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PREFACE

77zis report describes work perfonned by ITT Gilfillan for Rome

Air Development Center (RADGI under Contract No F306d2-- N-C-Oi 19
Tne Project Engineers for RADC were .Mlr. Fincent V'annic-,,I and
Russell Browr AThe objective of this study ;was to p;itns-e radar

systems by using the properties of the scattering mnatrix. inclding
polarization and statistical. to deýýign the wareform and receirer. The
report contains results of computer simulationr; which compare target

detection performance for defi'ed dual channel systems which inc'r-
porate proc,'sslng techniques .tilizing the scattering matrix. against that
of conrentional single channel systems.

Analytical and svstemnatic approaches are decribed for fire
techniques which lead to dual channel optimum processing. Fi-nalf.i.
the statistical target and chaff models are formulated and described as
they are applied wo computer simula.ior. for system e'ahlation.

The report was edited by .Mir. Albert Klein who also contnih~ired -o
Se.-!ions 3. 5. and 6- Dr. Darid 1tammers supervised the 5ignal *.•n .su•izn

and :!.'ir tasks, which were performned by Mr. M..S aaki f T. .,n FuTjira.

1R. Genrge !oamnnidis. and Dr. Nhan Lerar, Dr. Jefferiy Bell wrote
Section 4 on modeling and simulation and coniribuicd i.,,- i-.s ,
Sand 2. 3fr. Ozarks Lucas was responsible for the signal procrtssor d.icigmz
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EVALUATIONc

SAir Force radar syste.nis must operate against natural and man-made

interference, particularly clutter and chaff. This program has investi-

gated new methods of target detection s n dual polarization radar syste-..

Contrasting scatter in polarization between targets and chaff is

exploited to enhance target detection.

Of significance in this study are design methods for polarization

coded transmit waveforns and matched receivers. A simulation was per-

formed for analysis of potential improveme-.,t factor. This contract

supports NPO R48, Surveillance ECCM.

RUSSELL D. BROWN
Project Engineer - . ..

S _2 . .... 
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Section I

INTRODUCTORY SUMMARY

1.1 BACKGROUND AND PROBLEM

Conventional radar signal processing techniques use D)oppler and polariziation
information in discriminating target rteturnis fromn chaff -and cthe.- forms of interfcrence.
Th-ese two discriminants are used independently: most often in sip-I.: Jiannel systcm:. For
example. -the paiariza tions of the transmit and receive antennas are fixed 3nl determined b%
the combiner. On heother h--nd, spettral processing is performed by the receiver proessor

on igalstht hvealeady been combined by the antenna. As z. esult, such systems do

not. exploit the statistical properties of the target and chaff scattering matrices, which include

both sLoectr3-! and polarization information-

The utilization of *this inform-ation which exists in the scatterins matrix should he
mnere fully exploitable in a dual-channel systcm. relative to the more conventional singlJe
channel system. Thus thez basic 6;jectigve of this effort was to explore th~e merits of per-
formins: the signal processing In a dua!-channei systcm. to develop the optimum Comsbined
spectral ane. polarization pro-ess~ng zpproach:. Ti-rs in,--olvees determining the optimum trans-
mit waveform and coherent rL-ceive, polarization ani time weights f.,r! each pulse in a burst.
The criterion of optimality is to miaximizz the probability of target detection for a given
false alarm. rate attributed to the interference.

1-2 APPROACH

The basizo c-f our approach was to form ulate the system ir, an op-erator theoretic-
manner. st ~ that the resulting approach would be readily amen bl,- to be validited
by computer simulation. We stared by developing a range.'Doppler ~neddua! channel
scattering formula!non. since this affords coinvitec information on the tar-get operate_ H iow-
ever, w-, reduced ithe proble-m Wo a Doppler spread point target in a dual channel formnulation
tor computer simulation, ard concentrated on this durine the bulk of thte stud'-.

Several svstem models -ere developed and tmce; in the analysis- Thicy iclude a
..atrix receiver we:ighting nethod. a vector receiver weidAitiaig method (essentially a subset of

the matrix mnethod) a state space approach. a Fredholmn intlegral approach. and a StokesZ
vector approach. (The Stokez. approach is a single pulse polarization proc-essing scheme.
which has no spectral proc-essing czpabifity. It was inv-estigated in a Prior study and reported

*hzre only for thte sa-kt of completeness-) The mnatnix and vector methods. as well as the
Stokes approach were simulated on a digital compute;- to evaluate their performance. The
state space approach was carried to the point of an optimum receiver design, given the
transmit wavelormn and tzrget.,'cluttcr. scattering properties. The Fredholmi integral equations
were formnulated to the extent of developing the system of equations with tarect clutter
scattering ma-tricci&



In order to perform the simulations, it was necessary to have adequate models of
the tareet and chaff. We chose the BQM-34A as our target model since we have validated
sinmulated rcs plots with actua! leasuremeni eata. This target no-del is deterministic. and
consists of mathematical expressions for the elements of the scattering M~atrix which are
functions of the target orientation with respect to the r.adar, and to the carrier frequency of
the emitted sienal.

Chaff "as modeled as a t-oliection of dipoles with selectableI prefc-rred orientations.
- The dipole cloud was further described by Doppler and dipole rotation statistics- From the

distribution of the dipoke crientations anid the spectra! stztistics, a theoretical co'ariance
* -matrix was derived. This matrix was theai used in conjunction w~th th.: :half model- Si!r,-

ulated signatures were de-ived from the target model by sampling its scattering mnatrix at
various 25-ML andies corresponding to a trajectory. The simulaied chaff signatures were
derived from the same sample rates. Once these simulated signlaturcn. were generated.
correlation functions (covariance matrices) were created. T~he optimum dual-channel

* waveforms and receivers were then computed through application of the various techniques
developed (matrix. vector, and Stokes approaches).

Th.- figures of merit used in the evaluation wvere pro',abilit% of detection and
taret-to-chaff ratio improvement. T1he various optimum dual channel systems were simulated
and compared with single channel simulation results, and with the single pulse Stokes
formulati;on results.

; ;1.3 RESULTS AND CONCLUSIONS

The most significant results are piots of probability% of detection vs, signal-!o-ch~affl
poweýr ratio gecnerated from simulation outputs w~hich comnarzes euai channel performance
again-I single channel. An example is shown in Figure 1-1. Here we sec the probabifit;
of detection vs input signal-to-chaff ratio for a dual channel system using imatrix r;ec_-;tnr
weighting. Three curves are also shown for conventional single channel sysit-rrs. Thc
convention?]l systems are assumed to have the sam:z polarization during both transmit -IJ
receive. Vertical, horizontal, and right circular polarizations are shown. Each of *he con-
venzional systems is assumed to ha%-.- a filter matched to the transmit wavefon Th Iol
distribution of -±45 degrees means that the dipoles in the chaff cloud are uniformly distributed
between -_45 dec-ees from the horizontal-. yielding a part-ally preferred orientation intt
direction. The pulse sample rate was 3 mseec, such that -.he target model Scattering ma-trix
is reasonably Jecorrelated pulse-to-pulse (approaching a Swterlin- 11 model). '.-he curves show

T ~~that the piol-ability of detection _.5 far greater in the dual channel system than in an) of thel
A ~three conventional single chanre. systems.

All of the simulation results reporied upon yield to the same basic conchlu'irl-
thai. is. the exploitation of thle polarization and spe--tral spread scaitterini! propefics.

of the taree; ar.,! cnaff in a dual channel matrix configuration. prov-ides sl.perior
target detection performance compared to conventional single channel matched filter systems-

Tedece oftrgtdtection enhancemeicit is a strong function of th- pulse-1o-pulse

"h greeof ta.-e1-d
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correlation property of the target sca:tering covariance matrix. A Swerling 11 type target
which is uncorrelated pulse-to-pulse. w;i!! perform better than a S'€e-ling I. which is
completely corraiat.-d pulse-to-pulse. In the latter case howe,-'e. dual channel performance

is still better than the conventional single channel.

In view of the results, it is recommended that further study be performed to
more fully define the practical advantages of the dual chann~el configuration. This would
involve application of a typical survillance radar implementation incorporating MTT typ-e
processing in conjunction with the polarizztion discriminant. A preliminary design of the
dual channel systtem would be undertaken to rrovide qualitative cost assessmmnt against
sigle channel systems.

Further analytical work is also recommei.ded to develop the state space aporoach
for waveform design and computer simulation. Finally, the rang,: spread psoperties of the
target should be considered as an added discriminant toward optimizing target detcction
in clutter.

1-3
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- Section 2

PROBLEMt FORMULATION

SThe purpose of this section is to mathematically formulate the problem with the aid
of scattering operator theory. Lsir.e this approach, we treat 2he taret as a system which is
characterized by a scattering matrix (operator). The function of this scattering matrix is to
operate on incoming or incident radar signals (w.%-avcs) to produce backscattered or output
signals. This represents a linear coherent dual or two port system which ca-n account for
the horizontal and vertica! poL-rizations. If the transmitted radir sienal is a two--emeni
polarization vector which -s operated on by the 2 x 2 target scattering matrx. ii0--n the ..or-
responding ivo-e!ement vector scattered back to the radar is considered to be the radar
receiver input. This receiver input is then operated on by- the radar in processing the signal.

A block diagram o: this to-al process is depicted in Figure 2-%L ere we see dual
channel signal modulation during the transmitting process- LUkewisc. the iutal channel receiver

process is shown operating on the backscattcred signal from both the desited target and the
1,ndesired clutter. The basic problem treated in this study is to determine the optimum
combination of dual channei signal w-aveform (including the transmit antenna polarization) and
the dual channel signal processing (including the receive antenna polarization). By optimum
we mean that which yields the maximnum probability of dctection fer a given false alarm rate.

The approach is to solve for the dual chanel transmit wavetorm ioptimum) which
provides the maximum separation of received target and clutter cevariance- functions. This
"requires a vector forin 3f the scattering operator io effectively manipulate !he mathematical
functions inherent in the covariance matrices, so as to pi..,perly isolate the clatter return
from the tarett plus clutter return. Once this is obtained, the receiver functiop is derived to
maximize the prabability of dete'tion.

Since a key element in designing the optimum dual channel system is knowledge of
the target and chaff covariance matrices, we will also develop a methodology in this s-ction
for computing these matrices for use in opti.nizing the system desigm.

2.1 POLARIZATION PROPERTIES CF TARGETS AND CLU-fTER

It should be fairly obvious that mote information about a target and backgroiuid
exists in 3 dual channel polarization sensitive system than in the conventional single channel
system. Since our goal here is to include dual channel scattering characteristics into a system
design, let us briefly review a few important known polarization sensitive characteris.iCs about
targets and clutter.

L-. the area of clutter suppression wve know that polarization sensitivity of rain ha,
been well established, and that circular polarization can be used to cancel isotropic rain. More
"recent appioaches [Beguin (1975). Nathanson (1975)i have improved1 on this by estimating

2-
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U(t) BASIC UNMODULATED CARRIER SIGNAL
M (t) DUAL CHANNEL TRANSMWT-ED SIGNAL MODULATION OPERATOR
AT(t) TRANSMITTED ANTENNA POLARIZATION OPERATOR

riT(t. ;) TIME-RANGE TARGET SCATTERING OPERATOR
Hc(t,}) TIME-RANGE CLUTTER SCATTERING OPERATOR

ARMt) RECEIVED ANTENNA POLARIZATION OPERATOR
G(t• DUAL CHANNEL RECEIVER SIGNAL PROCESSOR OPERATOR
Z(t) DETECTED SIGNAL

Fgure 2-i. Duld Qrnnncf Scattering System
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the ellipticity of nonisotropic rain ind then adaptively varying the horizontal and vertical

polarized receive channel to enhance suppr•-sion. For target enhancernm.nt, it has been found

that pulse-to-pulse variation of polarization of a transmitted sienal will tend to decorrelate
targt returns in a manner similar to that achieved by frequenc% variation. Poelman (1978)
analyzes this problem relative to simple target- and show that considerab!L improvement can

be achieved in target detectability through polarization ag-iity..TRic same concept has also

been applied to improve angle estimation in a ;nultip:•, environment [Ewel!. et al. (1971)].

The pulse-to-pulse correlation phenomena for targets and rain may also be extended
to other types of eo ad ana sea clutter. For example, backscattcr from manmade cluater.
such as building (citirs), tends to exhibit much v-ariability (10 to 20 dB) betweni Ii and
V responses, whereas mountainous areas tend not to exhibit such deviations. Angles of

incidence and wiveleneth influence this heavily. More variability exists at smaller aspect

angles and lower frequencies. For example, 3t angles of inciderce less than 10 degrees, the
variation in the VVI'li ratio has been measured at C-band to be about 14 dB [Daley (1968),
city of Phoenix[.

C-haff drop, 'sof interest in this study) are characterized by metailic type dipoles

which are c,.t to resonate at the radiated frequencies of the radars they are desig-nei to

confuse. As with target scattering surfaces., maximum backscattering occurs when the majority
of the dropped dipoles are oriented parallel to the F-field of the transmitted sitnal. After
the chaff has tben dropped dispersion occurs (due either to air conditinnm. or by design) so

that the principle plane of the dipoles in the chaff cloud chanees vith respect to Space 3nd

* " time. The changes that occur can be cor.eiated with wind characteristics. Relative to

*sampling time, it is possible for a polarization divers-c radar to make estimates cf the
polarization properties and thus adapt in such a way as to maximize the turget-to-clutter
ratio. The bases for utilization of these polarization properties are formulated in the
folloaing sections.

2.2 SCATTERING SYSTEM FORMULATION

"The relationship bet-ween the pokarization sensitivity of targes and backrcund as
* '~ applied to radar sy.tic'ns. can be described by a dual chz-nne! #or 2-pc'P1 openator as shown

in Fieure -%I. In this formulation %%v consider changes in the widebapd ranpc de-pendent
scattering properties as -wecll as ic.nger tie (pulse-to-pu|ez) s"Ittc-ing properties dtri to motion.

As a result, both interpulse and intrapulse signal mc.dulation anid the correponding optimum
receiver can be derived to maximize the signal-to-background ratio.

Referring to Fi-•re 2-1. ie find that !he transmit:ed signal ik there 2 x I complex

viectorX(t) where elements xl(t) - the vertically polarized cemponent - and x-At) -- the

horizontally polarized component - are functions of the timc variable t. - < t < o.
Similarly. the received signal will be a 2 x 1 vector denoted b% Ytt).

2-3
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The scattering matrix - which relates the relative a3nplitude and phase of the

incident and backscattered electric fied vectors - of a complex radar tar.'t is given by a

2 x 2 matrix of the form:

[h I I(t,.•) h 2t,)

H(t.r) = I 2-!,

Ih2 1 (t.-) h-,(t,T)I

Here, the entzi•s hij(t,r), ij 1,2. are takrn :!o be complex "aussf~in oroc•-es. is the time
variable, and r is- the space variable - measured in units of tw,,o-way travel time to the

reflection p-int on the target.

From the scattering approach. z complex radar tareet then admits ";he .ipu;-Jutput
dvai channdl or tuw-porr d-scription:

00

Y(t) jr H(t,r) X (t - 7)dr, {-:-2)

-. 00

=f 11(1t~l-r X (-r)dr. -1

These equations form the familiar linear reiationship betueen the mint signal IX} and output

0Y' w.tcn operated on by a system. At this point it is convenient to introduce a s-•anering
rector lhicih has the same elem.nts as the matrix H.t.r) and ;s defvi:ed b.:

Sitaj = [hl 1 t,r), hl -t, h, 1 (taj), "2 (t,")_ (2-4)

where denotes matrix t•.s-!:.sitio-n-

It then follows that 42--"2 can be-- writte as

= f t -. ) x2lt-t 7) 0 0 h
Yit) I

0 3 x!(t -r)xt- r)J dr

L-- "

2-4
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or,

Y(t) = f XYt - T)S(t.T)JT (Ma). (2-5)

where

[XI(to-7) X)(t -- ) 0 0 1

X(t -7) = )2-6)
0 xl(t - 7) x2(t - 7-

Shinlarly, (2-3) can be writien as

- (2-7)
Y(t) = f j(-r)S(t~t - -7)dr. 27

Equations (2-5) '-,d (2-7) now define the received signal vector Y in terms of the
transmit matrix X and th-- scaltering vector S.

2.3 COMPUTATION OF RETURN SIGNAL COVARIANCE MATRIX

23.1 Definitions of Important WMtrices

Since knouied-e of the covanince matrix of the tareet and clutter returns are of
major importance in designing the optimim system, we will, in !his subsection, define the
covariance matrix and devise two approacLes for computing it. Here we define a general
expression for the covariance matrix Ky(t,%, of the received simal Y(t) - which is a complex
Gaussian process with zero mean. Thus, let E(-) denote the expectation operation and
* stand for the complex conjugate transpose, !hen

Ky(t,w) = EtY(t)Y(w)*!

EY,(t)-'l(w)*1 Ely2(t)y2 (w) iJ (2-8)

Before proceeding to derive the two methods Mf computing the covariance matrix, it
is ir-structhie to define two new matrices which have the .ame information as the sattering
matrix H(t,7), Equation (2-I). Thley are

S hI (-.rT)I, nI 2t')12I
M(t.7

rh 21 (tT)1 h22(t.r)2 J(2-9)

[H(t,r-) 0- 1
N(t.r) k02 H(t) (2-10)

where I,, is the 2 X 2 identity matrix, while 0, i• the 2 X 2 zero ma-Trix.
2-5
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1.3.1 First Mlethod

vetrWe now presera the first method of comnputing KVLW) us-no 1!,c lareet Scatterine

Ks(t.-rw.o) = EIS(t.r)- S(w.oF)*]2-l

,Next, we have

0 F h 1 1 -. , 0 1ij

-' 0i F h l 0 h -1 0 hi, I
0 t 0 ht~i 0 0i 1 h~i

rLJhis 0 hJ%2 i

Miere the It-'s are f-unf-tions of i a-ld i-. Similarly, it is easy to verify thiat

Ii

0:

I0

Su-) - Ai 1.7 [i 111 0 0 11 t..o

~oI

or

S(i.7)-S(w.u)* M(t.7)-!- Nirw.o; ,o).(-4

w-here - !ndieales coniplex coniu-pte anti

2-6



Miere

1 0 0 1-

0 0 0 01

0 0 0 0

Li 0 0 1_]2:y

Conseqluently-

' ~Ks(t.--.w:,-,) = EI(M(1ý7) -_-N(w,o)j EIN~t.7) - I M(v.o)*! 2-6

It then follous from Equations (2-5) and (2-8) that the covan-.an(- matrix K(Il.w) of t-he

reivi'ed signal Y(t) is gien by

KS't.'w) _N= - -0 3 - K" •t,.,.w.o) - V,,- -a)* dod7. (2.-17)

"-aher 6S')i the •targeet scatte•n_, vector covariance matrix ar,•JS ' is the transmitted sif-nal

M'atrix defined ir. Equation (-)

2-3.3 Seconds M•ethod

l-he second n'•.th.zd does not lead to a direct computation of the c~va,-iince matT-.x.

Instead. 3 -,-ctor is computed, which has the same delments as those found in the covariance

ma~rx. This covariance vector, as wec will call it, is 4x] and defined b

K,,!w = Kyll(tw), Kyl2{%t~w). Kfy21(t.w).Ky,.•l2-8

VV

then fol(tow) af-r the elements of the covariance matrix in Equation (2-8).

If %v further define the vector

the caivesance le Ytor is given by

...(t,w) - f I t- �(.,- .w'o)1 X(w-.-)dod-. (2-10)

!-7

Aler K( is th Igtsatun etrcvrac arxa.iX )i h rni.iidsea



This may be written as

K Y(t,w)O M - K (t.f.w, X(t-T.w--o)dGd7,

where

Kji(tT,w,() = E.M(t,r) "N(w.a)] (21-22

is defined as the scauering nrafrix co;wiance matrix.

If the entries of H(t,r) and li(w,oa! are uncorrelated for # a - that is. %%hen the
return signals from different points on the target are uncorrelated "hen

KY(t.w) = f EjM(t,:) " '(w.r)i ,t-,w--)dr-. (2-23)

It is important to note that

h1 lihI hilh!2 hlihli hlhl 2

. hlh,)1  hl lh-, h1 2h21  hlhb,
M(t,) Nw,).) M(t.T).

h-,!h 1 1  hh, h,,h1 1  h hij24

where the hij are functions of t and 7, while the hij are functions of w and P.

