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ABSTRACT

Fundamental investigations have been performed on the behavior of
unsteady compressible turbulent and laminar boundary-layer, andt boundary-layer-like, flows experiencing local reversal and separation.
An advanced numerical computational method was used, based on an
implicit-AD! numerical integration technique. The computing capa-
bility and economy of the method permit a systematic study of the
subject flows, from first-order to higher-order representations. The
research extended earlier work performed by Sybucon which was also

I supported by the Army in collaboration with NASA Ames Research Center.
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NOTATION

h total heat flux

p pressure

t time

u,v,w fluctuating velocity components

x,y,z local orthogonal coordinates

A1 through A6 numerical integration matrices

F vector of dependent variables

G vector of values of F

H total enthalpy

L turbulence dissipation length

P,Q numerical integration matrices

Q total mean velocity

T temperature

U,V ,W mean velocity components

p density

~~ 
shear stress components

c rate of turbulent dissipation

v coefficient of kinematic viscosity

Bar () time averaged quantity or vector

Prime ( )  fluctuating component

111
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I INTRODUCTION

Unsteady boundary-layer separation is a limiting factor in the performance

of many aerodynamic systems: helicopter rotors, turbine blades, the lifting-

surfaces of high-maneuverability vehicles, and so forth [1]. The successful

design of such systems is far from straightforward because of the complexity

of the associated fluid mechanics , and because experimental data are scarce

and costly to obtain . In the absence of comprehensive measurements , know-

ledge of unsteady separating flows is being acquired largely through the

intel l igent use of numerical experimentation . Again because of the lack of

comprehensive measurements, the numerical experiments are being performed

using models whose validity can only be inferred by extrapolation of results

from other flow regimes: primarily steady flows. The need for this extra-

polation places increased emphasis on the need for fundamental correctness

in the models themselves , and a certain sophistication of the models is

called for, subject to the obvious economic constraints.

• ~. Extensive calculations have been carried out, over the last several years, to

investigate the properties of time-dependent turbulent boundary layers [2,3,4,

5,6]. It has been shown that the effects of time-dependence are to delay the

onset of flow reversal in the boundary layer [4], and, in many cases, to

delay the onset of separation - - in the sense of detachment of the outer flow

from the body surface -- even more [5,6]. Reversal and separation are dis-

tinct events, in unsteady flow [7], and between them lies a flow regime in

which the boundary layer remains thin despite the presence of reversed flow

close to the body surface. The existence of this intermediate regime has an

1
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important bearing on the sequence of events which lead up to dynamic stall

[1,8], and it permits the use of first-order boundary-layer theory to study

the flow characteristics therein [5,6]. Studies of this latter type have

been made for flows which approach separation monotonically [4,5], for flows

which are perturbed but subsequently allowed to relax towards steady-state

conditions [9], and for oscillatory flows in which the separation-provoking

conditions are alleviated during part of each cycle [9]. In flows subject

to a progressively severe retardation of the outer inviscid stream, a region

of reversal forms and grows in extent with increasing time . As the reversal

develop s , the disp lacement thickness grows larger , but it is not until  later

that a more rap id increase of displacement thickness accompanies the onset

of a singularity in the solution . Interesting and important data were

generated by all of these studies, leading to an increasing body of know-

ledge about the reversal/separation phenomenon.

With the intention of elucidating the details of the flow in the v ic in i ty

of separation , some calculations were done for unsteady laminar flow using

the two-dimensional , incompressible Navier-Stokes equations [9]. The Navier-

Stokes equations do not become singular , when separations occurs , but do

portray the increasing displacement thickness in situations where a

singularity appears in the first-order boundary-layer equations . The

results of the calculations using the Navier-Stokes equations helped to

clarify the solutions of the turbulent boundary-layer equations obtained

earlier, and also served to relate the work on turbulent flows at Sybucon

to studies made elsewhere for purely laminar flows [10, eg.].

2 
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The work done by Sybucon on time-dependent turbulent boundary layers , up to

the time of the present study, was all  done using a calculation method based

on the integration of the partial differential equations , together with a

turbulence model involving the turbulent kinetic-energy equation, by means

of an explicit numerical scheme. Although the method served to provide a

wide range of usefu l results , significant weaknesses became apparent . One

of these was the necessity for matching the numerical solution to the Law

of the Wall in the region close to the body surface . The use of approximate

• relationships in the wall  region -- which is crucially important to the

dynamics of the reversed flow -- was of increasing concern . Another weak-

ness was the use of an explicit numerical scheme which leads to excessively

long computer run-times for flows of practical interest.  Furthermore , the

internal determination of integration step size, necessitated by the

explicit formulation , made it more difficult to describe certain types of

flow -- notably oscillatory flows -- than would be the case if the temporal

node points could be specified freely by the user . Another l imitation in the

existing method (not, this time, related to the explicit numerical scheme)

was its restriction to incompressible flows . Aerodynamic systems rarely

operate in purely incompressible flow , and it was felt  to be of interest to

explore the effects of compressibility on unsteady reversal and separation.

