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EXECUTIVE SUMMARY

THE MAGNETIC INDUCTION OF THE SYSTEM CONSISTING OF

A COIL AND A FERROMAGNETIC PROLATE SPHEROIDAL SHELL
OBJECTIVE

The objective of this work was to derive solutions to static ferro-

magnetic problems that included both current-carrying coils and linear
ferromagnetic bodies. The solutions are intended for comparison with
solutions to ferromagnetic problems obtained by various umerical tech-
niques such as the finite difference method, the finite element method,

and the integral equation iterative solution method.

APPROACH
After deriving the governing differential equation from Maxwell's .
‘ equations for classical magnetostatic field theory, the method of separa-

tion of variables was employed tc obtain the problem solution.

RESULTS

The magnetic induction was calculated for two geometries (configura-
tions) of a ferromagnetic prolate spheroidal shell and a current-carrying
conductor. The first case was for an infinitesimally thin current band
carrying a stationary current and surrounding the spheroidal shell. The
second case was for a spheroidal shell surrounding an infinitesimally thin
current band. The ferromagnetic bodies were assumed to be linear and
homogeneous. The reduction of the solutions to that of a current band in
free space is shown when the permeability of the ferromagnetic spheroidal

shell is allowed to approach that of free space.

RECOMMENDATIONS

It is recommended that the derived solutions be programmed on a digi-
tal computer for direct comparison of these results to those obtained by
various numerical methods. There are plans to implement these recommenda-

tions during the fiscal years 1979 and 1980.

ix




ABSTRACT

The magnetic induction is calculated for two
configurations consisting of: (1) an infinitesi-
mally thin prolate spheroidal current band
carrying a stationary current surrounding a fer-
romagnetic prolate spheroidal shell, and (2) an
infinitesimally thin band internal to a ferro-
magnetic prolate spheroidal shell. The ferro-
magnetic body is assumed to be linear and
homogeneous. The reduction of the solutions to
that of a prolate spheroidal current band in
free space is shown when the permeability of the
ferromagnetic prolate spheroidal shell is allowed
to approach that of free space.

ADMINISTRATIVE INFORMATION
This work was performed under Program Element 11221N, Project B00OS5,
Task Area BO005-SL001, Work Unit 2704-110. The Project Director is
Mr. W. J. Andahazy, David W. Taylor Naval Ship Research and Development

Center.

INTRODUCTION

As noted in Brown and Baker's report,l* exact analytical solutions of
Maxwell's equations using classical formulations have been limited to body
shapes and inhomogeneities that conform to a few separable coordinate
systems. Modern digital computers with large computational and storage
capabilities permit many electromagnetic field problems to be solved by
using a numerical solution to the governing differential or integral equa-
tions under a suitable choice of boundary conditions. The numerical solu-
tions of Maxwell's equations, when used with a complete description of the
electric and magnetic sources and the constitutive laws of the media, can
be used to describe completely the electric and magnetic fields produced
by the source, including nonsymmetric geometries, nonsymmetric source dis-

tributions, and spatially varying media parameters.

*A list of references is given on page 71.
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The mctivation for this work arose out of the need for solutions to
static ferromagnetic problems that could be used for comparison with

numerical methods.

PROLATE SPHEROIDAL COORDINATE SYSTEM

The prolate spheroidal coordinate system can be formed by rotating
the two-dimensional elliptic coordinate system, whose traces in a plane
are confocal ellipses and hyperbolas, about the major axis of the
ellipses.z’3

Flammer3 notes that it is customary to make the z-axis the axis of
revolution. Figure 1 depicts the three-dimensional prolate spheroidal
coordinate system. In this case the coordinate surfaces are: prolate
spheroids for n = constant; hyperboloids of two sheets for 6 = constant;
meridian planes for Y = constant. The prolate spheroidal coordinates
shown on Figure 1 are related to réctangulat coordinates by the following

transformation equations:

x = a sinhn sin6 cosy (1a)
y = a sinhn sinf siny (1b)
z = a coshn cosf (1c)
where
o<n<®
o<6<m
o<y<2m

We have denoted the interfocal distance by 2a and the prolate spheroidal

coordinates by (n, 6, ¥,).
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Figure 1 - Prolate Spheroidal Coordinate System




BASIC EQUATIONS
We can start with Maxwell's equations for classical magnetostatic

field problems

VxH=1J (2a)*

F.B=0 (2b)

H magnetic field intensity (A/m)
B magnetic flux density (T or Wb/mz)
3

electric current density (A/mz) .

In the general case for ferromagnetic materials B is a nonlinear function
of H

B = f(H) (3)

wiere B is not a single valued function of H. The function f(H) depends
on the magnetic history of the material, that is, how the material
attained its magnetiiation. This is referred to as hysteresis. It is
also noted that any property of a ferromagnetic material has meaning only
if it is considered together with its complete magnetic history.

In certain practical engineering problems, the variation in the mag-
netic intensity is small, and the functional relationship between B and H
is approximately linear.l For the linear case where the material is iso-
tropic, the magnetic induction B is related to the field intensity H by
the relationship

*The del operator V is defined with respect to the rectangular coor-
dinate system and is strictly valid in a rectangular coordinate system
only. Very often Vx and V. are used as equivalent symbols for curl and
divergence generally. This use is followed in this report.




=

-y (xm+1) H = uourﬁ = uH (4)

where

Xn magnetic susceptibility (dimensionless)
1 magnetic permeability (henry/meter)

(Xm+1) = M, relative permeability (dimensionless)

My free space permeability (4m x 1077 henry/meter) .

This report assumes that the ferromagnetic body has isotropic and linear
material properties. The divergenceless nature of the magnetic flux den-
sity in conjunction with the fact that the divergence of the curl of any
vector function is zero allows the introduction of the magnetic vector
potential field (A)

B=VxaA (5)

where A is the magnetostatic vector potential function in weber/meter. The
substitution of Equation (5) into Equation (2a) gives the fundamental

equation of the vector potential of the magnetostatic field.

|-

Vx(VxK)-(V‘xK)xV%=3 (6)

For homogeneous materials, as assumed in this report, the magnetic

permeability is spatially invariant. Hence,

B R L

v

= |

=0 @)




and Equation (6) reduces to

v x (sz) = ﬁj (8)
_f
Using the vector identity
VxVxK=V(V-X)—$X (9)*
Equation 8 becomes
VV.- 4 -@A =147 (10)

The magnetostatic Qéctor potential is characterized by the important prop-

erty that its divergence can be conveniently chosen to be zero.
V-a=0 (11)
Equation (10) reduces to the vector Poisson's differential equation.

QA= -] (12)

This is the governing equation for our calculations.

The general boundary conditions to be satisfied at the interfaces of
stationary dissimilar media may be derived from the limiting integral forms
of Maxwell's equations and are given by

*The vector Laplacian operator is designated by ‘I.




T e

By, - (Bz—Bl) =0 or Bnl = an (13a)

n, X (Hz-Hl) = JS or H ,-H . =1J (13b)

t2 tl s

where the subscripts 1 and 2 indicate the media under consideration, and
;iZ denotes the unit normal vector to the interface and is directed from
medium 1 into medium 2. In the case where the materials are linear and

isotropic equations (13a) and (13b) become

n, - (uzﬂz—ulﬂl) =0 (13¢)
B B

), x( 2 —1>= £ (134)
o L |

3; is a true surface current density that may exist at the interface. At
an interface where 3; is 0, Equations (13b) and (13d) need to be modified
accordingly.

