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NOMENCLATURE

Aij = stretching stiffnesses

a,b = plate dimensions in x and y directions
. . = bending-stretching coupling stiffnesses
*13

Crs = coefficients defined in Eqs. (2.2.4), (3.3.4), and (4.3.4)

D = bending stiffnesses

dx  = a( )/ax

E = Young's modulus of isotropic ordinary material

Ec ,Et  = compressive and tensile Young's moduli (isotropic bimodulus)

1 2,E2k2 = Young's moduli in directions x and y (orthotropic bimodulus)

G13,G23  = longitudinal-thickness and transverse-thickness shear moduli

G. ,Gz9 r transversely isotropic, bimodulus-material shear moduli

. -.. - l thickness of plate

IL.. ':rotatory inertia coefficient per unit mid-plane area
2

- - KK 5  - shear-correction coefficients

= linear differential operators defined in Eqs. (2.1.10),

(3.1.10), and (4.1.11)

MiN= stress couples and inplane stress resultants

SMi,Ni = thermally induced stress couples and inplane stress

resulta,,ts

P normal inertia coefficient-per unit mid-plane area

QX,Q = thickness-shear stress resultants

.x y



Qjt~k plane-stress-reduced stiffnesses

qoq 0  normal pressure and peak value of q

R • rotatory-normal-coupling inertia coefficient per unit

mid-plane area

T a temperature

ToTlTo.Tl a temperature coefficients defined in Eqs. (4.4.1) and (4.4.2)

t a time

U,VW a mid-plane displacement coefficients (amplitudes of u°,v°,w)

uIv,w - displacements in x,y,z directions

0 0u ,v °w a mid-plane displacements in x,yz directions

Vf - fiber volume fraction

Vm  a matrix volume fraction

XY a bending-slope coefficients (amplitudes of *x,*y

xyz a plate coordinates in longitudinal, transverse, and downward

thickness directions

ZZy a Znx/h, zny/h

Znx, Z ny a neutral-surface positions associated with ex -0 and ey-O

2j a coefficient of thermal expansion

QO a w/a, w/b

Cte 1  a strain component at arbitrary location and at mid-plane

v a Poisson's ratio of isotropic material

vf'vm  U fiber and matrix Poisson's ratios

V12,V23 a major (longitudinal-transverse) and transverse-thickness

Poisson's ratios

OxOTXy a stress components

Oxely a slope functions in x and y directions

vi
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la - density of composite

0f9 a fiber and matrix densities

a natural frequency
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CHAPTER I

INTRODUCTION

The rate of progress of technological innovation is dependent

on the development of new and better materials. The new and rapidly

developing composites made a significant impact on the engineering field

and are responsible for the tremendous progress that has been achieved

recently in the structural and aerospace industries.

Composites are materials made up of more than one constituent

material. According to this literal definition, almost all materials

used in civil and mechanical engineering are composites. Wood consists

of lignin and cellulose fibers and is clearly a "natural" composite, but

so too are cast iron, steel and other metallic alloys, brick, natural

stone, and of course reinforced concrete. The fact that none of these

materials are perfectly isotropic leads us to closer definition of a

composite as understood today, especially in the advanced technology

industries such as aerospace and automotive.

Composites are generally laminates in which a matrix material

is reinforced in either one or more planes with filaments, fibers or

fibrous material, giving the composite enhanced mechanical properties

over those of either the matrix or the reinforcement when used alone.

The matrix can consist of metal, ceramics, glass. concrete, gypsum, or

resins, and the reinforcement can be metal rods or filaments, whiskers
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of silicon carbide or nitride, sapphire, carbon fiber, boron fiber, and

various types of glass, asbestos, and cellulose fibers.

Glass-reinforced plastics are being used extensively and

successfully in the manufacture of storage vessels. They are also be-

ginning to be used structurally in buildings, and a good deal of thought

is going into the design of G.R.P. bridges. The aerospace industry con-

tinues to lead in the use of composites for very high-performance appli-

cations with products ranging from rocket casings and major portions of

fuselage, wing, and empennage assemblies to compressor blades and heli-

copter rotor blades.-

The principal reasons for using composites in place of conven-

tional materials are:

(1) Composites are anisotropic; so in order to get the greatest

economy of material, either for cost or weight saving, the reinforcing

fibers can be oriented in the plane where they will be most effective.

(2) Composites, unlike metals, can often be molded with a varying

thickness at no extra cost. This gives an additional freedom to econo-

mize the material.

(3) Composites have improved strength and stiffness, especially

when compared with other materials on a unit weight basis. For example,

composites can be made that have the same strength and stiffness as

high-strength steel, yet are 70 percent lighter! Other advanced com-

posites are as much as three times as strong as aluminum, the common

aircraft structural material, yet weigh only 60 percent as much!

(4) Composite materials can be tailored to efficiently meet design

requirements of strength, stiffness, fatigue, thermal conductivity,

2



corrosion resistance, and other parameters all in various directions.

The advent of advanced fiber-reinforced composites has been

called the biggest technical revolution since the jet engine. This

claim is very striking because the tremendous impact of the jet engine

on military aircraft performance is readily apparent. The impact on

commercial aviation is even more striking because the airlines switched

from propeller-driven planes to all-jet fleets within the span of just

a few years.

Currently, almost every aerospace company - developing pro-

ducts made with fiber-reinforced composite materials. After passing

through the different stages of usage, people are now dreaming for the

final stage of an all-composite high-performance airplane.

As the applications offiber-reinforced composites in structures

become more widespread, the prediction of behavior of plates constructed

of such materials become increasingly important. One of the character-

istics of certain composite materials, known as bimodulus materials, is

that they exhibit quite different elastic properties when loaded along

the fiber direction in tension as opposed to compressinn Ll-4](see Fig. 1.1).

These materials are listed in Table 1.1. In the literature,

this class of materials has variously been called bilinear, bimodulus,

different-modulus, and multi-modulus. Here the term bimodulus is be-

lieved to be most descriptive of a material having different linear

stress-strain relations in compression than in tension.

The first multi-dimensional model was proposed by Ambartsumyan

5] for isotropic material, such as a composite material with spherical

particles. It was later extended to the orthotropic case [ 6].

3



The second and third models are the restricted-compliance

model due to Isabekyan and Khachatrayan [ 7] and the first-invariant

model of Shapiro [8]. A fourth model is the weighted-compliance theory

originated by Jones C 9].

The fifth model is the fiber-governed bimodulus symmetric

compliance model originated by Bert [10].

/

SlopeE

Slope Ec Strain E

Fig. 1.1. Bimodulus idealization.

A plate subjected to a loading which produces plate bending or

vibration obviously experiences both tension and compression; therefore.

a more accurate analysis should take this into consideration.
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Table 1.1 Some Bimodulus Materials

Tensile Young's Modulus
Reinforcement Divided by
Geometry Ref. Compressive Young's Modulus

ATJ-S graphite Granular 5 1.2

ZTA graphite Granular 5 0.8

Glass-epoxy Fibrous 5 1.25

Boron-epoxy Fibrous 5 0.8

Graphite-epoxy Fibrous 5 1.4

Carbon-carbon Fibrous 5 2.0 to 5.0

Kevlar-rubber Fibrous 6 0.77 (transverse)),
to 305 (longitudinal)

Polyester-rubber Fibrous - 0.75 (transverse) ,
to 16.7 (longitudinal)

Based on experimental results reported by Patel et al. [2].

The existing literature available in English on bending of bi-

modulus plates is quite sparse and, with only a few exceptions, is

limited to bimodulus isotropic material [8,11-141. Shapiro [8] considered

the very simple problem of a circular plate subjected to a pure radial

bending moment at its edge, but he used Love's stress-function formula-

tion rather than plate. theory. Kamiya [11] treated large deflections

(geometric nonlinearity) of uniformly loaded, clamped-edge circular

plates, using an iterative finite-difference technique. In [12], Kamiya

applied the energy method to large deflections of simply supported rec-

tangular plates subjected to sinusoidally distributed loading. In [13],

Kamiya included the effect of thickness shear deformation, but only for

the simple one-dimensional case of cylindrical bending. The only analysis



applicable to anisotropic bimodulus material is the work of Jones and

Morgan [14], who treated cylindrical bending of a thin. cross-ply lami-

nate.

In the realm of plates laminated of ordinary anisotropic mat-

erials, the theory due to Reissner and Stavsky [15], is genierally recog-

nized as the classical, linear (small-deflection) thin-plate theory.

Although there have been numerous approximate solutions of this theory,

only a relatively few closed-form solutions have appeared. Notable among

these are the works of Whitney (16] and Whitney and Leissa [17] for both

antisymmetric cross-ply and antisymmetric angle-ply rectangular plates

with certain (different) kinds of simply supported edges. For an in-

infinitely long strip of finite width, Padovan [18] presented a solution

for the case of an arbitrary laminate.

Kamiya [19,20] considered problems of thermal stresses in

a bimodulus thin plate. An annulus with axisyrmetric steady temperature

distribution was analyzed numerically. Ambartsumyan [21,22] presented

a general theory of strains and stresses for bimodulus materials loca-

ted in a temperature field. Other literature available on thermal bend-

ing [23-27) deals with plates of ordinary materials.

Vibration of plates has been treated by several authors [28-

32], but thie problem of bimodulus plate vibration has not been attempted

previously.

Apparently, the present work is first to consider anisotropic,

* Throughout this report, the term ordinary will be used to distinguish

materials that do not exhibit bimodulus action, i.e., materials in which
the tensile and compressive stiffnesses coincide.

6
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bimodulus, thick plates finite in both directions in closed form except

a few exceptions E33.34].

The problems of static bending, free vibration, thermal bending

and non-linear large deflection (of thick bimodulus composite rectangular

plates) have been analyzed and are presented separately in Chapters II,

III, IV, and V. Numerical computations have been carried out and were

compared, and good agreement was obtained with existing solutions of

special cases existing in the literature.

7



CHAPTER II

STATIC BENDING OF THICK RECTANGULAR PLATES

Consider the case of ordinary (not bimodulus) material. A

single-layer plate constructed of an ordinary material that is macro-

scopically homogeneous is obviously symmetric about the midplane of the

plate, and thus there is no coupling between bending and stretching

during small-deflection bending. Likewise, a plate consisting of multi-

ple layers of ordinary materials of various thicknesses arranged sym-

metrically about the midplane has no bending-stretching coupling at

small deflections. However, in the case of a general laminate, i.e.,

one not symmetric about the midplane, bending-stretching coupling is

induced.

Now, consider the case of a single layer of bimodulus mat-

erial. The different properties in tension and compression cause a

shift in the neutral surface away from the geometric midplane, and sym-

metry about the midplane no longer holds. The results of this is that

a single-layer bimodulus-material plate exhibits bending-stretching

coupling of the orthotropic type i.e., analogous to a two-layer cross-

ply plate (one layer at 0* and the other at 900) of ordinary orthotropic

material. (See Figs. 2.1, 2.2)

Using Bert's fiber-governed symmetric-matrix macroscopic

material model [lO],it can be assumed that there are two symmetric plane-

8
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stress reduced stiffness matrices: one, when the fibers are in tension

along their length, and another, when they are in compression in the

same direction. Invoking the Voigt hypothesis in the fiber direction,

for which it is well-established. it is assumed that the fiber-direction

normal strains in the fibers and in the matrix are identical. Then the

criterion for changing from tension to compression can be taken to be

the fiber-direction normal strain in each layer. This is a much more

convenient criterion to apply than is the fiber-direction normal-stress

criterion.

2.1 Governing Equations

Consider a plate of thickness h composed of an even number of

indentical orthotropic layers bonded together, arranged alternately at

angles 0' and 900. The origin of a Cartesian coordinate system is

located within the central plane (x-y) with the z-axls being normal to

this plane (see Fig. 2.3).

1h

Y

Fig. 2.3. Cartesian coordinates for rectangular plate.



The stress resultants and stress couples, each per unit

length, are defined in the usual way as

h/2

(Nx , Ny, Ny, Qx y) Q M-h/2 (OX. Gy, Txy, Txz' Tyz)dz (2.1.1)

rh/2
(Mx , My M xy) a f-h/2 ( Ox ' vy '  y )z dz (2.1.2)

The theory developed by Yang, Norris, and Stavsky [35] is

based on the following assumed displacement field,

u = u°(x,y) + Zpx(x,y)

v = v0(x,y) + Z*sy (X,y) (2.1.3)

w = w(x,y)

where u, v, and w are the displacement components in the x, y, and z

directions, respectively, and x and py are called the slope functions.

The constitutive equations for an unsymmetric cross-ply lam-

inate can be written as follows:

N Al A12 0 Bii Biz 0 Uu
x

Ail A22 0 B12 B22 0 Vsy0 +0

Nxy 0 0 A66 0 0 8665 v x+ Uy (2.1. 4 )

Mx  1Bi Bz 0 Dii D12 0 I~x,x

My B12 B22 0 D12 D22 0 ,Y

Mxy 0 0 B66 0 0 D66 1y,x + xy

and

Q - 20 1 W1 . )

QxJ x0 K5A 55 -  Wx + x

12



Here, differentiation is denoted by a comma, and the exten-

sional, flexural-extensional coupling, and flexural or twisting stiff-

nesses for a laminate of an arbitrary number of layers are defined by

h/2

(Aij. B.ii,) = - Qij(l,z,z 2 )dz , i,j=1,2,6 (2.1.6)
-h/2

In addition to performing the integrations in a piecewise

manner from layer to layer, one also has to take into account the pot-

sibility of different properties (tension or compression) within a layer.