23.4 Further Notes

It is importan. to note that in the dual channel description above (Equc.ion1 (2-2)
and (2-3)) a radar target is characterized by a linear system whose impulse response matrix is
the iarget scattering matrix (H(t.T) (Equatior. (2-;)). lH--wcver in this case. the entries of
H(t,-) are random processes and, in general, are unknown. Thus from a system theoretic
riewpoint, we have a linear random system and olar problem is basical that of "1dentifying-

tire random entires hij(t,-) of its impulse response matrix H(t.r). To this end we have
transformed Equation (2-2) into Equation (2-5) by introduciiig the scattering vei:'or S(t.7)
from Equation (2-4) and the transmit matrix X(t-r) from Equation (2-6). This is justified by
the fact that Equation (2,2) when written out in full becomes

y1(t)I h0 I(t,7) X(t-r) + h 12(t,r) x,(t-r)I
f I I d-

""7( jh-)j(t.7) xi(t--) + h-)-)(:,7) x--t(-

2-8
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Then each of tie scalar terms

00
f hj(t.r) ,: (t-T) dr i. j. k. = i. 2. (2-26)

is actually the output of a linear scalar (i.e, single input-output) system whose impu-se
Sesponse function is the scalar random function hi-(t 7) and whuoe input is the scala- function

* xk(t--r). Since the system is linear, Equation (2-26) can also be regarded as the output :orre-
sponding to the input hij(t,-) (in time and space) of the system whose impulse irsponse i.-

xk(t--). licnct Equation (2-2) becomes Equation (2-5) in which the four scalar inputs
hij(t.T) , i. j = 1. 2, are arr.jriied into the 4 X I scattering vector Sit.7). Hence, It is
easy to see that Equation (2-5) is a linear transformation from a 4-dimeris'ona- space intj a
2-dimensional :.pace. Since the input vector Xft--) is a 2 X I Vector. Equation (2-2i is just

a linear transfcrmation from a 2-dimensional space to a 2-dimensional spac-.

Th -danta2-s of Equation (2-5) are many fold First. the probi-em of identifying
the matrix H(t.-) now becomes that of identifying the vector SOtr) from the output data

Y(t). This allows one to t--e techniques of sipnal design, processing and simulation in radar
- - problems. Secondly, in computing the output covariance matrix Kyli-w* in Pquation (--i7).

we have relied heavily or the covariance matrix KS(t.r.-w.o) in Equation .2-I I) for the vector
process S(t,). This in turn is expressible in terms of the two matrices MQt.r) and N(w.o) of

S* Equations (2-9) and (2-10) respectively. These matrices, as we have shon. awe on the n•e
. -hand directly related to the vector S(tr) and therefore allow one to cumpute Kvlt.w) from

simulated or experimental data. and a3Yo on the other hand lead to the ty.er- of "spectral
polarization-� of K,(t,r.w.o) in Equation (2-16) and KH(t,•.w.o) in Equation 2-22L

Finally, it is noted that for the case of an isotropic target, h1 2 = h21 . the matr•.-es
M(t.7) and N(tar) are both symnieltic and so is the matrix Kil( w. wher:s Ks5 i( d Ky zi-d
are always hermitian matrices.

The two methods discussed earlier are used in Sections 3.1 3 and 3.1.2 respectively.
It is appropriate to comnwlt o !ihe fact that du-. to the i-ture of the Ge;eralized Matrix
Approach, the second method cannot bc used, wher- c C cr.-ali~ed Vector Approach may
use either methods. Howevr, from the computational aspects. the s-cond method was
preferred.



2.4 COVARIANCE MATRICES OF POINT TARGET IN' CHAFF

We now appl~y the resultF found aboveL to the case of a point tar get- W'e have in
* this Cassz

Lhh

4 is seen from Equaiions (2-)) znd (2-10) that

L!12 (1)1, h,, (tjJ (2 28)
a J

0, 1i~) 01(t (2-29)

- here&.--e, ft.ni Equation .12-22)

K11gt.r.u-,a) EiMNt) N(w)] 7 O 6( 6 - 'G- 0 ~.(-0)

an. from, Lquatior, (2-16)

1:It) N~)J 6('F - 70) 6(0 - ().1

Then, usine Equation (2-23) we find

KZw)=E[M-.t) N -wj (t -. 0 - -to). (2-32)

Similarly, from E~quation (2-17)

K,.(tLw) = Xt- 70)- EINM(t) R (wlj-Xw ,)- 233

U- I H-{T0.7) = lift) -60- 0 be the scatterng. mnx~i of a p:zint targe-t surrounded
yba chaff cloud - whozse, scatterin!! maTrix is denoted by li(-IdT). As in the above, let Xt

andtY bk th-z transmitted and ncceivcd signals, respectively, then

2-10



Y-1) H + JiCHt"") "X - T) +0Y(t) X(t-,-X(t- )d)

= YT(t) + Y-(t)

Let Ky(t,w) be tPe covariance ma!rix of Y(t), we hIave

Ky(t,w) E=J(Y-i-t) + Yc(t)) (YT(w)* + YC(w)',)!"

Therefore. since Y-T and Yc are uncorrelate-I

K.-(t.w) = EIYT(t)YT(w)*] + EIYet)YC(w)*I.

= K.-.-(t.-w) + Kyc(tw), (2-34)

where the point tareet covariancc matrix Kv.T(r,w) is computed from Equation (2-33), while
the chaff cloud covariance matrix K-t.w) can be derived from Equation (-7)

is4w also bein fromve thaEuaio

It is also e~ident from Equation (2-34) that

K-"-", = (t. ,K (tw) (2-35)

where K-.- (t w) is -yven b.; Equation (2-32j and •ycvt,w) can be compu:ed from
Equation 1•--21).

-As noted in the follow%-ing sections. the received sigial covariance functions become
keyv elements in the de,-n c-f !he transmit o,, and a.uSociated recei'er weighting for
maximizing the output, sic ratio.

I2-I
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Se-ction 3

MENI AL TRANSMtIT WAVEFORM AND RECEIVER DEVELOPMENT

The previous section described the manner whert.by radar targets and clutter can be
characterized by scattering operators. Associated w-ith these scattering operators ar-t scattering
v-ectors, which can be regarded as stochastic vector processes. With this description, the
si--nals received from the targe-t and clutter can be formulated as the outputs of a determinis-
tic system whose inputs are the scattering vectors, see Figimre 3-1. Since- a major study tas-k
was to maximize the probability of tareet detection for a given false alarm rate, the more
fin3 mediatte problem he-com-es one of transmit wa-veform and associated receiver design to mieet
thi-s objective. Given then the scattering~ vector descriptions of both tareget and clutter, it was
necessary to ifind the optimal deterministic transmait wraveform and optimum receiver weight2-n1,
for maximizintg the target return signal-to-chaff plus rectiver noise ratio.

Five % triants of the scattering theory approach werz investigated. Two of these
mewthods fall into the don-Ain of finsite dimnensional discrete time and frequerscy space-. Th-ese
were niore fully devel-)ed thLan the other methods in terms of obtaining bnoth theoretical and
simulation results for waveform/treceiver design and associated detection performance- The
state space an~d 'nached filter Fredholm Equation approaches wecre both -nathematicaliv-
formulated, but th~y w-,rc not simulated on a computer.

STOCHAST IC 06SERVED jETCTOP TO
SCATTERING I IGA ECISION'
VECTOR DETERMAINISTIC RECEIVER THR ESHOLD

* TRANS3.IT WEIGHT

t.!z I Xi:*) 54:tI7 d7

Fiqwre 3-1. Simplified !iystemn .IIoL*/

3-1
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3. FNITE DIMENSIONAL SPACE

The two methods related to finite dimensional disc.-:- c-tivne and frequenc., space
- -were developed. They are herein designated as the vector and iiatrix approiches The

matrix app.-oach has the petentia1 for utilizing all ofl; the informnation~ a-.ailable %,;thin [he
dimensional space constrained by both the transmit signal and target,'chaiff sc-.dtering
properties. Assume, for example, that the target and chuff seti l~ *,c,>'s each consist of

- ~~~four variables (h, 1 , h -).,1 , lIt-,), and that the :ransinit sgnad is oni-O--~.sea of uss
each containing separable V and Hi polarize!d components. The four evLasC!1 Ncatternngz
-,%:tor. in cor,)nbinatijn -%ithl tie N dtual r'o!arized Iransmi! puises. I-tPl'.. N

*receiver we atie atrix f~o- optimum processing of the return signal. Aý i:i-eqtenti!%
shown.ithe ini atrix results from ei.eenvc-ctor sohAtions fl. i~e nd -. 1

scattering VeCto7 covariance matrices. H-owever. snethe ob-eryable data consis! o' only
Nsparable sigial re!i:rns. the receite ;-veightive dimecnsion mnust be rcduced to a -Nx I
matix Th -mix elements then conmist of ihe -'N elelcos.%&C~tdwit; heZ

largest eiigen-values resulting fromn the scatte-ring vector covar.ance inatrix solutioni. Thiis
resultant %%eightin- matrix maximizes the signal-to-clutter ra-tio (s c) under conditions shovn.

* .n Section 3A.12

By contrast, the vector approach utilizez, only the one eii-Lvector which is associat%:d
with t!-e largest eieenvalue. Consequently, the receieicr weight i-s ther' a Ncerm ct.
Aithouzb the vector approach can be considered as a subset ef the matinx i ipleip~enta lion. it
was developed from z somewhat different mathematical approach and proviidei Yaiuable ins-.0ht
into subsequent development of the mnatrix method. Additionaliv. th, ~ector app-rc'achi is
sjmipler to imiplement both from- a software and hardw~are standpoin't. hi can r'ro~e to be-
of furti-er benefit in the rtali,.ation of actual wtm.eexthouch" moerform-ancc is not.x as-cOod.

-%ssociate-d Mith the vector and niatri'x apr'roacl:ites k- the con.xr'.t of t~le mnaximuml
likelihood receive;. ft-om uh'cli the false ah-rrni and tarect detection: probabilitie-s werz Je-v:c~d.
Th1e likelihood impkment-ation Is. therefore. described in the follouine sections for coinplete-
ness. It sh~ould b-e re-alized how ever. that the de-sieri of the transmit waveform and re-ceiver

'ihiefunction nmed not depend upon the maximium likelihood con~cept-

3.1.1 Generalied Vector Approacn

The vector approach is descrilxd below relative to the-- interaction of a coherent
pulse train with a target chara-cterized by 2 polacization scatteriaig matrix possess,,inE troth
itemporal am] r.-neev variations. Teanalysis presente~d here is genc-ral and can be applicd
to both the coherent pulse train an.. tzhe single code d pulse wavceforsr.. In. wha: follows,. we
assume that thc. radar svulem under coisideration employs tiwo orthoz-o-a1 aiain on
transmit and receive.



The envelope of tiansmitted vector is

X(t) = Xt)

X~ )x At (3 - 1)

and the target scatteriiig matrix is represented by

= [i l(tt'rl hi 2 (-t.r

h21(t'r) h2 1(t,r) 3-2

The target covariance matrix is a 4 x 4 iiatrix given by

Kt-t-r', = (kij (I-u: ri) = I . .. . 4. = I. '. (3-3)

where, refere.ced to equation (2-2!4)=

ki (t-u:') = 1-ihl! (tt-i'hll(u.r)]

k12 (t-u T) = El'hl (t,r) h1 2(u,T)]

k 13 (t-u: r) = EIhl2(1.) h Ul tu)], etc.

ana where El[- = expectaticn operator. (Note that when the scatterer is isotropic (i.e..
hi2 = h, 1 ) then KI1 is symmetric.)

For a receiver wei,.ting function

"( 2::) (3-4i

the video amplitude 3t !he output of the receiver is given by

V(t) = f dtI W* (t+-t) f H-14tI. r) X I11 - r) di 12-)

From abo-e we find that the average output power is proportional to

E|VI(t)V*(t)i =f" dtI dt2 drI fd7 EIW*(tl-).-1)44tl-rl)X(tl-riX*(t.•-r-)HT-"itnr-,,W(t -01]

(3-6)

3-3
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* If e assume that the elements of tt14ti. rt and IIIt i. t 7 are uncorrelated for T , then
We can wr1ite (3-6; as

Pit) = E-[V(t) Vt)] = f dtI f dt-b W*(t-t) K\tl0.t-, \:t-, (3-7)

where Kvl(t.t-,) is a 2• x 2 covarianzc matrix whose ekments are given by (3-8) below as
previousfy derived in Equation (2-20).

Ky 11.(1 ~1 -- 1)KKTXI ( X(t1-r)

KyT 1211 -2)l 00
KvT1-ftD.t21 f, d- KttT" -t

tK .T t )J ) -

Kv.T2-2(] d12) x-t(t 1-, 6-

Introducing th!. discrete vector W. where N is tht- .-imber of puLz-s

W* = IW, I t. W* C -' . W * 'M! (3-91

(the astersk indicates complex conjugte transpose). we not-- tihat in discre.t-- fo.rm IPOi
obtained from Equation (3-7) for t = 0 is !iven by

P(O) = '•*K.•T\0

where KyTiS an N x N covariance marix whose elements are the 2 x 2 matrices
KV wi~t.j,-. where L.. ii the interpul_,e pcriod. Thus. using Equations 03tS and iS--. we
-an wtit .he sgna!-to-,ihaff ratio a-•l\\u ttTX' 'X" "iT' W)'

wherc K., is the N x N clutter covariance matrix defined in a similar manner as Ky-1 27,nve_

3-4*g
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X = X* (I). X* (2).... X* NI (3-12)

and

X(m)--
Sx-,lm' / (3-13)

The expiession in Equaticn (3-11) is a direct extension of the results of Rum-ler (1966).
('967), and DeLong and Hofstetter (!967) to the polarization sensitive tareets. The vector

" that maximizes Equation (6-11) was showr, by Rao (1973) to be

W = Kvc-' H* X* (3-14)

-Note that K), is actually a function of X. Ky. = KyX).

The basic functionm described above are indicated in F.-iurc 3-2 for a train of three

transmit pulses with dual polarization. As noted in Equation (3-14p, the desired ,eighUting

+VERTICAL

• ~+ -

* W2 (3) #2V1

i21 22-
"-HORIZ0WAL

11-
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vector is a function of the taroet -nd chaff scattering covariance matrices, and also of the
transmit signal vector. .Although the scattein.- properties aret known stochastic functions. the
weighting v.,ct°r cannot be determined until the transmit w.-avefc..rm is speci-..d. The vector
approach as derived abo;,e, thereforr. ,o not vield a direct solution for the optimal transmit
Waveform. An iteratve procedure is possible. nowever, which doe- resulini
transmitter waveform desigm under certain conditions. as descri-.-d bMow.

3.1-2 Vector Approach Waveform Design

MThe approach of Rummier (1966, !,967) is adapted herein to the fornu iafion of an
optimum se*. of transmitter/receiver operators for maxinization of the sic ratio for dual

chiannel 5)-stems.. The generalized solution for the receiver weighting 'ecior IV as giver in
Equation (3-14), Rill be applied to the case of a Doppler spread poini target in Doppler
spread clutter. For convenience, the notation denotine the time varpine propeties of the
transmit vector and scattering functions will be omnited.. T4e signat-to-chaff ratic of
Equation (3-10) can be written for the above point target case as:

sic = W*KvT W

where KvT and Kyc are the iareet and clutater co-ariance matric-s. and where

KYT = EI(HX) (HX)*I = X E [iilil* X* = KHTm (3-16)

H is the previously defined 2 x 2 target scattering matfix. The parameter K~ is defined
similarly for clutter. It is again emphasized that both KyT and K,,,. are functfions of the
transmit signal. X. Gives KyT %nd Kv.. the problem b'corens 'fe of fin;dine the value of 1K

which maximizes the sic ratio.

It is clear that sic (kW) = s/c (W) .a.ere k is any arbitrar" scalar constant. So we
may assume, without loss of generality, that W* K•. W = L. lence, the original u,!.,•rained
optimization is equivalent t(, the following constramntd optimiza ion problem:

max W* KYT W

subject to W* Kvc W 1 3-17)

] .,., [, •tk2.t'yApplying Lagrange's multiplit r rule (s-e Appendix C). we see .hat the optimum W and s c mst.

,z,ýcytht foflro'ine condition-;:

I KNTXmax Kvc) W =0

(SC)nax = max (3-18)

3-6



-here

= maximum eijnalue of Kv- KyT

The optimum signal-to-ch.ff ratio is ,hcn the lare.st eiienYdue of Kvc vT y. and the
oplimum weighuing 'eýtor is the eieen;xtur co o nne to _i- lar.et .uSI

Note that the sic ratio was maximized for a !iven transmit vector, which had to be
chose,- a priori. The choice wotdd fenerally be made based upon ex.pefience dealing with
specific target/clutter situations. Accoreirg to Rummier, this initial choice couli be the
unweightel uncoded vecto,. In any case. it may be possib.e to further improve the s.c
through an :teratii-e procedure devised by Rummier. This is baised upon the fact that "ne
sic ratio is uichaneed if the transmitted waveform and the receiver response are coniieaied
and interchangei. This is don- by using the rr-,eiver %%eights from one iteration as the
transmitted siena! vector for th- next iteration. for which the proccd'ri- -.i!! contree to a
maximum sec.

A-though the solution con-er-s to an op!.imum s'c ratio there is no guarantce tha:.
a better solution could not havt been reached if the procedure had been .mtarted with a
different initial waveform. Rummier has noted, howe--,r. that the s c r.tio convergence doe:s
not appear to be stronfy dependent upon the choice of initiai vector. Neverthedless. the
vector to -,;ich the procedure converges is strongly depe.ndent upon the initial choice.

This iterative procedure was develored for computer soiution of transmit si.at ancz
receiver w:i._hting configurations for optimization of the s.c rM'o for both dual and sinelg
channel configurations. Re;sults of this :echnique are report- . "eon in Section 5. A saimnar)
of the iterativc procedure is -jvcp in Table 3-1.

TABLE 3-L VECTOR METHOD WA VEFOI .M1 DESIGN

1) .a•ximize sk ratio gwen rcaiterin; p-oertie:

W.I KYTX) W

* K Y. X) W

2 Foi gh n• transmit vector X. fid rezs- ;-t W to .-aximize sk

3, Constra~red opti-mization ppcNe.-n. e6genwaue solution of:

(KYT - 'f,- Kyd Wvo = 0

W i12 umxim~an eigerwalue of Ky.-:- KyT

A) 6V0 eie.rnector of

- 5) Iterate by ir-terchairnng X and W, obtain convergenm to opiim~rm sic

3



4 One additional fact should b,- noted in regard to receiver noise. The effects of Poise.
are taken into account hy addiig 3n identity I matrix to KV. where- K i prpiaeysk

*to reflect the received clutter-to-noise raitio (Jln).

3- 1.3 Generalized Matrix %pproach

In the an.,Aysis lx'ki%. %%. consider The de-ectior. of a point IDoppicr-svrea,ý iarget in
Uhipple; spread clutter. when the radar transmits a coherent pulse train comnposet' of N equally
Spaced reCatn'-U]3r subpulses.. It is also assumed th3! the rad'ar is capable of' n?'oduhtrng- the
transmitted Potlarization fro-i puls.ý-to-pulse. A simplif~rd block diagmamn of !fle Svsttznm !s
shoun in Figure 3-3. For -onvenience. the Itime notation will be omitted.

Given 3 trans,.inled sequence of N pulses, the transmit v;ecttr X wvill be -- column
Vec.:r shown as a (2N X i) dimensioncal mnatrix-. The transpose of X is represented by:

N111 Xx---ý X~j\' 3-19)

where %X- I ii the complex vanabic repre-entating the iptuead-szOth
corap nent of the pultse- I transmitted electrkL field,.H is the hrzna opnn.ec

The scattering properties of the larget and chaff are represented by thcir respecti"Ve
-X scattering matrices, !ITan k Giet't

1  IT . ( -
h

T.C -3-20)

and th~at the target (TI and clutter (C) scatterers are isotropic (h~ h,~ L lsen the elements
o0f ihze -catzeri'ne matrix can be rearrans-cd for mathema'ical1 convcuzience as a scatternge vector

h. of" dimension 0SN X )

whereh11  eprs -its the vertical-to-vertical scaiteting nroper'y relative to pulse-I. etc. Note

that :th.- values of the elements vary with time for D~oppler spread targets. si.u-b that in f-cneral
~(i) -

hli

-mo



The signal received at the receiver antenna is denoted by thr vector Y, as noted -n
Figure 3-3. For matherutical convenience, the transmit vector X is rearranged into a
(2N X 3N) transmit matrix X, such i!at Y can be given by

Y = X h i3-22)

where Y is a (2N X 1) vector with

= (YvI- I --...... YVN- YHN (3

The elements of Y repr-sent the complex vertical and horizontal components of the
received electric field vector. For Equation (3-22) to be dimensionally valid,

r' 0,,I

i XVI XH1 0

x xv2 _ o) \ (3-24)

xV V2 xuNI

00
(0 xVN XHNj

The above rearrangement of terms is a special sase of Equation (2-6). where

h,=1. resulting in a dimrnsion reduction of h.

TARGET

A DCLUbTER

UOOEL Y Y Z

CC

"T'RA3S1iT II K 1) (2?' x 11 x 2?Lj
VECTOR

U0
GSSERVATIOU.
NOISE

Fiz:re 3-3. Simplified Block Diagram Magrir Ukefhod
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Lxpression j3-24) shows the matrix X as a (2N x 3N) arrangement of the elements
of the t.ansmit vector X. Observation noise No is adoe,! to Y to produce the received
12N x i) vector Y. Tihis realization of the vector Y is simply the result of the transmit
signal X 1--ing reflected back !o the radar by tfhe target and chaff plus the additive
receiver noise.

The preliminaries to this point. of rearranTgng the .m.theiaz,-ca! form tvf Ith.
transm:t sienal and scattering properlies into X and h- was nco.sar to prop-.-l' dimensionalize
the mat-ix multiplication for

Y = Xh + No 3-25

The effect of a lincar recciver upon the signal vector Y, can thet& te express-d in
terms of the mat-ix G, which operat; on Y to e

Z Y = G X +(GN 0  (3-26)

The receiver ouipuit Z %ould then t-e su.jcct to hypothesis zcsting tor one ef 6,%%o cor.ndi.'ions:
lthe prtsence of tareet ph.s clutter or of clit-r only. The implementation of this likelihood
process "i11 be dcf:-rrmd to Sectcen 3.2. At this juncture, the maior .:onsideration is the

des'ag; of 6; X such that .'he s:c 3atio a! Z is maximized.

3-1.3.1 latrix Transmit-Receive Ik-sin - Define a weighting nmatrix W. where

,t = G X tS-2 7

The ob'•cct th-.n is to find the optimum W for maxi-izi.,g the s.. -a.io. Cnen the sta'.tics o;

the _-iochas.ic scatteing vcetors for both the target and clutter.

The targer and clutter covariance matrices arc eiven by

T= [hT hT I

and

Kv.-: = ih -2t,

~c hC'jI

where

repres-nts the conjugate transposc.

3i 0



Since KvT an ~ are posilie definite herrnitian matrices. thev can be sitnuhaneotisly
diagonafizc-d bvy a matrix ( see Appezidix DJ. where

(~Ky~9 (3-29)

The columns of o arc the gerneralized eigewnvccrors di satisfvine

where the )iare the eigeniralues of !he mnatix equation-

yvT -X vc: (3-31)

The joint diagonalizatior. of KvT ;xnd K ., by this process. onthozona~izes ffhe targe:
and chaff coariance matrices throagh tfie mat-.x :-ran~sformation 0. This in effLct provides
a nixximurn se-paration of the Itareet and clutter vectors at the Z output. which is the
desirable condition for hypothesis testing. Consequently. the matrix W can be chosen as the
transforna-tion mat--rix 6. hcrc is, however, a dimerxsicnality problem in that 6 is a
O3N x 3N) mairix, the resiult of the arrangfement of the h. On the other hand. there are
on!Y Z ob-servations at Z --s limited by the transmission of N dual channel puls-e&
Consequently, the dimension of the W rn-atrix must be reduced (k x 3'%'). where , <, 2N.
T'he problem then arisces a,. to the method of selectnr k ouw of 3N ci -n-eCtOrs' for the
mnatrix Wt. where

W (W¾ ".: W (3-321)

at1 ffhe W- ar. ( S'N x 1 ) column -vectors. repre-senting the k emcenvcctors of the Iransforrn3:ion
m=trx 6. thai corre--poi-d t-.' the k la.rge-st -eigenvilue's of m:::rix Lcqtmtion 0S-31 .

The- crac-ion for scle-ctine the k-optimum eigenrect'rs. is- bai.,-d uponl the kChernofi-
bound. whcrebry the probabi~ty of error LS ini..n~iz--d with respec'. to Vie hypothesis test on

.. Given nypothesis lio (clutter onsly) and III it-arget plus csutter),. i:. can be s-how.,n th~at the
probabi-lity of erreor P. is b~ounded between. I Van Trees. 19'!1

',m-in ýpqo) ;2* < P. < j 3(-331

wihere p is the a priori probaniit-y that ilj is trut. q is the a priori prob3bility that 11 is
true and I is the integral

J f jp(.Z.H 1) pt(Z/Ho)f dz (-4

nL



For zero mean Gaussian densities (see Appendix E).

{2IZI + "KZo:

B = -n(J) U

1- 2

where P. = -UnJ) is known as the Bhattacharyya distarce. N te that since 0 J I < 1. the

-minimization of J is equiv3ient to the maximization of B. Therefore. ve selecl the

transfonmation matrix W so as to maximize the Bhattacharvva distance.

In Equation (3-35). KZI and KZO arc the covariance matitcs of Z under

hypothe-es 1-1 an3d Ii0 res-pectiveb. -Lhese quantities are:

KZ = W* + W*
KZO W Kyc \V*

KZO W " (3-36)

Substitutine ot the W matrix as resultine from the eiger.vector soluii-n of

Equation (3-32) into the above for KZ 1 and KZO. and then substituting of K71 and KZO

into the Bhattacharyya distance B as given in !-quttion (3-35) yields

k i ]t-'
B 1= 5 n (L + I+ jq +. + -2 + k :- n33

Note that due to the restriction on k. k must satisfi ._N. Then. maxim,:zation

of B requires finding tle appropriate k eigenvalues ýi.. X,. cut of 3N eimgenalues tfhat

sat isfies

Since I- - - " > ) - - :-

implies >) for ail N >0

•n- .- ~i--'- h that maximize B are then the k largest eifenvalu-s of th ordered sct

S• " = )'4A > " > )'k > .. '3 .3-,>
•L •,max i _>~. ..... X3

It thern follous that tht k eigenvectors of W shtuild bcv from to-hich corespond

to he k l-regss eigenv:lues of X 044

---a
"* ••• ,..••..,.Z • • . ,. _ _•.•..,.• •• _, -_.• _2,= _ :_ -- _-... ..... =... ............. . . ....... ..... .. ... ......- ••



3.1.3.2 Transmit Waveform Determination - Once the atove optimum matrix U' has been

determined the receiver transformation matrix G and transmitter wavefor.m matrix X arm

selected by minimizing the Frobenias norm

SGX- w F (3-39)

which is defined by

II = Al aij.jl2 (3-40,

The choice of the Frobenius norm here is for mathematical convenience, since in
finite dimensional spaces all norms are equivalent - as far as topolo6cal properties are
concerned. For a given waveform matrix X. the minimizing G is given bry

G = W X* (X X*)-1 (3-41)

Sulstituting Equation) (3-41) into the expression ; the norm. yields

I w (X*(Xx*)-n y _ i F (3-42)

Optimum performance is obtained if Equation (3-42) is idt,:ticalty zero. The above

discussion indicates that for a given matrix W the transmit t matrix X can in theory be computed

by minimizing the Frobenius, norm. In reality, this dii.ect method for solution of X is

extremely difficult. An alternative approach is to start with a large libra.y of reasonable
waveform structu~res, and search for the waveform which minimizes the norm. Thi, was d(,..-.:
during the study and will bt-, reported in Sections 4 and 5.

Once X is selected through this procedure, the receiver matrix G is computed from

Equation (3-41). A summary of the matrix approach is giv-n in Tahe 3--Il.

TABLE 3-11. SURMAR Y .. 4TRIX RsA VEFORM APPROA C1H

1) So.-e for eigerwalues of IKyT - ) Kycd = 0

2) Select the k<2N largest eigen-wAues

3; Ft. -,m W matrix from the - ok cmiectors of laigent e.genvalues

4) Solee for transmit matrix by minimizing norm of

_W (X(X X':t X -l) 12

5) Step 4 a c-,•e an be sa•isfied by comparimg a library of vtored transmit vectors against W, and
selemi-ig the one rewslting in the minimuwm e-rror

9? 6:) Soive for receh-- weght G using

"N W I (XX)
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3.A.4 Maximum Likelihood Detector

.The mratix approach yields a transmit wavvform with an associated receiver weight
which maximizes the sic ratio based upon the Bhattacharyya distance criterion for optinialit;..

Up to this point of the design (output Z of Figure 3-3), the hypothesis test for the target or
chaff decision process has not been a factor. For a surveillance radar apphication, one is
interested in optimizing the probability of. detecting a targe-. i. chaff for a ewen false alarm
probability created by chaff plus receiver noise. Referring to I-lgure 3-3. the tuo conditions
for hypothesis testing are

It0: Y = y,.+ No

H!: I YT + Y- + No (3-43)

Here 1-0 rep,•m-rnts the false alarm situation of chaff return plus noi.se. uhile 11t reproerents
the target return combined with the chaff and noise.

The above receiver inputs are linearly operated upon by the w-eighting matrix (G to
1. produce the observed receiver output Z. A decision must then be made as to whethcr Z

satisfies hypothesis 110 or li!. The transmit vector X and receiver matrix ( are now, known
design parameters. The statistics of the target and chaff scattering properties as wtell as the
receiver noise are known stochastic processes: consequently, the signal distrbution at Z is
also known for each hypothesis. This then lends itself to a convertional maxinmum likeliho',d

decision process for ti 0 and tl.. The maximum likelihood receiver config-ur-,tion can b- f....nd
in st-andard texts [Van Trees, 19681, and -ill not be elaborated upon. There are. howver.
some design features peculiar to the matrix approach. These are discussed below with the

- aid of Figun- 3-4, which is an exttnsion of Figure 3-3.

At the threshoid T, a binary decision is made for condition 110 and tII. Since it is
desired to utilize a conventional receiver implementation such as. for instance, a square la3
detector, it is necessa~r to transform the output at Z to fulfili certain conditions. This is

-• indicated by Figure 3-4 by the matrices Q and P which opera!e upon Z to produce the
S-• output signal r. This signal ,- thci1 squared and summed to provide a signal u, upon which

the t'treshold test is performend. The mathematics associated with the decision ;)ro-ess involves

kno%.edge of the probability density function of u, and this computation can be facilitated if
the elements of the sigaal matrix at r are uncorrelated, This is accomplished by finding a
transformatio:; matrix Q which diagoualiEs the covariance of signal Z: that is.

Z = Q-Z 3-44)
• where

-IZ " "I = diagonal matrix.

.3-14
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It is noted that the coariance of Z m:ay i.se!f satisf" the orthogonality criterion.
This wouid be tru-e if in the matr-x aveform design. the quantity GX were ide,:tically
equwA to the matrix W. In gener-A. however. the Frol-enius nomi ; GX-W I , .med by
a least squar-ýs fit procedure. nich that GX ` W. In this cas-. Z must be orthogonalized
by thc transformation matrix Q. Additive receiver noise also requirc; i,,ipViN4iOa Of tile
Q matrix.

The natrix P -.. i,' operates on Z to produce r. is simplv - caZ- f!c!or to
properly -='eigght the elements of r prior to the square law operation. The final observed

receiver output u. is then

k
u = r* r = Ir- *345)

i=!

The likelihood ratio hyrothesis test is dependent upon the probabdity de:.sity of u

ti.der the criteria ito and 1.1. The probability of false alarm for a given threshold Y, is then

PF J p ' 1)du (346)

For a desired PFA, the threshold T can be computed using the Newton-Rzaphson

technsique. Given T, the probability of detection then becomes

ýo

PD = fT p(uIl!l)du (3-47)

A target is declared if u > T. Note that the optimum receiver overali weighting
function is n.ow

"o = P'O'G( (3-48)"opt

Appendix B provides a detailed derivation of the foregoing procedure., assuming
that Z is jointly Gaussian under both hypotheses It0 and H!. It sho;;ld be noted that the
maximum likelihood detector dcisior process can be applied to any of the waveforin desip,
techniques conside:ed during this study.

3-16
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£3.1.5 Prefininary Desigat of the Processor

The piocessing algoritthm is presented in a functional flow form in Figure 3-5. A
sample cector (k x i) ismultiplied by a weghitin- matrix (k x k". The elements of both the
sample vector and the weighting matrix -are _).mplex. This produces -- (k x 1) result vector r

-~~ with complex elements. The elements of the result vector r are squard and the squares are
summed to form a _ý.alar u which is then, compared with a thre';hold T.

Forthepreiml~rydes~ik is assumed equal !o 6. l 'x-,:r this assuption, the
sample vector wili contain six complex (l.Q' sample- one sample fromn a channel 'kitha
horizontal (H)1 polariza*tion and one :a-: rem a ceianiiel with verticzd (V) polarization fer
each of three pulses- A ':.repetition time of three milliseconds is assumed. Further. The
quantizer is ný,urnd to quantize the l,Q quad~rature components to 10-bits.

Under these assumptiions, the processing load can be estimated as fbollos:

-, Processine Per Sample Vector

Mat!S'x Multiplication: 144 real mnuitipisys
'!32 adds 'sulbtracits

Vecior Squaring and Summing: 12 real mu!*tiPi.vs
F~ II adds