THIN COIL SURROUNDING A FERROMAGNETIC
PROLATE SPHEROIDAL SHELL

GENERAL SOLUTION

We now proceed to solve the boundary value problem of a ferromagnetic
prolate spheroidal shell of homogeneous permeability My surrounded by an
infinitesimally thin prolate spheroidal current band of constant current
density J. The geometry of the problem suggests that a prolate spheroidal
coordinate system as shown in Figure 1 be used in the solution.
Figure 2, a cross section of the problem geometry, identifies the four

regions of interest. The boundaries of the prolate spheroidal shell are

WG
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determined by n = nl = constant and n = nz = constant. The dc current lies

in the boundary n = n3 constant. Regions I, III, and IV have a permeabil-
ity equal to that of free space Hyo which for convenience will be

labelled M- Ampere's law states

<
%

H=17 (14)

and since V. B = 0, the induction B must be the curl of some vector field
A. The governing differential equation for A when homogeneous and linear

materials are considered is from Equation (12)

QA= -uJ (15)

The general expression in prolate spheroidal coordinates for a cur-

rent density is

J = Jnen + Jeee + Jwew (16)

In the problem presented herein, the current density has only a psi (§)

component [Jw(e)2¢ which means that the vector potential has only a psi
component A¢E¢. The vector potential A = Awew is a function of the pro-
late spheroidal coordinates n, 8 [i.e. Aw = Aw(n,ezj. The constant cur-
rent density, which lies on the boundary between regions III and IV, can

be expressed by the function

5. 0 s AL 8<61 or 6>62

. an
3,(®e,, if 0,<0c6,

L

a

N ST W



3 for elgﬁgﬁz

Therefore, Equation (15) has only an azimuthal component and can be

where Jw(e) is equal to a constant J along n = n

expressed as
T & in regions I
ﬂAw mw(n,e) 0 (through Iv ) 18

When the psi component of vector Laplacian ﬂ]Aw is expanded in prolate

spheroidal coordinates, Equation (18) can be expressed as (see Appendix A)

8 1 d(sinhn AUJ) .2 1 a(sinb Alp) Pl i
) sinhn an 06 | sinb a6

(in regions I-IV)

Applying the method of separation of variables, let us assume that A, can

1Z

be expressed as the product of two functions

A¢ = H(coshn) G(cosh) (20)

where H(coshn) is a function of coshn only and G(cosf) is a function of
cos® cnly. Substituting this form of the component of the vector poten-

tial A into Equation (19), we have after separation of variables

2
48+ cothn (o), + ~—LJu=o0 (21a)
dn n sinh™n
dZG dG 1
—= + cotb = + [ p(p+l) - G=0 (21b)
2 de 2
db sin” 6

A
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o O ST

where the separation constant is p(p+l) and p is an integer from one to

infinity. It is well known that differential equations of the form

2 ‘ 3 2
L cothn%— () + —2 ¢ =0 (22a)
dn n sinh™n
have the general solution of the form
w = cp" (coshn) + C Qm (coshn) (22b)
1p 27p

where Cl and C2 are constants, and it is known that a differential equa-
tion of the form

2 ! ! 2
%- + cotb %g +lppr) - B’ =0 (23a)
dé sin 6
has the general solution of the type
¢! = c3p‘;I (cosB) + CAQI; (cos8) (23b)

where C3 and C4 are constants. Pg and Q: are the associated Legrendre
functions of the first and second kind, respectively. Comparison of Equa-
tions (21), (22), and (23) shows that in Equations (22) and (23), m2 is
equal to 1. This requires that m always equal unity. The solutions of
Equations (2la) and (21b) are expressed as

H(coshn) = A P; (coshn) + B Q: (coshn) (24a)

11
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G(cosf) = A/ P; (cos8) + B/ Q; (cosh) (24b)

The general solution of Equation (19) may be formed from the product of
solutions in Equations (24a) and (24b) which yield

A =1 (coshn) G (cosB) = 2. H_ (coshn) G_ (cosB) (25)
V)] p=1 P P

- 1 1
AlP p}_,;l [A Pp (coshn) + B Qp (coshn)]

(26)

x[A’_ Pll) (cos®) + B! Q; (cose)]

For the prolate spheroidai svstem, the associated Legendre functions of
the second kind are infinite at cosf® = *1 and as such cannot be included
in a general solution for a given region which includes 6 = 0 or 6 = .
Therefore, in our case the constant B’ is set equal to zero. Equation (26)

reduces to

o]

1 1 1
AW 321 [Kle (coshn) + K2Qp (coshn)] Pp (cosf) (27)

where K1 and K2 are constants (K1 = AN | K2 = AB'). When the substitutions

£ = coshn and v = cos® are made in Equation (27), A, can be expressed as

v

= 1 1 1
A, = pz_l [lep(e) + Kzop(e:)] Po(V) (28)

This is the general form of the psi component of the vector potential that
will be used to determine the potentials A, in each region.

v

12
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BOUNDARY CONDITIONS

The form of the component of the vector potential A, in regions

1

(I-1V) is determined from Equation (28). These magnetostatic vector

potentials in regions I-IV are:
@
1 1
A = AP P (v
yI p§1[ P p(g)] P( )

P TR o T
VI =% BpPp(ﬁ) +Cpr(E) Pp(\))

(29)

-

-

1 ]l ol
Ayrrr = £ [P (8) + B (8) | BL(W)

-

—

L 1 1
M T p{:l [qup(g)] Ep o
Because the potential must be finite in each of the regions I, II, and III
and approach zero as £ + « in region IV, the ‘following constants were set
equal to zero.

a. For AWI the constant associated with Q;(E) P;(v) was set equal to

zero because

§<a+wata=ﬂ

b. For wav the constant associated with P (S) P (V) was set equal

to zero because P (E) > ©» as £ » =,

(We note Q:(g) + 0 as § + )

ISR > i




The constants Ap, Bp, Cp, Dp, Ep, and F_ are to be determined from the
boundary conditions. At each interface, the basic laws of magnetostatics
(Equations (2a) and (2b)) reduce to boundary conditions on B and H that
can be used to evaluate these six constants. The normal component of B
across each boundary must be continuous, i.e., (§2 = Ei) y HiZ = 0 where
the quantity n12 is the unit outward normal to the surface. ThisAprovides
the following boundary conditions which must be satisfied by the solutions

given in Equation (29) for each region.

BnI = BnII at n = nl (30a)
BnH =B atN=04 (30b)
S e e (#0e)

The eta or normal component of the magnetic field (Bn) is expressed in

terms of the vector potential as

d(e A,)
oy e St A
By~ (Vak) * oo 38

ATE
(31)

1 1/2
B 2
T o e———  — (1-\) ) A
1/2 [ W]
a(gz_vz) av

14




S8 A

where

|
]
<j
L
>

2 2 l2 -
a(sinhn + sin“6) (sinhn sinB)
e 3 5 L2 e 5 5 HF2 i
en(sinh n + sin 9) ee(sinh n + sin"H) ewsinhn sinfb
- 5.2 £
an 996 oy
0 0 Aw sinhn sinf
aki 2 g 2 2 12
& = coshn, e = e, = a(sinh™n + sin"0) = a(&"™-v9)

Vv = cosf, ey = a sinhn sinf

However, since the vector potentials in each region are functions of P;(v),

we can simplify Equation (30) to constraints on A, at the interfaces:

12

AwI = AWII at n = Ny (32a)
s Al L S (32b) §
AwIII = Ava at n = n3 (32¢)

