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EXECUTIVE SIflIMARY

ThE MAGNETIC INDUCTION OF THE SYSTEM CONSISTING OF
A COIL AND A FERROMAGNETIC PROLATE SPHEROIDAL SHELL

OBJECTIVE

The objective of this work was to derive solutions to static ferro-

magnetic problems that included both current—carrying coils and linear

ferromagnetic bodies . The solutions are intended for comparison with

solutions to ferromagnetic problems obtained by various umerical tech-

niques such as the finite difference method , the finite element method ,

and the integral equation iterative solution method .

APPROACH

After  deriving the governing dif ferent ia l  equation from Maxwell ’s

equations for  classical magnetostatic field theory , the method of separa-

tion of variables was employed to obtain the problem solution.

RESULTS

The magnetic induction was calculated for two geometries (configura-

tions) of a ferromagnetic prolate spheroidal shell and a current—carrying

conductor. The first case was for an infinitesimally thin current band

carrying a stationary current and surrounding the spheroidal shell. The

second case was for a spheroidal shell surrounding an infinitesimally thin

current band . The ferromagnetic bodies were assumed to be linear and

homogeneous. The reduction of the solutions to that of a current band in

free space is shown when the permeability of the ferromagnetic spheroidal

shell is allowed to approach that of free space.

RECOMMENDATIONS

It is recommended that the derived solutions be programmed on a digi-

tal computer for direct comparison of these results to those obtained by

various numerical methods. There are plans to implement these recommenda-

tions during the fiscal years 1979 and 1980.
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ABSTRACT

The magnetic induction is calculated for two
configurations consisting of: (1) an infinitesi-
mally thin prolate spheroidal current band
carrying a stationary current surrounding a fer-
romagnetic prolate spheroidal shell, and (2) an
infinitesimally thin band internal to a ferro-
magnetic prolate spheroidal shell. The ferro-
magnetic body is assumed to be linear and
homogeneous. The reduction of the solutions to
that of a prolate spheroidal current band in
free space is shown when the permeability of the
ferromagnetic prolate spheroidal shell is allowed
to approach that of free space.

ADMINISTRATIVE INFORMATION

This work was performed under Program Element ll22lN , Project B0005,

Task Area B0005—SLOO1, Work Unit 2704—110. The Project Director is

Mr. W. J. Andahazy , David W. Taylor Naval Ship Research and Development

Center .

INTRODUCTION
1*As noted in Brown and Baker ’s report , exact analytical solutions of

Maxwell’s equations using classical formulations have been limited to body

shapes and inhomogeneities that conform to a few separable coordinate

systems. Modern digital computers with large computational and storage

capabilities permit many electromagnetic field problems to be solved by

using a numerical solution to the governing differential or integral equa-

tions under a suitable choice of boundary conditions. The numerical solu-

tions of Maxwell’s equations, when used with a complete description of the

electric and magnetic sources and the constitutive laws of the media, can

be used to describe completely the electric and magnetic fields produced

by the source, including nonsymmetric geometries, nonsymmetric source dis—

tributions, and spatially varying media parameters.

‘S

*A list of references is given on page 71.
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The motivation for this work arose out of the need for solutions to

static ferromagnetic problems that could be used for comparison with

numerical methods.

PROLATE SPHEROIDAL COORDINATE SYSTEM

The prolate spheroidal coordinate system can be formed by rotating

the two—dimensional elliptic coordinate system, whose traces in a plane

are confocal ellipses and hyperbolas, about the major axis of the
2,3ellipses.

Flammer3 notes that it is customary to make the z—axis the axis of

revolution. Figure 1 depicts the three—dimensional prolate spheroidal

coordinate system. In this case the coordinate surfaces are : prolate

spheroids for Ti = constant ; hyperboloids of two sheets for 0 = constant;

meridian planes for i1~i = constant. The prolate spheroidal coordinates

shown on Figure 1 are related to rectangular coordinates by the following

t ransformation equations:

x = a sinhfl sinG cos~p 0a)

y = a sinhri sinG sin*~ (lb)

z = a coshfl cosG (ic)

where

o<11<co

o<G<ir

o<*~<2ir

We have denoted the interfocal distance by 2a and the prolate spheroidal

coordinates by (n, 0, ~i , ).

2
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PROLATE SPHEROIDS, Ti — CONST
HYPERBOLOIDS, 0 - CONST o = o
MERIDIAN PLANES, 4, - CONST

/ O=CONST

‘~~~~~~~ . ‘a. \ A 1 I I L I r l I I I Ir 
~F ~ = CONST I

a

0 
_ _ _ _-. . —05.- v

a
x

II

~~= CONST

Figure 1 — Prolate Spheroidal Coordinate System
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BASIC EQUATIONS
We can start with Maxwell’s equations for classical magnetostatic

field problems

(2a)*

j  (2b)

where

H magnetic field intensity (A/rn)

B magnetic flux density (T or Wb/m 2)

B electric current density (Aim
2
)

In the general case for ferromagnetic materials B is a nonlinear function

of H

1= f (H) (3)

w.~ere B is not a single valued function of H. The function f(H) depends

on the magnetic history of the material, that is, how the material

attained its magnetization. This is referred to as hysteresis. It is

also noted that any property of a ferromagnetic material has meaning only

if it is considered together with its complete magnetic history.

In certain practical engineering problems, the variation in the mag-

netic intensity is small, and the functional relationship between B and H

is approximately linear.1 For the linear case where the material is iso-

tropic, the magnetic induction B is related to the field intensity H by

the relationship

*The del operator V is defined with respect to the rectangular coor-
dinate system and !~ 

strictly valid in a rectangular coordinate system
only. Very often Vx and V. are used as equivalent symbols for curl and
divergence generally. This use is followed in this report.

4
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B = 

~o 
(~~+l) H = P0IJr H = pH (4)

where

Xm magnetic susceptibility (dimensionless)

P magnetic permeability (henry/meter)

()Sa’f-l) = 1
~r 

relative permeability (dimensionless)

p free space permeability (4ir x lO~~ henry/meter) .

This report assumes that the ferromagnetic body has isotropic and linear

material properties. The divergenceless nature of the magnetic f lux den-

sity in conjunction with the fact that the divergence of the curl of any

vector function is zero allows the introduction of the magnetic vector

potential field (~~~~)

(5)

where A is the magnetostatic vector potential function in weber/meter. The

substitution of Equation (5) into Equation (2a) gives the fundamental

equation of the vector potential of the magnetostatic field .

*Vx (VxA
~
)- (VxA)xV

~~~~~
i (6)

For homogeneous materials, as assumed in this report , the magnetic

permeability is spatially invariant. Hence,

V 

V~~= o  (7)

5
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and Equation (6) reduces to

~~x (VxA) 
~~~~ (8)

Using the vector identity

( 9 )*

Equation 8 becomes

V(V. A) — = (10)

The magnetostatic vector potential is characterized by the important prop-

erty that its divergence can be conveniently chosen to be zero.

(11)

Equation (10) reduces to the vector Poisson’s differential equation.

(12)

This is the governing equation for our calculations.

The general boundary conditions to be satisfied at the interfaces of

stationary dissimilar media may be derived from the limiting integral forms

of Maxwell ’s equations and are given by

*The vector Laplacian operator is designated by ~~ .

~~~~~~

—

~~~~~~~~~~~~~~~~ -
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= 0 or B
1 

= B
2 

(13a)