3
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II THE CALCULATION METHOD

The method involves the integration of the following governing equations,

in which x and z are measured in the developed surface of the cylinder (x

normal to the generators, and z along them), and y is measured normal to

• the developed surface:

1)11 ~~x a~iIioflicfltuIIi p ~~-- - + — = () (fl

DW Z _ 0  2

therma l energy p~~~~
-
~~~ 

(h + QT) = 0 (3)

-i
D —~~U — SW• turbulent kinetic energy p ) + p uv p vw .

~~
— (4)

+f_ (~~~+~~-q 2v) + pc = 0,

together with the continuity equation :

(p11) + i—. (pV) = 0 (5.)

the d e f i n i t ion of the convec t ive  de r iva t ive :

(6 )ot ~ t

and the usua l per i pheral  re l a t i onshi ps:

(7)

4
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z U 2 + w 2 (8)

T
2

1
2
+ t

2 (9)

• 
- R = C T + ! Q2 (10)

p 2

—

T = IJ - p UV ( 1 1 )

aw —

T = 
~~ r— - p vw (12)

h = k ~.1. - p . (13)

The turbulent shear-stress components are assumed to be functions of the

turbulent kinetic energy and the mean rate of strain:

• L ~IJ (14)q 
—~- l/2 ay
q

L 3Wq —.4/2 ay (15)
q

where L is the dissipation length, and the corresponding relationship for

the turbulent heat flux is

~~~ . 
±;.i.~iTT 1..



The dissipation length is assumed to be the usual prescribed function of

however, 
~E 

is not now the local boundary-layer thickness itself, but

is a length related to it via a rate equation whose characteristic time is

6a/Q . The effect of the introduction of this rate equation is to place the

turbulence model on essentially the same status as the two-equation models

used by several other investigators.

Experimental data for steady flow indicates that the function f , in Equations

(14 , 15) , can be assumed to be linear. The corresponding form for g, in

Equation (16), can be determined from f by specifying the distribution of

turbulent Prandtl number across the boundary layer . In the present cal-

culations this Prandt l number is taken to be a constant, but the method is

not restricted to this form .

The above equations are formulated for turbulent flow. Calculations for

laminar flow are performed simply by suppressing the turbulent kinetic

energy, i .e . ,  by specifying

-

~~~

q = 0 ,

whereupon the equations become identical to the compressible laminar boundary-

layer equations. It will be noted that the viscous terms are retained in the

momentum and thermal energy equations. The solution for turbulent flow is

continued through the viscous sublayer to the body surface; the solution is

not matched to a separate inner-layer calculation in the wall region .

The four principal governing equations (2 momentum, thermal energy, and

6



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

turbulent kinetic energy) can conveniently be written as a matrix-vector

equation:

A1F + A 2~~~~+ A 3 ~~~+ A 4 ~~~+ A 5 
!~ .+A

6 = 0 , (18)

in which F, where TF = fU , W , 1, q }, (19)

is the vector of the principal dependent variables, A1 through A5 are square

matrices of order 4, and A6 is a four-dimensional vector. A1 through A6 are

functions F, but are regarded as known, at any given iteration level , via

the customary linerization process.

Equation (18) is solved in a three-dimensional domain: two space dimensions,

x,y describing a plane normal to the generators of the cylinder, and the

time dimension, t. The calculation advances in the positive time direction

yielding the complete solution in the x - y plane at each step (Figure 1).

The node points in the x - y plane are scanned by an alternating-direction

(ADI) technique: a partial solution is first sought along lines x = constant,

and a revised solution is then sought along lines y = constant, (Figure 2).

One complete iteration consists of a scan in each direction.

There are several advantages of the ADI technique: the number of iterations

required is a relatively weak function of the node-point density, the

stability of the scheme is not compromised by ambiguities in sign of the

chordwise velocity component: U, and extension to higher-order systems of

equations is readily accomplished (an ADI scheme is used in the method

developed at Sybucon for integrating the unsteady Navier-Stokes equations;

see Reference 9).

~~~ 
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For a scan in either direction , Equation (18) takes the form

P G = Q  (20)

where the G is the vector whose elements are the values of F at each node

point along the line of scan. P is a tridiagonal matrix whose elements are

4 x 4 submatrices, and Q is a vector whose elements are themselves 4 x 1

matrices.