15
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The second set of boundary conditions states that the theta or tangential

component of H across each boundary must satisfy the relationship
n,, x (Hy-H) =7 (33)

where JS (which equals Jw(e)2¢) is the real surface current density in

the limit of vanishing width between the two regions. Using the relationship

B = uﬁ, Equation (33) can be expressed as

_—T=J () (34)

Referring to the curl in Equation (31), we can write B, in the form

6

By = (Vkﬁ@)e

(35)

_ -1 alegay) 2 3 11-[(g2-1>1/2 . ]
e.e an 172 v
1°3 aé%“ﬁ o€

From Equations (34) and (35) the tangential components of B in regions
I-IV must satisfy the relationships:

(36a)

16
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£=t, (36b)

1/2
1 o T (36¢)
3 (q) i N o [(g 1) AwIIIJ -
+(2-7)

It is understood that the summation runs from p = 1 to p = =,

The general expressions for the potentials in each region (Equation (29))

are then substituted into the boundary conditions (Equations (32) and (36))
D, E, and Fp). Since there

c
PP PP’ P

are solved for the six constants (Ap, B :
are six equations with six unknowns, the potential in each region can be = |

specified. The six boundary value equations are presented below. The

index p in the summation sign has both even and odd values and takes on

17




values from 1 to @, It is noted at this point that the current density

Jw(e) must be expanded into a set of associated Legendre functions in order

to evaluate the constants in the vector potential (Equation (29)).

The

detailed expansion is presented in Appendix B. The six expressions for the

boundary conditions are:

1 g % 1 1
AFREDPRO) = [BRI(E) + C (€D ] B

(i‘g)__lﬂ a_ag_[(gz_ )1/2 (

o

() el (sl )

=l
£=g;

1 1 1
BpPp(&) + Cpr(E))Pp(vJ

£=€,

1 1 WOt 1 1 1
[B,2pEp) + €, By = [0z, (Ep) + B g (B,

(;171')__—( : ;)1/2 i‘[(gz-l)l/z (o P2 ® + £,050) pi(v)]
a

€=V

A

gz-v

(%;)-(—5315373-52 [(az-l)llz(spp;(s)-+ ch;(a))P:(v)]
a

£=E,

€=¢,

(37a)

(37b)

(37¢)

(374)




1 1 1 5  § 1
[nppp<£3) + Epr(£3)] P,(V) = F QU (E5)P (V) (37e)

1/2

o (%I) a(&g-v;)l/z 5%’[(52-1) (FPQ;(Eﬂ P;(vi] %

E=t,
1/2 - (37£)
1 1 ) 2 1 1 i,
(u_) bl 7 s [(E -1) (DPPP(E) + EPQP(E)) Pp(v)J =
1 ( 2 2) Y3
a £3-v
E=E,
KG_pL(v)
J (8) = —
: a Ez-vz)llz
3
If we make the following substitution
1/2
Aowe 8 Tha 1
PO = % [(5 1) Pp(a)] (38)
1/2
Qe = & [(Ez-l) Q;(e)] (39)
dg

and perform simple algebric manipulations, the six boundary conditions
can be simplified to:

i

1 1 1
AP (E) = BPU(E) + C QU (E)) (40a)




1 A
p... B 4
(uz)[spPp(El) +C Q (& i] ( 1) A P (E ) (40b)

1 1 1 1
BPS(E)) + €0 (E)) = D PT(E,) + EQ(E,) (40¢)

n

1
(“2) [B PO(E,) + €0 (52)] (40d)

1 A = Al
(q)[nppp(az) + hpqp(az)]

1 1 e
DB (65 + EQ(55) = F Q0 (Ey) (40e)

5, ® ofe?)

af £2-
- (37) 7% €2 +(5) varetey + (i) Eopeey - 2 Pgiv)

(40f£)
where
K G_PL(v)
Jp(e) - (52 v2)1/2
2.

The solution of these six simultaneous equations to obtain Ep in terms of

known quantities gives:

- ——([x]JII PoEr) ) - (JII)QA(EZ) +‘lI(JI) PR(E,)

(["] [z]P €,) ) + —([z]Q (£,) ) (u )Q (£,)

€41a)
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where

((gl BEY e ))
W3l PBeey  Bp(E,)

' (41b)
x -
]
fi o Q) b (5) (41c)
[x]25(Ep) + Q (£
K G_pl(v) .
J (8) = , (v=cosb) (41d
P 2 9 1/2
53-\)
1/2 8
—uJ(G)aE-\) P(E_Z) P (E3)
Ly % 2 — (41e)
. P (v)Q () 0 (£5) QP(£3)
g - P p(5) (41f)

P [xJP (a ) +qQ ()

The numerical values for the other five coefficients can be obtained from

the following equations:

Cp= JLT+E [2] (42a)

o ey

np = [x]cp (42b)




P “p
|
A =B +C G (Ep) |
T el (42d) |
Pp(&l) ,4
D P (E,)
P o=-BR. L. 4 g (42e)
B gy P
P "3

Since the six coefficients can be determined for a specified problem
from Equations (41) and (42), the potentials AwI’ AWII’ AWIII’ and AwIV’
in regions I through IV can be completely determined. The normal (Bn)

and tangential (B to the surface n = constant (or £ = constant) com-

)
)
ponents of the magnetic induction in each region I through IV can be deter-

mined by using Equations (31) and (35).

THIN COIL INTERNAL TO A FERROMAGNETIC
PROLATE SPHEROIDAL SHELL

GENERAL SOLUTION

We now proceed to solve the boundary value problem of a ferromagnetic
spheroidal shell of homogeneous permeability u2, surrounding an infinitesi-
mally thin prolate spheroidal current band having a constant current den-
sity Je Figure 3 shows the cross section of the problem geometry. The
coordinate system shown previously in Figure 1 will be used in the
solution. The boundaries of the prolate spheroidal shell are determined
by n = n3 and n = n2. Ihe steady state current lies in the boundary
n=n and between elsesez- As in the previous problem, the dc current

density has only a psi component J (6)e,, and thus the vector potential

Y
has only a psi component A¢E¢. The vector potential is a function of the
prolate spheroidal coordinates n and 6. The constant current density is

expressed by Equation (17) when the boundary n is changed to n = nl. .

22 ?'
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The governing partial differential equation has only a psi component

and is given by
QX = an(n 0) = 0 (in regions I-IV) (43)

When the vector Laplacian ‘}A is expanded in prolate spheroidal coor-

dinates, Equation (43) can be expressed as (see Appendix A):

3(sinhn A,)

af vy r. e 1 8 y
an[sinhn s J+ = [sme 2 (sinod Aw)] =0

Adopting the following notation

€ = coshn, v = cosb : (45)

and following the logic presented earlier, the solutions for AW in regions

I-IV have the general form

‘00
1 1
A =z [k2l + k@]t (46)
sty 2°p P
p—
BOUNDARY CONDITIONS
The form of the components of the vector potential A¢ in each of the

regions I-IV is determined from Equation (46). These components of the

vector potential in each region are:

- 1,1

A =2 HpPp(E)]Pp(v) (47a)
p=1
o 1 1 1

Ayt = 5 [IPPP(E) + qup(g)]yp(v) (47b)
p=1
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RO 400

A T [Lele +u Q @& fe_) (47c)
YIII p—l[ ]

-3 1 1
S -gl[upqﬁ<£)]pp(v) (474)

The P; functions are the associited Legendre functions of the first kind of
degree 1 and order p, and the Qp functions are associated Legendre func-
tions of the second kind.

