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I. INTRODUCTION

The thermal conductivity of materials are commonly determined experi-
mentally by heating relatively large samples for hours or days in each
determination. The large sample size and long heating periods greatly
increase the hazards involved if the samples are explosives or propel-
lants. However, thermal characteristics such as thermal conductivity of
such materials are critically needed in order to model their ignition
and combustion.

Thermal analysis presents an opportunity to determine thermal
characteristics of explosives and propellants using very small samples
of materiall. The object of this work was to measure the heat flow rate
through polymeric and propellant samples using a Thermal Analyzer with a

Differential Scanning Colorimeter (DSC) and from this to calculate their rexfof doc

thermal conductivities. In addition, the exothermicity or endothermicity
of the materials were also to be measured by Differential Thermal Analysis
(DTA). Such thermal events in energetic materials indicate condensed
phase chemical reactions such as therma! decomposition or physical trans-
formations which precede ignition.

In DTA the sample and reference are heated in a furnace at some
preset linear heating rate. The furnace temperature and the difference
in temperature between the sample and reference materials are displayed
on the Thermal Analyzer. If the sample temperature increases faster than
the reference temperature, an exothermic change is occuring and heat is
given off during the process. If the sample temperature increases
slower, an endothermic change is occurring and heat is absorbed in the
process. The DSC is somewhat similar to the DTA except that the sample
and reference are heated through a constantan disc which not only supports
them, but also serves as one element of the temperature measuring thermo-
electric junctions. Since the mode of heat transfer is reproducible for
a given atmosphere and the thermocouple is not in the sample, the
ordinate value of a thermogram at any given temperature is directly
proportional to the differential heat flow between the sample and
reference materials. This allows quantitative measurement of thermal
occurrences.

An equation may be derived? from the Fourier equation of heat flux
to calculate thermal conductivity from heat flow in a DSC.

1p. D. Garm, "Thermoanalytical Methods of Imvestigation," Academic Press,
New York, 1965. :

2p, N. Larsen and C. L. Long, 26th Pittsburgh Conference on "Analytical
Chemigtry and Applied Spectroscopy," Cleveland, Ohio, 1975.
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where
kT = Thermal conductivity at test temperature (mWatt/cm °C),
ET = Calibration coefficient of the DSC (mWatt/mV),

S = Slope of heat flow versus temperature curve at test
temp (cm/°C),

L = Thickness of sample (cm),

A = Area of sample (cmz),
Ay = Y-axis sensitivity (mV/cm),
Tl = Temperature at base of sample at test temperature,
T2 = Temperature at base of sample at start of run, and

T, = Temperature of heat sink at top of sample at test
temperature.

II. EXPERIMENTAL APPARATUS AND MATERIALS

The DuPont 900 Thermal Analyzer was used with a DTA cell and the
DuPont 990 Thermal Analyzer was used with a DSC cell. The DTA were done
with 4mm columns of powder in 2mm diameter sample tubes. DSC measure-
ments for calibration of the heat flux were done with a solid sapphire
disc directly on the constantan platform without a reference.

For thermal conductivity measurements the DSC cell was used as shown

in Figure 1. An insulator was placed over the constantan disc with an
opening directly over the sample. The insulator was constructed from a
machinable, ceramic-like material, Plastonium C-D, supplied by
Insulation Systems, Inc., Santa Ana, California. The heat sink and a
rod connecting it with the top of the sample were constructed from
99.9% purity, hard temper, deoxidized copper (Federal Specification

§ QQC-503). A nitrogen flow blanketed the samples at 8 cm3/sec.

g The cylindrical samples were in general Smm diameter and 4mm length,

) but each sample was measured accurately for calculation of the thermal
conductivity. Polytetrafluoroethylene (Teflon) and polymethylmerthacry-
late (Plexiglass) were obtained locally. The specific gravities of the
materials were measured to characterize them. The polymethylmethacry-
late was l.l7g/cm3. The polytetrafluoroethylene was 2.16 g/cm3.
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Figure 1. Differential scanning calorimeter modified
for thermal conductivity measurements .
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Both correspond to literature values. The X-14 propellant was obtained
by J. R. Ward of the Ballistic Research Laboratory from the Naval
Ordnance Laboratory, White Oak, MD. X-14 is a high energy, double-base
propellant.