This is worked out in detail for a two-layer cross-ply laminate in

Appendix A.
2 2

The quantities K4 and K5 are shear correction coefficients

which may be calculated by various static and dynamic methods (36].

Taking into account the shear deformation, one can write the

equations of equilibrium (neglecting the body forces) as follows:

N +N s0
xy.x yy

Qx'x + Q = " q  (2.1.7)

Mx,x + Mxyy " Qx a 0

Mxy,x + My, - Qy 0

Here N aN /ax, Nyy -Ny/y, etc.

Substituting equations (2.1.4) and (2.1.5) into equations

(2.1.7), we obtain the equations of equilibrium in terms of the

13



generalized displacements.

0 0
AIxx+ A66u + (A12 + A66)Y + B x + y

+ (B12 + B66)vy,xy = 0
0 0

(A12 + A66)U XY + A66vXX + A2 VI + (B12 + 8ss)* xxy+B22166, A=0~y

+ S661y, 1xx + B22 y,yy = 0

+ A +W,x ) A44(y + W, - q (2.1.8)

0(B12 + 866)U?XY + B66vxx + B22VIyy + (012 + D66)*x,xy

+ D66  + D 2
D y,xx 22y,yy - K4[A44 (*y + Wy)] = 0

B11UXX + B66U , yy + (B12 + B66)v?Y + D1 + D06xyy

+ (D12 + D66)*yxy - K2[A55(¢ + W, 0

Or, in operator form

u 0

v 0

[LkU] w q (2.1.9)

ho y 0

hq~x  0

k,,=1 ,2,3,4,5

where [L ki is a symmetric linear differential operator matrix with

the following components:

14



LI 1 Alld 2 + A66d
2

x y

L12 (A12 + A66 ) dx dy

L13 = 0

L14 [(B12 + B66 )/h] dx dy

x yL15  (B11/h) d, + (B66/h) d

L2 2  A66d 2 + A22d 2x y

L23 0

L24  (B6 6/h) d2 + (B2 2/h) d
2  (2.1.10)x y

L25 L14

22
L33  - K 2AS5d 2 - K 2A44d 2

L34 B - K2(A4/h) d

L35  - K2(AS5/h) dx

L4 4 (D66/h
2) d 2 + (D22/h

2) d2 - K4A44/h2x y

L45 1 [(012 + D66)/h
2] d xd

Lss (D11/h
2) d2 + (D66/h

2 )d2 - K5A55/h2x y

2.2. Application to Rectangular Plate Hinged on all Edges

The boundary conditions for a rectangular plate simply supported

on all edges can be specified as follows:

Along the edges at x = 0 and x = a,

w = py Mx 0

15V0  Nx =0

15



Along the edges at y 0 and y - b, (2.2.1)

0=0

w= N =0

Consider the loading to be sinusoidally distributed in both

the x and y directions:

q = q sin ax sin By

Here
/ , - t/b

Furthermore, a and b are the plate dimensions along x and y axes,

respectively.

The governing equations (2.1.9) and boundary conditions (2.2.1)

are exactly satisfied in closed form by the following set of functions:

u = U cos ax sin By

v = V sin ax cos ay

w = W sin ax sin By (2.2.2)

hiy = Y sin ax cos BY

hox = X cos ax sin By

Substituting solutions (2.2.2) into the governing equations

• (2.1.9), one obtains

u 0

v 0

Ckt]= W q 0 (2.2.3)YJ ,0
k,161,2,3,4,5

16



where [CkZ] is a 5x5 symmetric matrix containing the following elements:

C - A11
2 -A66

2

C12  - (A12 + A66 )aB

C13 0

C14 - (B1 2 + B6 6 )/h]cL8

C15 -" (Bll/h)a 2 - (B66/h)6
2

C2 2 E - A66a
2 - A22 

2

C13  0

C24 - (B6 6/h)a
2 - (B22/h)6

2  (2.2.4)

C2 5  C1 .

C33  - (K Ass5  + KA . 62)

C34 E - K2(A44/h)a

C35  - K'(As5/h)c

C4 - (D6 6/h
2) 2 - (O22/h

2 )s2 - K2(A4)/h2

C45 E - [(D12 + Ds6)/h
2]ad

C55  - (D11ih2)a2 - (D66/h
2)a2 - KZA 55/h2

2.3 The Positions of the Ffber-Direction Neutral Surfaces

From the kinematics of the deformation

e X X ,X (2.3 .1)

0y V, +Z ,y

17



Thus, the neutral-surface positions, for the longitudinal (x)

and transverse (y) directions, respectively, are

.U0

z 2 ! = - hU/XZnx XX

(2.3.2).V0,

Zny : = - hV/Y

So, in computations the values for znx and zny are first

assumed to obtain the displacements. Actual displacements can then be

obtained by an iterative procedure with the help of the equations

(2.3.2).

2.4 Numerical Results

As the first example, we take the case of a homogeneous

(single-layer) plate of transversely isotropic bimodulus material. The

plane of isotropy is assumed to coincide with the midplane of the plate,

and the inplane Poisson's ratio is assumed to be zero. Then the closed-

form solution reduces to the simplified form [33]. Numerical results

are presented in Tables 2.1 and 2.2.

18
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Table 2.1. Comparison of Neutral-Surface Locations for
Transversely Isotropic Square Plate

Neutral-Surface Location Z
t

Et/EcGzt/Gzc G zc/EcO.l 0.3 0.5

Exact Closed-Form Solution:

0.5 - 0.08578 - 0.08578 - 0.08578

1.0 0 0 0

2.0 + 0.08578 + 0.08578 + 0.08578

Simplified Approximate Solution [33]:

0.5 - 0.08579 - 0.08579 - 0.08579

1.0 0 0 0

2.0 + 0.08579 + 0.08579 + 0.08579

Mixed Finite-Element Solution [33]:

0.5 - 0.08578 - 0.08578 - 0.08578

1.0 0 0 0

2.0 + 0.08578 + 0.08578 + 0.08578

Here, Z = Znx /h zny /h.

19
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Table 2 Coparison of Maximum Deflections tor Transversely
Isotropic Square Plate (b/h-O.. K--5/G)

Dimensionless Deflection WE ch'/Al b

EtlECAG,/G G0.EcO.1 0.3 0. 5

Exact Closed-Forii Solution:

0.5 0.05348 0.04774 0.04660

1.0 0.03688 0.03283 0.032,01

2.0 0.02674 0.02387 0.0U2330

Simpl I fled Approximate Solution (33]:

0.5 0,05004 0.04660 0.04591

1.0 0.03445 0.03202 0.03153

2.0 0.0530 0.0,34 O.2296

Mixed Finlte-Element Solution D3]1

0.5 0, 053 29 0,04743 0. 04626

1.0 0.03675 0.03261 0.03178
2.0 00664 0101371 0102313

It is noted that theneutral-surface location is independent of

Gzc and Gzt. The agreement among the results obtained by all three sol-

utions is quite good.

According to classical thin-plate theory for a rectangular

isotropic plate with simply supported edges, the dimensionless maximum

deflection is given by

WE 12 O-v

The values are computed for three aspect ratios using the above

formula and are compared with the present results in Table 2.3 below.
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Table 2.3. Dimensionless Deflections for Rectangular Isotropic
Plate as Determined by the Thin-Plate Theory and the
Present Work

WE21 t/qo
a4

Aspect h/b=0.l h/b=0.01 h/b=0.001
Ratio
a/b Thick* Thin* Thick* Thin* Thick* Thin*

0.5 0.07439 0.07392 0.07401 0.07392 0.07392 0.07392

1.0 0.02908 0.02887 0.02887 0.02888 0.02887 0.02887

2.0 0.00478 0.00462 0.00462 0.00462 0.00462 0.00462

* "Thick" denotes the present thick-plate theory and "thin" denotes
classical thin-plate theory.

As examples of some actual bimodulus materials, aramid-cord/

rubber and polyester-cord/rubber are selected. The material properties

used are listed in Table 2.4. The data are based on test results of

Patel et al.[2],using the data-reduction procedure of [i0], except for

the thickness shear moduli, which were estimated.
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Table 2.4. Elastic Properties for Two Tire-Cord/Rubber,
Unidirectional, Bimodulus Composite Materials

Aramid-Rubber Polyester-Rubber
Property and Units kWl k-2 kl k-2

Longitudinal Young's modulus, GPa 3.58 0.0120 0.617 0.0369

Transverse Young's modulus, GPa 0.00909 0.0120 0.00800 0.0106

Major Poisson's ratio, dimensionlessb 0.416 0.205 0.475 0.185
Longitudinal-transverse shear modulus, GPaO 0.00370 0.00370 0.00262 0.00267
Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475

a Fiber-direction tension is denoted by k-l, and fiber-direction compression
by kn2.

b It is assumed that the minor Poisson's ratio is given by the reciprocal
relation.
It is assumed that the longitudinal-thickness shear modulus is equal to
this one.

Numerical results for single-layer rectangular plates with the

fibers oriented parallel to the x axis are given in Table 2.5, while those

for cross-ply plates are listed in Table 2.6.

The exact closed-form solution developed here for thick, rec-

tangular plates of single-layer and cross-ply laminates of orthotropic bi-

modulus material has been shown to agree well with an existing approximate

solution for Isotropic bimodulus plates and with a mixed finite-element

solution.

To show the general trend, plots have been presented in Fig. 2.4.
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Table 2.5. Neutral-Surface Positions and Dimensionless Deflections
for Rectangular Plates of Single-Layer 0' Aramid-Rubber
and Polyester-Rubber, as Determined by Two Different
Methods (Thickness/Width, h/b-0.1)

Aspect xZ WE 2Ch3/qob
Ratio C.F* F.E C.F! F.E. C.F. F.E.

Aramid-Rubber:

0.5 0.4453 0.4454 - 0.3304 - 0.3007 0.002544 0.002750

0.6 0.4452 0.4452 - 0.2941 - 0.2734 0.004560 0.004827

0.7 0.4447 0.4447 - 0.2564 - 0.2419 0.007393 0.007712

0.8 0.4440 0.4440 - 0.2220 - 0.2117 0.01105 0.01140

0.9 0.4431 0.4431 - 0.1923 - 0.1846 0.01545 0.01582

1.0 0.4420 0.4420 - 0.1671 - 0.1614 0.02046 0.02083

1.2 0.4394 0.4394 - 0.1285 - 0.1250 0.03160 0.03193

1.4 0.4363 0.4363 - 0.1015 - 0.09919 0.04313 0.04335

1.6 0.4328 0.4329 - 0.08228 - 0.08070 0.05406 0.05416

1.8 0.4292 0.4294 - 0.06838 - 0.06724 0.06390 0.06388

2.0 0.4253 0.4254 - 0.05813 - 0.05727 0.07250 0.07236

Polyester-Rubber:

0.5 0.3044 0.3045 - 0.1597 - 0.1234 0.001529 0.001971

0.6 0.3044 0.3045 - 0.1538 - 0.1245 0.002652 0.003265

0.7 0.3042 0.3044 - 0.1426 - 0.1198 0.004283 0.005075

0.8 0.3039 0.3041 - 0.1299 - 0.1124 0.006517 0.007487

0.9 0.3035 0.3037 - 0.1174 - 0.1041 0.009421 0.01055

1.0 0.3029 0.3031 - 0.1061 - 0.09586 0.01303 0.01430

1.2 0.3015 0.3018 - 0.08728 - 0.08111 0.02223 0.02367

1.4 0.2999 0.3001 - 0.07329 - 0.06941 0.03348 0,03492

1.6 0.2979 0.2982 - 0.06296 - 0.06042 0.04574 0.04703

1.8 0.2957 0.2960 - 0.05528 - 0.05356 0.05793 0.05897

2.0 0.2934 0.2936 - 0.04959 - 0.04828 0.06925 0.07003

C.F. denotes closed-form solution; F.E. signifies finite-element solution (33).
(For in-plane displacements, see Appendix 0)
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Table 2.6. Neutral-Surface Positions and Dimensionless Deflections
for Rectangular Plates of Two-Layer Cross-Ply Aramid-
Rubber and Polyester-Rubber, as Determined by Two Different
Methods (Thickness/Width, h/b-O.1)

Aspect Zx ZY WE22 h
3/qob

Ratio C.F. F.E! C!F! F.E. C.F! F.E!