* ~~~Threshold Detection sura

-- These data may be summarized as follews: each *three nilflisecond eriod, Ithe prot-css-or is
- req.uired to perform 156 multiplications and 144 adj."subtrnact, for cacti sample vector

processed. Input-output. bookkeep-ng. 3rd other orierhead operadorts are in addition 4t0 thesz
requint-ments.

-If these opzralions were tc.- be -:-fornee in a general purpose- 16-bit rnicro-rocessor
or computer withoui any specialized rnuitzr,!iication hardwar-, a rewsonable assumeption would
be one 16-bit by II m-itrultiplication each ; &cloc- ad on-:d r5lbrc prainec
clock. Using these assumnptions tshe minismum. poces-ngla olbe16x16+

144 =2640 dlocks. If in, addition, we zstiniate fou: clocks of overhead for each element of
the sample vector and of thr weightin.- matrix, ik. require an additionall 4 x (12 - -1272) 336
;:ocks for a total of 2976 clocks. T'his cap~ be rounded usp to 3,W00 cic-6zs.

Figure 3-5 con tsips a processing block dizmrm wHich contaiiiUs a 1 &-bit microprocessor
identified as the ITT Gilfallaip Radar Proc-ssing Module (IRPM). T"he RPM is capable of

ooeat~i~ata dckspeed of 259 nanoseeccndss. A first est-inatc wrill be made airmling that
the entire -ask mere perfornled in tic RPM.k, This requires 3000Q x 0.250 =7_50 nmic-reseconds
durin~g each three millisecond period for prozessing of the Wwrt in a sn'erangec bin.

3-1-1
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Figure 3-5 shows the ust of 3 specialized programmablc Outboard Pr-cussor designed
to unload the RPM to improve processor efficiency- T~hL dtailed block diagpramn of the
Outboard Processor is Siven in Figure 3-6 and represents an alternative to RPM only
processing, noting that the RPM ts still required for data managemcnt aind other ranging
functions. This processor is built around an availab!;- I2-bii by I 2-bit L-SI mulfiplizer
accumulator chip. T.:is proce-ssor is designed to receive quadrature saimples an~d uiatrix
weights from th= R?M in one set of memories while it is proces~±rne dataz fromn the othcr
se-t Of Memories. Thlis proCess5or is desiened to p~erform the mrin multiplication and vector
squarin A g operations- Addition~sui,!ractions into the acculinuiator ar: full,. oierlappcd k~ith
multiplications. A total of 26 multipl% and accumulates aerequired to produce the
squares of thc real and thc complex parts of the elemnew~s o~f the result v~c-tur r. 3 for
the real part and 13 for the ianginary part- This requires a total of b x 26 =156 dlocks
for each sample vector proces-sed The ele-ments of the m~atrix i.-eights, are changted only as
required. In this configuration, assumiing a 250 nan:-sccond clock. a niair-xm% i~~ and
vector squar-z operation can be done- in 156 x 0.25G m~niscros-ccntds fmucn mare
tfticient than the 750 in croseconds associated with the RPM for thi I nction)-

With referencc to FI ure 3 -. the RPM &esignates, thc ram'e at which samples 2re to
be collected to the Ranec Gal~e Logic which strobes the outputs of the Hi zhannel and the
V channel ADI converters and passes the samples to the RPM. The RPM p'ssthe
samples and the maitrix wt-iehts to the outboard pr~-s.which computes the squares of
t&he elerments of the result vector r and passe-s these squares back to the RPNI where- the
squaics are sumnmed and thrt-holdt-d-

The configuration of Figure 3-5 i~ould be effectivz- for implemenirting a track function
in the radar. resident in the RPM. To apply the same proc4_ssmng io an acquisition fu~nction
in the radar. additioral processing czpability 'tve'ad be required- Adaptation of the

IT ifilan developed Optimuam Fither Transform (OFT) mnodular approach irouid provide
the required additional przacxssins, cap~bility (the O!-T module implemnents a vecto-
timess a matrix ma;ltipl;4caxio-n and %%3s devolopcd for high performn.ance Dicppler processing
in radar signal processing applications).
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3.2 1HE STATE SPACE APPRO4CH

Tahis se4.tion is also devoted to modeh.ng of radar targets and clutter and to the
design of an optimum receiver for detecting a target in clutter. l--re. as in previous sections.
both target and chaff are taken to have a dual .=hannel scattering operator description: but
our approach w•li be that of the modern state space theory of systems.

From an. external viewpoint, a sy.tem can be describe-' by the family of a;l posibl

input-outpat pairs. This may be the most general description of a sysitm but. unfortuaately.
it does not ive a ustful relationship between a given input of a system and its corre-ponding
outpift. ,ecas of this. we introduce the state srace theory of systems.

The state of a s-stem is the least amount of information which- togVether with the
input, will uniquely deter-mine the output. -n what folloiT we shall be mostly concerne-d
with distwte-te ssetms iith a finite dimensional -ate space. Thus..'c i be .ie time
vaiable which takes the values 0. 1. 2. and le; A. B, C be matrices o: appropriate
dimensions. TIhen a linear discrete-tirre s'stem is described by the pair of equations

s.t + l) = As(t)+B u t)
:-i (3-49,

qm. = Cs(r3

where s(t) is a vector called the state at time t. while u(t) and qat are the input vector and

the outpu: vector. respctively.

3.2. State Space Moddin of Radar Targets arad Cutter

3.-21.1 Point Tawxet Model - The state space theory is no: onl% de~elored for tudding s•s-
tem-s, but it is asqo intefd for "eneratingd stochastic proccszcs - by n:eans of systems

for applications. for instance, in communicati-n and control systems. It is evidert from
Equation (3-49) that if the input u(t) is a st,.chastir process then --;o is q(!). Therefore if a
stociastic process can be generated from a dynamic 'yste., with a -late space description.
then we have a srtae sace model for the proces

We now derive a stale space model for a point target. Let HTOt. r) be the
scattering matrix of the target, then

7Tt,) = H(t) -, - Ht, = [hjift) . i 12. (3-50)

where hij0t) are Gaussian processes. If x(t) is a transmitted signal - which is a 2 b
deterministic vector - and

S~t)= [hlt, ht-)(t), hnl{O, h-•-•(t) •(-1

3-21
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" is the Iranspose of the target scatuering vector, then the correipcrd-ing receined signal is

Y(t) = Xt - 0-(t) 13-52)

wlhere the 2 by 4 matrix X(-) is given hy

0 0 Kit - 70 ) xi - F0)

which is deterministic It 'e!'.-ows from Fquaion 13-52) that the recei, -d ýanal ,ecto.i "utIj
can be regarded as !he output of a linear zimz-varying dynamic s sic:n whose state ,xIc ir is
the scattering vector S(it). Thus the problem of modeling ihe point target becomes that of
modeling the vector process SMt.

To model the piacess S(t) we ;ise an aufore dr~siie model: Ohat is. Sit) is taken to

Sof the form :

St A ~ ~ -~ul (3-54)

" = An S - n) + ult)-3-4

n=1

whcre the 4 x 4 consian! n;.Ltb;.c An sf- io i-c computed and the 4 vec-tor toI ;.I
white noise process with zero mean. -he N step autoregressive mo.del Equation i3-54; is
actually a form of a state space modoi and is equii.alent to the pair of equations:

SWt) = A - Sit - 1) + U(0).

A 0t) = C - S0.

where S;-) and Ut-) ar- 4 x i vectors. wile A and C are c-nstzani ir. ti.e- of dimc;•.-ar-
4N x 4N. and 4 a. 4N .-•pctively.