‘ 
~~~~~~ 

= J or H
~2 

— Htl = J (13b)

where the subscripts 1 and 2 indicate the media under consideration , and

~l2 denotes the unit normal vector to the interface and is directed from
medium 1 into medium 2. In the case where the materials are linear and

isotropic equations (13a) and (13b) become

= 0 (13c)

f B B \
n xI— — — 1 J  (3d)
12 \ p 2 

p
1/ 5

is a true surface current density that may exist at the interface. At

an interface where is 0, Equations (l3b) and (l3d) need to be modified

accordingly.

THIN COIL SURROUNDiNG A FERROMAGNETIC
PROLATE SPHEROIDAL SHELL

GENERAL SOLUTION

We now proceed to solve the boundary value problem of a ferromagnetic

prolate spheroidal shell of homogeneous permeability p2 surrounded by an

infinitesimally thin prolate spheroidal current band of constant current

density B. The geometry of the problem suggests that a prolate spheroidal

coordinate system as shown in Figure 1 be used in the solution.
Figure 2, a cross section of the problem geometry, identifies the four
regions of interest. The boundaries of the prolate spheroidal shell are

7
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determined by n = = constant and n = = constant. The dc current lies

in the boundary n = fl3 constant. Regions I, III , and IV have a permeabil—

ity equal to that of free space ~~~ 
which for convenience will be

labelled p1. Ampere’s law states

V x H = J  (14)

and since V . I = 0, the induction I must be the curl of some vector field
A. The governing differential equation for A when homogeneous and linear

materials are considered is from Equation (12)

(15)

The general expression in prolate spheroidal coordinates for a cur-

rent density is

J = J e + J 0
e0 +J~e1~, (16)

In the problem presented herein, the current density has only a psi ( )

component ~J~ (0)~~~]which means that the vector potential has only a psi

component A~~ p. The vector potential A = A~e~ is a function of the pro-

late spheroidal coordinates fi, ~ {i.e. A~ = A~(fl,0)]. The constant cur-

rent density, which lies on the boundary between regions III and IV, can

be expressed by the function

if 0<01 or 0>02
— 

(17)
J~ (0)e~, if e1<o<o 2

I

9
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where J~ (G) is equal to a constant J along Ti = fl 3 
for 0110102

Therefore, Equation (15) has only an azimuthal component and can be
expressed as

= 
*~~(n,

O) = 0 
(

~~~ r~~~~~~
0

~~~ i) (18)

When the psi component of vector Laplacian ~~~~ is expanded in prolate
spheroidal coordinates, Equation (18) can be expressed as (see Appendix A)

r 1 O(sinhr) A )] r i ~(sin0 A11 )1
-~~~- 

I ____ 

~ ‘ +-~--‘ = 0  (19)
~ ri [sinhri ~~ J dOLsinO o0 J

(in regions I—IV)

Applying the method of separation of variables, let us assume that A~ can
be expressed as the product of two functions

A~ = H(cosh~) G(cos6) (20)

where H(cosh~) is a function of cosh~ only and G(cos0) is a function of
cosO c~nly. Substituting this form of the component of the vector poten-
tial A into Equation (19), we have after separation of variables

+ cothfl 
~~ 
-( p(p+l) + 1 

2 
H 0 (2la)

d~ 
Ti sinh fl/

q + cotO + (p(p-s-1) - 1 
2 C = 0 (21b)

dO sinO /

10
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where the separation constant is p(p+l) and p is an integer from one to

infinity. It is well known that differential equations of the form

+ cothfl -~J~ — (P P+1 + 
~~~~~~~ 

= 0 (22a)

have the general solution of the form

H1 C1P
rn 

(coshfl) + C2Q
rn 

(coshfl) (22b)

where C
1 
and C2 are constants, 

and it is known that a differential equa-

tion of the form

2 ,  , r 2 1
+ cotG + I p(p+l) — 

m 
2 

c ’ = 0 (23a)
dO L 

sin oJ

has the general solution of the type

C1 = C3
Prn (cosG) + C4Q

rn (cosO) (23b)

where C
3 
and C4 are 

constants. P~ and Qm are the associated Legrendre

functions of the first and second kind, respectively . Comparison of Equa—

tions (21), (22), and (23) shows that in Equations (22) and (23), m
2 is

equal to 1. This requires that m always equal unity. The solutions of

Equations (2la) and (21b) are expressed as

13(cosh~) A P1 (coshfl) + B Q
1 (coshri) (24a)

I. -

11
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_ _ _ _ _

G(cosO) = A1 P1 (cosO) + B~ Q

1 (cosO) (24b)

The general solution of Equation (19) may be formed from the product of
solutions in Equations (24a) and (24b) which yield

A = H (coshri ) G (cosO) = ~ H (coshT)) C (cosO) (25)
p l p

A~ ~~1[A 
P1 (coshTi) + B Q~ (coshT1)~

J
(26)

x 
[A
l P1 (cosO) + B1 Q1 (cosG

)]

For the prolate spheroidai. s”stem, the associated Legendre functions of

the second kind are infinite at cosO = ±1 and as such cannot be included
in a general solution for a given region which includes 0 = 0 or 0 = ~r .
Therefore , in our case the constant B~ is set equal to zero. Equation (26)
reduces to

E [K~P
1 
(cosh~) + K2Q

1 (coshfl)] P
1 
(cosO) (27)

where K
1 and K2 are constants (K1 

= AA’ , K2 = AB’) .  When the substitutions
= coshri and v cosO are made in Equation (27) , A~ can be expressed as

A~, =~~~~~ [K1P~~~ + K2Q~(~)] Pt(v) (28)

This is the general form of the psi component of the vector potential that
will be used to determine the potentials A~ in each region. •

~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
— —

~~~ 
—

- - 
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



BOUNDARY CONDITIONS

The form of the component of the vector potential A~, in regions

(I—IV) is determined from Equation (28). These magnetostatic vector

potentials in regions I-IV are:

%‘ =~~~~[A~P~~~
] 

P
1
(v)

A~11 ~~~ [B~
P~~~ + CpQ~~~)] P~(\)

(29)

A~111 =~~~~[D~Pt~~~ 
+ E Q 1

(~)j. P~~~)

A
~IV p=l [F

~Q~~~~
] 

P~(\))

Because the potential must be finite in each of the regions I, II, and III
and approach zero as -‘- in region IV, the -following constants were set
equal to zero.

a. For A~1 the constant associated with Q
1(F~) P1(v) was set equal to

zero because

Q
’ 

(~~~ ) + ~ at ~ = +1

b~ For A
~iv 

the constant associated with P1(e) P.~(v) was set equal
to zero because P (F) -

~~ ~~ as -‘- 
~~~.

(We note Q~~(~ ) ~ 0 as ~ -* co)

13
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The constants A , B~. C , D , E , and F are to be determined from the

boundary conditions. At each interface, the basic laws of magnetostatics

(Equations (2a) and (2b)) reduce to boundary conditions on I and H that

can be used to evaluate these six constants. The normal component of B

across each boundary must be continuous, i.e., 
~~2 

— B1) - ri12 
= 0 where

the quantity n12 is the unit outward normal to the surface. This provides

the following boundary conditions which must be satisfied by the solutions

given in Equation (29) for each region.

B 1 
= B

111 
at Ti = 

~l 
(30a)

B111 
= B1111 at 

11 = (30b)

B
1111 

= Bniv at Ti = fl 3 (30c)

The eta or normal component of the magnetic field (B
1
) is expressed in

terms of the vector potential as

— —  1 ~(e3
A )

B
1
= (VxA14) )1

— ~~~

(31)

1 
~~~ 2 1/2

= — ~,,., — J ( 1—v ) A
(2 2~ 

‘ Ov La~~ —V /
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where

1
= 

2 2 X

a(sinh r~ + sin 0) (sinhri sinG)

2 2 1/2 
— 2 2 1/2 —

a
1
(sinh n + sin 0) e

0(sinh fl + sin 0) e~ sinh~ sinG

-~~ -~~-01. 00 d1~)

O 0 A~ sinhfl sinG

and

= coshn , e1 
= e2 = a(sinh fl + sin 0) = a(~ —~ 

)

V = cosO , e3 
= a sinh~ sinG

However, since the vector potentials in each region are functions of

we can simplify Equation (30) to constraints on A~ at the interfaces:

= 
%ii at n = 

~l 
(32a)

A~11 
= A~111 at Ti = 

~2 (32b)

= A
~IV at n = 13 (32c)

15.