Aramid-Rubber:

0.5 0.4433 0.4431 - 0.06343 - 0.06223 0.002472 0.002576

0.6 0.4427 0.4426 - 0.05478 - 0.05443 0.004388 0.004518

0.7 0.4418 0.4418 - 0.04794 - 0.04778 0.007072 0.007220

0.8 0.4407 0.4407 - 0.04247 - 0.04237 0.01054 0.01070

0.9 0.4396 0.4396 - 0.03803 - 0.03795 0.01475 0.01490

1.0 0.4384 0.4384 - 0.03437 - 0.03430 0.01957 0.01972

1.2 0.4356 0.4356 - 0.02883 - 0.02860 0.03043 0.03054

1.4 0.4326 0.4325 - 0.02470 - 0.02477 0.04185 0.04190

1.6 0.4292 0.4292 - 0.02160 - 0.02165 0.05282 0.05280

1.8 0.4257 0.4256 - 0,01922 - 0.01923 0.06277 0.06264

2.0 0.4219 0.4219 - 0.01735 - 0.01734 0.07151 0.07137

Polyester-Rubber:

0.5 0.3650 0.3652 - 0.1285 - 0.1256 0.002539 0.002732

0.6 0.3644 0.3646 - 0.1178 - 0.1164 0.004527 0.004772

0.7 0.3638 0.3639 - 0.1097 - 0.1089 0.007288 0.007575

0.8 0.3631 0.3631 - 0.1036 - 0.1031 0.01078 0.01109

0.9 0.3622 0.3622 - 0.09886 - 0.09859 0.01487 0.01519

1.0 0.3613 0.3613 - 0.09526 - 0.09502 0.01933 0.01966

1.2 0.3593 0.3593 - 0.09001 - 0.09000 0.02846 0.02879

1.4 0.3571 0.3570 - 0.08660 - 0.08660 0.03674 0.03707

1.6 0.3546 0.3545 - 0.08430 - 0.08430 0.04356 0.04389

1.8 0.3519 0.3518 - 0.08267 - 0.08267 0.04890 0.04925

2.0 0.3491 0.3490 - 0.08150 - 0.08150 0.05301 0.05337

C.F. denotes closed-form solution; F.E. signifies finite-element solution [33].

(See Appendix D for in-plane displacements.)
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CHAPTER III

VIBRATION OF THICK CROSS-PLY LAMINATED

BIMODULUS RECTANGULAR PLATES

Thin-plate theory does not take into account either the effect

of transverse shear deformation or rotatory inertia, and hence it becomes

inaccurate for thicker plates. Mindlin [37] considered both of these

effects for homogeneous isotropic plates, by assuming that the displace-

ment variation across the thickness is linear for u and v and constant

for w. He also had to assign a value to the shearing rigidity factor on

suitable physical considerations. His solution does not satisfy the

governing elasticity equations exactly, but does permit the satisfac-

tion of a set of three boundary conditions on each edge. Mindlin,

Schacknow, and Deresiewicz [38] applied this method to the vibrations

of thick rectangular plates with two opposite sides simply supported and

the other two edges with various conditions. The present work, to the

author's knowledge, is the first to consider the bimodulus property in

the thick cross-ply rectangular plates.

3.1 Governing Equations

Consider a plate of thickness h composed of an even number of

identical orthotropic layers bonded together, arranged alternately at

angles 00 and 900 (see Fig. 2.2).
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The stress and moment resultants, each per unit length, are

given in the usual manner as

rh/2
(Nx N yN XYQxQ Y) *-h/2 (a ,x yTXYTXZTYZ) dz (3.1.1)

rh/2
(Mx XMyM y) " j-h/2 (7xay'TxY)z dz (3.1.2)

The displacement components, u, v, and w in the x, y, and z

directions respectively can be expressed in terms of mid-plane displace-

ments u°, v , w° and slope functions *x and *y as:

u = u°(x,y,t) + Z*x(X,y,t)

v v(x,y,t) + Z*y(X,y,t) (3.1.3)

w - w(x,y,t)

where t is time.

Constitutive equations for an unsymmetric cross-ply laminate,

as has already been mentioned in Chapter II, are:

Nx All A12 0 B11  B12 0 u,

Ny A12 A22 0 B12 B22 0 v,0

Nxy 0 0 A66  0 0 B66  vsx + u
Ux

Mx B11  812 0 D11 D12 0 (3.1.4)

M B12 B2 2 0 D12 D22 0

Mxy, 0 0 B66 0 0 D66 +yx + x~ y

and

Qx 0 K 2Ass W', + 0x
{ [7 I { (
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Differentiation here is denoted by a comma, i.e., ( ) E

a( )/ax, and the extensional, flexural-extensional coupling, and flex-

ural stiffnesses for the laminate are defined by

h/2

(AjijB8 D1 j) iLhl2 (Qij)(l,zz 2 )dz (3.1.6)

i ,j-1,2,6

As usual, K4 and Ks are shear-correction coefficients.

Taking into account the shear deformation and the rotatory

inertia, the equations of motion can be written as follows:

N x + xy y P u 'tt + R x tt

+ Nyy = P uo + R

Nxy,x +Nv'tt + y,tt

xx +Qy P watt (3.1.7)
M.+ oQ u +I,

Mx,x + Mxyy Qx z Ru'tt + xtt

Mxy,x y,y - Q R v + I *y,tt

Here P, R, and I are the normal, in-plane, and rotatory

inertia coefficients per unit mid-plane area and are defined by

h/2
(PRI) f p(1,z,z 2 ) dz (3.1.8)

where p is the material density.

Substituting equations (3.1.4) and (3.1.5) into equations

(3.1.7), we obtain the equations of motion. In operator form,
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u°0 0

v°0 0

[Lk wl W ,  0 (3.1.9)
h#,y 0

htk x X 0 k,.-1 ,2,3,4,5

where (LkL] is a symmetric linear differential operator matrix with the

following elements:

L,= AI dx + A66 d - Pd2

L2 (A12 + A66 ) dx dy

L13 0

LI, E [(812 + 86 6 )/h] d dy

LIS - (B1 I/h)d 2 + (B66 /h)d 2 - (R/h) dtxy t

A6d I Ad.d - Pd 2
y t

L23 0

L24 (B66/h)dx + (B22/h)d2 - (R/h) d& (3.1.10)

xy /dt 2

L25 - L1

L33 B - KSA55 d2 - K2A4d 2 + Pd2

L3, 3 - K2(A44/h) d4 y
L3s -= - K2(Ass/h) dX

- (06 6/h2)d 2+ (D,/h 2)d - KIA/h2 - (I/h2)dt2

L44 x yOih )dxz 4O4/h2 )d- K A5 5 /h2 - (1/h 2 )d2

2y 9
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3.2 Application to Plate Simply Supported on all Edges

The boundary conditions are:

Along the edges at x = 0 and x a,

=M = 0

v =N =0
x

(3.2.1)
Along the edges at y = 0 and y =b,

=x My 0
u°= =M 0

u -N =Q0
y

3.3 Closed-Form Solution

The governing equations (3.1.9) and the boundary conditions

(3.2.1) are exactly satisfied in closed form by the following set of

functions:

u = U cos ax sin ay e

v0 = V sin ax cos sy e
i t

w = W sin ax sin ay eiWt (3.3.1)

iwt
NY = Y sin ax cos ay e

h x 2 X cos ax sin 
sy ei~ t

Here, w is the natural frequency associated with the mode having axial

and transverse wave numbers m and n, and

a mw/a , 8 nw/b (3.3.2)

where a and b are plate dimensions in the x and y directions, respectively.

Substituting solutions (3.3.1) into the governing equations

(3.1.9), we obtain the following:
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U 0

v 0

CCF 3S.3. 3)

x 0o

where C ke is a 5x5 symimetric determinant containing the following elements:

CIE- -Ix 66 + o

Ca- (A,,, + A6a

C13  0

C4 - (BZ+ B66 )/h]cte

CIS - (811/h)a- - (B66/h)62 + (R/h)w2

C22  - A6'- A-'+ W

3 0

C 4 - (B66/h)a' -B2h6 + (R/h)wz (3.3.4)

C33  - (KA 2+ - P:s

C4 - K4(A 44/h)te

C35  -K'(A 55/h)a

C4 (06h -% (022fh-
2)2 - (KZA4/h I + (,h)

C4 -(1 + D66)/h
2cig

C55  -(DII/h
2)a2 -(D66/h

2)82 -(KASS/h') + 1h w
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The frequency w can be determined by setting ICkj I = 0.

3.4 Neutral-Surface Locations

This is the same as in the preceding chapter: znx = - hU/X;

Zny = - hV/Y. An iterative procedure is used to obtain the final dis-

placements.

3.5 Numerical Results

Since there is no previous analysis for vibration of bimodulus

plates, the present one could be compared only with rectangular plates

laminated of ordinary materials.

Comparisons with Jones, and Fortier and Rossettos are presented

in Tables 3.1 and 3.2 below. It can be seen that the agreement is good.

Table 3.1. Comparison of Fundamental Natural Frequencies
of Rectangular Antisymmetric Cross-Ply Plates
at Different Plate Aspect Ratios

(Eli/E 22=40 , G1l/E,==0.5 , vz=0.25 , b/h=l0)

Aspect 
-bZ /

Ratio __
a/b Jones [31] Present

0.5 '2.050 1.934
1.0 0.825 0.794

1.5 0.650 0.612

2.0 0.580 0.565

2.5 0.560 0.548

3.0 0.550 0.541
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Table 3.2. Comparison of Fundamental Frequency (min=l)
of a Square Cross-Ply Plate

a/h

Fortier and Rossettos [28] Present,

10 10.80 10.80
50 11.65 11.65

Typical results for (bimodulus) aramid-rubber and polyester-

rubber are tabulated in the following tables (Tables 3.3 and 3.4). See

Table 2.4 for the elastic properties and Appendix B for the densities.

Computations, based on the closed-form solution, have been

carried out for thick, rectangular plates of cross-ply laminates and

compared with existing works. Close agreement was reached.

Abrupt changes in the values of Z and Z are noticeable which
x y

may be due to the bimodulus effect in combination with the eigenvalue

nature of this problem (see Fig. 3.1).
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Table 3.3. Values of Dimensionless Fundamental Frequencies and
Neutral-Surface Locations for Single-Layer Orthotropic
Rectangular Plates Having b/h=l0 and Different Aspect
Ratios

a/b Zx  Zy b2 /D / IT

Aramid-Rubber:

0.4 0.0100 0.0137 14.2370

0.6 - 0.0204 0.0296 8.9952

0.8 - 0.0346 0.0515 6.3712

1.0 0.0818 - 0.3619 4.1732

1.2 - 0.0724 - 0.2206 3.8780

1.4 0.3145 0.4442 2.9399

1.6 0.0058 - 0.5673 2.4122

1.8 0.0179 - 0.3207 x 10-4  2.1262

2.0 - 0.0257 - 0.0243 1.8935

Polyester-Rubber:

0.4 0.0679 - 0.2661 12.8460

0.6 0.7121 x 10-4  0.9147 x 10 5  7.4975

0.8 0.1314 0.0952 4.8319

1.0 0.0471 - 0.0197 3.3832

1.2 - 0.0613 0.0182 2.5949

1.4 0.0103 0.0034 2.1992

1.6 0.0903 - 0.1354 3.2867

1.8 - 0.0178 0.0474 1.9318

2.0 - 0.0178 0.0474 1.4641

34

A -



Table 3.4. Values of Dimensionless Fundamental Frequencies and
Neutral-Surface Locations for Cross-Ply Rectangular
Plates Having b/h-10 and Different Aspect Ratios

a/b Zx  Zy wb V7I 2,/ :

Aramid-Rubber:

0.4 - 0.2196 x 10-2 - 0.0152 14.1740

0.6 0.1929 x 10-2 - 0.0363 8.5910

0.8 - 0.0205 - 0.0353 6.0253

1.0 - 0.0196 - 0.0383 4.4521

1.2 0.0312 - 0.0209 2.0092

1.4 - 0.0109 0.0159 2.6748

1.6 0.0142 - 0.7792 x 10-4  2.3851

1.8 - 0.1409 x 102 0.1801 x lo-2 0.8723

2.0 - 0.0241 0.3046 x 10- 3  1.7419

Polyester-Rubber:

0.4 0.0742 0.4955 x 10.2 7.7991

0.6 0.0283 0.1847 x 10-2 4.3010

0.8 - 0.0276 0.0219 2.7333

1.0 - 0.1028 0.0449 1.9735

1.2 - 0.1989 0.0667 1.6037

1.4 - 0.8590 x 10-3  0.1042 1.2888

1.6 - 0.2123 x 10-4  0.3120 1.133

1.8 - 0.3218 x 10 5  0.7538 1.002

2.0 1.2780 0.8525 0.9613
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Fig. 3.1. Variation of fundamental vibration frequency with aspect
ratio for two-layer cross-ply rectangular plates.
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CHAPTER IV

THERMAL BENDING OF CROSS-PLY THICK

BIMODULUS RECTANGULAR PLATES

Based upon the mathematical theory of elasticity of bimodulus

materials and upon the Neumann hypothesis, Ambartsumyan [22] dealt with

the development of the theory of thermoelasticity for elastic bimodulus

material. Kamiya [20] developed the fundamental equations for axisym-

metric plane stress problems for a bimodulus thin plate. Das and Rath [26]

presented an analysis of thermal bending for a moderately thick rectangular

plate subjected to a temperature distribution which is antisymmetric about

the middle plane of the plate, but is arbitrary along the direction perpen-

dicular to simply supported edges and constant along the other perpen-

dicular direction. Bapu Rao [39] treated thermal bending of thick iso-

tropic rectangular plates taking into consideration the shear deformation

capability.

The present analysis deals with the thermal bending of unsym-

metrically cross-plied bimodulus rectangular plates simply supported on

all edges.