The basr. problem in representing S(t) by an autoregressive mc-del is to est.imate
the matrix coefficients A, . .. . . . . AN, from the observations SMIL St2-..... 5F;N). lct
us now illutute the estimation procedure for a one step autoregtre.sive model- Thus let

* (St) be generated by the equation

SIt) = A, - S(t - 1) + u(t). 03-56)

- ohere A1  Jai-. i. j = 1. 2. 3. 4. is te be estimated. For this we define

3a = 3 a1 1. 12" a 1 3. 314 a! 1 - -.- - a24 , 331.- -2.4. 341 - - - 344 (3-571
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Then Equa!ion (3-56, can be written as

S(t) = 9 (t - 1) u(t). 13-58)

where the 4 x I matrix 0 is made up of entries of the 4 x 1 vector S(t- 1). Now if the
values S(1) . .L) where (L>5) are knowvn, then we form the 4L x I vector

SQ. .... L) = 12.. - - Stg) I3.591

and the 4L x ".6 matrix

oti..... L-! =1)64 1)

* j~~~l](3-60)

It then follows from Equations (3-58). (3-59) and '3-60) that

4S2'.... L) 6 i .... L -I)- a + Uf2... L) (3-6)

where

U2. . . ) .Q U 2) .... U. L)I

To estimate the vector a - which in turn gives the estimate of the matrix A, - we use the
cast square criterion. i.e... w- minimize the functional

l S 152.. - 6i. - L-l) I a 1. (3-62)

A

Then the least square estimate a of a is eiven by

A -I
- = [(1 .... L-l) - 6! .... . L-1:1 I ... L-) - &2.... L) (3-63)

3-1.1.1 Computation of Matrix Coefficients - In the case of our problem. the observations
are actually the transmitted signal data set I X(I)..... MN11 and the received signal data
set IY().. YN) 1. It is e-,ident from Equation(3-52) that

- S(t) (t - 7-0 ) 1 - Xt - T0 ) Y(t) (3-64)-

where

XI X 2 I- 0 0

I XlXi xix2

[ 0 0 x-x 1 xix2J

Therefore the data set S(). 5(2) ). S(N)J can be computed from Equatvon (3-64), using
the transmitted and received data sets.
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-Me matrix cof'?:Aiepts A,. A,.-). AN. c:an ao be computed from he

Vuie-Waiker equations

+ .. A\4ft (mn - X) KS (m). (3-66)

Here KS t is ;1.1c ar !he n~'; 'f ' i _eS Sit !: hich can I-.- approxizmil-di by

-S.. &I q 3 ! * %:ki2-6)

Equwatintiii. one can also' compute kct from t;..- it -i:mal coivarixice mazrtnx K Y 1.

3s discussed in Section 2

K~~~tT ~ ~ 7, K It - W) - l--.1

- (3-68)

32-1.2 Ciaff -Model -In tht. -.c:i isnitdceiz naI relationship

where. as in the ato.). X(-I is the tr~mncitZC ,ignal matnx znd &t-i ki the ranee-spread

ch~aff ;cattering v-Nctor. Tht. birn~he. nw heco-:"eý :ýiat of inodelimu the- in rut -qS-I- )

which is a swc-hastic proicess v, ; ;a- zeach .'Nd 7 a - 3c- N:.stcn. eiven the svst-em

wei-ghtin-e :aifix Xf -) and the outpu' - 'Aft hai; no%~ _p%, an :-prr"xirnation proczedure

for this case_.

Let Ik'n 'T1 00n=I be a sequ-ence of crthonort7a; 4 -;. I '-eclors. over the inierv-al

(7) di = b I for n mn

Inn. IV'. 0~ ~ ni for n m in

where .1denotes thc inner p'd:in (4- i__:pandine the 4 x 1Icco Sit. 7) in I-Tins of

the sequence (On (7F)1 we ''-

00

Su. 7) = (I) - I)
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where the scalar functions s.(t) are random proucesses. Let KS.t, 7: w. a) be the covariance
matrix ef the process S(t 7).

Ks(t.T: w.o E A,,m (t.•w) -n "m 4o) (_--
n In

where

Anm (t. i) = E Isn (t "m ,,)j. 3-73

Therefore

Ajk(t.w) = f r, - KS (t. : w. a)•-7-

j. k = 1.2.3 - (3-74)

HILanPg cremputed Ajk (-..) from the ,olvariance matrix Ks (...: .. ) we can then model each of
the proceses SnWt) by the autoreegress•ve scheme discussed above. Equit,',ent!y. we can model
the vector process

s.!) = 1Sl(t) s2(t) - . - Sn(t)I (3-75)

with

E [•n(t) -?,(w'•* = Matrix IAkOt. w)1 3-76)

b- the same procedure.

it is noted tha: the received sil Y(t), in this case. admits the mean
square approximation

N
YNlt) = t� Sit) Vn(t) (3-77)

where the 2 x I vectors Vn(t) are given by

= _(t -r) - (r) -dr. n = 1. 2.,3 - N. (3-78)
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3.2.2 gptimum Receiter Design: The Case of a Poi-xt Target in a Cloud oi Chaff Dipoles

Let Y1tl be the received signal from j point tateet in a cloud of chaff dipoles. then

Y1i = YjI-t 1 Y tl.,

when: YT and Y) are the recej•vd sipais from the tareet and .": .iha;. J es-2-:.el'. and
both YT and YC are Gau-imn proc-e'-.,

the biar.t, detection problem iý to find the optinmt ; e-eiver fol tforig

Ho: Null ilypothcsis 'i.e. Zero Taraet Siena!):

Ye = Yc~tI - . for Ail t in IT,. T, ":

H1!: Alternate tHypothesis:

_Y+t = Y-t ÷ Y(-t) + ,mlt). for all in ITi. Ti. ,3-,1)

in the above. til is an eecr..al additilw. itatikicall% ind-pen.!eni 2 i wector :hiie no-.-
process-. T1  and I- jrt Ihc in'ti!- and finl ob-er-.tion t 2ne-.--nd L.-:T T-l- " I
assumedl to N.- longe zenough for .:ompktec obker'-at-on of the recei,-ed ina

3-2.21 State Space Mode! for the Point Target - Without lost of ien.-ality. the point
target is mo-dded b-. a "2-step" autorer-essi'.-e scheme. Thus Equation (3 541 no, becomes

Silt A A - Si - I j A, - SIt - "2 + umi *3-82)

where the 4 x I inatncc-; A, and A- have b-een coim.ted Ifom- the nod.i ,.et, abol,
and u4t) is a --ta:ismieal!\ indep-endent 4 x I vector white nqr!e proce-< , et

= iS3-83

Then the state space model for the point target is

14 0

X= - O 1 J4 1-

where mti _JO

and 0.1 1, a 4 x I zero ector.

3-26



3.2.2.2 State Space Model for the Chaff Dipoles - For the chaff dipoles. le, us assume that

SC~t, r) = sit) -NIr}•l_ (3-85)

where.

N(i-) is a deterministic function of the avcrae chaff cross section in rm-e, and s&tU is
sto:hastic. It can then be shown from the discussion in Appendix A that

KS(t-u.) = ur t-u) Np)iP -)-86)

and

Ks(t -u) = p(t-u.-. (3-87)

where,
Od-t- -

P(t) lexp(-j-adt - .I ) 1KI + K- cxp-I2 Cr-t) cos 2Nrtl 13-188

"%ad 0 0 0 1 6
O9=.2. KI !!5 ( I 12 I12 ). K/= 0 '

1 (0 1"2 ,2-0 , + 3-89)
'1.12 1,1,
0 0 "3 .- i6 0 0 !

It follows from the above that for the chaff dipoles we need only to model The pro-ess .gi).
Thus as in the case of the point t.-rget we take

s(t) = a, s(t - 1) + a, st - 2) + 113 ) (3-90)

where a1 and a2 are 4 x 4 matrices, and %ltl is a white no-se zcro mean proce-;. Smt

= 
,3-91)

SOt - I)]

Then the state space mode! for the chaff dipoles is

'-t) = -+ .t)14 04 1-2

Yt40) = X(t-) Nft) -d& - 114 041 -7;t)

where the vector process it) is again white and with zero mean. and
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_I i I ..I -- - I - II li

tit

The main information eiven for the design of the optimrim receiver is the ta.4t
received signal covariance matrix KyT t. w), the chaff dipoles received si2nal covariance

matrix K,.. (t. w), and the white noise process i-0t) co-_riance matr;x Ku it - wt =

K- (t -w).

3-223 Estimation of y14t) under Hypothesis H, - In the state spac- itareet s.: .rafli

formulations, set

A =Land [Ch (3-93)S'T '4 04 14 "
"Then define [ S~t] an [74t)

• and Wit) (3 -94)
S(t) V It)

We obtain - by combining Equations (3-80), (3-81). (3-93), and 03-92) - the followine state
space formulation for the received signal YMt under hy pothesis lii:

[AT 041
-LW - I - Z(t 1) + WtI

04 A JCh _ 03-95)

Y(t) =Clio " At) + M- 0

where
Ct 1 ) = IX1 -1 ). 0 .1 1 ÷ 102... Xit - r) - NMt) :d. 02(41 3-96)

' = C-fT)O + C(t) (say)

It ihen follows that the problem of estimating YT1t) now becomes that of estimating the
state vector Z(t). This is discussed below.

3.224 The Kalman Filter for Estimating Z(t) -- The least square estimate Z(t) of Z(t) -
basing on the observationsY(t. Y(t - I )..... YO - is obtained by the discrete Kalman
filter. The dc,. --'rn f ihe Kalman filter is standard and will be omitted here. Figure 3-7
gives a block diagram of the filter.
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IA

S.. .•:a) Il•= • I TheI estmat a- time i of th stt of Eqaton(- 95)• is Z ! - )-•-" th-

,Z11

-7 AA

AA
a it The es itimate vatie t10 (saf tienhe stteofEqa ion 09 ) is give t b)y h

G?)t- = A P (t) - li~t 1C1() P() m- Cr ot) + Z(F. (3I-I98)2

CA =Y P Cf) CW - Yl. -C*()+ 3-8

In the above

0 (Equation 3-95) (3-99)

and Kais the covariance matrix of the white noise process X0.
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b) In Equati,,n (3-98) the matrix P(t) is the covfriance of the estimation error.
and it is given by

P(t + 1) = IA - Gt - Cl(t) P(t) IA -Gt - tnj + K ,. (3-100)

+ GM - KI, - G*(It

with the initial value P(O) taken to be the covariance matrix of the initial
stale ZAO).

3.2.2.5 Estimation of vet) imider Hypothe.sck H0 - The chaff cloud received signal Y(4t)
cak -f ' ozurse be eslmated by a Kalman filter as in the cam- of :siimating the tamet received'Zignal Y- 14ti. However, it is clear that once the StwIc "Vco!or Z41) has neen estiimlaied. theestimation of YN(41 is readilv gj1eC,.

3.2.2.6 The Optimum Receiver - The optimum rezeive is described in Figure 3-8. Itcompares YN-41) under III with Y(t) - Yot) - tinder 110 aeainsi the decision rhre.oid.

" : DECiSIO.%Y C T f THRESHOLD

FOR ESTIMJATION

I.

Figure 3-4,, Ti/& Opfimum Receirer
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3.2.3 State Space Sunumaz

The foregoing approach has provided a state space modpl for the design of an
optimum receiver in terms of detecting a point target in clutter. The receiver implementation
is given in the conventional Kalman filter realization, basad upon knowledge of the target/

clutter scattering properties and a given transmit waveform. Further study will be necessary
to also utilize the state space model in the desipi of optimal transmit waveforms.

3.3 THE FREDHOLM INTEGRAL EQUATION APPROACH

We discuss in this section the design of yet another form of -ecCivcr for the bir alr
detection problem of the previous section. It consists of:

a) An optimum linear filter E0 w ehih cstim3tes the target received signal Y-Tnt
from an observation Y(t) - assuming that hypothesis H1 is tree. and

b) A prewhitening filter Q0 for the chaff cloud interfe.-ence.

Thi% receiver is shown in Figu.e 3-9, where the two fidters E0 and QO are solutions of two
matrix Fredhclm Integral Equations.

We now illustrate this approach for the case cf a point !arglt in a cloud of chaff

dipoles considered in the previous section.

K oL . d? DECISIOrN
-" ~THRESH-OLD

-- (2. "-A

Figure 3-9. T7e Correkator-Detector Receirer
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3.3.1 friesral Equatioa1 for the Filter&

The d~ul channel fifter Q0j has the wtigh1ting mat-mx

QO(t, u) =K- 1 11, b( - iu) - D0 ~t. u)], (31-101)

where K - a 2 %2 constant matrix -is tix wl'ite noise procesas coi.'adance m.atrix. and the
2x2Matrix Do~ (., s!izisraes the following mztrix Fr~dhoimi Integri1a Equati(,n:

TI - C

To solvre for Do (.,-) frcmD Equ.-;.-io (3-1612) we firr. compute the chaff dir'olks
receired signal cnvariiace niatrix K1%(t, ul-

We hv.*e - from IFquaticu (3-86) of the pre-vious section -

K k ( - u.r) u) ~ -u) pr (3- 103)

theni

X ft (-u) I S K (t - I. 1j - X(t - 7, u-r T) r d7 i04)

w-h..e we recall that (y I) is thre 4 x I vector with rnrifies of 1h, C .tauzd

io -(tT, Ii -7) = X;it Tp 1 (U07.) , Xj(tT)ic-4-r( ). 31i

X -(t -7) Tji-),R At7)t-ri2!(u-T) I

wir :I and N2are entries of the tranimzited, siggnal. We hav

.Ott - U) p,-'fU sy

NNOW. iet! gi i.ji = 1, 2, be the catries of ti'e 2 x I vezeir G. then

g,(,U) + gI1 (t. U) -t i ,U) + 3tg.A, U. uj3

where P 09L
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3.3.2 The System of Fredhoim Integral Equations for DO(t. u) = |Dot. u)j

Substituting Equation (3-138) into Equation (3-104), we obtain •.•- following
system of integral equations:

T1p•t - u) GI l(t, u) p = D0
1 l(t" U~k 1 i D0

12(t" u~k2,1 + fl D1g-sl GISu)

+ D0.1 t. s) G,2(s. u)] p(s - u) - ds (3-108i

T-,

p(t - u) G12(t, u) ! Doll(t, u)k2 + Dol(t. u)k, 2 + u [Do l(t, s) G1 2(s. u"

+ D0
12Ot. s) G2,(s. uji p(s - u) - ds (3-109)

p(t - u) G21 (t, u) p = D0
2 1(t, -)kl I-+ DD22 t ! - T-,

f) z-1~ I O ts I(,u

IJT

+ Doe t, s) G2 1(s. u)] pAs - u) - ds 13-110)

p(t - u) G2 -2(t, u)/p = D0 '6(t, u)k 1 2 + D0 22(t, Oj)k2, +p f 'T jD 0at- -0 G, (s. u)

D0o t, s) G22(s. u)•- -( - u) - ds-

where kiji, 1, 2, are entries of the constant matrix K. and Gi- i. j = 2.
entries of the matrix on the right hand side of Equation (3-106).

3.3.3 Integral Equtiu for the FiFter EO

The opti;aum filte; E0 which gh-es the minimum 'aiiance cstimate of the signal
YT - under 'ai - is given by the matrix integrai equation

Efj(tu) -K +f T2 ýEeuts) !KyT (s.u,"+ K3, (s. u)] ds = t;YT (! uTj (3-1I2)

re Ky (-) is the target received signa covariar"e matrix - ".-hich can be computed by
t'the reslts of Section 3 2- The above can be expanded into a system of integral equations.
"as ws D0(t, u) for the chaff-
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3.3.4 Approach to Sehing Equations

Tlhe design of the Correlator-Detector-Receiver is z:omplicated by the fact that it
involves solutions of two matrix Fr-,dholm Integral Equations. It is clea-i that the above
integral equations can, in general, be quite difficult to solve "exac:ly". Their solutions

depend oi: the functions Gi- which, in turn, are dependent on the tr-ansmitted signal x(t).

In most cases. these solutions can be approximated by appropriate ortLenormal
sequences of functions fa mean square approximation). where the choice of these functions
depends on each particular case. In the case of the chaff cloud for instance. sinc- the
interval iTI, T-, is taken to be finite, we assume that the functions D0 iJ(t. u) can be
expantcd in a 7"double" orthcormal series of Legendre polynomials P.(t) Pj(u):

N NDoiJ(t. u) : E E 1iii P.M -) Pi(u)

0 0

Substituting in the system of integ.rl equation we then obi.,in a SV-iem of aLgebraic

equations for the coefficients Titl- Similarly. one c-an approximate iS2-.- int-z.jral equation
for Et1 . u).

It is also noted that an expedient choice of the transmit signal can s~mpli.f the
problem somewhat. Referring back to the system of eL.uatmons for D0 . we have

0= NIT) - xi(t - 7) xt - d i. . 2. (3113)

where xt). i = 1. 2. are !he entries of the transmitted signal X(t). Sin-e X1i1 -can eb
chosen, and due to the specific form of the function Ni-). in this case. we tan take

xl1 t) = MeO(t) = I. and x.lt) =Heit) W = (Nir W3-114)

the first two Hermite Polynomials. Then it can be easily verified that

vjiu) = 0 fori `; (3-115)
i. = 1.2.

Ofori = j

The matrix GMt) therefore becomes a diagonal matrix, which will simplify
the solution.-
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33.5 FImdholm Approwh Si:nr "

The above approach has been the least deveýoped diring the course of this study.
ending essntially with the mathematical forinuiatiort of !he problem. The difficulties
envisioned in solving the sets of integral equations. woeld tend to faw r the finite dimensional
and state space approaches as the more preferred methods in obtaining solutions to waveforrn
design and associated conereng -cceiver processing- Additionsa3 Stud% would be reqiredd to
verify this assumption.

3.4 STOKES FORMALISM

"" .te final method repmed upon for utilizing scattering properties of target ar.
cutter, is the forn-ulation of the system mooel in terms of Stokes parameters. This method
is surnmarized briefly below. A much more detailed descxiption of this approach can b1x
feund in Rosien ct al 119-9

3A.1 Stokes Model

The previous sections ha,-e described the general concepts of scattering theory in
terms of Lhe target scatterin-ge matrix, as given by:

H hi h1 2 (3-116)

Kennaugh I1951, has shown that the averagc ret.eived power can be expressed as:

P = YAX (X117•

where X and Y arc four-dimensional rectors, whose elements ar- !:-- Stokes praramters.
which describe the transmitter and receiver antenna polarizat3.ns. The nm-trix A is 4 x 4
real symmetric, and is known as the average Stokes st-aterirg operator. The elements of
A are cor posed of the expectations of various coroinations of the eL.n-:nts of the scattering
matrix hi !sce Rosien 119791 for details;.

If one is -ivcn the Stokes target scattering operator A. and a similar operator for
clutter C. then the problem becomes one of maximizing

YAX si= c "LI lg
N'C\

The solution to Equation (3-118) is detailed in Rosien i i9791. and contis., of a
co-strained maximization of the ratio of two biline,-r fors. The output is the opt-nimilt
pair of Stokes vectors for X and Y. which completely descriib,-s the tratnsanit and rec--ivc
antenna polarizaiions-

Resulb of this approach will be reported upon in Scction 52.
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Section 4

MODELING AND SIMULATION

This section contains a brief description of the target and cha"f modes utilized in
the computer simulations which prorided the perforniance resultL reported in Section 5.
Both the target and chaff models have been deieloped in prior work. and considerable
additional inft.rmation can be found in Rosicn 119791. The m:jor it:-ms of interest for this
study. as reported below, are the method for computing the target scattering covariance
matrix and development of the autoregressive chaff model for the computer simuLtion runs.
Alo included are brief descriptions of the various software packages utilized to gener-ae ihe
dual and single channel target detection performance results.

4-! TARGET MODELS

4.1.1 Methodology

Since exact solutions to the electromagnetic response of complex radar targets- such
at .tiiz-raft. are almest impossible to obtair, most studies on modeling of the cross section for
such targets employ approximate techniques, which are valid and ;ufficient for the frequency
ranee of interest and intended applications. We arm primarily interested in the high frequency
response of these targets (i.e., wavelengths smaller than the characteristic dimensions of most
of the scatters cn the targts). Th-refore. we have assumed that the target response can be
approximated by the algebraic sum of the responses of a collection of individual sctters
which form the !arget. Furthermore. to reduce the computation labor we have approximated
most of the scatte.ing components of aircraft targets by simple geometric shapes for whi;:h
there are either exact cross section expressions or approximate expressions derived using
Physical Optics (PO) and,or Geoometric Theory ;,f Diffrac.ion (GTD) techntques. Both of
these methods are high frequency appiroximations and zr,: adequate for modeling of the
scattering characteristucs of most scatters at radar frequencies.

4.1.2 Target: A Coilection of Scatters

The simple geometric shapis which we use in modcling aircraft targets are ellipsoids.
ellipti.-l flat plates, cylinders and thin w-ires. In addition to these we represent. as dikcrCte
scatt--rs urface discontinuities such as the wing fuseiage joints or the engine fuselage joints.
Tabic 4-I lists the various types of scatterers which we hare modeled and the corresponding
!teory (PO or GTI), used in deriving the anal yticýd representation. Figure 4-1 depicts the
BQM-34A Drone model used in our simulation program. Table 4-11 lisF. the individual
scatterers and corresponding scattering models used in the BQM-34A Drone.