At each interface the basic laws of magnetostatics reduce to boundary
conditions on B and H (see Equations (30) and (33)) that can be used to

determine related boundary conditions on A:

AwI = AwII n=n (48a)
AwII = AwIII n=n, (48b)
Mtz “dy NNy (48¢)
1/2
1 1 d[1.2
=) ——— S | [£%-1
(“1 ( 5 2)1/2 ag[(g ) AwII] +
a El—v
g=8,
(48d)
1/2
£°-1 A =3 J (0)
“1 (gz 2 (2_2}"? ag[( ) WI} it

£=€,

P L S Ay S S

N —— WP _—




1 1 -]
() a(e2-2)""” ag[G ) AW]
£t
(48e)
1/2
P GOl
£t
1/2
]
=
(48f)
1/2
(u ) 1/2 [kg 1) AwIV]
1 (g
=

These boundary conditions are then used to evaluate the constants in Equa-
tion (47). Using Equations (47) and (48) to solve for the coefficients

(where the index p takes on all values from 1 to ») we get:

1 Eoons 1 3 1
PLEDR, (V) = [T P(E)) + K QO (5] 2o (W) (49a)
Y TR S— 1)1/?(1 ple) + K Q (a))Pl<v> +
(“1) (2 2)1/2 aE( \'pp PP P :
; ot

1
(:—)——1'1—/21[(52-1)1/2(11 plee)p (\»)] TACE % sl

a(gi_vz)ll?.

(49b)

£=¢,
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1 1 e 1 1
[Ippp<52) + qup(az)]r’pm —[LPPP(EZ) + Mpr(gz)]Ppw) (49¢)

1/2
(i_z)a(T\l)z)lﬁ fg[(ﬁz-l) (Lo ® + 1 22(e)) p;w)] S

£=¢, (49d)
1_) e 77 R (52_1)1/2 (IPP;@) - KPQ;(Q) P;(v)]
i (2 2 13
a Ez-v )
£=¢,
i 1 1 1 1
[Lppp(53) v Mpr<e3)]Pp(v) = QL (E)PE (W) (49e)
p 8 1 9 [2 FhE e g 1
&) el i o]
a 6;3—\) )
€=E3
1 1 3 [r.2 /2 1 1 1 ]
- —J(e°-1
(uz)_Tl/f 35[<€ ) (Lppp(g) 7 Mpr(g)) Ep ()
a(£3-\) )
€=§3
If we make the following substitutions
A _23[s.2 1/2 1
P,(6) = ag[(& -1) Pp(.i)] (50)
A By ahEg
QG (e ag[(s -1) QP(E)] (51)
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and perform simple algebric manipulations, the six boundary conditions

reduce to:

HPL(E) = LPI(E) + KQT(E) (528)

_(t—)( Ippg(él) +* KpQﬁ(El)) %i:)ﬂp?ﬁ(gl) g Jp(e):gi;vz)l/z g
(52b)

IPL(E)) + K QU(E)) = L2 () + M QL(Ey) (5365
(i—z)@ppﬁ(az) + »quﬁ(&g) - (i—l)(IpPﬁ@z) + quﬁ(g2>) (52¢)
LPP;(€3) + MPQ;(€3) = Npqll)(%) (52¢)

(t—l) NpQﬁ(%) - (t—2><LpP§(£3) + Mpqﬁ(%)> (52¢)

It should be noted in the above equations that the current density
Jw(e} was expanded into a set of associated Legendre functions in order to

evaluate the constants in the vector potential components (see Appendix B).
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The solution of these six simultaneous equations (52a through 52f) to

obtain Lp in terms of known quantities is:

1 II_A IA
(“1)[JP FAE) JPQP(E?_)] b
1 A 1 A 1 A
CE0 e «(& )b « (3
where
1 A
FR(£3) p Pp(%)/i)J
1 A
o - L6 el 3
u] = m
B
1 1
ple,)
p €2
KG Pi(v)
SNOR —2P 1= 173 (56)
a(&f-v‘)
1/2
2 1 A
oy ul{’%e)a(gi—v ) Q€(£1> ) Qﬁ(ap (57)
P
P (E P (V) (&) P(E)
K :
Q_(&,) i
JII it B il : (58) i
P P pl i
P&, :
" i
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The numerical values for the other five coefficients can be obtained from

the following equations:

K, = J; (59)
M, = Lp[u] (60)
I = J;I+ Lp[v] (61)

DDA ] P
Qp(€3)

1
K Q (&,)
H=I+_LP;1 (63)

p p 1
P (E))

The components of the potential A in regions I-IV can be determined since

v
the coefficients Hp, Ip’ Kp, Lp, Mp, and Np can be calculated for a speci-
fic problem. The normal (Bn) and tangential (Be) components (to the sur-
face n = constant or £ = constant) of the magnetic induction in each region

I-IV can be determined by using Equations (31) and (35).
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APPENDIX A
DERIVATION OF THE VECTOR LAPLACIAN tkK@(n,e)

We note that a distinction is made between the Laplacian operating on
a scalar V2¢ and the Laplacian operating on a vector £A(n,H) [i.e.,
Vz X(n,e)]. The vector Poisson's equation in rectangular coordinates can
be treated as three uncoupled scalar equations where V2 Ai = Ji for
i = x,y,z. However, if the vector Poisson's equation is resolved into
orthogonal components in other coordinate systems the differential opera-
tion mixes the components together giving coupled equations.

The vector Laplacian ﬂ’K'can be derived by using the well-known

vector identity

V x (VxA) =V(V-'A) - A (A-1)

In the case herein the Coulomb gage was chosen (G:X;O); therefore, the fol-

lowing identity applied in our magnetostatic work

QA = -7 x (VxA) (A-2)

The expression in prolate spheroidal coordinates for t’xw(n,e) will now be
derived since only the psi component of the vector potential A (n,0) exists
in this problem.

Taking the curl of A results in the expression

¥ x K@(n,e) =
1
T R -
a(sinh " n+sin“6)sinhn sind
2 2 1/2 2 2 1/2 n
Eﬁ(sinh n+sin~0) Eé(sinh n+sin“0) ewsinhn sinb
(A-3)
4 k-2 2
an 36 -3
0 0 A sinhn sin

1
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-1/2
(sinh2n+sin 6) iy
= x[e —5(sinhn sin6 Aw)
a sinhn sin6 na

(A-4)

- & 9(sinhn sin )]
eean(snns A‘l‘

The negative of the curl of VxA (n,0) results in the equation (where

2> _ _s.s. 7T
aAw VxVwa)

- VxTxh, = @K -- — x
a(sinh"n+sin " 0)sinhn sinf
N G i R -
En(sinh n+sin“0) E’e(sinh tsin™8) ew(sinhﬂ sind)
9 9 -1
on 96 oY
- ) (sinhn sin® A ) - xR (sinhn sinb A )>
a(sinhn sinf) 00 Vv’ ’ (sinhn sinB) 3n 1] 0
(A-5)
2 2 ~-1/2
_ (sinh"n+sin”6) e _3_ 1 A (stak
a(sinhn sin6) ¥Y|dN a sinhn sinb 3n S W All))
(A-6)

- 1

+ 30 3 sinhn sind

S% (sinhn sind A‘P)]
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(sinh2n+sin26
az(sinhn sinf)

)—1/2

T )
ew(ﬁﬁ sinhn dn anN AW)

(a-7)

+3 1 3
36 sinb Sé'(Sine AW)

Now, if ‘i;w is set equal to zero, then the vector potential Aw(n,e) will

satisfy the equation (see Equation (19) in text of report).