Second-order di.fferencing is used throughout the method . Backward differences

(relative to the local flow direction) are used for the diagonal elements of

A3 and A4, in Equation (18), and central differences for the diagonal elements

of A5 and the off-diagonal elements of A4 
(A 3 and A5 have no non-zero of f -

diagonal elements). In order to preserve the second-order status of the

backward differences, two node points, at the current time level , and three

at the previous time level, are involved in each representation of a derivative.

The differencing arrangement is chosen primarily for stability reasons, but it

offers good precision characteristics also. The solution of Equation (20):

G + P 1Q . (2 1)

yields the solution for the particular scan and iteration.

8
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III THE VALIDATION OF THE METHOD

A range of calculations was performed to establish the credibility of

the method . For two-dimensional laminar flow a time-relaxation solution

was found to be in excellent agreement with the classical Blasius solution

(Figure 3). Numerical solutions were derived for various node-point

• densities, as shown, and it is evident that satisfactory convergence is

being achieved with second-order accuracy (Figure 4); an error in wall

shear stress of less than 0.2% is incurred with as few as 11 vertical

node-points. Some comparison calculations show that the corresponding

first-order computations result in substantially larger errors (Figures 3,4).

A time-relaxation calculation for a steady turbulent flow is shown in

Figures 5,6, and a typical level of accuracy is achieved with respect to

experimental data. With regard to the validation of the turbulence model

• is is worth mentioning that a separate study has been conducted to verify

a three-dimensional “steady” version of the present method [13]. The results

of this study showed that some small improvements could be made to the

empirical content of the model although, in general, the model performed

reasonably well. The corresponding improvements were not included in the

present method because of doubts about the invariance of the proposed

changes to rotation of the coordinate system.

In order to examine the effect of grid density on the solution , under

reversed-flow conditions, some calculations were done for a retarded

turbulent boundary layer, and the results are presented in Figures 7 through

___________________________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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10. The flow is similar to those considered in Sections III through V.

below. The comparisons show that the details of the flow are represented

surprisingly well even with only 11 vertical node-points. The remaining

calculations , presented throughout this report, were done using 21 points

in the vertical direction.

10
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IV CALCULATIONS FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLOW

The calculations were all performed for the class of prescribed external

• velocity distributions described as “frozen flows”
9. Specifically

Ue = Ui,, for t < o and all x, (22)

U
= 1 - ~~

. {l - f(t)}, for t > o and o < x < x1, (23)
o 1

U x2-x
= 1 - {l - f(t)}, for t > o and x 1 < x < c. (24)

o ~l 
—

The function f(t), and the form of the velocity distribution, are shown in

Figure 11. This external velocity distribution imposes an adverse pressure

gradient (whose severity increases with time) over the forward part of the

• chord, and a favorable gradient over the rearward part.

Figures 12, 13 show typical solutions, for this type of velocity field , for

both laminar and turbulent incompressible flow. It will be seen that the

passage through the point of zero wall shear stress is smooth and uneventful,

and that substantial regions of reversed flow develop before the onset of

singular conditions occurs. Figure 14 shows the rapid thickening of the

• boundary layer which takes place some time after the first appearance of

reversal. For the particular combination of parameters, in Equations (22-24),

singularity onset occurred before the freezing of the external flow. Other

calculations, in which these parameters were different, showed the approach

to singular conditions after the external flow was frozen, but the diver-

gence of the solution was essentially the same. Figures 15, 16 show the

11
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familiar spacial distributions of displacement thickness and wall shear

stress, for incompressible flow. These are similar to the distributions

presented in several earlier papers [5,6,9].

Figure 17 shows the effect on the solution of allowing the dissipation

length to lag behind the local boundary-layer thickness. It was noted

earlier that the inclusion of the rate equation for dissipation lenght

raises the turbulence model to two-equation status. As would be expected ,

the effect of the lag is most conspicuous in regions of rapid boundary-

layer thickening. On the other hand , the influence on the velocity and

turbulent-kinetic-energy fields is relafively small. Figure 18 shows the

results of making a rough correction for the effects of mementum transport

normal to the surface. Here the normal pressure gradients were calculated

retrospectively after each iteration, and were averaged, across the boundary

layer. In subsequent iterations of the solution the effect was reintro-

duced in the form of a y-dependent modification of the streasnwise gra-

dients. The procedure appeared to be stable, and resulted in a small

change in the converged solution .