Tht mathematical model of each scatterer is embodied in ihe ! "teringg matrix. It
is represented in soherical coordinates in the scatterer principle axis sysicin. which is selectedsuch that, a diagonal scattering matrix results. In mathematical form. we have
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TABLE 4-1 S(IW TTERER TYPES uSED FOR THE .AL.IIL4 tION
2 - OF THE RADAR (ROSS S'(TiO.S

Scaterer Type Theory

Elhpsomd PO

Ellhp"acal Flat Plate GTD

Hollow Elliptical Cyhinde. GTD & .PO

Cylinder GTD & PO

Thin Wire From Series Expa-don

Joint Between Two Cylinders GTD

Exhaust Duct GTD

Cor--Cvl•nde. GTD

Doubly Reflected Ray From Two Elipsoids PO

SSmooth Jumtaon of Curoed Sufraces (Slope Discontinuity) GTD

TABLE 4-Il. SC4ATTERER TYPES USED IN MODELNUG THE BQM-344 DRONE

Fuselage Sections I and 3 Eavso•

Fuselage -"ctiorn 2 Cyl.,ider

Wings. Ta,. Stab "-crs. and VWrticAl Fin Elliptical Plate + Thin Wire

Wings. Tail. Stabilizer. and Vertical Fin Joints Joints

Slope Discontininty at Engine Interlace and Exhwas slope Discon'iniy

Engine Open Ended Cy:inr,

Engine BWades Two Thin Wires

Double Peflections Two Ellipsoids

Wing - Fuselage

Stabilizers - Tail
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Figwe 4- 1. Phoio and Model of the SQ V-3,14 Targe, Drone
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0 0 0

Si= 0 S0  e- 2 kPi (4-1)

0 0 Soi

where Si is the scattering matrix of the ith scatterer in its own principle axis system. S0 i and
Soi are complex functions of the scatterer size and aspect ange in the orthogonal 0 (vertical)
and 0 (horizontal) directions, and pi is the on,-was distance between a plane wave front
passing through fhe reflection point and one p.ssing through the center of the target
coordinate system.

To compute the received signai. we transform the scattering matrix from the
scatter principle axes system to radar coordinates- This includes several tran-sfofms as follows:

Hi = PAB'Q'Si QBAP (4-2)
where Hi is the scattering matrix of the ith scatterer in the antenna coordinate system. P is
a transformation from spherical to Cart-sian coordinates in ise antenna frame. A is a
transformation from the antenna frame to the target frame. B is a transformation from the
target frame to the scatterer principle axis fram,. and Q is a transformation from Cartesiar.
to sph-erie'i coordinates in the scatterer frame.

In the case of a single pulse much longer than the targt.c, the scatering matrix of
the target may be approxm.iatted by the summation

HT =- i (4-3)
T

The ihr-c element polarizztion signal •ector backscattcred from the target is then given by

E b = tiTF-t (4-4)

whcre¢ the subscript b refers to the backscattered tareet return in the antenna frame, and the
subscript t refers to the transmi! antenna noiarization %rctor.

4-.13 Radar Cross Section Validation

The target model of the BQM-34A drone was validated by comparing the simulated
RCS plots for variou• transmit and receive p.larizat ions with RATSCAT I 19771 meIsuremenQ.-

The drone model consisis of approximately 30 individual scatterers. each of which includesboth size parameters and a backscatter coefficient. The size p:ramctcrs were selected to
resemble the target configuration. Then from a knowi. ed of the characteristics of each
scat!erer model and through a trial and error precess. the backscatter coefficie-ts were
adjusted in order to match the simulated RCS plots to those obtained from nm-asuremcnts.
Sample results of the comparisons arc shown in Figures 4-2. 4-3. and 4-4 for thrre different
transmit and receivc polarization settings. As can be seen. the simulation results match the
measurements rather well in the aseas of general curve "iape. specular type returns. lobing
structure, fluctuation, and relative scale (powe-r levels).

4-4



cc 0

0

U'i

00 40 0 0 0 D m .
0r

-2Z

0c

Io

a 0e

-e -

-S.-,

0 0 7 4-0



-Y
!:

oL -

3;. ° - _ _ _ _ _ _____ __I_____ ___

0us
0

• -.-:! _ _. _ C

ccm

r - •- -;- - a"

>

> 0> -.

.0. 0.

I "

00

Cc - 0 0 0- 0 0o 00

- ! " " o z
u . !• - 1

0

:_. " o l _

ca i

S_ .0 - I

e)

4-6

. .__0



- - - - - ~ - ~~ - ~ --- - - ~-- - ---- -~¶

MEASIJRED'g!'

1o e- -* --- _ -----

RCS -- _--_-

(dBsm) .

10 I T- 1'I y
0.~1 2.0 0.0 60.0 8.0 000120'0 4.0100 180.0

(dYAWn Idg

-40-



4.1.4 Covarance Matrix

The covariance matrix of the target was computed using 300 samples of RCS

obtained from contiguous increments in aspect angle The angle stepping was performed in
nested lools with yaw being stepped in the inner loop: roll in the intermediate loop: and

pitch in the outer loop. Y.ow was varied between 5 and 25 degrees with increnments of

0.2 degree. Roll ranged from -30 to -28 degrees and was incremented in steps of I degree.
Pitch was varied from 9 to I I degrees in 1-degree steps. These aspect variations actually

yield 900 samples. of which 300 were selected for covariance matrix computation. When the

sample time was assumed to be I msec. 300 contiguous samples were used. When the sample
fime was assumed to be 3 msec. ever)y third sample was used to compute the covariance

matrix. INote should be made that there are four sets of RCS samples of 900 numbers.
Each set represents one of the elemenis of the scattering matrix (hI ]- h1 2. h2 1 " h22i-
Plots of the correlation function derived from the simulated target model are shown
in Figure 4-5 for both the amplitude and phase. Since h2 1 = hi 2 , h2 1 is not explicitly

shown.

4.2 CHAFF

4.2-1 The Dipole Chaff Cloud Model

In this section a chaff cloud is modeled as a collection of rotating dipole scatterers.

The model provides for simulation of the polarization and spectr.i characteristics of radar
signials backscattered from a cloud of rotating dipoles wi,.-h can have either completely
random or any preferred orientation. A vector autoregressive process based upon the above
mode!. is ther. used to obtain a Stochastic model for the simulation of the scattering matrix

elements of the dipole cloud and signals scattered fr,'m the chaff.

4.2.2 Theoretical Covariance Matrix

A description of the theoretical aspects of the chaff covariance matrix is presented
below (more detail is given in Appendix A). This cov-ariance function can be written in
terms of the spectral and polarization characteristics of the chaff cloud. These characteristic-
are dependent upon the geometrical configurations of the dipoles which constitute the cloud.
As a consequence, the orientation of a typical dipole (as depicted in Figure 4-6) will be
considered first in the de'clopment of the theoretical model.

To arrive at a description of the dipole orientation. we carry out a transformation
consisting of three successive rotations defined by the Eulerian angles. Starting with the
unprimed system. we rotate the double primed system by an angle 0 counterclockwise about
the z axis. The primed system is defined through a rotation by an angle 0 in the
counterclockwise direct;on around the x" axis. The dipole orientation is then found in the
primed system. where the axis of rotation coincides with the x' axis and the dipole is in the
Wx'. y') plane as defined by the angle •.

4-8



-~t !. -22-

4 ~ *'~~z;.--,.

LLI
-V~ w

z --

Lu
a:
0

4: 0

CORRELATiON TIME trec

. - h1 22 /h 1 ,2,

h hhh_ _ J

22\ 22

h 0 -

0-
a:'- Or

I-4-9

V _____ ____



Z,

P" - •DIPOLE

x x

F'•re 4-6K. 2ioeO~r~o

T HORIZONTAL

ORIENTATION OF zIO ROTADIeAV

ORETTONO S WChL z"TRBUE -10 k4 80.-0 d6

DIPOLES ROTATE IN (X: el PLANE

FAre 4- 7. Dk (eoa•-ny

4-10

,m •4- 0



ht arder. to be cinsistent wjti, 3)ur defimition of tile so~aierine matrix. we orient

the -.np:3'u;cd system such ttmt x is in tht- vertical direction .-nd v is ifi the fionzo-taa
direcZ~im.. The a' is aissumned tot:-?rvel alum!~ !t-. z axis- The r-7ommetcd woerdij:ate svstem
is showni in Fir~tne 4--, where z zs intn flie p~mC. Nwtice_ also. Pat 0i,: priim'd system is

- show-n with the dipole rotatinig in the t. W plane- Tthe primed sc.as sh1own in
Figzae 4--7. is deriv~ed from~ Fit:ri' _4-o b% scuiU1g 9 A6 AO n

0 if + .10. The %5~ (a tf:nctiu of at tm) is -ihs,' by 7 w,; c~ wh-_7t w- i,.t-

dipole ro!:ition rate and a the ;n::ial an~gi As Ssc~.- -in Ohr figre. I".,turbatons -19

serive to orient !hc axis of Totatiofl 2! ad. susqunpt-I (A±~ til mn.:r2atng jipolYe

rclatiVe to tile x axis. Notiice_ that with A~O i hc !1inw of sight (Z _-o. :C m.ans in the

plzane of rotation. C#),r!y when A1-: 0 i-3 the za:.:is pot its :he nic of! rotalven- _11m. himts
on the -perturbatioms ay-- as fei~ows. -9W < -1 <V and1 -Nif --_ -1-; I mO_ It:-

ii fli!S 3T_- reached.' thfi dipo.e mnay have Mny orientationWhIOI b.

A
ftedip-ole derctman denoted by irh. umi: a~t; i' * -A in thc i~ x'. y)

plane hN tile angle iý. then we car find its oientatiop in thi. (x. . z; coordinate systern
Iliftwith the at'plicatior. of the icreFuicniart trairsfor-maiiar me ttenine V'un~rX of Such

dipole to ar. electroma-gnetic vv aic prcpripatin.. olre hti z axis :i Zlvc.- nV (Borson 11 96T I
Wane ct i 't * 'Qb('7

n , h,1 r

v-hcre X. is tile ofr~t~ the mnJ- s. kin--it. d d' . Jefint-d zs tile Ouire Pfoo&zt. andi
ii -Z F-m this it is clear thist h h .~.h.. and h arc -ii!fin' i of !'I

unask-s 0. 9. zpd :. nd w. her- v 2' w1.m + a 'is, a function of the dipolvc rotat;on wae and
Iime I ne ~nr. .3tat P of the dtipoek rotatiop plane -ies-.-ribed by £0 29d,! i-mIpact the
riri~to < the scauerttd wi.whilc the Doppler is jzpcnertu~ and X

?!CfGre ymrccdi.-n o -:xinthe tc- , ora and polarirzatiozi clizaractris"ics of a
~olliccizon of dipoak%. kt vi. dcfime i n,.z- wrtor

Ther', tile covarxancc ::1irix of NOt is gik.en by

Kl~)= iijh(t) b*(i - r t-,

.,here the * de-ov::. comj*4cx cenjujgametr'po

Mhen the ap-ulzir rotation rae and vhe Doppler due to the- drift velocity are teach
dc:ýi.Ahd by distribu-tjcn funcmii-.s which include means and standard devi-a:ions. then Kt-

~ii ~ afuctin f ~- d.~ d w.r the subscript r denotes. rotaion, the

iubs~rip! d refrs m.o Doppler. !hc tbar rmens -ncragc. and a is the standard deviation. If the
dipolecs are distributed. ovei e;-teg eion, o; both 6 3nd 0. KH4I.(. Aill thu,. te a funiction
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of the-, limits 01. 02. 61. and 0,- As a result the covariance matrix includes spectal
content due to the dipole attiliy and polarization cl.ara4ztristics due to the dipole dis;ribution.

The covaniance mnatrix can be written such that the spectral and polarization

characteristics are separable f-Pnctions (see Appendix A):
I -I -)

KH(7) = -%d(T) -" C +Mr2r) - D + Mr(2 ) - I (-8)

v.hiere .ld(.) = Md( Cd. ad) and M 1iT) = .•-. C;rr Odr are sc3•ars. 2nd whern C and D are

3X3 matrix functions of 01. 01. 0!. and 0-. Notice that the spectral content for all of the
elements in the co-ariance matnx stcms from the same :wo source., namel- Md and Mr-
tikwever. the elements may exhibit different corre!ation characteristics as a function o- the
matrices C and D. In effect, the correlation functions for all of the elements in KI#T)
resul! from the .-u-mation of weighted time functions. where the weights differ for the
*a.-ious denments.

4.2-3 Stochastic Model Desh-ed Fron Au!omer-esie Process

Given the theoreticAly dcri.cd m-!rix covaria-ce function KH(T) of the chaff
scattering matrix elements i the stochastic rector h(!) ma) be modeled by a three elemen!
comn.px vector autorepessive pvoccss exciied with a .Fro mean complex vector white
Gaussian Poise source u(0) described as follous.

M

h(t) = W tih - -it) + uft) (4-9)
i= i

w-here the Ai s a;r 3 x 3 complex matrix coefficients to be determined. The matrix
coefficients A, can be obtained by sohling the matrix Yule-Walker equations

M

Kjrm~nt) =Y .ki KH n(m - i)Atj m = I ...... M (4-10)

i= I
As the order of the autor.-gressive (AR) model increases by I from M to MiI. there arc
nine new matrix elements of AM + I to be computed in addition to the 9 x M elements of
A, through AM that need to be recomputed.

It is nctted. as stated preiously, that the KWH) in Equation (4-8) can be decom-
posed in'o three comnponent:, as fouows-

KH0T) = (Md(r) - C) + (Md(r) - M 2 T) D) + (Mdrl - .r(2r) - )

= KpI(I) + KH2!7) + KIU3(T) (4-, 1

4-I!i
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It can be shown that the covariane function of the sum of the outputs of three

independent linear sstems each being excited with a mutually independent zero mcan, wh~i-

Gaussian noise source is equal to the sum of the autocovariance func'ions of the outopu of
the three near systems.

Hence. each of the coariance functions K9j.!T) !il12.3) can be :ndividuAly
modeled with an autoregressive process

*Aho. we note that KHi(T. is composed Of - product of the time correlatior
function Md (r). which iz- a sL----r, and the covariance matrix C of !he scattering m!arix
elerments hij. It then fo6lows th-it the complex v1ector auto.cgre.-sive process can be modeled
,ith scalar coefficients ai 2%. . that is

Aki =ail = .. •

and

h.~•)-- A., hiot - .At + U11t) (4-12'1

Ma Ma

KHi(m1t) = Ka KHI rn - iiLtl= C - - " 4 d 1( - ittI

The same awgament applies to KH217) and Kj30).

Therefore,
Mb

h2(t) =i • h•2t - i-10 + u2Y{t) NT- 13)

Ml)

KHp(mAt) = b~ K~fm )I

Mb
= D - bi -Md (m- i)At] - MrlI(m -i)-t1

i=5

4-13
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and

h3(t) = c1 h3 (t - :IAt + UPQ) (4-14)

KHj(mAt) ciK-H3I(m - iR)At'l

D ci M.1I(m - i) -At] M1I",m - iAt

Furthermore. sinct

-D 2- Mr(2T) RD - MA27)= R1D

it fWlows that ciis the coruplev, conjugate pair of .5- Le.., ci

and

h(r) h. h1 W + h() +- h3(7) (-S

7the scaiar coefficirnts ai, b, and ci can be obtaint-4 by solving the Yule-Walker
equations of the corelAtion finctions Md(r). Mdj(7) - SMr(27) and Md1(1) - 3ir(27) reSPeCtiV-dK.

R~om a closer txamination into the properties of the correation funwtions
Md( v). Mr( 2), MiA21-) in Apperrdix A (Equations 10- 14), it is noted ttat ibese functions r
expressd in terms of'exponentfia1 functions of complex exponents.

MPOr = exp H2W~r7 - 20 ,d 1

Mr.(:i) = C1p lj2(wtI -2641

where w~ denotes the average value of w, wnd a- represents the var~iancc of w-

4-14



The real part of the exponents are all negative and thus an exponentially

decorrelating function of time. The imaginary part wr is associased with the sinusoidal
modulation of angular rate ca (i.e-. nre) = exp(-jet), a line in the power spectral domain

since this imatinat" part of the exponent is a linear function of T.

Under this special Case. the reC: and imagina7% parts of the exponent can be

- se.arated by associating the real part- with the autoregressive process and the imaginary
part with the sinusoidal modulation.

Realization of the autoregreswive proce-s fc;i the eneral case of Equations (4-12).
(4-13) and (4-14) yields complex valued coefficients. For the stial Case the cocfficients
ar- reaL

A
A For this special case we define the three autoreeressive (AR) proce-sse-s as a 1 (t).
h.)A n 7  A& Ah-(t) and 3(t) and the associated scalar coefficients a-. ,i and ci which are real -aluuzs

T hen we have

Ma
A A A
h(t) aihi(t -i t.1 + U1 (t) (4-16)

Si= lI

Ma Ma
A A A A
Kimt= l aiKHI(m -i Ct; = cxp I--lm - ti

i= l i =!

- Mb

A A A
* ~h2 (t) bih~ft i- It) + u,(t) (-7

.• ~Kjt2(m~t) = L ui Kltpl~m_ - i -At]
Nib

Mb A d +or
= ) X ei xpj- (m - i)

i4I
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Nib

A = bA A (4-18)
113(l) bi h3 (t - iAt) " u3 (t)

-i= Ni

S~Mb

SKHP(mAt) = Z b; kH3l(m - i)xt]

Si=lI

Mb +

-A a d- + r-
= D exp -(n - )-At-1

i= ]

and

-iijd A jr:A I 41
!$t) = e hI(t) + • hR(t) + e h3 (t)1 (4-1b

An efficient alforithm deieloped by Durbin DURBIN. 19601 :o compute the

coefficients of the AR process- is used This al-crithm computes the coefficients in a

recursitv m•nner increasing the order of the AR process by one uith each iteration until

the dcsircd mean squared error criterion of the fitness of the AR model to the theoretical

con.•ariance funti-!- is nw't. A discussion on the Durbin Recursiv Algorithm is Tiven b-y

Apper.dix F.

Realization of the stochastic modeling of chaff is accompliched uing the AR

processor in• the form of a digital filter with an app,-opriate number of delays T and an

asociatcd aivkhted fcedback lo.-p whose weights arc the scalar coefficients. Twov functiornal

diagrarm of the stochastic chaff mode are gEvn in Fiurrs, 4-8 and 4-9 for the general and

secial cames rCspCcti•vlY-
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4.2.4 Covariance Matrix Validation

Correlation functions of the elements iM the chaff scattering matrix are plotted in
Figures 4-10 and 4-1 i. These functions were derived from the covariance matrix, which
results from the scattering matrix. Figure 4-10 has pkts of the theoretical correlation functions
according to the results of Appendix A. Simulated correlation curves for a 7-poin;
autoregressive fit of both amplitude and phase :-re found in Figure 4-1 L. As would be
expected, the simulated curves differ slightly from the theoretical curves. However, the
simulated curves would be expected to approach the theoretical curves if an infinite number
of samples were used in the computation.

4.3 SLMULATION

4.3.1 Overview

The overall simulation is carried out in two major steps as indicated in Figure 4-12.
The first step consists of simulating the target and chaff. Included in this function is the
generation of sampted versions of scatteriu.g matrices for both target and chaff as would be
sensed by the radar. The second major step is the simulation of the signal processing
performed in the radar. This consists of computing the covariance mairices of the target and
chaff from the sampled data and performing the optimization process to arrive at the weights
(and waveform in the matrix weighting case) to be applied to the pulse train.

This simulation approach has the advantage that the target and chaff simulations
need to be run only once for a given set of conditions. The results are stored on tape and
can then be used as needed by the v-arious processing routines.

4.3.2 Taret

Simulation of the tzrget consists of generating samples of the scattering matrix for a
series of aspect angles reprcsentati.ve of a target maneuver. Two basic modules are used in
the simulation, each of which includes several subroutinc.s One is the geometry module: the
other is the scattering matrix module. These modules and routines are shown in the taget
simulation block diagram of Figure 4-13.

Two loops are shown in the diagram. ene is a loop on all of the scatterers
composing the target. The se-t-ond ioop controls the number of scattcring matrix samples
generated b) the program.

The input to the pregram includes the range of aspeWt angles and angle increments
to be used in computing the scattering matrix samples. The output consists of a vector sum
of the individual scatterer scattering matrices. This sum includes both amplitude and phase
from each of the scatterers for eacs, of the elements in the scattering matrix. This is what
produces the deep nulls in the rcs ;,lozs as a function cf asvect angle.

4-18
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4.3.3 Chaff

Chaff simulation consists of generating random samples of the scattering matrix

from representative stochastic processes. A block diagram of the chaff simulation is shown

in Figure 4-14- The program is divided into two basic areas. The first consists of a one-time

Scomputation of parameters and values needed for generation of the random samples. The

second is the loop composed of the actual steps followed in the recursive generaiion of the

stochastic process outputs.

Inputs to the program include parameters to the theoretical correlation model. angl-s
describing the geometrical distribution of the dipoles, parameters affecting the power recze.ed

by the radar, and the number (and size) of the time increments required. The outputs are
samples of the elements in the scattering matrix as a function of the time increments.

4.3.4 Processin lgoriths

4.3.4.1 Weighting Matrix - A block diagram showing the main steps in the simulation of

the -eiehting matri. followed by a maximurm likelihood rezeiver is depicted in

FigUre 4-15. The inputs to this processor simulation are the trg-et and ch=iff saL-nples

of :he scattering matrices.

