

Department of the Navy OFFICE OF NAVAL RESEARCH Structural Mechanics Program Arlington, Virginia 22217 Concract N08014-78-C-0647 MA08048 Project NR 064-609 Technical Report No. 10 Report OU-AMNE-80-1 ANALYSES OF CROSS-PLY RECTANGULAR PLATES D OF BIMODULUS COMPOSITE MATERIAL FEB 1 by V. Sudhakar Reddy and Charles W. Bert (J) 10/11: (9,7) And Alto 1 January 1980 THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. School of Aerospace, Mechanical and Nuclear Engineering University of Oklahoma Norman, Oklahoma 73019 Approved for public release; distribution unlimited 060 8 2 80 tor 400 4197

DISCLAIMER NOTICE

1-38 12

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

ACKNOWLEDGMENTS

This report constitutes the thesis submitted by Vallapureddy Sudhakar Reddy in partial fulfillment of the requirements for the Master of Science degree in Mechanical Engineering. For brevity, only the first two computer programs (for static bending) of Appendix E are included here. The thesis itself also includes programs for free vibration (pp. 102-112), thermal bending (pp. 113-121), and thin-plate nonlinear bending (pp. 122-127).

Dr. C.W. Bert served as thesis adviser and other members of the thesis committee were Drs. A.S. Khan and J.N. Reddy.

The financial support of both the Benjamin H. Perkinson Fund of the College of Engineering and the Structural Mechanics Program of the Office of Naval Research are gratefully acknowledged. Also, the computing time provided by the University's Merrick Computing Center is appreciated. Special appreciation is expressed to Mrs. Rose Benda for her exceptional typing.

TABLE OF CONTENTS

F

فالمعادية فالمناح والمتكرك والمتعا

	P	age
ACKNOW	LEDGMENTS	ŧŧ
TABLE	OF CONTENTS	iii
NOMENCI	LATURE	v
Chapte	r	
Ι.	INTRODUCTION	1
Π.	STATIC BENDING OF THICK RECTANGULAR PLATES	8
	 2.1 Governing Equations	11 15 17 18
ш.	VIBRATION OF THICK CROSS-PLY LAMINATED BIMODULUS RECTANGULAR PLATES	26
	3.1Governing Equations3.2Application to Plate Simply Supported on all Edges3.3Closed-Form Solution3.4Neutral-Surface Locations3.4Numerical Results	26 30 30 32 32
IV.	THERMAL BENDING OF CROSS-PLY THICK BIMODULUS RECTANGULAR PLATES	37
	 4.1 Governing Equations	37 41 41 43
	4.5 Neutral-Surface Locations	40 46
۷.	LARGE DEFLECTIONS OF BIMODULUS CROSS-PLY THIN RECTANGULAR	51
	5.1 Basic Equations	52

5 5 5 5	.2 .3 .4 .5	S S N N	imp olu eut ume	ly ti ra ri	- Si on 1-9 ca	upp Sur I R	oor les	te ce ul	d • P(Boi	und iti	ons	y (Cor	nd 1	t 1	ior • •	ns				• • •	• • •	• • •			• • •	• • •	• • •	55 55 61 61
VI. C	ONC	LU	S I O	NS	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	67
REFERENC	ES	•	•••	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	69
APPENDIX	A	-	DER CRO	1V SS	AT -Pl	101 _Y	I O LA	F MI	THI NA:	E 1 FE	PLA OF	TE B	57 [M(TI F DDL	FFN Jlu	IES IS	SSE M/	ES Ate	F(R))R [Al	TV	10-	-L/	4YI •	ER •	•	•	•	•	74
APPENDIX	B	- !	DEN	SI	TI	ES	OF	A	RAI	410),	POl	YE	ES1	FER	ι,	AN	ID	Rl	JBE	BEF	ł	•	•	•	•	•	•	•	80
APPENDIX	С	- '	THE	RM	AL	FC	RC	Ε	ANI) I	10 M	IENI	F 8	EXF	PRE	SS	510	ONS	5 F	FOF	1	:AS	SES	5	11-	-V]	[1]	[•	82
APPENDIX	D	-	IN-	PL	ANI	E C)IS	PL	ACI	EME	ENT	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	86
APPENDIX	Ε	-	TYP	IC	AL	СС)MP	UT	ER	SC	DLU	ITI	ONS	5	•	•	•	•	•		•	•	•	•	•	•	•	•	•	92
Computer Computer	Pr Pr	og	ram ram	f f	or or	St St	at at	ic ic	80 80	enc	din din	ig ((S1 (C1	ing	gle SS-	P1	.a) ly)	/er	•)	•	•	•	•	•	•	•	•	•	•	94 98

Access NTIS DDC TAU Unachor Justif	ion For GRAAI B unced icction_		
By Distri	hutton/	Codes	
Dist A	Availan specia	nd/or al	

Page

NOMENCLATURE

A _{ij}	= stretching stiffnesses
a,b	= plate dimensions in x and y directions
B _{ij}	= bending-stretching coupling stiffnesses
C _{rs}	= coefficients defined in Eqs. $(2.2.4)$, $(3.3.4)$, and $(4.3.4)$
D _{ij}	<pre>= bending stiffnesses</pre>
dx	= 9()/9x
E	= Young's modulus of isotropic ordinary material
E _c ,E _t	= compressive and tensile Young's moduli (isotropic bimodulus)
E_{11}^{k}, E_{22}^{k}	= Young's moduli in directions x and y (orthotropic bimodulus)
G13,G23	= longitudinal-thickness and transverse-thickness shear moduli
G _{zc} ,G _{zt}	transversely isotropic, bimodulus-material shear moduli
	= total thickness of plate
I	rotatory inertia coefficient per unit mid-plane area
2 2 - K4-K5	<pre>= shear-correction coefficients</pre>
	= linear differential operators defined in Eqs. (2.1.10),
• • • • •	(3.1.10), and (4.1.11)
M _f ,N _f	= stress couples and inplane stress resultants
M_{i}^{T}, N_{i}^{T}	= thermally induced stress couples and inplane stress
8	resultants
P P	normal inertia coefficient per unit mid-plane area
Q _x ,Q _y	= thickness-shear stress resultants

Q _{ijke}		plane-stress-reduced stiffnesses
9.9 ₀	*	normal pressure and peak value of q
R	*	rotatory-normal-coupling inertia coefficient per unit
		mid-plane area
T	=	temperature
T_0, T_1, T_0, T_1		temperature coefficients defined in Eqs. $(4.4.1)$ and $(4.4.2)$
t	=	time
U,V,W		mid-plane displacement coefficients (amplitudes of u ⁰ ,v ⁰ ,w)
u,v,w	=	displacements in x,y,z directions
u ⁰ ,v ⁰ ,w	*	mid-plane displacements in x.y.z directions
۷ _f	•	fiber volume fraction
۷ _m		matrix volume fraction
х,ү	=	bending-slope coefficients (amplitudes of ψ_x, ψ_y)
x,y,z	=	plate coordinates in longitudinal, transverse, and downward
		thickness directions
z _x ,z _y	=	z _{nx} /h, z _{ny} /h
^z nx ^{, z} ny		neutral-surface positions associated with ϵ_{χ} =0 and ϵ_{y} =0
aj	=	coefficient of thermal expansion
a, ß		π/a, π/b
• j • • j	*	strain component at arbitrary location and at mid-plane
ν	=	Poisson's ratio of isotropic material
^v f''m	•	fiber and matrix Poisson's ratios
v12, v23	=	major (longitudinal-transverse) and transverse-thickness
		Poisson's ratios
^σ x ^{, τ} xy	=	stress components
* _x ·* _y	*	slope functions in x and y directions

· Luciesce.

vi

= density of composite

°f'^pm

Q

w

A REAL PROPERTY AND A REAL

= natural frequency

= fiber and matrix densities

CHAPTER I

INTRODUCTION

The rate of progress of technological innovation is dependent on the development of new and better materials. The new and rapidly developing composites made a significant impact on the engineering field and are responsible for the tremendous progress that has been achieved recently in the structural and aerospace industries.

Composites are materials made up of more than one constituent material. According to this literal definition, almost all materials used in civil and mechanical engineering are composites. Wood consists of lignin and cellulose fibers and is clearly a "natural" composite, but so too are cast iron, steel and other metallic alloys, brick, natural stone, and of course reinforced concrete. The fact that none of these materials are perfectly isotropic leads us to closer definition of a composite as understood today, especially in the advanced technology industries such as aerospace and automotive.

Composites are generally laminates in which a matrix material is reinforced in either one or more planes with filaments, fibers or fibrous material, giving the composite enhanced mechanical properties over those of either the matrix or the reinforcement when used alone. The matrix can consist of metal, ceramics, glass, concrete, gypsum, or resins, and the reinforcement can be metal rods or filaments, whiskers

of silicon carbide or nitride, sapphire, carbon fiber, boron fiber, and various types of glass, asbestos, and cellulose fibers.

Glass-reinforced plastics are being used extensively and successfully in the manufacture of storage vessels. They are also beginning to be used structurally in buildings, and a good deal of thought is going into the design of G.R.P. bridges. The aerospace industry continues to lead in the use of composites for very high-performance applications with products ranging from rocket casings and major portions of fuselage, wing, and empennage assemblies to compressor blades and helicopter rotor blades.

The principal reasons for using composites in place of conventional materials are:

(1) Composites are anisotropic; so in order to get the greatest economy of material, either for cost or weight saving, the reinforcing fibers can be oriented in the plane where they will be most effective.

(2) Composites, unlike metals, can often be molded with a varying thickness at no extra cost. This gives an additional freedom to economize the material.

(3) Composites have improved strength and stiffness, especially when compared with other materials on a unit weight basis. For example, composites can be made that have the same strength and stiffness as high-strength steel, yet are 70 percent lighter! Other advanced composites are as much as three times as strong as aluminum, the common aircraft structural material, yet weigh only 60 percent as much!

(4) Composite materials can be tailored to efficiently meet design requirements of strength, stiffness, fatigue, thermal conductivity,

corrosion resistance, and other parameters all in various directions.

The advent of advanced fiber-reinforced composites has been called the biggest technical revolution since the jet engine. This claim is very striking because the tremendous impact of the jet engine on military aircraft performance is readily apparent. The impact on commercial aviation is even more striking because the airlines switched from propeller-driven planes to all-jet fleets within the span of just a few years.

Currently, almost every aerospace company : developing products made with fiber-reinforced composite materials. After passing through the different stages of usage, people are now dreaming for the final stage of an all-composite high-performance airplane.

As the applications of fiber-reinforced composites in structures become more widespread, the prediction of behavior of plates constructed of such materials become increasingly important. One of the characteristics of certain composite materials, known as bimodulus materials, is that they exhibit quite different elastic properties when loaded along the fiber direction in tension as opposed to compression [1-4](see Fig. 1.1).

These materials are listed in Table 1.1. In the literature, this class of materials has variously been called bilinear, bimodulus, different-modulus, and multi-modulus. Here the term bimodulus is believed to be most descriptive of a material having different linear stress-strain relations in compression than in tension.

The first multi-dimensional model was proposed by Ambartsumyan [5] for isotropic material, such as a composite material with spherical particles. It was later extended to the orthotropic case [6].

The second and third models are the restricted-compliance model due to Isabekyan and Khachatrayan [7] and the first-invariant model of Shapiro [8]. A fourth model is the weighted-compliance theory originated by Jones [9].

The fifth model is the fiber-governed bimodulus symmetric compliance model originated by Bert [10].

Fig. 1.1. Bimodulus idealization.

A plate subjected to a loading which produces plate bending or vibration obviously experiences both tension and compression; therefore. a more accurate analysis should take this into consideration.

	Reinforcement Geometry	Ref.	Tensile Young's Modulus Divided by Compressive Young's Modulus
ATJ-S graphite	Granular	5	1.2
ZTA graphite	Granular	5	0.8
Glass-epoxy	Fibrous	5	1.25
Boron-epoxy	Fibrous	5	0.8
Graphite-epoxy	Fibrous	5	1.4
Carbon-carbon	Fibrous	5	2.0 to 5.0
Kevlar-rubber	Fibrous	6	0.77 (transverse) to 305 (longitudinal)*
Polyester-rubber	Fibrous	-	0.75 (transverse) to 16.7 (longitudinal)*

Table 1.1 Some Bimodulus Materials

Based on experimental results reported by Patel et al. [2].

The existing literature available in English on bending of bimodulus plates is quite sparse and, with only a few exceptions, is limited to bimodulus isotropic material [8,11-14]. Shapiro [8] considered the very simple problem of a circular plate subjected to a pure radial bending moment at its edge, but he used Love's stress-function formulation rather than plate theory. Kamiya [11] treated large deflections (geometric nonlinearity) of uniformly loaded, clamped-edge circular plates, using an iterative finite-difference technique. In [12], Kamiya applied the energy method to large deflections of simply supported rectangular plates subjected to sinusoidally distributed loading. In [13], Kamiya included the effect of thickness shear deformation, but only for the simple one-dimensional case of cylindrical bending. The only analysis

applicable to anisotropic bimodulus material is the work of Jones and Morgan [14], who treated cylindrical bending of a thin, cross-ply laminate.

In the realm of plates laminated of ordinary anisotropic materials, the theory due to Reissner and Stavsky [15], is generally recognized as the classical, linear (small-deflection) thin-plate theory. Although there have been numerous approximate solutions of this theory, only a relatively few closed-form solutions have appeared. Notable among these are the works of Whitney [16] and Whitney and Leissa [17] for both antisymmetric cross-ply and antisymmetric angle-ply rectangular plates with certain (different) kinds of simply supported edges. For an ininfinitely long strip of finite width, Padovan [18] presented a solution for the case of an arbitrary laminate.

Kamiya [19.20] considered problems of thermal stresses in a bimodulus thin plate. An annulus with axisymmetric steady temperature distribution was analyzed numerically. Ambartsumyan [21,22] presented a general theory of strains and stresses for bimodulus materials located in a temperature field. Other literature available on thermal bending [23-27] deals with plates of ordinary materials.

Vibration of plates has been treated by several authors [28-32], but the problem of bimodulus plate vibration has not been attempted previously.

Apparently, the present work is first to consider anisotropic,

^{*} Throughout this report, the term ordinary will be used to distinguish materials that do not exhibit bimodulus action, i.e., materials in which the tensile and compressive stiffnesses coincide.

bimodulus, thick plates finite in both directions in closed form except a few exceptions [33,34].

The problems of static bending, free vibration, thermal bending and non-linear large deflection (of thick bimodulus composite rectangular plates) have been analyzed and are presented separately in Chapters II, III, IV, and V. Numerical computations have been carried out and were compared, and good agreement was obtained with existing solutions of special cases existing in the literature.

CHAPTER II

STATIC BENDING OF THICK RECTANGULAR PLATES

Consider the case of ordinary (not bimodulus) material. A single-layer plate constructed of an ordinary material that is macroscopically homogeneous is obviously symmetric about the midplane of the plate, and thus there is no coupling between bending and stretching during small-deflection bending. Likewise, a plate consisting of multiple layers of ordinary materials of various thicknesses arranged symmetrically about the midplane has no bending-stretching coupling at small deflections. However, in the case of a general laminate, i.e., one not symmetric about the midplane, bending-stretching coupling is induced.

Now, consider the case of a single layer of bimodulus material. The different properties in tension and compression cause a shift in the neutral surface away from the geometric midplane, and symmetry about the midplane no longer holds. The results of this is that a single-layer bimodulus-material plate exhibits bending-stretching coupling of the orthotropic type i.e., analogous to a two-layer crossply plate (one layer at 0° and the other at 90°) of ordinary orthotropic material. (See Figs. 2.1, 2.2)

Using Bert's fiber-governed symmetric-matrix macroscopic material model [10], it can be assumed that there are <u>two</u> symmetric plane-

- (a) Single layer with longitudinal
 (b) Single layer with transverse fibers

stacking sequence

Fig. 2.1. Laminate configurations for rectangular plates.

(a) Single layer with longitudinal fibers.

(b) Single layer with transverse fibers.

(c) Two-layer cross-ply laminate with 90%/0% stacking sequence.

(d) Two-layer cross-ply laminate with 0° 90° stacking sequence

Fig. 2.2. Stress distributions of bimodulus places.

stress reduced stiffness matrices: one, when the <u>fibers</u> are in tension along their length, and another, when they are in compression in the same direction. Invoking the Voigt hypothesis in the <u>fiber</u> direction, for which it is well-established, it is assumed that the fiber-direction normal strains in the fibers and in the matrix are identical. Then the criterion for changing from tension to compression can be taken to be the fiber-direction normal strain in each layer. This is a much more convenient criterion to apply than is the fiber-direction normal-stress criterion.

2.1 Governing Equations

Consider a plate of thickness h composed of an even number of indentical orthotropic layers bonded together, arranged alternately at angles 0° and 90°. The origin of a Cartesian coordinate system is located within the central plane (x-y) with the z-axis being normal to this plane (see Fig. 2.3).

Fig. 2.3. Cartesian coordinates for rectangular plate.

The stress resultants and stress couples, each per unit length, are defined in the usual way as

$$(N_x, N_y, N_{xy}, Q_x, Q_y) = \int_{-h/2}^{h/2} (\sigma_x, \sigma_y, \tau_{xy}, \tau_{xz}, \tau_{yz}) dz$$
 (2.1.1)

$$(M_x, M_y, M_{xy}) = \int_{-h/2}^{h/2} (\sigma_x, \sigma_y, \tau_{xy}) z dz$$
 (2.1.2)

The theory developed by Yang, Norris, and Stavsky [35] is based on the following assumed displacement field,

$$u = u^{0}(x,y) + z\psi_{x}(x,y)$$

$$v = v^{0}(x,y) + z\psi_{y}(x,y)$$
 (2.1.3)

$$w = w(x,y)$$

where u, v, and w are the displacement components in the x, y, and z directions, respectively, and ψ_x and ψ_y are called the slope functions.

The constitutive equations for an unsymmetric cross-ply laminate can be written as follows:

$$\begin{pmatrix} N_{x} \\ N_{y} \\ N_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \end{pmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 & B_{11} & B_{12} & 0 \\ A_{12} & A_{22} & 0 & B_{12} & B_{22} & 0 \\ 0 & 0 & A_{66} & 0 & 0 & B_{66} \\ B_{11} & B_{12} & 0 & D_{11} & D_{12} & 0 \\ B_{12} & B_{22} & 0 & D_{12} & D_{22} & 0 \\ 0 & 0 & B_{66} & 0 & 0 & D_{66} \end{bmatrix} \begin{pmatrix} u_{x}^{0} \\ v_{y}^{0} \\ v_{x}^{0} \\ \psi_{x,x}^{0} \\ \psi_{y,y}^{0} \\ \psi_{y,y}^{0} \\ \psi_{y,y}^{0} \\ \psi_{y,x}^{0} \\ \psi_{y,y}^{0} \\ \psi_{y,y}^{0}$$

and

$$\begin{cases} Q_{\mathbf{y}} \\ Q_{\mathbf{x}} \end{cases} = \begin{bmatrix} K_{\mathbf{k}}^{2} A_{\mathbf{k},\mathbf{k}} & 0 \\ 0 & K_{\mathbf{5}}^{2} A_{\mathbf{5},\mathbf{5}} \end{bmatrix} \begin{cases} w_{\mathbf{y}} + \psi_{\mathbf{y}} \\ w_{\mathbf{y}} + \psi_{\mathbf{x}} \end{cases}$$
(2.1.5)

Here, differentiation is denoted by a comma, and the extensional, flexural-extensional coupling, and flexural or twisting stiffnesses for a laminate of an arbitrary number of layers are defined by

$$(A_{ij},B_{ij},D_{ij}) = \int_{-h/2}^{h/2} Q_{ij}(1,z,z^2)dz , i,j=1,2,6 \quad (2.1.6)$$

In addition to performing the integrations in a piecewise manner from layer to layer, one also has to take into account the possibility of different properties (tension or compression) within a layer. This is worked out in detail for a two-layer cross-ply laminate in Appendix A.

