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ABSTRACT

Adaptive antennas are often implemented with the Applebaum—Rovells type

adaptive processor. Analog circuit versions of the Applebaum—Rowells

processor usually include a hard limiter between each antenna port and its
correlation mixer, primarily for dynamic range compression. Brennan and Reed

(IEEE Trans. Aeros. and Electron. Sys. ABS—i, 68 (1971]) analyzed the effects

of hard limiting, and their conclusions suggest that it does not degrade the

steady—state performance of the adaptive processor.

This paper shows that hard—limited processors can perform imich worse than

those without hard limiting in situations where the correlation matrix of

array signals has two or more eigenvalues of widely differing magnitudes and

when a sensitivity threshold has been designed into the processor. The

practical consequence is that (depending on the processor design parameters )
when the adaptive antenna encounters two or more interference signals of

different power levels, the larger signal can capture the hard limiter,

allowing the smaller signals to pass through the processor unattenuated.

Specific examples of this effect in both phased array and imaltiple beam

adaptive antennas are presented.
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I. INTRODUCTION

Adaptive antennas have recently found wide application in radar and

communications systems where it is necessary to cancel or “null” inter-

ference signals from sources which are spatially separated from the desired

signal sources. A common implementation of an adaptive antenna is shown in

Fig. la. It is an antenna array comprised of equal gain elements coupled

with an Applebaum—Rowells type adaptive processor (Ref s. 1, 2). In this

scheme the signals from the antenna elements are weighted and linearly

combined to form a single output in which the interference signals from the

various elements tend to cancel one another. The weight settings are

determined by the processor feedback loops. A comprehensive analysis of

the Applebaum—Howells technique can be found in the review paper by Gabriel

(Ref. 3).

In analog circuit versions of the Applebaum—Howells processor, it has
been common practice to insert a hard limiter between each antenna port and

its correlation mixer as shown in Fig. lb. There are two reasons for doing

this. Both relate to the convenience of circuit implementation. At

first, it would appear that the dynamic range required of the correlator

and subsequent circuitry could be reduced considerably. (We will find that

this is strictly true only in the special case of a single interference

source.) Secondly, the correlators in adaptive antenna systems are often

implemented with readily available, balanced diode mixers. This type of

mixer is inherently a hard limiting device because one of its inputs, the

local oscillator (LO) input, saturates the diodes and drives them in a
switching mode, therefore the output is sensitive to the phase of this

input, but not to its amplitude.

Gabriel (Ref. 3) and Brennan and Reed (Ref. 4) analyzed the effects of

hard limiting on the performance of Applebaum—Howells processors. Their

conclusions suggest that hard limiting has no harmful effect on the funda—

mental principle of operation of the adaptive processor because no information
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Fig. 1. Applebaum—Howells adaptive antenna processors:
(a) standard , (b) hard—limited.
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is lost by amplitude limiting one input of the correlator as long as the

phase dependence is retained. This conclusion about hard limiters must be

applied with caution. There are adaptive antenna applications for which

the performance of a hard—limited processor is much worse than one without

hard limiting. The problem with hard limiting arises when the correlation

matrix of array signals has two or more eigenvalues with widely different

magnitudes and when the processor has a sensitivity threshold. Multiple

eigenvalues might arise, for example, f rom separate interference sources or
from a single, broad—band source coupled with the frequency dispersion of
the array , or from a combination of these effects. The sensitivity threshold

of a processor is the power level below which it does not respond to

interference signals. An example of a sensitivity threshold is found in

the adaptive loop of Fig. la where the loop gain, u , sets the threshold
level. Threshold effects may also arise from preamplifier thermal noise,

from noise in the post—correlator circuits, or f rom quantization levels in
digital processors.

Figure 2 is a simple illustration of the problem. The computer—

simulated performance of two Applebaum—Howells processors, with and without

hard—Limiting, is compared for the case of a linear array antenna of five,

equal—gain elements. Both processors have the same sensitivity threshold.

Two incident interference signals with power levels 10 dB and 40 dB above

the sensitivity threshold are incident on the array from different directions.

