l(!.f)
ha-{t {
- |
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3 :
or,
oo
Y1) = [ X{t - DS(tridr (sav). (2-3)
J 2
where
xj{t -7) Xo(t -7) 0 0
X(t-7) = (2-6)
0 0 xqt -7 x3(t-7)

Similarly, (2-3) can be written as
Y(@t) = fw X(7)S(t1 - 7)dr. 2-N
-V

Equations (2-5) =rd (2-7) now define the received signal vector Y in ferms of the
transmit mairix X and th- scatering vector S.

23 COMPUTATION OF RETURN SIGNAL COVARIANCE MATRIX

231 Definitions of Important Motrices

Since knowledge of the covanance matrix of the target and clutter retums are of
major importance in desigring the optimum system, we wiil, in this subscction. deiine the
covariance matrix and devise two approacles for computing it. Here we define a general
expression for the covariznoe matrix Ky(t,w) of ithe received signal Y(t) — which is a2 complex
Gaussian process with zero mean. Thus, let E(<) denote the expectation operation and
“ stand for the complex conjugate transpose, then

Ko(tw) = EY(D)Y(w)*]

Efy 1 (0y]%)°] E{y,(s)}-:\w)';]
Efy (v 1 (#)*] ELy 20y 2(w*] | (2-8)

Before proceeding to denive the twe methods of computing the covaniance matrix, it
i instructive to define two new matrices which have the -ame information as the scattering
matrix H(1,7), Equation (2-1). Thev are

‘-hl 1(2.7)12 nlz(t,f)]?_._‘
Mis) =
h:l(t,f)lz h::(t.f)!z 2.9)
and
[Ht,7 0,
Nty = -
0, H(ts) (2-10)

where 15 is the 2 X 2 ideatity matiix, while 0; ir the 2 X 2 zero mairix.

[19)
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H s 23.2 First Method
= < ST medioc
‘.’; % We now present the first methcd of computing K {t.w) using tac target scattening
= = vector S(1,7). For this we define the scartering yvector covariance matrix Kg(1.7.w,0) as
C 3 Kg(t.rwe) = E[S(L7) - S(w.o)*] (-1
o 3 Next, we have
2
2 2 _ . ] = .5 -
..‘,‘ - ! 1
. Mit) = = = Stio)
= = 0 h"i 0 has 0 0 h-)‘
% ; 1 3] has 0 has i fian §2-12)
=~ : | L -1 =1 L U-—
= ', where the hij’s are fanctions of i and 7. Similardy, it is casy to venfy that
< 3
3 :
- 2 ~ Y
£ 5 Nt = S(1.7)
s B 0
> 3 ! {2-13)
2 2 Therefere
b2 \ . 7 ~
3 =4 S -Swe)* = Mitay]l i (i} O O 1] Nuwgs
) 9
V -' H 0
‘ b=
. N =
H % i
m . _
= - or
3 = <. =~
= b i) - S{w.0)* = MU -1-Niwgr = N7 -1+ Mwo* (2-14)
ES e where — indicates complex conijugate and
:: ‘;
= ¥
S -6
i
28
i
B
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7 where
E 2 [1 0 0 1
= S
7 092060
T hZ
3 I =
s X -
= \ 0 00O
- 1 0 01 (2-15)
S, - -

Consequently.

Ke(traws) = E[(M(17) - 1 - N(wo)] = E[Newsd-1- Mw.o)*]  (2-16)

It tizien follows from Eguations (2-3) and (2-§) that the covariance matnix K (1.w) of the
received signal Y(t) is gven by
o0 oo

ALW) = f 0 Xt -7) » Ko(i,7.w.0) - X{w - ¢)* dod7 . (2-17)
-0 ~20 = > =

where Kg(+} b the target scattering vector covariance matrix and X(-) is the irznsmitied signal
mafrix defined i Equation (2-3).

233 :xcond \iethod

The second nrethod does not lead to a direct computation of the covariance mairix.
Instead, 2 -~ctor is computed, which has the same clements as those found in the covariance
mainx. This covariance vector, as we will call 1t is 4x] znd defined by

xv:!.w) = !K!,-“(t,v.‘), l\'}.l:{l,w). K)-zin.w). K}-zz“!.\\)] (2-18)

where Kyij(z,w) ars the clemients of the covariance matrix in Equation (2-8).
I we further define the vector
;f(t—f,w—a) = [x1(t=5)X (v—0). x;(-TIX2(¥-5),
X3(1—7X; {W—0), X>{t-1)x+(¥w~0)] 2-i%)

the covariance vector is gven by

oc oo

K (tw) = EIM(L.7} - N{w,0)] X(t-r.w—5) dodz (2-20)
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3 3 This may be written as
g 3 o s _
& : k(t,w) = [ f Ky(t7.w,0} X(t-r.w-¢)dedr, (2-21)
1; y -00 -0
where
Ku(t,T,W,U) = EiMu,r) - :‘E(w.r)] (2-22)
= 2 is defined s the scaftering matrix covsriance matrix.
= e
‘ B
: If the entries of H(t,7) and H(w,g} are uncorrelated for v # ¢ - that is. when the
s - = return signals from different poinis on the tarze? are uncorrelated - then
7 @ = . 4
E xy(t,w) = Lo EfM(t,7) - N(w.n)] Xit-r,w-7)dr. (2-23)
E it iz important to note thai
= 3 Byphyy Ryghys hyohyy hyohys
e S — Epphiar Pyghan Bpohay Byohoay
> M(t,7) * N(w,6) = 3 _ : _ = Niw.g) - MiL7).
2 haghyy hoghya hpohyy Bashys
% : hﬂ;?l'\l h'r{l'—h" h‘ng‘»l h*ﬂfhwl (2-249)
S L - - -t e - -
' E where the hy; are functions of t and 7, while the ?’i,‘ are functions of w and =,
E 234  Further Notes
;/; j’ It is importan: to note that in the dual channel description above (Eguaticas (2-2)
) and (2-3)) a radar target is characterized by a linear system whose impulse response matrix is
the iarget scattering matnx (H(t.r) (Equatior (2-i1)). However in this case. the entries of
H(t,7) are random processes and, in general, are unknown. Thus from a system theoretic
viewpoint, we have a lincar random system and our problem is basically that of “Sdentifving™
the random entiies h;;(1,7) of its impulse response matrix H(t7). To this end we have
transformed Equation (2-2) into Equation {2-5) by introducing the scattering ves:or S(t.7)
frcm Equation (2-4) and the transmit matrx X(t-7) from Equation (2-6). This is justified by
the fact that Equatior (2-2) when written out in full becomes
N - NN
yi(®); o 1P 1067 X1(1=7) + Bya(t7) xa(t-1)§
=5 dr
. -0 . -
b= )'2(1) ]th(I,T) x,(t—a’) + hzzﬁ,f) X:(I-'}’)i :~23)
: I I
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Then each of tae scaiar terms

e 5 Lo 5 fendr ik iz (2-26)
2 * is actually the output of a linear scalar (i.e, single input-output) system whose impuls2
i ks :esponse function is the scalar random function hij(l,f) and whwez input 15 the scalar function
] ‘ Xi{t-7). Since the system i linear, Equation (2-26) can also be regarded as ihe sutput corre-
Z sponding to thc input hij(t.f) (in time and space) of the system whose impuise response i
= 3 Xi(1-7). Henoe Equation (2-2) becomes Equation (2-3) in which the four scalar inputs
= / hij-(t.'r) ,1.j = 1.2 are arranged into the 4 X 1 scattering vector Sit.ri. Hemoe, 1t is
= b casy to see that kEguation (2-3) 1s a Lincar transformation from 2 4-dimensiona! space into 2
“ 4 2-dimensionai «pace. Since the input vector Xt1~2) is 2 2 X 1 vector. £quation (2-2) 1s just
= 5 a lincar transfcrmaticn from a 2-dimenstonal space to a 2-dimensional space.
f The idvantages of Equation (2-3) are many fold First. the probiem of identifvinz
3 the matrix H(t.7) now becomes that of identifving the vector S(1.7) from the output data
3 3 Y(t). This allows one to urce techniques of signal design, processing and simulation in radar
Z problems. Secondly, in computing the output covanance matiix K (iw} in Fquation (Z-17).
3 :’ we have relied heavily or the covanance matrix Ks(t.f.w.o) in qu;aiion ¢2-11} for the vector
z process S(t,7). This in tumn is expressible in terms of the two matrices M(t.7) and Niw.g} of
25 = Equations (2-9) and (2-10) respectively. These matrices, as we have shown. aic on the ene
4 hand directly reiated to the vector S(1,7) and therefore allow one to cempute K {t.w} from
2 simulated or >xpenmental data. and alse on the other hand lead to the type of ‘“s;rctral
_ 3 polarization.” of Kg{t,7.w.0) in Equation (2-16) and Kylt.s.w.5) in Egquztion (2-22).
= . = Finally, it is noted that for tie case of ar isotropic target. hys = hoy. the matrices
5 E M(t.7) and Nit.7) are both symmelric and so is the matrix Ky ). wherrzs Kgf ) aad Ky
3 = are always hermitian matrices.
F =
= Z The two methods discussed carlier are used in Secuons 3.13 and 3.1.2 respectively.
It is appropriate io comment S the fact that duc to the rature of the Genernlized Matrix
& Fe Approach, the second method cannet b used, whersas the Geoneralized Vector Approach may
use cither methods. Howewer, from ihe computationai aspects. the second method was
B 3 preferred.
3 %
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_', 2.4 COVARIANCE MATRICES OF POINT TARGET IN CHAFF

We now apply the results found above to the case of a point targzst. We have in
this case

- H(t,7) = 87 - 7g) = HD) - 67 - 1)
= 2"- Lh_n“) has(1) £2-27)

where 7 is the two-way trav2l time to the poiat target.

E It is seen from Equaiions (2-9) zad (2-10) that
: \ h“n)IZ hl:(l)l:
- My = ¥r -7 = M - i - 1)
= and

= _! &7 - T30 = N{t) - 87 - 70)
‘“. Z LO: "(IZJ -2

: 3
" E= Therefore, from Equation ¢2-22

- Rpttrw,e) = TN - Nrwy} - 86 - 1) - 8e6 - T (2-30)
K 2nd from Faustion i2-16)

. 3 Rstt.rw,e) = E(MO) - 1+ New)] - 8(7 - 1) - 8t - 7. (231)
Pz, Then, using Equstion (2-23) we find

o = } — ; am
3 3 x).(:.w) = EfMa) - Niw)} - Xt - T9r W— 7g) (2-32
= Simiiarly, from Equation (2-17)

; (W) = X - Tg) - EIM@) - - N(w) - X(w - 0% 12-33)
e . 3 > = 0 = 0

g - Let Hy(t7) = H(D) - 8(r - 70) be the scattering matan of a point target surrounded

= - B by a2 chail cloud — whose scattering matrix is denoted by HH{t7). As in the above, let Xit)

3 and Y(1) be the transmitted and roceived signals, respectively. then
3
3 5

2-10
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-2 Y{() = Hyp)-X(t -7g) + {: HAL?) -X(t - 7) - dr

g X :
= Y1) + YN ?
4 - . . ) ?
= = Let k),{t,w) be tke covariance matrix of Y(1), we have
= = C(w) = EieY , e R
= 3 Ky(tw) = EWYTO) + Ye) (YW)* + Y(w)")L.
: 3 Therefore, since Y7 2nd Y are uncorrelated
s
S5 Ky(twy = EIYT()Yp(w)*} + ElYROY(w)*].
23 5
< = K. (t.w)+ K, (tw 2-34
: E I\JT(I.A) !\yc(-,-h). (2-34)
A = where the point tzarget covadance matrix }\\-.(t w} is computed itom Equation (2-33), while
2 3 the chaff cloud covariance matrix Ky -{1:W) can be derived from Equation (2-17).
b= 3 It is also evident from Equation (2-34) thar
= S x}.(t.w) = (t w) + Ky (t w) (2-33)
‘ 53 where k. (1,%) is giver by Equation (2-232) and xv(.(t,w) can be computed fHom
5 " hquanon](- 21).
= =
. e As noted ir the following sections, the received signal covarance functions become
z’ key elements in the desien of the transmit waveform and associated receiver weighting for
ZEE. maximizing the ouipu! sjc ratio.
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Section 3
OP1{MAL TRANSMIT WAVEFORM AND RECEIVER DEVELOPMENT

The previous section described the manner whereby radar targets and clutier can be
characterized by scattering operators.  Associated with these scattering operators are scattering
vactors, vvhich can be regarded as stochastic vector processes. With this description, the
signals reccived fromi the target and ciutter can be formulated as the outputs of a determims-
tic system whose inputs are the scattering vectors, see Figure 3-1. Since a major study task
Wwas {0 maximize the probability of target detection for a given false alarm rate, the more
namediate psoblem becomss ene of transmit waveform and associated receiver design to mest
this objective. Given then the scatiering vector descriptions of both target and clutter, it was
necessary to iind the optimal deterministic transmit waveform and optimuim receiver weightin
for maximizing the target return signal-to-chaff plus recciver noise ratio.

Five viriants of the scattering theory approach wer: investigated. Tws of these
rrthods fall inio the domuain of finite dimensional discrete time and frequency spacz. These
were miore fully develned thon the other methods in terms of obtaining both theoretical and
simulation resuits for waveform/receiver design and associated detection performance. The
state space and matched filter Fredholm Equation approaches were both mathematicaliv
formulated, but thay were not simulated on a comiputer.

Yi 2 UL XU

St} » X e (Y Gq »4 ixeLinocp———
STOCHASTIC CSSERVED DETECTOR ic
SCATTESING SIGRAL | ozcisiox
VECTOR STERKUNISTIC RECEIVER THRESHCOLD

TRANSMIT WEIGHT
~ SIGNAL
5‘ -
3 it = [ xt0) Sl-7) o7
=

Figure 3-1. Simplified System Mo '+l
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3.1 FINITE DIMENSIONAL SPACE
The two methods related to finite dimensional discrete-time and frequ 3 space
were developed. They are herein designated as the vector and meairix appreaches ¢

matrix approach has th:. petential for utilizing all of the infurmation avatlable within the
dimensional spacz constrained by both the transmit signal and target, chaff scuttering

=

properties. Assume, for sxample, that the target and chaff scotierin: vedie:s cach consist of
four variables thyy, By hsy, has), and that the transmmt signal i3 compased of X pulses,
¢ach containing separable V and H polarized components. The four cisient scatienng
sector. in combination «ith the N duz! polanzed transmit puises. e-izblisnes o 4N 1 3N
receiver weighting matrix for optimum precessing of the retum s:;nal. As thsequently
shown. the wrighting matrix resuits from eigenvector solutions »mvolving tho target and naii
scattering vector covariance matnces. However. since the observable data consist of only
2N separable signal retumns. the receiver weighting dimeasion must be reducea te a 2N x AN
matrin. The matov clements then consist of ihe 2N cigeavectors swociniad with the 2N
largest cigenvalues resulting from the scattrnz vector covariance matnx solutions.  This
resultant weighting matrix maximizes the signal-to-ciutter ratic {s'¢) vnder conditions shown
in Section 3.1.2.

By conirast, the vector approach atilizes only the one eigenvector which is associated
with the largest cigenvalue. Consequently, the receiver weight is ther 2 IN\<lenwni veciorn
Aithough the vector approach can be considered as a subset of the matny implementation. it
was developed from o somewhat differeni mathematical approach and provideg valuable nsight
into subsequent developmient of the inatrix method. Additionzliv. the sector approzch is
simpler to impicment both from a sofiware and hardware siandpoini. whick can prove to be
of further benefit in the ralization of actuai systems. even though performance 15 nog

3 < T

45 good.

Associated with the vector and matrix approiches v ihe concept of the maximum
itkeithood receiver. tvom which the faise alwrm and target detection probabilitics were denived.
Tne likelihood implemesitation is. therefore. descnibed in the following sections for complete-
ness, It should be realized however. that the design of the transmit waveiorm and meceiver
weighting function nwed not depend epon the maximum iikelthcod concept.

3.11 Generalized Vector Approach

The vector appreach is describid below relative to the inicraction of a coherent
pulse train with a target characterized by 2 polarization scatleniig matrix posssssing both
temporal and range variations. The anzlysis presented here is general and can be applicd
to both thz coherent pulse trzin anJ the single coded pulse waveformm. In whar follows. we
assume that the mdar sv<tem under consideration employs two orthogonal polznizations on
transmit and receive.
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The envelope cof transmitted vector is

x(1)
X =
x:(t) (3-1)
angd the target scatteriiig matrix is represented by
h] l((.T} hi 2(1.‘:‘).‘
H-{‘,I.ﬂ =
hz](l,‘r) h::(l,f) {3-2)
The target covariance matrix is a 3 X 4 matrix given by

Kypft-ury = i =1 4 j=10 .. 4 {3-3)

where, refersnced to eguatiusn {2-24):

Kyj (ruz ) = Efhyy 2 by un))

Kip(t-ur 1) Efhy; D) hys (un)}
kj3(tuz ) = Elhy-(7) Byy a0, ete

and where E[*] = c¢xpectation operator. (Note that when the scattercr is isotropic (ie..
hy~ = hoy) thea Kyj is symmetrnic.)

For a receiver weizhting function

. \
\\}(X)

Wid)

WAt {3-4)
the video amplitude at the ouiput of the receiver is gven by
x - m - -
YO = j diyy W* (1;-0) f HT“!- 7Y X (1) - 7) dr (23
-0 M -0
From above we find that the average outputl power is proportional to

o0 oo oo S0
E{VID) V)] ={wd:! {xdxz {mdr, {wdrz E{W*(1,-1) St 7 Xig-7)) X¥{ta-75) Hy%itm) Wa 1))

{3-6)

3-3




R e - - _ - . ] .'. .2\ s ) Loe R -
T = e e e i s e i e e o
If we assume that the elements of Hytiy. 7¢) and Hytia. 7-) are uncorrelated for 7y ¥ 7., then
we can wrte {3-63 as
~ - - oo oo -
Pity = E[V@) V¥)] = f di] J dats \\"(tl—!) l\\'i(!].l‘)) WiiL-1) 37
- -0 - Py - -
where K\.(t].tz) 1s a2 2 x 2 covarianoe malix whose ermenis are given by (3-83 below as
previousiy gerived in Equation (2-20).
[ ] - R
l\yTlgﬂl.I:) x]([!"‘T) x i(i:—'ﬂ
K}.leﬂl.l:) oo Xj{ip=9) x :‘!_-7)
l\}’Tl‘!l‘I:‘ = = {m d- }\HT('I-I:Zﬂ . _
*‘}T.".I“I‘IB) x:ul—ﬂ X ‘H:—T)
K\.Tﬁ‘s(I;.Ia) X:(Il‘t’} X :(l:"c') (3-8)
At - .
Introducing the discrete vector W, where N is the .imber of pukss
W = [We ol We 25 L W Ny >N
(the astensk indicates complen conjugzic transpose). we note ihat in discretr form PLOY
obtained from Equatior (3-7) for t = G is given by
M0y = WK W :3-10)
E where Kopis an N N covariance matex whose clements are the 2 \ 2 matnces
- E K, 6i&i jat. where &1 s the interpube period.  Thus. using Eguations (3-6) and «3-71 we
3 Qan write the sgnakto-chaff ratio as
A tWe HyXo (X® Hy™ W)
, o= — e 323
= ‘\o *\"-‘\ Te a8y
t LR

where K\c is the N X N clutter covanance mainix defined in 2 similar manner as K\-T abave.
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X = [X* (). X* (). ... X* (N (3-12)

xj(m)
Xm) =
x:(m‘n (3-13)

The expzession in Equaticn (3-11) is a direct extension of the results of Rummlzr (1966),
("967), and Delong and Hofsietter (1987) to the polarization sensitive targets. The vector
W that maximizes Equaticn (3-113 was showr by Rao (1973) to be

W = KT H* X+ (3-19)

e
Nocic that K)c is actually a function of X. iz.. K .. = K_(X).

ye Ny

The basic functions described above are 1adicated in igure 3-2 for 3 train of three
transmit pulses with dual polanizatior.. As noiled in Equaiion ¢3-143, the desired weighting

+ VERTICAL

EE HORIZONTAL

-2 be

06323

Figure 3-2. Schematic of Transmitie: Recciver Configurasion
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= < vector is 3 furction of ihe target and chaff scattenng covaniance matrnices, and also of the
3 5 transmit signal vector. Although the scatiering properties arz kneown stochastic functions. the
= g aeighting vector cannot be determined until the transmit wavefcrm is specifiod.  The vecior
-2 approach as derived abowz, therefore. docs not vield a direct solution for the optimal transmit
5 ’::; waveform.  An iterative procedure is possible. however, which does resuii i« Guasi-optimum
A transmiiter waveform design under certain conditions. as described below.
i % Tz
‘% =3 3.1.2 Vector Approach Waveform Design
\_- _._ The approach of Rummler (1966, 1367) is adapted herein to the formulziion of an
:: ; optimum set of transmiiter/recziver operators for maximization of the s;¢ ratic for gual
= b channel systems. The generalized solution for the receiver weighting secior W as giver in
T Equation (3-14), will be appiied to the case of 2 Doppler spread poini iarget in Doppler
-3 spread clutter. For convenience, the notation denoting the time varving properties of the
- Z transmit vecter and scattering functions will be omitted. The signal-to-chaff ratic of
=3 3 Equation (3-10) can be writien for the above poiat iarect cese as:
- ret- .
3 o W
2 2 sfc = ————— s e=
= E. 1% 3 )
: E: W‘S.\,CW (3-13)
- ? where “\T and k the tarzei and cluiler covarance matrices, 2ad whee
3 " e = 4 )& = X k 141* * - K - 3-
4 5 ky'l' E[(HX) (HX)*] X E {HH*] X Kyt (3-i6
E: H is the previously defined 2 x 2 target scatiering maztrix. The parameter }‘\ . 8 deiiaed
e g similarly for clutter. It is agzin cmphasized that both Ko and K are funciions of the
3 : transmit signal. X Given K.y and K. the problem becom:s cae of {inding the value of W
SR which maximizes the s/c ratio.
_> 3 It is clear that sjc (kW) = s/c (W) wkere K is any artitrary scalar constant. So we
- may assume, without loss of generality, that W+ K‘.c W = 1. Hence. the criginal aacensinined
oA & optimization is equivalent to the following constrainad optimizaticn problem:
3
e 32 (£ ] 7
E max W KyT w
2 .' subject to  W* Kyc W= 3-17)
E ; Applying Lagranges multiplicr rule (sce Appendix C). we ssc that the optimum W and s ¢ must
- <atisfv ths following conditions:

’_'T‘kmax Kyc’ w=9

8/9max = Mpax (3-18)

3
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where

Apax = maximum cigenvalue of K}.c_‘ K)'T
The optimum: signal-tochzft ratio is then the fargest cicenvalue of K\.C'; n,T- 2nd the
opiimum weighting vector is the cigen.ector corresponding to this lareest 2jgemaalie.