The quantities K_4^2 and K_5^2 are shear correction coefficients which may be calculated by various static and dynamic methods [36].

Taking into account the shear deformation, one can write the equations of equilibrium (neglecting the body forces) as follows:

$$N_{x,x} + N_{xy,y} = 0$$

$$N_{xy,x} + N_{y,y} = 0$$

$$Q_{x,x} + Q_{y,y} = -q$$

$$M_{x,x} + M_{xy,y} - Q_{x} = 0$$

$$M_{xy,x} + M_{y,y} - Q_{y} = 0$$

$$M_{xy,x} + M_{y,y} - Q_{y} = 0$$

Here $N_{x,x} = \partial N_x / \partial x$, $N_{y,y} = \partial N_y / \partial y$, etc. Substituting equations (2.1.4) and (2.1.5) into equations (2.1.7), we obtain the equations of equilibrium in terms of the generalized displacements.

$$A_{11}u_{xxx}^{0} + A_{66}u_{yyy}^{0} + (A_{12} + A_{66})y_{xyy}^{0} + B_{11}\psi_{x,xxx} + B_{66}\psi_{x,yy}$$

$$+ (B_{12} + B_{66})\psi_{y,xyy} = 0$$

$$(A_{12} + A_{66})u_{xyy}^{0} + A_{66}v_{xxx}^{0} + A_{22}v_{yyy}^{0} + (B_{12} + B_{66})\psi_{x,xy}$$

$$+ B_{66}\psi_{y,xxx} + B_{22}\psi_{y,yy} = 0$$

$$K_{5}^{2}A_{55}(\psi_{x,x} + w_{xxx}) + K_{4}^{2}A_{44}(\psi_{y,y} + w_{yy}) = -q \qquad (2.1.8)$$

$$(B_{12} + B_{66})u_{xyy}^{0} + B_{66}v_{xx}^{0} + B_{22}v_{yyy}^{0} + (D_{12} + D_{66})\psi_{x,xy}$$

$$+ D_{66}\psi_{y,xx} + D_{22}\psi_{y,yy} - K_{4}^{2}[A_{44}(\psi_{y} + w_{y})] = 0$$

$$B_{11}u_{xxx}^{0} + B_{66}u_{yyy}^{0} + (B_{12} + B_{66})v_{xyy}^{0} + D_{11}\psi_{x,xx} + D_{66}\psi_{x,yy}$$

$$+ (D_{12} + D_{66})\psi_{y,xy} - K_{5}^{2}[A_{55}(\psi_{x} + w_{y})] = 0$$

Or, in operator form

٤.

$$\begin{bmatrix} L_{k\ell} \end{bmatrix} \begin{pmatrix} u^{0} \\ v^{0} \\ w \\ h\psi_{y} \\ h\psi_{x} \end{pmatrix} = \begin{cases} 0 \\ 0 \\ q \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$(2.1.9)$$

$$k, \ell = 1, 2, 3, 4, 5$$

where $[L_{kl}]$ is a symmetric linear differential operator matrix with the following components:

$$L_{11} = A_{11}d_{x}^{2} + A_{66}d_{y}^{2}$$

$$L_{12} = (A_{12} + A_{66}) d_{x}d_{y}$$

$$L_{13} = 0$$

$$L_{14} = [(B_{12} + B_{66})/h] d_{x}d_{y}$$

$$L_{15} = (B_{11}/h) d_{x}^{2} + (B_{66}/h) d_{y}^{2}$$

$$L_{22} = A_{66}d_{x}^{2} + A_{22}d_{y}^{2}$$

$$L_{23} = 0$$

$$L_{24} = (B_{66}/h) d_{x}^{2} + (B_{22}/h) d_{y}^{2}$$

$$L_{33} = - K_{5}^{2}A_{55}d_{x}^{2} - K_{4}^{2}A_{44}d_{y}^{2}$$

$$L_{34} = - K_{4}^{2}(A_{44}/h) d_{y}$$

$$L_{35} = - K_{5}^{2}(A_{55}/h) d_{x}$$

$$L_{44} = (D_{66}/h^{2}) d_{x}^{2} + (D_{22}/h^{2}) d_{y}^{2} - K_{4}^{2}A_{44}/h^{2}$$

$$L_{45} = [(D_{12} + D_{66})/h^{2}] d_{x}d_{y}$$

$$L_{55} = (D_{11}/h^{2}) d_{x}^{2} + (D_{66}/h^{2})d_{y}^{2} - K_{5}^{2}A_{55}/h^{2}$$

2.2. Application to Rectangular Plate Hinged on all Edges

The boundary conditions for a rectangular plate simply supported on all edges can be specified as follows:

Along the edges at x = 0 and x = a,

$$w = \psi_y = M_x = 0$$
$$v^0 = N_x = 0$$

Along the edges at y = 0 and y = b,

$$w = \psi_{x} = M_{y} = 0$$
$$u^{0} = N_{y} = 0$$

(2.2.1)

Consider the loading to be sinusoidally distributed in both the x and y directions:

$$q = q$$
 sin αx sin βy

Here

$$\alpha \equiv \pi/a$$
, $\beta \equiv \pi/b$

Furthermore, a and b are the plate dimensions along x and y axes, respectively.

The governing equations (2.1.9) and boundary conditions (2.2.1) are exactly satisfied in closed form by the following set of functions:

$$u^{0} = U \cos \alpha x \sin \beta y$$

$$v^{0} = V \sin \alpha x \cos \beta y$$

$$w = W \sin \alpha x \sin \beta y \qquad (2.2.2)$$

$$h\psi_{y} = Y \sin \alpha x \cos \beta y$$

$$h\psi_{y} = X \cos \alpha x \sin \beta y$$

Substituting solutions (2.2.2) into the governing equations

(2.1.9), one obtains

$$\begin{bmatrix} C_{k\ell} \end{bmatrix} \begin{cases} U \\ V \\ W \\ Y \\ Y \\ X \end{cases} = \begin{cases} 0 \\ 0 \\ q_0 \\ 0 \\ 0 \\ 0 \end{cases}$$

$$(2.2.3)$$

$$k, \ell=1,2,3,4,5$$

where $[C_{kl}]$ is a 5x5 symmetric matrix containing the following elements:

$$C_{11} \equiv -A_{11}\alpha^{2} - A_{66}\beta^{2}$$

$$C_{12} \equiv -(A_{12} + A_{66})\alpha\beta$$

$$C_{13} \equiv 0$$

$$C_{14} \equiv -[(B_{12} + B_{66})/h]\alpha\beta$$

$$C_{15} \equiv -(B_{11}/h)\alpha^{2} - (B_{66}/h)\beta^{2}$$

$$C_{22} \equiv -A_{66}\alpha^{2} - A_{22}\beta^{2}$$

$$C_{23} \equiv 0$$

$$C_{24} \equiv -(B_{66}/h)\alpha^{2} - (B_{22}/h)\beta^{2}$$

$$C_{25} \equiv C_{14}$$

$$C_{33} \equiv -(K_{5}^{2}A_{55}\alpha^{2} + K_{4}^{2}A_{44}\beta^{2})$$

$$C_{34} \equiv -K_{4}^{2}(A_{44}/h)\beta$$

$$C_{35} \equiv -K_{5}^{2}(A_{55}/h)\alpha$$

$$C_{44} \equiv -(D_{66}/h^{2})\alpha^{2} - (D_{22}/h^{2})\beta^{2} - K_{4}^{2}(A_{44})/h^{2}$$

$$C_{45} \equiv -[(D_{12} + D_{66})/h^{2}]\alpha\beta$$

$$C_{55} \equiv -(D_{11}/h^{2})\alpha^{2} - (D_{66}/h^{2})\beta^{2} - K_{5}^{2}A_{55}/h^{2}$$

2.3 The Positions of the Fiber-Direction Neutral Surfaces

From the kinematics of the deformation

$$\varepsilon_{x} = u_{,x}^{0} + z \psi_{x,x}$$

$$\varepsilon_{y} = v_{,y}^{0} + z \psi_{y,y}$$
(2.3.1)

Thus, the neutral-surface positions, for the longitudina! (x) and transverse (y) directions, respectively, are

$$z_{nx} = \frac{-u_{yx}^{0}}{\psi_{x,x}} = -hU/X$$

$$z_{ny} = \frac{-v_{yy}^{0}}{\psi_{y,y}} = -hV/Y$$
(2.3.2)

So, in computations the values for z_{nx} and z_{ny} are first assumed to obtain the displacements. Actual displacements can then be obtained by an iterative procedure with the help of the equations (2.3.2).

2.4 Numerical Results

As the first example, we take the case of a homogeneous (single-layer) plate of transversely isotropic bimodulus material. The plane of isotropy is assumed to coincide with the midplane of the plate, and the inplane Poisson's ratio is assumed to be zero. Then the closed-form solution reduces to the simplified form [33]. Numerical results are presented in Tables 2.1 and 2.2.

	Neutral	-Surface Loca	tion Z [†]
E _t /E _c =G _{zt} /G _{zc}	G _{zc} /E _c =0.1	0.3	0.5
	Exact Clos	ed-Form Solut	ion:
0.5	- 0.08578	- 0.08578	- 0.08578
1.0	0	0	0
2.0	+ 0.08578	+ 0.08578	+ 0.08578
	Simplified	Approximate So	olution [33]:
0.5	- 0.08579	- 0.08579	- 0.08579
1.0	0	0	0
2.0	+ 0.08579	+ 0.08579	+ 0.08579
	Mixed Finit	e-Element Solu	ution [33]:
0.5	- 0.08578	- 0.08578	- 0.08578
1.0	0	0	0
2.0	+ 0.08578	+ 0.08578	+ 0.08578

the state line ---

والمقاربة والمراجعة والمريد والمراجع المراجع

Table 2.1. Comparison of Neutral-Surface Locations for Transversely Isotropic Square Plate

Here, $Z = z_{nx}/h = z_{ny}/h$.

	Dimension1	ess Deflectio	on WEigh ۲/4664
E _t /E _c =G _{zt} /G _{zc}	G _{2C} /E _c =0.1	0,3	0.5
	Exact Clo	sed-Form Solu	ition:
U.5	0.05348	0.04774	0.04660
1.0	0.03688	0.03283	0.03201
2.0	0.02674	0.02387	0.02330
	Simplified	Approximate :	Solution [33];
0.5	0.05004	0.04660	0.04591
1.0	0.03445	0.03202	0.03153
2.0	0.02530	0.02342	0.02296
	Mixed Finit	e-Element Sol	lution [33]:
0.5	0.05329	0.04743	0.04626
1.0	0.03675	0.03261	0.03178
2.0	0.02664	0.02371	0.02313

Table 2.2. Comparison of Maximum Deflections for Transversely Isotropic Square Plate (b/h=0.1, K2+5/G)

It is noted that the neutral-surface location is independent of G_{zc} and G_{zt} . The agreement among the results obtained by all three solutions is quite good.

According to classical thin-plate theory for a rectangular isotropic plate with simply supported edges, the dimensionless maximum deflection is given by

 $\frac{WE_{+}}{q_{a}a^{a}} = \frac{12(1-v^{2})}{\pi^{4}[1+(b/a)^{-2}]}$

The values are computed for three aspect ratios using the above formula and are compared with the present results in Table 2.3 below.

			WE ₂₂	°∕q _o a⁴		
Aspect	h/b	=0.1	h/b=	0.01	h/b=1	0.001
a/b	Thick*	Thin*	Thick*	Thin*	Thick*	Thin*
0.5	0.07439	0.07392	0.07401	0.07392	0.07392	0.07392
1.0	0.02908	0.02887	0.02887	0.02888	0.02887	0.02887
2.0	0.00478	0.00462	0.00462	0.00462	0.00462	0.00462

Table 2.3.	Dimensionless Deflections for Rectangular Isotropic
	Plate as Determined by the Thin-Plate Theory and the
	Present Work

* "Thick" denotes the present thick-plate theory and "thin" denotes classical thin-plate theory.

As examples of some actual bimodulus materials, aramid-cord/ rubber and polyester-cord/rubber are selected. The material properties used are listed in Table 2.4. The data are based on test results of Patel et al.[2], using the data-reduction procedure of [10], except for the thickness shear moduli, which were estimated.

	Aramid-	Rubber	Polyester-Rubber			
Property and Units	k=1	k=2	k=l	k=2		
Longitudinal Young's modulus, GPa	3.58	0.0120	0.617	0.0369		
Transverse Young's modulus, GPa	0.00909	0.0120	0.00800	0.0106		
Major Poisson's ratio, dimensionless ^b	0.416	0.205	0.475	0.185		
Longitudinal-transverse shear modulus, GPa $^{\sigma}$	0.00370	0.00370	0.00262	0.00267		
Transverse-thickness shear modulus, GPa	0.00290	0.00499	0.00233	0.00475		

Table 2.4.Elastic Properties for Two Tire-Cord/Rubber,
Unidirectional, Bimodulus Composite Materials^a

Fiber-direction tension is denoted by k=1, and fiber-direction compression by k=2.
 b It is assumed that the minor Poisson's ratio is given by the reciprocal

relation.

 $m{\sigma}$ It is assumed that the longitudinal-thickness shear modulus is equal to this one.

Numerical results for single-layer rectangular plates with the fibers oriented parallel to the x axis are given in Table 2.5, while those for cross-ply plates are listed in Table 2.6.

The exact closed-form solution developed here for thick, rectangular plates of single-layer and cross-ply laminates of orthotropic bimodulus material has been shown to agree well with an existing approximate solution for isotropic bimodulus plates and with a mixed finite-element solution.

To show the general trend, plots have been presented in Fig. 2.4.

Aspect	Z	, X	z	, ` v	WE22 ^C h	1 ³ /9,04
Ratio	C.F.*	F.E.	C.F.*	F.E.	C.F.*	F.E.
		<u></u>	Aramid-	Rubber:		
0.5	0.4453	0.4454	- 0.3304	- 0.3007	0.002544	0.002750
0.6	0.4452	0.4452	- 0.2941	- 0.2734	0.004560	0.004827
0.7	0.4447	0.4447	- 0.2564	- 0.2419	0.007393	0.007712
0.8	0.4440	0.4440	- 0.2220	- 0.2117	0.01105	0.01140
0.9	0.4431	0.4431	- 0.1923	- 0.1846	0.01545	0.01582
1.0	0.4420	0.4420	- 0.1671	- 0.1614	0.02046	0.02083
1.2	0.4394	0.4394	- 0.1285	- 0.1250	0.03160	0.03193
1.4	0.4363	0.4363	- 0.1015	- 0.09919	0.04313	0.04335
1.6	0.4328	0.4329	- 0.08228	- 0.08070	0.05406	0.05416
1.8	0.4292	0.4294	- 0.06838	- 0.06724	0.06390	0.06388
2.0	0.4253	0.4254	- 0.05813	- 0.05727	0.07250	0.07236
			Polyest	er-Rubber:		
0.5	0.3044	0.3045	- 0.1597	- 0.1234	0.001529	0.001971
0.6	0.3044	0.3045	- 0.1538	- 0.1245	0.002652	0.003265
0.7	0.3042	0.3044	- 0.1426	- 0.1198	0.004283	0.005075
0.8	0.3039	0.3041	- 0.1299	- 0.1124	0.006517	0.007487
0.9	0.3035	0.3037	- 0.1174	- 0.1041	0.009421	0.01055
1.0	0.3029	0.3031	- 0.1061	- 0.09586	0.01303	0.01430
1.2	0.3015	0.3018	- 0.08728	- 0.08111	0.02223	0.02367
1.4	0.2999	0.3001	- 0.07329	- 0.06941	0.03348	0.03492
1.6	0.2979	0.2982	- 0.06296	- 0.06042	0.04574	0.04703
1.8	0.2957	0.2960	- 0.05528	- 0.05356	0.05793	0.05897
2.0	0.2934	0.2936	- 0.04959	- 0.04828	0.06925	0.07003

Table 2.5. Neutral-Surface Positions and Dimensionless Deflections for Rectangular Plates of Single-Layer O° Aramid-Rubber and Polyester-Rubber, as Determined by Two Different Methods (Thickness/Width, h/b=0.1)

^{*}C.F. denotes closed-form solution; F.E. signifies finite-element solution [33]. (For in-plane displacements, see Appendix D)

Aspect Ratio	Z _x		z _y		WE ₂₂ ^C h ³ /q ₀ b ⁴	
	C.F.*	F.E*	C*F*	F.E.	C.F*	F.E*
Aramid-Rubber:						
0.5	0.4433	0.4431	- 0.06343	- 0.06223	0.002472	0.002576
0.6	0.4427	0.4426	- 0.05478	- 0.05443	0.004388	0.004518
0.7	0.4418	0.4418	- 0.04794	- 0.04778	0.007072	0.007220
0.8	0.4407	0.4407	- 0.04247	- 0.04237	0.01054	0.01070
0.9	0.4396	0.4396	- 0.03803	- 0.03795	0.01475	0.01490
1.0	0.4384	0.4384	- 0.03437	- 0.03430	0.01957	0.01972
1.2	0.4356	0.4356	- 0.02883	- 0.02860	0.03043	0.03054
1.4	0.4326	0.4325	- 0.02470	- 0.02477	0.04185	0.04190
1.6	0.4292	0.4292	- 0.02160	- 0.02165	0.05282	0.05280
1.8	0.4257	0.4256	- 0.01922	- 0.01923	0.06277	0.06264
2.0	0.4219	0.4219	- 0.01735	- 0.01734	0.07151	0.07137
	Polyester-Rubber:					
0.5	0.3650	0.3652	- 0.1285	- 0.1256	0.002539	0.002732
0.6	0.3644	0.3646	- 0.1178	- 0.1164	0.004527	0.004772
0.7	0.3638	0.3639	- 0.1097	- 0.1089	0.007288	0.007575
0.8	0.3631	0.3631	- 0.1036	- 0.1031	0.01078	0.01109
0.9	0.3622	0.3622	- 0.09886	- 0.09859	0.01487	0.01519
1.0	0.3613	0.3613	- 0.09526	- 0.09502	0.01933	0.01966
1.2	0.3593	0.3593	- 0.09001	- 0.09000	0.02846	0.02879
1.4	0.3571	0.3570	- 0.08660	- 0.08660	0.03674	0.03707
1.6	0.3546	0.3545	- 0.08430	- 0.08430	0.04356	0.04389
1.8	0.3519	0.3518	- 0.08267	- 0.08267	0.04890	0.04925
2.0	0.3491	0.3490	- 0.08150	- 0.08150	0.05301	0.05337

يريني المحافظ والمحافظ فالمحافظ والمحافظ والمحافظ والمحافظ والمحافظ المحافظ والمحافظ والمحافظ والمحاف

Table 2.6. Neutral-Surface Positions and Dimensionless Deflections for Rectangular Plates of Two-Layer Cross-Ply Aramid-Rubber and Polyester-Rubber, as Determined by Two Different Methods (Thickness/Width, h/b=0.1)

*C.F. denotes closed-form solution; F.E. signifies finite-element solution [33]. (See Appendix D for in-plane displacements.)