4.1 Governing Equations

The plate is subjected to a sinusoidal temperature distribution,

T, Thus, temperature terms appear in the constitutive equations. The
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thermoelastic constitutive relations for the material are written as

follows:
(s)fa x [Ql Q12  0 f£l - UIT1

y Q12 Q22 1 C £2 (4.1.1)

xy 0 0 Q66J C6

The stiffness matrix [Q] takes different values in tension and compres-

sion depending upon the sign of the fiber-direction strain.

Q i Qijc if Ci < 0(412

Qijt if Ci (4.1.2)

The coefficients of thermal expansion a, and a2 in the x and y

directions, respectively, also depend upon the sign of the fiber-direction

strain. Also,

= ajc if Ei < 0 (4.1.3)a ijt if Ci > 0

The laminate constitutive relations can be represented by:

Nx +NT 00h o

x All A12  0 B1112/ h 0 u, x

Ny+ T A2 2  0 Bl2/h B2 2/h 0 Vy

N xy 0 0 A66 0 0 B66/h v? +u °

Xf A66 x 'y

(Mx +M)/h B11/h B12/h 0 D11/h
2 D12/h

2  0 h*X'x

(M + MT)/h B12/h 822/h 0 D12/h
2 D22/h

2  0 hy
y , 1 / 2 / y y

Mx /h 0 0 B6 6/h 0 0 066/h
2  hoy + h*

L I y(x x y)

(4.1.4)
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Q} [ 0A4 K 2A~s j:o:+: (4.1.5)

where the thermally induced tiplane forces are

{T 1~ T dz (4.1.6)
{Nf '-h/2 fQ12ai + 2a

and the thermally induced moments are

f MQ1 /2 { lll + Q2 zT dz (4.1.7)

T f~ -h/2 tQ12al + Q22ca2 J
As usual the stretching, stretching-bending, and bending stiff-

nesses for the laminate are defined as

h/ 2

(A1j. B1jIDij ) f -h2(Qj .)(1,Z,Z2) dz (4.1.8)

-h/2 l,j=1,2,6

Including shear deformation, the equations of equilibrium are:

Nx + N =yy0

N +yx N ='Y 0

Qx' +Q ='y 0 (4.1.9)

Mx' + M -yQx 0
Mxy~x + yy Qy 0

Substituting equations (4.1.4) and (4.1.5) into equations

(4.1.9), we get:
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Nx ,x

EL kx] w = 0 ((4.1.10)
hip MT

yM x,x

hox 0 MY -Yk,it l,2 3 ,4 ,5

where [L kt is a symmietrix linear differential operator matrix with the

following elements:

11 Alld 2+ 66d 
2

x y

L12 =(A 12 + A66) d xd

L13 0

L4 (B12 + B66) d xd
x y

L22 A66 d,+ A22d 2
x y

L23  0

L24BB 2d2  (4.1211)
x y

L33  - KesAssdx - k~ 4d2
y

L3 4  - 2 44

L35 - K2Assd~

L44 066d 2+ 0 2 2

L45 (D12 + D66) d dx y

Lss DIld 2+ D66d 2-
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4.2 Application to a Simply Supported Plate

The boundary conditions, as usual, are:

Along the edges at x - 0 and x = a,

w-a y Mx + MT 0

v° 0" Nx + NT = 0

Along the edges at y = 0 and y = b, (4.2.1)

W = Ox = My + M = 0

u = N + NT = 0
y y

4.3 Closed-Form Solution

The governing equations and the boundary conditions can be

satisfied exactly by the following for T sinusoidally distributed along x and y:

u0 . U cos ax sin By

v 0 V sin ax cos By

w = W sin ax sin By (4.3.1)

hpy a Y sin ax cos By

h =x z X cos ax con By

where

a a mw/a , a - nr/b (4.3.2)

Here m and n are integers, and a and b are plate dimensions in the x and

y directions.

Inserting solutions (4.3.1) into the governing equations

(4.1.10), we get the following:
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U NT ,

V NT,

CC kzI W " 0 (4.3.3)

Y L MT'

Xk l ,y k,t=l ,2,3,4,5

where [Ck is a symmetric matrix containing the following elements:

C1, Alja 2- A66 $
2

CI, - (A12 + A66)cl

CI = 0

C4 - (BI2 + 866 Wci

CIS E - BIaz - B6 66
2

C2, - A66Z - Aiis2

C2 3  0

C24 - B6611- B262 (4.3.4)

C25  C14.

C33 - KsAsso - - K A440

C3 - K AKZ

C35 i - K5Assta

C2 - - D228 2 - K A

-45s z- (D12 + 066)Q8

C55 E - D- I - -KAs

42



4.4 Mean Temperature and Teimperature Gradient Sinusoidally

Distributed over a Rectangular Region

Let

T(xy,z) - To(x,y) + (z/h) Tl(X,y) (4.4.1)

where

To(X,y) T sin (mx/a) sin (ny/b) (4.4.2)

and Ti(x,y) T, sin (mwx/a) sin (nwy/b)

For Case 1 znx> 0 and zny< 0 with znx governing

layer 1 (00) and Zny layer 2 (900) (see Appendix C for the remaining cases).

NT Izny ) d

Nx f (Q122 0122 + Q1222 a222 ) Tdz

-h/2
0

+ 1 ( 12 0112 + Q1212 "212 ) Tdz

ny

7

nTx
+ J (Q1121 0121 

+ Q1221 a221) Tdz

0
hi?

+ fz (QIIII alll + QI11 a21l Tdz (4.4.3)

nx

Let

(Q1122 Q122 + Q1222 "222) " 8122

(QI112 1112 + 01212 "212) ' 012

(Q1121 (121 + Q1221 "221) * '121

(Q11 11 0111 + Q1211 *211) * 8111 etc.
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Then,

N T 122 T (z +h/2) + a11  T 0  - z ) + B 2 T (z -0)x a2 0ny +120 ny 110n

T 811T(h/2 - z~~ + B 2 (T /2h)(z2~ - h2/4)

+ B 2(T /2h)(0 z2 fl) + B11(T /2h)(z'~ - 0)

+1 (T 1/2h)(h2 /4 - z n)

N x (122 + 8111)(Toh/2) +($121 - 8111) Toz +n ('1 22 - 8112)

T oz ny + (8111 - a122 )(T Ih/8) + (8 121 a 8 1 )(T Z/2h)

+ (812 -il B1 (T1zn'y/2h) (4.4.4)

Similarly,

Y (6222 + 6 211 )(T 0h/2) + (8 221 - 8211) T oz nx (8222 a 8212) T o zny

+(8211 - '222 )(T 1h/8) + (8221 - 82ii(TZ1h +x (222 - 212)

Now,

h/2 0 81Td z ~fX Td h/2
MT*f-h/2 8122 Tzz+ J 12Td n ,1Td f B ill Tzdz

ny nx

= Bii 8 2 )%th2 /8) + (e1212 a 1)rz/2) + 2822 /1 2 (tz 2)

+ (82+ B0C)Tjh 2/24)+(a 1 2 l - B111 )(Ilz 3 /3h)+(e 12 2 - a 112 )(r1Z3 /3h)

(4.4.6)
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And similarly,

M~ (211 -8 2 )Croh 2/8) +(S2 1  )( z /2 8 )(To /2)
T2 221 211 onx '222- B212/ n

+(222 + a 211 )Crlh 2/21) +(' 221 - 6211)ri n/h)(o222 - 0212)(rz n/3h

(4.4.7)

Using equations (4.4.4). (4.4.5), (4.4.6), and (4.4.7), we obtain the

following:

NTX' C( a 122 +6111 )(Toh/ 2) + (al -111)T zn + (12-'1)Tz'

+Oill - 8122 )(r, h/8) +(0121 - '111)( 1 n/2h

+ (812 -8 1 )(T z 2 /2h)} (4.4.8)

NT++
NI Uo W 222 +a211XTOh/2) + (e221- 6211)T o z nx ($222-$212 )TO Zny

4. 021 - 222 XTlh/8) + ('221 - '211)Ti n2h

" (a8222 - a i)(fTiZ y /2h) (4.4.9)

M at{(O0 - T 81 2 h2/8) + (812 -8i)(T z 2 12) + (812812

(i 0 Zn/2)+ (0122 +8111)(Tlh2/24) + (8121- 8ill)Ti n3

+ ~JZ (12-81)(z~/3h)l (4.4.10)

and
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MT  S a( )(T h2/8) 1)(TZ/2) +( 2  a (Z 1/2)y,y 211- 222 ) 0 (221"8 211 0 +( 222- 212)0n

+ ( 222 
+ 3211)(Tlh

2 /24) + (B221 - B2 1)(T Zx/3h)

+ (B222 - B. 2 )(T Z,/3h) (4.4.11)

4.5 Neutral-Surface Locations

As explained already,

Znx = - hU/X , z - hV/Y (4.5.1)

Numerically, the values znx and Zny are computed as follows:

The values of Z nx and zny are assumed in the beginning to get

displacements. The above equations are used to obtain the new values of

Znx and zny and fed back to get one a more accurate set. This procedure

is repeated until the actual deflections are obtained.

4.6 Numerical Results

Numerical results are compared with Boley and Weiner's work [40]

for an isotropic-ordinary-material, single-layer thin rectangular plate.

Close agreement has been obtained (see Table 4.1 below).

Table 4.1. Comparison with Boley and Weiner's Work [40] for an Isotropic
Single-Layer Thin Rectangular Plate at Different Aspect Ratios
(Ell/E 22 = 1.00 , v12 = V21 

= 0.3 , b/h = 10)

Aspect Deflection, W/h (m=n=l)
Ratio,
a/b Boley and Weiner [40] Present

0.5 0.5300 0.5264

1.0 6.5858 6.5789

1.5 6.3112 6.3063

2.0 2.1104 2.1058
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Typical numerical results for (bimodulus) aramid-rubber and

polyester-rubber are listed in the following tables (see Table 2.4 for

the properties).

The solution for an isotropic,ordinary-material,single-layer,

thin rectangular plate has been specialized from the present analysis and

is compared with such a solution available in the literature. Good agree-

ment was obtained.

Sudden change in the deflection has been observed in the case

of aramid-rubber. To show the general trend, graphs have been plotted

(see Fig. 4.1).
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Table 4.2. Values of Wh/41t Tjb 2 and Neutral-Surface Locations
for a Single-Layer Orthotr~p ic Rectangular Plate

a/b ZX z W/2T

Arami d-Rubber:

0.5 - 2.3007 - 0.1666 0.4533 x lo-

0.6 - 1.8521 - 0.2237 0.5547 x 10-1

0.7 - 1.5573 - 0.2745 0.6579 x lo-

0.8 - 1.3482 - 0.3160 0.7636 x 10-1

0.9 - 1.1192 - 0.3473 0.8722 x 10-l

1.0 - 1.0708 - 0.3690 0.9839 x 10-1

1.2 - 0.8959 - 0.3886 0.1218

1.4 - 0.7766 - 0.3861 0.1467

1.6 - 0.6914 - 0.3709 0.1732

1.8 - 0.6286 - 0.3498 0.2011

2.0 - 0.5819 - 0.3266 0.2301

Polyester-Rubber:

0.5 - 2.1099 - 0.6511 0.1401 x 10-1

0.6 - 1.6790 - 0.8482 0.1764 x 10-

0.7 - 1.4029 - 1.0080 0.2156 x 10-

0.8 - 1.2112 - 1.1218 0.2583 x 10-

0.9 - 1.0710 - 1.1903 0.3046 x lo-

1.0 - 0.9649 - 1.2194 0.3546 x 10-1

1.2 - 0.8172 - 1.1933 0.4672 x 10-1

1.4 - 0.7233 - 1.1062 0.5940 x 10-1

1.6 - 0.6630 - 1.0015 0.7318 x 10-1

1.8 - 0.6258 - 0.9016 0.8757 x 10-1

2.0 - 0.6060 - 0.8158 0.1020

(See Appendix 0 for the in-plane displacemients)
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Table 4.3. Values of Wh/ 2t ?1 b
2 and Neutral-Surface Locations

for a Cross-Ply Rectangular Plate (b/h-I0 , alt/'t-0 .l,OLItlaiC-O.5 . a2tI02C-.0 , To/l-1~.O)

a/b Zx  Z Wh/ 2t ?1b2

Aramid-Rubber:

0.5 0.1276 - 0.1510 x 103 - 0.2620 x 10"1

0.6 0.1184 - 0.1722 x 103 - 0.3983 x 101

0.7 0.1165 - 0.2347 x 103 - 0.5973 x I0"I

0.8 0.1191 - 0.5316 x 103 - 0.8814 x 10"I

0.9 0.0578 - 0.3450 0.3660 x 10-2

1.0 0.0980 - 0.3498 0.4432 x 10-2

1.2 0.1304 - 0.4327 0.5848 x 10-2

1.4 0.1399 - 0.3375 0.6998 x 10-2

1.6 0.1402 - 0.3339 0.7852 x 10-2

1.8 0.1358 - 0.3316 0.8453 x 10-2

2.0 0.1286 - 0.3302 0.8862 x 10-2

Polyester-Rubber:

0.5 0.7442 - 0.8415 - 0.5453 x 10-

0.6 0.7433 - 0.8470 - 0.7863 x 101

0.7 0.7477 - 0.8516 - 0.9269 x 10 1

0.8 0.7584 - 0.8439 - 0.8915 x 10 1

0.9 0.7772 - 0.8237 - 0.6903 x 10 1

1.0 0.8075 - 0.7973 - 0.3825 x 101

1.2 0.9274 - 0.7628 0.2514 x 10-1

1.4 3.2603 0.4369 - 0.7672

1.6 3.3521 0.4656 - 0.8295

1.8 3.3178 0.4636 - 0.8473

2.0 3.2126 0.4440 - 0.8402

(See Appendix 0 for the in-plane displacements)
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Fig. 4.1. Variation of dimensionless deflection with respect to
aspect ratio for two-layer cross-ply rectangular plates.
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CHAPTER V

LARGE DEFLECTIONS OF BIMODULUS CROSS-PLY

THIN RECTANGULAR PLATE

This class of problem has been attempted in different ways by

various people [11,12,41-49]. Nonlinear bending of ordinary orthotropic,

single-layer thin plates subjected to uniform loading has been treated by

Niyogi [41] among others.