Note that the sic ratio was maximized for a given transmit vector. which had to be
choses a priori. The choice would gensrally be made based upon experience dealing with
specific farget/clutter situations. According to Rummler, this initial choice coulid be the
unweighte 1. uncoded vector. Ia any casc. it may be possible io further improve the s'c
through an ‘terative procedure devised by Rummier. This is based upon the fact that *ne
s/c ratio is unchanged if the transmitted waveform and the receiver fesponse are coniagaicd
and interchanged. This is don: by using the receiver weighis from one itcration as the
transmitted signal vector for the next itcration, for which the proceduss will comerge 10 a
maximum s’c.

Aithough the solution converges to 2n optimum s’c ratio there is no guarantee tha:
a better solution could not hawe been reached if the procodure had beea <iarted with 2
Gifferent initial waveform. Rummler has poicd. however. that the s ¢ miio convergense does
fiot appear te be strongly dependent upon the chetce of initiai vector. Nevertheless. the
vector te which the procedure converges is strongy dependent upon ihe initiz choice.

This iterative procedure was develored for computer soiution of trazsmit signal zne
receiver weighting cenfigurations for optimization of the s;c ra* o for both duaal 2nd singl:
channel configurations.  Results of this technique are report- 4 ‘pon in Scctior 5. A sammary
of the iterative procedure is Sver in Tabke 3-L

TABLE 3-1. VECTOR METHOD WAVEFOI M DESIGN

1) Meximize s’c ratic given <cgitering properties
W K‘IT{X) W

yo ' ¥,
W RYC{X) W

sle =

2} For gwen transmit vector X, find receiver weight ¥ to rxaximize s/c
3 Constraired optimizauion preifem, sigenvalue solution of:

(YT * Ymax Ky Wogs = 0

nhere

A = maximum eigenvaive of Ky._'l KT
4) ‘.‘lom*eignvectm of \mzx

Iterate by interchanging X and Y, oblain convergence o optimum sic

Dt 32es
5]
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One additional fact should be noted in regard te receiver noise. The effects of nois2
are tzken into account by adding an ideatity | matnx to K. wher Kyc is approprately scaled
to refiect the received clutter-to-noise ratio (</n).
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313 Generalized Matrix \pproach
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In the analvsis beicw, we consider 1he deiection of a point Doppler<spreaz iarget in
Deppler spread clatter. when the radar transmits a cohersni pulse irain composed of N equzlly
spaced rectzngular subpulses. it 15 also assumed that the radar 1 capable of wodulzuing the
transmiited polzrization frot1 puis>-to-pulse. A simplificd tiock diagram of 'ace system is
shown in Fizure 3-3. For -onvenicnce. the time notation will be cmitted.

kil

)
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g
oy
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Given 3 tmansmitted sequence of N pulses, the transmiy vector X will be 2 column

vecior shown as a (2N X 1) dimensional matrix. The transpose of X is represeated by:

SN
il

)
k)

e

‘} = lx\-i_ \l“‘ .. .\'\-:\‘. \:H.\’ (3-19)

where Ay is the complen vanabie representzting the amplitude and ohase of the vertical
3

uise-1 transmitted electric field, Xy4i is the horizenial component. etc.

R
>
=

The scattering propertics of the target and chaff are represented by their respective
2 A 2 scattering matricss, Hy and He. Given that

’-\ 3 -g
!xi ‘l ol]:
"T.C =
kag ha>

T.C (3-20)

and that the target (T) and clutter (C} scatterers are isotropic (hy~ = h~yp). then the clements
of ihe scatiering matrix cen tx reammanged for mathemarical convenicnee as 2 scatiesing vector
k. of dimension (3N X ).

~ _ ab o abh gD RN Ny N
BE ("n S A "1:-*-“\

22

eyl

1 ca=ly

{3-2h

i

th . . . . .
where hyg represents the verlicao-vertical scaitering proper'y relaiive te pulse-1. ctc.  Note
thai the values of the <lements vany with time for Doppler spread tasests. su~h that in gencrul
G) = (2

K'Y = hJe,

.
Ji )t
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The signal received at the recciver antenna is denoted by thas vector Y, 2s noted i
Figure 3-3. For mathematical convenience, the transmit vector X is rearranged inio a
(2N X 3N) transmit matrix X, such i:at Y can bz given by

Y = Xh £3-22)
; 3 where Y is a (2N X 1) vector with
E g Y = v ¥H - - YVN- YHN) {3-23)
= H
Tne elements of Y represent the complex vertical and horizontal componznts of the
» received electric field vector. For Equation (3-22) to be dimensionally vaiid,
R r— " —
= 5 vi ot 03
3 3
2 X . 0
e 3 Uooxyvy o3l
E X = [*vz xaz 0 (3-24)
= 4 = \
= £ \ H N2 X
P> ? \\\
2 K N
= b ~
E 5 W omn 00y
; F 0
5 3 G N X
3 YWN Xy _IJ
= e The above rearrzngemznt of terms is a special case of Equation (2-6). where
4 - . - - - .
‘ hy~ = h~y. resuliing in a dimension reduction of h.
= % TARGET
2 = AND CLUTTER
A, 3 MODEL
= Y Y z
. 8 x c
k- TRANSMIT Pix D ZNx D o« 20
: c VECTCR -
z . (2N x 1)
o 3
3 =
% 4
_-- ,.;:
= - a GSSTRVATION
: & KOISE
3 o
s g 2% v 1)
= L
2 E Figizre 3-3.  Simplified Block Diagram Matrix Method

.‘j“ ~ 39
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3
E 2 Expression {3-24) shows the matrix X as a (2N x 3N) arrangement of the elements
o e . - - -
S % cf the transmit vactor X. Observation agise NO 15 adacd to Y to produce the received
X “‘; (2N x i) vector Y. This realization of the vectar Y is simply the result of the transmit
G signal X Pring reflected back o the radar by the tareet and chaff plus the additive
o - -
= E recewver noeise.
2
2 S The preliminaries, 1o this peint. of reammanging the muathennatcal ferm of the
P @ = - - -
3 transm’t signal and scattering properties inte X and h, was nccessany to projardy dimensionalize
S the matrix muitiplication for
E Y = Xh+Np (3-25)
b = The effect of a lincar recciver upon ithe sigaal vector Y, can then he expressed in
=z = terms of the matax (, which operates on Y to dve
.=
Z = GY = GXh+GNg {3-263
v 2
e : The receiver ouipgui Z would then be subicct to hypothesis iesting Yor one cf {wo cendifions:
: the presence of target plus clutter or of claiter only. The impiementation of this likelihood
= -3 process w3l be deferred 1o Section 3.2, At thug juncture, the -maior consideration is the
= design of 15 X such ihat the s:¢ ratio at Z is maximized.
S . 3 3.8£.3.1  Matrix Transmit-Receive Design — Define 3 weighting matrix W, where
= v = GX i3-27
h . H The obicct then is to {ind the optiinum W for maximizia 1 fhe s.. rzilo. gnen the siainlics of
= 3 the :siochasiic scattering vectors for both the tarzet and clutter.
e 3 The target and cluiter covariance matrices ars given b
;' r ;
7 - -— M - - -
E = Rer = Efhy bp 13-2823
3 k2 -
= and
s > z .- I -
4 £ N.. = E ihe het] (3-28%3
% ke )
ke = where
= = * represints the cepjugate transpesc.
«
3 A
g
e =
e B3
43 %
5 3-i0
.#h :
x
B
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o 37¢ positive definite hermitian matrices. they can be simultaneously

Since K d K
Since "yT and l\y :
diagonalized by 2 matrin ¢ (see Appendix D). where

1]

o* };_\'T S A
¢* K\'c ¢ =1 (3-29)

¢ columns of o are the generalized eigenvectors ¢; satisfying

K}'T 6, = .‘.é K).,: o; i3-303
where the X; are the sigenvalues of the matrix cquaiion
J(‘.T - A K\.Ci =0 (3-31)

The joint diagonalization of K.y =nd K . by this process. orthogonaiizes the targe:
and chaff covariance matrices through the mainx transformation ¢. This in effcct provides
a3 maximum separation of the target and cluticr vectors at the Z output. which is the
desirzble condition for hypothesis testing. Conscquently, the matrix W can be chosen as the
transformation matrix ¢. Therz is, however, a dimensicnality problem in thai 6 is 2
(3N x 3N) mainix, the result of the arrangement of the h. On the other hand. there are
only 2N cbservations at 7 zs iimited by the transmission of N dual channcl pulses.
Conszquently, the dimension of the W matrix must be reduced (k x 3W), where & < 2X.
The problem then arises as {0 the methed of selecting k out of 3N cisenvectons for the
matrix W, where

-~

W= (W WsoLL W (332)

and the Wy are (3N ¢ 1) column vectors. representing the K sigenvectors of the transiormation
matnn ¢, that comrespond 1O the & lzrpest sigepvalues of mainy cquation (3310

The criicon for seleciing the R-optimom ecigenvectors 15 based upon the Chemeds
bound, whereby the probabiiity 6f error & .ainimized with respect to the hypothesis test on
Z.  Given nypothesis Hg (clutter oniy) snd H) (tarzet plus ciutter). it can be shown ikat the
probekility of crror P is dounded betwzen [van Trees. 19710,

- R4 a -~
“min fpa) 3- <P, < (3-33

(X

whicre p is the a priori probasility that Hy is true. q i the 5 priori probability that g is
true and J is the integral

-
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For zero mean Gaussian densities (see Appendix E),
h " + * .
Rz1 * Rzo' L
{3-33)

B = —Qn(‘!} = Qn k . l;., 1
Rz 1” Kzot”

where B = -¢n(J) is known as the Bhattacharyya distance. N¢ te that since 0 < J < 1. the
minimization of J is equivaicnt to the maximization of B. Therefore. we select the

iransformation matrix W so as to maximize the Bhattacharyya distance.

in Equation (3-33). :"Zl and KZO are the covarance matrces of Z under

hypotheses Hy and Hy respactively . These quantites are:

KZ] =W Ky‘T W + W K}'c W#
KZO =W k\'c W= (3-36)

Substituting ot the W matrix as resulting from the eigervector sclution of
Equation (3-32) inio the 2bove for Kz ané nyzg- and then substituting of Ky and KZO
into the Bhattacharvya distance B as given in Equstion (3-33) vields

Sen i
B = :Lfn N+ D+ ——+2 ] +k2n 33
=hl At TR ~

Notc that due to the restriction or k. k must satisfy . <2N. Then. maxim:zation
of B requires finding the appropriate k cigenvalues Aj - Ay oud of 3N cigemvalues that

satisfics

AN D W vl > ed, e DT> LI >N s e LD S TR N
Since ko= tm ) - it >l.‘=‘ e e by

implics \ >)’ for ait ), .\, >0

i £ sigemvalues that maximize B arc then the k largest cigenvalurs of taw ordered sct

{ =)\i’>ll"'>“'k>-'>)‘3.\ {3

A
“mav

.

hor follows cieentectonrs of W ’ 1ci
It then follows that the L cigenvectors of W should be selectad trom thos: which correspomd

to he & largest eigenvzlues of X}.T -M . =0
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3.1.3.2 Transmit Waveform Determination — Once the apove optimum matrix W has been
determined the receiver transformation matrix G and transmitter waveform matrix X arc
selected by minimizing the Frobenius norm

EGX-WigE (3-39)
: which is defined by
,. . l . 5§l b
: dat_= X la;i- {340;
2 ¥ iJ J
> v g 2 choice ¢f the Frobenius norm here is for mathematical convenience. sinee in
3 finitc dimensional spaces all norms are cquivalent - as far 2s topological properties are
concerned. For a given waveform matsix X. the minimizing G is given by

4 G = WX* (X X! (341
tstituting Eguation (3-11) into the cxpressior ivi the norm. yiclds
2 twxrxxylx-nig (3-42)
r: Optimum performance is obtained if Equation (3-12) is identically zero. The above
= discussion indicates that for 2 given matrix W the transmit matsix X can in theony & compuicd
by minimizing the Frobenius, norm. In reahty. this disect method for soluticn of X is
H extremely difficult. An alternative approach is to start with 2 large library of reasonable
= waveform structures, and scarch for the waveform which minimizes the norm. This was dene
= during the study and will te seported in Sections 4 and 5.

Once X is selected through this procedure, the receiver mainix G 15 computed from

Equaticr (3-31). A summary of *he matrix approach is gven in Tatde 3-1L
TABLE 3-II. SUMMARY MATRIX WAVEFORM APPROACH
1}  Solve for eigenvalues of leT -3 ‘vc’ =0
] 2l Select the k<2N ilargest eiganvalues
- 3  Fum W matrix from the “a ¢ genvectors of largest eigenvaiues

4) Soire for wramsmit matrix by minimizing nerm of
MO X X x-n3?
E: 1 5)  Step 4 ahsve can be satisfied by comparing a library of stored transmit vectors ageinst W, and
selecting the one resulting in the minimum evor
g 6) Soive for receiv2r weight G using
i .- oW X é.)-i
: =

001 2:0

il 'g,,!“ﬂ; .
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i = 314 Maximum Likelihood Detector

13 E

< T = . N R . R . .

bz = The matrix approach vields a transmit waveform with an associated receiver weight
3 £ which maximizes the s/c ratio based upon the Bhattacharyya distance criterion for optimalits.

ZH

5.

Up to this point of the design {output Z of Fizure 3-3), the hypothesis test for the target or
= chaff decision process has not been a facior. ¥For a surveillance radar apglication., one is
intecested in optimizing the probability .»f detecting a target in chalf for a given false alarm

s 1
"
it

I

Bl

-3 prebability created by chaif plus receiver noise. Referring to figure 3-3. the two conditions
,‘!EE 35 for hypothesis testing are
=3 “0: Y = \Ci‘ NO
- Y
s Hi: ¥ = Yp+ 3¢+ XN (343)
% i Here HO represents the false alarm situation oi <haii retumn plus noise. while Hy represents
e = the target retum combined with the chaff and noise.
e i 3
- = The above receiver inputs are linearly operated upon by the weighting matrix G to
? produce the observed receiver output Z. A decisior must then be made as to whether Z
- satisties hypothesis Hg er Hy. The transimt vector X and receiver matrix G are now known
design parameters. The statistics of the tareet and chaff scattering propertics as well as the
A receiver noiss are known stochastic processes: consequently, the signai distbution at Z is
;; S~ g aiso known for cack hypothesis. This then lends iiself to a convertional maxinmom likelihocd
% 3 decision process for Hg and Hy. The maximum likel:hood receiver configurstion can b found
i r in standz7d texts {Van Trees, 1948, and wil! not be claborated upon. There are. howwever,
: 3 some design features peculiar to the matrix approach. These are discussed below with the
§. 3 aid of Figurs 34, which is an extunsion of Figure 3-3.
P: - At the thresheid T, a binary decision is made for condition Hg and H i- Since 1t s
4 desired to utilize 2 conventional receiver implementation such as. for instance. a square law
3 = detector, it s necessary to transform ihe output at Z to fulfili certain conditions. This is
= indicated by Fisure 33 Sy the matrices Q and P which operate upon Z to produce the
f 3 cutput signal r. This signal » then squared and summed to provids a signal u, upon which
= _ X the threshold test is performed. The mathematics associaied with the Jecision prozess involves
s E Lnowicdge of the probability density function of u, and this computation can be facilitated if
5 ‘ the 2lements of the signal matrix ot r are uncorrelated. This is acconsplisiicd by finding =
A 3 transformation matrix (G which diagenalizes the covariance of signal Z: that is.
7 =
E E Z=0Q7 (3-14)
SN
T where
. 3
€ s E[Z - 27} = diagonal matsix.
3 . :
5

’
1)
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ST

Z
gL
= L
b S It is noted that the covariance of Z may iseif satisfy the orthogonality critencn.
= oo This would be true if in the matrix waveiorm design, the quantity GX were ideatically
= 5 equzt to the matrin W. In generzi. hewever, the Frotenius nony § GX-W £ & ~atisiied by
Z i3 2 keast squares fit procedure. such that GX # W. In this case. Z must be orthogonalized
o = by the transformation mairin Q. Additive recetver neise also requires iniposition of the
& > Q matnn.
i w2
= Pt
= 3 The matny P which operaies on £ 10 produce r, is simply 2 scale Tactor to
3 2 properly weight the elements of 7 prior to the square law operation. The final observed
4 receiver outpui u, is thea
o ) _,'
_:.‘- ‘ K b
u =t =y gl {345)

. = i=1
7 s The iikelthood ratio hypothesis test is dependent upon the probability dessity of u
2 under the criteria Hy and H;. The probability of false alarm for a given threshold 1, is then
b= 3 o0
: _ , L
S5 z Ppy - fr p(ujHg)du (3-45)
=, 5 For a desired Ppy. the threshoid T can be computed using the Newton-Raphson
= % technique. Given T, the probability of detection then becomes
S o
‘ ‘ ~
& ~ 3 Pn = plujlly }du (347
: p = J; 1
A target is declared if u = T. Note that the optimum receiver overali weighting
Rz function is now
=
&= < G = P-OC 18
s . F “’opt P-O-G (34%)
‘4 :‘ Appendix B provides a detalled derivation of the forcgoing procedure, assuming
i :. that Z is jointly Gaussian under both aypotheses Hg and Hj. It should te noted that the
B 2 maxirum likelihood deicctor decisiorn process can be applied {0 any of the waveform design
SA techniques considersd during this study.
o
E :
. :
2 '
24 ;
S —
by P
43 '
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3.15 Prelinzinary Design of the Processor

The processing algorithm is presented in a {unctional flow form in Figure 3-5. A
sample vector (k x i) is muitiplied by a we'ghting matrix (X x k). The elements of both the
szmple vector and the weighting matrix are «omplex. This produces a (k x 1) result vector r
with complex elements. The elements of the result vector r are squarsd aad the squares are
summed 10 form 2 scalar u which is then compared with a threshold T.