Fig. 2.4. Variation of dimensio leas definition with asnect settion for two layer criss-ply neclangular tianas.

CHAPTER III

VIBRATION OF THICK CROSS-PLY LAMINATED BIMODULUS RECTANGULAR PLATES

Thin-plate theory does not take into account either the effect of transverse shear deformation or rotatory inertia, and hence it becomes inaccurate for thicker plates. Mindlin [37] considered both of these effects for homogeneous isotropic plates, by assuming that the displacement variation across the thickness is linear for u and v and constant for w. He also had to assign a value to the shearing rigidity factor on suitable physical considerations. His solution does not satisfy the governing elasticity equations exactly, but does permit the satisfaction of a set of three boundary conditions on each edge. Mindlin, Schacknow, and Deresiewicz [38] applied this method to the vibrations of thick rectangular plates with two opposite sides simply supported and the other two edges with various conditions. The present work, to the author's knowledge, is the first to consider the bimodulus property in the thick cross-ply rectangular plates.

3.1 Governing Equations

Consider a plate of thickness h composed of an even number of identical orthotropic layers bonded together, arranged alternately at angles 0° and 90° (see Fig. 2.2).

The stress and moment resultants, each per unit length, are given in the usual manner as

$$(N_{x}, N_{y}, N_{xy}, Q_{x}, Q_{y}) = \int_{-h/2}^{h/2} (\sigma_{x}, \sigma_{y}, \tau_{xy}, \tau_{xz}, \tau_{yz}) dz$$
 (3.1.1)

$$(M_x, M_y, M_{xy}) = \int_{-h/2}^{h/2} (\sigma_x, \sigma_y, \tau_{xy}) z dz$$
 (3.1.2)

The displacement components, u, v, and w in the x, y, and z directions respectively can be expressed in terms of mid-plane displacements u^0 , v^0 , w^0 and slope functions ψ_x and ψ_y as:

$$u = u^{0}(x,y,t) + z\psi_{x}(x,y,t)$$

$$v = v^{0}(x,y,t) + z\psi_{y}(x,y,t) \qquad (3.1.3)$$

$$w = w(x,y,t)$$

where t is time.

Constitutive equations for an unsymmetric cross-ply laminate, as has already been mentioned in Chapter II, are:

$$\begin{cases} N_{x} \\ N_{y} \\ N_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \\ M_$$
Differentiation here is denoted by a comma, i.e., (), $_{X} \equiv \partial($)/ ∂x , and the extensional, flexural-extensional coupling, and flexural stiffnesses for the laminate are defined by

h/2

$$(A_{ij},B_{ij},D_{ij}) = \int_{-h/2}^{h/2} (Q_{ij})(1,z,z^2)dz$$
 (3.1.6)
 $i,j=1,2,6$

As usual, K_4^2 and K_5^2 are shear-correction coefficients.

Taking into account the shear deformation and the rotatory inertia, the equations of motion can be written as follows:

$$N_{x,x} + N_{xy,y} = P u_{tt}^{0} + R \psi_{x,tt}$$

$$N_{xy,x} + N_{y,y} = P v_{tt}^{0} + R \psi_{y,tt}$$

$$Q_{x,x} + Q_{y,y} = P w_{tt}$$

$$M_{x,x} + M_{xy,y} - Q_{x} = Ru_{tt}^{0} + I \psi_{x,tt}$$

$$M_{xy,x} + M_{y,y} - Q_{y} = R v_{tt}^{0} + I \psi_{y,tt}$$
(3.1.7)

Here P, R, and I are the normal, in-plane, and rotatory inertia coefficients per unit mid-plane area and are defined by

$$(P,R,I) = \int_{-h/2}^{h/2} \rho(1,z,z^2) dz \qquad (3.1.8)$$

where ρ is the material density.

Substituting equations (3.1.4) and (3.1.5) into equations (3.1.7), we obtain the equations of motion. In operator form,

$$\begin{bmatrix} u^{0} \\ v^{0} \\ v^{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ h\psi_{y} \\ h\psi_{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.1.9)
$$k_{*} \varepsilon = 1, 2, 3, 4, 5$$

where $[L_{kt}]$ is a symmetric linear differential operator matrix with the following elements:

$$L_{11} = A_{11}d_{x}^{2} + A_{66}d_{y}^{2} - Pd_{t}^{2}$$

$$L_{12} = (A_{12} + A_{66}) d_{x}d_{y}$$

$$L_{13} = 0$$

$$L_{14} = [(B_{12} + B_{66})/h] d_{x}d_{y}$$

$$L_{15} = (B_{11}/h)d_{x}^{2} + (B_{66}/h)d_{y}^{2} - (R/h) d_{t}^{2}$$

$$L_{22} = A_{66}d_{x}^{2} + A_{22}d_{y}^{2} - Pd_{t}^{2}$$

$$L_{23} = 0$$

$$L_{24} = (B_{66}/h)d_{x}^{2} + (B_{22}/h)d_{y}^{2} - (R/h) d_{t}^{2}$$

$$L_{34} = -K_{s}^{2}A_{55}d_{x}^{2} - K_{u}^{2}A_{uu}d_{y}^{2} + Pd_{t}^{2}$$

$$L_{34} = -K_{u}^{2}(A_{uu}/h) d_{y}$$

$$L_{35} = -K_{u}^{2}(A_{55}/h) d_{x}$$

$$L_{uu} = (D_{66}/h^{2})d_{x}^{2} + (D_{22}/h^{2})d_{y}^{2} - K_{u}^{2}A_{uu}/h^{2} - (1/h^{2})d_{t}^{2}$$

$$L_{55} = [(D_{12} + D_{66})/h^{2}] d_{x}d_{y}$$

$$L_{55} = [D_{11}/h^{2})d_{x}^{2} + (D_{66}/h^{2})d_{y}^{2} - K_{s}^{2}A_{55}/h^{2} - (1/h^{2})d_{t}^{2}$$

3.2 Application to Plate Simply Supported on all Edges

The boundary conditions are:

Along the edges at x = 0 and x = a, $w = \psi_y = M_x = 0$ $v^0 = N_x = 0$ Along the edges at y = 0 and y = b, $w = \psi_x = M_y = 0$ $u^0 = N_y = 0$ (3.2.1)

3.3 Closed-Form Solution

The governing equations (3.1.9) and the boundary conditions (3.2.1) are exactly satisfied in closed form by the following set of functions:

$$u^{0} = U \cos \alpha x \sin \beta y e^{i\omega t}$$

$$v^{0} = V \sin \alpha x \cos \beta y e^{i\omega t}$$

$$w = W \sin \alpha x \sin \beta y e^{i\omega t}$$

$$h\psi_{y} = Y \sin \alpha x \cos \beta y e^{i\omega t}$$

$$h\psi_{y} = X \cos \alpha x \sin \beta y e^{i\omega t}$$

Here, ω is the natural frequency associated with the mode having axial and transverse wave numbers m and n, and

$$\alpha \equiv m\pi/a$$
, $\beta \equiv n\pi/b$ (3.3.2)

where a and b are plate dimensions in the x and y directions, respectively.

Substituting solutions (3.3.1) into the governing equations (3.1.9), we obtain the following:

$$\begin{bmatrix} C_{kc} \end{bmatrix} \begin{pmatrix} U \\ V \\ W \\ Y \\ \chi \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$k, c=1, 2, 3, 4, 5$$

$$(3.3.3)$$

where
$$C_{kc}$$
 is a 5x5 symmetric determinant containing the following elements:
 $C_{11} \equiv -A_{11}a^2 - A_{66}\delta^2 + Pu^2$
 $C_{12} \equiv -(A_{12} + A_{66})a\delta$
 $C_{13} \equiv 0$
 $C_{14} \equiv -[(B_{12} + B_{66})/h]a\beta$
 $C_{15} \equiv -(B_{11}/h)a^2 - (B_{66}/h)\delta^2 + (R/h)w^2$
 $C_{22} \equiv -A_{66}a^2 - A_{22}\delta^2 + Pw^2$
 $C_{23} \equiv 0$
 $C_{24} \equiv -(B_{66}/h)a^2 - (B_{22}/h)\delta^2 + (R/h)w^2$ (3.3.4)
 $C_{25} \equiv C_{14}$
 $C_{33} \equiv -(K_5^2A_{55}a^2 + K_4^2A_{44}\delta^2 - Pw^2)$
 $C_{34} \equiv -K_4^2(A_{44}/h)\beta$
 $C_{35} \equiv -K_5^2(A_{55}/h)a$
 $C_{44} \equiv -(D_{66}/h^2)a^2 - (D_{22}/h^2)\delta^2 - (K_6^2A_{44}/h^2) + (1/h^2)w^2$
 $C_{45} \equiv -[(D_{12} + D_{66})/h^2]a\beta$
 $C_{55} \equiv -(D_{11}/h^2)a^2 - (D_{66}/h^2)\delta^2 - (K_5^2A_{55}/h^2) + (1/h^2)w^2$

The frequency ω can be determined by setting $|C_{k,\zeta}| = 0$.

3.4 Neutral-Surface Locations

This is the same as in the preceding chapter: $z_{nx} = -hU/X$; $z_{ny} = -hV/Y$. An iterative procedure is used to obtain the final displacements.

3.5 Numerical Results

Since there is no previous analysis for vibration of bimodulus plates, the present one could be compared only with rectangular plates laminated of ordinary materials.

Comparisons with Jones, and Fortier and Rossettos are presented in Tables 3.1 and 3.2 below. It can be seen that the agreement is good.

Table 3.1. Comparison of Fundamental Natural Frequencies of Rectangular Antisymmetric Cross-Ply Plates at Different Plate Aspect Ratios

 $(E_{11}/E_{22}=40$, $G_{12}/E_{22}=0.5$, $v_{12}=0.25$, b/h=10)

Aspect Ratio	<u>ω</u> π ²	$\overline{D_{22}}$
a/b	Jones [31]	Present
0.5	2.050	1.934
1.0	0.825	0.794
1.5	0.650	0.612
2.0	0.580	0.565
2.5	0.560	0.548
3.0	0.550	0.541

32

. •

Table 3.2.	Comparison of Fundamental Frequency (m=n=1) of a Square Cross-Ply Plate
	$(E_{11}/E_{22}=40, G_{12}/E_{22}=1, G_{23}/E_{22}=0.5, v_{12}=0.25)$

a/h	$\omega a^2 \sqrt{\rho/E_{22}h^3}$	
	Fortier and Rossettos [28]	Present
10	10.80	10.80
50	11.65	11.65

Typical results for (bimodulus) aramid-rubber and polyesterrubber are tabulated in the following tables (Tables 3.3 and 3.4). See Table 2.4 for the elastic properties and Appendix B for the densities.

Computations, based on the closed-form solution, have been carried out for thick, rectangular plates of cross-ply laminates and compared with existing works. Close agreement was reached.

Abrupt changes in the values of Z_x and Z_y are noticeable which may be due to the bimodulus effect in combination with the eigenvalue nature of this problem (see Fig. 3.1).

i/b	Z _x	Z _y	$\omega b^2 \sqrt{\rho/D_{22}}/\pi^2$
	Aram	id-Rubber:	
).4	0.0100	0.0137	14.2370
).6	- 0.0204	0.0296	8.9952
.8	- 0.0346	0.0515	6.3712
.0	0.0818	- 0.3619	4.1732
.2	- 0.0724	- 0.2206	3.8780
.4	0.3145	0.4442	2.9399
.6	0.0058	- 0.5673	2.4122
.8	0.0179	- 0.3207 x 10	-4 2.1262
.0	- 0.0257	- 0.0243	1.8935
	Polyes	ter-Rubber:	
4	0.0679	- 0.2661	12.8460
6	0.7121×10^{-4}	0.9147 x 10	-5 7.4975
8	0.1314	0.0952	4.8319
0	0.0471	- 0.0197	3.3832
2	- 0.0613	0.0182	2.5949
4	0.0103	0.0034	2.1992
6	0.0903	- 0.1354	3.2867
8	- 0.0178	0.0474	1.9318
.0	- 0.0178	0.0474	1.4641

Table 3.3. Values of Dimensionless Fundamental Frequencies and Neutral-Surface Locations for Single-Layer Orthotropic Rectangular Plates Having b/h=10 and Different Aspect Ratios

34

-

a/b	Z _x	Zy	$\omega b^2 \sqrt{\rho/D_{22}}/\pi^2$				
Aramid-Rubber:							
0.4	-0.2196×10^{-2}	- 0.0152	14.1740				
0.6	0.1929×10^{-2}	- 0.0363	8.5910				
0.8	- 0.0205	- 0.0353	6.0253				
1.0	- 0.0196	- 0.0383	4.4521				
1.2	0.0312	- 0.0209	2.0092				
1.4	- 0.0109	0.0159	2.6748				
1.6	0.0142	- 0.7792 x 1	0 ⁻⁴ 2.3851				
1.8	-0.1409×10^{-2}	0.1801 x 1	0-2 0.8723				
2.0	- 0.0241	0.3046 x 1	0 ⁻³ 1.7419				
	Polyes	ter-Rubber:					
0.4	0.0742	0.4955 x 1	0 ⁻² 7.7991				
0.6	0.0283	0.1847 x 1	0 ⁻² 4.3010				
0.8	- 0.0276	0.0219	2.7333				
1.0	- 0.1028	0.0449	1.9735				
1.2	- 0.1989	0.0667	1.6037				
1.4	-0.8590×10^{-3}	0.1042	1.2888				
1.6	-0.2123×10^{-4}	0.3120	1.133				
1.8	-0.3218×10^{-5}	0.7538	1.002				
2.0	1.2780	0.8525	0.9613				

Table 3.4. Values of Dimensionless Fundamental Frequencies and Neutral-Surface Locations for Cross-Ply Rectangular Plates Having b/h=10 and Different Aspect Ratios

(a) Aramid-Rubber

Fig. 3.1. Variation of fundamental vibration frequency with aspect ratio for two-layer cross-ply rectangular plates.

CHAPTER IV

THERMAL BENDING OF CROSS-PLY THICK BIMODULUS RECTANGULAR PLATES

Based upon the mathematical theory of elasticity of bimodulus materials and upon the Neumann hypothesis, Ambartsumyan [22] dealt with the development of the theory of thermoelasticity for elastic bimodulus material. Kamiya [20] developed the fundamental equations for axisymmetric plane stress problems for a bimodulus thin plate. Das and Rath [26] presented an analysis of thermal bending for a moderately thick rectangular plate subjected to a temperature distribution which is antisymmetric about the middle plane of the plate, but is arbitrary along the direction perpendicular to simply supported edges and constant along the other perpendicular direction. Bapu Rao [39] treated thermal bending of thick isotropic rectangular plates taking into consideration the shear deformation capability.

The present analysis deals with the thermal bending of unsymmetrically cross-plied bimodulus rectangular plates simply supported on all edges.

4.1 Governing Equations

The plate is subjected to a sinusoidal temperature distribution, T, Thus, temperature terms appear in the constitutive equations. The

thermoelastic constitutive relations for the material are written as follows:

$$\begin{cases} \sigma_{\mathbf{X}} \\ \sigma_{\mathbf{y}} \\ \sigma_{\mathbf{x}\mathbf{y}} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{bmatrix}^{(\mathbf{S})} \begin{cases} \varepsilon_1 - \alpha_1 \mathsf{T} \\ \varepsilon_2 - \alpha_2 \mathsf{T} \\ \varepsilon_6 \end{cases}$$
(4.1.1)

The stiffness matrix [Q] takes different values in tension and compression depending upon the sign of the fiber-direction strain.

$$Q_{ij} = \begin{cases} Q_{ijc} & \text{if } \varepsilon_i < 0\\ Q_{ijt} & \text{if } \varepsilon_i > 0 \end{cases}$$
(4.1.2)

The coefficients of thermal expansion α_1 and α_2 in the x and y directions, respectively, also depend upon the sign of the fiber-direction strain. Also,

$$\alpha_{j} = \begin{cases} \alpha_{jc} & \text{if } \varepsilon_{i} < 0 \\ \alpha_{jt} & \text{if } \varepsilon_{i} > 0 \end{cases}$$
(4.1.3)

The laminate constitutive relations can be represented by:

$$\begin{pmatrix} N_{x} + N_{x}^{T} \\ N_{y} + N_{y}^{T} \\ N_{xy} \\ (M_{x} + M_{x}^{T})/h \\ (M_{y} + M_{y}^{T})/h \\ M_{xy}/h \end{pmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 & B_{11}/h & B_{12}/h & 0 \\ A_{12} & A_{22} & 0 & B_{12}/h & B_{22}/h & 0 \\ 0 & 0 & A_{66} & 0 & 0 & B_{66}/h \\ 0 & 0 & A_{66} & 0 & 0 & B_{66}/h \\ B_{11}/h & B_{12}/h & 0 & D_{11}/h^{2} & D_{12}/h^{2} & 0 \\ B_{12}/h & B_{22}/h & 0 & D_{12}/h^{2} & D_{22}/h^{2} & 0 \\ 0 & 0 & B_{66}/h & 0 & 0 & D_{66}/h^{2} \end{bmatrix} \begin{pmatrix} u_{,x}^{0} \\ v_{,y}^{0} \\ h_{x,x}^{0} \\ h_{y,y}^{0} \\ h_{y,x}^{0} + h_{x,y}^{0} \end{pmatrix}$$

(4.1.4)

$$\begin{cases} Q_{\mathbf{y}} \\ Q_{\mathbf{x}} \end{cases} = \begin{bmatrix} K_{4}^{2} A_{44} & 0 \\ 0 & K_{5}^{2} A_{55} \end{bmatrix} \begin{pmatrix} w_{\mathbf{y}}^{0} + \psi_{\mathbf{y}} \\ w_{\mathbf{y}}^{0} + \psi_{\mathbf{x}} \end{pmatrix}$$
(4.1.5)

where the thermally induced inplane forces are

$$\begin{cases} N_{x}^{\mathsf{T}} \\ N_{y}^{\mathsf{T}} \\ \end{cases} = \int_{-h/2}^{h/2} \left\{ \begin{array}{c} Q_{11}\alpha_{1} + Q_{12}\alpha_{2} \\ Q_{12}\alpha_{1} + Q_{22}\alpha_{2} \end{array} \right\} \mathsf{T} \mathsf{dz}$$
 (4.1.6)

ź

and the thermally induced moments are

.