ITI. DIFFERENTIAL THERMAL ANALYSIS

: Samples were heated in both air and nitrogen atmospheres. The

« X-axis temperature scale of the Thermal Analyzer was calibrated by
measuring the melting point of a pure sample of benzoic acid in the DTA.
The x-axis zero shift was adjusted accordingly. A sample of a readily
available propellant material, ammonium nitrate, was heated in the DTA
for comparison with literature results. Its thermogram is shown in
Figure 2. Three endotherms occur below 150°C indicating changes in
structure and an endotherm at 170°C indicates melting. The jagged
exotherm beginning at approximately 210°C indicates strong exothermic
decomposition. This is essentially in agreement with literature results?.

The thermogram of X-14 in nitrogen is relatively simple as shown in
Figure 3. The strong exothermic decomposition begins at approximately
140°C with the highest of the multiple peaks at 198°C. No exotherms or
endotherms were detected prior to the strong exothermic decomposition
peaks. The temperature returned to baseline at approximately 250°C.

DSC thermograms for both X-14 and the plastics show no exotherms or
endotherms to interfere with the thermal conductivity measurements at the
instrument sensitivities used. Other investigators“ have found a detect-
able weight loss commencing at 75°C but any thermal change accompanying
this weight loss should be too small to affect the measurements of thermal
conductivity. A thermogram of X-14 heated in air as shown in Figure 4

has an additional exothermic peak at 339°C. This peak represents oxida-
tion of the decomposition products in air.

IV. CALIBRATION OF THE DIFFERENTIAL SCANNING CALORIMETER

The DSC heat flow was calibrated by calculating the calibration 1
coefficient ET in a specific heat determination on a pure sapphire '
[ARZO ) sample provided with the DSC cell accessory kit. In this method
the difference in Y-axis traces was measured at temperatures of interest
in sample and blank runs. The known value® of the specific heat at Al,07
was then substituted in Equation (2) to derive the calibration co-
efficient ET in m Watt per mv at temperature T.

38, I. DuPont deNemours & Co. (Inc.) Instruction Manual, 900 Thermal
Analyser and Modules, Wilmington, Del., 1968.

“J. R, Ward, Anal. Colorimetry 4 143 (1977).
5D. C. Ginmminge and G. T. Furukawa, J. Am. Chem. Soc 75 522 (1953).
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(Cp) M “r

T
T 60 x Aqs x AY

E

where

Heat capacity at temperature T (;EJEE)

~—

(2]

-~
W

=
]

Sample mass (mg)

—
==
-
"

Heating rate (°C/min)

Y-axis range setting (mV/cm)

=g
> O
<
" 1]

Difference in Y-axis deflection between sample
and blank traces at temperature T (cm).

A typical calibration run is shown in Figure 5. The values of E
calculated in this example were 0,207 mWatt/mV at 60°C and 0.206 mWatt/mV
at 100°C., These were averaged with three other runs to give Egg = 0.200
mWatts/mV and E oo = 02006 mWatts/mV in a nitrogen atmosphere.

V. THERMAL CONDUCTIVITY CALCULATIONS

The following procedure was followed to determine thermal conduc-
tivities of the polymers, polymethylmethacrylate and polytetrafluoro-
ethylene, and the propellant X-14. The sample was placed on the sample
platform of the modified DSC as shown in Figure 1. A thermally conduc-
tive grease such as silicone stopcock lubricant was applied to upper and
lower surfaces of the sample to insure smooth heat transfer into and
through the sample. The copper heat sink, copper rod, insulator, and
glass bell jar were assembled. The space around the sample was
blanketed with a flow of 8cc/sec of nitrogen.