~~~ 
—

~~~~~~~~~
-
~~~~~~~~

-
~~~~



The second set of boundary conditions states that the theta or tangential

component of H across each boundary must satisfy the relationship

x (}1
2—H1

) = (33)

where -
~~ 

(which equals J~ (G)~~) is the real surface current density in
the limit of vanishing width between the two regions. Using the relationship

B = pH, Equation (33) can be expressed as

B B
(0) (34)p2 

p
1 ~

Referring to the curl in Equation (31), we can write B0 
in the form

B0 = (VxA~) 0

(33)

— 
—1 ö(e3

A~) — 1 
~~. r(~2 1)~

’2 
A— 

e1
e
3 ~fl 

— 

a(~
2_v2)hJ

2 
~~

From Equations (34) and (35) the tangential components of B in regions

I—IV must satisfy the relationships:

~~a(~~_~2yhJ2 o[(
~2~~
)

1.h12 
A
wl] ~ 

=

(36a)

~~~~~~ 
~~~~~~~ 

2 /2 
A~~
] 

~

16

I -

~ 1~~~~~ 
- 

- - ~~~~~
—

~~~~~~—.——-,——. —. — —., - - .~~ “-UI’ — 
~~~~~~ -—



a(~~~v2)~~~~~~
[ 

A
~ttI] =

(36b)

(
~

) 
a(~~

_v
~) 

~ ~~~~~~~~~ 1

i

- (~) 
;~~_v 2)  

~~~~

{

~~~~2~~~~~~h/2  

A
~,IV]

+ 
(~~i) (2

2)1/2 
~ 

[

~~2~~
) 

1/2 
A~1ii] = 

(36c)

KG P1(v)
— ~~~ ~~ 

1/2p P 
a(~~_v2)

It is understood that the suimnation runs from p = 1 to p —

The general expressions for the potentials in each region (Equation (29))

are then substituted into the boundary conditions (Equations (32) and (36))

are solved for the six constants (A , B , C , D , E , and F ) .  Since there
‘ p p p p p

are six equations with six unknowns, the potential in each region can be - - -

specified. The aix boundary value equations are presented below. The

index p in the summation sign has both even and odd values and takes on

17
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values from 1 to ~~~. It is noted at this point that the current density

J~(0) must be expanded into a set of associated Legendre functions in order
to evaluate the constants in the vector potential (Equation (29)). The

detailed expansion is presented in Appendix B. The six expressions for the

boundary conditions are:

A P1(f )P1(v) = [BP
1(~1

) + C Q 1(E
1)] 

P
1(v) (37a)

p p  1 p

1/211 ‘ 1 
~~ [(~2_l) (B~P~~~ + C Ql(~~~Pl(V)] 

=

p p  / p
~ 2 2)

1/2
a
~~l 

V

(37b)

/ 1 1 ~~ 1(~2
l)

h/ 2  
(A pl (~ )) P1

(V)] I
~‘iT) 

(~
2 2 \ 1~’2 

~~
[ - ‘ p p

a .,_ V )  I
1 I

1B P1(~2
) + C~Q~~~2)] P~(V) = 

[D~P~~~ 2
) + E Q ~~~ 2)]P

’(v) (37c)
[p p

‘1 ‘ 1 
~ [(~

2
_l)

1/2
(DP

1(~ ) + E Q ~~~))P~(V)] =I~1J 1 2 2\ 1~’2~~~~[

(37d)

‘1 1 ~ f (~ 2
_ 1)

l/2
/B P~~~) + C~Q~~~))P~(v)] Ih~~) 1 2 2\1f2 ~~ ~ 

p

18
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[DP
l(~3) + E Q 1(f

3)] 
P

1
(v) = F Q l (~3)p 1(v) (37e)

— 
(k) 

a(~~ _v 2)~~
2 ~~ ~~~~~~~~~~ 

(
1 )  Pl (v)J ~ +

~~~~ 
~~~~~~~~~~~ 

[(
~ 2_l)

U2
( D p 1(~ ) + E Q ~(~ ))P~~v)] -

KG P1(v)
J (0) = ~~~~~~~~

2 2~
1
~
’2

akF 3
—v I -

If we make the following substitution

= 

~ [(~~
_
~.~

‘-“
~ P

1
(c)] (38)

Q~~~ ) = 
d 

[(
~2 l)

l/2 

1 ]

and perform simple algebric manipulations, the six boundary conditions
can be simplified to:

A~P~~~1) - B P ~~~1) + C~Q~~~1) (40a)p . 
_ _  

19
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+ C Q~ (~1)] (L~ A P~(~ ) (40b)
p p  1

B P1(~ ) + C Q1(~ ) = D P1(~2) + E Q 1(~2
) (40c)p~~ 2 P P  2 p p

(~-_\ ID P~~~ ) + E Q ~~~ )1 (i-~ 1B P~~~ ) + C QA(~2)] (40d)p p 2 2 j ~
p
2~ L ‘ p 2 p

D P~~~ ) + E Q1(
~ 

) = F Q~~ 
) (40e)p p  3 p p  3 p p  3

1/2
J (0) a(~~

_V2)
— (-L\ F (~ ) + ( -

~
---

~ 
D P~(~ ) + E = ________________

p p 
~l’ ~ p ~ k~~ ’ 

~~3) p’(v)

(40f)

where

K C P1(v)
p p

The solution of these six simultaneous equations to obtain E in terms of
p

known quantities gives:

1 II ~ 1 1 II
— ~-~([x]J~ P~~~ 2)) — ii L~~

’
~ 

)Q~~(~ 2) + ~
._

(J
’-) P~ (~ 2)

£ — -_______________________________________

“ L.(r~j {.z]P~~(~2 ) 
- 

+ ~~~ ([z] Q~ (F 2 )) — 

~~~

(41a)
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where

I ( ~ 2z~ ~~~~~ —

[x] ~~~~~ P~(~1) ~~~~ (4lb)

(1-?.)

1
r , — ~~~~~~ (41c)
~~ (x]P

1(f~) +

1K C P (v)
J (0) = ~~~~~~~~ / , (v=coso) (4ld)

( 2  2 1(2
a~~3—v

= 
~PlJ;( O ) :~~~;~2) 

_ -_  (4le)

)
~II p p  2 (4 lf)
~ [x]P

1(~~) + Q~~
(
~~2

)

The numerical values f or the other five coefficients can be obtained from
the following equations:

~~~ J~,~+E [z] (42a)

1 . B — [xJ C (42b)

- ~~~~~~~~~~~~~~~~~~~~~~ fl — --- - ~~~~~~~~~~~~~~~~~~~~~~~~ 

:
, I



D = J ’ (42 c)
p p

~l(~ )
A = B + C  p 1 (42d)

r’~~ 
~~~

D P1(~ )
F = + E  (42e)
p 

Q~ (F,3)

Since the six coefficients can be determined for a specified problem

from Equations (41) and (42), the potentials A~1, A~11, A~111, and

in regions I through IV can be completely determined . The normal (B
1
)

and tangential (B
0) to the surface ~ 

= constant (or F, = constant) com-

ponents of the magnetic induction in each region I through IV can be deter-

mined by using Equations (31) and (35).

THIN COIL INTERNAL TO A FERROMAGNETIC
PROLATE SPHEROIDAL SHELL

GENERAL SOLUTION

We now proceed to solve the boundary value problem of a ferromagnetic

spheroidal shell of kiomogeneous permeability p2, surrounding an infinitesi-

mally thin prolate spheroidal current band having a constant current den-

sity B. Figure 3 shows the cross section of the problem geometry. The

coordinate system shown previously in Figure 1 will be used in the

solution. The boundaries of the prolate spheroidal shell are determined

by r~ — 13 and ~ — 

~~~ 
The steady state current lies in the boundary

Ti = and between O~~O�O~ . As in the previous problem, the dc curren t

density has only a psi component J~,(O)~~ , and thus the vector potential
has only a psi component ~~~~ The vector potential is a function of the

prolate spheroidal coordinates ri and 0. The constant current density is

expressed by Equation (17) when the boundary Ti is changed to fl — 

~~

22
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The governing partial differential equation has only a psi component

and is given by

= 
*~~~

(n ,0) = 0 (in regions I—IV) (43)

When the vector Laplacian *A is expanded in prolate spheroidal coor-

dinates, Equation (43) can be expressed as (see Appendix A):

~ 1 ~(sinh~~A )  
~ 1

~~ [s1nhfl 
~ 

] 
+ 

~~~~~

- 

~~~~~~ 
~~~~~

- (sinG A~)] 
= 0

Adopting the following notation

F, = coshl, v = cosO (45)

and following the logic presented earlier, the solutions for A~, in regions

I—IV have the general form

A =E [K 1P
’(~ ) + K2Q

’(~)]P
l(v) (46)

BOUNDARY CONDITION S
The form of the components of the vector potential A~ in each of the

regions I—IV is determined from Equation (46). These components of the

vector potential in each region are:

A~,1 =~~~[H~P~ (E4’~ (v) (47a)

%~ i ~~ [I~ P~~~~) + K Q ’(~)]P
1
(v) (47b)

p—i

I i



A~111 
~~[LP

1
(~ ) + M Q l(~)]P

’(V) (47c)

A
~lV =f [N~Q~(~)]P

1(V ) (47 d)

The P1 functions are the associated Legendre functions of the first kind ofp 
1degree 1 and order p, and the Q functions are associated Legendre func-

tions of the second kind.