the second descention and the second second

$$\begin{cases} M_{x}^{T} \\ M_{y}^{T} \\ \end{pmatrix} = \int_{-h/2}^{h/2} \begin{cases} Q_{11}\alpha_{1} + Q_{12}\alpha_{2} \\ Q_{12}\alpha_{1} + Q_{22}\alpha_{2} \end{cases} zT dz \qquad (4.1.7)$$

As usual the stretching, stretching-bending, and bending stiffnesses for the laminate are defined as

$$(A_{ij},B_{ij},D_{ij}) = \int_{-h/2}^{h/2} (Q_{ij})(1,z,z^2) dz \qquad (4.1.8)$$

Including shear deformation, the equations of equilibrium are:

$$N_{x,x} + N_{xy,y} = 0$$

$$N_{xy,x} + N_{y,y} = 0$$

$$Q_{x,x} + Q_{y,y} = 0$$

$$M_{x,x} + M_{xy,y} - Q_{x} = 0$$

$$M_{xy,x} + M_{y,y} - Q_{y} = 0$$
(4.1.9)

Substituting equations (4.1.4) and (4.1.5) into equations (4.1.9), we get:

$$\begin{bmatrix} L_{k\ell} \end{bmatrix} \begin{pmatrix} u^{0} \\ v^{0} \\ w^{0} \\ w^{0} \\ w^{0} \\ h\psi_{y} \\ h\psi_{x} \end{pmatrix} = \begin{pmatrix} N_{x,x}^{T} \\ N_{y,y}^{T} \\ 0 \\ M_{x,x}^{T} \\ M_{y,y}^{T} \\ W_{y,y} \end{pmatrix}$$
(4.1.10)

(4.1.11)

where $[L_{kl}]$ is a symmetrix linear differential operator matrix with the following elements:

 $L_{11} \equiv A_{11}d_x^2 + A_{66}d_y^2$ $L_{12} \equiv (A_{12} + A_{66}) d_{x} d_{y}$ L₁₃ ≡ 0 $L_{14} \equiv (B_{12} + B_{66}) d_{x} d_{v}$ $L_{15} \equiv B_{11}d_x^2 + B_{66}d_y^2$ $L_{22} \equiv A_{66}d_{x}^{2} + A_{22}d_{y}^{2}$ L₂₃ ≡ 0 $L_{24} \equiv B_{66}d_{X}^{2} + B_{22}d_{y}^{2}$ $L_{25} \equiv L_{14}$ $L_{33} \equiv -K_5^2 A_{55} d_x^2 - K_4^2 A_{44} d_y^2$ $L_{34} \equiv - K_{4}^{2}A_{44}d_{y}$ $L_{35} \equiv - K_5^2 A_{55} d_{\chi}$ $L_{44} \equiv D_{66}d_{x}^{2} + D_{22}d_{y}^{2} - K_{4}^{2}A_{44}$ $L_{45} \equiv (D_{12} + D_{66}) d_{\chi} d_{\gamma}$ $L_{55} \equiv D_{11}d_x^2 + D_{66}d_y^2 - K_5^2 A_{55}$

4.2 Application to a Simply Supported Plate

The boundary conditions, as usual, are: Along the edges at x = 0 and x = a,

	w = ψ = M + MT = 0 y x x	
	$v^{o} = N_{x} + N_{x}^{T} = 0$	
Along the edges at	y = 0 and $y = b$,	(4.2.1)
	$w = \psi_{x} = M_{y} + M_{y}^{T} = 0$	

4.3 Closed-Form Solution

 $u^{O} = N_{y} + N_{y}^{T} = 0$

The governing equations and the boundary conditions can be satisfied exactly by the following for T sinusoidally distributed along x and y:

 $u^{0} = U \cos \alpha x \sin \beta y$ $v^{0} = V \sin \alpha x \cos \beta y$ $w = W \sin \alpha x \sin \beta y \qquad (4.3.1)$ $h\psi_{y} = Y \sin \alpha x \cos \beta y$ $h\psi_{x} = X \cos \alpha x \cos \beta y$

where

$$\alpha = m\pi/a$$
, $\beta = n\pi/b$ (4.3.2)

Here m and n are integers, and a and b are plate dimensions in the x and y directions.

Inserting solutions (4.3.1) into the governing equations (4.1.10), we get the following:

$$\begin{bmatrix} C_{k\ell} \end{bmatrix} \begin{cases} U \\ V \\ W \\ Y \\ X \\ X \\ \end{bmatrix} = \begin{cases} N_{x,x}^{T} \\ N_{y,y}^{T} \\ 0 \\ M_{x,x}^{T} \\ M_{y,y}^{T} \\ M_{y,y}^{T} \\ \end{bmatrix}$$
(4.3.3)

where $[C_{k\ell}]$ is a symmetric matrix containing the following elements: $C_{11} \equiv -A_{11}a^2 - A_{66}B^2$ $C_{12} \equiv -(A_{12} + A_{66})_{\alpha\beta}$ C₁₃ ≡ 0 $C_{14} \equiv - (B_{12} + B_{66})_{\alpha\beta}$ $C_{15} \equiv -B_{11}\alpha^2 - B_{66}\beta^2$ $C_{22} \equiv -A_{66}a^2 - A_{22}B^2$ C₂₃ ≡ 0 $C_{24} \equiv -B_{66}a^2 - B_{22}B^2$ (4.3.4) $C_{25} \equiv C_{14}$ $C_{33} \equiv -K_5^2 A_{55} a^2 - K_4^2 A_{44} B^2$ $C_{34} \equiv - K_4^2 A_{44} B$ $C_{35} \equiv -K_5^2 A_{55} a$ $C_{44} \equiv -D_{66}\alpha^2 - D_{22}\beta^2 - K_4^2A_{44}$ $C_{45} \equiv -(D_{12} + D_{66})_{\alpha\beta}$ $C_{55} \equiv -D_{11}a^2 - D_{66}B^2 - K_5^2A_{55}$

4.4 <u>Mean Temperature and Temperature Gradient Sinusoidally</u> <u>Distributed over a Rectangular Region</u>

Let

$$T(x,y,z) = T_0(x,y) + (z/h) T_1(x,y)$$
 (4.4.1)

where

$$T_{0}(x,y) = \overline{T}_{0} \sin (m\pi x/a) \sin (n\pi y/b)$$

$$T_{1}(x,y) = \overline{T}_{1} \sin (m\pi x/a) \sin (n\pi y/b)$$
(4.4.2)

and

For Case I, $z_{nx} > 0$ and $z_{ny} < 0$ with z_{nx} governing layer 1 (0°) and z_{ny} layer 2 (90°) (see Appendix C for the remaining cases).

$$N_{x}^{T} = \int_{-h/2}^{2ny} (Q_{1122} \alpha_{122} + Q_{1222} \alpha_{222}) Tdz$$

-h/2
+ $\int_{z_{ny}}^{0} (Q_{1112} \alpha_{112} + Q_{1212} \alpha_{212}) Tdz$

+
$$\int_{0}^{z_{nx}} (Q_{1121} \alpha_{121} + Q_{1221} \alpha_{221}) Tdz$$

+ $\int_{z_{nx}}^{h/2} (Q_{1111} \alpha_{111} + Q_{1211} \alpha_{211}) Tdz$ (4.4.3)

Let

$$(Q_{1122} \alpha_{122} + Q_{1222} \alpha_{222}) = \beta_{122}$$

$$(Q_{1112} \alpha_{112} + Q_{1212} \alpha_{212}) = \beta_{112}$$

$$(Q_{1121} \alpha_{121} + Q_{1221} \alpha_{221}) = \beta_{121}$$

$$(Q_{1111} \alpha_{111} + Q_{1211} \alpha_{211}) = \beta_{111}$$
etc.

Then,

$$N_{x}^{T} = \beta_{122} T_{0}(z_{ny} + h/2) + \beta_{112} T_{0}(0 - z_{ny}) + \beta_{121} T_{0}(z_{nx} - 0) + \beta_{111} T_{0}(h/2 - z_{nx}) + \beta_{122}(T_{1}/2h)(z_{ny}^{2} - h^{2}/4) + \beta_{112}(T_{1}/2h)(0 - z_{ny}^{2}) + \beta_{121}(T_{1}/2h)(z_{nx}^{2} - 0) + \beta_{111}(T_{1}/2h)(h^{2}/4 - z_{nx}^{2}) N_{x}^{T} = (\beta_{122} + \beta_{111})(T_{0}h/2) + (\beta_{121} - \beta_{111}) T_{0}z_{nx} + (\beta_{122} - \beta_{112}) T_{0}z_{ny} + (\beta_{111} - \beta_{122})(T_{1}h/8) + (\beta_{121} - \beta_{111})(T_{1}z_{nx}^{2}/2h) + (\beta_{122} - \beta_{112})(T_{1}z_{ny}^{2}/2h)$$
(4.4.4)

Similarly,

,

$$N_{y}^{T} = (\beta_{222} + \beta_{211})(T_{0}h/2) + (\beta_{221} - \beta_{211}) T_{0}z_{nx} + (\beta_{222} - \beta_{212}) T_{0}z_{ny} + (\beta_{211} - \beta_{222})(T_{1}h/8) + (\beta_{221} - \beta_{211})(T_{1}z_{nx}^{2}/2h) + (\beta_{222} - \beta_{212}) (T_{1}z_{ny}^{2}/2h)$$
(4.4.5)

A DESTRUCTION OF A DEST

Now,

$$M_{x}^{T} = \int_{-h/2}^{h/2} \beta_{122} Tzdz + \int_{z_{ny}}^{0} \beta_{112} Tzdz + \int_{0}^{z_{nx}} \beta_{121} Tzdz + \int_{z_{nx}}^{h/2} \beta_{111} Tzdz$$

= $(\beta_{111} - \beta_{122})(T_{0}h^{2}/8) + (\beta_{121} - \beta_{111})(T_{0}z_{nx}^{2}/2) + (\beta_{122} - \beta_{112})(T_{0}z_{ny}^{2}/2)$
+ $(\beta_{122} + \beta_{111})(T_{1}h^{2}/24) + (\beta_{121} - \beta_{111})(T_{1}z_{nx}^{3}/3h) + (\beta_{122} - \beta_{112})(T_{1}z_{ny}^{3}/3h)$
(4.4.6)

And similarly,

$$M_{y}^{T} = (\beta_{211} - \beta_{222})(T_{0}h^{2}/8) + (\beta_{221} - \beta_{211})(T_{0}z_{nx}^{2}/2) + (\beta_{222} - \beta_{212})(T_{0}z_{ny}^{2}/2) + (\beta_{222} + \beta_{211})(T_{1}h^{2}/24) + (\beta_{221} - \beta_{211})(T_{1}z_{nx}^{3}/3h) + (\beta_{222} - \beta_{212})(T_{1}z_{ny}^{3}/3h)$$

$$(4.4.7)$$

Using equations (4.4.4), (4.4.5), (4.4.6), and (4.4.7), we obtain the following:

$$N_{x,x}^{T} = \alpha \{ (\beta_{122} + \beta_{111}) (\bar{T}_{0}h/2) + (\beta_{121} - \beta_{111}) \bar{T}_{0}z_{nx} + (\beta_{122} - \beta_{112}) \bar{T}_{0}z_{ny} + (\beta_{111} - \beta_{122}) (\bar{T}_{1}h/8) + (\beta_{121} - \beta_{111}) (\bar{T}_{1}z_{nx}^{2}/2h) + (\beta_{122} - \beta_{112}) (\bar{T}_{1}z_{ny}^{2}/2h) \}$$

$$(4.4.8)$$

$$N_{y,y}^{T} = \beta((\beta_{222} + \beta_{211}))(\bar{T}_{0}h/2) + (\beta_{221} - \beta_{211})(\bar{T}_{0}z_{nx} + (\beta_{222} - \beta_{212}))(\bar{T}_{0}z_{ny} + (\beta_{211} - \beta_{222})(\bar{T}_{1}h/8) + (\beta_{221} - \beta_{211})(\bar{T}_{1}z_{nx}^{2}/2h) + (\beta_{222} - \beta_{212})(\bar{T}_{1}z_{ny}^{2}/2h)$$

$$(4.4.9)$$

Tinday.

$$M_{x,x}^{T} = \alpha \{ (\beta_{111} - \beta_{122}) (\bar{T}_{0}h^{2}/8) + (\beta_{121} - \beta_{111}) (\bar{T}_{0}z_{nx}^{2}/2) + (\beta_{122} - \beta_{112}) \\ (\bar{T}_{0}z_{ny}^{2}/2) + (\beta_{122} + \beta_{111}) (\bar{T}_{1}h^{2}/24) + (\beta_{121} - \beta_{111}) (\bar{T}_{1}z_{nx}^{3}/3h) \\ + (\beta_{122} - \beta_{112}) (\bar{T}_{1}z_{ny}^{3}/3h) \}$$
(4.4.10)

and

$$\begin{aligned} \mathbf{A}_{\mathbf{y},\mathbf{y}}^{\mathsf{T}} &= \mathbf{s}\{(\beta_{211} - \beta_{222})(\bar{\mathsf{T}}_{0}\mathsf{h}^{2}/8) + (\beta_{221} - \beta_{211})(\bar{\mathsf{T}}_{0}\mathsf{z}_{nx}^{2}/2) + (\beta_{222} - \beta_{212})(\bar{\mathsf{T}}_{0}\mathsf{z}_{ny}^{2}/2) \\ &+ (\beta_{222} + \beta_{211})(\bar{\mathsf{T}}_{1}\mathsf{h}^{2}/24) + (\beta_{221} - \beta_{211})(\bar{\mathsf{T}}_{1}\mathsf{z}_{nx}^{3}/3\mathsf{h}) \\ &+ (\beta_{222} - \beta_{212})(\bar{\mathsf{T}}_{1}\mathsf{z}_{ny}^{3}/3\mathsf{h}) \end{aligned}$$
(4.4.11)

4.5 Neutral-Surface Locations

As explained already,

$$z_{nx} = -hU/X$$
, $z_{ny} = -hV/Y$ (4.5.1)

Numerically, the values z_{nx} and z_{ny} are computed as follows:

The values of z_{nx} and z_{ny} are assumed in the beginning to get displacements. The above equations are used to obtain the new values of z_{nx} and z_{ny} and fed back to get one a more accurate set. This procedure is repeated until the actual deflections are obtained.

4.6 Numerical Results

Numerical results are compared with Boley and Weiner's work [40] for an isotropic-ordinary-material, single-layer, thin rectangular plate. Close agreement has been obtained (see Table 4.1 below).

Table 4.1. Comparison with Boley and Weiner's Work [40] for an Isotropic Single-Layer Thin Rectangular Plate at Different Aspect Ratios $(E_{11}/E_{22} = 1.00$, $v_{12} = v_{21} = 0.3$, b/h = 10)

spect	Deflection, W/h	(m=n=1)
Ratio, a/b	Boley and Weiner [40]	Present
0.5	0.5300	0.5264
1.0	6.5858	6.5789
1.5	6.3112	6.3063
2.0	2.1104	2.1058

Typical numerical results for (bimodulus) aramid-rubber and polyester-rubber are listed in the following tables (see Table 2.4 for the properties).

The solution for an isotropic,ordinary-material,single-layer, thin rectangular plate has been specialized from the present analysis and is compared with such a solution available in the literature. Good agreement was obtained.

Sudden change in the deflection has been observed in the case of aramid-rubber. To show the general trend, graphs have been plotted (see Fig. 4.1).

a/b	Z _x	Zy	Wh/a_2 ^t T_1b^2
		Aramid-Rubber:	
0.5	- 2.3007	- 0.1666	0.4533×10^{-1}
0.6	- 1.8521	- 0.2237	0.5547×10^{-1}
0.7	- 1.5573	- 0.2745	0.6579×10^{-1}
0.8	- 1.3482	- 0.3160	0.7636×10^{-1}
0.9	- 1.1192	- 0.3473	0.8722×10^{-1}
1.0	- 1.0708	- 0.3690	0.9839×10^{-1}
1.2	- 0.8959	- 0.3886	0.1218
1.4	- 0.7766	- 0.3861	0.1467
1.6	- 0.6914	- 0.3709	0.1732
1.8	- 0.6286	- 0.3498	0.2011
2.0	- 0.5819	- 0.3266	0.2301
	ş	Polyester-Rubber:	
0.5	- 2.1099	- 0.6511	0.1401×10^{-1}
0.6	- 1.6790	- 0.8482	0.1764×10^{-1}
0.7	- 1.4029	- 1.0080	0.2156×10^{-1}
0.8	- 1.2112	- 1.1218	0.2583×10^{-1}
0.9	- 1.0710	- 1.1903	0.3046×10^{-1}
1.0	- 0.9649	- 1.2194	0.3546×10^{-1}
1.2	- 0.8172	- 1.1933	0.4672×10^{-1}
1.4	- 0.7233	- 1.1062	0.5940×10^{-1}
1.6	- 0.6630	- 1.0015	0.7318×10^{-1}
1.8	- 0.6258	- 0.9016	0.8757×10^{-1}
2.0	- 0.6060	- 0.8158	0.1020

Table 4.2. Values of Wh/ α_2^{t} $\overline{1}_1b^2$ and Neutral-Surface Locations for a Single-Layer Orthotropic Rectangular Plate (b/h=10, $\alpha_1^{t}/\alpha_1^{c}=0.5$, $\alpha_2^{t}/\alpha_2^{c}=1.0$, $\alpha_1^{t}/\alpha_2^{t}=0.1$, $\overline{1}_0/\overline{1}_1=1.0$)

(See Appendix D for the in-plane displacements)

a/b	Z _x	Z _y	Wh/a_2 ^t \overline{T}_1b^2				
Aramid-Rubber:							
0.5	0.1276	-0.1510×10^3	-0.2620×10^{-1}				
0.6	0.1184	-0.1722×10^3	-0.3983×10^{-1}				
0.7	0.1165	-0.2347×10^3	-0.5973×10^{-1}				
0.8	0.1191	- 0.5316 x 10 ³	-0.8814×10^{-1}				
0.9	0.0578	- 0.3450	0.3660×10^{-2}				
1.0	0.0980	- 0.3498	0.4432×10^{-2}				
1.2	0.1304	- 0.4327	0.5848×10^{-2}				
1.4	0.1399	- 0.3375	0.6998×10^{-2}				
1.6	0.1402	- 0.3339	0.7852×10^{-2}				
1.8	0.1358	- 0.3316	0.8453×10^{-2}				
2.0	0.1286	- 0.3302	0.8862×10^{-2}				
		Polyester-Rubber:					
0.5	0.7442	- 0.8415	-0.5453×10^{-1}				
0.6	0.7433	- 0.8470	-0.7863×10^{-1}				
0.7	0.7477	- 0.8516	-0.9269×10^{-1}				
0.8	0.7584	- 0.8439	-0.8915×10^{-1}				
0.9	0.7772	- 0.8237	-0.6903×10^{-1}				
1.0	0.8075	- 0.7973	-0.3825×10^{-1}				
1.2	0.9274	- 0.7628	0.2514×10^{-1}				
1.4	3.2603	0.4369	- 0.7672				
1.6	3.3521	0.4656	- 0.8295				
1.8	3.3178	0.4636	- 0.8473				
2.0	3.2126	0.4440	- 0.8402				

Table 4.3. Values of $Wh/\alpha_2 t \bar{T}_1 b^2$ and Neutral-Surface Locations for a Cross-Ply Rectangular Plate (b/h=10, $\alpha_1 t/\alpha_2 t=0.1$, $\alpha_1 t/\alpha_1 c=0.5$, $\alpha_2 t/\alpha_2 c=1.0$, $\bar{T}_0/\bar{T}_1=1.0$)

(See Appendix D for the in-plane displacements)

CHAPTER V

LARGE DEFLECTIONS OF BIMODULUS CROSS-PLY THIN RECTANGULAR PLATE

This class of problem has been attempted in different ways by various people [11,12,41-49]. Nonlinear bending of ordinary orthotropic, single-layer thin plates subjected to uniform loading has been treated by Niyogi [41] among others.