Since both signals are above threshold, the adaptive processor should null

them both. The two adapted antenna gain patterns are shown in Fig. 2b

along with the “quiescent” or unadapted pattern. The standard Applebaum—

Howella processor (without the hard limiter) places nulls on both the large

and small interference sources as desired whereas the hard limited pro—

cessor nulls only the larger signal. The smaller signal, although far
above threshold, is not attenuated at all. In this example, the hard—

limited processor is totally ineffective in meeting its requirement, which

is to cancel all interference signals above the threshold level.

• 3 
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In this paper we explore the reason for this failure and show that it

is fundamental to the hard—limited correlation mixer. For phased array

antennas, we present a simple analytical explanation based on Brennan and

Reed ’s previous result (Ref. 4). Detailed computer simulations verifying

the simple analysis are described. (It has also been verified in hardware.)

We show that it is possible to circumvent this problem by increasing loop

gain. However, in doing so, one gives up one of the major supposed ad-

vantages of hard limiting —— dynamic range compression. The use of hard

limiting with multiple—beam antennas is discussed and compared with the

phased array application. The hard—limiter effect on cancellation is not

as severe in a multiple beam antenna as in a phased array; however, another

problem arises —— that of pattern degradation.
We conclude that there is no theoretical advantage in hard limiting if

more than one interference source (eigenva].ue) is encountered, and there

are some decided disadvantages. Practical considerations such as component

availability may still dictate the use of hard limiting; however, its

implications should be thoroughly understood before one proceeds.

II. PHASED ARRAYS

The sensitivity threshold, 
~T’ of an adaptive processor is often a

basic design parameter. It can provide a simple means of discriminating

between desired signals and interference signals on the basis of power

level. It is often the case in radar and spread—spectrum communications

applications that the minimum disruptive interference signal has greater

power than the maximum desired signal. In these cases the sensitivity

threshold can be set between these two power levels. It is then the task

of the processor to sense all signals above threshold and null them to the

extent that the total interference power at the processor output (receiver

input) is equal to or less than In this way the receiver is guaranteed

an acceptable interference level at its input and the desired signals are 4
not sensed by the processor.

p
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Figure 3 illustrates the threshold effect in standard and hard limited

processors. It shows processor output power as a function of the input

power from a single interference source for three cases: (a) unadapted ,

(b) adapted for a standard processor , and (c) adapted for a hard limited

processor. The expressions for these curves are derived in Section III.

“Analysis” (Eqs. (18) and (20)). The contribution of preamplifier thermal

noise to the output power has been neglected as it does not contribute to

an understanding of the effect we are discussing. For the purposes of this

paper , we define the interference cancellation in decibels provided by the

processor to be the difference between the unadapted and adapted curves.

We will also assume that the maximum tolerable interference power at the

processor output is 0 dB (on a relative scale) and that the largest

interference power we are designing for is +40 dB. In other words, the

cancellation requirement is 40 dE.

In comparing the two processors, note that no cancellation takes place

in either processor when the input power, P1, is less than the threshold

power , 
~~ 

As mentioned above, this fact is used to avoid the nulling of

desired signals. At P1 ~T 
the cancellation of both processors is 6 dB.

As increases beyond 
~T’ 

the standard processor’s output power decreases

in inverse proportion to P
1 whereas the hard—limited processor

’s output

reaches a level of and remains constant at that level for larger values

of P1.

When P
1 
is above threshold , the standard processor obviously provides

twice the cancellation in decibels of the hard—limited processor. However,

since is presumably an acceptable level of interference, the additional

cancellation of the standard processor is not needed. Moreover, the hard—

limited processor seems to require only half the output dynamic range in

decibels of the standard processor, therefore we might expect it to be much

easier to implement.
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I

To pursue this point further , consider a single interference source

whose power can vary from threshold to 40 dB above threshold. Without hard

limiting (Fig. la), both inputs to the correlator can vary over a 40 dB

range and, therefore, the correlator output can vary over an 80 dB range. —

With hard limiting (Fig. lb), one correlator input is driven at a fixed

power level, consequently its output varies by only 40 dB, half the dynamic

range of a correlator without hard limiting. We will see below that this

simplified analysis is strictly valid only in the case of a single inter-

ference source, and that the apparent advantages of hard limiting are lost

when there is more than one source of interference.