" 1 si 1 & X
an [sinhn an (eiahn A\b)]+ é‘g[m §0 tatnd q,)] 0 (A-8)

It is also interesting to note at this point that v °Aw(n,0) = (0 as it

must, since the Coulomb gage was chosen. The divergence of the vector

A in prolate spheroidal coordinates is

V:4=

1/2
21 3 - [(sinh2n+sin26) sinhn A ]
a(sinh"n+sin"0) | sinhn an "
(A-9)
1/2 A
1 A 2 toin’ R
+ Sind 30 [(Sinh st 6) s Ag, T sinn sin® gy

Since the two components An and A, are zero in our case, and A, is a

. ) ¥
function of n and 6 only, then Vko(n,e) is equal to zero as required.




APPENDIX B
EXPANSION OF CURRENT J () IN ASSOCIATED
LEGENDRE FUNCTIONS P;(cose)

Let us assume the expansion is similar to Purczynski's" (see Equation

(56)) .

J z G Pl(cose)
J (e) — p=l P P \ (B-1)
v 2 2 1/2
a(sinh n, + sin 9)

In this case the current band was chosen to be on boundary n=n1.

The coefficients G_ are determined from Equaticir/xz(B-l) by multiplying both
1

sides by sin6 Pp, (cosB) and a(sinhznl + smze) and integrating

i 5 Sate o
f Jw(e)a(Sinh 0, + sin 6) Pp’ (cosB)sin8d8 =

o

1/2
!
1 1 a(ginh2n1+sinze)
J G_P /(cosB)P (cosb) sinbdb = (B-2)
p p ) 5 \1/2
o a(sinh n1+sin 6)
jc 2p(ptl)
p 2ptl
where the identity
% 15 4
o m = 2(ptm)I5p,p°
/ Pp, (cose)Pp(cose)sinede o) (pom)|

(o]

was used to simplify Equation (B-2).
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When J (6) is set conveniently to a comstant J, Gp can be expressed as

1

m

1/2

¢, = / (sinhznl+sir128) ' (cos8)sindds (B-3)
o

Since the current in this problem extends from 61 to 62 the expression for

Gp can be further modified to read

6 1/2
Gp = %%%‘_;%1?:/ Z(Sinh2n1+sin26) P;‘(cose)sinede (B-4)
el

By making the following substitutions

£ = coshn , v = cos6 (B-5)

]

Gp can be conveniently written as

1/2
(2 +1)a .}r 1 r
(;p 7 (p+1) Pp (v)dv (B-6)

This integral can be evaluated with much difficulty in closed mathematical

form. Purczynski“ evaluated these integrals for C (even terms) and

2
C2p+1 (odd terms) in terms of very complicated seriis expansions.

In the computer work to be performed, the integrals for Gp will be
evaluated numerically, the reason being it has been found that a large
number of coefficients were necessary to obtain a good fit for the current
expanded in terms of associated Legendre functions for the analogous

spherical shell problem.
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APPENDIX C

DERIVATION OF THE COEFFICIENTS FOR THE VECTOR.
POTENTIALS FOR A THIN COIL SURROUNDING
A FERROMAGNETIC SPHEROIDAL SHELL

In this appendix the coefficients are derived for the vector potential
in regions I-IV for a ferromagnetic spheroidal shell surrounded by an

infinitely thin current band. For a detailed discussion of the ferromag-

S

netic problem see the section in the text of this report entitled "Thin
Coil Surrounding a Ferromagnetic Prolate Spheroidal Shell." The magnetic

vector potentials in each region are given by:

ey 1 1
o gzl[APPP(E)]PP(V) (C-1a)
AprI = ; [B Pl(g) + C Ql(g.-)] Pl(\)) (C—lb) |
getk PP PP P |
g 1 1 1
Ayrrr = ZI[DPPP(E) * EPQP(E)]PP(\)) (C-1c)
p=
e A | 1 g
Ayrv 'pEl[*pr‘E)]Pp(W (c-1d)

The coefficients in Equations (C-la) to (C-1d) are obtained by substituting
these equations into Equations (C-2a) to C-2f).

Moi  Thgp SRR (C-2a)
&
f;
1
Ajir = Ayrrr st n =N, (C-2b) %
, 4 ‘
1 Amu Aww at n = n, (C-2¢)
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a gl V 1
g=51 (C-24d)
1 4 3 [r2 12
\“113(52-\,2)1/2 Y3 [(g & A‘“] ’ .
£=t, 1
1 1 3 [r2 12 ]
e © - =
(ul)a(gg-vz)l/z o [( Y Aprrr '
g:gz (C-2e)
i ; 3 [r,2 332
(”2> (c2- 2)1/2 2¢ [(g ) ‘PH]
2
£t
1/2
T o l[ 1) wxv]
1 (Eg_\)z) 3E
£t
W] e
el
&3
E=€3 4
1
-5 JP -5 K G P (v)
P P a(g ,v2)
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Let us define the following functions as

Pf;(a) -5 [(52-1)1/2P;<a>] (c-2g)
Qe = %E[Kaz-l)l/zqg<sﬂ (C-2h)

After appropriate substitution of Equations (C-la) to (C-1d) into Equations
(C-2a) to (C-2f) and using (C-2g) and (C-2h), the following boundary value

equations are obtained.

1 kol 1 e
APL(ED = BEL(E) + CQNE) (c-3a)
1\l pb o' (LAY o _
(uz)[ B,Pp(E)) + C0(E )] <“1) A POCE)) (c-3b)
1 lga s ol 1 2
BP(E)) + CLA(E,) = DPL(E,) + EQL(E,) (c-3c)

Bl nped] - () [0 + o] o

1 Raiiy= 3 i
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_(1_)F QA(€3) e (1—)13 e 4 (l-)a ey 2 a(Eg-vz)llz
/e M/ Ppp3 /PP 73 P;(\,') (c-3£)

where

k G PL(v)
J = ~

P a(52_\)2>1 2

These algebraic equations provide six simuitaneous equations with six
unknowns, and they can be solved for the coefficients Ap, Bp, Cp, Dp’ Ep,
and F_.

P

After solving Equation (C-3a) for Ap, we obtain
A =R S 2L (C-4)

The solution of Ap from Equation (C-3b) is

A
u u, fQ (&,)
1)4 e (c-5)

g % Bp(u_  JRTH
2 2\ P )

By equating Equations (C-4) and (C-5) and solving for Bp, one obtains

A 1
u_l(qp(El) ) . Q)(El)
plu A 1
2 2 PE(EI) P (€))

P m
- 5]
Ha
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where

Bp = [x] cp (c-7)
and

b GE) Q)

M A 1
2\P,(6))) B e |

[x] -

Solving Equation (C-3e) for Fp, we derive the result

P(E,)
B D, —1 + B, (c-8)

In addition, the solution for Fp from Equation (C-3f) is

1/2
2 2) PA
--ulJp a(£3 v BP P(53)
5o " A 1 B " (c-9)
QR Q) ()
Equating (C-8) and (C-9) and solving for Dp, one derives the result
I
Dp Jp (C-10)
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where

1/2
3 2 .2 1 A {
2 yob 1 A
P, (WQ(Ey) €y Q(Ey)
Solving Equation (C-3c) for Cp and using Equations (C-7) and /

(C-10), we arrive at the result

1
e lJPPP(EZ)l . 1Epr(az)l (c-11)
p p N\
(e + axiey)  (Beieey + )
This can be expressed as
o =
c,=J, + Ep (2] (C-12)
where
Bl
e AfEPp(az)
P [Hrey + % &)
1
Q (E,)
2
[2)- 3 |

[[XJPIl,(Ez) + Q;@z)]




Using Equation (C-3d) to solve for Ep and substituting Equations (C-7),

(C-10), and (C-12), we arrive at the expression

I
S N
uz[x] p Fp& -

(H\)Q &,) +—JP €,
& 1
B o A

Hy ([x] [z] Pp(g'z))

([z] Q( >) - E QP(EZ?