Perhaps the first large deflection analysis of unsymmetrically laminated plates was due to Pister and Dong [42], who considered isotropic rectangular plates. The arbitrarily laminated fully anisotropic equations of the von Karman type were probably first presented by Whitney and Leissa [17], who did not solve them. Large-deflection analyses of unsymmetrical, laminated rectangular plates have been published in [43-49].

Large-deflection analyses of plates made of bimodulus materials have been limited to <u>isotropic</u> bimodulus materials. Kamiya [11,12] analyzed both the circular and the rectangular planforms.

Due to the complicated algebra involved in the nonlinear behavior of thick plates, the work in this chapter has been reduced to thin plates. An approximate solution is obtained by using the Galerkin technique.

5.1 Basic Equations

Consider a thin rectangular plate of thickness h and plate dimensions a and b (in the x and y directions, respectively) subjected to nonlinear bending.

In view of Kirchhoff's thin-plate hypothesis, the displacement components u, v, and w in the x, y, and z directions can be expressed in terms of mid-plane displacements u^0 , v^0 , and w^0 as:

$$u = u^{0}(x,y) - z w_{x}(x,y)$$

 $v = v^{0}(x,y) - z w_{y}(x,y)$ (5.1.1)
 $w = w(x,y)$

where the comma denotes differentiation.

The laminate constitutive relations can be written as:

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \\ M_{x} \\ M_{y} \\ M_{xy} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 & B_{11} & B_{12} & 0 \\ A_{12} & A_{22} & 0 & B_{12} & B_{22} & 0 \\ 0 & 0 & A_{66} & 0 & 0 & B_{66} \\ B_{11} & B_{12} & 9 & D_{11} & D_{12} & 0 \\ B_{12} & B_{22} & 0 & D_{12} & D_{22} & 0 \\ 0 & 0 & B_{66} & 0 & 0 & D_{66} \end{bmatrix} \begin{pmatrix} u_{x}^{0} + w_{x}^{2}/2 \\ v_{y}^{0} + w_{y}^{2}/2 \\ u_{y}^{0} + v_{x}^{0} + w_{x}^{0} \\ - w_{xx} \\ - w_{yy} \\ - 2w_{xy} \end{bmatrix}$$
(5.1.2)

The quantities A_{ij} , B_{ij} , and D_{ij} are the stretching, stretchingbending coupling, and bending stiffnesses defined by

$$h/2$$

 $(A_{ij},B_{ij},D_{ij}) = \int_{-h/2}^{h/2} (1,z,z^2) Q_{ij} dz$ (5.1.3)
 $i,j=1,2,6$

The equilibrium equations are (neglecting body forces and body moments):

$$N_{x,x} + N_{xy,y} = 0$$

$$N_{xy,x} + N_{y,y} = 0$$

$$N_{xy,x} + N_{y,y} = 0$$

$$N_{x}w_{xx} + 2N_{xy}w_{xy} + N_{y}w_{yy} + M_{x,xx} + 2M_{xy,xy} + M_{y,yy} + q = 0$$
(5.1.4)

where q represents the normal load.

Substituting equations (5.1.2) into equations (5.1.4), we get the following. For equilibrium in the x direction: $A_{11}(u_{*XX}^{0} + w_{*X}w_{*XX}) + A_{12}(v_{*Xy}^{0} + w_{*y}w_{*Xy}) - B_{11}w_{*XXX} - B_{12}w_{*Xyy}$ $+ A_{66}(u_{*yy}^{0} + u_{*Xy}^{0} + w_{*x}w_{*yy} + w_{*y}w_{*Xy}) - 2B_{66}w_{*Xyy} = 0$ or

$$A_{11}u_{,XX}^{0} + A_{66}u_{,yy}^{0} + (A_{12} + A_{66})v_{,Xy}^{0} + w_{,X}(A_{11}w_{,XX} + A_{66}w_{,yy})$$

+ $w_{,y}(A_{12} + A_{66})w_{,Xy} - B_{11}w_{,XXX} - (B_{12} + 2B_{66})w_{,Xyy} = 0$ (5.1.5)

For equilibrium in the y direction:

$$A_{66}(u_{,Xy}^{0} + v_{,Xx}^{0} + w_{,X}w_{,Xy} + w_{,y}w_{,Xx}) - 2B_{66}w_{,XXy}$$
$$+ A_{12}(u_{,Xy}^{0} + w_{,x}w_{,Xy}) + A_{22}(v_{,yy}^{0} + w_{,y}w_{,yy})$$
$$- B_{12}w_{,XXy} - B_{22}w_{,yyy} = 0$$

or

$$A_{22}v_{,yy}^{0} + A_{66}v_{,xx}^{0} + (A_{12} + A_{66})u_{,xy}^{0} + w_{,y}(A_{22}w_{,yy} + A_{66}w_{,xx}) + w_{,x}(A_{12} + A_{66})w_{,xy} - B_{22}w_{,yyy} - (B_{12} + 2B_{66})w_{,xxy} = 0$$
(5.1.6)

For equilibrium in the z direction:

$$\begin{bmatrix} A_{11} (u_{,x}^{0} + \frac{1}{2} w_{,x}^{2}) + A_{12} (v_{,y}^{0} + \frac{1}{2} w_{,y}^{2}) + B_{11} (-w_{,xx}) + B_{12} (-w_{,yy})] w_{,xx} \\ + 2 \begin{bmatrix} A_{66} (u_{,y}^{0} + v_{,x}^{0} + w_{,x}^{0} w_{,y}) + B_{66} (-2w_{,xy})] w_{,xy} \\ + \begin{bmatrix} A_{12} (u_{,x}^{0} + \frac{1}{2} w_{,x}^{2}) + A_{22} (v_{,y}^{0} + \frac{1}{2} w_{,y}^{2}) - B_{12} w_{,xx} - B_{22} w_{,yy}] w_{,yy} \\ + B_{11} (u_{,xxx} + w_{,x}^{0} w_{,xxx} + w_{,xx}^{2}) + B_{12} (v_{,xxy}^{0} + w_{,y}^{0} w_{,xxy} + w_{,xy}^{2}) \\ - D_{11} w_{,xxxx} - D_{12} w_{,xxyy} \\ + 2 \begin{bmatrix} B_{66} (u_{,xyy}^{0} + v_{,xxy}^{0} + w_{,x}^{0} w_{,xyy} + w_{,xyy}^{2} + w_{,y}^{2} w_{,xxy} + w_{,xx}^{2} w_{,yy}) \\ - 2 D_{66} w_{,xxyy} \end{bmatrix} + B_{12} (u_{,xyy}^{0} + w_{,x}^{0} w_{,xyy} + w_{,xyy}^{2}) \\ + B_{22} (v_{,yyy}^{0} + w_{,y}^{0} w_{,yyy} + w_{,yyy}^{2}) - D_{12} w_{,xxyy} - D_{22} w_{,yyyy} + q = 0 \\ \text{or} \end{bmatrix}$$

$$B_{11}u_{,XXX}^{0} + (B_{12} + 2B_{66})(u_{,Xyy}^{0} + v_{,XXy}^{0}) + B_{22}v_{,yyy}^{0}$$

$$+ w_{,X}[B_{11}w_{,XXX} + (B_{12} + 2B_{66})w_{,Xyy}] + w_{,y}[B_{22}w_{,yyy} + (B_{12} + 2B_{66})w_{,XXy}]$$

$$+ 2w_{,XX}(B_{66} - B_{12})w_{,yy} + 2w_{,Xy}w_{,Xy}(B_{12} + B_{66}) - w_{,yy}B_{22}w_{,yy}$$

$$- D_{11}w_{,XXXX} - 2(D_{12} + 2D_{66})w_{,XXyy} - D_{22}w_{,yyyy}$$

$$+ (q + w_{,XX}[A_{11}(u_{,X}^{0} + \frac{1}{2}w_{,X}^{2}) + A_{12}(v_{,y}^{0} + \frac{1}{2}w_{,y}^{2})]$$

$$+ w_{,yy}[A_{12}(u_{,X}^{0} + \frac{1}{2}w_{,X}^{2}) + A_{22}(v_{,y}^{0} + \frac{1}{2}w_{,y}^{2})]$$

$$+ 2w_{,Xy}[A_{66}(u_{,y}^{0} + v_{,X}^{0} + w_{,X}w_{,y}) - 2B_{66}w_{,Xy}] = 0 \qquad (5.1.7)$$

5.2 Simply-Supported Boundary Conditions

Along the edges at x = 0,a

$$w = w_{yy} = M_x = 0$$
$$v^0 = N_y = 0$$

Along the edges at y = 0, b

 $w = w_{xx} = M_y = 0$ $u^0 = N_y = 0$

5.3 Solution

The set of equations (5.1.5-5.1.7) are coupled and nonlinear in nature, and an exact solution appears to be extremely difficult to obtain. Hence, an approximate solution will be obtained here. Let

(5.2.1)

By the Galerkin method (equations (5.1.5)-(5.1.7) and equations (5.3.1) are combined):

a b

$$\int_{(A_{11}u_{,XX}^{0} + A_{66}v_{,yy}^{0} + (A_{12} + A_{66})v_{,Xy}^{0} + w_{,X}(A_{11}w_{,XX} + A_{66}w_{,yy})$$

$$0 0 + w_{,y}(A_{12} + A_{66})w_{,Xy} - B_{11}w_{,XXX} - (B_{12} + 2B_{66})w_{,Xyy}) \} cos ax sin By dxdy=0$$

or

$$\int_{0}^{a} \int_{0}^{b} \left\{ -A_{11} \frac{\pi^{2}}{a^{2}} \cup \cos^{2} \alpha x \sin^{2} \beta y - A_{66} \frac{\pi^{2}}{b} \cup \cos^{2} \alpha x \sin^{2} \beta y \right. \\ \left. - \nabla (A_{12} + A_{66}) \frac{\pi^{2}}{ab} \cos^{2} \alpha x \sin^{2} \beta y - A_{11} \frac{\pi^{3}}{a^{3}} W^{2} \cos^{2} \alpha x \sin^{3} \beta y \sin \alpha x \right. \\ \left. - A_{66} \frac{\pi^{3}}{ab^{2}} W^{2} \cos^{2} \alpha x \sin^{3} \beta y \sin \alpha x \right. \\ \left. + W^{2} (A_{12} + A_{66}) \frac{\pi^{3}}{ab^{2}} \cos^{2} \alpha x \cos^{2} \beta y \sin \alpha x \sin \beta y + B_{11} W \frac{\pi^{3}}{a^{3}} \cos^{2} \alpha x \sin^{2} \beta y \right. \\ \left. + W (B_{12} + 2B_{66}) \frac{\pi^{3}}{ab^{2}} \cos^{2} \alpha x \sin^{2} \beta y \right\} dxdy = 0$$

or

$$-A_{11} \frac{\pi^{2}}{a^{2}} U \frac{ab}{4} - A_{66} \frac{\pi^{2}}{b^{2}} U \frac{ab}{4} - (A_{12} + A_{66}) V \frac{\pi^{2}}{ab} \frac{ab}{4}$$

$$-A_{11} \frac{\pi^{3}}{a^{3}} W^{2} \cdot \frac{8ab}{9\pi^{2}} - A_{66} \frac{\pi^{3}}{ab^{2}} W^{2} \cdot \frac{8ab}{9\pi^{2}} + W^{2} (A_{12} + A_{66}) \frac{\pi^{3}}{ab^{2}} \cdot \frac{4ab}{9\pi^{2}}$$

$$+B_{11} W \frac{\pi^{3}}{a^{3}} \cdot \frac{ab}{4} + W (B_{12} + 2B_{66}) \frac{\pi^{3}}{ab^{2}} \cdot \frac{ab}{4} = 0$$

or

$$U(+\frac{A_{11}\pi^{2}b}{4a} + \frac{A_{66}\pi^{2}a}{4b}) + V[+(A_{12} + A_{66})\frac{\pi^{2}}{4}] \\ - W[+\frac{B_{11}\pi^{3}b}{4a} + (B_{12} + 2B_{66})\frac{\pi^{3}}{4b}] \\ + W^{2}[+\frac{8}{9}A_{11}\frac{\pi b}{a^{2}} + \frac{8}{9}A_{66}\frac{\pi}{b} - \frac{4}{9}(A_{12} + A_{66})\frac{\pi}{b}] = 0$$

or

$$U\{\frac{\pi^{2}}{4ab} (A_{11}b^{2} + A_{66}a^{2})\} + V\{\frac{\pi^{2}}{4} (A_{12} + A_{66})\} + W\{-\frac{\pi^{3}b}{4a^{2}} B_{11} - \frac{\pi^{3}}{4b} (B_{12} + 2B_{66})\} + W^{2}\{\frac{8}{9}\frac{\pi}{b} (A_{11}\frac{b^{2}}{a^{2}} + A_{66} - \frac{1}{2} (A_{12} + A_{66}))\} = 0$$
(5.3.2)

Similarly,

$$\int_{0}^{a} \int_{A_{22}v_{yy}^{0} + A_{66}v_{xx}^{0} + (A_{12} + A_{66})u_{xy}^{0} + w_{y}(A_{22}w_{yy} + A_{66}w_{xx}) + w_{x}(A_{12} + A_{66})w_{xy} - B_{22}w_{yyy} - (B_{12} + 2B_{66})w_{xxy} + Sin ax cos By dxdy=0$$

or

$$\int_{0}^{a} \int_{0}^{b} \{-A_{22} \frac{\pi^{2}}{b^{2}} \vee \sin^{2} \alpha x \cos^{2} \beta y - A_{66} \frac{\pi^{2}}{a^{2}} \vee \sin^{2} \alpha x \cos^{2} \beta y - A_{12} + A_{66} \rangle = (A_{12} + A_{66}) = \int_{0}^{\frac{\pi^{2}}{ab}} \sin^{2} \alpha x \cos^{2} \beta y - A_{22} W^{2} \frac{\pi^{3}}{b^{3}} \sin^{3} \alpha x \cos^{2} \beta y \sin \beta y - A_{66} W^{2} \frac{\pi^{3}}{a^{2}b} \sin^{3} \alpha x \cos^{2} \beta y \sin \beta y + (A_{12} + A_{66}) W^{2} \frac{\pi^{3}}{a^{2}b} \sin \alpha x \cos^{2} \alpha x \sin \beta y \cos^{2} \beta y + B_{22} \frac{\pi^{3}}{b^{3}} W \sin^{2} \alpha x \cos^{2} \beta y + (B_{12} + 2B_{66}) W \frac{\pi^{3}}{a^{2}b} \sin^{2} \alpha x \cos^{2} \beta y = 0$$

or

$$-A_{22} \frac{\pi^2}{b^2} \vee \frac{ab}{4} - A_{66} \frac{\pi^2}{a^2} \vee \frac{ab}{4} - (A_{12} + A_{66}) \cup \frac{\pi^2}{ab} \frac{ab}{4} - A_{22} W^2 \frac{\pi^3}{b^3} \frac{4a}{3\pi} \frac{2b}{3\pi}$$
$$-A_{66} W^2 \frac{\pi^3}{a^2b} \frac{8ab}{9\pi^2} + (A_{12} + A_{66}) W^2 \frac{\pi^3}{a^2b} \frac{4ab}{9\pi^2} + B_{22} W \frac{\pi^3}{b^3} \frac{ab}{4}$$
$$+ (B_{12} + 2B_{66}) W \frac{\pi^3}{a^2b} \frac{ab}{4} = 0$$

or

$$V(+ A_{22} \frac{\pi^2 a}{4b} + A_{66} \frac{\pi^2 b}{4a}) + U(A_{12} + A_{66}) \frac{\pi^4}{4}$$

- $W[B_{22} \frac{\pi^3 a}{4b^2} + (B_{12} + 2B_{66}) \frac{\pi^3}{4a}]$
+ $W^2[+ A_{22} \frac{8\pi a}{9b^2} + A_{66} \frac{8\pi}{9a} - (A_{12} + A_{66}) \frac{4\pi}{9a}] = 0$

or

$$U\{\frac{\pi^{2}}{4} (A_{12} + A_{66})\} + V\{\frac{\pi^{2}}{4} (\frac{a}{b} A_{22} + \frac{b}{a} A_{66})\}$$

+ $W\{-B_{22} \frac{\pi^{3}a}{4b^{2}} - \frac{\pi^{3}}{4a} (B_{12} + 2B_{66})\}$
+ $W^{2}\{\frac{8\pi}{9a} (\frac{a^{2}}{b^{2}} A_{22} + A_{66} - \frac{1}{2} (A_{12} + A_{66})\} = 0$ (5.3.3)