12
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V CALCULATIONS FOR YAWED FLOW AND FOR COMPRESSIBLE FLOW

The effect of yaw on the solution was investigated by adding a constant

W-component to the prescribed external velocity field. The results

presented in Figures 19, 20, which are typical of those obtained , show

that the effect on the chordwise velocity field within the boundary layer

is relatively minor. The spanwise component of wall shear stress does

not , of course , reverse although it exhibits a shallow minimum near the

first point of reversal of the chordwise component. The angle between

the external streamlines and the x-axis varies with x, reaching a maxi-

mum at x = x1. At the time level represented in Figure 20, this maximum

angle is 63°, while the maximum angle of the wall streamlines is in the

neighborhood of 135°.

Figures 21, 22, show the effect of compressibility on the solution. It

will be seen that there is a striking change in the distribution of dis-

placement thickness as the Mach number increases. At a Mach number of 3

there is little sign of the rapid boundary-layer thickening which domi-

nates the picture at low speeds. Another, less conspicuous, effect of

increasing Mach number is the delay of reversal onset; this is the only

significant effect on the distribution of wall shear stress in the neighbor-

hood of reversal. Interestingly, though, these calculations indicate

little variation of the position of reattachment.

_ _ _ _ _ _ _ _ _ _ _ _



VI OTHER CALCULAT ION S

A number of important calculations were performed to investigate the

effects of alleviating the external velocity gradients so as to delay

the onset of singular conditions. These calculations have been reported

elsewhere [12], and will not be presented in detail herein .

Briefly, it was demonstrated that by judicious alleviation of the chord-

wise gradients the rapid boundary-layer thickening, indicative of incipient

singular conditions, could be delayed indefinitely. The intention was to

simulate the modification of the pressure field which occurs in a real flow

as the result of coupling between the boundary layer and the outer flow.

Typical results are reviewed in Figures 23-28, for laminar as well as for

turbulent flow. It will be seen that the alleviation of the gradients is

confined to the regions where the singularity would otherwise be expected

to develop. With the alleviation mechanism in operation, the calculations

could be continued far beyond the point where the calculations in pre-

scribed external velocity fields broke down. The rapid boundary-layer

thickening was contained, and the region of reversed flow remained of

roughly constant extent as the solution asymptoted towards steady-state

conditions.

As was noted in Reference 12, these calculations showed that the singularity

onset is not an inevitable feature of first-order boundary-layer theory , but

appears to result from an inappropriate use of the theory: i.e., in pre-

scribed external gradients which do not properly allow for the effects of

interaction between the visious and inviscid regions.

14
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VII CONCLUDING REMARKS

The purpose of this research was two-fold: to develop a more compre-

hensive computation tool for the particular class of flows than was

hitherto available , and to demonstrate the use of the method as part of an

ongoing study of specific fluid-dynamic phenomena.

The new calculation method appear s to be firmly based , both from the stand-

point of the underlying physical model and in terms of the numerical tech-

niques used to integrate the governing equations. Although the validation

of the method has not been extensive, tests run to date indicate that

acceptable accuracy and reliability can be achieved at reasonable compu-

tation cost.

The fluid-dynamic studies conducted by the new calculation method included

parallel computations of unsteady laminar and turbulent flows with embedded

regions of reversal. A broad measure of similarity emerged from the solu-

tions in the two types of flow . As was to be expected from the results of

earlier work, the development of the solution for either type of flow , was

interrupted by the onset of a singularity some time after reversal was

observed.

Some calculations were performed to investigate the effects of Mach number ,

and the effects of yaw, on the development of reversed flows. Yaw seemed

to have relatively little effect on the development of the chordwise flow ,

• 
. but , of course , gave rise to spanwise flow components which have their own

interesting dynamics. The principal effect of increasing Mach number was

15
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o reduce the thickness of the boundary layer in the neighborhood of reversal;

at supersonic speeds only a limited build-up of displacement thickness was

observed , whereas a rapid build-up is familiar in incompressible flow .

A significant outcome of the present research has been the observation that

onset of the separation singularity in unsteady flow can be delayed , or

avoided altogether , by a l levia t ion of the gradients in the external flow .

The alleviation of the gradients was intended to simulate the interaction

between the boundary layer and the outer flow. The calculations indicated

that the singularity onset could be delayed more-or-less indefinitely, and

that conditions of steady-state reversal could be approached by way of an

asymptotic calculation for long times.*

The new calculation methoc will presumably be used for continued bas ic

research on the mechanics of unsteady reversed flows. In addition the

method is currently being used as a component tool in a study of unstead y

flow over f inite wings.  This latter work is part of an on-going program

being supported by the Office of Naval Research.

* Here, “long” refers to the physical time represented rather
than to the required computation time .
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