At each interface the basic laws of magnetostatics reduce to boundary

conditions on B and H (see Equations (30) and (33)) that can be used to

determine related boundary conditions on A:

= A~,11 ~ 
= 

~l 
(48a)

- A~,11~ Ti = Ti~ (48b

= 
%iv ~ 

= 

~3 (48c)

~~~~ a~~~~~~~
/2  

~~
[(F,

2~~)% ~~

] 

~ + 

-j

(48d)

~~~~ 
a~ v2)~~

2 
~~~~~~

[(F,

2~~~~~

) 

A~i] 

~ 

~~~0)
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- l ~ 
1J2

(
~~

) 
2 2)~~

2 

~~~ 
A
~II] 

=

a(~2 
V

(48e)

1l~~ 1 
1/2

2)
1/2 [(

~2 l) A
~III]

a(~2 V

(l\ 1 a I( 2  
1/2

_

~~~~~~ 

_l) A~111] j =

3 ,

(48f )

1 
1/2

12 2)
112 [(~2 l) A

~IV]
a~F,3 v

These boundary conditions are then used to evaluate the constants in Equa—

tion (47). Using Equations (47) and (48) to solve for the coefficients

(where the index p takes on all values from 1 to 
~ ) we get:

H P1(F, )P
1(V) = [IP

1
(F,1

) + K Q 1
(F,1)JP

1
(V) (49a)p p  1 p

/ 1 \ 1 L1(F,2 1)~~
?
(I P1(F,) + K Q (F , ) ) P1(V)hI  +

i~~i)~~
(F,
~_~2)

1/2 

~L p p  p p p 
-

(49b)

—~\ (~ P
1(F,)P1(v) = (0) — __________(1) /2 

F, 
[(F,

2 1/2 - )] 1 ~ 

K C P1(V)

I -~l 
a(~~_v2)

’ ~ 
p p 

— 

a(F,~~V2)~
’2
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[IP
1
(~2

) + K Q 1
(~2)]P

1
(v) =[L P1(~2

) + M Q l(~2)JP
l
(V) (49c)

~~~~a(~~
_~2)hh

’2 {(~~~
l) (L p’(F,) ÷ M Q 1(~))P1(V)]~ =

(49d) 
A

(~~~~(F,
2~~2)

l/2 
~~
[(F,

2_l)
l/2 

(1p
1
(F,) + K Q 1

(F,)) P1
(V)]~

2

[LP
1
(~3) + M Q l(~3)JP

l(V) = N Q 1(F ,3)P~ (v) (49e)

~~~~ ~~~~~~~~~~ 

~~
{(F,

2
l)

1l2
(NQ

i
(F,)) P~(V~~

/ =

)
a(F,

2_~2)
1l2 ~~[(F,~~~) (L~P~(~) + M Q 1(~ )) P1

(v)] J3 
F,=F,

3

If we make the following substitutions

(50)

= 
i[(~

2
i)

l/ 2
Q
i.~~
)] (51)

-

~~~~~~~~~~ - - 
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and perform simple algebric manipulations, the six boundary conditions

reduce to:

H P 1
(F,1
) = 1P 1(F,1) + K Q 1(F ,1) (52a)

2 2 1/2

_ (
~~~(I~P~(~1

) + K Q ~ (F,1)) ~~~~)HP~~~1) 
= 

J
p
(0 (~i

_v )
p (52 b )

IP 1(F,2) + K Q 1
(F,2) 

= L P
1
(F,2) + M Q

1(~~2 ) (52c)

(~~)(LP~(~2) + M Q ~ (~ 2 )) = 

(~
_)(iP~ (F,2) + K Q ~(~2) )  (5 2 c )

L P 1(E,3) + M Q 1
(F,3
) = N Q

1
(F,3) (52e)

(~ i) N1,Q~ (F ,3
) = 
(~—)(L~

P~(~3 
+ M Q ~ (~ 3)) 

(52f)

It should be noted in the above equations that the current density

J~ (O) was expanded into a set of associated Legendre functions in order to

evaluate the constants in the vector potential components (see Appendix B).
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The solution of these six simultaneous equations (52a through 52f) to
obtain L in terms of known quantities is:p

(
.L)

[ 

11P~ (F, ) + J’Q~~(F,2
)]p1 ~p p 2

L =  -
~~~~~ -_ _ _ _ _ _ _ _ _ _ _

~ (‘_ L_
~ [v] ~~(F,2) + 1’i_ ’~P~(F , )

p 2\ ~
‘l /

where

- 
Q~(F,3) 

- 

Q~ (F,3)(p2)]
[u] 

‘~~~3
) I (F ,

3
) 
~
‘l

— (54)

~2 J

+ [u] Q
1

(F,2 ) 
(55)

{v]  = _ _ _ _ _ _ _  _ _ _ _ _

p

K C P1(v)
J(0)= (56)

a(~~ 
, 1/2

I PlJP
(O)a(~~_v2)

,
,
,
,
/
[Q

~(~
l
) 

- ~~~~~~ (57)J =  _ _ _

P~ (F, )P
1
(v) P1(F, ) P~ (F, )]p i p  p 1  p 1

3..

~II 
= ~ 1

p p
P1(F,2) 

(58) 
—

~1
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The numerical values for the other five coefficients can be obtained from

the following equations:

K (59)
P P

M = L~[u) (60)

I = J~~+ L {vl (61)

)
N = L  ~ +M (62)p p ~~~~~ p

‘
~
p “3’

K Q1(F,1)
H = 1  + (63)p p 

p
.L

( F , )p 1

The components of the potential A~ in regions I—IV can be determined since

the coefficients H , I , K , L , M , and N can be calculated for a speci-p p p p p p
fic problem . The normal (B

1
) and tangential (B

0) components (to the sur-

face Ti = constant or F, — constant) of the magnetic induction in each region
I—IV can be determined by using Equations (31) and (35).
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APPENDIX A

DERIVATION OF THE VECTOR LAPLACIAN

We note that a distinction is made between the Laplacian operating on

a scalar V2~ and the Laplacian operating on a vector 4~A(Ti,0) [i.e.,

V2 
A(n,G)]. The vector Poisson’s equation in rectangular coordinates can

be treated as three uncoupled scalar equations where V2 Ai 
= for

i = x,y,z. However , if the vector Poisson ’s equation is resolved into

orthogonal components in other coordinate systems the differential opera-

tion mixes the components together giving coupled equations.

The vector Laplacian ~~A can be derived by using the well—known

vector identity

V x (VxA) = V(V A) - (A-l)

In the case herein the Coulomb gage was chosen (V A—0); therefore, the fol-

lowing identity applied in our magnetostatic work

= - V x (Vx~ ) (A-2)

The expression in prolate spheroidal coordinates for *A~p(Ti30) will now be

derived since only the psi component of the vector potential A~ (1,0) exists

in this problem .

Taking the curl of A~ results in the expression

V x A~~(~~,0) =

1
2 2a(sinh fl-I-sin O)sinh~ sinG

2 2 1/2 
2 1/2

i~ (sinh ~+sin 0) ~ (s inh2ri+sin 0) 
~ 

sinh~ sinOTi 0 13)

(A-3)
• I -ì

~ T1 ~ O
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-1/p

= x l  ~ 1~~~~(sinhfl sinG A~)
(sinh

2
fl+sin2O) 

j  

r

L a sinh~ sinG L
(A—4)

- ~ A(sinhn sinO 
A
~)]0 ~n

The negative of the curl of Vxl (ri ,O) results in the equation (where

0
21 = — V x V x

- v ~ v ~~ 
= = - 

[a(sinh
2rt+sin~O)sinhn sinG] 

x

I
2 1/2 2 1/2

~~(sinh
2
~+sin 0) ~0

(sinh2~+sin 0) ~~sinhTi sine)

~ fl

a(sinh~ sinS) ~
-~- (sinhri sinG A

~,
)
~ (ih ~~~6) ~~ (sinhr~ sinG A~

), 0

(A-5)

2 —1/2
(sinh~ri+sin 0) —
___________________ 1 

~~ (sinh~ sinG Aa(sinhri sinS) 
x ~~~~~ a B inh~ sinG ~ T1

(A—6)

+ .L 1 
~~ (sinhl sinG At)]a sinh~ sinG 36
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= 
(sinh

2
rl~I sin

2
0)  — ( 8  1 A~ sinhfl )

a2(sinhfl sinG) ~S I43n sinhri dii

(A-7)

+ 8 1  ~
sinG ~~ (sinG

Now, if 0% is set equal to zero, then the vector potential A~,
(Ti,0) will

satisfy the equation (see Equation (19) in text of report).