(C-13)

1
Hy
T
Ll

The constants are thus determined by using Equations (C-4), (C-7), (C-8),
(C-10), (C-12), and (C-13). For convenience, (C-4), (C-7), (C-8),
(C-10), and (C-12) are listed below

a
[

3.
ok i hp[z]

Bp = [x]cp
D =gt
p p
(C-14)
mi
A =B + C ngl
p e o
Pp(il)
F =D pl (53)
P p-P———l +Ep
Q (52)
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APPENDIX D

DERIVATION OF THE COEFFICIENTS FOR THE VECTOR
POTENTIAL FOR A THIN COIL INTERNAL TO
A FERROMAGNETIC SPHEROIDAL SHELL

In this appendix the coefficients are derived for the vector poten-
tials in regions I-IV for an infinitely thin current band surrounded by a
ferromagnetic spheroidal shell. For a detailed discussion of the ferro-
magnetic problem see the section in the text of this report entitled "Thin
Coil Internal to a Ferromagnetic Prolate Spheroidal Sheli." The magnetic

vector potential in each region is given by:

¥ 1 1

A = L|H P (E)P_(v) (D-1a)
L2 p=l[ PP ]Pp

= e i 1 1 o
Ay1z pf:l [IPPP(€) + KPQP(E)]PP(\)) (D-1b)

= - 1 1 1 g
A1t pfl[LPPP(g) P Mpr(E)JPp(v) (D-1c)

e PR WS, i
AlbIV pfl[Npr(g)]Pp ) (D-14d)

The coefficients in Equations (D-la) to (D-1d) are obtained by substituting

these equations into the boundary conditions (Equations (D-2a) to (D-2f).

AUJI = AQJII at n = nl (D-2a)
%
Ayr = Ayrrr 2t n=n, (D-2b)
AWIII = AWIV at n = n3 (D-2¢)
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_(1 )_(g—zv—z)l/z [(g 1) ]' + (D-2d)

€=E2 (D-2e)
(i_z)a<£2_v2 1/2 [(E l) wlu] ’
&=t,
(_1_ 1 i[(gz_l)l/ZA ] »
gl e
5=t g

(51)‘;23“'iji7§‘ [K? . wIV']

£=¢,
Let us define the following functions as

52
Py = & (tz—l) PL(E)
de | !

1/2 T
Q (£) = ——-Rsz-l) ot
dg | i
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After appropriate substitution of Equations (D-la) to (D-1d) into Equations
(D-2a) to (D-2f), the following boundary value equations are obtained.

1 e 1 -~
HPR(ED) = LRI(E) + K al(e)) (0-3a)
1/2
1 5, 1)
()(IP(€)+KQ(€)) i Jnrace) = B (D-3b)
Y ¥ Pp(V)
1 Ao 1 :

() (e + mheey) - (& o) (176 + 1, 856Ep) 0-3a)

1 1 o 1 x
Pp(£3) + Mpr(£3) = Npr(£3) (D-3e)

1 A 1 A A
(q)npqp(g) (EXLPPP(EB) + MPQP(€3)) (0-36)

These algebraic equations provide six simultaneous equations with six

unknowns, and they can be solved for the coefficients Hp, Ip, K ; Mp, and

N .
%

Solving Equation (p-3a) for Hp in terms of Ip and Kp, we arrive at

the equation

LR + K B2 (D-4)




Solving Equation (p-3b) for Hp, we obtain the equation

A 1/2
Q&) e (522

Hp = Ip + Kp —E——P = + PA(E o
p°l p 1l p

Equating Lquations (D-4) and (D-5) and solving for Kp yields

K = JI
P P
where
; 1/2
2 2 1 A
i by a(e7-v?) Y G
P A 1 1 A
P (EDPL(V) PG PLCE)

Now solving Equation (D-3e) for Np’ we obtain

2 (5,
p 5 o + Mp
Q ()

(D-5)

(D-6)

(D-3)

Additionally, by solving Equation (D-3f) for Np, one obtains the expression

o 1 VA A
(i})(“ppp“s) “ Mpqp(a3))

A
Q&)

(D-8)
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By equating Equations (D-7) and (D—8),'we may obtain Mp in terms of Lp

Mp = Lp[u] (D-9)

where
1 A
By B G (“_1) |
1 A U
ey Qpeep 'H2

[u]= Hy
%

Solving (D-3c) for Ip and using Equations (D-6) and (D-9), we derive the

result
II
=J + L D-~10
e T ol7] (8-10)
where
1
Q (€,)
J;I o J; E 2
Po(E,)

1 1
5 P(Ey) + [u]Qp(Ez)

1
P (Ey)

(v]

Now if we use Equation (D-3d) and substitute from Equations (D-6), (D-9),

and (D-10) the constant Lp can be determined to be

1 II_A LA
—||J_."P +J
(ul).[ e O pr(sz)]

1 150 1) 1 A
oo - (e o

(b-11)

P

b
j
3




The constants have now been found. After the numerical value for Lp is
calculated on the computer for a specific problem, the numerical values

for the other coeffieients can be obtained from the following equations:

By vl Lp[v] (D-12)

=)
]
-
+
~




%

< jfz,'* i RA R 2

APPENDIX E

DETERMINATION OF THE MAGNETIC VECTOR
POTENTIAL FOR AN INFINITESIMALLY THIN
PROLATE SPHEROIDAL CURRENT BAND
In this appendix the Potentials AwI in the inner region and AwII in
outer region are derived for the infinitesimally thin current band in a
homogeneous medium of permeability My (see Figure E-1).
The potential in the inner region AwI and the outer region AwII of
the infinitesimally thin current band problem are solutions to the vector

Laplace's equation ‘IK = 0. These solutions can be expressed as:

A 1 1 e
A = I AR () PL(V) (E-1a)
p=1
A =% FQL® Pt (E-1b)
YII ot PP p

The coefficients Ap and Fp are determined from the boundary conditions of
the problem. After algebraic manipulation such as with Equations (32) and
(36) in the text, the boundary conditions for the normal component of B

and the tangential component of H becomes:

A¢I= AwII at n =ng (E-2a)

)il ]| -

() 2

£=E,
(E-2b)
g 1 2 2 1/2 6
(“1) ( 2 2\/2 3¢ [(g ) A“’J § g :
(i) gE, ?
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Figure E-1 - Infinitesimally Thin Spheroidal

Current Band
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Using the relationship & = coshn and Vv = cosP and substituting the expres-
sions for AwI and AwII (Equations (E-la) and (E-1b)) into the boundary
value equations (Equations (E-2a) and (E-2b)) provides us with the follow-

ing algebraic equations for the coefficients:

1
PL(E) = FQL(E)) (E-3a)

3(0) a(&i-\)z )1/2

“1 [ e )] 1[(1\ P <£1)] =

The following substitutions were used to simplify the above expressions.

Pl = 4 [(& -1) % (g)] (E-4)

dg

Qe = —[(& -1) o m] (E-5)

These equations are solved for Ap and Fp by simple algebraic manipulation.