To see how the hard—limited processor can fail in the presence of

multiple sources, assume that there are two interference sources of power

levels P1 and P2 (or more exactly, that the signal correlation matrix has
two eigenvalues, 

~l 
and P

2), both of which are above threshold. Assume

that P1 >> P2. We can examine the contribution of P2 to the adapted output

power by holding P1 constant and plotting processor output power as a

b 

function of P2. Figure 4 shows this plot for two cases, p1 io2 . 
~T and

P1 
= 10 P~ (Section III, Eqs. (18) and (20)). Notice that the hard—

limited processor ’s output exceeds threshold by an amount depending on P1
while the standard processor ’s output never exceeds threshold. In terms of

the difference between adapted and unadapted output powers, we can see that

the hard—limited processor provides a worst—case cancellation of only about

26 dB instead of the required 40 dB. This behavior of the hard—limited

processor can be interpreted in terms of a variable sensitivity threshold

for the smaller interference signal. We will see in Section III (Eq. (20))

that the smaller signal is not attenuated until it exceeds a value of P2
This behavior is also evident from Fig. 4. We can interpret

as being an effective sensitivity threshold for the smaller signal,

the level of which is set by the larger signal. In the example of Fig. 2,

for instance, the smaller interference source is essentially unattenuated

because its power is only 10 dB above the desired threshold, 
~T’ 

whereas
the effective sensitivity threshold for that particular case is v j i~j = 20 dB.

8
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These results are based on the simplified analysis presented in

Section III. The validity of this analysis has been checked in a variety

of detailed computer simulations and hardware performance measurements.

For example, Fig. S presents the results of an exact, time—domain simulation

of an adaptive antenna intended for space communications use. It is a

thinned array comprised of seven crossed—dipole elements (7 dB gain). The

operating field—of—view is 180 (earth coverage from synchronous altitude)
in which there are two uncorrelated interference sources, one of which has

a constant power, P1 
= 1O4PT. The power of the smaller source, P2, varies

from —10 dB to +40 dB relative to 
~~ 

Figure 5 compares the output powers

of standard and hard—limited processors as functions of P2. Results are

shown for band—limited , gaussian interf erence waveforms and for incoherent
tones. Note that the hard—limited processor’s output exceeds threshold by

13 to 17 dB at the point where 
~2’~T 

— 20 dB. This is in good agreement

with the approximate analysis.

The conclusion is that hard limiters are not advantageous in adaptive

processors where a fixed sensitivity threshold is desired and where multiple

interference sources will be encountered. In these situations, signals

that are much smaller than the largest signal, but still above the desired

sensitivity threshold , will pass through the processor essentially

• unattenuated . This conclusion also applies to systems for which the

bandwidth and array dispersion are such that a single interference source

can produce several eigenvalues above threshold. In this case a hard—

limited processor will tend to sense and null only the largest of these

eigenvalues .

By lowering the threshold, 
~T’ 

it is possible to design a hard—limited

processor that will guarantee a tolerable level of output interference for

any input power within the design range (0 dB to 40 dB in this case).

Lowering the threshold , however , negates one of the major incentives for
hard limiting because the circuit dynamic range required of the hard—

limited processor will be essentially the same as it would be for a standard

10
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processor. This is shown in Section III, Eqs. (25) and (26). Also , if

this approach is followed , the possible advantages of a fixed sensitivity

threshold are lost since the largest interference signal effectively

determines the sensitivity threshold for other interference signals.

III. ANALYSIS

The failure of the hard limited processor to null the smaller of two

interference sources can be explained by considering the hard—limited

correlation mixer to be a variable gain device whose gain is inversely
proportional to total signal amplitude. Consequently, when large and smal]

signals are present simultaneously, the large signal reduces the gain to

• the point where the weight control loops are not sensitive to the small

signal, even if it is well above the desired level for cancellation.