For the preliminary design, k is assumed 2qual to 6. !z cr this assumption. the
sample vector wili contain six complex (1.Q) samples- one sample from a channei with
horizonta! {(H) polasizaticn and one sam-10 :rcm a chanuel with verticad (V) polanization for
each of three pulses. A vl repetition time of three milliseconds is assumed. Further. the

guantizer is 2sumed (0 quantize the 1,Q quadrature components to 1G-bits.

Under these assumptions, the processing load can bte estimated as follows:

Processing Per Sample Vector

Mazinx Multiplication: {44 real muitipivs
132 adds subtracis

Vecior Squaring and Sumsming: 12 real multipiys
i adds
Threshold Detection r subiradd

These data may be summarized 25 follews: each three miilisecond peded, the processer is
required io perform 156 multiplications and 144 addisubtracts for each sampk vecior

processed. Input-output. bookkeeping. and cther cverhead operstons are in addition fo these
requircmsnts.

If thest opzritions wers t be pe-formed in 3 general purpos: 16-bit microprocessor
or computer withoui any speciaiized multiplication hardwar~, z reascnable assumpiion would
be one 16-bit by 16-bit multiplication ezch i6<locks, and one add or subiract opermation each
clock. Using thesc assumptions the minimum processing Ioad woulg be (136 x 16) +
144 = 2640 Jocks. If in addition, we sstimate fou: clocks of overhezad for each slement of
the sample vector and of the weighting matsix, W require an sdditionat 3 x {12 + 723 < 336
clocks for a total of 2576 clocks. This car b2 rounded up to 3,008 cieis.

Figure 3-5 contsins a precessing biock dizgram which contains 2 16-bi« micreprocessor
identificd as the ITT Giifillair Radar Processing Module {RPM). The RPM is capable of
operatinig at & clock speed of 230 nanoseconds, A first estimate will be made assuming that
the entire fask wee performed in tyc RPM. This requires 3068 x 0.250 = 73¢ micrescconds
dusing each three millisecond perind for processing of the tarset in 2 siagle range Ha.
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- = Figure 3-5 shows the use of a specialized programmabic Outboard Processor designed
P2 e to unload the RPM tc improve processor efficiency. The detaiied block diagram of the
Outboard Processor is given in Figure 3-6 and represents an alternative o RPM only
= processing, noting that the RPM is still required for data management and cther rangng
S functions. This processor is built around an available 12-bii by 12-bit 1.S1 multiplier
= accumulator chip. Tuis processor is designed to receive quadnature samples and matnx
- € weights from th: RPM in one set of memores while i 15 procesung datz from the other
= e st of memories. This processor is designed to perform the maina maltiplication and vector
2 = squaring operations. Addition;subtractions into the accumuiator arc fuliy overlapped siih
= 2 multiplications. A total of 26 multiply and accumulates are required 1o produce the
= E sguares of the real and the complex parts of the slemenis of the resublt vecior 7. .3 for
= the real part and 13 for the imaginary part. This sequires a total of 6 x 24 = 136 docks
3 for cach sample vector proceserd. The clements of the matnx weighis are changed only as
= E7. required. In this configuration, assuming a 230 nanssccond clock. 2 naairy mu iply and
s vector squars operation can be done in 156 x 0.236G = >4 microscconds (mucn mere
AN =fficdent than the 750 microscconds associaicd with the RPM for «us funciion).
e 3
- =
. A With refereace to Figure 3-3. the RPM dosignates the range at which samples 2re to
) 4 be collected 10 the Range Gate Logic which sirobes the outputs of the H chanael and the
= . 3 V channel A'D converizrs and passes the samples to the RPM. The RPM pacses the
S 5 samplss and the matnix weights to the outboard prowesse, which computes the squares of
53 - .
=2 4 the elements of the result vector 72and rasses  these squares back to the RPM whers the
R, i siares are sumated and thresholdsd.
-
= > =5
ez The configuration of Figure 3-3 would bx cffective for implementing 2 track fuaction
] “ in the radar. resident in the RPM, Te appiy the same preccssing io an acquisition function
3 in the radar. additiora! processing czpability would be required.  Adaptation of the
9 ITT Gilfilan developed Optimum Filter Transform (OFT) miodular approach wouid provide
- - . . _ ee . .
: the required additional processine capsbility (the 0T module implemenis a vector
S ) fmes @ matnix meltiplication and was developed for high performance Doprler processing
= . .- . - - . -
. N in radar signal processing applications).
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3.2 THE STATE SPACE APPROACH

This seciion is 3iso devoted to model:ng of radar targets and cluiter and to the
design of an optimum receiver for detecting a target in clutter. Here. as in previous sections.
both target and chaff are taken io have a dual channel scattening opzrator descriptior, bui
our approach wili be that of the modem state space theory of svsiems.

From an esxternal viewpoini. a system can b2 dzscribel by the family of ail possibie
input-outpit pairs. This may be the most Seneral description of 2 sysiem but. unfortunately.
it dozs not give a ustiul refationship between a given input of a sysiem and its corresponding
output. PBecause of this. we introduce the state space theory of syvstems.

The state of 2 system is the lzast amount of information which. together with the
incut, will uniquely determine the ouipui. ia what foliows we shall bz mosily concemed
with discrete-time systems with a finite d:mensional state space. Thus, &t t be the time
varizble which takas the values O, 1. 2. . . .. and let A. B, T be matrices of appropriaiz
dimensions. Then a linzar discrete-tire system is described by the pzir of equations

st + 1) As(h) + B ult)

(349,

i} C ()

where s(8) is a vector called the state at time t. whils u(t) and gri) are the input vector and
ithe outpu: vector. respzctively.

3.21 State Space Modeling of Radar Targeis and Cutter

3.21.1 Point Tarzet Model — Th: stste space theory s not only desclored for studving sys-
tems, but it s ako intended for “gencrating”™ stochastic processes —~ by niezns of systems

for zpplications. for instance, in communication and control sysiems. It is evideri from
Equation (3-19) that if the input uf1) is a stochastic process then so0 is g¢2). Therefore if a
stochastic process can be gencrated from 2 dynamic sysiem with a state space description.
then we have 3 stafe space model for the process

We now derive a staic spacc mocel for a point target. Let Hy{t. 7) be ike
scattering matrix of the tarset. then

He(t, 7) = H(ty - sir - 7). Hitb, = [h() ] .6 j = 1.2 (3-30)
whare hij-{t) are Gaussian processes. If x(t) is a transmitted signal — which is 2 2 by !

detzrministic vector — and

Sty = Ry, hya(n. By, haa() } (351
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3 ts the iranspose of the iarget scatiering vector, ther the corresperding recened signal is

H = Y = Xt -7g) - S(1) {3-52)
o

3 where the 2 by 4 matsix X(¢) is given by

:. *

R = Yl(i - TO;' Xt - 70) J 3

W
1
N
.
~

”

e

3 i-Tgl = ‘
= 0 0 ‘ln - TO) .‘.:'ii - a'o)

il

.
¥
s

H - which 15 deterministic. It fellows from Fquation (3-52) that the receir -d signal vector Y
E= - - can be regarded as the outputl of a hinzar timzvarving dynemic sysicmn whose stale voctior s
e S the scattening vector S(i). Thus the problem of modeling the poini target becomes that of

z ¥ -

2 E: modeling the vector process S(1).
i5 z To iaodel the process 3(t) we use an Gutoregressive modzI: ihat is. St1) is taken to
3 < 5¢ of the form:
+ 2 - =
= S = 2 Ap St - )+ oul, (3-34)
= 5 n=1

‘.
5 = whicrs the 4 X 4 comsiani man 5 JETUR YO od and the 3 v} wveo Hiv o2

5 H Ot X COMSIANRL [MIIWO Ay Al 0 B computed and the 3 1 vector wiid 5 2

Ko - . . . - - . - = R

4 white noisc process with zero mean. The N step 2utoregressive medel Equation 3-34) is

<48

*3 Z actually a form of a statr space modza! and is equivalent to the pair of cquations:

= % — — —_—

AN Sty = A - St - D+ U,

2 . 3-3%)
B 3 = hngl

S Uty = C - S,

. 48 - —-

-3 ', where S2-) apd Ul-) arz 4 1 | vectors, while A and C are consiani mrinas of dimcmwors

E’ AN x 4N 2nd 4 » EN respectively.

4 ‘;

- \d The basic preblem in represeating S(U) by an autoregressive medei is 10 ostimnate
SR ¥ the matsix cosfficients Aj. As. . . .. Ay. from the observations Sty S2- . SNy Let
S r‘ us aow illusirate the estimztion procedurs for a one step autoregressive model. Thus It

e ' S$(1) be generated by the egquation
-§ “£4 o -
= L St = A - St- 1)+ ). 13-363
3 3

x p

3 where Ay = [3p}.i.j = 1.2, 3. 4,05 tc be estimaied. For this we define
5

e 3 3= 1313352213 34 22) - - - 224,330 - - Qg agy - - - 2gg ) GBS

322
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- Then Equation (3-56, can be writien as

Wit

= ‘, (1) = 6 (t-1)-32+ ). (3-38)
g -] where the 4 x 1~ matnx ¢ is made up of entries of the 4 x ! vector S{1 - 1). Now if the
5 2 values S(1) . . £L) where (L>3) are known. then we form the 4L x | vector

Y &
e 3 S(2. ... L =S .. S §3-59)
s - F

= : and ihe 4L x i6 matrix

sl . ... L-=fon ]

= > h il (3-60)

- Lou_ -b

{3

- It then follows irom Equations (3-38). (3-39) and £3-60) that

= 3 SL...DL=gil....L-ira+U2 .. .1y (3-61)
3 ‘; where

g 3 ~ ~ ~

o Uz ... D= U, ...t

B < To estimate the vector 3 — which in tumn gives the estimate of the matrix Ay - we use the
3 g ‘cast square criterion. i.c.. w- minimize the functional

E 3 1S ... v-6dl . Ly -a K (3:62)
S B A

E Tren the least square estimate 2 of a is given by

2 AN i -1 .

b K ;—lgn....L—i)'g(l....L—-!:} 6%l .. L-h-S2 ... L (3-63)
g

= p= 3.2.1.1.1 Computation of Matrix Coefficients — In the case of our problem. the observations
3 = are actually the transmitted signal 4data set [N(1). .. .. XtN)}] and the rcceived signal daia

3 set [Y(1 .. .. YIN) ]. It ;s cvident from Equation(3-32) that

= 5 St = [#u-79 17! -Xit-79) - Y 3-63)-

‘;

=g A_ where

=] ‘

3 o X151 Xy 0 0

2 ‘ \2!1 X9Xy 0 0 e .
: x = =X*-X (3-65)
= ., K]Xl Xix:)_

* 0 0 X:Xl XGX:

Therefore the data set [S(1), S(2). . . .. S(N)} can be computed from Eguation (3-64), using
the trancmitted and received data sets.

iy

3-23

Y3y acnis o

s




3oen 4o R
DILHEME R4

'a
AN

AN

t"'i A

123 3!

MalVL P IR

At (o ith

g

4250 .
?h (it

AN A

£
4 ekt

2
’

LA B L

Pty
£

I’

g

LA LA

¥

Wil
VULV I

4ipdn Q:.' i .1(’, AL

R

R

i,
v

Sommiatialratdrg) ATy

v

S - -

s ~ .= -
bor ~ -

+

et MR AP A

RN I TR L e o e b g o O : : e i e R S .
‘ S et N AT i N A o, ST e S DR g o <
e RS R e S e o i

The matriv coefiivients Aj. As. . . Ay €A alse be computed from the

Yule-Waiker cquations

. + A\'KS (m-N\) = KS {m). (3-66)

furqe = 1.2.3... .. N

Ksh»:) -

. ‘) Stn + x5 - Sems® for oa = 2000200, {3-07)
N 2.

Egunsientiy. one <an also compute Kgi°} from ti sueives® <tznal covariance maifia K).('L
as discussed in Section 2.

~n
= v

Ksn ~w, = (% (- ro)i" < Xit - TAT K).n -w) - Xiw - 7g) -

%5 - 70)1_E (3-68)

3.21.2  Cuatf Model — In ths cacr = huao 0o uansmiticd-reccived wgnal relationship

s
Yoy = J_, XNt -wy- St (2-69)
where. as in the abo.2 X(-) is the transmitics signal matny 2nd 5i-; & the mangespread

chaff scat
which is a2 stechastic process 10§ ior zach fved 7 - of 3 inec2r system. given the sy

sring voctor. The wvioblem aow beeemwes that of modehng the input St 1)

weighting mairin M-) a2nd the outpis 37 We Zhaii new gne an =prr imation procsdure

for this casc.

L2t l-;,n ‘7’]°°n=i be a scquence of orthenormar 34 < 1 vectors over the interval

(oo, 2°), i.c..

Mgl

or n -
< . ("0
ora = m

-,

oc : T 3 - - = ‘ i

fo o o @ & = 3, o = IG

where [...} denotes the inner predict n ol t.xpanding the $ x 1 vector Sit. 73 in tenns of
the sequence [P, (D] we find

o0

St = ) sy (0 -

1

o (7} (3"

=

i
s
!
!
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where the scalar functions sp{t) 2re random procvesses. Let Kglt, 70 w. 0} be the covanance
matrix ¢f the process $(t 7).

Kglt. mw. 0) = 9 9 Ap (L w) - 9 71 g (0)® 372)
n mn

where
Apm (. w) = E s, (1} - S (W) (3-73)
Therefore
| % ;
;\j-k (. w) = J_w f_” VSRS 3 hll) l\s (t. T2 w. g) - § {55 - dodr.
k=423, .. (3-74)

Hsving computed ‘\jk {...) from the covariance matrix KS ...z ...) we can then mode] each of
the processes s (1) by the autoregressive scaeme discussed above. Equiva'ently. we can model
the vector process

-

(@ = [511) sa(t) . . . sp(D)] (3-75)

SR

with
E 50 - 5% = Matrix At wil (3-76)
by the same procedure.
it is noted tha® the received signal Y(1), in this case. admits the mean
square approximation

N
Y\(1) = sptt) = V(0 {3-77)
L

where the 2 x 1 vectors Vn(l) arc ziven by

Vol = § o M- - P {r)-drn = 1.2.3... N (3-78)
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Ez 3.222 Optimum Receiver Design:  The Case of a Poiat Target in a Qoud of Chaff Dipoles
= < Let Y(1) b2 the received signal from 4 point taiget in 2 cloud of chaff dipcles. then
f vy

s b Yty = Yo + Yo, 13-79)
3 3

= = where YT and Yo are the received signals from the target and - Chaif. sespecine) | and

= poth Y and Y are Gaussizn processes.

b .

# ks The binany detection probiem i 1o find the optimim recsiver for testing

"

3 Hy: Null Hypothesis fie.. Zero Target Signal):

23 = Y13 = YY) - i for sl 1 in {T;. T-}: 1350

5 Wy

ife

Yy = \'11':) * Y(‘“’ + @, for all 1 in !Ti. T:I. (3-81)

$3{1

v,
ALY

in the above. 51D 1 an exlemnal additine. staiistically independeni 2 1 vector. white none
i - PTOCTSS. Tl and T- arc the inftial and final observ_tion times. 2nd 6o mienal {T]_ T-i »

assumd o be long cnough for compleie otvenation of the received sinal

3.2.2.1  State Space Mode! for the Point Target — Without losi of gencrality. the pomt
pa 2

P

targei s modeled d: a3 “Istep” autoregrsssive schems. Thus Equation (3 54) now dacomes

b & Sty = A - St - D AS - S - ) 4 ) 13-82)
2 3 -

g = where the £\ 4 matnes Ay and A~ have been computed from the metnods discineed above
z i - - . . - - -~

3 and w1y 15 3 wanistically independent 4« 1 vector white none procass. Set

2 -5

e 5

B y - St

2 Sty = i3-83)
> £ Sit - Iy

Then the state space model for the pont target is

.‘\ l -‘\ : —

—S.m . §(! - ¥+ wy (3-34,

Iy 0Oy

Yo = Xt -7g) - [y 94) - St

; - gzn]

where w1y =1 ¢

1 wmiy =34 3.1

and Oy &+ a4 x 1 zer0 vector
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= 3 3.2.2.2 State Space Model for the Chaff Dipoles — For the chaff dipolzs. le' us assume that
P
K - Sc(t, 1) = s(1) - Nirjiz (3-85)
2
: 3 where.
__ k: N(7) is a deterministic function of the average chaif cross section in rmnge, and sit) is
= : stochastic. It can then be shown from the discussion in Appzndix A that
s 7 ] : )
= 3 l\sc (t-u.7r) = plt~u) - N7 -4 13-86}
E :. and
E K(t-w) = p(t-—u-p. (2-87)
E;
3 where,
t -3 i B }
- P O
: oty = [expl-jogt - ] - [Ky + K» expt=2c,-1°) - cos 2@ ] (3-88)
k= 4 exp{-jwy 57) i 2 expl-2c; 2w ¢
B
= S5
2 3 and
. B . /3¢ o0 & ;1300 16y
E=O0M- Ky =¥35(0 112 1120 Y. Ky=i§ 0 i %z 0
5 0 T12 112 0 0 i g [389
By : 0 0 23 -i6 0 0 13
E 3
= 2 It follows from the above that for the chaff dipoles we need only to medel the procass s(i).
= Thus as in the case of the point torget we fake
-
e 7 St} = a; st - 1) +assit -2+ 4% - w0 (3-90)
2 = where a3 and a»~ are 4 X 4 matrices. and W is a3 while neise zero mean process. S0t
O\ -
£ - s(t)
e 3 sit) = (3-91)
< ¢ s(t ~ 13

' - Then the state space mode! for the chaff dipeles is

s ‘ 2z — 3] 33 —

A 5 s(t) = -3 - D+ WY

2 I 0

¥ 4 4 (3-9)

[ -] 1, —
Y = [ X@-7) - N dr - [y 04 D

\x

where the vector process W3) is again white and with zero mean. and
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4.1

The main information given for the Jesign of the optimum receiver is the faggt
received signal covariance matrix K"T (1. w), the chaff dipoles received signal covariance
matrix K, ~ (1. W), and the white noise process 1) covariance mairix K,

K-8 - w.

i -w)=

3.223 Estimation of yy{{) under Hypothesis Hy ~ In the siate space iangei amd chaly

o e e

formulations, set

Al 1 3] 3: 3
AT = l and \. J {(3-93)
Iy 04, Ll 04
Then define
Sin) )
o) = . . anéd Wit) = - - (3-94)
s(t) vit)

We obtain — by combining Equations (3-80), {3-81). (3-93), and ¢3-92) - ihe foliowing state
space formulation for the received signal Y(i3 - under hypothesis Hy:

At 04
L) - - Z(t - 1) + ™o
0y AChJ 13-93)
Y = Cy(1) - Z(1) + A0
where
> 1.
Civ = l.§n -7 053] #[0ag .‘__{n - 7) - Nty 3de 0a 4] (3-96)

C1(i) + CH1) (say)

It ihen follows that the problem of esiimating Y1{1) now becomes that of estimating the
state vecter Z(t). This is discussed below.

3224 The Kalman Filter for Estimating Z(t) -- The lcast square cstimate Z(t) of Z(1) —
basing on the observations Yit). Y(t - ). . . .. Yt0) — is obtained by the discrete Kalman
filter. The derivation of the Kalman filter is standard and will be omitted here. Figure 3-7
gives a block diagrzm o7 the filter.
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Figure 3-7. The Kalman Filter for Estimating Z

The basic equations for the realization of the Kalman filter are:

a) The estimate at time t of the state of Equation (3-93) is Ztiit - 1} -- the
cenditional mean — and it satisfies the recursive equaticon:

A AR A
Ztlt - i) = A< Z(t -1t -2)+ G Y- Cpn - 26 - 1t - Ol.