)
A =F o - ke’ (E-6a)

I AL a(si-vz)llz

1
Q (&) Q&)
Pl-JI] (E-6b)

P 1 A
PO(E P2 (V) PLED  RO(E)




The potential AwI and AwII

for Ap and Fp into Equations (E-la) and (E-1b)

are determined by substituting the expression

J <e)a(g2-v2)l/2 Qi) 2y o lnd
AM={;° “1RA 2 A l) BEY 6 PL(EIE (V)
=1 1 1 A
p PR \eep/lf e RiEp
(E-7a)
1/2
2 1 A
P uJ(e)a(g-\)) Q (&) Q. (&)
Ayr =L o e o it pea | LR
p= PL(EDE (V) L) ) e
where
K G Pl(v)
Jp(e) - {34001 S, (£-8)

, 1/2
a(éi-v2>




APPENDIX F

REDUCTION OF THE MAGNETIC VECTOR POTENTIAL
FOR A THIN COIL SURROUNDING A FERROMAGNETIC
SPHEROIDAL SHELL TO THAT OF A THIN COIL IN
FREE SPACE WHEN IN THE LIMIT Hy EQUALS Uy

In this appendix, the coefficients Ap’ Bp, Cp, Dp’ Ep’ and Fp for the
potentials are evaluated for the system consisting of a ferromagnetic shell
with permeability My surrounded by an infinitesimally thin current band
in a homogeneous medium with permeability ul in the limit as My = Hy-

These coefficients are utilized in Equation (29) in the section of this
report entitled "Thin Coil Surrounding a Ferromagnetic Prolate Spheroidal
Shell." The variables are defined in Figure 2 located in the text. When
My us set equal to My the problem reduces to that of finding the potentials
in the two regions of a simple current band (see Figure 1-E in Appendix

E , since the ferromagnetic shell will now have a permeability Hy equal

to that of the homogeneous medium with permeability My -

In this limit the coefficients should assume the following form:

A =B =D (F-la)

C =E =0 (F-1b)

and where Ap and Fp should reduce to the coefficients for the potentials
in the two regions for the spheroidal band problem (see Appendix E). If
the coefficients assume this mathematical form it will prove that the
mathematical form of the coefficients for the spheroidal shell surrounded
by a thin current band are mathematically correct.

The mathematical solution for Ep in terms of known quantities was
derived in Appendix C and was reported in the text of this report
(see Equation (4la)).
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1 II_A II
"B %) -
E =

) + 3~ <J JEOCE)

(=

1
u
P —2([x] [z]P (gz)) + 1—([2]Q (52)) ( )Q (& )

<“1>8§(€1 (_2;(5 )
] = Ptk o B
(-5)
My
1
[P,y + a5y
1/2
2.2 1 A
1) o (e)a(£3 ) ASRRAC
P A
PLOIQACE ) Qe Gy |
)
a1 GRE

P 1 1
(x]2,(8)) + Qp(&y)

(F-2a)

(F-2b)

(F-2c)

(F-2d)

(F-2e)

The coefficient Ep will now be evaluated when the limit is taken with

u2 = ul which cause [x] to approach infinity (). Also the expression

for J;I is substituted into Equation (F-2a).




R i

T2y
(€-1)
0= &m
Aauvum Ty
d d T
CapCaa - Cngangp) T 5
z.dd T 2 a4 Ty
( 3,}_, ks qumu_, o
d d
zod Tn [CP+ Cnlabd\t, ., [Enlo+ Enlax) 1, Yiits
( wv<~v s = T S e + ( uvdm 7..d HXHIﬂ
CNnpCnd Cnp - +fi) a
d d R or
I o (% + En%l) %+ Enla) ) 1 g
CDga(yr) = + g ! 2 - g L (9= -
( wVHme ( uvaHn
Anl~2
| s+ ix :
q 3TuIT = K |
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The expression for Bp (see Equations (42b) and (41b)) is

II
Bp = [x] Cp = [x]Jp + Ep[x] [z] (F-4a)
where

II
G5 +Ep[z] (F-4b)

The expression for Bp when uz equals My can be expressed as

B, | = limic [x]]g, [z]}+ limic ((X]JII) (E-5)
Bohy M) <
Hr™hy |
B I
=J
Mooy

where

limit [[xj[zi] Q (E P;(Ez)
uz*ul

and

L (E )
limit [[x]Ji}]s limit [ ]
My Hy [x)> = [X]Pp(Ez) + Qp(éz)
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and
Ep I = 0 from Equation (F-3)
Uy =y
The expression for Dp equals JI
Ho=Hy

(See Equation (42c) in the text of this report). The expression for Cp

(see Equation (42a)) in the text of this report is:

s 2
cp = Jp + Ep[z] (F-6)

The expression for Cp when Hy=H; can be expressed as:

11,
J P (&,)
¢ = limit E (z] + limit R P 2
P P [x]PlE,) + Qlee,)
[x]> = lele = L0052 ™ St
My=H e
A e
c,| =o (F-7)

where
limit [z] =0
[x]» -]

and

limic JII =0
P

i AlRaie e e av

Py




The expression for Ap is (see Equation (42d) in the text) !

1 : {
Q (&.)
8 =B #p RoL (F-8)
P P Pl
PL(ED)

The expressions for Ap when u2=u1 is A
{
1 |
=B +]c 1 |
: : : P (E)) |
Ll ¥y (F-9) |
I
A =B =7
P P P
e e
where C =0
P
oo

The expression for Fp (see Equation (42e) in the text) is

1
BP (E.)
R B e R (F-10)

P 1 p
Qp(£3)

The expression for Fp when u2=ul is

1
P (£,)
F l =|o, , -{?—il— 4+ E
s &y P
M2 '™ Ha=H;




1/2

2 2 1 A
p A 1 1 A a
| Pp(€3)Pp(v) PP(E3) Pp(€3)
HaHy
where Ep = 0 from Equation (F-3)
Ll

This means that in the four regions, the potential used in Equation (29)

of the main text of this report reduce when u2=ul to the form

00

Apre 110 11T T Z

Ap
p=1

P;(E)P;(v) (F-12a)

H2=Ul

oo

: 1
Ayy = 2%- Fy | GBE, M
p=

Ho=Hy

These are the solutions for the potentials of the current band in a region
of space with homogeneous permeability My (see Equations (E-la) and
(E-2a)). We now have the solution for the two potentials in regions I

and II (AWI’ I1° 1I1° and A¢
problem. This indicates that the form of the coefficients AP through Fp

v respectively) for the simple current band

is correct.

The mathematical expressions for Ap and Fp which has been evaluated
in the 1limit as Hy=H, s will be compared with the coefficients Ap and Fp,
respectively, for the two regions of the current band problem (see Appen-
dix E).

Ap from Equation (F-9) is

I
Al=1J F-1
o™ Ip (F-13)




A from Equation (E-6a) which we will denote here by A' is

1/2
[1J a al-v pell flde) $6)] @i
PoE P ) P<€1 P(E) P(&)

By simple algebraic manipulation, the identity

1 A .
1 (%) gapl - feeallete) - <sl)J
A 1 A A 1
GED | Ppe)  PED[ PG Pp(al>_| Q6 Qp(El)
(F-15)
can be changed to read
1 A 1 A 1 A
[Q{(sp &A,a: o 5%(51) i I:QJX(EI)] 9{@1) : %(59}
v Poep || ey Py lbey ey
(F-16)

substituting Fquation (F-16) into (F-14) we have

2 /2 .
P J,a €l—v ) v A W (F-17)
b epro Qe Qe

comparing Equation (F-17) to (4le) shows that

Al = J
P

T -
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Now Fp from Equation (E-6b) which will be denoted by Fé is

1/2 &
2 .2 1 A
g ulJZ a(gllv ) QE(EI) : Qg(ﬁl) (F-18)
%
P P P P
SEDPI) ) )
which is identical to Fp as defined in Equation (F-11) so that Fp = ﬂ;

Thus, the mathematical expressions for Ap and Fp (Equations (F-13) and
(F-11), respectively) for the ferromagnetic spheroidal shell surrounded
by a thin current band in the limit as u2=ul are the same as the coeffi-
cients Ap and Fp (see Equations (E-6a) and (E-6b), respectively) for
the vector potentials in the regions of the current band in free space

(see Appendix E).