The first section of the program is devoted to computing the optimum transmit
waveform and receive weightingltransform matrix. The weighting'transform matrix was

computed according to the method discussed in Section 3. However. the transmit wvaveform

L5 determined through a more direct approach. We assumed that .an antenna itr a practical

srstem would be able to transmit polarization states defined by four bits of phase and four

bits of amplitude information. This yields a total of 256 states. only 114 of which are
nonredundant. Thus. the algorithm used in sciecting the optimum waveform cycled through
these 114 states for each pulse and chose the state which minimized tht- Frob--nius norm as

discussed in Section 3.

The second part of the program consists of a loop wherein the target and chaff
samples are operated on by the optimum radar. This includes transmitting the optimum
.--wavefo-m. operating on the return with the weightingtransformn matrix. and comparing the

result with a threshold. The number of threshold crossings is then ccanted and used in
determining the probability of detection.

4.3.4.2 Weighting Vector - A block diagram of the vector weighting method is shown in

Figure 4-16. The simulation consists of two parts. The first includes a loop to iterate on
the optimum weighting vector and then computes the si=-±,al-to-chaff r-tio resulting from thr

application of this optimum vector. The second part computes the signal-to-chaff ratio for

the simple matched filter case. Plots of the outputs prov-ide comparison of the optimum
vector approach to the conventional matched filter method.
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4-3.4.3 Singe Chanmp - A simp!e method was u -j in performing the simulation of the
single channel system. The approac3 was to compute the targmt and chaff cowriance

ma.trices, introtuce a wa-ieform. with eqizal pulses, account for matched filner weighting. and
then to .zaiculate the tieorn'•al probability of detection based on the power computations

for chaff plus noise vs target and chaff plus noise. A block diAgam of the simulaticn flow
is shown in. Figure 4-17.
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Section 5

COMPUTER SIMULATION RESULTS

The purrose of the computer simulations was to e-aluate the effe.civeness of d't-2]
channel sytve•s as compared to sinle channel system. This ..- s accospished by exploitng
the polarization properties of various target .- •-s relative to those of chaff, in terms of
maximizing the receiver output sinalto-clutter ratio (s,:)- The m-a:jor !igzref-meri FOMO
considered was the probability of tlar- detc--tion for a Wen false alarm probability due to
dutter plus receiver noise..- Associated with each result is the other major study output Whiich

yields transmit waveform s.lection coupled with optimum receiver wei'.htine.

The results reported ;idude those of the matrix and vecL-tr approaches. as well as
the Stokes formalism. The latt,: w*as noted as being obtained in a previous study
[Rosien, 19791.

5-1 SIMULATION PARAMETERS

This section describm, the variczs input/output parameters :issociated -a-th cbtazining
results for the aforementiomed three approaches, and discusses the types of conhsIons oMe
can draw from each.

5.1.1 Target and C(rff Mchels

The description of the generation and simulation of the twret and chaff models. has
been covered in Section 4. The scatterin; .m-katrix correlation functions of the models utilized
to obtain the reported upon dual and si-n•e channel results are compared for refc-rnce in
Fiugre 5-i The I h-ww h,)* I paranineter is show-n.

Three target models are noted: the standard Swerling I and two othe-s de-sipnated
as RTI and R-3. The tirme base for the correlation fi'nctions is dzven in te.-s of an
intcrpulse period AT, to conform with thel• use of transmit sipWs consisting of fenreralized
pulse train formats. The SWi ta t model utilizes the same scattering matrix as the BQM-34A
model, but has a constant correlation function (pul--to-pulke correhtionL The RTI and RT3
target models are also those of the BQ.1-34A drone. This shorthand notation refers to
in•erpulse sampling intervals of 1 mscc and 3 msec respectively, wchere 3 msec represents a
greatcr chanee in target aspect per AT. As a consequcace. the RTI model is more closeiv
associated with the Swerling i, whereas RT3 wouid be more nearly like a Swe-hlin! 11.

The chaff model closely matches the RT3 target in terms of its h-2-% scattering matrix
correlation function. It should be noted that the same chaff correlation property is used
regardless of the value of the interpuls. period. In this way one obtains a var-;ation in the
spectrum of the target relative to the chaff. For example, the RT3 iarqct has essentially the
same spectrum as does the chaff- By contrast, the chaff has a much broader spectrum than
does the impulse associated with Swerling i. The RTI target represents a choice between
th-ese two.

5-1
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-5-1.2 Definition of S!c R~tif

Each of thr apprc,2,hes has a cc-inmon reference for s'c raj-a key parie.-r
associated wiith proWbabitii of target detectit-n. The ratio utilized is defined as the tota

-* available tagect power relatwc~ lo the total av:tilable chaff power- 'Fhe available powe:r is
zre s:

-wherc 'tht H paam.etcrs are relativc to either the targetorc chff seauerin-propertieS

Eqau1a(5-13 represents 2.1l of the enc;gy Ithat ca be scattered back from either- zzqre
zT h aff. 'shen impinged ;-Pon t-y a dual channizz ;Tansmuit waveforms- Receiver noise is taken

into ac.count by- scaling I%- zo a normalized nosi e itctM. If. for ex--mrpk-. the s 'n ratio r.
desiiznatcd as20dihnP o thz lasget wc-zld bc 100 timnes ert-ater than the input noise
vector-Smirv a c.-n ratio oif I? dB re-sul: ifl 3 ~a for chaff which is 0;m$Ueni.
This resu~lts in an available- i.!put sc ratio of i-t' dB. which is then the value plotted on the
detection prohability u'e.

5r. 1.3 QuA~itatilt, Assessment

There are vtarious differences noted -in the coinpuwer sijkilafions foir *.he threr
approac-! e.s retorted upon. T he Stekes forsralism- Compart-d dual 3=2 sinele --hnr~e! re-suL-ts on

tebasý:!. of singele puise probablijir of dere'-tion- As a conscquecticc thr coT-rrelation propzertces
of the tamc!- and chaf were not a faccar. altrhoueh !the scatterin- matrices -were key, p*arameters
in th.- optitnizaiion prczedurre The Stoke.i snput co-m.stsed of the optimumn transCmil and

r~e~ranterna poa~riziiori for mzixin izin the s~c ratio.

The %zctor -.ethod employed 2 't-rasmit sequence- of fi¶te puiscs using the, R's Imocdei- An iterativc precedure w~s us.-d to cne- to thr maximum~ s c ratio. Comnparisons
wcrc madc for aitza, -and- sinek &t-annel performance ba-sed sipon reatir;.- 'c. bet not to tareeC;detectionl Othe;. significant results consistscd of Ith- selectced iive-pLulst- iransmit. ve.ctor and.

,s-xiated dual channel reeverci-61fing functio-n which nimximiz,-d the s c. As prerios
noted. these rcsAts. depend upon the ir~itial choi-ce of thr firve-pulsr wAavefo-rm.

The matrix rcstilts wvere b% far the most comprehens-ive. con. pzring perfernancc f1'r-
all thrree a.-ct.- models aeains'. both dual and sinrtlc el~hwinJcReatswt
derived for the probability c( tarr-ci dctection fi-ure-cfpieith. (Wr-. z~ue f :ne-~tWere
the optimumn -ransmini vector sc~:-te-d fro-wn a-i~on; a ibrar.i c-f !4wv'i-z tlzh
three-pulse se-quence, and i15 associatcd 6 x f6 receiver wei-eiting matrix.

Although the fthre -proacht-.c haa di;1TerenCeis --Lciz!Hz W;!'. 1he J-noii-e- 'A
tr-ansmait victlot puLse s-eytence-s. the resa'!!, ;&err c4rnsisirait onouah~ be ijii~~ !
three exhibited !he same b mie suit. in *;i:ai thc dual chznntd pkc~tan - Pxe rovill
rnhanzcd pcrforuna, evoer zc1,vcnti:.nJ-a sin!J c a+*ne: o'i--u-rs



5.2 STOKES APPROACH RESULTS

bhe abotre %-as reported by Rosien. ci ai (1979). Figure 5-2 is ex.:, roni thiz
report and is representartie of the basic results ablained using the S~okcs fonnalhism.

The probabili;y of target dzetection. for single-pidse- operation ;s shown #or i-arious
sic ratios (as diefined prvi~ous! The fats-- alarm probzt'ility Ws set to .0-4. the chaff
dipoles were itniform. I distrituted ±45 d&-ees zrom the horit-oniall. and the BQM-34A
Aispect angl!es are divributed as shows -in the figure. Optimum dual channel perfonnaiw-e is
plo~tted relative to con~miornh1A~ sign-1e c iannel oper-ation. SIebstanuizl improvrement is noted
when. coimpxred agaiinst single channel .orizontal and circular polarl7ed s'~stems- Approxi-
naielv 2 dB of irmpror--meiit i~ en SC- VCerus the vertically polarized singele channel system. The
lesser impmoe-mew1 . in zhis cast.. is . rfsult --f the chaff model dt.pole distribution which favors
the horizontal- Thr ;cticaliy polarized signal, therefore, results In substantially less chaff
ba;ckscattcr than doe-s either tihe L~crizo-nta-lly or circularly Polarized waves- Since the target

- -.dtxis no! have a strone preferred p-lAri.-2tion for its backscaittr returt!. it becomes obvious
that a Vertically p"Iarizcd system waould be the choice for the singl e cna-nnel implementation.
and a nearly vcrticadll Woarized s-.-Vicm would allso beZ implemnitte-J for dual channel operation.
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ihe majer kat seen by these results. is that the Stokes method does yield better
performance for dual channel op-r-tion, despite the obvious high level of performance
exhibited by single channel vertical. It should also b- noted that these results were for
single pulse transmission, such that the spectral differences between the target and chaff
could not be exploited in the sgnaal processor.

5-3 VECTOR APPROACH RESULTS

The vector weighting results were based upon transmission of a fi,--pudsz sequence.
The fiiwre-of-merit utilized was the relative improirement in s.c for various dual and single
channel implementations, as a function of the chaff dipole distribution. No furtl'er effort
was expended in this area. in view of the importance attached te -:e developnenrl of "he
more encornpanssng matrix approach.

Figure 5-3 depicts typical results for the RTI target in chaff. The sic is shown
Srelative to matched right circular single channel operation.* The dijole orientation atgl--s

refer to the distribution within the chaff cloud. where 90 degrees is for completely rartdom
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dipole distribution. and 15 deg rees r~efrs It) nearly horizontal distrib~ution. As noied in the
finre.mathedfzl~r erfrnuee or inge channel horizotal and circular POlarizations is

extremelyv poor- The matched vertical pertormanace is goodA for dipole distributions which are
nL-rfly horizontal (k;,ss than 30 de'eree's). Beyvon-d this.. he matche:"d wertic.:d- perfarrnance
degradess rapidly. and. as would be expected. it corpverers :.1 the 6-rculr and horizontal levels

forthecomleelyranomchaf d~1ibui'on at 90 deferc-s. T-his con'refzence a! 90 degrees

fcr matched filter operation was also otident in the Si-ikes resuits for single pulse trmlnis-MSIoi.

iFieurc - also indicates four k-ariant:- of d--al charnel op;eruiioi.. The verstical
-asmint-optin.-i;n receive curve is for a dual ch annel receiver optimally wcighited for

tr3maSMi-SsiOi Of a vetialy 0'arized five pulse- scriaence. This in 12ct. iss thicesl of the
first iteration assocxiated waith the Rummier waveform con-.rcrencc tehi .Szaimilr curvcs
are shown for horizoptas' and circular nolarized Fire- pulsc sequenc-s. As expectedl fi,)n Hat-

prcdomiiiant~y horizontal chaff dipole distribution- the dual channel receiver Wem-Ahted i~

vcrtical trainsim~ssion provides the best overall performance- There is again eot.-crgecrce of
results at 90 dceirers.

The optimum cur--e is the result of utilizing the Rum-iler itL-raiye tech.nique. for
which both the transmit vmector an'd receiver wei-cht are in erchanzed Juring eaich it%,ntilon.
The iterativ: procedure was :ermmnatrd aliten convergence in s,: rat!o was achiceu-d. Al:ikouaeh
the optimum cu-.ve is for. ft.ll dual ch:annel tu!-er3Iion. it can b.z apprc~aatcd frorr :1u-r rrsdlths
tha! thz optimum performance is only siidihtlv bette1-r than vertica! rnri-piimdi~
channel recrive. This is a onquneof the optimum transmit way -forri b-eing nearly

- irtcalypolarized. A significanrt result of !he iterative procedure ----s that !he :OnvCr~etnce
in transmit wzv-s'onn. was indcr pend;-nt of the initial choice. The iterations we-re --arted
dith eith~er vertmca.. circular. .r horizontal five pulse scquences. In al' cases-. ih,- optimum

w,-aveferm con, cr--d to the identic,-l nearly vertically po!arized stuicture.

5.4 MIATRIX APPROACH RESULTS

Computer runs were- made ~or prob~iililiy of tarpet detectison PI) as ý,:. WICIoflA

the-- previ.ously defined s-'c ratilo at a- false alarm probability of 10'F. Perftormance levels f-i.
the, three- tar--et model set of Fiegbrr 5-I were computed for chaff dipole- distrituticrns c~
spording so 1.5. 45. and 90 deerces- Comparisons -were made betweer. dual channiel

operation and rnatche-i filter singele channel operation. The optimurm transmit vector w~as
chose-n from a set of 114 three-pulse sequenices. The associated dual, channel r-eedietr wtiiej.
corresponds to a maximum likelihood detector, which i- a function ot tnh- probability
dist-ributions re-lated-, lo the target- chaff. and rcce-ive-r noi-se.

5.4-1 1ju4 Channel Results

lFigure 5-4 is. a compa3rison of dual channel :p-rformance betweezn Puc three-ý targe!
sot of RTI. RT3. and Swerlinr 1. The limited range of s~ c shown, was chose.n to encompass
the PD region of intere-st for the more random dipole distributions:- namely a I'D in the ordet
of 0.5 for 0 45*and 90¶* At dipole distributions near the horizontal (0 IS~), performanxce
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~1~ Figure 5-4 Comparmiuin of Dval ('lzsrnr Performance for RT3. R77- SIVI Tugeis

-- a;3' these s - ratios K Tc ~-gr~'1X for all three turpc rcpiescritztions. This would ht expected at
this dipole distribution- since operation %&t essentiall1 %ý-rticallý pola-r ed transmit pulses
yields -ninlua: ch-iff backsc.jttcr (note simnilar-! s7od results a~t 15,I for v-ector and Stokes
app-ozches to as*.ne- vertical Lransmiksion ).

As IN- dipole mstribution twcomes vuere -anJvm. perfonnance degradrs for these
sfc ratios as noted -or Rhc ligure. Pcrforrnarice for all :.irgcz modcls at a PD;0 0 5. for
example. is about 5-6 dH worst at 0 = 90* than it is for 0 = 45V. The- difference in detec-
tion performance at a PD Of OSý beturen e = 159 avd 0 = 45' is not shown in Figure 5-4.
Th-: basic trend of the curves indicates a significantly greater differencr than the 6 dB noted
in the prior case. A rough estimate- would place this differential in the order of 10-! 2 'lB..
It becomes rather obvious from these and prio; rsults, that the structurr of the c-aff model
emphasizing horizontal dipole orientation, st-ongJ, influences the ultimate choice of mnow

. ~nearly vertical trmnsmit po~ari7ation ve-tcm. znd ultinmatcbr leads to poorer performance as
the distribution becomes more random.
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Regadless of the chaff distribution, however. target detection is best fur the RT3
model, foilo%-ed by RTI and SWI, respectively. This trend would be expectei. in general, in
terms of target detection bt-tween SWI and SWII models, noting that the RT3 model tends
toward the uncorrelated pulse-to-pulse SWIl. For a PD of 0.5 and a 1 FA of 10"4 . the SWII
requires I dB lcss signal return than the SWI in the case of a three-pulse sequence operating
only against receiver noise. As noted in Figure 5-4. the RT3 target requires 5 dB lLss signal
return than the SWI when opcrating in the dual channel chaff plus noise environment at
0 = 450. This added enhancement for the RT3 target can also be anticipated when utilizing
the polarization discriminant. An analogy can be made if one examines the decorrelat;on of
echoes from a complex target utilizing a polarization agile waveform as having efftcts similar
to frequency agility INathanson. 19691 This decorrelation is desirable in a clutter and/or
n-ise-only environment. Averaging of independent target samples will then essentially reduce
the probability of a null in the target cross section at the aspect of interest. While this
averaging process does not reduce the total clutter power, its variance will. however. be
reduced. Since detectibili'y is proportional to the ratio of target power to the variance of
the total clutter plus noise power, target detection % 11 be improved. This decorrelation of
the target echo suggests a movement of the target model towards the more desirable SWII
configurafion.

Although complete taret decorrelation is not anticipated for the three-pulse sequence
utilized, it is noted that the RT3 target will ha-, more degrees of freedom than the SWI in
terms of optimally combining the target echo returns relative to the chaff. It should be noted
that the -SWI target will also become pa.:rally decorrelated. but not to the extent of either
RTI or RT3. This then results in the enhancement of RT3 relative to both RTI and SW!.
when the dial channel polarization retu'ns are optimally combined.

5.4.2 Matrix Dual vs Single Channel Results

A comparison of the matrix dual channel implementation relative to conventional
si.rle channel matched fillkr systems is shown for the three targeet models in Figures 5-5
through 5-13 for chaff dipole distributions of 15. 45. and 90 degrees.

Figures 5-5, 5-6. and 5-7 show performance comparisons for the SWI. RTI and RT3
ta.gets respectively fo- 0 = 15°. The horizon!al and right circular polarized systems perform
very poorly in the ,aatched single channel configurations, because of the horizontal distribu-
tion of the chaff dipoles. The matched vertical s)'stem performs very well over the range of
s/c, as would be expected. In each case however, the dual channel implementation provides
even better performance.

Figures 5-8, 5-9. and 5-10 sh.lw similar performance comparisons for 0 = 45". Sinle
channel horizontal and right circular systems still perform poorly, since the dipole distribution
remains biased toward the horizontal plane. All three_ dual channel systems out perform the
single channel vertical systems. At a PD of 0.5. for example, SWI operation is 2 dB better,
RTI is 4 dB bett.:r, while the RT3 target exhibits 9 dB better performance in the
dual channel mode.

5-8
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Figures 5-11. 5-12. and 5-13 show similar results for 0 = 90*. With the dipoles
now randomly distributed. the single channel matched horizontal and vertical s,?stcms !end
toward the same performance levels. Here again, the dual channel performanc- remains
superior alth-ough the dB differential relative to single channel vertical is less than for
0 = 4*,. This is to be expected in %iew of the more random dipok distribution, which
mitigates against the exploitation of the more deterministic chaff polarization at
0 = 15' ar.J 45°.

S

In all cases of dipole distribution, it is noted that more effective dual channGi to
conventi.-mal single channel performance is possible for the RT3 target relative to either the
RTI or SWI models. This again ilnustrates the advant~gs of a target modei -which is not as
highly correlated on a pulse-to-pule basis- parti-ulariy when exploiting the dual polarization
scattering property.

5.43 Tramimit Waveform Selection

The transmit wa%:form dual channel vector is selected by a minimization procedure
relative to the Frobenius norm (-ee Section 3.1.2). The matrix method computation relied

i5-I
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upon a library of prestored polarization states and selected a 3-pulse sequence which most
closely matched the norm. The library of available transnniater polarization states is illustrated
in Figure 5-14.

This polar representation maps circular polarization at the origin, linear polarization
alone the circunmference of a circle with radius = I. and ellipticA polarizations within a circle
%ith radius < i. The representation is such that the direction of a major axis of the ellipse
for each polarization state is alone tihe radius vector which goes through the point representing
the state on the plot- Similarly. the dir-,ction of linear polarizations are along the radius
vector. Furthermore. elliptical polarizations. whose sense of rotation is right handed. arc
wrapped on the right-half plane of the polar plot. and left-handed polanrations are mapped on
the left-half plane of the plot. The cilipticity is given by i-r. where r is the radiut of the
circle. In this way, all of the information relatine to the polarization state becomes readily
aailable. The sy'mbols (A) in Figure 5-14 indicate the: libr,-r of prestored polarization states
a-vailable for selection.

Two typical waveform choices are shown in Figure 5-14 for the SWI and RT3
targets. at a dipole distribution corresponding to 0 = 45*. The RT3 sequence consists of
three pulses all linearly polarized, and lying from I I to 22 derecs from the vertical. The
first pulse is at 22 degrees. and the next two pulses are at I I degrcs inote smwall double
circle in fimxre). The SWI set consists -f a first pulse linearly polarized at 22 degrees from
the vertical, a second pulse with a left-handed ellipticity of 0.56 and the major axis aligned
21 •glrek-, from the vertical, and a linearly polarized third pulse I I dr•e--s from the vertical.
As expected. the preferred dual channel polarizations do lie more near-t verticaL The SWI
transmit vc,. ..r has more ellipticity which denotes a trend towards more decorrelation of the
SWi model through the polarization discriminist.