Figure 6 shows equivalent circuits for both ideal and hard—limited

• correlators. The two inputs to each correlator are band—limited signals at

a center frequency of w .  The first input is described by

jwt
v1(t) — Re (E1(t) e ~ 

) 
(la)

where

E1(t )  = V1(t) ej +l (t)  (lb)

- 

• E1(t) is the complex envelope of v1(t ) .  The I (in—phase) and Q (quadrature)
output voltages of the ideal correlator , after low—pass filtering , are

given by

1(t) — ~ V1(t) ‘12 (t) cos (~2 ( t )  —

(2)
Q( t )  ~ V1(t) V 2 (t) sin(+2 (t)  —

Henceforth, the fac tor of -
~~ will be included in the definition of loop

gain , ~ (Fig. 1). The units of ~ are volts
2. It is convenient to use

12
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complex notation for the correlator output.

- X(t) — [1(t) + jQ(t)J — E 1(t )  E2 (t) (3)

Inspection of Fig. 6(b) yields the expression for the hard—limited

correlator’s output.
*E1(t )  E2 (t) — j p  (t)

-
~~ X (t )  — h 

IE (t) I 
— he E2 (t)  (4)

Notice that X(t) retains the phase but not the amplitude of the first

input. As mentioned before, correlators implemented with diode mixers can

be modelled as hard—limited correlators. The parameter “h” in Eq. (4)

represents the hard limiter output voltage.

Processor operation is described in terms of the complex vector

differential equation governing the time evolution of the weights. For a

complete derivation, the reader is referred to Gabriel’s paper (Ref. 3).

From Fig. 1 it is seen that the weight vector of an Applebaum—Howells

processor with a first—order low—pass filter is governed by

-
- T~I + W + ~~X - (5)

where T is the filter time constant (equal for all channels), W is the

- weight vector, B is the stasering vector (which determines W in the absence

• of interference signals), ~ is the loop gain, which determines the sensitivity
- threshold. X is the vector of correlator outputs. The complex envelope of

the processor output is

— ET . W  (6)

where E is the vector comprised of the array signals defined as in Eq. (1)

I and the superscript T denotes the matrix transpose. Following Eqs. (3) and

• (4), the output of the nth correlator is

14 -
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STANDARD X = E (7a)

HARD X = h . FE
n

I . y  (7b)
LIMITED

We will make the usual assumption (Ref. 3) that the processor closed—loop
bandwidth is small , therefore only the DC component of correlator output is

• - significant in determining W. Substituting Eq. (6) into (7),  the DC
components of the correlator outputs are

N 
*STANDARD : X — ~ ~E E .~W (Sa )n ~~n m , mm 1

*HARD N E E
LIMITED : X — h 

m~1 
( n m )  Wm (8b )

where the overbar denotes the DC component or expected value. Equation

(8a) is easily expressed in terms of the correlation matrix of array signals,

which is def ined by

R — E E  (9)
nm n m

Equation (8b) for the hard limiter cannot be simplified in general. In the

special case of gaussian interference signals, Brennan and Reed found that

the following simple relationship holds (Ref. 4).

*

(E 
E
m) =j R (10)

~~~~4 V 2

where V2 is the mean squar:d magnitude of the nth array element voltage.
For an array of equal—gain elements V2 — V2 for all n.
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An expression for the steady—state adapted weight vector is obtained
by setting ~Z — 0 in Eq. (5) and using (8), (9) and (10).

STANDARD : = [I + J
1 

~~~ (h a)

HARD _______ 
—l

LIMITED : W — [
~ 

+ 
iT 

B (llb)

14 V
In Eq. (llb) we have assumed equal interference power in all array elements,

which restricts this analysis to arrays of identical antenna elements.

Section IV discusses the case of Multiple—Beam Antennas in which the element

powers are not equal.

Proceeding with the solution of Eq. (lla) for the standard processor,

it is customary to work in the ~ matrix eigenvector coordinate system (Ref.