Also,

$$\begin{cases} \int_{0}^{a} \int_{0}^{b} (B_{11}u_{,XXX}^{0} + (B_{12} + 2B_{66})(u_{,Xyy}^{0} + v_{,XXy}^{0}) + B_{22}v_{,yyy}^{0} \\ + w_{,X}[B_{11}w_{,XXX} + (B_{12} + 2B_{66})w_{,Xyy}] \\ + w_{,y}[B_{22}w_{,yyy} + (B_{12} + 2B_{66})w_{,XXy}] \\ + 2w_{,XX}(B_{66} - B_{12})w_{,yy} + 2w_{,Xy}w_{,Xy}(B_{12} + B_{66}) - w_{,yy}B_{22}w_{,yy} \\ - D_{11}w_{,XXX} - 2(D_{12} + 2D_{66})w_{,XXyy} - D_{22}w_{,yyyy} \\ + q + w_{,XX}[A_{11}(u_{,X}^{0} + \frac{1}{2}w_{,X}^{2}) + A_{12}(v_{,y}^{0} + \frac{1}{2}w_{,y}^{2})] \\ + w_{,yy}[A_{12}(u_{,X}^{0} + \frac{1}{2}w_{,X}^{2}) + A_{22}(v_{,y}^{0} + \frac{1}{2}w_{,y}^{2})] \\ + 2w_{,Xy}[A_{66}(u_{,y}^{0} + v_{,X}^{0} + w_{,X}w_{,y}) - 2B_{66}w_{,Xy}] \} \sin \alpha x \sin \beta y \, dxdy=0 \end{cases}$$

or

$$\int_{0}^{a} \int_{0}^{b} \left\{ \frac{\pi^{3}}{a^{3}} B_{11} \ U \ \sin^{2} \alpha x \ \sin^{2} \beta y + (B_{12} + 2B_{66})(\frac{\pi^{3}}{ab^{2}} \ U + \frac{\pi^{3}}{a^{2}b} \ V) \ \sin^{2} \alpha x \ \sin^{2} \beta y \right.$$

$$+ B_{22} \ \frac{\pi^{3}}{b^{3}} \ V \ \sin^{2} \alpha x \ \sin^{2} \beta y - B_{11}W^{2} \ \frac{\pi^{4}}{a^{4}} \cos^{2} \alpha x \ \sin \alpha x \ \sin^{3} \beta y$$

$$- (B_{12} + 2B_{66}) \ \frac{\pi^{4}}{a^{2}b^{2}} \ W^{2} \ \cos^{2} \alpha x \ \sin \alpha x \ \sin^{3} \beta y$$

$$- B_{22}W^{2} \frac{\pi^{4}}{b^{4}} \sin^{3} ax \sin^{3} y \cos^{2} y$$

$$- (B_{12} + 2B_{66}) \frac{\pi^{4}}{a^{2}b^{2}} W^{2} \sin^{3} ax \sin^{3} y \cos^{2} y$$

$$+ 2(B_{66} - B_{12}) \frac{\pi^{4}}{a^{2}b^{2}} W^{2} \sin^{3} ax \sin^{3} y$$

$$+ 2W^{2}(B_{12} + B_{66}) \frac{\pi^{4}}{a^{2}b^{2}} \sin^{3} ax \sin^{3} y \cos^{2} ax \cos^{2} y$$

$$- B_{22} \frac{\pi^{4}}{b^{4}} W^{2} \sin^{3} ax \sin^{3} y - D_{11}W \frac{\pi^{4}}{a^{4}} \sin^{2} ax \sin^{2} y$$

$$- 2(D_{12} + 2D_{66})W \frac{\pi^{4}}{a^{2}b^{2}} \sin^{2} ax \sin^{2} \beta y - D_{22}W \frac{\pi^{4}}{b^{4}} \sin^{2} ax \sin^{2} \beta y$$

$$+ Q \sin^{2} ax \sin^{2} \beta y + A_{11} \frac{\pi^{3}}{a^{3}} UW \sin^{3} ax \sin^{3} \beta y$$

$$- A_{11} \frac{\pi^{4}}{2a^{4}} W^{3} \sin^{2} ax \cos^{2} ax \sin^{4} \beta y + A_{12}WV \frac{\pi^{3}}{a^{2}b} \sin^{3} ax \sin^{3} \beta y$$

$$- A_{12} \frac{\pi^{4}}{2a^{2}b^{2}} W^{3} \cos^{2} ax \sin^{2} ax \sin^{4} \beta y + A_{22} \frac{\pi^{3}}{b^{3}} VW \sin^{3} ax \sin^{3} \beta y$$

$$- A_{22} \frac{\pi^{4}}{2b^{4}} W^{3} \sin^{4} ax \cos^{2} \beta y \sin^{2} \beta y$$

$$+ 2A_{66} UW \frac{\pi^{3}}{a^{2}b} \sin ax \cos^{2} ax \sin^{2} \beta y \cos^{2} \beta y$$

$$+ 2A_{66} W^{3} \frac{\pi^{4}}{a^{4}b^{2}} \sin^{2} ax \cos^{2} ax \sin^{2} \beta y \cos^{2} \beta y$$

$$+ 2A_{66} W^{2} \frac{\pi^{4}}{a^{4}b^{2}} \sin ax \cos^{2} ax \sin^{2} \beta y \cos^{2} \beta y$$

$$- 4B_{66} W^{2} \frac{\pi^{4}}{a^{4}b^{2}} \sin ax \cos^{2} ax \sin^{2} \beta y \cos^{2} \beta y$$

$$= 0$$

A STATE AND A STATE OF A STATE OF

or

$$\frac{\pi^{3}}{a^{3}} B_{11} U \frac{ab}{4} + (B_{12} + 2B_{66})(\frac{\pi^{3}U}{4b} + \frac{\pi^{3}Y}{4a}) + B_{22} \frac{\pi^{3}}{b^{3}} V \frac{ab}{4} - B_{11}W^{2} \frac{\pi^{4}}{a^{4}} \frac{8ab}{9\pi^{2}} \\ - B_{11}W^{2} \frac{\pi^{4}}{a^{4}} \frac{8ab}{9\pi^{2}} - (B_{12} + 2B_{66}) \frac{\pi^{4}}{a^{2}b^{2}} W^{2} \frac{8ab}{9\pi^{2}} - B_{22}W^{2} \frac{\pi^{4}}{b^{4}} \frac{8ab}{9\pi^{2}} \\ - (B_{12} + 2B_{66}) \frac{\pi^{4}}{a^{2}b^{2}} W^{2} \frac{8ab}{9\pi^{2}} + 2W^{2}(B_{66} - B_{12}) \frac{\pi^{4}}{a^{2}b^{2}} \frac{16ab}{9\pi^{2}} \\ - 2W^{2}(B_{12} + B_{66}) \frac{\pi^{4}}{a^{2}b^{2}} \frac{4ab}{9\pi^{2}} - B_{22} \frac{\pi^{4}}{a^{2}b^{2}} W^{2} \frac{16ab}{9\pi^{2}} - D_{11}W \frac{\pi^{4}}{a^{4}} \frac{ab}{4} \\ - 2(D_{12} + 2D_{66}) W \frac{\pi^{4}}{a^{2}b^{2}} \frac{ab}{9\pi^{2}} - D_{22}W \frac{\pi^{4}}{b^{4}} \frac{ab}{4} + Q \frac{ab}{4} + A_{11} \frac{\pi^{3}}{a^{3}} UW \frac{16ab}{9\pi^{2}} \\ - A_{11} \frac{\pi^{4}}{2a^{4}} W^{3} \frac{3ab}{64} + A_{12}WV \frac{\pi^{3}}{a^{2}b} \frac{16ab}{9\pi^{2}} - A_{12} \frac{\pi^{4}}{2a^{2}b^{2}} W^{3} \frac{3ab}{64} + A_{12} \frac{\pi^{3}}{ab^{2}} UW \frac{16ab}{9\pi^{2}} \\ - A_{12}W^{3} \frac{\pi^{4}}{2a^{2}b^{2}} \frac{3ab}{64} + A_{22} \frac{\pi^{3}}{b^{3}} VW \frac{16ab}{9\pi^{2}} - A_{22} \frac{\pi^{4}}{2b^{4}} W^{3} \frac{3ab}{64} + 2A_{66} UW \frac{\pi^{3}}{a^{3}} \frac{4ab}{9\pi^{2}} \\ + 2A_{66}VW \frac{\pi^{3}}{a^{2}b} \frac{4ab}{9\pi^{2}} + 2A_{66}W^{3} \frac{\pi^{4}}{a^{2}b^{2}} \frac{ab}{64} - 4B_{66}W^{2} \frac{\pi^{4}}{a^{2}b^{2}} \frac{4ab}{9\pi^{2}} = 0 \\ U(B_{11} \frac{\pi^{3}b}{4a^{3}} - 2(D_{12} + 2B_{66}) \frac{\pi^{4}}{4ab} - D_{22} \frac{\pi^{4}a}{9b^{3}} - (B_{12} + 2B_{66}) \frac{\pi^{2}8}{9ab} \\ + 2(B_{66} - B_{12}) \frac{\pi^{2}16}{9ab} + 2(B_{12} + B_{66}) \frac{\pi^{2}8}{9ab} - B_{22} \frac{\pi^{2}3a}{9b^{3}} - (B_{12} + 2B_{66}) \frac{\pi^{2}8}{9ab} \\ + 2(B_{66} - B_{12}) \frac{\pi^{2}16}{9ab} + A_{12} \frac{\pi^{4}3}{128ab} - A_{12} \frac{\pi^{4}3}{128ab} - A_{22} \frac{\pi^{4}3}{128b^{3}} + 2A_{66} \frac{\pi^{4}}{64ab} \\ + W^{3}(-A_{11} \frac{\pi^{4}3b}{128a^{3}} - A_{12} \frac{\pi^{4}3}{128ab} - A_{22} \frac{\pi^{4}3}{128ab} - A_{22} \frac{\pi^{4}3a}{128b^{3}} + 2A_{66} \frac{\pi^{4}}{64ab} \\ + UW(A_{11} \frac{16b\pi}{9a^{2}} + A_{12} \frac{16\pi}{9b} + A_{66} \frac{8\pi}{9b} \\ + W(A_{11} \frac{16b\pi}{9a^{2}} + A_{12} \frac{16\pi}{9b} + A_{66} \frac{8\pi}{9b} \\ + W(A_{11} \frac{16b\pi}{9a^{2}} + A_{22} \frac{\pi^{16}6}{9b^{2}} + 2A_{66} \frac{\pi^{4}}{9a} \\ + W($$

States and a second

State State of State

The above three equations yield a cubic equation in W which can be solved by using a standard subroutine (such as ZRPOLY).

5.4 Neutral-Surface Positions

By Kirchhoff's hypothesis, the neutral-surface locations are defined by $\epsilon_x = \epsilon_y = 0$ which implies

$$z_{nx} = u_{x}^{0} / w_{xx} = U / W \alpha$$

$$z_{ny} = v_{y}^{0} / w_{yy} = V / W \beta$$
(5.4.1)

The iterative method is applied as in the other problems to get the actual deflection.

5.5 Numerical Results

The present solution is compared with that of Kamiya [11], the only solution available for large deflections of bimodulus isotropic rectangular thin plates, simply supported on all edges. Good agreement is obtained (see Table 5.1).

Table 5.1. Comparison of Nondimensional Deflection, W/h, with Kamiya's Solution [11]. $(a/b=1, v^{C=0.2}, q_0 a^4/E_{22}^{C}h^4 = 16.91)$

E ^t /E ^c	16.91 WE ₂₂ ^C h4/q ₀ a4		Z _x =z _{nx} /h	Z _y =z _{ny} /h
	Kamiya	Present	Prese	ent
1.0	0.4000	0.4010	-0.0795	-0.0795
1.5	0.3200	0.3177	-0.0398	-0.0100
2.0	0.2700	0.2658	0.2658	-0.0167

a/b	Z _x (1)	Z _x (ii)	Z y (i)	Z y (ii)	W/h (i)	W/h (ii)
			Aramid	I-Rubber:		
0.5	0.0768	0.0876	- 0.0688	- 0.0803	0.6651×10^{-4}	0.0139
0.6	0.0780	0.0828	- 0.0636	- 0.0724	0.1384×10^{-3}	0.0278
0.7	0.0780	0.0732	- 0.0598	- 0.0667	0.2567×10^{-3}	0.0489
0.8	0.0795	0.0611	- 0.0564	- 0.0644	0.4377×10^{-3}	0.0774
0.9	0.0795	0.0462	- 0.0536	- 0.0659	0.7001×10^{-3}	0.1126
1.0	0.0805	0.0290	- 0.0512	- 0.0699	0.1063×10^{-2}	0.1530
1.2	0.0805	-0.0093	- 0.0477	- 0.0885	0.2178×10^{-2}	0.2435
1.4	0.0805	-0.0498	- 0.0464	- 0.1146	0.3945×10^{-2}	0.3395
1.6	0.0805	-0.0906	- 0.0446	- 0.1447	0.6528×10^{-2}	0.4365
1.8	0.0789	-0.1370	- 0.0446	- 0.1765	0.1003×10^{-1}	0.5326
2.0	0.0773	-0.1699	- 0.0446	- 0.2086	0.1449 x 10 ⁻¹	0.6270
			Polyest	er-Rubber:		
0.5	0.0706	0.0565	- 0.0515	- 0.0441	0.3090×10^{-3}	0.0572
0.6	0.0706	0.0376	- 0.0491	- 0.0390	0.6361 x 10 ⁻³	0.1058
0.7	0.0706	0.0126	- 0.0471	- 0.0390	0.1166 x 10 ⁻²	0.1674
0.8	0.0716	0.0126	- 0.0454	- 0.0504	0.1962×10^{-2}	0.2389
0.9	0.0716	-0.0447	- 0.0441	- 0.0619	0.3087×10^{-2}	0.3094
1.0	0.0716	-0.0747	- 0.0441	- 0.0796	0.4597×10^{-2}	0.3832
1.2	0.0703	-0.1334	- 0.0427	- 0.1231	0.8974×10^{-2}	0.5305
1.4	0.0683	-0.1899	- 0.0427	- 0.1712	0.1529×10^{-1}	0.6743
1.6	0.0656	-0.2433	- 0.0437	- 0.2202	0.2344×10^{-1}	0.8130
1.8	0.0623	-0.2929	- 0.0472	- 0.2681	0.3298×10^{-1}	0.9453
2.0	0.0589	-0.3382	- 0.0503	- 0.3137	0.4337 x 10 ⁻¹	1.0700

Table 5.2. Dimensionless Deflections and Neutral-Surface Locations for a Single-Layer Orthotropic Rectangular Plate at (i) $q_0 = q_0 b^4 / E_{22} ch^4 = 1.0$, (ii) $q_0 = q_0 b^4 / E_{22} ch^4 = 200$

(See Appendix D for the in-plane displacements)

ā/b	Z _x (i)	Z (11)	Z _y (i)	Z _y (ii)	. W/h (i)	W/h (ii)	
			Aramic	1-Rubber:			
0.5	0.0934	0.0875	- 0.0280	- 0.0316	0.7149×10^{-4}	0.0139	
0.6	0.0934	0.0827	- 0.0247	- 0.0329	0.1480×10^{-3}	0.0278	
0.7	0.0934	0.0731	- 0.0221	- 0.0398	0.2734×10^{-3}	0.0488	
0.8	0.0934	0.0611	- 0.0202	- 0.0544	0.4645×10^{-3}	0.0774	
0.9	0.0934	0.0462	- 0.0189	- 0.0766	0.7402×10^{-3}	0.1126	
1.0	0.0934	0.0292	- 0.0189	- 0.1033	0.1121 x 10 ⁻²	0.1531	
1.2	0.0934	-0.0072	- 0.0172	- 0.1633	0.2284×10^{-2}	0.2404	
1.4	0.0921	-0.0397	- 0.0172	- 0.2184	0.4127×10^{-2}	0.3187	
1.6	0.0909	-0.0625	- 0.0172	- 0.2580	0.6800×10^{-2}	0.3741	
1.8	0.0895	-0.0752	- 0.0172	- 0.2815	0.1041×10^{-1}	0.4077	
2.0	0.0874	-0.0826	- 0.0188	- 0.2950	0.1498 x 10 ⁻¹	0.4270	
			Polyeste	er-Rubber:			
0.5	0.0895	0.0634	- 0.0815	- 0.0959	0.3519×10^{-3}	0.0616	
0.6	0.0895	0.0438	- 0.0805	- 0.1128	0.7206×10^{-3}	0.1124	
0.7	0.0895	0.0181	- 0.0805	- 0.1413	0.1312×10^{-2}	0.1759	
0.8	0.0895	-0.0104	- 0.0805	- 0.1789	0.2188 x 10 ⁻²	0.2469	
0.9	0.0895	-0.0396	- 0.0805	- 0.2216	0.3403×10^{-2}	0.3307	
1.0	0.0895	-0.0678	- 0.0805	- 0.2673	0.4999 x 10 ⁻²	0.3931	
1.2	0.0869	-0.1437	- 0.0832	- 0.4042	0.1527×10^{-1}	0.5994	
1.4	0.0869	-0.1437	- 0.0832	- 0.4042	0.1527×10^{-1}	0.5994	
1.6	0.0854	-0.1554	- 0.0856	- 0.4356	0.2217×10^{-1}	0.6444	
1.8	0.0840	-0.1576	- 0.0882	- 0.4517	0.2947×10^{-1}	0.6669	
2.0	0.0828	-0.1542	- 0.0909	- 0.4605	0.3659×10^{-1}	0.6776	

Table 5.3. Dimensionless Deflections and Neutral-Surface Locations for a Cross-Ply Bimodulus Rectangular Plate at (i) $\bar{q}_0 = q_0 b^4 / E_{22} ch^4 = 1.0$, (ii) $\bar{q}_0 = q_0 b^4 / E_{22} ch^4 = 200$

(For the in-plane displacements, seee Appendix D)
Comparison of the present theory with the existing solution for bimodulus isotropic thin plates shows close agreement. Typical computations are shown in the above two tables, and graphs are presented (Fig. 5.1) to observe the general trend.

Fig. 5.2. Variation of dimensionaless deflection with dimensionless load for bimodulus square plate (a/b=1). (Dashed line represents linear case.)

CHAPTER VI

CONCLUSIONS

Good agreement exists between the closed-form, small-deflection solutions presented here and previous approximate analyses carried out by several authors for special cases (isotropic bimodulus material) as was shown in Chapters II-IV. It is also shown that the exact solutions developed here offer a good check for finite-element analysis available (see Chapter II). The results of Chapters III and IV can also be used for this purpose.

Good agreement was also obtained between the approximate Galerkin-type solution presented in Chapter V and an existing solution for the isotropic bimodulus case.

It has been observed that for materials with different properties in tension and compression, the location of the neutral surface may vary considerably from the geometric mid-plane. Materials with markedly different properties in tension and compression are, of course, most affected.

There is a sudden jump in neutral-surface locations with the change in aspect ratio in the case of free vibration. This is probably due to the eigenvalue nature of this problem. They also assume out-of-plate values in the case of thermal bending.

Stacking sequence for two-layer, cross-ply laminates plays an

important role in both the amount of deflection and the failure mode. For some plate aspect ratios, the maximum stress can be developed at the bottom of the plate. However, if the stacking sequence is reversed, the maximum stress may occur in those fibers closest to the mid-plane.

Typical computer programs are presented in Appendix III.

REFERENCES

- 1. Clark, S.K., "The Plane Elastic Characteristics of Cord-Rubber Laminates", <u>Textile Research Journal</u>, Vol. 33, No. 4, Apr. 1963, pp. 295-313.
- Patel, H.P., Turner, J.L., and Walter, J.D., "Radial Tire Cord-Rubber Composites", <u>Rubber Chemistry and Technology</u>, Vol. 49, 1976, pp. 1095-1110.
- Bert, C.W., "Mathematical Modeling and Micromechanics of Fiber-Reinforced Bimodulus Composite Materials". University of Oklahoma, School of Aerospace, Mechanical and Nuclear Engineering, Contract N00014-78-C-0647, Report OU-AMNE-79-7, June 1979.
- Bert, C.W., "Micromechanics of the Different Elastic Behavior of Filamentary Composites in Tension and Compression", <u>Mechanics of</u> <u>Bimodulus Materials</u>, ASME, NY, Dec. 1979, pp. 17-28.
- Ambartsumyan, S.A., "The Axisymmetric Problem of a Circular Cylindrical Shell Made of Material with Different Strength [Stiffness] in Tension and Compression", <u>Izv. Akad. Nauk SSR</u>, <u>Mekh.</u>, No. 4, 1965, pp. 77-85; English translation, NTIS Document AD 675312, 1967.
- Ambartsumyan, S.A., "The Basic Equations and Relations of the Different-Modulus Theory of Elasticity of an Anisotropic Body", <u>Mechanics of Solids</u>, Vol. 4, No. 3, 1969 (transl. 1972), pp. 48-56.
- Isabekyan, N.G. and Khachatryan, A.A., "Variable Modular Elasticity Theory of an Anisotropic Body Subjected to a Plane Stressed State", <u>Izv. Akad. Nauk Armyan. SSR, Mekh</u>., Vol. 22, No. 4, 1966, pp. 25-34; English translation, NTIS Document AD 726600, March 1971.
- Shapiro, G.S., "Deformation of Bodies with Different Tensile and Compressive Strengths [Stiffnesses]", <u>Mechanics of Solids</u>, Vol. 1, No. 2, 1966, pp. 85-86.
- Jones, R.M., "Buckling of Stiffened Multilayered Circular Cylindrical Shells with Different Orthotropic Moduli in Tension and Compression", AIAA Journal, Vol. 9, No. 6, May 1971, pp. 917-923.
- Bert, C.W., "Models for Fibrous Composites with Different Properties in Tension and Compression", <u>Journal of Engineering Materials and</u> <u>Technology</u>, <u>Trans. ASME</u>, Vol. 99H, No. 4, Oct. 1977, pp. 344-349.