A (397
with the initia! value Z{110) (say) given. The matnx Gt1) is giver by
Gty = A - Pt) - Cf{y (€4 - P) - (1) + K J7L, (3-98)

In the above
AT 04
A= (Equation 3-95) (399)

04 A

and K, s the covariance matrix of the white noise process ¥(1).
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b) In Equation {(3-98) the matrix P(1) is the covariance of the estimation error,
and it is given by

e 3 P+ 1 = [A-Gm - Cyn) Py (A -G - Civl + K (3-100; :
e 3 + G - K, - GH _
7 i
g ' with the initial value P(0) taken io be ithe covariance mairnin of the initial :
2 staie Z40). :

o g
% _
; L5 - 3.2.25 Estimation of y¢it) under Hypothesic Hy — The chaff cloud received signal Y1)

= can ~f ccurse be estimated by a Kalman filter as in the case of xsiimating the large! received

i
73 s signal Y-p{1). However. it is ciear that once the state vectar Zii) has neen estinzied. the
N estimation of Ydiy is readiiy ghven.

= 3 3.2.2.6 The Optimum Receiver — The optimum re

ceiver is described in Figure 3-8. It

: & compares Y'l“’ under “l with Y(1) - ‘.’Cn) - under ”0 againsi the decision threshold, .
\". .« =
=
=
: N3

OECISION
THRESHOLD

AN
27y '.I‘
<

I
o

i -
s ¢
' = Con CT
: 4
: ] XALMAN FILTER ¢
3 z FOR ESTIMATION
‘ 2 e oF

AR 3 Zi Tl
- &
A Figure 3-8. The Optimum Receiver
= A
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S ¢
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3.2.3 State Space Summary

The foregoing approach has provided a state space mod=l for the design of an
optimum receiver in terms of detecting a poini target in ciutter. The receiver implementation
is given in the conventiorna! Kalman filter realization. based upon kaowledge of the target/
clutter scattering properties and a given transmit waveform, Furtiier study will be necessary
to also utilize the state space model in the design of optimal transmit waveforms.

33 THE FREDHOLM INTEGRAL EQUATION APPROACH

We discuss in this section the design of yvet another form of -eceiver for the birary
detection problem of the previous sectinn. It consists of:

a} An opiimum linear filter Eg which estimates the target received signal Yyt
from an observation Y1) - assuming that hypothesis Hy is true. and

b) A prewhitening filter Qp for the chaff cloud interference.

Thic receiver iz shown in Figure 3-9, where the two filters Eg and Qg are solutions of two
matrix Fredholm Intezral Equations.

We now iflustrate this approach for the casc ¢f a2 point tareet in a cloud of chaff
dipolss considered in the previcus section.

T2

K3 od
—f oo 0 x

vl ° J
‘1

¢t DECISION
THRESKOLD

£ {1, a4}
o

832-10

Figure 3-9. The Corrckitor-—-Detector Receiver
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331 fntegral Equition for the Filter Qg
The dual channel fiiter Q, kas the weighting matrix

Qptt, w) = K1 §ly - b (1 - v) - Dyl w}j, (3-101)

where K — 5 2 x 2 constaat matrix ~ is the white noise procsss covariance matrix. and the
2 x 2 matrix By (.,) satisfies the following matrix Frodhoim Integral Equation:

T, i . _ . R
Dc(t, u - K+ ’Tl i)o(t, s) Ig_.( {s u} - ds = Kyc(t_, ) (3-192)

To selve fer Dy (.,.) from Equation (3-162) we first compute the chaff dipoles
received signal covanance matnix K"C (1, v

We have — from Fquation (3-86) of the previous section --

KSC (t-u71r) = pil-u) - Nrj-H (3-103)
then
o0
xnd.u)?- }"_c. Kscfl-u,r;‘X(t-r‘u-r)°dT $3-ic4)

w} W 3% P fa) iz "- } % rector wh e 5 o o (-} and
here we recall that ‘YC {*) is the 2@ x 1 vector with onfres cf A},c Y. and
Xt -7T,u-7) = {xyt ~ 73 'il(u =T, -1 Ez(u -7). 31165

X5(t - 7) X - 1), 2t ~7)Xx(u -7} .

Here »y and x, are entries of the transmitted sigal. We have

S0

xYC(i,u)= ;x'l—u)~{m B-X(t-r. a-7) - N{7) - ér (2-:06}

= oit - u) - u * GG, u) (say)

=

Now. et g i.j = 1, 2 be the entries of the 2 x 1 vecenr G, then
&j

UL \'AJ

o w et g w ey
Sc . = plt - us H.

l,g,:(t, u) + g2:{t. U) g;(t, u) + 3gax(1, w}

-3

(3-157)

Eiygy

.y

where g = 0.9A2

Alp e
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332 The System of Frediolm Integral Equations for Dg(t. uj = ll)oi’:( i. w}

Substituting Equation (3-138) into Equation (3-104), we obtain the following
system of integral equations:

e EIRYEAR Y o R 1A T e
”‘r el el o

- T
ot - u) G} l(t, wu = Do“(t, u)k” + Dol“(t, u';k:l + i j’_r?- lDOH(l. s) (5“15. u)
1

+ D514t 9) Gyots. w)l pfs - w) - ds (3-108)

. Ty
Pt - ) Gpa(t, w g = Dyllee, wkys + Dyl e, wdkan + p i Dy}, s) Gyats. w
1

+ Dol?'{t. s) Gzz(s. uiljpts - u) - ds (3-109)

L1 T ww;mm-:neu, T\ ety i‘\ !

T, .
pt-u) Gyt w) p = Doz‘(t, apky; + D522, uiks, + g e Do, ) Gyy6s. w)
?
+ !)022(!. s) Gyi(s. W} pls - uj - ds 13-110)

(

‘ l' l‘(f‘ ‘

TR e Owria
{0

s .- T .

4 Pt - u) Gpolt, w) & = DgZi(t, uhk - + Byit, wkas + S IDp7hit 1 Ga s, w)
3 = - i -
3 E
= + Dp?2(t, 9) Gopls. Wl 265 - w) - ds (3110
; 4 ; where kij' ) = 1, 2 are cntries of the constant matrix K. and Gij' i} = i 2
By 3 entries of the matrix on the right hand side of Equation {3-106).
3 = 333  Integral Equation for the Filtar Eg
9 = The optiaum filtes Eg which gives the minimum vadance estimate of the signal
. d ¥t - under !ij — is given by the matrix integrzi equation

- T-’ » - - *
: L Eg{t, u) - K + f.l.i Eqft, s) !K),_r (s. u} + '\YC (ssw)} - ds = L—‘-T (.;-‘u:P
>112)

H.re Ky,r (-) is the target received sign2l covaniarce matrix — which can be computed by

the results of Section 3 2. The above can be expanded into 2 system of integral equations,
as was Dy, u) for the chaff.
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334 Approach to Selving Equations

The design of the Correlator-Detector-Receiver is zomplicated by the fact that it
involves sclutions of two matrix Fredhoim Integral Equations. It is clear that the above
integral equations can, in gencral, be quite difficult to solve “exacitly™. Their solutions
depend on the functions Gij which, in tumn, are dspendent on the transmitted signal x(i).

in most cases. thess solutions can be approximated by appropriate ortl.cnormal
sequences of functions {2 mean square approximation). where the choice of these functions
depends on cach particular case. In the case of the chaff cloud for instance. sino~ the
interval { T}, T»] is tak=n to be finite, we assume that the functicns Do’-’(t. u) can 92
expancad in a “double™ crthcnormal seriss of Legendre polynomials 70 l’j(u):

Dot w) = ) Y P P - Py
0 0

Substituting in the svstem of intcgrsl squations we then obiein a sisiem of algebraic
equaticas for the coefficicnts nk_l’}- Simiiarly. one can approximate ih+ intsgral equation

for Eﬁu. u).

It is also noted that an expedient choice of the transmit signal can simplify the
problem somewhat. Rceferring back to the system of ecuaticns for Dy. wz have

- -
eft) = | N - xf{t -9 xft-n* dr i.i=1_ 2 G113
5y -o0 1 ;
where xf1). 1 = 1. 2. are the entrics of the transmitted signal X(D).  Since Xt1) can be

chosen. and duc 0 the specific form of the function N(1), in this casc. we «an take

xp) = Heg(t) = 1.and xa(t) = Hey() = fcion. (3-i19)
the first two Hermite Polvnomials. Then it can be casily verified that

‘-’-x't) = Oforifj (3-113)

£ Qfor1 = ;

7

matrix G(1) therefore becomes a diagonal matrix, which will smplify
the soiution.
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335 Fredholm Approach Scmurary

Tne adbove approach hzs been the Jeasi deveicped during the course of this study.
ending essentially with the mathematical fonmuiation of the problem. The difficulties
envisioned in solving the sets of integral equations, would tend to fave r the finite dimensional
and state space approaches as the more preferred methods in obtaining solutions to waveform
design and associated concren! ieceiver processing.  Additionai study would be reguired to
verify this assumption.

34 STOKES FORMALISM

Tk2 final method reported upon for utilizing scattering properties of targe! and
ciutter. is the formulation of the system model in terms of Stokes parameters. This method

8 summanzed brieflv below. A much more detailed description of this appreach can x
fcund in Rosien <t al [1979}.

341 Stokes Model

The previous sections have described the gencral concepis of scattering theory in
terms of the target scallering matrix. as given by:

h hyn
1i 12
] (3-116)
2t h::J

Kennaugh {1951) has shown that the average received power can be expressed as:

=
(

e

P = YAX G-117

where X and Y arc four-dimensional vectors. whoese elements are the Stokes parameters,
which describz the transmitter and receiver antenna polarizations. The matrix A s 4 x 4
real symmetric. and is known zs the average Stokes scattering operator. T clements of

A are cor posad of the expectations of various crmvinations of the clemonts of the scaitering
matrix B tsce Rosien [1979] for details;.

If onc s given the Stokes target scattering operator A. and 2 similar operator for
clutter C. then the problem becomes onc of maximizing

)
o

A
‘N

|

= sic 3-1i18)

-

The solution to Equation (3-118) is detaikes in Rosicn {i$79]. and consists of a
constrained maximization of the ratio of two bilinerr forms. The outpui & the optimumn
mir of Stokes vectors for X and Y. which compketely descrites the trananit and receive
anteana polarizaiions.

Resuits of this approach will be reported upon in Scction 3.2
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Section 4
MODELING AND SIMULATION

This section contains a brief description of the target and chaiff modeis utilized in
the computer simuiations which provided ihe performance results reporied in Section 3.
Both the target and chaff models have been developed in prior work. and considerable
additional information can be found in Rosizn [1979]. The mszjor itvms of interest for this
study. as reported below. are the method for computing the target scatiering covariance
matrix and development of the autoregressive chaff model for tlie computer simuk:tion runs.
Also included are brief descriptions of the various software packages utilized to generate ihe
dual ang sirgle channel iarget detection performance results.

4.1 TARGET MODELS

4.1.1 Methodology

Since exact solutions to the clectromagnetic response of complex radar targets. such
as ziroraft. are almest impossible to obisin. most studies on modeling of the cross section for
such targets empoloy approximate techniques, which are valid and sufficient for the frequency
range of intersst and intended apeBcations. We arc primarily interested in the high frequency
response of these targets (ic.. wavelengths smaller than the characteristic dimensions of most
of the scatters cn the targets). Thercfore. we have assumed that the larget response can be
approximated by the ilgebraic sum of the responses of a collection of individual scatters
which form the target. Furthetmore. to reduce the computation labor we have approximated
most of the scattesing components of aircraft targets by simple geomztric shapes for which
there are cither exact cross sechion expressions or approximate expressions derived using
Physical Optics (PO) and, or Geomstric Theory of Diffraction (GTD) techmguss. Both of
these methods are high frequency approximations and zre adequate for modeling of the
scattering characteristics of most scatiers at radar frequencics.

41.2 Target: A Colleciion of Scatters

The simple geometric shapes which we use in modzling aircraft targets are eilipsoids.
elliptical flat plates, cylinders and thin wires. In addition to these we represent. as discrete
scatters curface discontinuities such as the wing fusciage joints or the engine fusciage joints.
Tablke 41 lists the various types of scatterers which we have modeled and tac comresponding
teory (PO or GTD) used in deriving the analvtical representation. Figure 41 depicts the
BQM-34A Drone model used in our simulation program. Table 411 lisi< the individual
scatterers and corresponding scattering models used in the BQM-34A Drone.

The mathematical model of each scatterer is ecmbodied in ihe « -ttering matrix. it

is represented in spherical coordinates in the scatterer principle axis systcin. which is selected
such that{ a diagonal scattering matrix results. In mathematical form. we hawve

+i
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TABLE 4-1 SCATTERER TYPES USED FOR THE MNMULATION
OF THE RAPAR CROSS SECTIONS
Scatteres Type Theory
Eli:pso:d PO
Eiipucal Flat Plate GTD
Hollow Eihipucai Cylinder GTD & PO
Cylinder GID & PO
3 - Thin Wirs From Senigs Expansion
i. Jo:nt Between Tywro Cylinders GTD
Exhaust Duct GTD
‘i’ ] . Core-Cylinder GTD
i i Doubly Refiected Ray From Two Elispsoids 20
g : E Smooth Junction of Cirved Sufraces (Siops Duscontinuty) GTD
;A H
e 5
= E
; TABLE 4-l. SCATTERER TYPES USED IN MODELING THE BOM-344 DRONE
E 3 Scatterer Modei
‘ Fuselage Sections ! and 3 Eltpoxd
Fuselage Section 2 Cyhinder
Wings, Ta:’, Stab “iers. and Vertical Fin Eliiptica! Plate + Thin Wire
z Wings, Tail, Stabilizer, ang Vertical Fin Joints Jonts
? 4 Siope Discontimuity at Engine Interlace and Exhanst Slope Discon’inuity
v 74

E e Engine Open Ended Cylnder

"; " Engine Blades Two Thin Wires
= Double Refiections Two Ellipsoids
5 : o Wing - Fuselage
H £ S Stabilizers - Tail
’. = g
¥
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where §; is the scattering matrix of the ith scatterer in its own principle axis system, Sl)i and
Séi are complex functions of the scatterer size and aspect angle in the orthogonal 6 (vertical)
and ¢ {horizonial) dirzctions. and p; is the onz-way distance beiween a plane wave frent
passing throuzh the reflection point and onc pzssing through the center of the target
ccordinate system.

To compute the received signai, we transform the scattering matrix {from the
scatter principle axes system to radar coordinates. This includes several transforms as follows:

#; = PA'E'Q'S; QBAP (42)

where H; 15 the sczttering matrix of the ith scatterer in the antenna coordinate system. P is
a transformation from spherical to Cartcsian coordinates in ine antenna frame. A is 2
transformation from the antenna frame 0 the target frame. B is a transformation from the
target frame to the scatterer principle axis frame. and Q is a tramsformation from Cartesian
to sphicricai coordinates in the scatterer framc.

In the case of a single pulse much longer than the targe?!. the scattering matrix of
the target may be approximated by the summation

!
Hy =E H; (4:3)
i

The ihree element polarizziion signal vector backscattered from the target s then given by 1
!‘_b = "T!‘.x +

where the subscript b refers to the backscattered target return in the antenna frame. and the
subsctipt 1 refers to tie transmit antenna poiarization vector.

413 Radar Cross Section Validation

The target model of the BQM-34A drone was validated by comparing the simulated
RCS plots for variouc transmit and receive pelarizations with RATSCAT [1977] messuremenis,
The drone model consists of approximately 30 individuz! scatterers. cach of which includes
botir size paramcters and a backscatter coefficient. The size pzrametess were sclected to
resemble the target configuration. Then from a knowicdge of the characteristics of cach
saaticrer model and through a trial and ¢rror process. the backscatter cocflicients were
adjusted in order to match the simulated RCS plots 1o those obtained from measurcments,
Sample results of the comparisons are shown in Figures 4-2. 4-3. and 43 for three different
transmit and rcceive polarization settings. As can be seen. the simulation results maich the
measurements rather well in the a.cas of general cunve shape. specular type returns. fobing
structure. fluctuation. and relative scale {power levels).
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as d function of yaw argle at 3500 MH= for vertical transmit
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414 Covariance Matrix

The covariance matrix of the target was computed using 300 samples of RCS
obtained i~om contiguous increments in aspect augle The angle stepping was performed in
nested loons with vaw being stepped in the inner ioop: roll in the intermediate loop: and
pitch in the outer loop. Y»w was varieé between 5 and 25 degrees with incremeants of
0.2 degree. Roil ranged from -30 to -28 degrees and was incremented in steps of 1 degree.
Pitch was varied from 9 to 11 degrees in l-degrse steps. These aspect variations actually
yvield 9CO samples. of which 300 were sclected for covariance matrix computation. When the
= sample time was assumed to bz 1 msac. 300 contiguous samples were used. When the sample
‘ 5 time was assumed to be 3 msec. every third sample was used to compate the covarance
2 matrix. (MNote should te made that there are four scts of RCS samples of 900 numbers.

2 Each set represents one of the elemenis of the scatiering matrix (hyy. hya. hayo has)

:3 Plots of the correlation function derived from the simulated targzet modei are shown
s in Figuie 4-5 for both the amplitude and phase. Since hyy = hya, hay is not explicitly
o - shown.
3 1.2 CHAFF
B 3

3 3 421  The Dipole Chaff Cloud Model

In this section a chaff cloud is modeled as a collection of rotating dipole scatterers.
The model provides for simulation of the polarization and spectral characteristics of radar
A signals backscattered from a cloud of rotating dipoles wiizh can have cither completely
random or any preferred onientation. A vector autorcgressive process based upon the above
model. is then used to obtain a Stochastic model for the simulat.on of the scattering matrix
= clements of the dipole cloud and signals scattered rom the chaff.

- 3 422 Theoretical Covariance Matrix

A description of the theoretical aspects of the chaff covarlance matrix is presented

S below (more detail is given in Appendix A). This covariance function can be written in

s 3 terms of the spectral and polarization characteristics of the chaff cloud. These characteristics
are deperdent upon the geometrical configurations of the dipoles which constitute the cloud.
As a consequence, the orentation of a tvpical dipole (as depicted in Figure 4-6) will be

-

praa g

z considered first in the development of the theorctical model.
]
‘ 3 To arrive at a description of the dipole orientation, we carry out a transformation ;
£ consisting of three successive rotations defined oy the Eulerian angles.  Starting with the
2 unprimed system. we rotate the double primed system by an angle ¢ counterclockwise about
' the z axis. The primed system is defined through a rotation by an angle @ in ihe

3 E counterclockwise direction around the x* axis. The dipole oricntation is then found i tie
= primed system. where the axis of rotation coincides with the x" axis and the dipele is in the
(x". ¥') planc as defined by the angle .

i
+
TR W oS OB WA A e

735

4-8

i g iy

.

4y Joro kops et M §ogy

- . o e
thMAW:M;m‘::: T e B UTLC d _ - . L _ N

L.




e - M A - s g Y SR SR -S4 e AT - ey
A B Atk AR e = .- T DL L xR eV o T IR SN Bs ik Ty .,Wﬁ%ﬁf‘:w%ﬁ £ ’_\»%' ‘~
- . .. )

sty S2AE A
g
(S AC
RS Ny
Y )
i
1

4]
3

I l T ,
3 )§ H . .

s < h22 Y22

s 9 S
S 0s /'i"n' *n l___

3 N N |

: o - -

-, - * ” \

s . : \1

e . 0.6 -

< ~

\ ,

\ N\

F
oA
TARGET
CORRELATION MAGNITUDE

P ‘=3 04 /
= 3 /
3 E

Wy

= 5
- .
k> &

£
I K
3 % A

% ——

A )

3 —

2 = 1
= C
w3

.

=

5
L

L (AU ok .‘1."\"; AL

n",! L snoass ?

s
. E 2
S ; § - iy
C’ & :
i3 e -2 !
N P W o '
. o2 — ]
: = & 1
- << "~
3 = T 1 >4
¢ 3 x z T N
2 o ~
- 1
[ = © $
F B 1
= b !
.. N !
, >4 ~ :
- " o~ M
| : E s KMz P2 \\ \
5 > @ 180° } }' :
i -3 0 2 4 6 8 10 3
§ 2 5 CORRELATION TIME (1 msec)
» L] “ :
[ )
t 2 ) Figure 4-5. Simulated Target Correlation Function
49

5y s

@‘4 1 e

;

n

b T AT S, o a2 A £ St 2 o ol A e B35 2 a3z - L P

)
RN st d Bisrasts wn s




A > =i - L o © SO . R T e - -
. PR L2 - o SN Pt o, = - A .o - v P - 4 e . S -, o
. = - - s kel s A o . o s henes, oy . o DT e e e e
LG & P . ARk A I Yy e Rt SR AR s R paiar SRR PR SHn ‘“

SEEARA e MY ivnn

.‘)?: "

,.
i
s
X
()

}
{

.
2\
!