3) where the solution for the adapted weights can be expressed as

= (1 + P )  i — 1, 2, ..., N (12)

where N is the number of antenna array elements. If is the ith eigenvector

of ~~, then W~ = 
(4 

. W) and Bj — (~~ • B) . P~ is the 1th eigenvalue of

For the hard—limited processor, the solution for the adapted weights

(Eq. (hlb)) is

-
~ 

I
~~iIw — 

_______ 
(13)

( l+~~h~~~L.. ,)
To relate V2 to the eigenvalues of R, it is well known that the sum of the

diagonal elements (trace) of a matrix is equal to the sum of its eigenvalues.

16
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N N

~ R 1~ = ~ P~ (14)
i—i i—h

For the case of equal element power, Ru 
= V

2
. Under the assumption of a

single dominant eigenvalue, P1 >> P 2, P3, 
~~~~~~~ 

P~~ the following approximation

is very accurate:

N V 2 
~ P1 (15)

Equation (15) becomes

w — (16)
~ 

(l+~~b~
f
~~~~Pi)

The adapted output power of either processor can be calculated from

~
‘out 

— 

i~ l 
I~~I

2 p (17)

where the are given by Eqs. (12) or (16). To compare the performance of

the two processors, consider a simple case where there are only two non-

zero eigenvalues of the correlation matrix. First, recall that the
sensitivity threshold of a standard processor is = u~~. By substituting

Eq. (12) into (13) we find an expression for the adapted output power of

the standard processor:

STANDARD: r
out 

= 1811 7 p \~ 
+ 1821 / p

2 2 (18)

(~l +~~
i
) 

~~
+
~

_)
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We will assume that P1 ~- >  P~ . The corresponding definition for the

sensitivity threshold of a hard—limited processor is

2 2 ~~ — l
— (~~h N )  (19)

With th is exp ression , the hard—limited processor’s output power is given
by:

HARD p p
LIMITED : 

~~~~ 
— 1B1 1

2 
~~ lB2 1 p

2 2 (20) 
L

(‘
~~~~~ lPT Y  

~~~~~~~~~~~ )
In comparing with Eqs. (18) and (20) , note that in Eq. (18) is replaced
by 1

~l~ T in Eq. (20) . Since 
~T represents a constant sensitivity threshold

in the standard processor , the behavior of the hard—limited processor can

be interpreted in terms of a variable threshold , which is given by v’~j~~ .
A large value of P1 can raise the sensitivity threshold to the extent that

is not sensed or nulled. Equations (18) and (20) are plotted in Figs. 3

and 4 assuming 1B1 1 — 

~8~l — 1. Figure 3 shows the contribution of P1
alone . Figure 4 shows the contribution of P2 for two cases , P1 — ~o2
and P1 — l0~ •

By differentiating Eqs. (18) and (20), we f ind the max imum output

interference power for the two processors (still assuming I~1I 2 — 1B 2 1
2 

— 1).

STANDARD : — 2 ~T for P1 — P
2 

— 

~
‘T (21)

HARD 
_ _  _ _

LIMITED : I’0~~ ~ ~ 
P
~~lI’T ; for P1 >> 

~T and P2 — P’PlI’T (22)
max
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Equations (20) and (22) , derived from Brennan and Reed’s result for gaussian

waveforms (Ref. 4), show that a constant sensitivity threshold is not

achievable in a hard—limited processor . By lowering the hard—limited

threshold , 
~T’ the output interference power can be kept below a specified

value; however , this increases the required cancellation capability of the
processor and therefore the circuit dynamic range requirements. If P1
represents the tolerable interference power level at the processor’s

output , we would select 
~T 

according to Eqs. (21) and (22). Allowing a few

dB for margin, we would select:

STANDARD : ~ 2P
1 

(23)

HARD LIMITED : “P P ~ 4P (24 )max T I

P “ 16P2/pT ~ I max

where P is the maximum input interference power for which we are designing.

The hard—limited processor threshold is lower by a factor of 8
~I’~max 

than

the standard processor threshold. Recall that cancellation is the ratio of

unadapted to adapted output power. From Eqs. (18) and (20) we have

STANDARD : C = P 2 /P 2 
= 1(P /p ) 2 (25)max T 4 max I

HARD LIMITED : C = P /P = 1—( P /p ) 2 (26)
max T 16 max I

The required cancellation is practically the same in either case, therefore

the circuit dynamic range requirements are hardly less severe in a hard—

limited processor than in a standard one.

F
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The variable thresbold proper ty  of  a hard—limited processor results

from the variable gain of the corr e la tor .  Expressions for the correlator
outpu t vector are obtained by combining Eqs. (8a) and (9) for the standard
correlator and (8b) , (10) and (15) for  the hard limited one .

STANDARD : X — (27)

HARD LIMITED : X - h R • W (28 )

The factor involving can be interpreted as a variable gain. These

equations hold for gaussian waveforms. Hard—limited correlators behave

very similarly for tone inputs as can be shown by a simple example involving

two incoherent tones. In Eqs. (3) and (4), let the correlator inputs be

the sum of two sinusoids separated by ~~ in frequency.

E1( t )  = E2 ( t )  — S1 + S2ei~~~
t (29)

where 1s 1 1 >> 1s2 1. Substituting (29) into (3) gives the output of a
standard correlator

X ls 1l~ + 1s2 1 2 + 2Re[S~ S2 ei~~
t
) (30)

Because of the low—pass filter in the feedback loop (Fig. la) only the DC

component of (30) is significant to the steady—state operation of the

nulhing processor. The output of a hard— limited correlator is obtained by

substituting Eq. (29) into (4)

X h i s 1 + S2 e~~
’
~~l - ~~~~ + S~ + 2S1S2 cos~wt (31)
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A Taylor series expansion of Eq. (31) to second order in Z 5
2/S1 yields

X = h i  ~1J [i + -
~~~ 