~~ [si~~n ~~
(sinh~ %)] + 

~~~ 
[
~ ~~~~~~~~~ %)]= 0 (A-8)

It is also interesting to note at this point that V A~(fl,0) = 0 as it

must, since the Coulomb gage was chosen. The divergence of the vector

I in prolate spheroidal coordinates is

• V . A -

2
1 

2 
1 

— 1(sinh ~+sin 0) sinh~ A
a(sinh ri-’-sin 0) sinh~ 3Ti 

L 1_i

(A—9)

+ ~~ . [(Siflh
2
1+sifl

2
o)
1
~~ine A0}4. a si~ri sinG

Since the two components A
1 
and A0 

are zero in our case, and % is a

func tion of fl and 0 only , then V.A~(n ,0) is equal to zero as required.
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APPENDIX B

EXPANSION OF CURRENT J (6) IN ASSOCIATED
LEGENDRE FUNCTION S P (cosO)

Let us assume the expansion is similar to Purczynski’s4 (see Equation

(56)).

E G P1(cosO)
J (0) — 

p—j. p p 
(B—i)

a(sinh ~~ 
+ sin o)

In this case the current band was chosen to be on boundary 
~~~l-

The coefficients G are determined from Equation (B—i) by multiplying both
1 2 1/2

sides by sinG Pt,
, (cosO) and a(sirth 

~1 
+ sin 8) and integrating

IT 1/2J J~(6)a(sinh
2

fl1 +sin 2Q) P’,(cosO)sinCdC =

1’ 1 1 a(sinh
2
ri1+sin

2
O)

J J GpP
r/

(cosO)P (cose) — 
- 1/2 sinOdO = (B—2)

0 a( sinh
2
rl1
+sin2G)

~ ~ 
2p(p~-])~

p 2p+l

where the identity

f P
rn

~ (cos 6)Prn (cosG)sinede _ 
2 (P-IIn)I5p,p

was used to simplify Equation (B—2).
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When J~(0) is set conveniently to a constant J, G~ can be expressed as

c = 
2~~~~~
f 

¶

(sinhl2fll
+sin20)

h/ 2
p1(cosO)sin0d0 (B-3)

Since the current in this problem extends from 0
1 
to 0

2 
the expression for

G can be further modified to read

G = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (B—4)

By making the following substitutions

F, = coshri , v = cosO (B—5)

G~ can be conveniently written as

G~ = - (2~~l)a f(22)
1() (B-6)

This integral can be evaluated with much difficulty in closed mathematical

form. Purczynski4 evaluated these integrals for C
2~, (even terms) and

C
2~,~1 (odd terms) in terms of very complicated series expansions.

In the computer work to be performed, the integrals for G~ will be

evaluated numerically, the reason being it has been found that a large

number of coefficients were necessary to obtain a good fit for the current

expanded in terms of associated Legendre functions for the analogous

spherical shell problem.

- , 
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APPENDIX C

DERIVATION OF THE COEFFICIENTS FOR THE VECTOR .
POTENTIALS FOR A THIN COIL SURROUNDING

A FERROMAGNETIC SPHEROIDAL SHELL
In this appendix the coefficients are derived for the vector potential

in regions I—IV for a ferromagnetic spheroidal shell surrounded by an

infinitely thin current band . For a detailed discussion of the ferromag-

netic problem see the section in the text of this report entitled “Thin

Coil Surrounding a Ferromagnetic Prolate Spheroidal Shell.” The magnetic

vector potentials in each region are given by:

A~1 =‘E [A Pl(~)]P
’(v) (C—la)

%II 
= E [B~P~(~ ) + C Q ’(~)]P(V) (c—lb)
p=l

• A~ 111 = L [ D P’(~~) + E Q 1(~)]P (v) (C—ic)

A
~,IV 

=~~~~[F~Q~~~ ]P~~V (C—id)

The coefficients in Equations (C—la) to (C—ld) are obtained by substituting
these equations into Equations (C—2a) to C—2f).

at ii 
~l 

(C—2a)

~~~~ at Ti (C 2b)

%iii ATPI v at ii 113 (C—2c)
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(~;) 
a(F,~_v2)

hI2 
~~ 

[(F,
2_l2)

U2
A ] 

I 
=

(C—2d)

(k)
8(F,

2~~2)
1/2 ~~ {(

~2 l)
u/2

A~
I]

(~~~)~~
(F,
2~~2)

l/2 
~ 
[(
~2
l)
l/2

A =

(C—2e)

(~~)~~
(F,
2~~2)

l/2 
1
{(F,

2
l)

h/ 2~ ]

~(~ ) 
~
(F,
2~~2)

l/2  
~~
[(F,

2
l)

/

A ]  I
+ (

~
) 
~
(
~~_~2)

1
~~ 

~ [(F,
2 
l)~~

2
A ] I (C-2f)

UI E J — E  2
P (v)

p 
p 

p a (.~v2)
”
~
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Let us define the following functions as

P~(F,) a~ [(F, _1) P (F,)
] 

(C—2g)

2 1/2 1

= 
~~ [(F, _i) Q1(F,)j (C—2h)

After appropriate substitution of Equations (C—la) to (C—ld) into Equations

(C—2a) to (C—2f) and using (C—2g) and (C—2h) , the following boundary value

equations are obtained .

A P 1(F,1) 
= B P~ (F,1

) + C Q 1
(F,1) (C—3a)

(i_)[
B P~(~1

) + C Q ~(~1)]= ~~ 
A P A

(F,1) (C—3b)

B P 1
(F , 2

)  + C Q 1(F,2) 
= D P 1(F,~) + E Q 1(F,2) (C—3c)

(~~){D~
P~(~2) + E Q ~(~2)] 

= 
(~~ )[B~P~(~2) + C Q

A
(F,2)] (C-3d)

D P 1(F,3
) + E Q

1
(F,3) 

= FQ ~ (F,3
) (C-3e)

I i ~
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1/2
_
(f)

F~Q~(~3) + (~—)D~
P~~~3) + 

(~~—)E~ Q~~~~3
) = ~~ 

a(~~
_v)
~~ 

(c-3f)

where

k G
J —  p _ p

— 

/2 2\~~
2

a~F, —v

These algebraic equations provide six simultaneous equations with six

unknowns, and they can be solved for the coefficients A , B , C , D , Ep p p p p
and F

p
After solving Equation (C—3a) for ~~ we obtain

Q
1
(F,1)

A = B +C (C—4)
P P P pl(F,)

The solution of A from Equation (C—3b) is

A UI 

B (~i)+ c~ (C—5)

By equating Equations (C—4) and (C—5) and solving for ~~ one obtains

[‘~ 
q~ (F,1)\ Q~(F,1

)]

B 

C
PIU2
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where

B [xl C (C—7)p -J p

and

~~~~~~~~~ ~~~~~

[xJ = L~
2
~~
P
~~c)

Solving Equation (C—3e) for F , we derive the result

F = D + E (C-8)

In addition, the solution for F from Equation (C—3f) is

~‘ 2 2\1~
’2 

~~—i~1J a~F,3—v ) D (F ,3
)

- F 
1 + + E (C—9)p 

Q( F ,3)P (v) Q(F ,3)

Equating (C—8) and (C—9) and solving for D , one derives the result

D
p p (C—b )

E I -

I —

41

r~~ -~~~~~ — - _______



where

1 
= 

-p
1
J a(F,~~v2)~~

2 / ~~~(F,~ ) P~~(F,3
)

P~(v)Q~(F,3) / Q1(F,3) QA (F ,)

Solving Equation (C—3c) for C~ and using Equations (C—7) and

(C—b ), we arrive at the result

C — 

J
1P1(F,2) 

+ 
E Q 1

(F,2) (C— il)— 

([~j p1
~~2~ + Q’(F,2)) ([x]P’(~2

) + Q1(F,2))

This can be expressed as

C = + E [z] (C—12)p p p

where

11 
= - 

J’P~ (F,2)

p 
[[x]P’(~2) + Q~(F,2)]

1

[zI=
“ 
[[x]P’~~2) + Q~(~2)]
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Using Equation (C—3d) to solve for E~ and substituting Equations (C—7),

(C—b ), and (C—12) , we arrive at the expression

—

— 
~— [x]J P~ (F,2) — 1( J II)Q~~( F , )  + ~— J

1
P~~(F ,~~) 

(C—l3)
— 

~~({x][z] P~ (F,2)) + 
i:~_ 

(
[z] Q~ (F,2)) 

— -f—- Q~ (F,~)

