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THE CONTRIBUTION OF NAVIGATION TECHNOLOGY SATELLITES

TO THE GLOBAL POSITIONING SYSTEM

INTRODUCTION

The successful launch of Navigation Technology Satellite 2 (NTS-2) marks the begin-
ning of a new era in navigation and timekeeping history. NTS-2 (figure 1) is the first
NAVSTAR GPS [ 1 ] Phase I satellite. NTS-2 technological features include cesium frequen-
cy standards, a nickel-hydrogen battery, three-axis gravity-gradient stabilization with
momentum-wheel unloading, control of the spacecraft orbit, laser retroreflectors, solar-cell
experiments, radiation dosimeters, and a worldwide network for data acquisition. The satel-
lite exocriment has verified Einstein's relativistic clock shift.

NTS-2 is also the fourth in a series of NRL technology satellites (table 1) which have
carried quartz [2], rubidium [3], and cesium [4] oscillators into orbit. The primary data
type for all of the technology satellites has been precise time-difference measurements,
which have been used for time transfer [5,6], navigation [7,8], and orbit determination.

Table 1 - NRL Technology Satellites

I.... Alh- InclH- Weight ff ag

Lainch Eccen- Power Oscil- Af/f Range
Satellite Date tude nation Frequency per day Error

(n.mi.) (deg) (kg) (0) (pp 1013) (in/day)

T-J 5-31-67 500 70 0.0008 40 $5 6 UHF Qtz 300 750

T-11 8-30-69 500 70 0.002 55 12f5 18 VHF/UHF Qtz 100 75

T-III or NTS-1 7-14-74 7,400 125 0.007 295 660 100 UHF/L band Itz/Rb 5-10 12-24

NTS-2 6-23-77 10,900 63 0.0004 430 050 445* UHF/LL1, L2 Qtz/Cs 2 5

NTS-3 1982 10,900 63 0.001 490 1080 475* UHF!L, L1 , L2 Cs/H 2  0.1 0.25

* Beginning of life.

GPS LAUNCH PROCEDURE

The NAVSTAR Global Positioning System (GPS) is a DOD program designed to provide
precise navigation to a wide variety of military and civilian users by means of a constellation
of 24 satellites deployed in subsynchronous orbits (figure 2). The Navigation Technology
Segment of GPS has been assigned the task of validating key concepts and hardware, with
special emphasis on spacebome clocks and atomic frequency standards.

Mamuscript submitted August 28, 1979.
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Fig. 2 - Possible orbit traces for the NAVSTAR GPS Phase 1
constellation. The Phase 1 constellation consists of the NTS-2 and
five Navigation Demonstration System satellites. The final 24-
satallite constellation will have similar orbit traces.

The GPS launch procedure (figure 3) places the spacecraft into a preassigned position

in the GPS coustellation. It is first launched into a high-eccentricity transfer orbit and then
apogee-kicked into a low-eccentricity drift orbit. After the satellite drifts into position, its
period is corrected for final constellation placement. The orbital period must be within an
accuracy of 1 second of the specified value of 717.973 minutes (nearly 12 sidereal hours).,

DRIFT ORBIT APOGEE AT 10,899 n mi
95-RPM SPIN RATE (TRANSFER, DRIFT, AND

1-, 9 FINAL ORBITS)
FitAL \1 FINAL-ORBIT PERIOD

FR AL , F 'A SIDEREAL DAY

AT 10,899 n mi
(CIRCULAR)

95-RPM
SPIN RATE

PERIGEE AT 863 n mi
(TRANSFER ORBIT)

PERIGEE AT 10,623 n mi
(DRIFT ORBIT)

--Z~ PERIGEE AT 10,899 n mi
(FINAL ORBIT)

Fig. 3 - GPS launch procedure
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The NTS-2 spacecraft was launched into the transfer orbit on ,June 23, 1977, at 0817
UTC (Universal Time Coordinated). First acquisition of signal was made by the NTS track-
ing station in Panama. NTS-2 was then acquired and tracked from Blossom Point, Md.