z2 -~~ Z cos~ t — -
~~~ Z2 cos2wtj (32)

Again, only the DC component is significant. The standard and hard—limited

correlators are therefore characterized by the following expressions.

STANDARD : X = [1s1 i
2 

+ 1s 2 i 21 (33)

HARD LIMITED : X — ~
1
~~h

1 
[1S 11

2 +4 ~ 1s 2 1 2 ] (34)

In comparing Eqs. (33) and (34), the factor of in Eq. (34) is unimportant

(it would be unity for gaussian instead of sinusoidial waveforms). The

crucial difference in the two correlators is that the hard—limited version

has a variable coefficient or “gain” which is inversely proportional to the

amplitude of the larger signal. This property of a hard—limited correlator

results in the variable sensitivity threshold of the processor because the

threshold level is determined directly by the effective loop gain. This

example indicates that hard—limited processors should behave similarly

(within a few dB) for tone or gaussian inputs. This is borne out by the

simulation results presented in Fig. 5.

IV. MULTIPLE—BEAN ANTENNAS

Most of the reported applications of the Applebaum—Howells adaptive

processor have been in conjunction with phased array antennas; however, it

can equally as well be used with multiple—beam antennas (Ref. 5). A

multiple—beam antenna (MBA) illuminates the field of view (FOV) served by

the antenna with a set of fixed—position beams (or - radiation patterns), the

composite of which covers the complete FOV. Generally, adjacent beams

overlap at a gain level of about 4—5 dB down from the beam peak gain. For

a satellite in geosynchronous orbit, earth coverage illumination is best

21
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achieved (Ref .  6) by positioning the beams in a hexagonal pattern which

results in a smaller center—to—center  beam separation than a rectangular

pat tern . The total number of  beams must be one of the series of numbers,

7, 19, 37, 61, ... in order to fully illuminate the circular FOV . To each

beam set , there corr esponds a g iven sized aperture consiBtent with this
number of beams. As the number of beams within a fixed FOV is increased ,

the aperture size must increase correspondingly. For a large number of
beams , there is significant coupling only between adj acent beams. Because
of this , the correlation matrix def ined at the beam output ports is
diagonally dominant. Thus the loops of an adaptive feedback processor used

in conj unction with an MBA tend to be partially decoupled. In fact , in the

limit of an ideal set of narrow beams with no beam coupling , each loop of

the processor can sense only a single interference source, and all the

improvements in circuit dynamic range previously attributable to the hard

limiter for a single source are realized. As a consequence of this 1oop

decoupling , the spread in eigenvalues of the correlation matrix as sensed

by a hard—limited processor can be considerably smaller when the processor

is used in conjunction with an MBA than it would be for a phased array

(Ref. 5). This eigenvalue compression often makes the smal]er eigenvalues

appear to be above the desired sensitivity threshold for an MBA in cases

where they would be below threshold with an equivalent phased array.

The differences in performance for hard—limiting processors used with

either phased arrays or MBA’s can best be explained by generalizing Eq.

(llb) so that it_applies to MBA ’s as veil. For the MBA, the mean squared

output_voltage, iv 2
, is different for each beam port. Define

iV~ i
2 
and define the diagonal matrix ~ according to

A — / ~ (35)n,m n n ,m
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where t5 is the Kronecker delta function: ~5 — 0 for n ~ m; tS 1n,m n,m n,m
for n — m. Modifying Eq. (10) in this way, substituting it into Eq. (5)

and setting ~J — 0, we obtain for the steady—state adapted weight vector,

— [I + ~~~~ • • B (36)

where we have defined the constant C — uhvcTh . Equation (36) for the MBA

can be compared to Eq. (hlb) for the phased array. The most notable

difference is that the adapted solution for W is now characterized by the

eigenvalues and eigenvectors of A • for the hard—limited MBA, whereas

it depends only on the eigenvalues and eigenvectors of R for the hard—