Tyl W R

e

u

DIPOLE

0

3 ‘,‘ v .,mé} [‘J, "‘l

Ef L]
:_-‘ X
= S .
= = = b4
< 3 Figure 4-6. Dipole Orier:tation
.
3 b VERTICAL
=4 3 DIRECTION OF V/AVE
E - 3 ! ~ !
- d¢
‘ EF
S S x v —e HORIZONTAL
3 3
¢ 3
£ S DIPOLE SPINNING
2 3 ACCORDING
A 3 TOVY= w,t +a
=3 % %
= O i
\ . . :
5 2= AXiS OF DIPOLE ROTATION :

ORIENTATION OF z IS UNIFCRMLY DiSTRIBUTES —180° <A< 180°, -90° <A6<90°
CAPOLES ROTATE IN (X | 7'} FLANE

L32-19

Figare 4.7. Dipole Geomerry

410

e, Y I N -
o AT ML T 0 V6 TP R L Y 2 sovia = -t




In order 10 be consistent witk aur delmition of the scattering matria. we orient
the anpoianed system such thet x is in the vertical direction and v is in the haorizostal
direciton. The wave is assumed te trave] aloag the 2z axis. The :on-*mcd voerdinate system
is shown in Figuie 3-7 where 7 s into the page.  Notice alse that the primed svsiem is
shownp with the dipole rotating in the (X', 35 plane. The primed syaem. as sown in
Figure 4-7. is derived from Fizune 3-0 by setitng ¢ = 27¢° = A5 = —‘?-'}" + Ad. znd

=9 + A%, The sngle ¢ (a funclion of finxe) is givep by ¢ = wei 1o white wp i he
dipoic rotation rate sad o« W ke mitial angle.  As secw o the figuse, the pcrturbations A9
swve 1o ofient the axis of sotation £2') and, subsequearly  the plane of the rewzting dipole
refative to the X axis. Notwe that with A2 = O the e af sight 1z awis) cemamns i Jie
plaie of rotation. O=xly when A? £ § & the = azis pot 1 the diance of reracen. The kmiis
on the perturbations ar as foilows. —90° < A8 < 9% and —i80° < A < 1807, ¥ o
limits ars reached. the dipole may have anyv crientation whatsocwes.

1 the dircle dire b sk snis veclor e

1f the dipele daoection (denoted by the uniz wotor ¢
plane by the angk ¢. then we an ﬁnd its orientation n i {X. y. z; coordmnale system
throush the app !:-;:mor. of the imine Fuicrian traosformation. The scatiering matnix of such
2 dipoic to an electromagnetic wave prepszanns oong the Z aws » 2iven ny (Berison [19C71.
Wong ct 21 {i9671:

R = =Ny Md” -5

hixx ‘] Ing
[ |

a
whers 3 15 the wavelergih of the incidont signall ¢ 47 definad =5 the outzrr prodect. and

By © figy- From this it s clear that kB, . Ay h.‘.\. and B, arc sl funclions of e
variabies 9. ¢, 2nd & and X where ¢ = Wl +tasalh unction ol the dipole rotation e and
srxpiation of the dipoke rotation ghane described by £ and 2 impact the
polvisation of the saatterad wase. while the Doppier i dependent upon & snd )
Aeiore proceadiag o actormine the temporzi and polarizalion cheracternistics of a
collection of dx;:mw ff s dofing 3 now sector

~
eel oy
Lits

1), Bt ho () 34

Then the covariance mainx of k(13 15 givkn by
Kyt = Efh( d{i - v +7)
-vhere the * desols: cemyiex conjugate transpose.
When the angular rotation rate and the Doppler duce to the drift velocity are zach
deyosibed by distribuzicn funcnens which include means and standard deviations. then knl.)
wiil be 2 function of G, Gg. W@ C4. where the subscript 1 denotes roiation. the

subscript d refers o Dopples. e bar mezas aversge. and o is the standard deviation. If the
dipoics are distributed over (ouinisted .egion. or toth § and ¢. Kj;(#) will thus be 2 funciion
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2 , of these fimits 0. 6. 6. and ¢~. As a result the covariance matrix includes spectial

content due to the dipole activity and polarization characteristics due te the dipole disiribution.

The covariancs matrix can be written such that the spectral and polarization
charactzristics are separable fnctions (see Appendix A):

Kytn = Nyt - : C+ML271)-D+ M(Cn-D : (4-8)

where Mg(r) = My(7. @wy. og) and MU7) = Myir. @ . 6,) are scelars. 2nd where C and D are
3X3 matrix functions of 9. B:. 91- and ¢-. Notice that the spectral conient for all of the
elements in the covariance matnix stems from the same (wo sources. namely My and M
However. the zlements may exhibit difierent correlation characteristics 2s a function o: the
matrices C and D. In effect. the correlation fuaciicas for ali of the elements in Ky(7)
result from the semmation of weighted time furctions. where the weights differ for the
various cicments.

423 Stochastic Model Derived From Autoreeressive Process

Given the theoreticaliv derived m-trix covaniance function Ky(7) of the chaff
scattening matrix clements :'5j' the stochastic vector h(t) may be modeled by a three clement
compicx vector autoregressive process exciicd with 2 zsro mean complex vector white
Gaussian neise source u{i) described as follows.

Y. M
3 h(t) = 37 A, hit - iaD) + u(e) (49)
' i=1

.
. e

. - IPRR L R PO

itk ati sl

where the Aj's are 3 x 3 compkx matrix coefficients to be determined.  The matsix
cocfiicients A; can bz obtained by solving the matrix Yule-Walker equations

bR e Lot
S AT ot

L

M
Kyman =2, A Kylm-da} m=1i.....M (4-10)

Py

Lre

=1
As the ordsr of the autorzgressive (AR} model increases by 1 from M to M+, there arc
nine new metAX clements of Ay 4y to be computed in addition to the 9 x M elements of
Ay through Ay that nced to be recomputced.

It is ncted. 3s stated previously, that tne Ky(7) in Equation (48) can be decom-
poscd into three components as foiiows.

Ki(r) = (Mg(r) = O + (My(r) - M(21) - D) + (My(n) - M(27) - Dy

= kag(f) + Kﬂsz) + K"_';‘T) (+1h

t
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it can te shown that the covananoe function of the sum of the outpists of three
independent linear systams each being excited with 2 mutually independest 2cro mean whiic
3 Gaussian noise source is equal to the sum of the autocovariance functions of the oulpui of

Ty OV

the three lincar systems.

Hence. each of the covariance functions Kygd7) 6=1.2.3) can be individuaily
modeled with an autoscgressive provess.

AR
Y

LA 548

.:y

<A

Ano. we nofe that Ky {7} is composed ef » product of the time correlation
function Myt7}. which i a scalzr, and the covaniance matrix C of the scattering matrix

R RITISRN

elements hlj It then foliowe thzt the complex vestor autoregressive process can oo modelad
with scalar coefficients a; . . . .ay. thai s

Al

N

A=l EL LM,

y and
b M,
h;(t)=z :% ":iit -:an + l!]“) {2123
=i
M, M,
Kﬂl(ﬂkﬁl) = _E! 3i KHl[‘m - ALl = C - Z] .‘t% - ?-ldl(m - DAt}
i= =
Taz same argument applics 10 Ky~t7) and Kyz(a).
Therefore,
b
By = 3 byhatt —iAD + upn) (513
i=1
A,
Kﬂz(mAl) = 'El bi !{Hzl(m- vt}
!:
My
=D - 2 b - Mgl(m - dAt] - M [2(m -DAt]
1
413
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L %
h3(t) = z ¢; h3(x - iat} + u3() 4-14)

Fl

M,

Ky3(man =2 ¢Kyslim - DAY
=

3
(o]

D - ; € Mal(m - i) At] - M [2:m - At}

Furthermore. sine:
D - M(2r) + D - M(25) = 2 ReD - M(21)]

it follows that ¢ is the complkex conjugate pair of b ie, ¢ = Si

and
K1) = h {7 + h:{r) + h3(r) i)

The saar cocificients a;, b; and ¢; can be obtained by solving the Yule-Waiker
equations of the cornlation functions My(7), My(7) - M (C7) ané M4(7) - M (27) respectively.

From a doser sxamiration intc the propertics of the correlation functions
My, Mi(2r), Md27) in Appendix A (Equations 10-14), it is noted that tiese functions are
expressed in terms 0f exponential functions of complex exponznts.
]
— % ,
M4(®) = exp [Hwyr - N 1

I ]

M (2r) = exp l—jlz—.zrr - 20,71}

MC1) = exp [j2w07 - 26,777]

where o denotes the average value of «w, and o represents the vanance of w.
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LA

N ‘ R “.. N -w».w-awm_ «; O W TS ";3,_'-"; o
; 3
i s The real pant of the exponenis are all negative and thus an exponentially
, decorrelating function of time. The imaginary part wr is associated with the sinusoidal
= = modulation of angular ratc @ (i.e.. m(r) = 2xp(—jwt). a line in the power spectral domain
since this imaginary part of the exponent is 2 Encar function of 7.
e Under this special case, the rea! and imaginary parts of the exponent can be
3 . separated by associating the real part with the autoregressive process and the imaginary
s 3 part with the sinusoidal modulation.
X B
: 3 Realization of the autorcgressive process for the general czse of Eqguations (4-12)
b (4-13) arnd (4-194) yiclds compiex valued coefficients. For the special case the cocfficients
3 ar+ real
: 2 . . A
3 5 . A For this special case we define the three autoregressive (AR) processes as ati).
h4{t) and {3\3(!) amd the associated scalar coefficients aj. v; and ¢; whick are real valuss
3 Then we have
- 9 Ya
' - A AA )
= <3 hy() = ) iy - 30 + uy() (416)
e “h i=1
E M, My ol
- A AA - A d” S, 0
E Kjpp(man = 2 3Ky l(m -bag} = C E 3; * oxp {-—¥(m - i)-ar-]
= A i=1 =1
> z A AR X -
s 3 Ba(D) =37 bihntt - HAD + uy(2) (417
P A" =1
3 3
k- Mg,
E | A _ A A
Z Kypa{man = o; Kypaltm - Hat]
5 =1
': __
3 = .“b ~ + g ~
E £ A 64~ T 9T TP
: = = D z bi flpl' —_— (n DAt l
2 P =1

‘n
h
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A My
AA )
hy(t) =) b; ha(t - 80 T u3() (418)
i=1
M,
A A A
Ky3tman = b; Kyzlm - 1)
i=1
My 2, sl
-— A ad_ r— i
=DY b expi- - (m - )AL}
1 2
and
—wg! A 'j“’r:A ja,t’\
Rt = ¢ [hy(ty + < hpt) + ¢ h3(t)] (319

An cfficient algorithm devcioped by Durbin {DURBIN, 1960} io compute the
cosfficients of the AR process. is used. This algerithm computes the cocfficients in 2
recursive msnrer increasing the order of the AR process by one with cach itcration until
the desired mean squared crror criterion of the fitness of the AR model to the theoretical
convarance functicn is met. A discussior on the Durbin Recursive Aleorithm is gven by
Appendix Fo

Realization of the stochastic moscling of chaff is accompliched using the AR
processor it the form of 2 digital filter with an appropriate number of delays T and an
associated weighted feodback leep whose weights arc the scalar coefficients. Two functioral
diazrams of the stochastic chafi mods! are £ven in Figures 4-8 and 49 for the general and
special czses respectively.
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424 Covariance Matrix Validation

e
ARSI LY
)

1

N,

Correlation functions of the elements i the chaff scatiering matrix are plotted in
Figures 410 and 4-11. These functions were denved from the covariance matrix. which
resuits from the scattering matrix. Figure 4-10 has plets of the thzoretical comrelation functions
g according to tne results of Appsndix A. Simulated correlation curves for a 7-poini
autoregressive fit of both amplitude and phase -rc found in Figure 4-11. As would be
expected, the simulated curves differ slightly from the theoretical curves. However. the
simulated cunves would be expected to approach the theoretical curves if an infinite number
of samples were used in the computation.
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43 SIMULATION

3 431 Overview

The overall simulation is carried out in two major steps as indicated in Figure 4-12.
3 The first step consists of simulating the target and chaff. Included in this function is the
generation of sampled versions of scatteri.g matrices for both target and chaff as would be
sensed by the radar. The sccond major step is the simulation of the signal processing
overformed in the radar. This consists of computing the covariance mairices of the target and
chaff from the sampled datz and parforming the optimization process to armrive at the weizhts
= (and waveform in the matrix weighting case) to be applied to the puise train.

AL £ T TR

w.‘m”.. .
ATV wtvnl Fizalh

22

This simulation approach has the advaniage that the target and chaff simulations
need to be run only once for a given set of conditions. The results are stored on tape and
can then be used as necded by the various processing routines.

GG RN
v

> 43.2 Target

13t
k33

3 Simulation of the tzrget consists of generating samples of the scaitering matrix for a
. £ series of aspect angles representative of a target mancuver. Two basic modules are used in

- the simulation. each of which includes several subroutines. One is the geometry module; the
* s other is the scattering matrix module. These modules and routines are shown in the target
simulzstion block diagzram of Figure 4-13.

E Two loops are shown in the diagram. one is a loop on ali of the scatterer’s

composing thz target. The second ioop controls the number of scaitering matrix samples

4 gencerated by the program.

X - The input to the program inciudes the range of aspect angles andé angle increments

" P 10 be useG in computing the scattering matiix sampkes. The output consists of a vector sum

; g of the individual scatterer scatiering matrices. This sum inclades both ampEtude and phase

< : from cach of the scatterers for zaca of the ciements in the scattering mairix. This is what
produces the deep nulls in the res plois as a function «f aspect angle.
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433 Chaff

Chaff simulation consists of generating random samples of the scattering matrix
from representative stochastic processes. A block diagram of the chaff simulation is shown
in Figure 4-14. The program is divided into two basic areas. The first consists of a one-time
computation of parameiers and values needed for generation of the random samples. The
second is the loop composzd of the actual steps followed in the recussive generaiion of the
stochastic process outputs.

Inputs to the program include parametess to the theoretical corelation model. angles
describing the geometrical distribution of the dipoles, parameters affecting the power recesved
by the radar. and the number (and size) of the time increments required. The outputs are
samples of the clements in the scattering matrix as a function of the time increments.

434 Proces;ing .-‘;lgorithms

4.34.1 Weighting Matrix — A block diagram showing the main steps in the simulation of
the weighting matriz followed by a maximum likelihood receiver is depicted in

Figure 415, The inputs to this processor simulation are the target and chaif samples

of :ke scattering matnices.

The first section of the program is devoted to computing the optimum transmit
waveform and receive weighting/transform matrix. The weighting transform matrix was
computed according to the method discussed in Section 3. However. the transmit waveferm
ic determined through a more direct approach. We assumed that an antenna i 2 practical
system would be able to transmit polarization states defined by four bits of phase and four
bits of amplitude information. This vields a total of 256 states. onlv 114 of which are
nonredundant. Thus. the algoritkm used in sciecting the optimum waveform cycled through
these 114 states for cach pulse and chose the state which miniinized the Frobsnius norm as
discussed in Section 3.

The secend part of the program consists of a loop wherein the target and chaff
samples are operated on by the optimum radar. This includes transmitting the optimum
wavefo-m. operating on the return with the weighiing/transform matrix. and comparing the
result with a threshold. The number of threshold crossings is then ccunted and used in
determining the probability of detection.

4342 Weighting Vector — A block diagram of the vector weighting method is shown in
Figure 416. The simulation consists of two parts. The first includes a loop to iicrate on
the optimum wcighting vector and then computes the signal-to-chaff rctio resulting from the
application of this optimum: vector. The second part computes the signalto-chaff ratio for
the simpic matched filter casc. Plots of the outputs nrovide comparison of the optimum
vector approach to the conventional matched filter methed.
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4343 Single Chaneel — A simple method was u =J in performing the simulation of the
single channel system. The approach was to compute the target and chaff covanance

maltrices, introeuce 3 wavefornm with equal pulsss, account for matched fiiter weighting. and

then to calculate the ticorziical pretability of detection based on the power computations

for chaff plus noise vs target and chaff plus noise. A block diagram of the simulation flow
is shown in Figure $+17.
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COMPUTER SIMULATION RESULTS

P

e i

Tae purrose of the computer siniulations was te evaluate the zffectiveness of deal
channel systems as compared to single channel systems. This was accomplished by cxploiing
the polarization propertics of various iarget meodcis relative 1o those of chaff. in terms of
maximizinz the recciver output siznal-to-clutter ratio (s5). The mzjor {igur=-cf-meriz {FOM
considered was the probavility of targe! detction for a given false alarm probatility due to
clutter plus receiver noise.  Asscciated with sach result 1s ihe other major study outputl which
yields transmit waveform sclection coupled with: optimum recetver weighting,

The results reported inclide those of the matrix and vectocr approaches. as weli as
the Stokes formalism. The latter was noted as being obtained in a previous study
[Rosien, 1979].

5.1 SIMULATIGN PARAMETERS

This section descrites the various input/output parameters sssocisted ath cbtaining
results for the aforementioned three approaches, and discusses the types of conllusions one
can draw from cach.

5.1.1 Target and Cheff Mcdels

The description of the gercration and simulation of the target and chafl models. hx
been covered in Section 4. The scatteting matrix correlation functions of the models utiiized
to obtzin the reported upon dual and single channel results are compared for referace in
Figure 5-1. The [ hay haa* | pamameter 15 shown.

Three tareet models are noted: the standard Swerding | and two others designated
as RT1 and R13. The timz hase for the comrelation functions is given in terns of an
intcrpulse period AT, te conform with the use of transmit signals consisting of gereralized
puise train formats. The SWi tarest model utilizes the ssme scattering matrix 2s the BQM-34A
model, but has a constant cormrelation function (pulse-to-pulee correlation). The RT1 and RT3
target modcels are alse those of the BQM-34A drone. Tnis shorthand notation refers to
wtiterpulse sampling intervals of 1 mscc and 3 msec respectively, where 3 msec represents a
grzaier change in target aspect per AT.  As 3 consequeice. the RTi model i more ciosely
associated with the Swerling 1, whercas RT3 woujd be more neardy ke a Swerling 1L
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The chaff mode! closely matches the RT3 target in terms of its ha- scattering matnix
correlation function. It should be noted that the same chaff correiation property is usad
regardless of the value of the interpulse period. In this way onc obtains a2 vasiation in the
spectrum of the target relative to the chaff. For example. the RT3 iarect has essentially the
same specttum as does the chaff. By contrast. the chaff has 3 much broader spectrum than
docs the impulse associated with Swerling 1. The RT1 target represents a choice detween
thase two.
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5.1.2 Definition of _s/c Ratic

Each of the approaches has 2 common reference for s/c ratic. 2 Key parameisr
associated with probzbility of tamget detection. The ratio utilized iz defined as the totsi
avaiiable target power relative 1o the iotal available chaff power. The available power is
even os:

Pa = thasi +2ihya i+ lhasl -1

where ihe H paramziers 2re relative to sither the targe1 or chaff scattering propertics.

]

Equaii a (3-1) represents 2l of the encigy that car be scattered back from cither izres:
ot chaif. when impinged zpon by 2 dual channol iransmit waveform. Receiver noise is taken
inio 2vcount by sceliag P, :0 3 normahized noise vector. If. for exampk. the 2'n ratio 5
designated as 20 dB. then P, for the f2ezet would b 100 times grzater than the input noiss
vector. Similzdy. 2 ¢:n ratio of 17 dB results in 2 P, for chaff which is 30 simes the noise.
This resuits in an svailabie iaput stc ratio of +3 dB. which is then the value plotied on the
detection probadility curves.