The initial network consisted of two of the NTS tracking stations (Panama and Chesa-
peake Bay, Md.), complemented with passive tracking by Blossom Point, Md., Millstone,
Mass., and Sugar Grove, W. Va., and with optical tracking by the Range Measurements
Laboratory, Patrick AFB, Fla. The network was coordinated by the NRL control center, as
linked (figure 4) to the GPS master control station.

!• NTS--2

FII COMMAND TELEMETRY

MEMORY LOAD TRAC IN RL BOSSOM POINT!
•i! TRAKING ISATELLITE TRACKING

•- • I STATION

SUPLOA D TRACKING STATIONSS~STATION

• MESSAGE STATION CENTER

EEPHEMERIS

S~TRACKING DAT

SEPHEMERIS

Fig. 4 - NTS-2 command and telemetry links

The prelaunch profile of the drift orbit (figure 5) was chosen to allow the ascending
node of NTS-2 to drift eastward at 5 deg/day, The actual drift orbit (figure 6) had a larger
drift rate than expected, resulting in NTS-2 reaching its preassigned position in the constella-
tion of 28 ± 2 degrees west longitude in 5 days. Three velocity increments (figure 7), ranging
from about 0.5 to 1 meter per second, were used to increase the spacecraft period. The final
orbit, excepting small microthrusts, was achieved 15 days after launch, Three-axis gravity-
gradient stabilization and solar-panel deployment were achieved within 18 days after launch.

3
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Fig. 7 - Inflight profile of the drift orbit

The final drift orbit of NTS-2 in the GPS Phase I constellation is given by figure 2. The

locations shown for five Navigation Demonstration System satellites are also included.

NTS-2 TRACKING NETWORK

The original NTS tracking network consisted of a U.S, station at the NRL Chesapeake
Bay Division in Chesapeake Beach, Md, (CBD), a U.S. station in the Panama Canal Zone
(PMA), and overseas stations at the Royal Greenwich Observatory in England (RGO) and
at the Division of National Mapping's Lunar Laser site in Australia (AUS). The U.S. stations
are operated by Bendix Field Engineers; the overseas sites are operated by personnel from
England and Australia. The network provides almost complete tracking coverage of NTS-2;
figures 8 through 11 depict the portions of the NTS-2 orbit when the spacecraft is above the
horizon from PMA, RGO, AUS, and CBD respectively. Figure 12 shows that only a small
segment of the NTS-2 orbit is not observable by the NTS network.

5
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j-r

Fig. 8 - NTS-2 coverage from Panama Fig. 9 - NTS-2 coverage from theRoyal Greenwich Observatory

("IA

Fig. 10 - NTS-2 coverage from Australia Fig. 11 -- NTS-2 coverage from CBD

'V77

fNOur os Co
COVERAGE

PANAMA

ONM.
AUSTRAUA

Fig. 12 - NTS-2 noncoverage from the
four stations shown
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PRECISE TIME AND FREQUENCY TRANSMISSIONS

Precise frequency signals for NTS-2 transmissions are obtained from one of two
spacecraft-qualified cesium frequency standards built by FTS (Frequency and Time
Systems, Inc.)., The two cesium standards are of the same design; either may be selected as a
precise frequency source. Each cesium standard may also be operated in a quartz oscillalor
mode, which requires less power. The reduced-power, quartz-only mode was used for th,-
first 15 days after NTS-2 launch., The cesium standard was locked following solar-panel
deployment.

NTS-2 timing information is continuously transmitted in two modes: a side-tone rang-
ing system, called the Orbit Determination and Tracking System (ODATS), and a Psuedo
Random Noise Subsystem Assembly (PRNSA). Time-difference measurements between the
spacecraft clock and ground-station clocks are made through special receivers [9,10]. These,
measurements are then used to determine the spacecrafL orbit [11], clock difference [121,
frequency difference, and other parameters associated with GPS operation.,

FREQUENCY DETERMINATION

The first FTS cesium standard to be used, designated as PRO-5, was locked up (figure
13) on the first attempt on day 190, 1977, at 1418 UTC following a VCXO frequency tune
to bring the PRO-5 quartz oscillator frequency close to the cesium resonance frequency.
Figure 14 shows a frequency offset of +442.5 pp 1012 with respect to the Panama clock.,
Inclusion of the Panama frequency offset of +0.6 pp 1012 produces an NTS measured value
of +443.1 pp 1012. Comparison of this value to the predicted value of the relativistic offset
of +445.0 pp 1012 gives a difference of-1.9 pp 1012.