The constants are thus determined by using Equations (C—4), (C—7), (C—8),

(C—b ), (C—l2) , and (C—l3) . For convenience, (C—4), (C—7), (C—8),

(C—lU), and (C—12) are listed below

C = J~~ + E [z]p p p

B = [xl Cp - ‘p

D
p p

(C—l4)
1,

A = B + C 
____p p p 1

1
F = D ~~~~~ 

+ Ep

— -
~-~~
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APPENDIX D
DERIVATION OF THE COEFFICIENTS FOR THE VECTOR

POTENTIAL FOR A THfN COIL INTERNAL TO
A FERROMAGNETIC SPHEROIDAL SHELL

In this appendix the coefficients are derived for the vector poten-

tials in regions I—IV for an infinitely thin current band surrounded by a

ferromagnetic spheroidal shell. For a detailed discussion of the ferro-

magnetic problem see the section in the text of this report entitled “Thin

Coil Internal to a Ferromagnetic Prolate Spheroidal Shell.” The magnetic

vector potential in each region is given by:

A~1 ~~[HP
1(~~JP

1(v) (D—ba)

I
L [I~P~(~) + K~Q~(~)]P~(V) (D—lb)

= £[L~P~(~) + M~Q~(F,)]P
1 (v) (D-lc)

%iv .E[N Q
1(~)}P

1
(v) (D ld)

The coefficients in Equations (D—la) to (n—id) are obtained by substituting

these equations into the boundary conditions (Equations (D—2a) to (D—2f).

= A~11 at fl 11 1 (D—Za)

%II 
= 

~~~ 
at i~ UI 

~2 
(D—2b)

%III 
A
~ v at n — 13 

(D—2c)
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~~

[(

~2_1)
h12

A~
it]

~ + (D 2d)

(~~)~
(F,
2~~2)

b/2 
~~
{(

~2
l)
l/2

A ]] = 
~~~ J (0)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
=

(D— 2e)

(~~~)~~
(F,
2~~2)l/2 

[(F,
2
l)

l/2
A ]

(~~)~
(F,
2_~2)l/2 

.!. {(
~2_l)

1/2

A ]  
=

(D—2 . f)

a~~~12)1~
2 
~~
[(
~2_l) %Iv

Let us define the following functions as

P~(F,) UI L[(~
2_l)

1
~
’2
Pi(~)]

Q~(F,) 
UI L[(F,

2...1)
]/2

Q
i
(~
)]

~Ww~~~~~~~~~”~ ~~~~~~~~~
-r_— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



After appropriate substitution of Equations (D—la) to (D—ld) into Equations
(D— 2a) to (D — 2 f ) , the following boundary value equations are obtained.

H~P
1
(F,1

) = I P 1
(F,1

) + K Q 1
(F,1) (D—3a)

1/2
_
(L) ~~~~~~ ) + K Q ~ (~ 1)) +(~_)H P~(~1

) = 

3 a ( ~
2_v2) 

(D-3b)

IP 1(F,2
) + K Q ~(F,2

) = L P ~ (F,2) + M Q ~(F,2) (D—3c)

(~
_-) ~~~~~~~~ + M~Q~ (F,2)) = 

(
~L-) (IP~(~2

) + K Q ~(~2)) CD—3d)

L P 1
(F,3) + M Q 1(F,3

) = N Q 1
(F,3
) (D— 3e)

~~~~~~~~~~~~ = 

(~~
_
~~~P~ (F,3

) + H Q ~(F,3)) (D—3f)

These algebraic equations provide six simultaneous equations with six
unknowns, and they can be solved for the coefficients H , I , K , M , andp p p pN .p

Solving Equation (I~—3a) for H in terms of I~ and ~~ we arrive at
the equation

H — I  +K (D—4)P p P pl(F,)p

47
- I 

:4—I-. 
- ~~~~~~~~~ 

- -  

- - - 

- -



Solving Equation (D-3b) for H , we obtain the equation

~l/2
~ ~~~ ~j1J a (~

2_v2
)H = 1 +K + ..p 1 (D—5)p p p 

P~ (F,1
) P~ (F,1)p

1(v)

Equating Equations (D—4) and (D—5) and solving for K yields

K = J ’ (D—6)p p

where

1 
= 
[p1Jpa(F,

~_v2)
l/2~ 

~~~~~~ Q~(F,1)
p [ P~ (F,1)P1(v) j / ~P~ (F,1) 

— 
P~(F,1)

Now solving Equation (D—3e) for N , we obtain

P1(F,3)N = L  +M (D— ~)p p 1 p

Additionally, by solving Equation (D—3f) for ~~ one obtains the expression

= 
(~~~)(L~

P~~~3 + M Q ~~(~ 3
)) (D—8)
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dy equa t ing Equations (D—7) and (D—8), we may obtain in terms of L~

M = L [u~ (D—9)

where

— 

P
3
) 

~~~

~~ 
~~~~~~ 

~~~F,3
) 2

I— — ii

(Y2 J
Solving (D—3c) for I and using Equations (D—6) and (D—9), we derive the
result

I = + L [v~ (n— b )

where

~II _ 
— ~1 

Q~(F,2)
P ~‘

IIV] UI ~~~ 
÷ [u]Q1(F,2)

Now if we use Equation (D—3d) and substitute from Equations (D—6), (D—9),

and (D—lO) the constant L can be determined to be

(
~~~~JIIPt~~~ ) + J~Q~(F,2)] 

(D-ll)

+ 

(
~._)pA

(F,2
) +(~__)[uJQ~(~2)

-- -i_ 
~~~~~~~~~~~~~~~~~~~~~~~~~
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The constants have now been found . After the numerical value for L~ is

calculated on the computer for a specific problem, the nuiiierical values

for the other coeffieients can be obtained from the following equations:

K — J1
P P

UI L [U]

1 = + L [vI (D—l2)

P1(F,) -

- N U I L  +M
P P Q’(F,) P

H = 1 +K p 1
P P P pl(~~)

~~~~~~~~~~~~ -‘~~~~~-- 
- -~~~~~ 
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APPENDIX E

DETERMINATION OF ThE MAGNETIC VECTOR
POTENTIAL FOR AN INFINITESIMALLY THIN

PROLATE SPHEROIDAL CURRENT BAND

In this appendix the Potentials 
%i 

in the inner region and in

outer region are derived for the infinitesimally thin current band in a

homogeneous medium of permeability p1 
(see Figure E—l).

The potential in the inner region A~,1 and the outer region A~,11 of

the infinitesimally thin current band problem are solutions to the vector

Laplace ’s equation OA = 0. These solutions can be expressed as:

UI 

~ A P 1
(F,) P

1(v) CE—la)

= F Q 1(F,) P~ (v) (E—lb)

The coefficients A~ and F~ are determined from the boundary conditions of

the problem. After algebraic manipulation such as with Equations (32) and

(36) in the text, the boundary conditions for the normal component of B

and the tangential component of H becomes:

A~~1
UI A~11 at n (E—2a)

)
(

~~i~~

)

l, [(
~2
1)

h12
%II

~ j + 

—1 j
(E—2b)

(~ i) 
a(F,

2~v2)~~
2 
~~ 

~ 
l/2

A~~ ~ ~ J~ (G)

1
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z

CURRENT BAND

I
V NOTE
I E=cosh ,~7 1 v = COs~
/ 02

/

/
\ I / l l

/

Figure E—l — Infinitesimal].y Thin Spheroidal
Current Band
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Using the relationship F, = coshfl and ~ 
UI cosG and substituting the expres-

sions for A~,1 and A~,11 (Equations (E—la) and (E—lb)) into the boundary

value equations (Equations (E—2a) and (E—2b)) provides us with the follow-
ing algebraic equations for the coefficients:

A P1(F, ) = F Q
]
(F, ) (E—3a)p p  1 p p  1

J (0) a F,(2 
2

- L 1F Q~(F, ) ]  + LI(A P~ (F, ~~ 
- i-v )

l/2

p
1 ~ p p 1 I

~lt. 
p p l)J 

— 

P1-(v)

The following substitutions were used to simplify the above expressions.