£13 Qu:llitz_l_ilc -\segmﬂ_t

There arc various differences noted in the computer simuiztions for the three
approact s reported upon. The Stekes formalism com r=d dual and <rele ~hznnel results on
Pl £

P om0 ¢ SRoumsts  mBfmansat 2s 15

e

of the tarset ané chaff were not a facter, although the scatiering matrices were key parametens
in th: optimizaiion precedure. The Stokes ouiput consisted of the oplimum tranemit znd
seceiver aatennza poiasizziions for maximiizing the s'¢ ratio,

the bas’s of single puise probabilisy of deiction. As a conssqucnce. the comrelztion properiics

NI s ¥ Pra gty e wetpoets

s

The vector wethod emploved z transmit sequenee of five pulses using the RT§ 1arect

modei.  An ilerative procedure was used o converge to the maximum s ¢ ratio. Comparisons
were made for dual and singie chunnel perfermance based upon relative « . but not to target
Getection. Other siznificant resuits consisted of the selected five-pube transmit vecter and
2ssxiated dual channel recoiver weighting function which maximized the s ¢, As previousiy
noted. these results depend upon the iritial choice of the five-pulse wavefonn.

The matnx resaiis were by far the most comprehensive. compsnag perfermance far

all taree farzet models ag2inst both dual and single chaanel impiemeniadons. Resuits w
denived for the probability ¢f tamet detcciion ligure-cfmesit. Qi sutpurs of micrest were
the oplimum .raasmit vecior sciscted fromn among 2 library of 113 wrveionis eiiliring o

three-pulse sequence. and its associsted 6 & receiver weighting matnx.

Although ths three 2pproaches haa diffescnces sssecixtcd Wi the chohves of
transmit vector pulss seyucnces, ibe results aere coensisient cnough 1o be denificani. Al
threc exhibited the same bisic pesult. in thar the Gual channsi implemantation doss provice

enhanzed porformance over conventizns single charnnel configursgons.
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STOKES APPROACH RESULTS

The aboye was reported by Rosicn. ¢i 21 (1979). Figure 3-2 is excorpizd from this

report znd is representative of the bade results obtained using the S:okes foamazbism.

The orobability of target detection for single-pilse operation 1s shown for various
sic matics (as defined previous!y)  The false alamn probability was set 1o ~*_ the chaff
dipoles were eniformly distrituted #3435 degrees irom the horirental. 2nd the BQM-34A
aspe<t angics are distnibuted as shows in the figure. Optimum dual channel performance
pletted relstive 1o ceaveationz! singie ¢iannel operation.  Substantial imprevemeni is noted
when compaied against single chanacl aorizontal and circular polanized systems.  Approxi-
n:iciy 2 dB of improvoment is scea venus the vertically polanzed single channel system. The
iesser improvement. in this cass. i o rosult of the chaif model dipole distribution which favors
ths honzental. e verticaliy polanized signal, therefore, results in substantially less chaff
beckscatter than dozs cither the Lerizontally or cincularly polarized waves. Since the tareei
doues not have a streng preferied polarization for its backscatter return, it becomes obvious
that a vertically pelanzad system would be the choice for the single cnasnel impiementation.
and a acarly vertically polanized system would also bz implemented for dual channel operation.
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The major fact scen by these results, is that the Stekes method does yield better
performance for dual channel opzretion. despite thie obvious high level of performancs
exhibited by singie channel vertical. It should also b: noted that these results were for
single pulse transmission, such that the spectral differences between the farget and chaff
could not be exploited in the siznal processor.

53 VECTOR APPROACH RESULTS

The vactor weighting results were based upon trznsmission of a five-pulss sequence.
The figure-of-merit utilized was the relative improvement in s'C for varicus dual 2rd single
channel implementations, as a function of the chaif dipole distribution. No further effort
was expended in this area. in view of the importance attached tc :he deveiopnseni of the
more €ncompassing matrix approach.

Figure 3-3 depicts typical resuits for the RTI targei in chaff. The sic is shown
relative 1o matched right circular single channel operation.® The dipole orientaiion argles
refer to the distribution within the chaff cloud. where 90 degrees s for completely random
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dipole distribution. and 15 degress refers to nearly horizontal distribution. As noted in the
figure. maiched filter performance for single chanael horizoatal and circuler poiarizations is

e

_' extremely poor. The matched vertical performance is 2ood for sdipole distibutions which are ;

S E pearly honizontal Gess than 30 degrees). Bevond this. he maicied verticzl performance ;

< > degrades rapidly. ané, as would be expected. it converges (o the ciruler and horizontal levels :
5 2 for th: completely random chaff dsstsibuizon =t 9C degtess.  This conveszence =t 90 degress

for matched filter operation was also cvident in ihe Siokes resuits for singie pulse transmission.

Figure 3-3 slso indicates four variants of d=al channel opeiriton. The vertical :
transmil-oplimiin froceive curve is for a dual choannei recemver optimally weighied for
transmissior: of a2 vert l! polarized five pulse scguence. This in tact. is the rosult of the
first iteration associated with the Rummler waveform convergence lochnique.  Sunilar curves
are shown ‘or horizontai and circular volarized five pulse seguencss.  As expecizd {mm Ui
predominantiy horizontal chaff dipole distribution. the dual channel receiver weighied for
vertical transmission provides the best overall performance. There is again convergence of
results at 90 degrevs ‘

P T T O

Thie optimum cunsc is the result of utilizing the Rummler iterative technique. for
which both the transmii vector and receiver weight are interchznged dunng cach iterivon.
The itermative procedure was tzrminated when coavergence in s:¢ ratio was achnv-d.  Although
the optimum cusve ts for full dual channel ci2ration. it €an ke appreciaicé from noicr resolis
that the optimum performance is only siightly better than vertical (ransmit-optimum dual
channel recove. This 15 3 conseqjuence of the cptimum transmit wav *form kong ncarly
wertically polarized. A significant rosult of the iierative procedure was that the -oavergenc
in traasmit waveionm, was indcpendent of the initial choice. The ticrations were staried
with cither vertical. circular. or horizontal five pulse sequences. In all cases, the optimum
waveiorm comverzed 1o the identical acardy vertically polarized siructure.

(]

4 MATRIX APPROACH RESULTS

Computer runs wers made for probznility of tarsot d;!:u::n Py as & funcion of ;
the previously defined s/'c raiio. at a2 faise alarm probability of 10~. Performance leveis for ;
the three target model set of Figure 31 were computed for chaff dipole distribuiivns coiis-
spording o 13, 35, and 90 degrees. Compadsons were made betweern dual chanoed
operation and mraiched filter single channel operatior.  The optimum transmit vedtor was
chosen from a sei of {14 three-pulse sequences. The associated dual channel recener weight
correspends to 3 maximum fikeliiood detcctor, which = 2 {unction ot the probability
distributions related 1o the target. chaff. and recsiver noise.

Y wweer

Cabesy

P

541 Duzl Channel Resuits

Figure 34 i3 a comparison of dual channcl performance betweer the threr targe!
sct of RTi, RT3, ané Swering §. The limited range of s;c shown. was chosen 1o sacompass
the Py rcgion of intersst for the more random dipole disiributions: numely a Pp in the order
of 0.5 for 8 = 45%znd 90° At dipole distributions near the horizontal (9 = 13°). performance
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Figure 5-4. Compzrison of Dual Channel Performance for RT3. RT1. SWI Targets

at these s . ratios s vy good for 2ll three tirget repiesentations.  This would be expacted at
this dipole distributson. since operation with esseatially 1ertically polar 7ed transmit pulses
viclds minimal chaff backscatter (note similsr gcod results at § = 13° for vector and Stokes
approaches 10 us:ng veriical iransmission).

As e dipoile aisinbution becomes mere random, performance dezrades for these
s’c ratios as noted in the figure. Performance for ail target models at 2 Pp ot 03, for
cxample. is about 5-6 dB worse at 9 = 90° than it is for # = 45°. The differeace in detec-
tion performance at a Pp of 0.5 between & = 15° and 9 = 43° is not shown in Figur 5-4.
Th= basic trend of the curves indicates a significantly greater difference than the 6 dB noted
in the prior case. A rough estimat~ would place this differential in the order of 10-12 dB.
It becomes rather obvious from these and prior results. that the structure of the chaff modcl
c¢mphasizing horizontal dipole orientation, strongly influcnces the ultimate choice of monr
ncarly vertical transmit polarization vesters: and ultimately leads to poorer performance as
the distributionr becomes more random.
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Regardless of the chaff distribution, however. target detection is best for the RT3
model, foilowzd by RT! and SWI. respectively. This irend would be expected, in general, in
terms of target detection between SWI and SWIH models, noting that the RT3 model tends
toward the upcomrelated puise-to-pulse SWIL.  For a Pp of 0.5 and a PEa of 1074, the SWII
requires 1 dB Icss signal return than the SWI in the case of a three-pulse sequence operating
only against receiver noise. As noted in Figure 54. the RT3 targe? requires 5 dB less signal
return than the SWI when opcerating in the dual channe? chaff plus noise envirenment at
® = 45°. This added enhancement for the RT3 target can also be anticipated when utilizing
the polarization discriminant. An anzlogy can be made if one examines the decorrelation of
echoes from a complex target utilizing a polarization agile waveform as having effects similar
to frequency agility [Nathanson. 1969] This decorrelation is desirable in a clutter and,/or
moise-orly environment. Averaging of independeni target samples will then essentially reduce
the probability of a null in the target cross section at the aspect of interast. Whiie this
averaging process docs not reduce the total clutter power. its variance will. however. be
reduced.  Since detectabili*y is proportional to the ratio of target power to the varance of
the total clutter plus noise power. target detection v 1 be improved. This decorrelation of
the target echo suggests a movement of the target model towards the more desirable Swii
configuration.

Although complete target decorrelation is not anticipated for the three-pulse sequence
utilized. ii is noted that the RT3 target will have more degrees of freedom than the SWI in
terms of optimally combining the target echo retumns relative to the chaff. It should be noted
that the SWI targe: will also become par.‘ally decorrelated. but not to the extent of cither

RT! or RT3. This then results in the enhancement of RT3 relative to beth RTH and SWI.
whezn the dval channel polarization retushs are optimally combined.

542 Matrix Dual vs Single Channel Results

A compasison of the matrx dual channel implementation relative to conventional
sirgle channel matched filter systems is shown for the three target models in Figures 3-3
through 5-13 for chaff dipoic distributions of 15. 45. and 90 degrees.

Figures 3-3, 5-6. and 5-7 show performance comparisons for the SWI. RTI1 and RT3
targets respectively for 6 = 15°. The horizonta! and right circular polarized sysiems perform
very poorly ir the saatched single channel configurations. because of the hcrizontal distribu-
tion of the chaff dipoles. The matched vertical system performs very well over the range of

s/c, as would be expected. In ecach case however, the dual channel implementation provides
even better performance.

Figures 3-8, 5-9. and 5-10 show similar performance comparisons for 6 = 45°. Single
channel horizuntal and right circular systems still perform poorly. since the dipole distribution
remains biased toward the horizontal planc. All thres dual channel systems out perform the
single chanrel vertical systems. At a Pp of 0.5, for cxample, SWI operation is 2 dB better,

RT! is 4 B bett:r, while the RT3 target cxhidits 9 dB better performance in the
dual channel mode.
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Figures 5-1i. 5-12. and 5-13 show similar results for € = 90°. With the dipoles
now randomly distributed. the single channel matched horizontal and vertical systems fend
toward the same performance levels. Here again. the dual channel periormance remains
superior although the dB differcntial relative 10 single chanael vertical is less than for
0 = 45°. This is 1o be expected in view of the mere random dipole distnbution. which
mitigates against the cxploitation of the more deterministic chaft polarization at
¢ = 15° ard 45°

In all cases of dipole distribution. it s noted that more cffective dual channii to
conventional single channel performance is passible for the RT3 target relative to either the
RT1 or SWI modcls. This again illustrates the advantzges of a target modei which is mot as
highly corrclated on 2 pulse-to-pulse basis. parti-ularly when exploiting the Jdual polarization
scaticring property.

343 Trananit Waveform Sclection

The transmit wascform dual channel vector is selected by a minimization procedure
relative to the Frobenius norm (see Section 3.1.2).  The matrix method computation relicd
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upon a library of prestored poiarization states ond selected a 3-pulse sequence which most
closzly matched the ncrm. The library of available transmitter polarization states is iliustrated

in Figure 5-14.

This polar representation maps circuiar polarization at the origin. linear polarization
along the circumference of a circle with radius = 1. and elliptical polanizations within 2 circle
with radivs < 1. The representation is such that the direction of a major axis of the ellipse
for each polarization state is along tac radius vector which goes thiouch the point representing
the state on the plot. Similarly. the direction of lincar polarizations are along the radius
vector. Furthermore. elliptical polarizations. whose sense of rotation is right handed. arc
mapped on the right-half plane of the polar plot. and left-hanéed polanzations are mapped on
the left-half plane of the plot. The clipticity is given by i-r. where r is the radiwe of the
circle. in this way, all of the information relating to the polarizatica state becomes readily :
available. The symbols (A) in Figure 3-14 indicate the librery of prestored polarization states

S e o3 A A AN b o 3 AR AR 0 £ e AL LTS i

available for selectien.

5 i.

S Two typical waveform choices are shown in Figure 3-14 for the SWI ang RT3 E
- targets. at a dipole distnbution corresponding to 8 = 45°. The RT3 scquence consists of ;
B & three paises all lincarly polarized. and Iving from 11 to 22 degrees from the vertical. The :
.ﬁ' first pulse is at 22 degrees. and the nexi two pulses are at 11 degrees (note small double b
e 5 circle in figure). The SWI sct consists of a first pulse lincardy polarized at 22 degrees from

1 : the vertical. a sccond pulse with a Ieft-handed cllipticity of 0.56 and the major axis aligned

2 21 Gegress from the vertical. and z lineasdy polarized third palse 11 degrees from the vertical.

: (_ : As expected. the preferred dual channel polanzations do lic more nearhy verticai. The SWI

3 transmit veu ur has more cllipticity which desiotes a trend tewards more decorrelation of the

& g SWI modcl through the polarization discriminisi. 3
5 e

< 2 544 Recetver Matrin

5 5 The receiver weighling matrix is computed frcm knowledze of the transmit waveform ‘
f H and the iikelinood funaction related to the target. cluiter. and roisc provabiiity distributioas. ;
3 For the 3-pulse scquence. the opiimum receiver matnix Gopt would br 2 6 A 6. Thes SWI :
a A target is < speciai case because o the invariance of its pulseto-pulse acaticring matnx ;
correlation function. which viclds only three cigenvalucs in the maximization procedurce. :
‘ ‘ Conscquently, G0 for SWlis a 3 x 6 matriv. A typical example of (;om for SWI s stionn

: 3 below for a s/c mati> of +3 dB. and 2 dipolc 0 of 43°

= = Note ihe clements of G are written in polar form P
= ks

= (0.32. -7 (0.17.-32%) (0.1 -33%)  0.14. -60%) (D24, -5 (0.1, 35

: 3 Gopt T 1€0.07. 675 (0.11.-76)  (0.05. $i%)  (0.21. -69°)  (0.03. -36") (004 339

3 3

- 0.003. 72 (0.12. -11°) (0.05. 0% (5.03. -8&°) (0.02. -31°) (-14. -39 :
|
i3 P ;

: 5-14
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Seciion 6
CONCLUSIONS AND RECOMMENDATIONS

The pnmary objectives of the study were met in the following specific areas:

a) An analytical and systematic approach wvas developed for dual channel
optimum processing applicable to the raiar scattering matrix of targets
and clutter.

b) The matrix approach was utilized to develop an optimal transmit waveform
and optimum receiver witich maximizes the signal-to-ciutter ratio for
enhancement of targel detection at a given probability of false alarm.

c) A statistical mode! was generated for the polarization scattering matrix of
the BQM-34A target drone, and for a dipole chafi cloud. The properties :
incorporated in both modeis focused upon the temporalfrange behavior of ;
their scatteninig matrix elements. Two forms of the chaff model were i
developed; a theoretical representation ccmposed of general mathematical i
expressions, and a stochastic mode] derived from an auioregressive proczss :
fit to the theorztical model. {

d) The above mcdels were utilized in computer simulations to compare target
deiection performance in chaff for dua! channel system configurations
against conventional single channel systems.

e L e SR A A G T DA ST A AL

T 1Y

anaivtical agproaches were considered for polarization processing implementation:

Five

1) Matnx.

1) Vector,

3) Statespace.
4) Fredholm,
3) Stokes

Of the above, the matsx and vector approaches fali under the heading of finit~ dimen-
sional space techniques. The matrix method was the most fully developed and as such vielded
the most promisc in terms of mecting the study objectives for dual channel waveform and
receiver design. It utilizes al! of the information available in the target/clutter measurement
space, and results in 2 method of waveform selection based upon the suattering matrices of
ths target and cluiter. Once the waveform has been chosen. 2 maximum jiketthood criterion
is utilized for target Jdetection at a desired false alarm rate.

E 35 The vector meihod can be considered a special case of the matrix approach. in that
only a part of the available information is processed from the measurement space. Althou h

this viclds better results than conventional singie channe! systemas and is simpler to implement
than a matrx recciver, its perfennance relative to the matrix receiver is obviously not ar good.

(3
Mt

1 i

Considerable cffort was devoted to the devclopment of a Kalman filter realization of
a state-space model utilizing the tarset and clutter scattering propertics. This approach was

5§ 6-1
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caried to the point of an optimum rvceiver design, given the transmit waveform and the
relevant scattering matrices. This effort exemgiified the mcst consistently unified approach
towards utilizing both the icmporal and range behavior of the sczitering matrix ciements.
Further work is required, however, in developing this approach for waveform desion.

An approach 5ing Fredholm integral equations was formuiaied to the extent of

enumerating the system of equations involved with the target/clutter scattering slements. A

generalized method of solution was presented. No fusther =ifort was expanded bevond this

point, although a preliminarv conclusion wculd indicale that the compiexity invelved. rcoiative
to the other techniques. might not warrant aaditional work.

The Stokes appreach was formulated and investigated i a prior study. These
results were reported ugon for completeness and indicated the capability to design an optimun:
transmit-receive antexna polarization pair for maximizing the siznal-toclutter mtio for use with

nescoherent processing.

Computer derived resuits vere presented for the matrix, vector, and Stokes
approaches. It was shown that for cither singic pulse or ccherent pivs> train processing.
exploitation of the polarization discriminant ir a dual channe! configuration was clearly
superior to conventional single channel matcied fiiter perfornance. The mainx results abso
considered the differences in dual channel performance for three variants of the BOQM-34A
dronc point taree! model in chaff. These included s pulse-to-puise corr:lated Swetling |
model and two less comrelatee versions tending toward Swesding Il Correlation of the chaif
scattering matrix was sct identical to the least corrclated target model, RT3.

Probability 6f target detection was uscd as a figurc-of-merit for a false alamm
protability of 104 Best performance was obtained for the least comelated farget model.
with worst perforn ance for the Swerling 1 (a typical 6 dB differentiz. or a Pp of 0.5). Tiis
is consisicnt with tandard results for Swerding i relative to Swerding 1 targets. The pulse-to-
pulse decorrelation. inherent in e KT3 target scattering property. provides for more degrees
of freedom in terms of optimizing the receiver matrix combination associated with the
individual puisc returns.  This results in the noted better gerfermance relative o SWiL
should be nivted however. that performance of the Sweding ! target was alse enhanced &y
dual channel polarization precessing refative to single chanael maiched filier dst~ction.

It

Tie major conciusions vcached from the foregoing results can te restated
as follows:
a} Exploitation of pclanization wzitering propertics will enhance the detection
of targets in chaff cclative to cenventional single channel systems.

b) Analytical and systematic approaches have been presented to develop
optimal transmit waveforms and associated recciver designs for maximizing
the probability of target detection for = given false alarm rate.

¢) The availability of previously developed polarization scnsitive modeis of
targets and chaff, providss a powerful tool in the systematic evaluation
of the zbove techniques.