It is noted that when making the comparison, £3 must be set equal to

51' For comparison, the coefficients for the current band problem are
1
Q (&.)
A e Bl 5t (F-19)
P Ppliey P
p -1

1/2
2 2 1 A
e b, a(ev?) RGO GY

P A 1 1 A
PO(EDP (V) BE)  EGy)

(F-20)

and the coefficients for the ferromagnetic shell problem with u =y_ are

1
=gl o5 (&Y
orlst 23

1 (F-21)
P, (€3)
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1/2
2 2 1 A :
NiRA a(£3-v*) G Q) (F-22)

P A 1 1
Pp(€3)Pp(V) Pp(€3) Pp(§3)
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APPENDIX G

REDUCTION OF THE MAGNETIC VECTOR POTENTIAL FOR A THIN
COIL INTERNAL TO A FERROMAGNETIC PROLATE SPHEROIDAL
SHELL TO THAT OF A THIN COIL IN FREE SPACE WHEN
IN THE LIMIT “2 EQUALS “1

In this appendix, the coefficients Hp’ Ip, Kp, Lp, Mp, and Np for
the potentials are evaluated for the system consisting of an infinite-
simally thin current band surrounded by a ferromagnetic shell with
permeability Hy in a homogeneous medium with permeability My in the limit
as Wy=Hj. These coefficients are utilized in Equation (47) in the section
of this report entitled "Thin Coil Internal to a Ferromagnetic Prolate
Spheroidal Shell." The variables are defined in Figure 3 located on page
23 of this report. When My is set equal to My the problem reduces to that
of finding the potential in the two regions of a simple current band
(see Figure 1-E in Appendix E), since the ferromagnetic shell will now
have a permeability My equal to that of the homogeneous medium with

permeability ul.

In this limit the coefficients should assume the following form

K. =M =N (G-1a)

I =L =0 (G-1b)

and where Hp and Np should reduce to the coefficients for the potentials
in the two regions for the spheroidal band problem (see Appendix E). If
the coefficients assume this mathematical form it will prove that the
coefficients for the current band surrounded by a spheroidal shell are
correct.

The mathematical solution for Lp in terms of known quantities was

derived in Appendix D and was reported in the text of this report (see

Equation (53)).
1 II A
(“1)[ Phce, + 3k (52>]

(G-2a)

( )[v]r (3 +( 2)9 (&) +( )[u]o (&)




where

1 A
[ BE) By /u_l)]

1 A H
ey Sep\

= 1 G-2b
[u] r“l ] (G-2b)
|U2 i
1 b o
o] - [PP(EZ) + [Q]QEFEZ)J (G-2¢)
1
E )
1
kG (V) (G-24d)
Jp 5 2 2 1/2
a(ii“’ )
1/2
2 .2 1 A
PO : a(z,l;v ) SRR e
P
| Peprio e PhE)
11 I QI(EZ)
¥ e g S (G-2£)
P TR

The coefficient L_ will now be evaluated when the limit is taken with
H =, which causes [u] and [v] to approach infinity (x).

1 f. I8 LA
“1[JP Po(Ey) + JPQP(EZ)]

Lp | = limit % 2 P D 3 ¥ P
My=Hy E:]: A “_1) (175&p + (57) &2 iglea%eer

(G-3)




where [i(g) ) (E)J
1 A M
iEs) QDY) 5
lmie [o) =b2 223 _l.. (G-4)
Ho=Hy -
y
1 1 A
[P (§,) +[u]Q_ (&,)
limit [v]} =%B 21 (4% 2] s (G-5)
{
The expression for Ip (see Equations (61) and (55))
11
Erd % Lp[v] (G-6)
I =gy limit[L_][v] G-7) |
P P P
b N ™y |
where limit Lp [v] =
Wy _'
1 1 " :
(l-) -t —P—Ql(gz) pOcE) + 3ldce )J [Pl(gz) + [ulqp(gz)] 3
H P P Pp 2 1 |
limit : L Pp(gz) A Pp(gz) Pp(gz) P g
3 P :

(o] = P(E,) 1(g,)
L) 2% | BI%E, P2ey) + - pAe,) +{Hu)dd
7 e ey
ul)[Pl(Sz) Py | P02 T v ({,‘1\7[] p(&2

(G-8)




Thus
5 B S
P P P (6-9) ‘
Ba"Hy
1 =0 G-10
p' (G-10) j

Now, the expression for Mp when Hy equals My can be written as (see

Equation 60)

Mp = li:it L [u] (G-11a)
=u
where 1limit Lp[u] =
u2=u1
(1 [ I‘ QlE(EZ) A I [ ]
== P () + 3 Q (&)|[u
M ) 1 2
ltmit 1 = P9(52) 8 R
ul|> o =
(&,) [U]Q (&,
2 "2°.A g P (;_) A 144
’( ; )[; (Ez e g P ] : 1o e g “1[u]Qp(52)
/ (G-11b)
1/2
3 (0 (202 ‘
A 1
. P (El)Pp(v) il
A P
Q (51) Q (51) )

A
Py 2y




M = J (G-12)
P

u2=u1 1

T

It is noted that this expression is identical to Fp of Equation (E-6b).
The coefficient Np is expressed as (see Equation 62)

1
P (E,)

N =1L —11’—3+ M (G-13)

Mo VRey F

and since Lp was shown to be zero in Equation (G-3), N_ is equal to M

The expression for Kp is defined in Equation (59) to be

K =] (G-14)

which is equal to Np and Mp.

The last coefficient is Hp which can be expressed as (see Equation 63)

1 ,,

Q_(&,) '

e Tt ._11’_1_ (G-14) 3

Plee)

:

:

5 A 1

: 13, ® afe1?) Yarep] [redep ey ~
P 2 A 1 8 | 1 T ' '

Lo mepne  flmep| ] [ep e
2"

(G-16)

% This is identical with the expression for Ap in Equation (E-6a) of ,
i Appendix E. : %




Thus, the mathematical expressions for Hp and Np (Equations (G-16) and
(G-13), respectively) for the thin current band surrounded by a spheroidal
shell in the limit as u2=ul are the same as the coefficients Ap and Fp
(see Equations (E-6a) and (E-6b), respectively) for the vector potential
in the regions of the current band in free space (see Appendix E).

For comparison, the coefficients for the ferromagnetic shell problem

with u2=u1 are

1/2
202 1 A
P P A 1 A
| Pp(El)Pp(V) Pp(El) Pp(El)
Uz-Ul
1/2
1 2.2 1 1 A
Sk Qg(ﬁl) : ulJp<z) a(si-v ) Li%(gl) QE(51> $ Qg(il)
P P
| ® ey Ene) || [ e e
uz_ul

(G-18)

and the coefficients for the current band problem are

1/2
1 2 1 1 A
oz B2 S a(s%-v ) 96 [bg(sl) _ Qg(£1>]
P P 3 -
Ple) Pepro  |lrlep [fp<£1> Pp(gl>J

(G-19)

1/2
.2 1 A
T o 5 bl a\gl-vg) &Y 9,6 (G-20)

P P A 1 Y A
Pp(El)Pp(\’) . Pp(El) Pp(El)

|
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