/2
P~ (F,) 

UI L ~(F,2_1)
l 

P~(~)] (E—4)P dF,L

= LI (~2 ..l) Qi (~
)] (E—5)p

These equations are solved for A and F by simple algebraic manipulation.p p

__A UI F ~~~ (E-6a)
~ 

p I’~(F,i)

F r~1~
(
~

) 
a(~~_v2)

]/1Q
~(~l) Q~(~1)1

(E—6b)
“ L P~(F,1

)P 1(v) L P F ,11 
— 

P~(F,1)j
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The potential A~1 
and A~,11 are determined by substituting the expression

f or A and F into Equations (E—la) and (E—lb)p p

2 2\l/ 2 i 1
~ 
[P

iJ2
(o)a(~1

_v 
)(~p~~l

) Q
~(F,1

) Q
~(F,1) P

1
(F,)P

1
(v)

~ 
1 P ‘ l))]/[P

i(~l) 
- 

PA (F,l)] 
~ (E-7a)

%I 

~~ P~(F, )P
1(v) P

/2 I

A~11 

~~

-{p
i
J
p(0)a(F,1

-v2) 
/ 1Q~~~i

) 
- _ _ _ _

p l  P(F ,1
)P1(v) / ~ ~~~ 

~ 
(E—7b)

where

K G P1(v)
p p (E—8)J (0) UI 

2 2 1/2
a(~1

_v )

•
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APPENDIX F
REDUCTION OF THE MAGNETIC VECTOR POTENTIAL
FOR A THIN COIL SURROUNDING A FERROMAGNETIC
SPHEROIDAL SHELL TO THAT OF A THIN COIL IN
FREE SPACE WHEN IN TILE LIMIT p

2 
EQUALS 1-t i

In this appendix, the coefficients A , B , C , D , E , and F~ for the

potentials are evaluated for the system consisting of a ferromagnetic shell

with permeability p
2 
surrounded by an infinitesimally thin current band

in a homogeneous medium with permeability p1 in the limit as p2 
UI p 1.

These coefficients are utilized in Equation (29) in the section of this

report entitled “Thin Coil Surrounding a Ferromagnetic Prolate Spheroidal

Shell.” The variables are defined in Figure 2 located in the text. When

us set equal to p
1 the problem reduces to that of finding the potentials

in the two regions of a simple current band (see Figure l—E in Appendix

E , since the ferromagnetic shell will now have a permeability p1 equal

to that of the homogeneous medium with permeability p1.
In this limit the coefficients should assume the following form:

A = B  = D  (F—la)
p p p

C = E  = 0  (F—lb)p p

and where A and F should reduce to the coefficients for the potentials
P p

in the two regions for the spheroidal band problem (see Appendix E). If

the coefficients assume this mathematical form it will prove that the

mathematical form of the coefficients for the spheroidal shell surrounded

by a thin current band are mathematically correct.

The mathematical solution for E in terms of known quantities wasp
derived in Appendix C and was reported in the text of this report
(see Equation (4la)).
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E — 

— [x]J
11P~(F,2)) — ~~~~~ + 

~~~ 

(J~ )P~(F,2) (F—2a)
p 

— 

-~—-([x][z]P~ (F,2)) 
+ ~~~~~~~~~~~~~~~~~~~~~~~

(~i\Q~
(~i) 

— 

Q~(F,1)

[x UI 

\P2JPtx
(F,) P1(F,1

)
— 

(‘~~
) 

p 
(F-2b)

Q’~(F,2)[z] 
1 

p 
1 (F—2c)

[~JP (F,2
) +

- 

2 1/2 
1

= 

- Pi
J
p(0)a(F,~_ v ) 

/ 
~~P(F,3

) 
- 

P(F,
3)] 

(F-2d)p 
P~ (v)Q’~(F, ) ~~~~~~~

I i
~II J~P~ (F,2) (F—2e)

~ [x]P~(F,2) +

The coefficient E~ will now be evaluated when the limit is taken with
= p1 which cause [x] to approach infinity (

~). Also the expression

for J11 is substituted into Equation (F—2a).

- l
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The expression for B (see Equations (42b) and (41b)) is

B = {x] C = [x]J
11 ÷ E [x] [z] (F—4a)

where

C = J~~ + E [z] (F—4b)

The expression for B when p
2 
equals p

1 
can be expressed as

B = limit [x] IE ( J ~z]~+ limit ([x]J11) 
(F 5)

p
2=pl 

- 
~2

UIp
1

B
p j  

..
~~~~~~

p
~
-
~pl

where

limit [[xi [z]J= Q~ (F,2)

and

limit [[x]J~~]= 
limit [xJJ ’ P~(~2)

[x]P~(~2) + Q (F,)

ii_ _
~~ ~~~~

-

~~~~~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



and

E~ UI 0 from Equation (F—3)

UI1~

The expression for D~ equals J1

(See Equation (42c) in the text of this report). The expression for C~
(see Equation (42a)) in the text of this report is:

C~ = + E [z] (F-6)

The expression for C when p
2=p1 can be expressed as:

J
1
P
1
(F, )

C UI limit E [z] + limit p p 2

= 
[x]—’- °° [x3P

1
(F,2) + Q 1-(F ,

2
)

~2 ~l

C
p I 

= o (F—7)

where

limit [z] UI 0

{xJ-~~oo

and

lim it. ~II _ op

fxJ-i-
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The expression for A is (see Equation (42d) in the text)

1

A B +C (F—8)P P pl(F,)

The expressions for A~ when p2 p
1 
is

A = B  ÷1~ ip p 
[p

p
2
p
l Pf~’1 L.~2~~LJ (F—9)

A = B
P p p

II2~~l 
112 111

where C = 0p

The expression for F (see Equation (42e) in the text) is

D P1(F,3)F = +E (F—b )p (YL II r )  P
“3

The expression for F~ when p2—p1 is

F J 
- D~ 

~l()~~~ 
+ E l

p2~~l 1i
2~~~

i
1 

P
2~~~~ ’

l 

- 

-

60

- ~~~~~
.-

~
-— - - --- — - . — — -. - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~



1/2 I
F = 

p
1
j a(~~—v2) / Q~(F,3) — 

Q~(F,3
)

P(F,3
)P (v) / P~ (F,3

) P~ (F,3)

where E~ = 0 from Equation (F—3)

This means that in the four regions, the potential used in Equation (29)

of the main text of this report reduce when p2=p1 
to the form

%‘~ II ’ III = ~~ ~~~ P~ (F,)P
1(v) (F—12a)

p=l

- 1
A
~iv 

= p Q
1(F,)P (v)

p 1
p2~~ l

These are the solutions for the potentials of the current band in a region

of space with homogeneous permeability p1 (see Equations (E—ba) and

(E—2a)). We now have the solution for the two potentials in regions I

and II (A~1, II’ III’ and ~~~~ 
respectively) for the simple current band 4

problem. This indicates that the form of the coefficients A~ through F

is correct.

The mathematical expressions for A~ and F~ which has been evaluated

in the limit as p
2

UIP2, will be compared with the coefficients A~ and F~ 1

respectively, for the two regions of the current band problem (see Appen-

dix E). -

from Equation (F—9) is

— 
A~ — (F—13)

lI
2

UIP
1

- —sr- ~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~ . -- — ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~
- - ‘ ~~~~~~~~

-
~~~



A from Equation (E—6a) which we will denote here by A’ isp 
p

(1p1Jp a(~ _v 2)
hJ2

1~Q1(~l)]) /1~~(F,1) 
— 
Q~(F,1)l (F— 1.4)A’ _____ _____ _____

‘ 

~L P~ (F,1)P 1(v) 
i1~~
(~l)i~
/ 
[P
1
(F,1
) P~(F,1)J

By simple algebraic manipulation, the identity

~~. 

[

~~~~~~ ~~~1 1 
1 i

~~~~~1
i 1P~~F,1 

— 
P1(F,1

)~

Q~(F,1) P
1
(F,1) 

— 

‘~(F,1)j = 

~~ (F,1) [ ( F ,1)j [Q~(F,1) t L
(F,1)]

(F—l5)

can be changed to read

I
rQ~(F,1) — ~

(~1)~rP’(~1)1 ~Q~(F,l)~~~(F,1) P~(~1)]
[P1(~1) ~~(F,1)J[Q~(F,1)] 

= - 

[P~(F,1)J Q~ (F,1) 
- 

Q~(F,1)J
(F—16)

substituting Equation (F—16) into (F—l4) we have

J a (F,~ v2~
hJ2) /~______________ 

P~ (F,A’ j —i ~~ 

— 1 i ~~~~~~~ 
— ~~~~______ ______ (F—l7)

~ ( Q~ (F, )P
1(v) j / [•Q

1
(F,1) Q~(F,1)Jp i p

comparing Equation (F—17) to (4le~ shows that

A’ — J
1

p p -
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Now F from Equation (E—6b) which will be denoted by F~ is

F ’ = ~~~ ~ ‘~~~]/ 1~~
i) 

- 
~l)~~ F-l8)

p P~~(F,1)P 1(v) 
j / ~~~~~~~~ ‘~(F,1)j

which is identical to F~ as defined in Equation (F—li) so that F~ F
1,’

Thus, the mathematical expressions for A and F~ (Equations (F—l3) and
(F—il), respectively) for the ferromagnetic spheroidal shell surrounded
by a thin current band in the limit as p

2 p
1 are the same as the coeffi-

cients A and F (see Equations (E—6a) and (E—6b) , respectively) for
the vector potentials in the regions of the current band in free space
(see Appendix E).