limited phased array. One can show that the effect of the matrix, A 1 is

to compress the spread in the eigenvalues of the matrix R relative to

those of R alone. Quantitative estimates of the compression ratio as a

function of the number of beams for a geosynchronous satellite, earth—

coverage FOV are presented in Ref. (6). However, the eigenvectors and
— leigenvalues of A • R are diff icul t  to compare with those of on an

analytic basis , so that a simple analysis of the characteristics of a hard—

limiting MBA is not possible in the way that it is for a hard—limiting
phased array . Instead , we present an intuitive development along with

illustrative computer simulations of specific interference scenarios.

Consider now a hard—limited Applebaum—Howells processor used in

conjunction with an MBA antenna configuration employing orthogonal beams .

Orthogonal beams are ones for which the radiation pattern of all other
beams have nulls at the beam maximum of any single port. With orthogonal

beams, one anticipates good 1oop decoupling when one of the two sources is

near a beam maximum, whereas maximum coupling occurs when the two sources

are at adjacent triad locations (i.e., points where three beams intersect).

In the case where two sources are positioned in distant beams, R is nearly

diagonal. A~~ • R is also nearly diagonal, therefore each loop acts nearly
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independently of the others. Conscquenti y, the most interesting situations

occur when the two sources are in adjacent , coupled beams so that without

loss in generality, we can r e s t r i c t  consideration to a 7—beam geometry.

To compare MBA performance with the phased array results of Fig . 5, we

will again assume two interference sources , P1 and P2, set the power of P1
— 10 P2 and examine the quiescent and adapted output powers as P

2 is

varied , using the 7—beam geometry shown In the insert of Fig . 7. Results
are given in Fi g. 7 for three d i f ferent  relative positionings of the two
interference sources: adjacent beam peaks, adjacent triads, and a beam peak

and adjacent triad . Observe that when either source is at a beam peak ,
both sources are sensed and nulled for all values of P

2/Ps. This is a

consequence of the orthogonal beams and the resultant ioop decoupling

achieved when one source is at a beam maximum. When the sources are at
adjacent triads, where maximum beam coupling occurs, there is a range of

over which the weaker signal is unattenuated. In t his case the MBA

behaves like the phased array and a worst—case cancellation of 29 dB

results at a P2 of approximately 
1
~l~t 

• This is 7 dB better than the 22

dB cancellation realized with the phased array under similar conditions

(compare Fig. 7 with the tone results of Fig. 5). Figure 8 gives similar

results for a 60—dB dynamic range system, where we set P1 — 10
6 PT. In

this case a worse—case cancellation of 40 dB is achievable with the 60 dB

dynamic range processor. This compares with a 34 dB cancellation for an

equivalent hard—limited phased array processor. It appears, therefore,

that hard—limited processors tend to give better cancellation performance

when used with MBA’s than with phased arrays.

It should be noted that the spatial resolution of the null formed on

the interference sources is compromised somewhat by a hard—limited processor.

To show this, we examine the solution for the adapted weights of an MBA

processor with and without hard limiting. In the limit as loop gain

approaches inf inity we have
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Fig. 8. Exact simulation result same conditions as Fig. 7 except P1 — 106.P T :
(a) unadapted , (b) adapted , P 1 & P2 at separated triads, (c) adapted, P1 & P2 at
adjacent triads, (d) adapted , P1 at beam peak , P2 at adj acent triad .
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~ 

. B) (37)

Note that the effective steering vector is now B, and is dependent on

the interference scenario. The beam which contains the largest source is

weighted most heavily. We could compensate for this scenario—dependence

measuring the output of each beam and applying a beam steering vector given

by A 1 . 
~~~~, where is the desired steering vector. (In a phased array,