- Kamiya, N., "Large Deflection of a Different Modulus Circular Plate", Journal of Engineering Materials and Technology, Trans. ASME, Vol. 97H, No. 1, Jan. 1975, pp. 52-56.
- Kamiya, N., "An Energy Method Applied to Large Elastic Deflection of a Thin Plate of Bimodulus Material", <u>Journal of Structural Mechanics</u>, Vol. 3, No. 3, 1975, pp. 317-329.
- Kamiya, N., "Transverse Shear Effect in a Bimodulus Plate", <u>Nuclear</u> <u>Engineering and Design</u>, Vol. 32, No. 3, July 1975, pp. 351-357.
- Jones, R.M. and Morgan, H.S., "Bending and Extension of Cross-Ply Laminates with Different Moduli in Tension and Compression", <u>Proceedings</u>, <u>AIAA/ASME/SAE 17th Structures</u>, <u>Structural Dynamics</u>, and <u>Materials Conference</u>, King of Prussia, PA, May 5-7, 1976, pp. 158-167.
- Reissner, E. and Stavsky, Y., "Bending and Stretching of Certain Types of Heterogeneous Aeolotropic Elastic Plates", <u>Journal of</u> <u>Applied Mechanics</u>, Vol. 28, <u>Trans. ASME</u>, Vol. 83E, No. 3, Sept. 1961, pp. 402-408.
- Whitney, J.M., "Bending-Extensional Coupling in Laminated Plates under Transverse Load", <u>Journal of Composite Materials</u>, Vol. 3, No. 1, Jan. 1969, pp. 20-28.
- Whitney, J.M. and Leissa, A.W., "Analysis of Heterogeneous Anisotropic Plates", <u>Journal of Applied Mechanics</u>, Vol. 36, <u>Trans. ASME</u>, Vol. 91E, No. 2, June 1969, pp. 261-266.

A STREET & STREET & STREET

- Padovan, J., "Inplane and Bending Fields of Anisotropic Generally Laminated Plate Strips", <u>Journal of Composite Materials</u>, Vol. 7, 1973, pp. 536-542.
- Kamiya, N., "Thermal Stress in a Bimodulus Thin Plate", <u>Bulletin de</u> <u>1'academie Polonaise des Sciences</u>, Serie des sciences techniques, Vol. 24, No. 7-8, 1976, pp. 365-372.
- 20. Kamiya, N., "Energy Formulae of Bimodulus Material in Thermal Field", Fibre Science and Technology, Vol. 11, No. 3, 1978, pp. 229-235.
- Ambartsumyan, S.A., "The Equations of Temperature Stresses of Different-Modulus Materials", <u>Mechanics of Solids</u>, Vol. 3, No. 5, 1968, pp. 58-69.
- Ambartsumyan, S.A., "Equations of Theory of Thermal Stresses in Double-Modulus Materials", <u>Thermoinelasticity</u> (Proc. of the IUTAM Symposium, E. Kilbride, Scotland, June 25-28, 1968), ed. by B.A. Boley, Springer-Verlag, Wien, 1970, pp. 17-32.
- Forray, M. and Newman, M., "Thermal Stresses and Deflections in Elastically Supported Plates", <u>Journal of the Aerospace Sciences</u>, Vol. 29, May 1962, pp. 611-612.

- 24. Maulbetsch, J.L., "Thermal Stresses in Plates", <u>Journal of Applied</u> <u>Mechanics, Trans. ASME</u>, Vol. 57, 1935, pp. A-141-A-146.
- Das, Y.C. and Navaratna, D.R., "Thermal Bending of Rectangular Plate ", Journal of the Aerospace Sciences, Vol. 29, Nov. 1962, pp. 1397-1399.
- 26. Das, Y.C. and Rath, B.K., "Thermal Bending of Moderately Thick Rectangular Plate ", <u>AIAA Journal</u>, Vol. 10, No. 10, Oct. 1972, pp. 1349-1351.
- Chao, C.C. and Anliker, M., "The Elastically Clamped Rectangular Plate with Arbitrary Lateral and Thermal Loading", <u>Journal of</u> <u>Applied Mechanics</u>, Vol. 29, <u>Trans. ASME</u>, Vol. 84E, No. 3, Sept. 1962, pp. 578-580.
- Fortier, R.C. and Rossettos, J.N., "On the Vibration of Shear Deformable Curved Anisotropic Composite Plates", <u>Journal of Applied</u> <u>Mechanics</u>, Vol. 40, <u>Trans. ASME</u>, Vol. 95E, Mar. 1973, pp. 299-301.
- Lin, C.C. and King, N.W., "Free Transverse Vibrations of Rectangular Unsymmetrically Laminated Plates", <u>Journal of Sound and Vibration</u>, Vol. 36, No. 1, 1974, pp. 91-103.
- Srinivas, S., Joga Rao, C.V., and Rao, A.K., "An Exact Analysis for Vibration of Simply-Supported Homogeneous and Laminated Thick Rectangular Plates", <u>Journal of Sound and Vibration</u>, Vol. 12, No. 2, 1970, pp. 187-199.
- 31. Jones, R.M., "Buckling and Vibration of Unsymmetrically Laminated Cross-Ply Rectangular Plates", <u>AIAA Journal</u>, Vol. 11, No. 12, 1973, pp. 1626-1632.
- 32. Sinha, P.K. and Rath, A.K., "Vibration and Buckling of Cross-Ply Laminated Circular Cylindrical Panels", <u>Aeronautical Quarterly</u>, Vol. 26, August 1975, pp. 211-218.
- Bert, C.W., Reddy, J.N., Sudhakar Reddy, V., and Chao, W.C., "Analysis of Thick Rectangular Plates Laminated of Bimodulus Composite Materials", to be published, (AIAA Journal).
- Bert, C.W., "Classical Analyses of Laminated Bimodulus Composite-Material Plates", University of Oklahoma, School of Aerospace, Mechanical and Nuclear Engineering, Contract N00014-78-C-0647, Report OU-AMNE-79-10A, August 1979.
- 35. Yang, P.C., Norris, C.H., and Stavsky, Y., "Elastic Wave Propagation in Heterogeneous Plates", <u>International Journal of Solids and</u> <u>Structures</u>, Vol. 2, 1966, pp. 665-684.

- 36. Whitney, J.M., "Shear Correction Factors for Orthotropic Laminates under Static Loads", <u>Journal of Applied Mechanics</u>, Vol. 40, <u>Trans.</u> <u>ASME</u>, Vol. 95E, 1973, pp. 302-304.
- Mindlin, R.D., "Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates", <u>Journal of Applied Mechanics</u>, Vol. 18, <u>Trans. ASME</u>, Vol. 73, March 1951, pp. 31-38.
- Mindlin, R.D., Schacknow, A., and Deresiewicz, H., "Flexural Vibrations of Rectangular Plates", <u>Journal of Applied Mechanics</u>, Vol. 22, <u>Trans. ASME</u>, Vol. 77, 1956, pp. 430-436.
- 39. Bapu Rao, M.N., "Thermal Bending of Thick Rectangular Plates", <u>Nuclear</u> <u>Engineering and Design</u>, Vol. 54, 1979, pp. 115-118.
- 40. Boley, B.A. and Weiner, J.H., <u>Theory of Thermal Stresses</u>, John Wiley & Sons, Inc., NY, 1960, pp. 389-391.
- Niyogi, A.K., "Non-linear Bending of Rectangular Orthotropic Plates", <u>International Journal of Solids and Structures</u>, Vol. 9, 1973, pp. 1133-1139.
- 42. Pister, K.S. and Dong, S.B., "Elastic Bending of Layered Plates", Journal of the Engineering Mechanics Division, ASCE, Vol. 85, No. EM4, Proc. Paper 2194, Oct. 1959, pp. 1-10.
- Chia, C.Y., "Large Deflections of Heterogeneous Anisotropic Rectangular Plates", <u>International Journal of Solids and Structures</u>, Vol. 10, No. 9, Sept. 1974, pp. 965-976.
- Zaghloul, S.A. and Kennedy, J.B., "Nonlinear Analysis of Unsymmetrically Laminated Plates", <u>Journal of the Engineering Mechanics Division</u>, <u>Proc.</u> <u>ASCE</u>, Vol. 101, No. EM3, Proc. Paper 11345, June 1975, pp. 169-186.
- 45. Komozin, I.T. and Kovalev, E.K., "Nonlinear Bending and Supercritical Behavior of Layered Plates that are Nonsymmetric Along the Thickness", Soviet Applied Mechanics, Vol. 12, No. 4, Apr. 1976, pp. 420-422.
- 46. Chia, C.Y. and Prabhakara, M.K., "Large Deflection of Unsymmetric Cross-Ply and Angle-Ply Plates", <u>Journal of Mechanical Engineering</u> <u>Science</u>, Vol. 18, No. 4, Aug. 1976, pp. 179-183.
- Chandra, R., "Non-Linear Bending of Antisymmetric Angle Ply Laminated Plates", <u>Fibre Science and Technology</u>, Vol. 10, No. 2, Apr. 1977, pp. 123-137.
- Noor, A.K. and Hartley, S.J., "Effect of Shear Deformation and Anisotropy on the Non-Linear Response of Composite Plates", <u>Developments</u> <u>in Composite Materials-1</u>, G. Holister, ed., Applied Science Publishers, Ltd., Guildford, England, 1977, pp. 55-65.

- 49. Prabhakara, M.K. and Chia, C.Y., "Nonlinear Analysis of Laminated Cross-Ply Plates", <u>Journal of the Engineering Mechanics Division</u>, <u>Proc. ASCE</u>, Vol. 103, No. EM4, Technical Note, Aug. 1977, pp. 749-753.
- Wang, A.S.D. and Chou, P.C., "A Comparison of Two Laminated Plate Theories", Journal of Applied Mechanics, Vol. 39, Trans. ASME, Vol. 94E, 1972, pp. 611-613.
- 51. Whitney, J.M. and Pagano, N.J., "Shear Deformation in Heterogeneous Anisotropic Plates", <u>Journal of Applied Mechanics</u>, Vol. 37, <u>Trans</u>. <u>ASME</u>, Vol. 92E, No. 4, 1970, pp. 1031-1036.
- 52. Anonymous, <u>Kevlar Data Manual</u>, E.I. du Pont de Nemours & Co., Revised Oct. 1977, p. II-4.
- 53. Anonymous, Materials Reference Issue, <u>Machine Design</u>, Vol. 51, No. 6, Mar. 15, 1979, Section 4, Elastomers, Rubbers, pp. 221 ff.

APPENDIX A

DERIVATION OF THE PLATE STIFFNESSES FOR TWO-LAYER CROSS-PLY LAMINATE OF BIMODULUS MATERIAL

In the solution of problems involving laminates comprised of bimodulus-material layers, it is necessary to evaluate the integral forms involved in the definitions of the plate stiffnesses, Eq. (2.1.6). This is accomplished here for the case of a two-layer cross-ply laminate.

Each layer is assumed to be of the same thickness, h/2, and the same orthotropic elastic properties with respect to the fiber direction. Since each layer is oriented at either 0° or 90° to the x axis, the laminate is also orthotropic, i.e., there are no stiffnesses with subscripts 16 and 26.

The bottom layer is denoted as layer 1, i.e., $\ell = 1$ in $Q_{ijk\ell}$, and occupies the thickness space from z = 0 to z = h/2, where z is measured positive downward from the midplane. The top layer is denoted as layer 2, i.e., $\ell = 2$, and occupies the thickness space from z = -h/2to z = 0.

In the general case derived in this derivation, it is assumed that the upper portion of the top layer (l=2) is in compression (k=2 in Q_{ijkl}) in the fiber direction and that the lower portion of the top layer is in tension (k=1), while the inner portion of the bottom layer (l=1), from z = 0 to z = z_{nx} , is in compression (k=2), while the outer portion

(from z_{nx} to h/2) of layer 1 is in tension (k=1).

Thus, the general integral expression for A_{ij} , the first of Eqs. (2.1.6), may be taken as the sum of the integrals for each of these regions:

$$\begin{aligned} \frac{Case \ 1}{(Z_y < 0, \ Z_x > 0)} \\ A_{ij} &= \int_{-h/2}^{h/2} Q_{ijkl} \ dz \\ &= \int_{-h/2}^{z_{ny}} Q_{ij22} \ dz + \int_{z_{ny}}^{0} Q_{ij12} \ dz + \int_{0}^{z_{nx}} Q_{ij21} \ dz + \int_{z_{nx}}^{h/2} Q_{ij11} \ dz \end{aligned}$$
(A-1)

Since the planar reduced stiffnesses Q_{ijkl} are each respectively constant in the appropriate regions, Eq. (A-1) integrates to the following result:

$$A_{ij} = (Q_{ij22} + Q_{ij11})(h/2) + (Q_{ij21} - Q_{ij11})z_{nx}$$

$$+ (Q_{ij22} - Q_{ij12})z_{nx}$$
(A-2)

or

$$A_{ij} = (1/2)(Q_{ij22} + C_{ij11}) + (Q_{ij21} - Q_{ij11})Z_{x}$$
(A-3)

+ $(Q_{ij22} - Q_{ij12})Z_y$

Similarly

$$B_{ij} = \int_{-h/2}^{h/2} zQ_{ijkl} dz$$

= $\int_{-h/2}^{z_{ny}} zQ_{ij22} dz + \int_{z_{ny}}^{0} zQ_{ij12} dz + \int_{0}^{z_{nx}} zQ_{ij21} dz + \int_{z_{nx}}^{h/2} zQ_{ij11} dz$ (A-4)

=
$$(-Q_{ij22} + Q_{ij11})(h^{2}/8) + (Q_{ij21} - Q_{ij11})(z_{nx}^{2}/2)$$

+ $(Q_{ij22} - Q_{ij12})(z_{ny}^{2}/2)$ (A-5)

\$

or

$$B_{ij}/h^{2} - (1/8)(-Q_{ij22} + Q_{ij11}) + (Q_{ij21} - Q_{ij11})(Z_{x}^{2}/2)$$

$$+ (Q_{ij22} - Q_{ij12})(Z_{y}^{2}/2)$$
(A-6)

Also

•

$$D_{ij} = \int_{-h/2}^{h/2} z^2 Q_{ijkx} dz$$

= $\int_{-h/2}^{z_{ny}} z^2 Q_{ij22} dz + \int_{z_{ny}}^{0} z^2 Q_{ij12} dz + \int_{0}^{z_{nx}} z^2 Q_{ij21} dz + \int_{z_{nx}}^{h/2} z^2 Q_{ij11} dz$ (A-7)
= $(Q_{ij22} + Q_{ij11})(h^3/24) + (Q_{ij21} - Q_{ij11})(z_{nx}^3/3)$
+ $(Q_{ij22} - Q_{ij12})(z_{ny}^3/3)$ (A-8)

or

$$D_{ij}/h^{3} = (1/24)(Q_{ij22} + Q_{ij11}) + (Q_{ij21} - Q_{ij11})(Z_{x}^{3}/3) + (Q_{ij22} - Q_{ij12})(Z_{y}^{3}/3)$$
(A-9)

Similarly

$$\frac{Case 2}{(Z_y>0, Z_x<0)}$$

$$A_{1j} = \int_{-h/2}^{h/2} Q_{1jk\ell} dz$$

$$= \int_{-h/2}^{z_{nx}} Q_{1j22} dz + \int_{z_{nx}}^{0} Q_{1j12} dz + \int_{0}^{z_{ny}} Q_{1j21} dz + \int_{z_{ny}}^{h/2} Q_{1j11} dz$$

$$= (Q_{ij11} + Q_{ij22})(h/2) + (Q_{ij22} - Q_{ij12})z_{nx} + (Q_{ij21} - Q_{ij11})z_{ny}$$

or

$$A_{ij/h} = (Q_{ij11} + Q_{ij22})/2 + (Q_{ij22} - Q_{ij12})Z_x + (Q_{ij21} - Q_{ij11})Z_y$$

and
(A-10)

$$B_{ij}/h^{2} = (Q_{ij11} - Q_{ij22})/8 + (Q_{ij22} - Q_{ij12})(Z_{x}^{2}/2) + (Q_{ij21} - Q_{ij11})(Z_{y}^{2}/2)$$

$$D_{ij}/h^{3} = (Q_{ij11} + Q_{ij22})/24 + (Q_{ij22} - Q_{ij12})(Z_{x}^{3}/3) + (Q_{ij21} - Q_{ij11})(Z_{y}^{3}/3)$$

$$\frac{Case 3}{(Z_x>0, Z_y>0)}$$

$$A_{ij}/h = (Q_{ij11} + Q_{ij22})/2 + (Q_{ij21} - Q_{ij11})Z_x$$

$$B_{ij}/h^2 = (Q_{ij11} - Q_{ij22})/8 + (Q_{ij21} - Q_{ij11})(Z_x^2/2)$$
(A-11)
$$D_{ij}/h^3 = (Q_{ij11} + Q_{ij22})/24 + (Q_{ij21} - Q_{ij11})(Z_x^3/3)$$