-

.
-
LA,

R s A AL G aig Was sk otys 'lw)v:';’ﬁ:ﬂ‘&ﬂ-'-?(i’ﬁ“‘&?ﬁ%“
he; i eI

4 0 Amn————_ S g



. ' L . .2 - * - ~

S e e e AR AN R s e b e S e e TR SN NP e R et .
- g T EREReon . — o ) 3
3.- i i
F 5 PE
i 2 P
- 3 i
oy e K
X # H E
E L2
% 5 i =
- |
2 3 The following study tas's are recommended to further evaluate the practicality of i3
e = - - - - -1
S a2 . A multichaanel polerization processing: 1 g
: 2 a4
3 A . . . ¢ X
X ¢ k a) Expansion of the state-space approach to include wavcform design as a ; N
" " V4 possible adjuact to or replaczment and generalization of the matrix methcd. . g
- 2 b) Reconfigure the target and chaff models to include rezlistic target 3
& 3 tiajectories and chaff mean velocities, to combine "MTI processing’ in i3
o8 s - - - - - - - - ~
Z g conjunction with the polarization discriminant for dual channel waveform i E’
= = and roceivers design evaluation. U ¢ of longer pulse trains would be 2
= investigated for this implementatios i3
E: R ¢) Develop and’or utilize other clutte, modess 10 evzluate parformance in %
-0 G different intericring envircnments. Ellipticity associated w:ith rain drops. B
- for example, would be a rcasonable contizsi to the dipole structure of 3
= the chi.f model i
3 Py
3 .5 d) Develop 2 strategy for detection of targets in ciutter, without prior :
L35 B knowledge of targzt scattering mainx. Use typical surveiliance radar
- : reqairemeats. Evaluatc performance of various approaches: for example. 3
{ 3 use waveform to minimize clutter backscatter or maximize s/c ratio for H
= ~ ‘average” targetl.
( 72 ¢} Preliminary design of dual channel system: utilizing metho:is developed
| ¥ duriag study. Provide qualitative cost assessment azainst single :
- E channe! system. ;
Do Y fy Develop 2n approach using the range spread properties of the scatitering
B 9 matnx ir conjunction with its polarization and temporal btehavios, to
3 design the waveform and receiver {or oplimizing target delecticn in clutter.
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INTRODUCTION

Recently there has been considerable interest in the use of polarization diversity to improve
signal detection in the presence of background clutter.(123) 1y the design of sucn polarization
agile radar systems, one must consider both the autocorrelation and cross correlation functions of the
backscattered signals tfor two orthogonal polurizatior1s.(3)

What follows is 4 model tor a random collection of rotating dipole scatterers. This model
is a generalization of a model by Wong ¢t al.t) und allows the simulation of both the polarization
and temporal characteristics of radar signals backscattered from a collection ot rotating dipoles. which
have either completely random or preferred orientations.  This model makes use of a vector auto-
regressive process for the simulation of the scattering matrix elements of u dipole cloud and can be
used for the statistical simulation of signals scattered from chaff.

THE SCATTERING MATRIX OF A ROTATING DIPOLE

When a dipole is rotating about the s-axis of an orthogonal coordinate system. (s, u, v) as
shown in Figure A-1, the direction of its dipole moment is given by :

A A A
d = uwcos Yyt vsiny (1
. . . . AL
where ¢ is the angle of the dipole with the u-axis given by
' (2)

v o= wilta.

w, is the dipole rotation rate m rad/sec

and o is a constant phone angle.

I the polar anglés o1 the above saxin, relative to a Cartesian frame (x, 'y, 2), are 0 und ¢,
as shown in Figee A1 and af the u-axis is chosen to lay in the x-y plane. then by a coordinate
rotation from the s, u, v to the (x, 3. 2) system we obtain that

A AL .
dor =X tsin ¢ ocos @t con 0 cos @ sin )

4y (cos ¢ vos ¢ = cos 0 sin @ sin )

(3)

A .
+ 7 sin 0 sin .

When an clectro magnetic wave is propagiting along the 2 axis, the scattering matrix of
the above dipole is given by (Burisnn(s‘. Wong et ul““)
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where (N is the radar waveizagth).
From £quations (3) and {4) wc find that the clements of the scatiening matrix H can be :
expressed as :
= 1> ) N
hey = VO9XNIC, + Dy IV, -V} 5) ~
—_ s ®  _,Or .
h}x = hl\)’ = \/—0‘) X l(-: + D: J-v + D: < }_U] {6
and
—_— - X - N -
h_.‘\. = \/ c9 ) |C3 + ‘)3 &-v 4 Ds ¢ 3- ] s -
where the superscript * de 10tes complex conjugate.
R i ) Ry s,
Ty = 3 sin™ ¢ 4 cov-0 <o57#]
1 > A b i >
l)! = ilx:n’é-co"o-.'us' 8y~ 3un~ ¢ o 01 .
. i .3
€r = —3un g WGn0n" 0.
H b
!): i liur o cn gt un 0 v O conm € - § A0S §200 vas O] . ‘
. [ ~ ) > :
C; = 3 foon~ 0 # s~ 0 uin™ 8 i
} ~ oo Y A 4;
D; = 3 {icov ¢ - ~ia~ ¢ cin— 63 ¢ ) sin i20) o 6 i
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STATISZIS OF b, . hyv FOR A RANDOM COLLECTION OF ROTATING DIPOLES

A study of the temporal andé polanzation respounse ot 3 rundom <ollection of rotating
dipoiss requires cestimatzs of autocorrelations and cross correlation functions for il clemenis of the
scattering matrix H of Equation (1), such as

- »
1 - Sho( 7-
h;.l“(u h.\x (ta-nj .1 iy ((0) in_\.). ti-n .

Elh 0 b “uen) | Fib b Suen) o

£33

where the expectation is over time znd all posable oneatations for the axes of relation of

the dipokes.

These wclations can be eapressed in 3 compact torm by v of the covananee niatny
R -~ -
Kyt = ko a-7n t8)

of a vector h(t). defined zs.

-
_ hxxﬂ ]
hity = hx}.( t)

h)}" t}

9

if the distibution function for the angular rofatios rate s P, fwp ard for tixw Doppker
shiit duc to the drft wlocity is p, (w41 then, using the results of Wong. et 2% and
<hstiiuig from: Eguations €2). ¢3).(6) and (7) into Eqguations (3) and (7). we obtan that Ky
an be awpressed as

Kygtmd = My i€ + 2Re (M 272 - Doj (10)
[ 4
where the matnn € s gven hy
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1 k. the matrix D is given by 3
.‘ i - - . :T;
= l'-!D.l’ l‘.‘DlDz ) l:(l)]l); ) :
e ) -~ £ - pe :
= D l(D:l)! [] l;:}):" H ll)sl); ’
»
BD;D; ) DD RibyT (12)

\ld(r) and \l ( ) are the charecienstic tunctions

. B
and k(O ,; HI)AD- i are sphen- sl random averszes of the omentaiion of the rotation azes
(Yizure A-1) given h\-

G .l] 1 .0_' 0> (l(}
, I _—Q do , b anooas (13)
DD o o, Db,
amd
2 !9.‘
@ = ’ ) wn Bin = {0~ - Ol) fien 0! - con 84)
0y '51 -

Whea the c‘xpo!:\ have 2fl pomh!a orniations and i vanabisx w g md w, arc nomal.
with deputns N(& . 0,75 and NeR ’) resper tovely . we obtam that the u“zn.n’c matny
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STOCHASTIC MODELING OF THE SCATTERING MATRIX ELEMENTS OF CHAFF

If we assume that the vecior h (12 of kquation (X) is 2 smpk from 2 Gaussmin vector
process, tier use of a vector autoregressive process yiekds z relatively simple Iincar model that ha
® (@) as its output. In general, 2 voctor autoregressive process requirss the use of aatnx
coefficicnts!'©).  However. because of the stricture of the covariance function of b (13, gnen in
Equstion LIO;. l&c slodmt_if vector h (1) can be modeled as the sum of three veslor austorcgressove

provesses h (1) I +(1) and h 3(t) wiih scatar cocflicients o3

hendt, = { b (na1) + FandD exp (2% Atn)
\ >

+Tx3(nAt) oxXp (ﬁlirAm)} exp (=jwAin} (13

where
M
Y- N = Vv - ' oy ;
Lynan <, hy (.n-n.\l) + X,
NS
hotadn = .‘_ b, &> (m-i).‘.l’] Y,

!

;' nJli =

and the a’s end b e alar comtaaly ebtained from the Yule-Walker | quatiens (£)

M
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which can be solved by 2 fast secursive procedure developsd by Durbin® ‘! 3

i

The orders of zutoregression My and M, depend on the sampling interval At ang the 3

desired accuracy in approximating the coirelation functions R,(k:m and RatkAtl), where é

N Ritkat) = My(kAt) 2vairated for wy = C z
3 : 3
33 g
b 2nd g
;

Ry(kan = Mykan - M k30 evaluzted for wy; = Oand w, = 0. :

- T i

The vecton X . Y, and £ 2fc mdependist noise vectors with sutocevanancs matrices 3

X1 = 8T

l‘_.kikj } = iJ{ :

: :

E 1= 8D :
) _ '1\3 38 T %
. %, J :
= b Qe .

> - J . s _ =~
E bzt = 8D

¥
g =
= o
= whete the bar deaotes comepley conjugete.
X E
5 )
= In numortced wumelatiom fiese wodton can e gencrated  from
= -
% .
S = X, Gyt
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g _;. where
A s
ES: x x s 0~
- ~ ~ & ~
> 3
g " The astensk denotes complex cenjugate tznspose and the vector U V) and W, are three-
= < dimensional complex white noise vectors with Goaussiap uncorrelated componcnis  In many cines
82 the covari;ul;-: matnx 6 ts rcal or il, = 0. i ather of these conditions s true then one wan
=3 73 snow that b (nAt) can be expressed as the sum of only two autorcgressions. winch reduces the
2 computations necded for simulstion of the cicments of the scatlenng matnn
:‘— é
' NUMERICAL RESULTS
: - Y As an cxample of the re<aits obtained by use of the above model. we <Bow 1 Fizure A-2
% = a polar plot of the polanztion ststes of waves hacksaattered from = random dipole cloud for three
‘:’ b different trzacitter antenn: polanzzations vertical, horizontal and circular Data tor these plots
« OF were obtamed frisn the above moded for dipeles onieated primanly within 30 degrees from the
= - honizental. The polar represcatation (1. ¢) of the polarization siates in thew hizures » such that
=3 the kength of the radius vector s 1 = 1 - ¢ where © s the clhiptiaty. e ascular polanzation i
= 3 mapped at the ongn, hncar polanization along the arcumference of & Grele with radiee = 1. and
E clliptical poiarizations within 3 arcle of radius = 1. The polar angle 9 1 such. that direction of
, the magor axis of the cllipse for zach polamization stzte v along the radius wector which goes through
= 3 the point representing the state of the plot. Stmilarly . the dimection of hincar polarizations are alons
i the radius voctor.  Furthermore. clliptical polanzations whowe sense of rotation s ngbt-handed. are
b R manped on the nigiit-half plang of the polar plot.  Thus. the abovwe graphic represcataiien is capable
| : E «f representng all polanization <tates amd, tn offectl. maps the <urface of te Pomcarnd polznization
|3 sphere onto a circle.  The only polanzatior ~late which »n ambiguous 10 ths representaion
. :; annulag polatizat:on.  Both right-handed and kett-handed circuler polanzations 2re mnped o the
= ,.Z Aane point at the onin of the voordinate swstem at the center of the polanration k. lor
= * cilpnical polanzations whose major anis s along i verticar, we have zroitranh chases to map
; 4 kfi-hended polanrzations onto the lower hali of the rertical axn, and nght-handed polanzations onio
E ~ the apper half of the wrtieal axn. Furthemote, tie <sze of the fetier used for indwoatiag tic
p 2 rolanization of i reoenwed W ne isoaried i accordance with the total ugnal pewer m the wae.
= oo : LS., manvunum power izl can be ovirated from the wase &y 2 matchicd antenna.
-5 E
'3 FORMULAS FOR THE EXPECTATIONS BIC,C;") AND EIDD,")
£ Q= 3 - Sp iun By - con Py)
= j e, Hyy - 5— ok O5 - <o A3y - i(Lu\ 30, - o =gw)*"*‘h'“\ S8y - wor M)
2 E I s i 2733 i 2T N0 s -
=z ¢ 3 i 3
5 cus 8y ~ cus0y
| =3 (-IUI. 5:! = - } _ -(g‘ns02~urs 91'
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' Apperdix B
LIKELIHOOD DETECTION
A

5 BiINARY HYPOTHESIS TESTING

In order to make a decision whether a target is present .n chzff, binary hypothesis
testing is performed to determine its decision region [see Van Trees 1968]. Referring to
Figure B-1, the two hypothesis Hy and H; with respect to the received signal Y (with
additive narrowbarid white noise) are:

Hypothesis Hp: y=Y.+n,

-

Hypothesis Hy: Y=.Y-!-+YC tn,

The input signal Y is then processed through the optimaliy weighted matrix G whose output
Z is given by:

Z=G-y
HBence,
ZiHy = G- (Yc + Ny}
ZHy; = G- (YT + Y-+ N))
and the respective covariance matrices are
RS
| ,, Cov(Zitip! = G - EIVeY*1G* + G - E[N; N;°] - G* = Ren
E CowZH;) = G - E[YyY7*IG* + Ry = Ry + Rey
| In general, the covarianice matrices RT and RCN are not dizgonal, and it is desirable
3 3 to perform a coordinate transformation such that the rcsuitant covanance matrices are
L simultaneously diagonalized. The new set of transformed random variables are now statistically
' 2 indepcndent. In order to find the desired cocrdinate transformation we soive the generalized
=3 eigenvalue, eigenvector problem: Find the eigenvalues p; and cigenvectors ¢; such that
5 "
E RT 9 = 5 ReN & i=1,...k
E
| - is satisfied.
E
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it is shown in Appendix D (setting Q = ¢*) that solution to the above problem can

AN TR LN LSSy

expiessed as follows ’
3 . -
> Q RCn Q I
QRyQ* = ‘;
:y N
= where Q =5 the coordinate transformation matrix i

I 1s (k x k) Identity matnx

‘l'| l‘ 3y

p is (k x k) diagonal matsix whose elements are the cigernvalues g

ALY

The new set of random variables Z is

YR EH

Z = QZ = QGY

5

Ly

and the coranances under the two hypotheses are

T~

cov(Zig) = 1

CO\'(;!"I) u

Lt (imains
4 S tiat ¢3S

RECEIVER LIKELIHGOD RATIO

In order to firnd the decisicn critena for the binarv hypothesis test we take the
likelihood ratio A(Z)

Vot oy
AT ey

44

o

p(ZIHy)

AZY = tn| ———
o P(ZiHg)

aa i Vet Moy,

{:

= 2* @+ Z +2%1Z - % tnfdet(z + D}

Z* 11 - (u + ' 11Z - % etn[det(u + D)
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Further, we define another transformation P such that

vy
[}

P-Z =

and 3
P= (-0 %=
then
A1) = r* r + const
and the decision criteria is
k
Ré

Consequently, the probability of false alarm Pp 4 is given by

e -
Ppy = fr puiighds

and probability of detce-tion is given by

Py = {ulH;)du
D F Fujry
T

By

l+j.ll

> T

P-Q-Z=P-Q-G-Y

and the optimal receiver weightine matrix is given by

Gyoy = P-Q-G
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THRESHOLD DETERMINATION

The generai form of thc probabiity density functicn p(u) is given by
2

- ulo-

k 1 e M

p(u)=2. ) 2 tu = 0

where

L=

=1
o = Eir-l:

p(rl 2 eees r’x)

3 ! 2 ;
=z 2 oc k ¢ - Tlai i
., ﬂn :L_ mg; :Z "

S F1 :

Z % jl=11 ( ’a;z.ogz)

E 3 L 7

\:( 1#

3?' ’:‘

= e Fer a given Ppy the threshold T can bc computed from ths above equetion wsing the

4 LR . . - . - ey

E ~ Newton-Raphsen iterative technique with the appropriate ¢;~ for Hy coaditicn ard
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Appendix C
CONSTRAINED OPTIMIZATION OF S/C

The constrained optimization problem: is as follows. Given the target and clutter
convariance matrices Ky and KYC, find the optimum W that maximizes the signal 0
cluiter ratio defined by

WKy W

A
Sic & W*KycW )

where W is 2 NxI complex column vector,
* denotes complex conjugate ifanspose
and Ky, Kyc 2re both positive definite hermitian matrices.
This problem is equivalent to maximizatior. of
WKy W 2)
subject to the constraint
Let A be the Laercnge multiplier and dsfine F(w) as
Hw) = W‘K\,-rw -A (W'KYCW - 1) id)
In order tc usc the Lagrange multiplier for maximizing F(w). both real scalar
functions W*K\rW and W*Ky W must be differcntiable with respect to W which is complex.

Applying the Cauchy-Riemnann Equations to iest for differentiability. the test fails and it is
cencluded that the scalar functions are nowhese diffesentiable in C° {complex N dimensionai

space). An altemnate approach is to solve the differentiation problems in real space RzN_
Lt W= X +iY (5a2)

KYC = Re {Ky¢) +j Im {Kycl (3¢
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For any hermitian matsix M we have

M = Re[M] +j I [M]

KelM] = (RaMDT. 1_IM] = «1,{MDT :

> ' where superscript T denctes tranposs.
{ ' Therefore. W*MW can be rewritten as

E 3 weMw = XTRe[MIX + YTReMIY + YT papx -XTi 1y y

E

E 2 XTReM1Y - YT . xT (Y

E HXTRAMY - YTReIMIX + XT1IMIX + Y1 IMIY)

E 3 = XTRe3M3X + YTReIM}Y + YTI_MiX - XTI (MY

E

E 5 = Re[W*MW] (6)

S P No:iz that

2 STraMIY = (XTRaMIVT = (RetMIMTXDT = YTRe (M) X

2 3

: & md

; > -

S X1 X = xXTignexat = agiMpol N7 = xXTegipx=o
: g W*MW can now be 2xpizssed as follows

. weaw = (xTH T, [Rch\ll - zmnu] / \) = xXTyT v, (\) )

% = LM Retsh Y Y
R g

1 7
3 / : where Mip is a positive definite symmetnic real matnx.

A
S N Ncw we introduce the eradient operater Yy defined as

3 - R 3 2 2

> 3 WR G T O3y, avo e i,) &
E 3 3%y 3Xs Xy AY; YA Ay

3

4 3

E 3
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:
3 - -
2 : X, 3N, ... 9%, 3%, ...aX, .
: ' v x — —_—  — ) — * e = v . x - = l {9) :’3
A 5 ¥ aX; 3X, Xy Y oYy w :
B - - Y - . ] R Y 3:'
3xX-
- . 9X;
3 oXw :
5 B X, ;
E 3 X, :
1 j £ . R
| ax;, 2y,
| & L ! 5
' Thzn we have

2 : 3 ‘-;“r(wt.\'w,

4
H
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=
>
‘4
5
-
-
_‘
/"\
<
)

g " \
) '.QLJ {M4tE

|
to
<}
¥
P
2 .
-]
z
P
W
——

’

E = 2M, (\) i1
E \Y

3 3

3 £ To find the W that gives the extremes (min and max) of F(y) we set

_ VwFW) =0 (1)
‘:.A >'“:
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That is, from Equaticas (7) ard (10)

p14

inikyrl Relkyrl | falkycl. Relkyclj) \Y

Equation (12) is equivalesit {0 two simultansous cquations set to zefo

(Re[Kyyi - XRefKycDX - (U [Kyqj - M [Kycl) Y =0 {132)

(L 1Kyp] - M IKyel) X+ (RefKyp] - ARefKycl) Y = & 1i3b)
Thercfore, we can express the twe sitmuitaneous zguations into one as foilows

(Re[Ky] - AReiKy DX + M {Kyq] - M iKyci V)

SO IKyp! - M Kyels X+ (RelKypl - 2Re[Kych)Y] =0 (1
T squivalently

KRe[Kypi - MRefRycd) +§ O [Kyy] - 2 1 i)} < X+ i) (i3

Thus.
VWF(W) =2 (K\-T -2 KYC) -W=0 {(16)

The soluticr: to (Kyt -~ X\ Kyc) - W = 0 cn be obtained using the simultansous
diagonalization of two hermitian matrices discuseed in Appendix Do

It then follows that there are N such extreme values }; and transformaticn
vectors W; (cquals ¢; in Appendin D) thai satisfies Equation (16) as given below
Wit Kyr Wi = )

“"i. Kyv(- “-i = ] “!?)

o i <2 Ty
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Substituting Equation (17) into Eguation (1) yields i
- : i
_ wl Ky1¥; _ E
i J - i
wl KYCwl E
and ,
g}.::x(S_IC) = Amax
1 ;
Hence, by selzcting the largest eigenvalue )‘l{= Apaz) and the corresponding :
tiansformation vector Wi{= wopt)' then /SiC) is maximized over all W satisfying the
constraint. ;
i
3
| 3
i Y
} =4 =
PR ¢
| :
= 2
| S
‘ < 3
E
3
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SIMULTANEOUS DIAGONALIZATION CF TWO COVARIANCE MATRICES

Let A and B be the two compliex NXN covanance (positive definite and hermitian)
matrices.