It is noted that when making the comparison, F,3 must be set equal to
F,1. For comparison , the coefficients for the current band problem are

Q
1
(F, )

A = F  P 1 
=~~~~ (F—l9)P P p](F,) P

p 1

F = {
~

—‘~ 
a(~ 1

_v ) ] J
~~p~~ i

) 
— (F—20)

~‘ [ P(F,~ )P (v) 
]f ~P ( ~1) P ( F ,1)j

and the coefficients for the ferromagnetic shell problem with p
2
—p
1 
are

A U IJ  U I F  ~~~(F,3)

“ ‘ “ (F—2l)

1~
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F — 
~~~~ a~3~) 1  /1%~3~ 

~~~~~
3)]  (F—22)

p 
P~ (F,3

)P ’(v) J/ [P ’(i3 
— 

P~ (F,3)j -
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APPENDIX G
REDUCTION OF THE i4AGNETIC VECTOR POTENTIAL FOR A THIN
COIL INTERNAL TO A FERROMAGNETIC PROLATE SPHEROIDAL

SHELL TO THAT OF A ThIN COIL IN FREE SPACE WHEN
IN THE LIMIT P 2 EQUALS p

1

In this appendix, the coefficients lip’ ‘p ’ ~~ ~~ ~~ and N~ for

the potentials are evaluated for the system consisting of an infinite-

simally thin current band surrounded by a ferromagnetic shell with

permeability p2 in a homogeneous medium with permeability p1 
in the limit

as ji2
=p1. These coefficients are utilized in Equation (47) in the section

of this report entitled “Thin Coil Internal to a Ferromagnetic Prolate

Spheroidal Shell.” The variables are defined in Figure 3 located on page

23 of this report. When p2 is set equal to p1 the problem reduces to that

of finding the potential in the two regions of a simple current band

(see Figure l—E in Appendix E), since the ferromagnetic shell will now

have a permeability ill equal to that of the homogeneous medium with

permeability p1.
In this limit the coefficients should assume the following form

K = M N (G—la)
p p p

I L = 0 (G—lb)p p

and where H and N~ should reduce to the coefficients for the potentials

in the two regions for the spheroidal band problem (see Appendix E). If

the coefficients assume this mathematical form it will prove that the

coefficients for the current band surrounded by a spheroidal shell are

correct.

The mathematical solution for L in terms of known quantities was
p 14

derived in Appendix D and was reported in the text of this report (see
Equation (53)).

(~
_)

~
Jh1P

~
(
~ 2 ) + 

~
‘
~

Q
~

(
~

2)1 
-

L (G—2a)

(
~~) p~~ 2~ 

+ 
(~

_)P
~~~ 2 +(~_)[u]Q~;
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where

______ — ______

L Q
1
(F, ) Q~

t
(F,)~P2

~ 
3 P 3 - (G—2b)

j iM 2 J

[vJ = 
[p

i
(F,) + [u]Q~(~2)j (G—2c)

= 

k G~P~ (v) (G—2d)
P ‘ 2 2 1/2

a~F,j_v )

2 2 l
~
’2
~

— 

p
1
j a(~1

_v ) J / 1~ ’-~ — 

Q~(F,~) 
—

P(F,1)P (v) J/ [~P~ (F,1) 1’~(F,1)

II I Q
1
(F,2
)

~ 
p 

(G—2f)
p P

The coefficient L will now be evaluated when the limit is taken withp
which causes [u] and [v] to approach infinity (

~ ).

L[J
IIp~ (F,) + J~Q~(F,2)] 1 ,

L = limit -

~~~~ F~:: 
(— ~_)[v]P~(~2) + (k) P~(F,2) +(~_)[u]~~(~2)

(G—3) - 
- -Lp I  UI~~~~ 

-

- I
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where fp
1
(F,3
) 

— 

P~(F,3)ji~i1~

limit [uJ 
j Q~ (~3) Q~(F,3)\~lJ _ (G—4)

M
2

1_h
l — 

1]

{p
l(F,) +[u]Q

1(~2)~ •1

limit [v) UI 
p = (G—5)

— - 
P1(F,,)

The expression for I (see Equations (61) and (55))

I UI J11 + L [v] (G—6)P p p

I UI + limit[L ][v] G—7)

M2 M1 M2~ hl

wtiere limit L [vi 
-

p -I 
-I’

1-i
2

p
1 -

(L~1 ~‘ p~(~2) + J’Q~(~2)J [~~~
2) + 

[uJQ~(~2)]

limit \
M1/ ~~ P P ( ~~

2
) ~ p 

~

, 

~ [~
P’(~2) P(F,2) J II

(— 

~)[:~:~ 
+ 

[uJQ
1(:2

)] 

~~~~~ 
+ ç ~~~~~ +(~~[u)Q (~2)
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Thus

II III — J  — Jp p p (G—9)

p —p2 1

UI 0 (G—iO)

1 1  11

‘2  ‘l

Now, the expression for M when p
2 equals p1 can be written as (see

Equation 60)

M limit L [uI (G—lla)
2 1

where limit L {uJ =
p

limit 
(
~ [- ~~~~~~~~~~~~~~~~~~~ 

~~~~~ 
+ J~Qp(~2)][

u]

[u]+ 

)(- )[P
l(F,) 

+ 
(U]Q (~~2

)~~~~~~~~~

] 

+ 

(~
_.)P~(F,2) + ~~[uj(t(~2)~

(G—llb)
2 2 1/2

M1Jp(0)(~1—v )-
P~(F,~ )P1(v) 

1 - 
-

— 
~~~(F,1)

~‘~ <~l
) 

:~~~

‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~~~
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M — (G—l2)p p

II UIlI
‘2 1

It is noted that this expression is identical to F~ of Equation (E—6b).
The coefficient N is expressed as (see Equation 62)

P1(F, )
N = L  + M (G—l 3)P ~~~~~~~ P•~C

and since L was shown to be zero in Equation (G—3) , N is equal to M~.
The expression for K is defined in Equation (59) to be

= J
I 

(G—l4)

which is equal to N and M . —
p p

The last coefficient is H which can be expressed as (see Equation 63)

Q
1
(F,)

H = 1 +K (G—l4)P p P p (F,)p 1

I
1

H 
p1J (0) afr~

_v2) 
]
~Q
l
(F,) 

/~Q’(~~) 
— 

~~( F , )~]
P P~(F,1

)P~(v) j [P~ (F,1) / [P
1(~1) P~(F,1)jP

2 (G—l6)

This is identical with the expression for A~~ in Equation (E—6a) of
Appendix E.
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Thus, the mathematical expressions for H and N (Equations (G—16) and

(G—13), respectively) for the thin current band surrounded by a spheroidal

shell in the limit as ~ 2=~ 1 
are the same as the coefficients A and F

(see Equations (E—6a) and (E—6b), respectively) for the vector potential

in the regions of the current band in free space (see Appendix E).

For comparison, the coefficients for the ferromagnetic shell problem

with p
2

UI~~~
1 
are

‘2 2 1/2

M = 
1 ~1J~ (O) a~F,

1-v ) I %~ F,1~ Q~~(F,1) 
(G-l7)

p p p~ (F,1)P (v) / P1(F,1) P~ (F,1)

1 2 2~~~
2 l ‘1

H UI j1 = 
~1J~(0) a(~j_v ) Q(F,1) / Q (F, ) 

-- 
Q(F, )

~ P~ (F,1
)P1(v) 

[
P ( ~l) ,/ ~~~(F,1) P~~(F,1

)

- (G—l8)

and the coeffiaients for the current band problem are

1 2 2~
hII’2 1 “

A UI F 
Q~ (F,1) 

= 

ii1J~ (0) a~F,1
v / ~~,(F,1

) / Q~ (~1) 
— 

Q (F,1)

p p E’1(F,1) PA (F,1)P i(v) 
- 

P1(F,1
) / P1(F,) P~(F,1)

(G—l9)

1/2 /
F 1 i.i1J~

(O) a~~~_v2) I ~~~ — 

Q~(F,1) (G—20)
P P P~(F,1)P~(v) / P~(F,1) P~(F,1)
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