Perhaps the first large deflection analysis of unsynumetrically

laminated plates was due to Pister and Dong (42], who considered isotropic

rectangular plates. The arbitrarily laminated fully anisotropic equations

of the von Karman type were probably first presented by Whitney and Leissa

(17], who did not solve them. Large-deflection analyses of unsymmetrical,

laminated rectangular plates have been published in [43-49].

Large-deflection analyses of plates made of bimodulus materials

have been limited to isotropic bimodulus materials. Kamiya [11,12] ana-

lyzed both the circular and the rectangular planforms.

Due to the complicated algebra involved in the nonlinear be-

havior of thick plates, the work in this chapter has been reduced to thin

plates. An approximate solution is obtained by using the Galerkin

technique.
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5.1 Basic Equations

Consider a thin rectangular plate of thickness h and plate

dimensions a and b (in the x and y directions, respectively) subjected

to nonlinear bending.

In view of Kirchhoff's thin-plate hypothesis, the displacement

components u, v, andw in the x, y, and z directions can be expressed in

0 0 0
terms of mid-plane displacements u , v , and w as:

u S u°(x,y) - z W,x(X,y)

v = v°(x,y) - z W, y(X,y) (5.1.1)

w = w(x,y)

where the coma denotes differentiation.

The laminate constitutive relations can be written as:

Nx  Al1  A12  0 B11 812 0 u°  + w, /2

Ny A1 2  A22  0 812 B22 0 V? + w,2/2
y ~y

NA 66  0 0 B66  Uy +V, +w w, W,
xyL6606 y Ix X y

= ~. (5.1.2)

x B11 B12  9 Oll 0 12 0 - W,xx

My B12 822 0 012 022 0 - W,yy

M xy 0 0 B66 0 0 066 - 2wxy

The quantities Aij, Bij, and Dij are the stretching, stretching-

bending coupling, and bending stiffnesses defined by
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h/2
(AIBID1 j) f (lz,z2 ) Qij dz (5.1.3)

i J-l ,2,6

The equilibrium equations are (neglecting body forces and body moments):

N +,X N -yy 0Nx1 x + Ny,y-0

N Nxyx y,y (5.1.4)

NW,x + 2Nyw, +Nw, + M +2M + M + q - 0
Ny yy x,xx xy,xy y,yy

where q represents the normal load.

Substituting equations (5.1.2) into equations (5.1.4), we get

the following. For equilibrium in the x direction:

AI(uxx W,x wxx) + A12(v X y yWxy) -B1W'xxx " Bw1 W -XYY

+ u + + W,xW + W, W ) - 2B66 W 0

or

AIIU? + A66U0  + (A12 + A66 )Vy + W, (Al1w. + A66W,YY yy Y x xx YY

+ W,y(A12 + A66)Wxy - Biwxxx - (B12 + 2B66 )Wxyy 0 (5.1.5)

For equilibrium in the y direction:

A66(U 'Xy + ' ? , W, xWXy + W,ywx) - 2B66W,xxy

+ A2(uXy + W,x W, y) + A2 2(v? + W )

- 812W~xxy - B22wyyy • 0

or
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Azav ,? + Ar6?X+ (A12 +A66)u? x + W, y(A22W, yy+A 6r6W, X

+ w, x(A12 +A66)wxy BY-22W, yy - (B12 +2B66)W,xx 0 (5.1-6)

For equilibrium in the z direction:

[A ( 0 + 2 W. + A 1 ( 02ii(u x 2 xA 12 ( V0 + 1 W.2 ) + B' )JwW,
y2A6u 2 yww, +866( +w B1(-WJ,)wx

LAZ(, ± w) y + 86 - 2wx~ w, - 2 w,)

+ B11(U, + w, W, + w ,2 ) + B1  0 .ww 2

+2B6 (u +' + wx w xx 1(x +W, 4 W,W, + w, w,
01ywy xxy xx yyw 

x

+ 2 66U, + B1 u +x + ,w W + W,2 W)Wx yy XY y XXY+ I

822(V? +W,,w + w ,2, 12w, - 2 w

or

00BjOX + (B12 + 2B66)(u?0 y + VXx ) + B2 y

+ W, x [Bjjw, xxx + (B12 + 2B66)w, XYI+ W 1 822w, . + (B12 + 2B66)W,xy

+ 2w, xx(B 66 - B12)W, . + 2w, XYW y(1 6)-W yB2,y

0- w xx - 2(D12 + 2D66)w,xy - D22W, yy
xx xyx 12V%+yyW?)

12 2 1
" w, CA2(U'? + 1 w') + A 2(Vos + I %~

0y x 2xy2y

" 2w, xy A66 (u?% + V + W,xW,) - 2B66w,x,) 0(517

54

SAMi



5.2 Simply-Supported Boundary Conditions

Along the edges at x a O,a

W, x

Along the edges at y - O,b (5.2.1)
w- -M, =0w W, xx M 0

5.3 Solution

The set of equations (5.1.5-5.1.7) are coupled and nonlinear in

nature, and an exact solution appears to be extremely difficult to obtain.

Hence. an approximate solation will be obtained here. Let

q - Q sin ax sin sy

w = W sin ax sin Sy (5.3.1)
u° - U cos ax sin sy

v V sin Ox cos sy

By the Galerkin method (equations (5.1.5)-(5.1.7) and equations (5.3.1) are

combined):

((A ? + A66V0 + (A12 + A66)v? + W, (AIIWX + A66W,

+W,y(A 1 2 +A6E)W,xy-B11Wxx x -(812 +2866)W. xyy cos ax sin sy dxdy-O

or
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ab (- A 1 a-2-U cos2 ax sin2 By - A66 -- U COS 2 QX sin 2 By

00

- V(A12 + A6 6 ) 1 COS 2 ax sin 2 By - All 3 W2 cos 2 ax sin 3 By sin ax

- A66 V3 W2 cos 2 ax sin 3 By sin ax

3 3
+ W2(A12 +A 6 6) aj cos 2 Ox cos 2 By sin ax sin By +81 1W cos2 ax sin2 BY

e3 3

+ W(B12 + 2866) a-Tcos
2 ax sin 2 sy} dxdy - 0

or

ff2 U ab2 b w2 ab
"All 1  U -A 6  U - (A12 + A) a6b6A V . 3 a 4

113 28ab 3 2.8ab W2 + A66 ) 4ab

.TO ab  W 3 ab

+ BWa-T T + W(B12 + 2866) a-6 T 0

or

U(+ a6 4b ) + VC+ (A12 + A66 )
U 4a + 4b --

Bl1 w3b 3
- W[+ -4W- + (812 + 2866) 4b]
+ W2[+ Al A + A66 _ (A12  + A6 6 ) ']El 0

A1  ar +9 A6 b' b

or

U(_2  i 2  w3b w3-~.B2.26)
U(4- "b (Alb

2 +A 6 6a
2 )}+V(j- (A12 +A6 6 )}+W(- w BI - (812+B

8w b2  1+ W2 { (All - + A66 - (A12 + A66))} a 0 (5.3.2)
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Similarly,

a b

Sj{Az2v? + A66V?' + (A,- + A66)U~x + .i, y(A22W, 4y A66WI, )

+ W, x(A,2+ A66 W, -B22W, y -(B12 +2B66)W-,x }sln ax cos By dxdy=O

or

a b
,r2

f ft- zz-bw Vsin2 ax COS2 By - A66 -a Vsin
2 aX COS2 By

-A1 2 + A6)U i2 ax COS2 ay - A22W '3 sin3 aX COS 2 ay sinl By
(A24A)Uab 2 3

-6 W2 ff si3 ax COS
2 By sin By

+ (A12 + A66)W2 absin ax COS2 *X sin By C052 By + B 22 U- W sin2 ax cos' By

+ (812 + 2866) w =b sin 2 ax cos2 ayl 0

or

~A22 T2v a -A66 ~V ab (A2 A6 U 2 b -22W 34a2
b2  T -a7 -a 12+A66  3w 3wA~ a2

3A6W w 8ab 7r 4ab V3~ ab
A162 - + (A12 + A66)W

2  + 822W~

i3 ab
+ (812 + 2866)w azb T 0

or

V( A2 - + A66, -irj-) + U(A12 + 6)4 f

- WB22 + (812 + 2866 4a

+ W2(+A 22  + A66 !~ (A12 + A66) KM 0
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or

Ia b
U(T (A12 + A66 )) + V{T (- A22 + A6)

W1- B22 3a _ 3 (B 2 B
=4 Ta~ +B12 B66)}

+ W2(IT a2  
2  69a (bl A2 6 (A12 + A66)} =0 (5.3.3)

Also,

a b

f fJ{Bjju?X + (812 + 2B66) (UX + V? x ) + B2 y

+ w, yE[22w, yy + (B12 + 2B6 6)W,J

+ 2w,xx(B66 - B12 )Wt , + 2w, xy~x (B12 + B6 6) -~ y22,y

- D11WV, X - 2(DI2 + 2D66)Wtxy -2W y

0x 11u X 2 x 1 ( l

" W, [A 1 ( 0  + 1 W 2) 2( 0 + 1 W2
yy '2Lx 2 'x $y 22 v y)

+2w, 0" wx [A66(U, y +v?, + W w, y 2B66W, ]l} sin aix sin By dxdy=O

or

a b

{ 1T B11 U sin2 aix sin2 By + (B12 + 2B66)(ab2 3u + I~ 3) si2 ciX sin2 By

+ B22 bT V sin 2 aix sin2 By - 81 IW2 a4 COS 2 ciX sin ax sin3 By

4a
-(B12 + 2866 ) a W2 cos2 aix sin a~x sin3 By
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- B.,W, Tr 4sin3 ciX sin By cos2 BY

F?

- (812 + 2B66) W4b W2 sin3 ax sin By C052 By

+ 2(B66 - B12) -1 4 W~sin3 aix sin3 BY
at=.

+ 2WZ(B12 + B66) a = sin ax sin By COSZ aX COS2 By

- B22 o~ W2 sn XSin3 By - D11W 'T sin2 ax sin 2 By

- 2(012 + 2D66)W =a sin' ax sin' ay - D22W IS sn ax Sin2 By

"3
+ Q sin 2 ax sin2 By + All -aT UW sin 3 aix sin3 By

- All W3 sin 2 aX cos2 ax sin 4 By + A12WV 13snaxsin 3 By

- A2  UT7 W3 sin4  xC5 By sin2 By + A12 =ab2 UW sin3  xsi3 B

f4 n3A12  'T W3 COS2 aX sin2 ax sin 4 By + A22 'TV in xsi 3 B

iff
-A2 2' W

3 si4 ax COS2 By sin2 By

" 2A66 UW = sin ax cos2 ax sin By COS2 By

" 2A66 VW -- r- sin ax COS2 OX sin By C052 By

" 2A66 W3  b sin 2 atx cosz ax sin 2 BY cos2 By

-466 w2  sin ax cos2 ax sin By COS2 83'} 0

or
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It3  ab + B + i7 rVi 3  ab _ 8 W2 it'4 8abaT BkIU-+ (B12 + 2B66)(-- + ) + B12 4v 4a BbTW a-V-=

-B' 8ab '4 Sab 4 8ab
BW  9 - (B12 + 2B66) a__ W2  - B, 2 W2  -7

- (B12 + 2B66) 94--2 '+ 2W2 (B66 - B12) at4 l6ab

8 ab W7 6ab 9 ab
- 2W2 (BI2 + B66 ) 74 4ab - B22 7'4 W296ab - W4 W ab

ab 97ab 9= -3 4

2(D12 + 2D66) W - - DZjW n T+ Q 
-+ All a - 3 U W

= 31ab - 3J9~
. I 66JW3 3ab 3  16ab ab 4  3 ab l 3  4ab

-A1a W + A12WV T- l: - _A__ 2 W + A12  UW
2 64 j-b -q -~~ 12 2a~b2  64 1 ab2  9-

3 I 4 3ab W23  l6ab A 2 T4 3ab iT 3 4abA 222by -.~- 2 -V 977 - 222b'F 4 ~ 2 6  b

70 4ab 4__

+2P66W 66b W3 f'4 ab 7 4 4ab
a b9r+ 2A6 ab6g 4B66 W2 b=P-97T 0

3b~~ 822 + ( 3U{8 + (B12 + 2B66 _} + V{(B 2 + 2B66) I-- 4b

+ W{- 011 'r 4b 2(D12 + 2D66) n4 D22 T
+ W1{- t - -( 2T

+ b, (B12 + 2B66) -B24--- (B 12 + 2B66) 1

9at 24 wa16 48 b
2(B66 - B 12) 6+ 2(B12 + 866) 2 - B22 -9a- - 4B66 9ab

A 43b T43 A w43 4'3a Tr4
W)'A 128a - A12 12 128ab A22 128b+ 2A66  }

16br 16w 8
+ UW{AII9a + A12 16' + A66 8r)

9a6 916b
VW{A 2 116 + A2 2 T 16a + 2A6 6 4 + qo = 0 (5.3.4)

The above three equations yield a cubic equation in W which can

be solved by using a standard subroutine (such as ZRPOLY).
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5.4 Neutral-Surface Positions

By Kirchhoff's hypothesis, the neutral-surface locations are

defined by ex -y 0 which implies

y0 u a U w, 2 U/WOL
nx x xx

(5.4.1)
Z v° 1w = V/W8

Zny y /Wyy

The iterative method is applied as in the other problems to get the actual

deflection.