QUARTZ SATELLITE TCA
TUNE AT 1443 Z

W30AT 1404Z
CESIUM

_ jLOCKUP
Fig 13- Lockup of the cesium fre- • o AT 1418Z
quency standard on day 190 (July 13, • 200
1977) The values (T - 0) are used to Z _
determine the offset of the spacecraft c

clock with respect to the time scale < 100
determined by a three-clock ensemble
at the Panama station. C >

0W

" I I I
1300 1400 1500 1600 1700

TIME (HOURS)
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400

300-

4100

200- A (T -0) SLOPE 442 5 pp 1012

200 205
TIME (DAYS 1977)

Fig 14 -Frequency offset with iespect to the
Panama time scale The olfset is close in value to
Einstein's predicted relativistic frequency determina-
tion of 445 0 pp) 1012

On day 215, 1977, the NTS-2 PRO-5 output signal was offset (figure 15) through the
use of a frequency synthesizer. Closer frequency synchronization to the UTC rate was ob-
tained by use of cesium C-field tuning. On day 287, 1977 (14 October), a C-field tune of six
bits was applied. A frequency history of NTS-2 since launch is presented by figure 16; a split
logarithmic scale is used so that positive and negative values of frequency offset with respect
to UTC(USNO) may be included over a large range. Later analysis showed that an ensemble
of cesium clocks was needed at the ground tracking sites to adjust the spacecraft clock to
the accuracy of 1 pp 1013.,

57- /
S56-

55

I 2 14
TIME (HOURS)

Fig. 15 - Effect of the correction on (lay 215, 1977,.
for the relativistic shift, as measured wvith respect to
the CBD clock
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Fig. I - History of the NTS-2 frequency offset with respect to Master Clock

1 (MC1) of the U.S. Naval Observatory (USNO)

FREQUENCY -:.L3ULTS

Frequency d-lard results from the NTS-2 cesium clock are presented in figures 17
and 18. In figure i , the preflight test results for up to a 1-day sampling
time match clo'-]v -L results available from sampling times of 1 day and
long- ,. <ore cc:plete analysis, reported in Ref. 13.

- 10-12-
rn

INFLIGHT

10-141 ,, ..

0.1 05 1 5 10
SAMPLING TIME T (DAYS)

Fig. 17 - Stability of the NTS-2 cesium ;requency stan-
dard, expressed using the measure uy(2. T), which is the
square root of the Allan variance
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12I -1mI10

F-z••J 10-13 tI!

102 10 10 i 0
5  

106 101

SAMPLING TIME r (SECONDS)
i Fig. 18 - Analysis of the frequency stability of the NTS-2 cesium clock with

respect to the time scale determined by the three-clock ensemble at the Panama

ion

••.r;ER ORBIT-VERiFICATION PROGRAM

A laser program using reflections from the NTS-2 retroreflectors has been started. This
program will do the following:

* Resolve the problem of scale bias,

* Determine the long-range stability of the position of the tracking station,

* Make laser-network observations,

* Refine the coefficients of geopotential,

* Dc ;.ermine precise GPS orbits, and

* Evaluate the cesium frequency standard..

S~Figures 19 and 20 show the retroreflector elements for NTS-1 and NTS-2. Laser returns
have already been obtained from the Mt. Hopkins, Arizona, site of the Smithsonian Astro-
physical Observatc.-y (SAO). Figures 21 and 22 present the residuals referenced to the
NTS-2 orbit. The measured biases of 56 and 17 ns provide preliminary verification of the
NTS orbit. The noise levels of 6 and 5 ns are typical of the expected laser-measurement
noise level for this laser configuration; implementation of a shorter laser pulse should
improve these results.