A is a constant ti~ies the identity matrix and the steering vector is

inherently scenario—independent.) Figures 9 and 10 show typical radiation

patterns of an MBA with and without a hard—limited processor corresponding

to the scenario of Figure 7 with interference sources at adjacent beam

peaks. Clearly the spatial resolution of the null in one plane has been

compromised by the hard limiter. This effect would be disadvantageous in

an application where the antenna is intended to serve a community of users

spread uniformly over the FOV .

It should be mentioned in passing that there is perhaps a better way

than hard limiting to achieve dynamic range compression in adaptive MBA

systems. This is the scheme of weight pre—processing suggested in Ref. 6.

The pre—weighting algorithm tends to equalize the power outputs from each

of the antenna ports thus attenuating the larger interference sources to a

level comparable with the smaller ones. In this case , the dynamic equation
of the weights takes the form

T
~~
+ L I + pA . R . è J .w  - (38)

where A is the diagonal matrix of attenuation factors applied by the pre—

processor to each beam output port.

It is easy to see that A does not affect the steering vector since it

is diagonal. The expression
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Fig. 9. Radiation pattern , standard processor , P 1 — P 2 104 PT, 
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at adjacent beam peaks.
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Fig. 10. Radiation pattern, same as Fig. 9 except hard—limited processor.
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takes the form of a sum of hermetian dyads , therefore the only effect of
is to modify the relative strengths of the sources seen by the processor.

1~

I 30

__________________________________ — ~~~~~~~~~~~~~~~~~~~~~ —-~~r~ ~~~~~~~- - ~~~~~~~~~~~~~~~~~~~~~ ~~~



— -- -~~~~~~---—-.- ,--~ . ~~
-—--

~~
—-“.

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -  —,-------- - -~ -----~~

T

- s  

_ _ _ _ _
REFERENCES

1. P. W. Howells , “Intermediate Frequency Side—Lobe Canceller ,” U. S.
Patent 3 202 990 , August 24 , 1965 (filed May 4 , 1959).

2. S. P. Applebaum, “Adaptive Arrays ,” Syracuse University Research
Corporation , Report SPL TR 66— 1 (August , 1966) .

I 3. W. F. Gabriel , “Adaptive Arrays — An Introduction,” Proc. IEEE 64 ,
239 (1976).

1 . 4. L. E. Brennan and I. S. Reed , “Effect of Envelope Limiting in Adaptive
Array Control Loops ,” IEEE Trans . Aerospace Electron. AES—7 , 698 (1971).

5. J. T. Mayhan , “Adaptive Nulling with Multiple—Beam Antennas,” IEEE Trans.
I Antennas Propag. AP—26 , 267 (1978) .

1 
6. A. R. Dion and L. .1. Ricardi , “A Variable Coverage Satellite Antenna

System,” Proc. IEEE 59, 252 (1971) .

31

L __ __ _ _  -~~~~~~~~~~~~~~ - -~~~~~~- --~~~~~~~~~_