5.5 Numerical Results

The present solution is compared with that of Kamiya [11], the

oniy solution available for large deflections of bimodulus isotropic

rectangular thin plates.simply supported on all edges. Good agreement is

obtained (see Table 5.1).

Table 5.1. Comparison of Nondimensional Deflection, W/h, with
Kamiya's Solution [11]. (a/b=l, \c=0.2, q0a /E,2Ch4

-16.91)

16.91 WE 2 ch4/qo a ZxZ nx/h Zy zny /hEt/Ec0 xnx y y

Kamiya Present Present

1.0 0.4000 0.4010 -0.0795 -0.0795

1.5 0.3200 0.3177 -0.0398 -0.0100

2.0 0.2700 0.2658 0.2658 -0.0167
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Table 5.2. Dimensionless Deflections and Neutral-Surface Locations
for a Single-Layer Orthotropic Rectangular Plate at
(i) q0 = q0b /E2 2ch = 1.0 , (ii) qo = q0b4/E

',2ch
4 = 200

a/ X z x W/h W/hM ii(O (ii)

Aramid-Rubber:

0.5 0.0768 0.0876 - 0.0688 - 0.0803 0.6651 x 10"4  0.0139

0.6 0.0780 0.0828 - 0.0636 - 0.0724 0.1384 x 10-  0.0278

0.7 0.0780 0.0732 - 0.0598 - 0.0667 0.2567 x 10- 3  0.0489

0.8 0.0795 0.0611 - 0.0564 - 0.0644 0.4377 x 1l-3  0.0774

0.9 0.0795 0.0462 - 0.0536 - 0.0659 0.7001 x 10 0.1126

1.0 0.0805 0.0290 - 0.0512 - 0.0699 0.1063 x 10-2 0.1530

1.2 0.0805 -0.0093 - 0.0477 - 0.0885 0.2178 x 10 2  0.2435

1.4 0.0805 -0.0498 - 0.0464 - 0.1146 0.3945 x 10 0.3395

1.6 0.0805 -0.0906 - 0.0446 - 0.1447 0.6528 x 10"2 0.4365

1.8 0.0789 -0.1370 - 0.0446 - 0.1765 0.1003 x 10-1 0.5326

2.0 0.0773 -0.1699 - 0.0446 - 0.2086 0.1449 x 10-1 0.6270

Polyester-Rubber:

0.5 0.0706 0.0565 - 0.0515 - 0.0441 0.3090 x 10-3  0.0572

0.6 0.0706 0.0376 - 0.0491 - 0.0390 0.6361 x 10-3  0.1058

0.7 0.0706 0.0126 - 0.0471 - 0.0390 0.1166 x 10"2 0.1674

0.8 0.0716 0.0126 - 0.0454 - 0.0504 0.1962 x 10-2 0.2389

0.9 0.0716 -0.0447 - 0.0441 - 0.0619 0.3087 x 1O2 0.3094

1.0 0.0716 -0.0747 - 0.0441 - 0.0796 0.4597 x 10-2 0.3832

1.2 0.0703 -0.1334 - 0.0427 - 0.1231 0.8974 x 10-2  0.5305

1.4 0.0683 -0.1899 - 0.0427 - 0.1712 0.1529 x 10I1 0.6743

1.6 0.0656 -0.2433 - 0.0437 - 0.2202 0.2344 x 10"1 0.8130

1.8 0.0623 -0.2929 - 0.0472 - 0.2681 0.3298 x 10-1  0.9453

2.0 0.0589 -0.3382 - 0.0503 - 0.3137 0.4337 x 10"l 1.0700

(See Appendix D for the in-plane displacements)
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Table 5.3. Dimensionless Deflections and Neutral-Surface Locations
for a Cross-Ply Bimodulus Rectangular Plate at
() io = qo b4/E22ch

4 = 1.0 , (ii) qo = qo b/E 22ch4 = 200

a/b x x y y W/h W/hab (i) (ii) 0i) , ii '.0) 00i

Aramid-Rubber:

0.5 0.0934 0.0875 - 0.0280 - 0.0316 0.7149 x 10-4  0.0139

0.6 0.0934 0.0827 - 0.0247 - 0.0329 0.1480 x 10-3  0.0278

0.7 0.0934 0.0731 - 0.0221 - 0.0398 0.2734 x 10-3  0.0488

0.8 0.0934 0.0611 - 0.0202 - 0.0544 0.4645 x lO 0.0774

0.9 0.0934 0.0462 - 0.0189 - 0.0766 0.7402 x l03  0.1126

1.0 0.0934 0.0292 - 0.0189 - 0.1033 0.1121 x 10-2 0.1531

1.2 0.0934 -0.0072 - 0.0172 - 0.1633 0.2284 x 10-2 0.2404

1.4 0.0921 -J.0397 - 0.0172 - 0.2184 0.4127 x 10-2 0.3187

1.6 0.0909 -0.0625 - 0.0172 - 0.2580 0.6800 x 102 0.3741

1.8 0.0895 -0.0752 - 0.0172 - 0.2815 0.1041 x 101 0.4077

2.0 0.0874 -0.0826 - 0.0188 - 0.2950 0.1498 x 1l"  0.4270

Polyester-Rubber:

0.5 0.0895 0.0634 - 0.0815 - 0.0959 0.3519 x 10-3  0.0616

0.6 0.0895 0.0438 - 0.0805 - 0.1128 0.7206 x 10-3  0.1124

0.7 0.0895 0.0181 - 0.0805 - 0.1413 0.1312 x 102 0.1759

0.8 0.0895 -0.0104 - 0.0805 - 0.1789 0.2188 x IO"2 0.2469

0.9 0.0895 -0.0396 - 0.0805 - 0.2216 0.3403 x 10-2 0.3307

1.0 0.0895 -0.0678 - 0.0805 - 0.2673 0.4999 x 10-2 0.3931

1.2 0.0869 -0.1437 - 0.0832 - 0.4042 0.1527 x 10"1 0.5994

1.4 0.0869 -0.1437 - 0.0832 - 0.4042 0.1527 x 10-1 0.5994

1.6 0.0854 -0.1554 - 0.0856 - 0.4356 0.2217 x 101 0.6444

1.8 0.0840 -0.1576 - 0.0882 - 0.4517 0.2947 x 101 0.6669

2.0 0.0828 -0.1542 - 0.0909 - 0.4605 0.3659 x 10"1  0.6776

(For the in-plane displacements, seee Appendix 0)
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Comparison of the present theory with the existing solution for

bimodulus isotropic thin plates shows close agreement. Typical computa-

tions are shown in the above two tables, and graphs are presented (Fig.

5.1) to observe the general trend.
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Fig. 5.1. Variation of dimensionless deflection with aspect ratio
for two-layer cross-ply rectangular plates.
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CHAPTER VI

CONCLUSIONS

Good agreement exists between the closed-form, small-deflection

solutions presented here and previous approximate analyses carried out

by several authors for special cases (isotropic bimodulus material) as

was shown in Chapters II-IV. It is also shown that the exact solutions

developed here offer a good check for finite-element analysis available

(see Chapter II). The results of Chapters III and IV can also be used

for this purpose.

Good agreement was also obtained between the approximate

Galerkin-type solution presented in Chapter V and an existing solution

for the isotropic bimodulus case.

It has been observed that for materials with different proper-

ties in tension and compression, the location of the neutral surface

may vary considerably from the geometric mid-plane. Materials with

markedly different properties in tension and compression are, of course,

most affected.

There is a sudden jump in neutral-surface locations with the

change in aspect ratio in the case of free vibration. This is probably

due to the elgenvalue nature of this problem. They also assume out-of-

plate values in the 'case of thermal bending.

Stacking sequence for two-layer, cross-ply laminates plays an
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important role in both the amount of deflection and the failure mode.

For some plate aspect ratios, the maximum stress can be developed at the

bottom of the plate. However, if the stacking sequence is reversed, the

maximum stress may occur in those fibers closest to the mid-plane.

Typi-cal computer programs are presented in Appendix III.
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APPENDIX A

DERIVATION OF THE PLATE STIFFNESSES FOR TWO-LAYER

CROSS-PLY LAMINATE OF BIMODULUS MATERIAL

In the solution of problems involving laminates comprised of

bimodulus-material layers, it is necessary to evaluate the integral forms

involved in the definitions of the plate stiffnesses, Eq. (2.1.6). This

is accomplished here for the case of a two-layer cross-ply laminate.

Each layer is assumed to be of the same thickness, h/2, and

the same orthotropic elastic properties with respect to the fiber direc-

tion. Since each layer is oriented at either 0* or 900 to the x axis,

the laminate is also orthotropic, i.e., there are no stiffnesses with

subscripts 16 and 26.

The bottom layer is denoted as layer 1, i.e., z = 1 in Q.

and occupies the thickness space from z = 0 to z = h/2, where z is mea-

sured positive downward from the midplane. The top layer is denoted as

layer 2, i.e., i = 2, and occupies the thickness space from z = - h/2

to z 0.

In the general case derived in this derivation, it is assumed

that the upper portion of the top layer (z=2) is in compression (k=2 in

Qijkt) in the fiber direction and that the lower portion of the top layer

is in tension (k=l), while the inner portion of the bottom layer (z=l),

from z =0 to z = Znx, is in compression (k=2), while the outer portion
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(from z to h/2) of layer 1 is in tension (kul).

Thus, the general integral expression for Aij, the first of

Eqs. (2.1.6), may be taken as the sum of the integrals for each of these

regions:

Case 1
(Z y<0, Z x>0)

rh/ 2
Aij= '-h/2 Qijkk dz

z '0z h/

- yQ d 1 2 rz + l h/2 z+ il dz (A-1)

J-h12 dz+dz0J Q~2  d zH fy fix

Since the planar reduced stiffnesses Qijki are each respec-

tively constant in the appropriate regions, Eq. (A-1) integrates to the

following result:

Aij = (Qij 22 + Qijl )(h/2) + (QIj 2l - Qijl )znx

(A-2)

+ (Q ij22 - Qijl2)Zny

or

Aij = (1/2)(Qij 22 + r jl ) + (Qij21 " Qijl )zx

(A-3)

+ (Qij22 " QiJI2)Zy

Similarly

rh/2
Bj 'J -h/2 zQijk. dz

z +fZnx h/2

0h d+i +12 zQzjl2 dz (A-4)
Zny 0 Znx
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QiJ( 2 + Qijll)(h2/8) + ( jl- il)zx2 )

(A-5)
+ (Qij22 - i2)zy/)

or

-i A2 /)( Q +j2QI + -Qj~ Qijli)(ZX2/2)

i - (A-6)

Also

Jh/ 2
Dia -h/ z2Qi i dz

-h/ ny0k x /
= f 2Q~ 2 dz + Z2Q 1 ~ 2 zf 2j 2 dz+ / Z2Q1j11 dz (A-7)z -/ Q j 2 f l y 1 i l dz + f i x

- Qi2 + Qijll)(h3/24) + ( J1- Qijll)(znX3/3)

+ ~ Q 1 j22 -(A-8 )

or

D 1j/h3 - 12)Q*2 + Qil)+ (Q 1 j 2 l Qijli)(ZX3/3)

(A-9)
+ (Qj2- Qijl2) (ZY3/3)

Similarly

Case 2
(Z y>0. I <0)

A 'j- -h,2 Qijk , dz

* ' h ? Q 2 2 d z + 0d z + J Q 1y 2  dh / 2
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"lijii +"1j22)'"''' +"Q1j22 Qijl2)znx +Qij2l Qijillny

or

A. jl+~ 2 ~ i2 .+ (Q -Q )13/h /Qjl i 2+( i2 Qijl2Zx +(ij2l ijll Zy

and

(A-10)

B j/h2 - H (Qil ij22)/ + (Qij 22 -Q 1i 2)(Zx
2/2) + Qij2l -Q 1il (Z y2/2)

1i3 1 Qii + Q* i2)/24 + (Qi2 Qijl2 )Zx 3/)+(ij2I Q jll)(ZY3/3)

Case 3
(Z->U0 z >0)

x y

Aijh ( ill+ ij22) /2 + Qjl- Q. .11)Zx

E. .j/h2 = (Q Ul- Qij22)/8 + (Qij - Qijl)(Z x2/2) (A-11)

1i 3 =( jill +13i22 )/4+(ij2l Qijll x 33

Case 4
( Zy< <0)