The sample, heat sink, and DSC cell were allowed to equilibrate at
the starting temperature as indicated by temperature constancy. The DSC
cell was then heated over the temperature range of interest (eg.,
ambient to 100°C) at a heating rate of 10°C/min. The heat sink temper-
atures were recorded at the temperatures of interest. The resulting
curve indicates the heat flow into the sample and to the coupled heat
sink. A typical curve is shown in Figure 6 for X-14, The slope of the
heat flow versus temperature curve was calculated at the temperatures
of interest. The thermal conductivity, k, was calculated using Equation
1 at 60 and 100°C as shown in Table I.

In the example of Figure 6, k60 was calculated as follows:

. (.206) (.445) (.382) (10) (60-25.5) _ 2.14 mNatt

k60 (.157) (60-24.0) == T

14
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Figure 5. Specific heat determination of sapphire.
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22.67 SAMPLE : X-14
27.58°C RATE t 10°C/min
o ATM  : NITROGEN
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w
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Figure 6. Thermal conductivity determination

on Polymethylmethacrylate.
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The thermal conductivities were averaged for each material to give
Table II.

Table II. Thermal Conductivity

k60 k100

Sample Material mWatt/cm°K mWatt/cm®K
Polymethylmethacrylate 1.57 1.59
X-14 2.15 2.07
Polytetrafluoroethylene 2.18 2.18

The thermal conductivities measured by this DSC technique for the
two polymers are in good agreement with literature values. Thus, Lucks®
measured the thermal conductivity of polymethylmethacrylate to be
1.54 x 10"3 W/cm °K at 27.1°C and 1.57 x 1073 W/cm °K at 59.0°C by a
longitudinal heat flow method. Krischner and Esdorn’? measured the poly-
methylmethacrylate thermal conductivity to be 1.92 x 10-3 W/cm °K at
25°C (298°K) using a transient heat flow method which has greater
poss1b111ty of error than the longitudinal heat flow method. Larsen
and Long measured the thermal conductivity of polytetrafluoroethylene
to be 1.80 mWatt/cm°K with no temperature given. Schultz and Wong®
measured thermal conductivities of 4.01 x 10-3 W/cm °K for the same
material at 166°C (439.3°K).

The trend of decreasing thermal conductivity with increasing temper-
ature for the X-14 propellant seen in Table II is somewhat different
from that of the polymers, but such a trend has been observed for a
number of explosives such as PBX-9404.% A value of 2.30 x 10-3 W/cm °K
is reported? for nitrocellulose (12% N) with no temperature given.

Thus, both the numerical value and effect of temperature on thermal con-

ductivity measured for the propellant are consistent with literature
values.

6¢c. F. Lucks, G. F. Bing, J. Matolich, H. W. Deem, and H. B. Thompson,
"The Experimental Measurement of Thermai Conductivities, Specific Heats,
and Dengities of Metallie, Transparent, and Protective Materials,"

USAF TR 6145 (1952), AD 95239.

70, Kriechner and H. Esdornm, VDI Forschungshelf 450 Suppl. to Forsch.
Gebiete Ingeniewrw., B. (21) 28-39 (1955) in "Thermal Comductivity of
Non-Metallic Solids," Ed. by Y. S. Touloukian, 1970, IFI/plenum.

84. W. Sehultz and A. K. Wong, "Thermal Conductivity of Teflon, Del-F,
and Duroid 5600 at Elevated Temperatures," Watertoum Arsenal
Laboratoriee Technical Report 397/10, (1958), AD-154351.

98, M. Dobrats, "Properties of Chemical Explosives and Explosive
Simulantse," UCRL-51319, Rev. 1, July 1974.
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VI. CONCLUSION

The Differential Scanning Calorimeter method gives thermal conduc-
tivity determinations comparable with literature results using small
sample sizes and short heating periods which are readily applicable to
energetic materials such as explosives and propellants.
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