5.4.4 Receiver Matrix I
The receiver weigh:ing matrix is computed from knowledge of the transmit %-aveform

"and the likelihood function related to the target- clutter, and noise Proaabiiit, distributi.-as. .

F:)- th,- 3-pulse sequence. the op:imum receiver matrix Gopt would be a 6 x 6. The SWl
target is : speciai case because or the invariancc of its pulse-to-pulse ;.cattering ratrix

correlation function, which yields only three eig•e.n-alues in the m'ximization procedure.
Consequently. GOP, for SWi is a 3 x 6 matrix. A typical example of for SWI i sib o Shou
below for a sic ratia of +3 dB. and a dipole 0 of 453-;

Note the element•s of G are written in polar form -•

0.32. -'1 (0.17, -32*) (0. 1. --1-' ) 10.14. -W0) t0.24. -5") (0.1-4"

SGopt (0.07. 67*) (0.11. -76*) (0.055,0) (0.21. --69*) (0.03. - o' (0.04- 33"

S'0.003. -721 (0. 12. -1 V°) 40.03. -400) M.033. -R- (0.02- -°1 14--14

5- 14
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Section 6

CONCLUSIONS AND RECOMMENDATIONS

The primary objectives of the study were met in the following specific areas:
z2

a) An analytical and systematic approach vas developed for dual channel
optimum processing applicable to the radar scattering matrix of targets
and clutter.

b) The matrix approach was utilized to develop an optimal transmit waveform
and optimum receiver which maximizes the siý to-ciutter ratio for
enhancement of target detection at a given probability of false alarm.

c) A statistical model was generated for the polarization scattering matrix of
the BQM-34A target drone, and for a dipole chaff cloud. The properties
ircorporated in both models focused upon the temporaltrange behavior of
their scatterhizg matrix elements. Two forms of the chaff model were
developed; a theoretical representation ccmposed of general mathematical
expressions, and a stochz--tic model derived from an autoreVessive process
fit to the theoretical model-

d) The above models were utilized in computer simulations to compare target
dezection performance in chaff for duA channel system configurations
against conventional single channel systems.

Fihe analytical approaches were considered for polarization processing implementation:

I ) Matrix.

"2) Vector.
3) State-space.
"4) Fredholm,
5) Stokes-

Of the abolv. the matrix and vector approaches fali under the heading of finit- dimen-
sional space technique-s. The matrix method was the most fully ,teveloi and as such yielded
the most promise in terms of meeting the study objectives for dual channel waveform and
receiver design. It utilizes all of the information available in the target/clutter measurement

* space, and results in a method of waveform ;election based upon the si~tteri,;; matrices of
the target and clutter- Once the waveform has been chosen, a maxim.um iikefihood criterion
is utilized for target detection at a desired false alarm rate.

The vector method can be considered a special case of the matrix approach. -on that
only a part of the available information is processe from the measurement space. Althou. h
this yields better results than conventional single channe' systems and is simpler to implement
than a matrix receiver, its ptrfe.mance relative to the matrix receiver is obvious!y not ar good.

Considerable effort was devoted to the development of a Kalman fiter realization of
a state-space model utilibing the target and clutter scattering properties. This approach was

6-1
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carred to the point of an optimum receiver design, given the transmit wvefonn and the
relevant scattering matrices. This effort exemplified the mcst consistently unified approach
towards utilizing both the temporal and range behavior of the scattering matrix elements.
Further work is equired. however, in developing this appro.ach for waveform des&n.

An approach -ning Fredhoim integral equations was fornmullAted to the extent of
enumerating ifhe system of equations involved with the target/clutter scattering elements. A
generalized method of solution was presented. Nuo fmther .nTorl was expanded beyond this
point, although a preliminary conclusion weuld indicate that the complexity involved. r-lative
to the other techniques. m-gSht not warrant auditional work.

The Stokes approach was formulated and investigated in a prior study. These

results were reported ujron for completeness and indicated the capability to design an optimtm -'

transmit-receive antenna polarizationi pair for maximizing the signal-to-clutter ratio for use withi no~coherent processing.

. Computer derived results -ere presented for the matrix. vecaor, anJ Stokes
-Approaches. It was shown that for either single pulse or coherent j.%.Ws- train processing.
exploitation of" the polarization discriminan, ip a dual channel configur.tion was clearly

superior to conventional singe channel rTmtch-d filter perfornancc. Th• matrix results also
considered tht differences in dual chavnnl performance for three variants of the BQM-34A
drone point trgfe model in chaff. These included a pulse-to-pulse corr-4ated Sweling I
model and two less correlateo versiorc tending toward Swe-ling Ii. Correlation of the chaff
scattering matrix was set identical to the leasi correlated target model. RT3.

Probability of ta.get detection was uscd as a figure-of-merit for a false anarm
probability of f04- 0i.st performance was obtained "or the least correlated target model.
with worst perforn ance for the Swerlina I (a typical 6 JB differentia. ror a PD of 0.5). Th;s
is co-tsistent with tandard results for Swerling 11 relaiive to Suerling I targets. The pulse-to-
pulse decorrelatiop. inherent in .he RT3 target scatteripg property, povides for more degrees

of fretdom in terns of optimizing the receiver matrix combination as-oiated with the
individual pulse returns. This results in the noted b:lier perf1•-imance relative zo SWi. !t
should be noteO howcier. that performance of the Swrcding ! target was also enhanced 1y
dual channel polarization proccssing re!ative to single channel maiched filcr det.-ction.

The major conclusions reached from the foregoing results can be restated
as followS:

a) Exploitation of polarization -c-1tcr:_e properties wil! enhance th. detection
of tarcts .in chaff -c!ative to conventional single channel systems.

b) Analytical and systematic a.pproaches have been presentcd to develop
optimal transmit waveforms and associated receivct designs for maximizing
the probability of target detection for : given false alarm rate.

c The availability of previously developed polarization scnsitive models of
targets and chaff, provid-s a powerful tool in tiw systematic evaluation
of the above techniques.

6-2
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The following ;titdy tas!-s are recommended to further evaluate the practicality of
inuitichannel polarization processing:

a) Expansion of the stat%-space approach to include waseform design as a

possible adjunct to or replacement and generalization of the matrix method.
b) Reconfigure the target and chaff models to include realistic target

trajectories and chaff mean velocities, to combine MTI proces-sing' in
conjunction with the polarization discriminant for dual channel waveform
and r-eive.- design evaluation. b e of longer pulse trains would be
investigated for this implementatiot

c) Develop and:or utiii/e other ciut,. mode.s to evzluatc performance in
different interfsring envirenments. Ellipticity associated with raini drops.
for examplr- would be a reasonable cont--st to the dipole structurc of

the ch:..f model.
• d) Develop a strategy for detection of targets in clutter, without prior

knowledge of target scattering matrix. Use typical surveillance radar
requirements. EvaluatIL performance of various approaches: for example.
tise waveform to minimize clutter backscatter or maximize s/c .atio for
average target.

e) Preliminary design of dual channel systent utilizing metho:is developed
during study. Prosidc qualitative cost assessment ainst sine
channe! system.

f) Dev-lop an approach using the ranee spread properties of the scattering
matrix in conjunction with its polari:ation and temporal behavior, to
design the waveform and receiver for optimizing target diection. in clutter.

6-3
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INTRODUCTION

Recently there has beeni considerable interest in tile use of polarization dliversity to improve

signal dectection in [lie presence of background chit ter.0 3 InI thle design of such polarization

agile radar systems, one must consider both the autocorrelation and cross correlation functions of lthe
backscattered signals for two orthogonal polarizations.0

What follows is a Model for aI random collection o~f rotating dipolc scatterers. This model

is a generalization of a model by Wong el al,~4 and allows the simulation of both the polarization

and temporal characteristics of radar signals backscattered from a collection of rotating dipoles. which

have either completely random or preferred orientations. This miodel mtakes use of a vector auto-

regressive process for the simulation of [lhe scattering matrix elements of a dipole cloud and can be

Lised for thle statistical simulation of' signals scattered from chaff.

THE SCATTERING MATRIX OF A ROTATING I)IPOLE

When a dipole is rotating about thle s-axis of anl orthogonal coordinate system. (s, u, vi as

shown in I igur%' A-1I, the direction of its dipole moment is given by

A A +A Sl

A

where 4,is thle angle of thle dipole with thle n-axis given by

4i = ' + a.~ (2)

Wr is the dipole rotation rate In radL'sec

andt QL is a constant phonle anugle.

I I the. r lttnglv's~ 611 " i-h bovc s-axik. relative ito a Cartesiain frame ( x, y, z), are 0 and ~

as shown in Fiitm m A-d, and it' tilie ui-axis is chosen to lay in the x-y planc. then by 1 a coriae

rotation from Ilhic (s. u, vi to the ( x. m t system we obtain that

A A

d -X (Sinl " cos 4, COS 0 Cos Sinll,

4 y (to-s ~os 4,-co, 0 Sinl Sinll

A(3
+ / Sill 0 Sill (3.

When an elect ro niagmet it wa.ve is propagating along the z axis, the scattering matrix of

the above dipole is yiven by (Borisomi %%Wong c

A-2
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hxx hxA Aý
H 'h ' = iY~1dd'(4)

hyx hyl) % .

where (X is the radar w3%ck-.*th).

From Equations (3) and .14 w-- find that the elements of the tcatternn matrix Ii can be-
expressed as

h fW9 V' .1 1 c' I 1 + lV 1) , 1 (5)~

hvx h,., = bfi) ). 1c, + I)! +l' D,* e.1zUj

and

hv q/('.9 X [IC, + +) '"4L) 
1 ~ 7

- where the supemsaipt *r tieoies complex conjuptc.

*CI fsinr 0 -' coi.-O ;:stII

1= ; cu zs ?i-A. C u50

= 1-e'm- 0 4 19 con~t:

A4S



SrATIS7.-iCS OF hxX Ith FOR A RANDOM COLLECTION OF ROTATING DIPOLES

A study of the tcrnprarl antS polarization res-ponw ot a random t~olle--titn ot rotating
dipoles requires estirmte-s of autocorrela ions and cross correlation functions for 1h,: element, of the
scautefing matrix H of Equatin 04). such as,

I'lXt)hx 't-7)]! :h~ h Xv r-ijj cii:.

where the expectation is o-ver time a-nd all pos.-sbl onci-*ationi. for the ax.es of rotation Of
the dipoles.

Thewc Mcations can becxrs~- in a conpaa: tcorm by usc of the :ov.IrL-nc:. maitnx

- -0

K1 il 7 = lit I ) h 4 t-ia 18

of a VýCvi tur hit), defined z

E =t hlvirb 1C (9R M~ (r-1 )0

sihre t'tc n~to r (h driftvnct sp (-- ten sn h eul. iWo.a34 n

HiC C, If 3
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the matrix is givcn by

16) LLDDI 1 '

Lf D -1)1  -I'D

mdll) 3nJ M. ~1 (-) arc the 4:hjr;!:cmic fntUiom.)l

and 1-i C, 1-1)-f) 3 rc phc6.m.J rindoni awcrifec of Ihc oricntjiion of thr rotation
F1'ure A-A) ;cin by

I I)D~4 ~ J do % DI)' in (P dO (3

40t11

wilca I.c tpk- hxwc all jkf-jbIl% orwations and !i~c v2fa'rul- w and w. arc no-maL-
with .1cwmitiv. Mi~j. a.,- anJ Ma a,-)- rpdicv. wc obtain that th.: cowa-.tncc nmatra

-A-5
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STCATC2DL I FTESATEIGMTI LMNSO HF
If 0easm htte~eo i(~o qaio i aukfo az, eAj

Iua Ifw VicO tssue sto- the re-ct;or h (fI) ofn bE m~ode a s 3h szamp fofntre aeo Gaussoreeres tor

pu-rocess h 1 (tI. us of an vecto ih c~r 2tegsiv prcess yield; ;- as i.l ipl icrmdlta

(t) a itsoutp t. In gnr.4h a(w.zt) l--it.torgesv e p rcs re-ji,4tn)sofxsr

CO~ficicis". Hovwr bec~aus fthe st ~curdaz' of th oairefnto o Pi ' inb

+flt h 3i 1t x (;n ~iwr~i) 4. -jd1n)45

-h b l.2 (n-i~.tl +

- b ,,) 1-. n-z.i a , y
!=l Zn

J':.I the .4 1, 1 xnd .: -.ilxr qci mun3 .'t'tained fromi theTl-Wlw jt. I f-nt.)
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4 and

~7b 1R- [~k-.i)At = R,tk1-() k 1 %1..

which can be soh'ed ky a fast fecursire proccdurc develope-d by Durbin t .

The orders of zutoregres-sion M, and M4, depend on the sampling interval At and lii-:

desired accuracy in. approximating the co-.relatikn functions Ri~-t and R~tk.11). where

Rkatt) %!;(k~t) evamated for i d 0

2!nd'

R =kt MdtkAt) MW f2klo e'-aluzaeJ for i7 0 an ~r o
rd

The ~-.rtr, X. Y and Ln arc indcprn-dczt noise vectors with :uooaznxmatrices

M -x-xI a 6j--

and

!) W

if// I= 6-8



where.

nih. asterisk- denote. complex .cc;juge t;~i-nihw aind thc sic.om U, V and V1 .r lt-re
4!;menslo"a coiprle: white nos Lcctors w". (.-ussia tincori-clated coinponent, In mn.-:1% c;-
the cos-ariatnif matrix 1) is real or it = 0. If either ofthesice conditions I-. rtru thei o'nc %.ani

snow that Ii nAt) zin bec expressed ai the suin of only tuo autoregression%_ wiutwh redttue the
computations. needed for simulition of the elemnicts of the %cattering minstv%

NUMERICAL RESULTS

A5 an example osf the res-zits obtained !-v use of the ahove model. we --how in lFmeurc A--'
apolar plot of the potarizz-ion states of wares, hickscattercd fimmnt random dipole cloud for thrree

diffcrentl trans-nitter aiitcnnm polan-.ztions vcrtical. Imorizont.11 and cir..ulr 1)jta b.r th~eSC plotN

were obtained frrai thc ;abo%. model fo; J~pc!,.. oinctetd pritnarily within 30 denrec% trom the
honzen:;al. Thec polar nrepresecitation (r. 0) of the polariiation 5-iales in thiee Iiguresis 13' uch that
the le.nsth of the radius sect*oi is r = I - c. whcrc c is, the ellhpticity. i.ec. circular polarization is.
mappet. at the origin. lincar polarization along the circumnference of a cGr.ele %%Ith rsdiu- = L and
elliptical polarizations, within 2 circle of radius = L - The polar a'gleI 0 is such. that direction of
the major axis of the ellipse for rach polanriztion su-tc i-. .long the radius 'ec;tor %%htnch goes throu.gh

* the poiint representtin; the state of the plot- Surnitark. the dirxction ob liwve..r ;x~iaritat iofns arc ilon.:
the radiaus s-e~oT. F-urthermiore. clh'ptic'-l poizrviiaoro. %&htrse sensc of rotation is ri-*i-handL-d. arc
maipped on tht- right-half plane of the po-)Ia plot. Diu% theL abo'.e graplii.. ers:ui, i% capable

L4- represecntirng all polarilation Qtates amt. inI cfkct. Trap#-s th.: -urface of ;Ie Pom~arc polzruzation

sphere onto a cir1cl. T~he only poiarivatior. stalz which i-. ambignouts in tlhi re-presentasmo)n is.
elrtu!. pd'~j:~o. Both right-handed aindI le-handd .,r;-aljr po~bi'lattton, are ni'pvcd tin th..

-.am;: point it tie Oriotn of the coordinate %svstctn iut the 4center of rhc polan;-a!ion I-rk or
cllipti.-il 1librizilior-s whose major axi, i% along .1th vertical, we have zrvitra!rIs cha-mcs to map.
Icft-h.!nlLJ 1,otaritatioýns. onto thec !o~ct haftot 'I tli '-ertical axt'. and nght-hantdel polan/ati'Ins onto
thec apier half of thr vriai xis 1-urthermotc. thc suezt of the ktet~r used to; !4,T trio, ig th

iolarization of t1: r;,ceisedl u. iie isariedJ in .iccordance with the total -4ignal power in thc u.L..-.

I.;.. maxnninum power ;-lit :ar. be cutmut-dti fioi the wave: iny a malL-tued antenna_

]FORMULAS FOR THE EXPECTA71ONS EtC-C- AND (D1j

110 's 1,- F% ' 0 I -1 30S ' Pdo 0

8 ~ SO - o
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44

S =a8 -i- mn0

a.#)i" 4-n 4

4( sin ~

=CA 4010, Ghe 40~2 O )i0 - A- 010

EIC3 1 =<,O. F-0-1

* 4 48

C11% :- 0~ + co?% O; Cg" 0t %:I),% 0-O
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Appendix B

UKELH.OOD DETECTION

BINARY HYPOTHESIS TESTING

L; order to make a decision whether a target is present ;n chlff, tinary hypothesis
testing is performed to det ermine its decision region [see Van Trees 1968J. Referring to
i= B-1 , the two hypothesis H0 and HI with respect to the received signal Y (with
additive narrowband white noise) are:

Hyp•othesis Hp: y = + !!o

Hypothesis HI: Y ="YT + YC no

The input signal Y is then processed through the optimally weighted matrix G whose output
"Z is given by:

Z =G y

Pence,

ZIH0 = G- (YC +No)

ZIHI = G - (YT + YC + No)

and the respective covariance matrices are

Cov(ZIIi = G E!VCYC*]G* + G " E[No No-" G* =RCN

Cov(.ZIH1) = G EIYTYT*JG* +R, RT-+ RCN

In general, the covariance matrices RT and RCN an not diaornal, and it is desirable
to perform a coordinate transformation, such that the rcsultant ccrianance matrices are
simultaneously diagonalized. The new set of transformed random variables are now statistcally
indepcndenL In order to find the desired cocrdinatc- transformation we solve the generalized
eigenvalae, eigenvector problem: Find the eignvalues pj and ei nvectors • such that

S•RTOi = j RClN 01 1, l, k

is satisfied.

•B|I
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't is shown in Appendix D (setting Q = 0) thei solution to the above problem can

expressed as follows

Q R-n Q* = I

Q RTQ

'mtiere Q .s the coordinate transformation matrix

I is (k x k) Identity matrix

pu is (k x k) diagonal mat.ix whose elements are the eigeivalues ;Li

The new set of random variables Z is

Z = QZ = QGY

and the coiariances under the two hypotheses 3re

conZvIHO) = I

cabtZ-Rl) Jp

RECEIVER UKEUllGOD RATIO

In order to find the decision criteria for the binary hypothesis tes1 Av take the
likelihood ratio A(Z)

(=Z* p. + i)-7 Z + Z* IZ - ½ Inldet~ u + 1)1

Z* (I - ( + I)-'I Z - 3 Cn det(p + 1)1

= 'I(+YI-½q~e~~)



Further, we define another transformation P such that

r = P-Z = P-Q-Z P-Q-G-Y

and

P =[I I ,-,(P-+ry 2,- o l
0 " "L 0

then

Mil) = r* r + const

and the decision criteria is

k

u =r r I iri 2> T III: Ta•ret present
"! ~i=l

Consequently, the probability of false alarm PFA is Sircn by

~FA .4p(uizjf)du
and probability of detc.tion is give-n by

PD f pr4ujHj)du
T

and the optimal receWer wcightiP4 matrix is gji-n by
iGopt --

' ' - -' , * ,-- - - -. -• -- .------ ,--i- -- ---- ,-*y - -i - *'-



THRESHCILI) DEITERMIINAT&*)N

The venerii form' of fth probabeffity &dn-St. fwi'iicn p(u) is even by

kI e - uio2

:U >

j=1 G

k

k

n(T ~ ~ I ---- o, n ori2)

k =I 0

j~i

2For a given PFA ttIc threshold T can b-- computed from the 3bove equztiorn tsint thie
Neton-Raphs-.-n i~cratir.e technique with thec appropriate or2 for H-coaditiotp and

P(T) = FA-



Appendix C

CM~SYFRAINED OPTIMIZATIN OF SIC

The cornstrained optimization problem is as folloar& Given the target and clutter
conv-Aziance Matrices KyT and KyC find the optimum W that maximize the sigrial to
durtter ratio defined by

W*KyTW

isi

W*KyCW

whiere W is a N Al compl-ex column v-ector,
*denotes complex conjugate taranspose

and KyT, KyC :ue both positive definite hermitiap matrices.

ibis problem. is equivalent to maximization of

W-KyrW (2)

* -i subct to the constraint

W*KycW 1 (3)

Let X be the lAngWe multipler and deine '.om(w) as

* -(W) = WIKt-TW - ). (W*Ky4w - D (4)

In order to use the Lnagange multiplier for maximizing F(w). both real scahr
functions W*KY-W and W*KYCW must be differentiable with res-pect to W which is Enmplex-
Applying the Cauchy-Rie.mann Equations to test flor diffiripn1tiabilit . tht tes! f.ails and it is
condluded th, t the scalar functions are nowhere differentiable in C (complex N dimensional
space)- An alternate approacih is to sole the differentiation problems in real opafC R2 N-

Let W =X+Y (52)

"KyT = Re 1IT jIm IKyT (3b)

Kyw = Re I-KyW + j Im KycW (54

YCC

- nodrt s h arnemlilerfrmxmzn ~) ohra ch



For any hermiuian matrix M we have

= Ci~eM + j IMIMj

fzlI=(ReIibIJ). 1II%1 = A.1.mIM)

"vhere superscript T denotes tranpose-

- Therefore. WIMW cai be rewritten 3s

%w~uw XTReC il X + YTRpj M IY + YTI 1 ) x -xTImlM I y

4.j(XTRc!I;I!Y - YTRcIIJIX + TY~[I + Y'nM

= TRIMX +Y ImI~tX - XTImM[My

= Re! W'MWI (6)

Noethat

*,Tk, = MIY (XTRe MI)T J ~Re! MIY)Tt.XT)T yTRCIlI X

a and

xT~mMI = TImINIIX~i a tImiMX)T (X-T)T =XT(III~~

%WMW can riow be- expies!-cd as follows

W*M = XT.TrRcIMI IMIM'I( (X-Y M(\X) 17

MIMI Ret. -y =

Vner V, s aparsitivc definite ivinnmctric real rna!rix.