A1Ii h =(Qijll + Qij 2 2 )/2 + (Qij22 -il2z

B1 j/h
2 
=(Q ijll - Qij 2 2 )/8 + (Qij 22 -QiJ 12)(ZY 2/2) (A-12)

Dii/h3 (Q jll+ Qij 22)/24 + (Qij - Qijl)(Z y3/3)
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For neutral surface going Out Of plane,

Case 5

17T .-5 z >-0.5)x y

A j/h (Q~ +jl'Qj2/

aB1 j/h2 *(QU 1 1 - Qijl2)/8 (A- 1)

D1./h3 ( J2 + Qi1~ 2 )/24

Case 6
77;--, Z 0.5)x y

A i/ (Q1 1 + Qj2/

8B1 j/h2 (Q i -l Qi)/8 
(A-1)

0 ijh, ( Wl Q j22)/24

Case 8
Mx-Y5,Z y>0.5)

Bj/h2  ( jl- Qij2)/8 
(A-1)

0ij/h (Q j~l Qij2)78



Single Layer

For a single layer (00),

A ij/h (Q ij1 + Q i21)12 + (Qij21 Qij11)Zx

B11 /h2 "(Q)ij1 " Qij2l )/8 + (Qij2l " Qij 11 )Zx/2 (A-17)

D0i/h3 "(Qiji1 + Qij 21)/24 + (Qij 21 " Qijl1 )Zx/3

For neutral surface out of plane,

Case 1
TZ7O.5)

x*
A ii/h "Qij21

B1j/h2 - 0 (A-18)

D ii/h3 Q Qij2l /12

Case 2

A ii/h Q Qill

B 1 /hA * 0 (A-19)

D i/h3  Q ij11/12
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APPENDIX B

DENSITIES OF ARAMID, POLYESTER, AND RUBBER

Fibers:

According to the Kevlar Data Manual (50], the densities of the

fibers of aramid and polyester are:

Kevlar (aramid) - 0.052 lbf/in 3

Polyester - 0.049 lbf/in3

Rubber:

Reference [51] lists nautral rubber and isoprene rubber at

specific gravity, 0.93, and SBR plus BR rubber at specific gravity, 0.94.

Taking 0.93, the density of rubber can be calculated as:

Density a 0.93 x 62.4 lbf/ft 3 (H20)/1728 in
3/ft3

- 0.034 lbf/in 3

Composite:

If p represents the density (f for fiber and m for matrix) and

V represents the volume fraction, the density of the composite p '3n be

written as:

P PfVf + PmVm

a 0m + (of - Om)Vf
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The values of Vf according to Ref. [2] are:

Aramid/rubber : 0.140

Polyester/rubber: 0.149

Thus, the densities of the composites can be listed as follows:

Density

Composite P(lbf/in 3)

Aramid/rubber 0.037

Polyester/rubber 0.036
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APPENDIX C

THERMAL FORCE AND MOMENT EXPRESSIONS FOR CASES II -VIII

Expressions for N2T, MTx , and M2,y were derived for Case

I in Chapter IV. In a similar way, one can obtain the expressions for the

above-mentioned quantities for the remaining seven cases as follows:

Case II
>0) Z >0nxO ny

NTx a{(s122 
+ a111 )(Toh/2) + (8121 all1)(T1oZnx)

+ (6111 -$12 2 )(T Ih/8) + (B121 -i 1 11)(Tizn2/2h))

T

N2,y "{( 22 2 + 2 11 )(T 
h/2) + (6221 "2 z)(oznx)

+ (B211 -8222 )(1'h/8) + (a221 - 62 11)(jZ1 2 /2h)}
nx

T (C-i)
S {( - 812 2 )(Toh

2/8) + (8121 - 0111)(ToZ 2/2)

+ (0122 +0111)(Tlh
2/24) + (8121 -0111)(IZ 3 /3h)}

T
M2Ty W0211- 0222)(? h2/8) + (6221 -6211)(Tz 2/2)

+ (8222- 6211)(Th
2/124) + (8221 -211)(TIZ 3/3h))
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Case III
Znx<0 , Zny>0

NiTx ={(8122+8111)(1oh/2) + (0121 - 0111)( oZn)

+ (0122- 0112)(Toznx) + (0111 - 0122)(T1h/8)

+ (8121 " 111)(?lz I/2h) + (8122 - s112)(Tiz 2/2h)}

T = 8{(8222 + $211)(T oh/2) + (8221 -6211)(o z ny)

+ (8222- 0212)(oZnx) + (8211 -6222)(Tlh/8)

+ (822 1-8211 )(TlZ 2 /2h) + (8222 -8212)(TjZ 2 /2h)}

M xT M( 81  11  - 5 12 2 )(T0 h /8 ) 
+  (B 12 1 - B Il1)(4z /2 )

+ (8122- 8112)(T xz2/2) + (0 12 2 
+ $111)(Tlh2/24)

+ (8121 -8111)(flz 1/3h) + (8122 -81 12 )(T1Z 1 x/3h)}

T

M2,y W{(8211 - 82 22 )(Toh
2/8) + (8221 - 82 11 )(ToZ 2/2)

+ (0222 -8212)(TZ x/2 ) + (8222 + S211)(TIh2/24)

+ (8221 -8211)(TIZ 3 /3h) + (8222 - 8212)(TIZ 3/3h)}

Case IV
Znx <0, Zny<0

Njix Q{(0 122 
+ oll)(Toh/2) + (8122- 0121)(T Zny)

+ (811 " 1.22)(1h/8) +  22h)
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T

N2,y 'd 22 2  21 1 )(
1 Oh/2) + ($222-B221)( Z ny)

+ (6211 -6222 )(Tlh/8) + (0222 -221)(fZz2y/2/h))

ly

(C-3)
MJTx =' {(0111 - 6122) (T0h2/8) + (6122 - B12-1(TZ 2y/2)

+ (0122 + a I, ) ( Tx h2 / 2 4 ) + (6122"- 82)(TIZ 3y/3h) }

T

M2,y 8{(8211 - h222)(?oh'/8) + (8222- 221 )(oZ 2y/2)

+ ( 22 2 + 82 11)(TIh
2/24) + (B222 - 21)(TIZ y/3h)

ny

For neutral surface going out of plane,

Case V
" ., Z y<-0.5

NJTX = ((6121 + 81l2)T0/2 + (s21 -8112)T/8}

T
N2,y = W{((22 1 212)T0/2 + (8221- 2z2)TI/8}

(C-4)
Milx = C{(0 1 2 1 - 0112)To/8 + (6121 + 0112)T,/24}

!X0., Z y>0.5

NITx a a{(8021 +0112)o/2 + (0121 "a112)zT/8}

N2,y (221 + 0212)?O/2 + (221 - 22)T/8(C-5)

MITX " a"(0 12 1 -0112)T0/8 + (8121 +8112)T
,/24)

T

M2,¥ 0{(0221 -$212)To/8 + (0221 
+ 021 2)T/24)
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Case VII
Z7FZ >0. 5x y

NI~x a (H+08112)T 0/2 + (6111 - $112)T,/8}

T
N21 a 8( 1+S212)1o/2 + (Ozil- azlz)TI/a}

M1,x a d 811 ~2)1O/8 + (6111 + 8iz)1'I/241(C)

M21 a(6211 - 8212)T 0/8 + (8211 + 8212)11/241

Case VIII
7 7---lz <-0.5x y

Nj'x a ma((8 121+8122)T1/2 + (8121812)11/81

N9Y 0{(0221 +B222)0/2 + (8221 - 8222)T1/81

(C-7)
aT O(8612 - a122)1'0 /8 + ($121 + 8122)T1/24}

M29Y 0((0221 - 8222)1'0/8 + (8221 +8222)11/241

For a single layer, change 8112 to $ll 8122 to 8121, 8212 to 621
and 0222 to 8221.
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APPENDIX D

IN-PLANE DISPLACEMENTS AND SLOPE COEFFICIENTS

The in-plane displacements and the slope coefficients correspond-

ing to the middle-surface deflections presented in the preceding chapters

are listed in the following tables.

Table D2.5. In-Plane Displacements and Slope Coefficients
Associated with Table 2.5

c 4)XO-2 c 4) xE2 ch3/q bL.)X102 (YE22ch3/qa/b (UE22ch3/q0 bL)xl (VE2 2Ch3/q0b (XE22)xlOO (YE22 h3/qb)xO 2

Aramid-Rubber (NL=l)

0.5 0.0510 - 0.0238 - 0.1162 - 0.0730
0.6 0.0824 - 0.0386 - 0.1883 - 0.1333
0.7 0.1204 - 0.0552 - 0.2754 - 0.2187
0.8 0.1725 - 0.0720 - 0.3727 - 0.3295
0.9 0.2064 - 0.0877 - 0.4745 - 0.4634
1.0 0.2495 - 0.1013 - 0.5754 - 0.6161
1.2 0.3264 - 0.1209 - 0.7575 - 0.9569
1.4 0.3844 - 0.1308 - 0.8982 - 1.3101
1.6 0.4222 - 0.1313 - 1.0509 - 1.9486
1.8 0.4427 - 0.1269 - 1.0778 - 2,2132
2.0 0.4503 - 0.1269 - 1.0778 - 2.2132

Polyester-Rubber (NL-1)

0.5 0.0150 - 0.0073 - 0.0503 - 0.0449
0.6 0.0252 - 0.0122 - 0.0848 - 0.0787
0.7 0.0387 - 0.0184 - 0.1304 - 0.1281
0.8 0.0554 - 0.0256 - 0.1871 - 0.1960
0.9 0.0749 - 0.0335 - 0.2539 - 0.2845
1.0 0.0967 - 0.0419 - 0.3291 - 0.3945
1.2 0.1442 - 0.0588 - 0.4947 - 0.6760
1.4 0.1915 - 0.0744 - 0.6616 - 1.0211
1.6 0.2327 - 0.0873 - 0.8096 - 1.3972
1.8 0.2646 - 0.0971 - 0.9264 - 1.7716
2.0 0.2863 - 0.1041 - 1.0087 - 2.1199
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Table D2.6. In-Plane Displacements and Slope Coefficients
Associated with Table 2.6

a/b (UE22 Ch3/q 0 b4)X1- 2 (V.c3q0b)J- (XE22 ch3/q 0b4)X10-2 (YE22 c h/q 0 b4)X10-
2

Aramid-Rubber (NL=2)

0.5 0.5967 - 0.5570 - 0.1114 - 0.0716
0.6 0.4608 - 0.4168 - 0.1789 - 0.1290
0.7 0.3612 - 0.3197 - 0.2602 - 0.2099

0.8 0.2855 - 0.2487 - 0.3517 - 0.3151
0.9 0.2267 - 0.1951 - 0.4485 - 0.4429
1.0 0.1804 - 0.1539 - 0.5456 - 0.5899

1.0 0.1804 - 0.1539 - 0.5456 - 0.5899
1.2 0.1148 - 0.0969 - 0.7247 - 0.9220

1.4 0.0736 - 0.0618 - 0.8672 - 1.2718

1.6 0.0478 - 0.0400 - 0.9673 - 1.6084
1.8 0.0315 - 0.0265 - 1.0289 - 1.9144

2.0 0.0211 - 0.0179 - 1.0603 - 2.1832

Polyester-Rubber (NL=2)

0.5 0.5139 - 1.1570 - 0.1169 - 0.0739

0.6 0.3980 - 0.9203 - 0.1881 - 0.1330
0.7 0.3113 - 0.7477 - 0.2731 - 0.2152

0.8 0.2440 - 0.6133 - 0.3660 - 0.31-95

0.9 0.1909 - 0.5045 - 0.4597 - 0.4417
1.0 0.1489 - 0.4146 --0.5475 - 0.5754
1.2 0.0898 - 0.2787 - 0.6882 - 0.8497

1.4 0.0541 - 0.1871 - 0.7730 - 1.0991
1.6 0.0330 - 0.1267 - 0.8099 - 1.3047

1.8 0.0206 - 0.0872 - 0.8138 - 1.4662
2.0 0.0132 - 0.0612 - 0.7979 - 1.5905
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Table 04.2. In-Plane Displacements and Slope Coefficients
Associated with Table 4.2

a/b Uh/c 2t 1'b
2  (Vh/ 2t Tlb

2 )xlol  Xh/c 2t 1'b
2  (Yh/a 2t Tlb

2 )xlO l

Aramid-Rubber (NL=I)

0.5 - 0.1596 - 0.1163 - 6.9363 - 0.6982

0.7 - 0.2226 - 0.1669 - 0.1430 - 0.6081

0.9 - 0.2854 - 0.2034 - 0.2395 - 0.5857

1.0 - 0.3168 - 0.2172 - 0.2959 - 0.5886

1.2 - 0.3795 - 0.2383 - 0.4236 - 0.6131

1.4 - 0.4421 - 0.2531 - 0.5692 - 0.6556

1.6 - 0.5045 - 0.2638 - 0.7298 - 0.7110

1.8 - 0.5669 - 0.2716 - 0.9018 - 0.7765

2.0 - 0.6292 - 0.2775 - 1.0813 - 0.8495

Polyester-Rubber (NL=I)