We show that the two covariance matrices A and B can be simultaneously rediced
to a diagonal form by a NXN matnx ¢ such thai,

o*Bo = A

(1)

¢*AS
where A is 2 NXN diagonal matrix whose clements are real and 1 is a NXN identity matrix.
The columns of ¢ are the eigenvectors ¢; satisfying
B-)NA¥, = 0 (64
where the ); are the eigenvalues of the matsix zjuation
iB-aA] = 0 3)
where | - | denotes deternninant of a matnx.

Simultancous diagonalization of the matrices are performed in two steps. The first
>iep is to diagonalize matrix A, thai is.

W*AW = Q @
The coiumns of W are the cigzrvectors w; satisfying

Aw;, = w:w: i=1L,...,N (&}

IA-wl] = 0 {6
Note that A is hermitian and thus Q is real and W s a unitary matnx. ic..

weW = wilw = § ™M
From Equation (4).

A = wOws (%)
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Since A is hermitian, the eigenvalues w; are real and thus,
o = o*.o" 9

Now A can x rewritlen as
L= W-Q%. Q%o ws (10)

Q.-é_“gg_A_“r.S‘)'“!"l = 1 (11)

Substituting Equation (10) into Equation (3) yields

IB-2M = iB - AWQ-0"Weyi
= jwe*@ W - wa ™ - ana¥ws;
= W' - [OTTWHB - Wi S AL - QAW i12)

= {
Both [\\'Qxli and lﬂx\\"’ | are mon-zero hence

P WsBWQ T Al = 6 (13)

K = @'we.B-wo': 14
Note that K 1s also hemmitian.,

The second siep i to diagonmalize K. The smiwe procedurs as the diagenatization of
matnx A s used.

V*KV = A (§53
where the columns of the unitary matrix V are the cigenvectors v; satisfying

Kv:

B 2= 4.....N

PN
LYY
)

~

and A; are the cigeavalues of the matrix equation

IK-M} =0 63
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Substituting K from Equatica (14) into Equation (13). we have,

VEQTWEBW - 7V = A (i8)
Przmuit.ply and postmuliiply Equation (11) by V* 3nd V. respectively.

VEQTIWHAWO TV = VeV = \*v = | (19)
The last 2quality in Equation (19) is due to the property of 3 milars matrix.
Defining th> muirx operater ¢ as follows

o = wQ v (20)

Then Equations (18) and (19) vield

o*Bo A

1}

o*AS n

D-3
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Appendix E

BHATTACHARYYA DISTANCE B FOR GAUSSIAN DENSITIES

£ -5 It is assumed that the conditionai probability densities under the two hypotheses
= HO and H1 are zero mean Gaussizni. It is noted that the random variable Z is complex and

% the real and imaginary components are independently zero mean Gaussian. Hence, the

- 2 waveform is described in terms of Rayleigh distributed amplitude (envelope) and uniformly
A > distributed phase.

' The Gaussian statistical representaticn is a reasonable one for chaff as weli as for
4 23 targets of the Swerling 1 and II class where the target amplitude sluctuaticn is described by
, E a Rayleizh distribution.

] \:?l

4 Let the two conditional probability densities p(ZHO) and p(Z {H1) be zere mean
- Gaussian densities under e two hypotheses HO and Hl. The z2ro mean Gaussian densities
£ a3 densities are {Helstrom 1968}

= ; S, S |

E . § (Z | HO) ' s Z]

SR = - S L 1)
2 5 ? 1 ) I Y Ad sz—l Z

=2 = MZ [HD) = . T 1, SXP -3 @
e ST

E \ where Kzg. Kz are the kXk covariance matrices of HO and HI.

o ~

3 3 Note that |-i denotes the absoiute value of the determinant of a matnx.

" :r Substituting Equations (1) and (2) irto the integrand of Equation {3-34) in

= 5 Section 3, the integrand becomes

3 3 ] w 1 ( Kzo ' + Kz~ 3)
> E 1@ = [pZiiio) - pZiHN] = = . m cep |RZ\————)2

: Q¥ Ky 12 [Kggt? -
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and evaluation of J using Equation (3) yields

-

S R |
l"zo ¥Ez)

2 H
TR S
2 : 2 (2‘1!)k

S P
20 " ™M)
- exp -%.Z'P_——--— Z}-dZ
-1 -1;-1
0 Kz
2

Kzt - 1Kz

B

@

The term in the numerator of Equation (4) (Kzo‘l + KZ!"l) can be rewritten as

Kzo +Xz17) = Kz la+Kzkz™h = Xz Ky +Kz0Kz; ™!

Then, the determinant of (KZO"; + KZl‘l) becoes

Kzo™! + K771l = Kz6™ (Kp1 + 200Kz 71 = Kgol™ « Kzy +Kgol - Kzg )

tlence, substituting _quation (5) into Equation (4) yields

3

Kzo *Kzi|™ .
3 = l-——l - Kzol - Kpp1? (6)

The Bhattacharvyz distance B is given by

Kzo * Kz

-1
~tn ||——— ‘ . lKZQl!/: . |Kz‘i"l1

™
1]
|

g

Lee
1}

@)

4

[ Kyo + Kzgt 1
2K Kol - “‘zﬂ%_!

as shown in Equation {3-33).
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Equation (7) can be further rewritten as

Kzo + Kz;1°

—_— ) 1
“(Z()! * IKZ]l +k/2tn % ®)

In Equation (3-36) Kz, and Kzq are given by

Kzj = WEp We+ WK, We 9

]

Kzg = WK W* (10)

Substituting Kzg = W Kyc W* for Aand W KyT W#* for B in Appendix D, it is
shown that there exists a coordinate transformation matrix ¢ such thai

¢*Bs = S* (WK T W™ = A (1)
o*A = O%(W Kyc V) = | (12)
LetZ=¢z

With this coordinale transformation, we get

Z*Kz1Z = Z*WK g W'Z = z2*¢*WK W3¢z = 2* Az (13)

Z*KzpZ = Z*WK, WZ = 2°¢"WK, W¥g2 = 2° Iz {14)

Substituting Equations (13) and (14} into Eguations .3} and (2),
= A+ {‘5)

Kzl

(16)

"

Kz

Sebstituting Equations (15) and (16) into Equation (318) yieids
[x\ +1)+ n31

TS, L.

Li¢n A+ j

A+ 22

A+ 1
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A is 3 diagonal mairix whose elements are the eigenvaluss M, 1= 1, . | k.
Therefore the determinants of (A + 2!) and (A + 1) cun be expressed in the produci 10:m
2s follows
k
I = 6 (4 +2) 8
=1

k
nog+h {16y
i=i

N+ 1

Finally we obtain the desired result

ko Joy+ e
= % X /2 tn %
=1 2+

1 )
t o+ D+ +21 k2% N (20)

1]
i

£quavon (20) is the resuit shown in Equation (3-27) in Section 2.

Ref: Heistrom, C.&¥. “Statisticzl Theory ol Signal Detection,” Appendix D. Pergamon Press,
1968
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Appendix F
AUTOREGRESSIVE MODELING

Tne Autoregressive Process

’v‘!ithagt lack of generality we consider a scalar random process u, with zero mean
and variance 0,°. A second picuess f Xti is defined to be an autoregressive process (AR) of

order m if

Xe = @ Xpg ¥ .- vap Xpp, + iy @)

For the first order cxe, ie., m = 1, we have

Xg = o3 X+ )
Therefor= by successive substitution
Xp = o7 ley Xz vuol vaguy +y
Then X; can D¢ expressed as
Xg = mpropu g rapu gt
That is. X; is exprssible as an infinite order moring arersge process.
For the general order case we define the operator
BK X, = X, forall k
Then Equaticn (1) becomes
I, B-...-ay, BT X, = u,
_ Set
é fB) = ' B-..-ay B G
g .3 = 1+ B+. . .+, B"+_ . (av) @
= E
. 3
F-1
- - S ——— - __%
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We find

s At st bos ol Bt KUy Y ﬂ?‘i’.j'""

X; = f(B) u 3)
It then follows that E X; = 0 and the vanance is finite as soon as £ 532 is convergent.

Yule-Walker Equations

Let us assume the process to be stationary. Then multiplying Fquation (1) by
Xt _x and taking the expectation, we find for each k>0:

k) = a; $-1+ ... .. + o, $(k-m) 6)

where ¢ 1s the autoccrelation function of the process, The set of Equation (63 is the weli
known Yule-Walker equations.

The Yule-Walker cquations are particularly usefu! in estimating paramsters of an AR

process, that is, to estimate the parameters ay . . - .. O, » Bven the obseriations
X; - Xa..... Xy, (s2¥) of the process {X,}- It is evident from Eqguation (6) that we

can solve for the a]-'s by substituting the sample autocomrclation functions into the firs: m
Yuk-Wlksr cquations. Leot us next consider two recursive methods of colving for the
cocfiicients of the AR process: one for the scalar (Durbin’s Mcthod) case and the other for
the vector case.

% '. Durbin’s Scalar Recursive Algorithm

b 3 in ftting a stochastic (stationary) process with an autorcgressive process. the order
of the process N must be decided. The criteria may be the least squares filness to the mudel.
where the mean squared crror iemminates the process when it becomes smalker than seme
predetermined threshold,

2 : The conveatinonal method of solving for thae coefficients s o form N smultancous
3 = Yulc-Walker zquations and solvw for the A;s by matnx inversion. Huwever. with this
3 s method. cach time the order of the AR process s incnased. an NXN matrix inversicen is
,f = requircd. A more cfficient micthod s to use the Durbin’s Recussive Aleorithm

TR described below.

AL The Algorithm
3 Given the N-1 coefficients (An_j 1 - - - - Anop No)? for the N-1 erder AR
: e piocess, the N cocfficients (A - - . - . AnN) of the NI arder AR process & obtained

3 . from tin *wWo tecursive cquations.
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CNN = .l (7)
Po - An-1 - Rng

LRt OIS MO L M) (S romemrant b

2

r4

1

]

-y

7z

4
PP P 1)

0 s -1 (5)

where £

AN T lypony - » aNN)
AN = (oNN ONN-f----- - ey )
N = PPy ... PN) ;

-
[}
)
A
>
-

-N
~ denotes transpose

The mean squarz efror cf the Nth order AR process is .

= 7 » N
- ’ - -
g ox" =99~ Ax - Ry =#p i}! axi % = o,

3 The initia! conditions are
<3 i b) h)

. N =1, @ 7P1Py 917 T py 2y7.Pg

b4

For the N-1th order AR process, the matrix equation is given 2y

E rp. ) = rPo 9:\'-:1 r"‘:\’-l.l 1'
= g ) ) :

P § €. ¥ <. P 4 . }
e ' PN P2 9 aN-I N-1

¢ L J . 4 \ y.
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where the coefficizats of Ayn_j are known. Note thst P matr'x is positive definite.

where

| Tyaeeey
D21

From

or in bri:i 1otation

Rnop = Paop s Ax - or Ry = Peop A oo

The ma-nix form of the Nth order Process is thus given by

R,\§=P7 ':\\;

2y -

This can be rewritien 3as
Ry =f P Rpen) f2Ax

Uy J \Raep?s ENN

Ry -1 = Pnoi AN YR oo " ONN
px = R v AN * an Nog

Eavation (i3)

ax. NP = PN~ 2 iN-n T AN

Eazigtions {12 and 10)

.= P:}
AN T PN Ry - Ry N

Avg - o P
NN P R O

"

Axp - ONN AN-DD

(10)

(an

(14
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Substituting Equation (15) into Ejuation (14) yiclds

ANNPO = AN - Run-n) tAna tenn T Ryt A

and

ox - Rnopy - Ang AN - AnCit Ry

ENN = s 5 "
20 ~ BN " ANy o - Anop  Ra

rrom Equation (15) and ay N. we form

AN T AN - aNN T AN-D
ayN=0+any

ana it f<llows that

2\ Anp Ax-n\ _
\ON.N o -1 )

Equations (16) wnd (17) are the recursive squations of Equations (7 and 8). The mean
squared error is obtained from

N
oy0 EfX) - 2 o Xu-)l- = EfX -

a; Xt=i) - AN
=

Tt

which yields
N
ON- = pG - _z ai pi 1)
Hence
5 ~
ON"=,’)0—.—\N . RN {1
Substituting Equation (17) for Ay above yiclds
2 T Y =
ON™ = kg *ANy Rnog —axn A -1y Raop * axonen?
TRy - Ang By -annen - ALy C R

=P0 - AN T Rnop-ann ey - Aoy T Ry

= {16
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and from Equation (16)

2

ON

Po - An.y R —ann™ - (g - An i Rnp)

(g - Axn-p * Rnop) (1 -an N

2 2 03
oxn (1 - ax N7 £20)
which 1s the rasult of Equation (%)

Matrix Recursive Al:orithm

For the general case, the multivariate stochastic process can be modeiad by a Vactor
autoregressive process Z (1)

Consicer the following Nth order scctor autoregressive process Z (t3

N
Z(v)= Ay Z{~1) + U(t) Ch

1=1

where

Z(t)= [2g8t) 2a(0) - - - . - 2(2)

Ay PXp mainix coefficients of the Nth onder AR process.

U{tdpxi vector of indenendently distributed zere mean white noise process
and

~ deneies transpese
The matrix coefficents A, can be computed from the matrix Yule-Walker cquations

K = ‘_Zl Axi K m=1..... N 22)
i=

F-6
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| _ where K, is a covariarce matrix (hermitian) given by
| ! _‘“
g 3 =
‘ 2 K==—L— z Zintk) - Z%(2) =0 i2._..
2= H =1
. P T *

. E Kp =K

3 - g Superscript * denotes complex conjugaie transpose

e .3 s

= E Tize mean squared error Y of the AR process may be obtained
3 from Equation {21) N

E 3 \ N

. 3 TP=Ko- T AGK

. £. . .\ i:l

A ;-

Real ®rocess

[ 4 *

i A g A BT ) e 4 o

(23)

2
3 The matrix recursive algorithm solving for the Ay ; is derived below for z real

3 . valued multivariate stochastic process. For complex case. see the next subse_iion on complex

E 3 processes.

3 = a . .
Z The mean squared error 2, . of Equation {23) combinad with the \ Yule-Walker
Equations of Equation (22) can be expressed in matrix form as foliows

S oAy -Axz oo AN [Xo K-l Ky ] =
. 3 K-1 Kg Ky

= 3 KN Kn-ny Kg o
‘ or in brief notation
[lL-Ax] Ky =iZ 7 0..... 0]
= = N
ﬁ 2 For N+1th order. we pict an ay; such that
4 t
;\ E- » Ay lxxﬂ-lZN.o.....o.aNl
e, 3

9

Yy
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which is the representation of Equation (24) and

Kynep - K -AN2 KNG --- - - AnnKy -0 - Rg = ax

ar

<« (26!

We note thai if ay = 0. then Ay = (Ay. O) and the desired solution is obtained.
If this does not happzn. ay must be forced to zero. In order to do this. we introduce the
hackward (zdjoint} cquation.

Za-N) = ¥ Bxj z2(e-X - 1)
=1

b
[0.-Bxx Bxnr, ---Byp o Kna Slxg ---00 X ]

N

or in brief notation
(6. -Bx I Ky " 130.---.0. 2
which is a representation of

[-By 1 - Kx=100.... .0 E\.]

and

, Bxi KiNa (28)

bx = Kxepy -

7 | o
5 We now form 2 weighted combination of Equations ( 23) and (27).
s {IL-Ax. 01 + @ [9. By N}~ Ky

5

! 29)
xl {

=123 +Qx{.§.\-_0 _____ 0_-;(N+0§2
N
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By setting the last element of the vecto: on the RHS

e et he 233

o+ QT T <0
or :

b .
QNaz_aN[EN}—l =0 (30)

then we have the solution for Ayxyj in the form of Equation (24) for XX provided we have

= ;. b
: E By and 2\5

: L -Axsj) = (L -Ax- 01 + QX {0. -By, 1) £31)

..,
P a8 R SENMRa

s E and

X ey

3 2 .
Y +Qx S (32)
= : N+ N

M
N

e /9 : b : o

= \: In order 10 obtain the By and 3 . we perform a similar operation as in

-' " Ecuation (29) as follows N

o 110, By 1 + QP 1L -Ax. C1} - Ky

= b 33
= = = By tONPEN- 0. .- - 0. Tx + QRay! £33
= Z

; = irein which we get

=3 - 2 + 2

2 or

2 4 a

. Q=B 1 Z¢ 1™ £34)
., A Y

3 and it follews that

3 [-Byey. 11 = 10. By 11 + 0% 11 -2y O (35)
£l

<b = b
= R L T ¢
LN+ EN Qg h
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a
The matrix recussive algorichm is stated as follows: Given (An: 21\ ay) and

Dangy) 2nd By 2

v.q"
-

b . o s a
(3n: > : By1) for the Nth order AR pmicss. (Any): Z}\H—l

. y i ion 1 i wi 7ix :rsive equations
B¢ for the N+]th iteration is obtained from the following matax recumsive eq

b -1
1 Qe o (21

a
2a) L -A,,] = (L -Ay. O] + Qx 0. -Bx. 11
a a
3 =2 4 s - B\
3a) ENH & Qx\
N+1
43) C(;\:_” = K‘\r“,: - i§l
R |
12
N

An+1i * Kne24

b
b) Qu= -4 N

b
2b) l-gz\-?"l' li = {0. ‘gN. ll + QN IL —é,\" 0]
~s b - b + b - a <

N+1

- v e K. e
) Byey T K-ney - 4 Bt K2

The initial conditions arc
a b =
20 =K0= 20260=K] and (YO:K} and 307']\_1“1\]

we note that ay; = 8y - i.e.. ar adjoint relationship
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Complex Process

In dealing with a complex random vanable 7 = \ + jy. we note that z is in fact
compriseC of dpivariate random varialies X. v . and hénce a complex scalar stochastic
process must be areated as a rea! vector of dimension two. For a complex N dimensional
process. the multivariate dimension i 2N,

As desonibed carlier, in the process of generating an AR nodel, the maim

2{fivizats of A, must be determined when the Jochasti

must be iaken .:1 formulating t2e natan eguations.

- - > i - L3 - > .-' ~ »
process i< comwnien, spwoial care

Thus the following rule must b observed
it Gien 3 NN comakex mainivy M. decompose this main inio the real ane

IMAWNATV Paris,
= RIMJ #4 1, 1M

25 Defime 2 2NN rea! nainy M where

[ETENN

The compken jonin of the watiy Yule-Wolker Equation of tguaticr (22 Lur
bz rewntien as :
N
- _ ¥ . T
My T L L.
i\;;
Reg ~ =t ANTRRE VO
cap be rewritton as
>
; . . % . L i ve i3 g s
Fellamt + 5 Loy = 1 Rolant + Higlanghy - (RAR G+ TIK 5
3 kL N f
IR bd - v I (3§ -
= . F =f PRAANGE © RuRygl -ladan i - iR,
R ser E: } ;
. 3 . I - K )
+ -'”m!-‘_\.al R KL+ R IR 1 )j
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MISSION
Rome Air Deveiopment Cenler -

RAOC plans and executes resesich, devclopmensf, test ard - .
aazc,tgd ecquisiiisr programs in suppent ci Comewand, Contiol
Comunizations and Intellizence {C31) activities. Technical
and engiiteering Support wiliin areas of iechnical compeience
4s prcvidec to ESD Paccnam 0§iices {POs} and othen ESY
elements. The princdpal technical wission arz2a: ate

com wications, eloctromagnetic guidance dnd control,” sut-
vedttance of ground crd aerxspace obfeats, inteifiscnce data
ceilection and fandidng, {ajormatior system iechnoloay,
_4onesphenic propagation, solid state sciences, micitwave
phusics and eicctronic nelinbilifty, maintainability and
comcatibility.
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