Xcw we intwduce the rradient opcmtor VW deied 2s

a-" ay

CWON



- = ax i --- ~ax a -ax,.
-ax 1 ax, a)XN ay1  Y

ax,

axN

ax1
ay1

II

ax1N ayNI
- - - - - - - - - - -

* The-n we have

-vla'w * mtw , = V7 w ~xT .T) M,1  ( X)1

= 2 v W. I M X1W/

-2 I C 0

To find the W that rives the extremes (min and max) of F(w) wcse

VW =W 0 011)

* C-3
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That is, from Equations (7) ard (!0)

V WF(W) = V~IKW-X('Y~ )

-2 ReiKyWJ - XilyI rteKy cI. - 1))y 12

-~ ~~~~~~ -<.~j -dir I,-vylI ln~cI e~~
I* 1*LCJ 

-jJ Y
t~~~ ReK1T -n1'Y.R-~~

Equation (12) is equwvaleizit to two simultaneous equations set to zero

(ReIKYTi - )LReIKYVCI)X - (11.jIKYTi'~ f~c)Y= 1

(Il;I,(VYTI - '-mn!YCI) X + (Ref Kyri - ),RejI~yCIi Y 0 11i3b)

Therefore, we can express the two simultaneous equations into one as foilows

* -(ReIKy- 1 I - "XRziKyCI)-X + j(1.Iyj - )J..jKyCi1 jY)

- +iI~lrnI~Tl - )JIKYcI) X + (RetjKyr! - 1.ReIKyCI)YI (4

VwF(w)n1yr 2 XK~ 1 . KC W 0 (16)

WJKy 1  WX 3 ~

Yr W 0



Substituting Equation (17) into Equation (1) yrields

W.*KyTWi
(SIC)1  Ai

wifKry^W

and

Vax(SIC) XMax

Hence, by se-lecting the largest elgenvalue Xma:).) and the conrresndingP
ti.nsforination vector WP Wopt). then tSIC) is maximized over all W satisfy~ng the
const.-aint-

4,Z
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Appendr D~

SIMULTANEOUS DIAGONAUZATION CF TWO COVARIANCE MATRICES

Let A and B be the two complex NXN covariance (positive definite and hermitian)
!4 maince.

We show that the two covariance matrices A and B can be simultaneously reducied
to a diagonal form by a NXN matrix 0 such that,

where A is a NXN diagonal matrix whose elements are real and I is a NXN identity matrix.

The columns of 0 are the eigenvectons 0 satisfying

(B- )ýA)0 = 0 (2)

where the N are the eigwnvalues of the matrix -guation

IB-XAI = 0 (3)

where I denotes determinant of a matrix.

Simultaneous diagonalization of the matrices are perfored in two steps-. The first
3tep is to diagon 'size matrix A, that i.

W*AW = f (4)

The coiumns of W are the eitei-nectors w-i satisfying

A wi = wiwi i= ... N 5

- where are ekments of the diagonal matrix P and the ecienralucs of the matrix equation

!A-wil = 0 (6-

Note that A is hermitian and thus 1" is real and W is a unitary matrx, i.e...

WW1' = W1 w = C).

From Equation (4).

A = WnW* (S)

S K D-!
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Since A is hermitian, the eigenvalues cii are real and thus,

(9)4

Now A can be rewritten as

g.= W -1•-n -W* (00)

and

•-2-W*'A'W'.-7• = !(il)j

Substituting Fqu.4 :Ltn (10) into Equation (3) yields

IB-?A I - jB-B-(WQ'1 P-W' ) I

= P iwt"''•-•* -wr-:• - M),l ,:%

= %VP- - I- i -'-:W*B- wle -- -X i- i 12)

=0

Both I I••- i and I n -%* V are non-zero hence

S I•z-:v*BWW-I:- - xI = 0 (13)

Let

K = r:V 8-W- (14)

Note that K is also hemr.itiian.

The scond sIep is to diagonalize K. TPhe sati. proc-dur-: as the diagonalization of
matnx A is used.

V*KV = A (15.

where the columns of the unitai" matrix V are the ,igenvcctors vi satisfying

Kvi = i. N (6)

and Xi are the eig•-,alu.es of the matrit, equation

1K- l=0 (1M)

D-2



L Suibstitutinc K fromn Equ.3tio:n 114) into Equation (1 51. we have,

V.Z*P-:VBW -A (18) =

Prernult.ply and postmiuliply Equaition (11) by V* and V. resp,-Ctieiev.

=V*JV V = %* 1 (19)

The Wat equ~ality in Equatinon OQ1O is lue to the propk-sw of a uni:tar.- mair~x.

j Defining th-~ m:.Irix operator 0 as follow-s

= (20)

Then Fquations (!S) and (19) yield

:1'.6 (21)

D-



Appendix E

BHATTACHARYYA DISTANCE B FOR GAUSSIAN DENSITIES

It is assmned that the conditional probability densities under the two hypotheses
HO and HI are zero mean Gaussian. It is noted that !he random variable Z is complex and
the real and nmaginary components are independently zero mean Gausian. Hence, the
waveform is described in terms of Rayleigh distributed amplitude (envelope) and uniformly
distributed phase.

The Gaussian statistical representatiGn is a reasonable one for chaff as weli as for
targets of the Swerling I and 1I class when the target amplitude ductuation is described by
a Rayleigh distribution.

Let the two conditional probability densities p(Z iH0) and p(Z I H1I) be zero mean
Gaussan densities under 1%e two hypotheses HO and HI. The zero mean Gaussian densities

densities ane [Helstrom 19681

7*Z•z)-' Z]

p(ZlHO) (2x)k I epzk Il

p(Z HI) xp (2)

where KZ0 , KZ! are the kXk covariance matrices of HO and HI.

Note that 1i- denotes the absojute value of the determinant of a matrix.

Substituting Equations (1) and (2) into the integrand of Equation (3-34) in
Section 3. the integrand becomes

1(Z) jp(Z1.0) -p(7!1)1 = , ,_L e"p Kz°')j \7-

4P

E- I



and evaluation of J using Eq tioii (3) yields

I(Z~dZ
jK , : ZI IZ-1-

S2 (2 1) 12

exp [ 4zKz1) dzJ

z& 1 KZI-1 [1 1

JZI4- IKy

T~trmin tenumerator of Equation (4) (KZ' Kz)caberwttns

(zo' + 1%,Z& 1 zoz ZO' (KZ I + KZoý)KZ I

Thben, the determinant of (KZ0 -'+ KZ I-]beccwes

IKzo-' + Kz I'l ' KZ0&' (K7 ! +K70) KZ I- I jKZOF i- I KZ!KOI IKZ IF' (5)1

Hence, substitutin-i .quation (5) into Equation (4)vyields

2L J La IKZOIIý IKZIIW (6)

The Bhattacharv-yz distance B is given by

* B = [~~~IKZO+ KZI I~ zl~I~I~

en K,+~i (7)

as srown in Equation Q3-35).
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Equation (7) car, be further rewritten as

IKzo + KZ1I!
B =,Rn IKzo! . IKz1i + k/2Qn' (8)

in Equation (3-36) KZi and KZ0 are given by

KZl = W KYT W* + W Kc W* (9)

KzO = wKy•.W* (10)

Substituting KZO = W Kyc W* for A and W KYT W* for B in Appendix D, it is
shown that there exists a coordinate transformation matrix 0 such that

0 o*(W KYTW* - A (11)

*AO 0*(W Kyc W*) = 1 (12)

Let Z Oz

With this coordinate transformation, we get

Z*KZIZ = ZtWKYTW*Z = z**WKyTW*Oz = zAz (13)

Z*KzoZ = Z*W = Kyc W y O Z W*Zzlz (14)

Substituting Equations (13) and (14) into Equetioni IN a•d (2),

Kzl = A+i (I5)

KzO = 1 (16)

Substituting Equations (IS) and (16) into Equation (1 8) yields

*. = _ +1)r(A + 1) + 11'
S .n[ A + I

IA + 1i12
= .•"n IA +I1 +k12 nA (E7)
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A is a diagonal matrix whose elementt are the ei.m-alus Mi, 1 1, k.
Therefore the determinants of (A + 21f and (A + 1) can be exprezsvi in the producm i0fM
zs follows

k
IAg + 211 =i (-i + 2)

k
IA +I! = n (OXj+ I)

Finally we obtain the d.-I.-,ý•cd result

k]
_!. (Xi + -i-

B ½ E n ii. - + k/2 En 1-:,n < o,, +n
B i=

ý, I ' t Q + 1 +I +12] kn C- -

Equation (20) is the result diown in Equation (3-.7) in Section 3.

Ref: HeIstrom, C.,V. "Statistic.1 Theory of Slsmal Detection," Appendix D. Pergamon Press.
1968
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Appendix F

AbrOREGRESSIVE MODEUNG

Toe Autowgressie Process

Without lack of generality wt consider a scalar random process ul with zero mean
and variance Oa2. A second pt-i:ess I X, I is defined to be an autoregresshe p.•cess (AR) of
or&-r m if

r-M oX- +: = ai X +...+n: Xt-M + ut M!

For the fint order cme, Le.. m = -1, w have

Xt = ctt Xt-1 +ut (2)

by mccessi•c substitution

Xt = el-4• iaI -X;-.3 + ut_21 + a] ut_! + ut

1%n Then can be expressed as

Xt = ut + I ut_! +al-ut_2 -+.........

That is. X is expr•s--ibie as an inifmite order wrowing -esiwg process.

For !he general order case w define the operator

Bk X t for all k

I tIk

Then Equation (I) becomes

• _I ]-or, 3 -...- BPIn Xt =Ut

Set

f(B) = I_ -B-. - BmI-l (3)

= I B + +-Pin. Bm + (say) (4)
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We find

Xt= f(B) ut (5)

It then follows that E Xt 0 and thz --ariance is finite as soon as 'MP2  is convergernL

Yule-Walker Equati-uas

Let zs assume the process to be stationary. Then multiplying Equation (1) by
_k and taking the expectation, we find for each k>O:

S(k) = ac Muk-I ) . .... + am T(k-m) (6)

where ý is the autoccrirlation function of the process. The set of Equation (61 is the well
known Yaak-Wdker eq•udons.

The Yulk-Walker equatiops arc particularly useful in estimating parameters of an AR
proce ss, that is, to estimate the paianmters a, m o , given the obscr.-ations

Xi X2 . . . X. , (say) of the process IXt1. It is •.ident from Equation (6) that we

can sole for the aj's by substituting the sample autocorrclation functions into the firs: n
Yuk-W Iker equations. Let us next consider two recursihv methods of !ahiing for the
coc.Fcients of the AR process: one for the scalar (Durbin's .wthod) case and the other for
the vector case.

Durbin's Scalar Recursie Al•ouithm

in fitting a stochastic (stationary) process with an autoregrexsive rrocess. the ord-r
of th-e process N must bc decided. The criteria may be the least squares fitness to the mu1l.
where Ohe mean squared error tcr.m..inates the process when it becomes smaller than some
p.rdetermincd threshold.

The convcntioal method of solving for the coeffitciets is to form N simltancous
Yuk-Walker cquations and solve fo: the Ai's by matrix inversion. Ilwvc:r. wit.% this
method. ech time the order of the AR process is incrtased, an NXN matrix invcrsic-n is
reqtircd. A more efficient method is to use the Durbin's Rccu.siwv Algorithm
described beL!ow.

The A*ofithm

Given the N-I coefficients 4. .i... AN_.. -11 for the N-I order AR
process, the N, coefficients (A\......... .N of the Nth ordcr AR prorccss is oblairnd
f fron th. ft!wo ,r-cursive- equations.
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* I:

R-(-
Si L p • ~ ~ ~~- A .+.. , - R ., . _,++

:NN (7) U

PO - RN-1

AN = tNN

where

AN = (aNI" " GN2 ..... "a NN)

=(=N- ----- - .

denotes transpose

The mean square error cf the Nth ord'r AR process is

• ! N

•I •i=l -

The initial conditions are

N = P, a1 - P'P 0 .. 3r P- -4PI-.POI

Proof

For the N-!th order AR proc. the rnatrix equation is _er. .I.,

S%- - I

-
T

F-3
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- or in bri.:vi"otalion

RNA!=- P\.,- AN I or R_(Ni =PN-I A -(N-) (10)

*A vawhere the coefficiznts of AN, are known. Note that P matrx is positive definite.

The ma-rix f.rm of the Nth order Process is thus given by

YR = Pt -AN ( 1)

This can be rtwrittc, as

°•RNI-i -"PN-1 k-(-g. .-.

', ,

.here

AN (aN I - -------- aN. ••.)

-T-h"r. we have

RN-1 = FN-i - AN + RdN-) (12)
• P-- = R- J.q

.= )-N + aN.-0O (13)

i = i~q,•skn I13)

QN..%O = N- • -N-1 " AN (14

F--Frn Eq:i.jions (12 and 10)

AN KJ rR\ 1  RA.I (N

N--i R N-I

A-:

i|.



Substituting Equation (15) into E-uation (14) yields

-- - " A0 m PN aN,N R-.GN_!) A4(NI)

pN- R 4  )ANi pN- AN-I" RIN-,
- - - (16;

P0 - N N--I) P0- A--, " R,,--I

From Equation (15) and aNN. we form

IAN = A - N.N -

c.NN =0 + a NN

ana it ftdlow~s that

AN = ) (-A) N.N ()171

-• Fouations (16) jiid (17) are the recursive equations of Equations (7 mnd 8). The mean
squared error is obtained from

N N
G\724 E [Xit) - a X;t-i)j-= EJ[XOt) - ai Xft-i)) X(t)I

- iF,: i=l

which yieldsI, N 18i lON- = po- ai pi 418)
Hence

ON2= P0 - AN RN 19

Substituting Equation (17) for A\ above yields

N-= A. - +r?.', A p.\-i) RN- ÷ aNNpN)

= 9 - -N-1 ` PN - AN-! ) R )

= ?0 - AN Ri - aNN 4,N - ANI -

F-5
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_iIi

and from Equation (16)

ON p - A-I RN; -cNN- (pO- AN4 RN-)

= (NI2 1 
- aN .2) (1)

* I which is the resuft of Equation (9)

Matrix Recuvsirv, Alzotithm

For the general case, the multivariate stochastic process can be modeled by a Vector

autoregressive process Z (t).

SeCoider the folloiiing Nth order %ector autoregressi-e process Z(t)

N
Z(t)= A..i Z(f-ti) + U(t) (21)

where

Z(t)=- Iz,(t) zi(t) ..... zp(t)

.A, pxp matrix coefficients of the Nth o-der AR pro-cess.

U(tr'xl '-ector of independently distributed zcro neawn white ioise process.

anid

d- denoes transpose

The matrix coeffic:ents At can be computed from the matrix Yule-Walker equations

N
Kmin= • ANiKi M I .......- - (22)
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where KM is a covariapce matrix (hermitian) given by

iI

L = Z(n+k)Z ) M 0. 1. 2...
k=-'

KM = K-m

Superscript denotes complex conjuga;e transpose

The tean sqcared error 2 of the AR process my be obtained
from Equation (21) N

N
O - - 2 A- 1j Ki£)

Rea "roces

The matrix recursive alenrithm solijn for ;he ANi is d.-id below for a real
ivalued multivariate stochastic process. For complex case. see the next subse-.iion on complex

•: Frocesses-

3

The mean squa-ed error of Equation (23) combined with the X Yuk-W,lker
Equations of Equation (22ý can be expiessed in matrix form as foliows

[I-AN-IAN-N-2-''-AN.N| 0K K I'-- KN -- [ 0.O 0...O

K-I K0  K\_I

K -N. K..NI) K0 ]
or in brief notation

2

[I. NI KN\ .0 ...... 01 (24)
N

For N+1-th order, we pick- an aN, such that

-=t,-=. 0 K•,! = 1 0, 0
N
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which is the represerat-tiof of Equation (241 and

.--KN÷1 -AN.! KN -AN 2 KN- - - AN

or

K AN.i - KN+! (260

I i=1

We not- that if a -: 0. then .+i = (--N. 0) and the desired solufion is obtained-

If this does not happen. a-% mustt be forc-ed to zero- In order to do th3s. wve introdluce the

"ba:kward fadjoint) equation.

N
Z(t-N) = B z(t-B \ i)

b

N

or in brief notation

10.-,. II K1  = i-, -- . o. ,27)

which is a representation ofi1 -tN. 11 -N 10- 0o . l
Xi-B -K =1 ...... 0

N N

and

4--- ,j B Ki.28)K_+ an t7

We now form a weighted combination of Equations t25) and 127).

Ai. 01 + QNa 0. -B, i!t • I ,+

Si.•=I,. + Q01- 0- 0. o.. + (9, (29
,!_- . . . . . .''" - ..N
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By setting the last element of the vectoi on the RHS

S[ a&N + Q N b
N

"or

v -NI-b (-I (30)S+• Q~a --ON l&_.N

then we have the solution for AN+, in the form of Equation (124) for N provided we have

BN. and
N

and

a N = (3 2)

.N"'I N

b
In order to obtain the B. and v . we perform a simila otp-ration as in

Eaquatioi t29) as follows N

0o. -B\. 1I + Qb I1 -Ax. 01} - KN+l

0. 1+ Qk a-- 33)

WIN+QN 2N- 0. . . . .-0.

froGti which we get

-N + Q ; : 0

or

and it follows that

1 __N~.I~i = 10. -BN. I + CbII.-A O (35)

= 5'+ ,b
+N+I
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The matrix recursive algori;hm is stated as follows: Given (;N ) and
Nb

b ab
(=N: ": i)) for the Nth order AR pr-i...ss. (-+I: . +) and _ .

_ N N-N N+!I

iN+I) for the N+Ith iteration is obtained from the following matfix recursive equations

a b -1
1a) Q=: -cN Ia N

•_-- m• • i. %•,+l' = IIa. -A.x. 01 + Q,0t. -B\. nIa1 '---- Q N-=N

• l • a
3a) XX +~ NS.... •N+I

4a) aN+l - "= A\+I

b a -!
• !b) QN= -N I NI

b
2b) [-_\, 1.+ li = 1o. I. II + QN 11. -A_. 01

3b- b - b + Qb c*N

!N+ N N

4b N+i = K -(N+2)- B B'I,: K

11-z initial conditions are

a b

Y-0 K0 = X0  =K and %o KI and i0= K-I K

%wc note that a\ = AN i.e.. a3' adjoint relatiortship

4 
F-10
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C.omlplex PrwcCS

In dealmn with a complex randomn variable i x + jy. we note that z is in fact
comprised of bivariate random varia~.Ies; -. v and hence a complex scalar stochztsfitc

* process must be treated as a rea' vector of dimnension two. For a complex N dimensional
process. the nmltivariate dimen~sion~ i-ý -N.

.Ac desz-rib ear!ier. int!~ pUcI; .:Le;rai an AR .o . t. ;ar x

coeffi-im-ni -It Ai musti be determineJ -ahen 12 e~zat~p~csi-:ý '~x !~j
rnnst be taken f~ ormulatin-, tne anutrix equationN.

-hi ~ ot.wn rulem!! " rce'e

( Gvn 3 Nx\ wonrslex mairix M1. decompose tlis, mairi inio '~rcal

~ ;)~fi~ a ZNC\re-a! flain\ X hT

ru-lu.:\ o

JK in I nc naRi AN + l-~:ike .ian R!1 ;:,'K- A- K

:RJA

js -K.\.jj

-A~J .A\ K.ni ;!~j m n



and

cas also be rewvritten as

K
I-imIKml. Im~m 4r~A~I RANOI

L~q RRejlIL.j\ Ret.-Kn_,

[ R IANJ KIij lImANJ Kml.. ti

"_'rI~N Krn;LReIANJ KmI
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