0.5 - 0.1619 - 0.1333 - 0.0767 - 0.2048

0.7 - 0.2226 - 0.1848 - 0.1587 - 0.1833

0.9 - 0.2826 - 0.2197 - 0.2639 - 0.1846

1.0 - 0.3124 - 0.2325 - 0.3238 - 0.1906

1.2 - 0.3719 - 0.2516 - 0.4550 - 0.2108

1.4 - 0.4310 - 0.2647 - 0.5959 - 0.2393

1.6 - 0.4898 - 0.2740 - 0.7388 - 0.2736

1.8 - 0.5482 - 0.2807 - 0.8760 - 0.3114

2.0 - 0.6062 - 0.2858 - 1.0002 - 0.3503
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Table 04.3. In-Plane Displacements and Slope Coefficients
Associated with Table 4.3

a/b (Uh/c 2t fib2)xlO
"l (Vh/c 2t T1b2)xlO

"  Xh/a 2t f1b
2  Yh/a 2t Tjb

2

Aramid-Rubber (NL=2)
0.5 - 3.3455 - 0.1701 x 104 2.6210 - 1.1264
0.7 - 5.4763 - 0.2371 x 1O4  4.7012 - 1.0100
0.9 0.0229 - 0.7557 - 0.0397 - 1.2135
1.0 0.0547 - 0.7789 - 0.0558 - 0.2227

1.2 0.1112 - 0.8233 - 0.0853 - 0.2403
1.4 0.1513 - 0.8597 - 0.1081 - 0.2548
1.6 0.1738 - 0.8867 - 0.1240 - 0.2655
1.8 0.1821 - 0.9054 - 0.1341 - 0.2730
2.0 0.1803 - 0.9177 - 0.1401 - 0.2779

Polyester-Rubber (NL=2)
0.5 - 46.395 - 32.850 6.2344 - 3.9037
0.7 - 66.708 - 33.152 8.9231 - 3.8930
0.9 - 63.472 - 34.827 8.1669 - 4.2283

1.0 - 55.893 - 36.025 6.9217 - 4.5183
1.2 - 40.106 - 37.695 4.3247 - 4.942
1.4 - 37.079 - 0.1555 x 1O3  1.1373 0.3559 x 103

1.6 - 42.873 - 0.1650 x 1O3  1.2790 0.3544 x 1O3

1.8 - 47.826 - 0.1578 x lO3  1.4415 0.3404 x 1O3

2.0 - 52.199 - 0.1428 x 103  1.6249 0.3218 x 163
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Table 05.2. In-Plane Displacements Associated with Table 5.2

Aramid-Rubber (NL=I) Polxester-Rubber (NLuI)
U V V "a/b 0) (t M M (t)r

0.5 0.3214 x 10 5  -0.1N41 x 10 5  0.1377 x 10 -.4 -0.ZJ47 x 10- 5

0.6 0.5647 x 10 5  -0.2793 x 10 5  0.2374 x 10 -0.935 x 10

0.7 0.9079 x 10 5  -0.48G1 x 10 5  0.3743 x 10 4  -J.1730 x 10 4

0.8 0.1366 x l -4  0.7z5 x l 5  0.5517 x 10-4  -J.2;04 x lu-4

0.S 0.1958 x l0 4  -0.1185 x 10 4  0.7719 x 10 4  -0.4239 x 10 4

1.0 0.2688 x 10 4  -0.1717 x 10 4  0.1029 x 10 3  -. G247 x 10 4

1.2 0.4615 x 10-  0.3269 x 10 0.1651 x 10-  -0.1h9 x 10-

1.4 0.7139 x 10 -0.5631 x 10-4  0.2345 x 10-3  -0.2068 x 10- 3

1.6 0.1027 x 10" 3 -0.9065 x 10"4  0.3018 x 10"  -0.329J0 x 10"

1.8 0.1382 x 10 3  -., x 10x 310.  0.3567 x 10"  -0.4bo7 x 10 3

2.0 0.1758 x 10 -3  0.200 x 103 0.3981 x 10- 3 0.6U47 x 10 3

U V U Va b(ii) (II) (ii) - ii)

0.5 0.7656 x l0 -0.3512 x 10 3  0.2051 x 10 2  -0.8036 x 10 3

0.6 0.1195 x 10- 2 -0.6279 x 10- 3  0.2072 x 10- 2 -0.1289 x 10- 2

0.7 0.1605 x 102 -0.1012 x 10- 2  0.9315 x 10- 3  _0.2085 x 10- 2

0.8 0.1857 x 10- 2  _0.1543 x 10- 2 -0.1215 x 10 2 _0.3786 x 10- 2

0.9 0.1816 x 10.2 0.2295 x 102 -0.4870 x 10 2 _0.5964 x 10- 2

1.0 0.1382 x 10-2 -0.3351 x 10- 2 -0.9015 x 10-2  _0.9549 x 10
-2

1.2 -0.6104 x 10 3  -0.6757 x 10 2 -0.1856 x I0 "1 -0.2047 x 10"I

1.4 -0.3813 x 10- 2  -0.1221 x 10 1 -0.2876 x 10' I -0.3620 x 10"I

1.6 -0.7777 x 102 -0.1981 x 10"I  -0.3886 x 10' I -0.5615 x 101

1.8 -0.1216 x 10 1  -0.2949 x 10-1 -0.4835 x 101 -0.7949 x 10 1

2.0 -0.1675 x 10"1  -0.4106 x 10-1 -0.5686 x 10' 1 -0.1053
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Table D5.3. In-Plane Displacements Associated with Table 5.3

Aramid-Rubber (NL=2) Polyester-Rubber (NL=2)

a/b Vv

0.5 0.4194 x 10"  -0.6301 x 10"6 0.1982 x 10- 0.9016 x 10"

0.6 0.7255 x 10-5  -0.1140 x 10-5  0.3383 x 10-4  -0.1823 x 10-4

0.7 0.1148 x 10- 4  -0.1889 x 10-5  0.5280 x 10-4  -0.3298 x 10-4

0.8 0.1705 x 10- 4  -0.2944 x 10-5  0.7696 x 10- 4  _0.5484 x 10- 4

0.9 0.2412 x-10 -4  -0.4382 x 10-5  0.1062 x 10-3  -0.8536 x 10-4

1.0 0.3282 x 10- 4  -0.6299 x 10-5  0.1399 x 10-3  -0.1259 x 10-3

1.2 0.5547 x 10 -0.1200 x 10-4  0.2173 x 10- 3  -0.2402 x 10- 3

1.4 0.8529 x 10- 4 _0.2126 x 10 4  0.2972 x 10 3  -0.3993 x 10 3

1.6 0.1214 x lO 3  -0.3567 x 10 4  0.3708 x 10-3  -0.5964 x 10 3

1.8 0.1626 x 10 3  -0.5737 x 10 4  0.4308 x 10 3  -0.8177 x 10-3

2.0 0.2055 x 10-3  -0.9012 x 10- 4  0.4750 x 10- 3  _0.1046 x 10- 2

U V UV
a b(ii) (ii) (ii) (ii)

0.5 0.2483 x lO " 2 -0.1847 x Io-2 0.7623 x 10"3  -0.1374 x 10"3

0.6 0.2562 x 10- 2 -0.3998 x 10- 2 0.1194 x 10- 2 -0.2888 x 10- 3

0.7 0.1401 x I0 "2 -0.7835 x I0 "2 0.1599 x Io-2 -0.6180 x 1O"3

0.8 -0.1053 x 1O"2 -0.1391 x 10-1 0.1849 x I0 "2 -0.1338 x 10"2

0.9 -0.4506 x 1O2  -0.2240 x 10"  0.1807 x I0 2  -0.2729 x 10 2

1.0 -0.8479 x 10- 2 -0.3307 x 10"l  0.1391 x 1O"2 _0.5014 x lo- 2

1.2 -0.1568 x 10"1  -0.5676 x 10"1 -0.4823 x 10-3  -0.1241 x 10-1

1.4 -0.1938 x 10"1  -0.7625 x 10"1  -0.2872 x 10- 2  -0.2195 x 10-1

1.6 -0.1973 x 10"1 -0.8835 x I0 "1 -0.2872 x 10-2 -0.2195 x 10"1

1.8 -0.1835 x 10"I  -0.9482 x 1o-1  -0.5559 x 10-2 -0.3967 x 10"I

2.0 -0.1636 x 10I -0.9814 x 10"I  -0.5559 x 10- 2  -0.3967 x 10"I

91

.. ... 2____ --__



APPENDIX E

TYPICAL COMPUTER SOLUTIONS

Sample computer printouts are attached. The programs are

presented separately for each problem. They are self-explanatory. The

dimension statement allows required values for different quantities. For

example, reduced stiffnesses take 5x5x2x2 values (2 represents 2 layers,

and the other 2 indicate different properties in tension (1) and compres-

sion (2)) and THETA takes either zero or 1.5708 radians.

The ISML library subroutine LEQT2F solves N equations in N

unknowns. EIGZF solves eigenvalue problem, and ZRPOLY solves cubic

equation. It should be mentioned that WKAREA, WK, etc. are part of such

subroutines.

The values of znx and z are assumed in the beginning to getnx ny

the displacements. An iterative procedure is then adopted until a pre-

cision of + 0.0001 is achieved to get the actual deflections. Later on

the whole procedure is repeated for different aspect ratios.

Computations are carried out for a single-layer rectangular

plate by making NL=I (number of layers) and, of course, with a proper set

of equations for Aij, 8tj, and Dt. With proper Aij, B 1 , and Oii and

NL-2, the program calculates the deflections and neutral-surface loca-

tions for a two-layer, cross-ply rectangular plate. THETA takes the

values 0 and 1.5708 (corresponding to 00 and 90* ) radians for the two-
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layer, cross-ply case.

* Close attention is needed to use the equations for stiffnesses

* and neutral-surface locations.
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COMPUTER PROGRAM FOR STATIC BENDING (SINGLE LAYER)
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SJ~t TIM --(1*-!I fN,'L C '4 T 5z E L % L (3 ,-r, L --- )

Z ~ ~ ~~ Cjz ,. ";. S I I 3 '- { }- 1. E 2C ( ? AG N 1 L 2 T: . 1hj 2')

-K.F C E C) * T TA 2

4C331 ( ! 21 (2). 1 1 P 1 2 OA:I.2.1(2 o4td21k( ),;, ',.I. Z .Tr TA' , 1 I
I Er T A Z

-. . C 21 1 1 IZ
L ~ ~ DC -20 lL
t C 2 G K= It-Z

C -r 20 L=1,2

9 Q~( A.J.,I<L)=a,,0

10 2C CC P T I 'L
NL = 1.0

4- DC 30 I .E-
I 2 DC 30 .il,=

I. CC C K= 1.2

G ( ( I, ,K)=E1 K /C2N'N
-' de(C2,.,i )-: e22 (js)c '-NCY

-"-C(2, I*K G'. ( s1 2,

-"- IqQ C , . ,K )-- (- 3(K)

-- DC 30 L=1,-L
2,* x=_CC C F. 7,.- 7.- L )

::L X2=X**2
-7 .7=€

Y(,t,K,L, = Xl * .

-~ ~ ( 2 *K ,L ) CO U .1 .2 i K)~ Y4 l4

" 0(2v 1,KL)=C( G 2LK,_3

C(2,2,K,L; = *<2

, :0 CCKT ,LF
7 :A ;, -5,

40 ZX00.01

'1 Z 'I -C .0 0 1
.. A 1 *4T 16 'I. I # E 2 2 G12, 2-' .3G IsA NU 12, A 2 1,TI'iT , L a T , O T , !

4 22=x":
e

,4. Z 2 =Z;*

ALFPHA I'N'*3.1416/AX

31 CC SC !=I, ,
t!: OC 5 0 J-lI

DC D(,d) £ 4~.:(?,J,1.1)-¢( ,J,2, I )/8(C( L.J,.~, i-r( IJ. 1.) )*2:2/:t. 0{~~~O |,dJ=(3 I,.' *, I ) *, 1.,.,1 P I/244'lUtI ,J,2,1 )-C(! . J.1 1 ) )*.tJ/3
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e;~ i(. I 1= L,

t ~ .: ( ) I

7-(t.l .)-F(! I ,. EJ2 )AL4T

: (.L, 1)=C(I,Z )

C ( j . I )zc:1 2i

tc 0 cc 1 I I h VI

K -

C iI I L. A0.0

C" C( , A )=1-11 1 .

} C 2 1 Y) C ( I ,

C 2.. Z =f JI I- L) 3 T44-

Cf

. Ct * I ).=c( I , 1I

j ~ ~~ Ur 2 . .

' I

CALL LL.r(C,
•2.1 E/ A IIz * 1)

I €, I (,'y1.(.T.C.J)'g1 1 {,C, T.3 bC

i.), O Z,0',', v "(

1_1 4 ,; , 1~ 2 L. P I-)L 2a2 fCc r.

1 1A
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COMPUTER PROGRAM FOR STATIC BENDING (CROSS-PLY)
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! I X11PL +'Clt RS AL *a[ -H,0-" )

*A~rl 5 k, re3 1. *J 3; :4;,1

+, t ). G. I . , . I I , V.4U U( i; ,hJ2I . ,Ti."- (U 1 N
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