U10
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Fig. 19 - NTS-1 laser retroreflector

Fig 29 - NTS-2 laser retroreflector (The square object is a
match book to show the size
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Fig. 21 -- Laser observation residuals from the SAO Mt. Hopkins, Arizona,
siefrdy238, 1977, 0333 to 0403 hours
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Fig. 22 - Laser observation residuals from the Mt. Hopkins site for day
241, 1977, 0320 to 0338 hours
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TIME-TRANSFER EXPERIMENT

Precise time synchronization of remote worldwide ground clocks has been obtained
using both NTS-1 and NTS-2 satellites. Figure 23 depicts the technique and the links which
are used to relate a time difference, measured with respect to the satellite clock back to
UTC(USNO). The time-transfer results are of interest to the precise time and time interval
(PTTI) community but also are significant for the GPS community, because four simul-
taneous time transfers measured between a user and four GPS satellites form the basis of a
GPS navigation and time synchronization.

SATELLiT.
.CLOCK NTS

- PDATE SATELLITE

I USNO CLOCKK
SREIM~OTIE ENSEMBLE \

CLOCKNR

CENTRAL
STATION

Fig. 23 - Station synchronization by time transfer using the Navigation-
Technology Segment of the NAVSTAR GPS

From May through September 1978 a six-nation cooperative experiment was per-
formed to intercompare time standards of major laboratories at the microsecond level using
NTS satellites. NTS time-transfer receivers were installed at the Division of National Map-
ping (DNM), Australia; National Research Council (NRC), Canada; Royal Greenwich
Observatory (RGO), England; Bureau International de l'Heure (BIH) and CERGA, France;
Institute for Applied Geodesy (IFAG), West Germany; Radio Research Laboratory (RRL)
and National Research Laboratory of Metrology (NRLM), Japan; and Goddard Space Flight
Center (GSFC), National Bureau of Standards (NBS), Naval Research Laboratory (NRL),
and Naval Observatory (USNO), United States..

To meet the objectives of the experiment, time differences were measured at the par-
ticipating observatories, using a procedure that is as follows. The NTS network measure-
ments are used to make an orbit. The central NTS tracking station has a time link to the
Naval Observatory UTC(USNO, MC1) master clock. Then, using measurements taken with
the NTS receiver at the remote observatory, the time-transfer value UTC(USNO, MC1) -
UTC(remote, via NTS) is calculated. For a GPS user a similar proceaure is followed using
simultaneous measurements taken between the user and not one but four GPS satellites.

14
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With the four GPS pseudo-range (time-difference) measurements taken at an unknown
location, the user may solve for three three-position coordinates in addition to time offset
with respect to GPS time. The goal for the NTS effort was to achieve worldwide time
transfer with an accuracy of better than 1 microsecond.,

Results are presented in Figures 24 through 31. 'rime comparisons from each station,
as determined from measurements made through the NTS spacecraft, arc. verified by por-
table clock closures. Table 2 summarizes the results of this six-nation time synchronhmition
campaign. It can be seen that submicrosecond worldwide accuracies have beon achieved.

hI 2__0_ ____ __210

EPOCH (DAYS) 18600
200 OFFSET (p8) 158.902

FREG (10-11) 0.329
RMS (4s) 0.458

S190-

180

Z170 -RTABLECWC

z 1AY 1978

0

reut romDNe Autala

. 160 /

FZ

S150,•li/"/%''"PORTABLE CLOCK

1515

140

130 • I i i

100 130 160 190 220 250 280

DAY 1978

Fig. 24 -- Time-transfer results from DNM (Australia)
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FREO(10-1

t
) 0000
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U
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Fig. 31 - Time-transfer results from USNO

Table 2 - Accuracies Achieved in Synchronizing Portable Clocks
by Time Transfer Using Navigation Technology Satellites

I F Day Portable-Clock

Station igure (1978) Accuracy (gs)

DNM (Australia) 24 282 0.09
NRC (Canada) 25 186 0.01
RGO (England) 26 115 0.44
BIH (France) 27 124 -0.57
CERGA (France) - 117 0.70
IFAG (West Germany) 28 199 0.03
RRL (Japan) 29 303 0.13
NRLM (Japan) - 299 -0.53
NBS (United States) 30 221 0.19
USNO (United States) 31 186 0.04

19
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CONCLUSION

The navigation-technology segment of the GPS has, so far, provided initial space-
qualification tests of rubidium and cesium clocks, The segment also provided the original
test of the GPS signals from space, verification of the relativity theory, measurement of
radiation effects, laser retroreflector tracking, longevity effects on solar cells, and initial
orbital calculations.
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