<u>Case 4</u> (Z_x<0, Z_y<0)

$$A_{ij}/h = (Q_{ij11} + Q_{ij22})/2 + (Q_{ij22} - Q_{ij12})Z_{y}$$

$$B_{ij}/h^{2} = (Q_{ij11} - Q_{ij22})/8 + (Q_{ij22} - Q_{ij12})(Z_{y}^{2}/2)$$
(A-12)

$$D_{ij}/h^{3} = (Q_{ij11} + Q_{ij22})/24 + (Q_{ij22} - Q_{ij12})(Z_{y}^{3}/3)$$

For neutral surface going out of plane,

$$\begin{aligned} \frac{Case 5}{C_{x}^{2} > 0.5}, \ Z_{y}^{2} > 0.5) \\ & A_{ij}^{\prime} h^{2} = (Q_{ij21} + Q_{ij12})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij21} + Q_{ij12})/8 \\ & D_{ij}^{\prime} h^{3} = (Q_{ij21} + Q_{ij12})/2 \\ \end{aligned}$$

$$\begin{aligned} \frac{Case 6}{(C_{x}^{2} > 0.5)}, \ Z_{y}^{2} > 0.5) \\ & A_{ij}^{\prime} h^{2} = (Q_{ij11} - Q_{ij22})/8 \\ & D_{ij}^{\prime} h^{3} = (Q_{ij11} + Q_{ij22})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij11} + Q_{ij22})/2 \\ & D_{ij}^{\prime} h^{3} = (Q_{ij21} + Q_{ij22})/2 \\ & A_{ij}^{\prime} h^{2} = (Q_{ij21} - Q_{ij22})/8 \\ & D_{ij}^{\prime} h^{3} = (Q_{ij21} + Q_{ij22})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij21} - Q_{ij22})/8 \\ & D_{ij}^{\prime} h^{3} = (Q_{ij21} + Q_{ij22})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij11} + Q_{ij22})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij11} - Q_{ij22})/8 \\ & D_{ij}^{\prime} h^{3} = (Q_{ij11} + Q_{ij12})/2 \\ & A_{ij}^{\prime} h = (Q_{ij11} + Q_{ij12})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij11} - Q_{ij12})/8 \\ & D_{ij}^{\prime} h^{3} = (Q_{ij11} + Q_{ij12})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij11} + Q_{ij12})/2 \\ & B_{ij}^{\prime} h^{2} = (Q_{ij11} + Q_{ij12})/2 \\ & B_{ij}^{\prime} h^{3} = (Q_{ij11} + Q_{ij12})/2 \\ & B_{ij}^{\prime}$$

Single Layer

For a single layer (0°) ,

$$A_{ij}/h = (Q_{ij11} + Q_{ij21})/2 + (Q_{ij21} - Q_{ij11})Z_x$$

$$B_{ij}/h^2 = (Q_{ij11} - Q_{ij21})/8 + (Q_{ij21} - Q_{ij11})Z_x/2$$
(A-17)

$$D_{ij}/h^3 = (Q_{ij11} + Q_{ij21})/24 + (Q_{ij21} - Q_{ij11})Z_x/3$$

For neutral surface out of plane,

 $\frac{Case 1}{(Z_{\chi}>0.5)}$ $A_{ij}/h = Q_{ij21}$ $B_{ij}/h^{2} = 0$ $D_{ij}/h^{3} = Q_{ij21}/12$ (A-18)

 $\frac{\text{Case 2}}{(Z_{x}^{>-0.5})}$

$$A_{ij}/h = Q_{ij11}$$

 $B_{ij}/h^2 = 0$ (A-19)
 $D_{ij}/h^3 = Q_{ij11}/12$

APPENDIX B

DENSITIES OF ARAMID, POLYESTER, AND RUBBER

Fibers:

According to the Kevlar Data Manual [50], the densities of the fibers of aramid and polyester are:

Kevlar (aramid) = $0.052 \text{ lb}_{f}/\text{in}^{3}$ Polyester = $0.049 \text{ lb}_{f}/\text{in}^{3}$

Rubber:

Reference [51] lists nautral rubber and isoprene rubber at specific gravity, 0.93, and SBR plus BR rubber at specific gravity, 0.94. Taking 0.93, the density of rubber can be calculated as: Density = 0.93 x 62.4 lb_f/ft^3 (H₂0)/1728 in³/ft³

= 0.034 lb_f/in³

Composite:

If ρ represents the density (f for fiber and m for matrix) and V represents the volume fraction, the density of the composite ρ for an be written as:

$$P = P_f V_f + P_m V_m$$
$$= P_m + (P_f - P_m) V_f$$

The values of V_{f} according to Ref. [2] are:

Aramid/rubber : 0.140

والمستحد ويعتر ومتراهر والأراح أأرجا والانتقاد فالتركي ومتحكم والمراجع والمراجع

Polyester/rubber: 0.149

Thus, the densities of the composites can be listed as follows:

Composite	$\frac{\text{Density}}{\rho(1b_f/in^3)}$
Aramid/rubber	0.037
Polyester/rubber	0.036

APPENDIX C

THERMAL FORCE AND MOMENT EXPRESSIONS FOR CASES II - VIII

Expressions for $N_{1,x}^{T}$, $N_{2,y}^{T}$, $M_{1,x}^{T}$, and $M_{2,y}^{T}$ were derived for Case I in Chapter IV. In a similar way, one can obtain the expressions for the above-mentioned quantities for the remaining seven cases as follows:

$$\begin{aligned} \frac{\text{Case II}}{z_{nx} > 0, \ z_{ny} > 0} \\ N_{1,x}^{\mathsf{T}} &= \alpha \{ (\beta_{122} + \beta_{111}) (\bar{\mathsf{T}}_{0}h/2) + (\beta_{121} - \beta_{111}) (\bar{\mathsf{T}}_{0}z_{nx}) \\ &+ (\beta_{111} - \beta_{122}) (\bar{\mathsf{T}}_{1}h/8) + (\beta_{121} - \beta_{111}) (\bar{\mathsf{T}}_{1}z_{nx}^{2}/2h) \} \\ N_{2,y}^{\mathsf{T}} &= \beta \{ (\beta_{222} + \beta_{211}) (\bar{\mathsf{T}}_{0}h/2) + (\beta_{221} - \beta_{211}) (\bar{\mathsf{T}}_{0}z_{nx}) \\ &+ (\beta_{211} - \beta_{222}) (\bar{\mathsf{T}}_{1}h/8) + (\beta_{221} - \beta_{211}) (\bar{\mathsf{T}}_{1}z_{nx}^{2}/2h) \} \\ M_{1,x}^{\mathsf{T}} &= \alpha \{ (\beta_{111} - \beta_{122}) (\bar{\mathsf{T}}_{0}h^{2}/8) + (\beta_{121} - \beta_{111}) (\bar{\mathsf{T}}_{0}z_{nx}^{2}/2) \\ &+ (\beta_{122} + \beta_{111}) (\bar{\mathsf{T}}_{1}h^{2}/24) + (\beta_{121} - \beta_{111}) (\bar{\mathsf{T}}_{0}z_{nx}^{2}/2) \\ &+ (\beta_{222} - \beta_{211}) (\bar{\mathsf{T}}_{0}h^{2}/8) + (\beta_{221} - \beta_{211}) (\bar{\mathsf{T}}_{0}z_{nx}^{2}/2) \\ &+ (\beta_{222} - \beta_{211}) (\bar{\mathsf{T}}_{1}h^{2}/24) + (\beta_{221} - \beta_{211}) (\bar{\mathsf{T}}_{1}z_{nx}^{3}/3h) \} \end{aligned}$$

$$\begin{split} &\frac{\text{Case III}}{z_{nx}^{-} \langle 0, z_{ny}^{-} \rangle^{0}} \\ & \aleph_{1,x}^{-} = \alpha((\beta_{122} + \beta_{111})(\bar{\uparrow}_{0}h/2) + (\beta_{121} - \beta_{111})(\bar{\uparrow}_{0}z_{ny}^{-}) \\ & + (\beta_{122} - \beta_{112})(\bar{\uparrow}_{0}z_{nx}^{-}) + (\beta_{111} - \beta_{122})(\bar{\uparrow}_{1}h/8) \\ & + (\beta_{121} - \beta_{111})(\bar{\uparrow}_{1}z_{ny}^{-}/2h) + (\beta_{122} - \beta_{112})(\bar{\uparrow}_{1}z_{nx}^{-}/2h) \} \\ & \aleph_{2,y}^{-} = \beta((\beta_{222} + \beta_{211})(\bar{\uparrow}_{0}h/2) + (\beta_{221} - \beta_{211})(\bar{\uparrow}_{0}z_{ny}) \\ & + (\beta_{222} - \beta_{212})(\bar{\uparrow}_{0}z_{nx}) + (\beta_{211} - \beta_{222})(\bar{\uparrow}_{1}h/8) \\ & + (\beta_{221} - \beta_{211})(\bar{\uparrow}_{1}z_{ny}^{-}/2h) + (\beta_{222} - \beta_{212})(\bar{\uparrow}_{1}z_{nx}^{-}/2h) \} \\ & M_{1,x}^{-} = \alpha((\beta_{111} - \beta_{122})(\bar{\uparrow}_{0}h^{2}/8) + (\beta_{121} - \beta_{111})(\bar{\uparrow}_{0}z_{ny}^{-}/2) \\ & + (\beta_{122} - \beta_{112})(\bar{\uparrow}_{0}z_{nx}^{-}/2) + (\beta_{122} + \beta_{111})(\bar{\uparrow}_{1}h^{2}/24) \\ & + (\beta_{121} - \beta_{111})(\bar{\uparrow}_{1}z_{ny}^{-}/3h) + (\beta_{122} - \beta_{112})(\bar{\uparrow}_{1}z_{nx}^{-}/3h) \} \\ & M_{2,y}^{-} = \beta\{(\beta_{211} - \beta_{222})(\bar{\uparrow}_{0}h^{2}/8) + (\beta_{221} - \beta_{211})(\bar{\uparrow}_{0}z_{ny}^{-}/2) \\ & + (\beta_{222} - \beta_{212})(\bar{\uparrow}_{0}z_{nx}^{-}/2) + (\beta_{222} + \beta_{211})(\bar{\uparrow}_{1}h^{2}/24) \\ & + (\beta_{222} - \beta_{212})(\bar{\uparrow}_{0}z_{nx}^{-}/2) + (\beta_{222} - \beta_{212})(\bar{\uparrow}_{1}z_{nx}^{-}/3h)\} \end{split}$$

<u>Case IV</u> z_{nx}<0, z_{ny}<0

$$N_{1,X}^{T} = \alpha \{ (\beta_{122} + \beta_{111}) (\bar{T}_{0}h/2) + (\beta_{122} - \beta_{121}) (\bar{T}_{0}z_{ny}) + (\beta_{111} - \beta_{122}) (\bar{T}_{1}h/8) + (\beta_{122} - \beta_{121}) (\bar{T}_{1}z_{ny}^{2}/2h) \}$$

$$N_{2,y}^{-1} = \beta\{(\beta_{222} + \beta_{211})(\bar{T}_{0}h/2) + (\beta_{222} - \beta_{221})(\bar{T}_{0}z_{ny}) + (\beta_{211} - \beta_{222})(\bar{T}_{1}h/8) + (\beta_{222} - \beta_{221})(\bar{T}_{1}z_{ny}^{2}/2/h)\}$$

$$M_{1,x}^{-1} = \alpha\{(\beta_{111} - \beta_{122})(\bar{T}_{0}h^{2}/8) + (\beta_{122} - \beta_{121})(\bar{T}_{0}z_{ny}^{2}/2) + (\beta_{122} + \beta_{111})(\bar{T}_{1}h^{2}/24) + (\beta_{122} - \beta_{121})(\bar{T}_{1}z_{ny}^{3}/3h)\}$$

$$M_{2,y}^{-1} = \beta\{(\beta_{211} - \beta_{222})(\bar{T}_{0}h^{2}/8) + (\beta_{222} - \beta_{221})(\bar{T}_{0}z_{ny}^{2}/2) + (\beta_{222} + \beta_{211})(\bar{T}_{1}h^{2}/24) + (\beta_{222} - \beta_{221})(\bar{T}_{1}z_{ny}^{3}/3h)\}$$

For neutral surface going out of plane,

$$\begin{aligned} \frac{\text{Case V}}{Z_{X} > 0.5}, \ Z_{y} < -0.5 \\ N_{1,x}^{T} &= \alpha \{ (\beta_{121} + \beta_{112}) \overline{T}_{0} / 2 + (\beta_{121} - \beta_{112}) \overline{T}_{1} / 8 \} \\ N_{2,y}^{T} &= \beta \{ (\beta_{221} + \beta_{212}) \overline{T}_{0} / 2 + (\beta_{221} - \beta_{212}) \overline{T}_{1} / 8 \} \\ M_{1,x}^{T} &= \alpha \{ (\beta_{121} - \beta_{112}) \overline{T}_{0} / 8 + (\beta_{121} + \beta_{112}) \overline{T}_{1} / 24 \} \end{aligned}$$

$$\begin{aligned} \text{(C-4)} \\ M_{2,y}^{T} &= \beta \{ (\beta_{221} - \beta_{212}) \overline{T}_{0} / 8 + (\beta_{221} + \beta_{212}) \overline{T}_{1} / 24 \} \end{aligned}$$

$$\begin{aligned} \frac{\text{Case VI}}{Z_{x} < 0.5}, \ Z_{y} > 0.5 \\ N_{1,x}^{T} &= \alpha \{ (\beta_{121} + \beta_{112}) \overline{T}_{0} / 2 + (\beta_{121} - \beta_{112}) \overline{T}_{1} / 8 \} \\ N_{2,y}^{T} &= \beta \{ (\beta_{221} + \beta_{212}) \overline{T}_{0} / 2 + (\beta_{221} - \beta_{212}) \overline{T}_{1} / 8 \} \\ M_{1,x}^{T} &= \alpha \{ (\beta_{121} - \beta_{112}) \overline{T}_{0} / 8 + (\beta_{121} + \beta_{112}) \overline{T}_{1} / 24 \} \\ M_{2,y}^{T} &= \beta \{ (\beta_{221} - \beta_{212}) \overline{T}_{0} / 8 + (\beta_{221} + \beta_{212}) \overline{T}_{1} / 24 \} \end{aligned}$$
(C-5)

$$\frac{Case VII}{Z_{x}>0.5, Z_{y}>0.5}$$

$$N_{1,x}^{T} = \alpha\{(\beta_{111} + \beta_{112})\bar{T}_{0}/2 + (\beta_{111} - \beta_{112})\bar{T}_{1}/8\}$$

$$N_{2,y}^{T} = \beta\{(\beta_{211} + \beta_{212})\bar{T}_{0}/2 + (\beta_{211} - \beta_{212})\bar{T}_{1}/8\}$$

$$M_{1,x}^{T} = \alpha\{(\beta_{111} - \beta_{112})\bar{T}_{0}/8 + (\beta_{111} + \beta_{112})\bar{T}_{1}/24\}$$

$$M_{2,y}^{T} = \beta\{(\beta_{211} - \beta_{212})\bar{T}_{0}/8 + (\beta_{211} + \beta_{212})\bar{T}_{1}/24\}$$
(C-6)

$$\frac{\text{Case VIII}}{Z_{x} < -0.5, Z_{y} < -0.5}$$

$$N_{1,x}^{T} = \alpha \{ (\beta_{121} + \beta_{122}) \overline{1}_{0} / 2 + (\beta_{121} - \beta_{122}) \overline{1}_{1} / 8 \}$$

$$N_{2,y}^{T} = \beta \{ (\beta_{221} + \beta_{222}) \overline{1}_{0} / 2 + (\beta_{221} - \beta_{222}) \overline{1}_{1} / 8 \}$$

$$M_{1,x}^{T} = \alpha \{ (\beta_{121} - \beta_{122}) \overline{1}_{0} / 8 + (\beta_{121} + \beta_{122}) \overline{1}_{1} / 24 \}$$

$$M_{2,y}^{T} = \beta \{ (\beta_{221} - \beta_{222}) \overline{1}_{0} / 8 + (\beta_{221} + \beta_{222}) \overline{1}_{1} / 24 \}$$

(C-7)

For a single layer, change β_{112} to β_{111} , β_{122} to β_{121} , β_{212} to β_{211} and β_{222} to β_{221} .

APPENDIX D

IN-PLANE DISPLACEMENTS AND SLOPE COEFFICIENTS

The in-plane displacements and the slope coefficients corresponding to the middle-surface deflections presented in the preceding chapters are listed in the following tables.

Table D2.5.	In-Plane Displacements and Slope Coefficients
	Associated with Table 2.5

a/b	$(UE_{22}^{c}h^{3}/q_{0}^{b^{4}})\times 10^{-2}$	(VE ₂₂ ^c h ³ /q ₀ b ⁴)×10 ⁻²	$(XE_{22}^{c}h^{3}/q_{0}^{b^{4}})\times 10^{-2}$	$(YE_{22}^{C}h^{3}/q_{0}b^{4})\times 10^{-2}$
		Aramid-Rubber (NL=1)	
0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0	0.0510 0.0824 0.1204 0.1725 0.2064 0.2495 0.3264 0.3844 0.4222 0.4427 0.4503	- 0.0238 - 0.0386 - 0.0552 - 0.0720 - 0.0877 - 0.1013 - 0.1209 - 0.1308 - 0.1313 - 0.1269 - 0.1269	- 0.1162 - 0.1883 - 0.2754 - 0.3727 - 0.4745 - 0.5754 - 0.7575 - 0.8982 - 1.0509 - 1.0778 - 1.0778	- 0.0730 - 0.1333 - 0.2187 - 0.3295 - 0.4634 - 0.6161 - 0.9569 - 1.3101 - 1.9486 - 2.2132 - 2.2132
	<u> </u>	Polyester-Rubber	(NL=1)	
0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8	0.0150 0.0252 0.0387 0.0554 0.0749 0.0967 0.1442 0.1915 0.2327 0.2646 0.2963	- 0.0073 - 0.0122 - 0.0184 - 0.0256 - 0.0335 - 0.0419 - 0.0588 - 0.0744 - 0.0873 - 0.0971	- 0.0503 - 0.0848 - 0.1304 - 0.1871 - 0.2539 - 0.3291 - 0.4947 - 0.6616 - 0.8096 - 0.9264	- 0.0449 - 0.0787 - 0.1281 - 0.1960 - 0.2845 - 0.3945 - 0.6760 - 1.0211 - 1.3972 - 1.7716

a/b	(UE ₂₂ ^C h ³ /q ₀ b ⁴)x10	⁻² (VE ₂₂ ^C h ³ /q ₀ b ⁴)x10 ⁻	³ (XE ₂₂ ^C h ³ /q ₀ b ⁴)x10	$p^{-2} (YE_{22}{}^{c}h^{3}/q_{0}b^{4}) \times 10^{-2}$
		Aramid-Rubber	(NL=2)	
0.5	0.5967	- 0.5570	- 0.1114	- 0.0716
0.6	0.4608	- 0.4168	- 0.1789	- 0.1290
0.7	0.3612	- 0.3197	- 0.2602	- 0.2099
0.8	0.2855	- 0.2487	- 0.3517	- 0.3151
0.9	0.2267	- 0.1951	- 0.4485	- 0.4429
1.0	0.1804	- 0.1539	- 0.5456	- 0.5899
1.0	0.1804	- 0.1539	- 0.5456	- 0.5899
1.2	0.1148	- 0.0969	- 0.7247	- 0.9220
1.4	0.0736	- 0.0618	- 0.8672	- 1.2718
1.6	0.0478	- 0.0400	- 0.9673	- 1.6084
1.8	0.0315	- 0.0265	- 1.0289	- 1.9144
2.0	0.0211	- 0.0179	- 1.0603	- 2.1832
		Polyester-Rubbe	r (NL=2)	
0.5	0.5139	- 1.1570	- 0.1169	- 0.0739
0.6	0.3980	- 0.9203	- 0.1881	- 0.1330
0.7	0.3113	- 0.7477	- 0.2731	- 0.2152
0.8	0.2440	- 0.6133	- 0.3660	- 0.3195
0.9	0.1909	- 0.5045	- 0.4597	- 0.4417
1.0	0.1489	- 0.4146	- 0.5475	- 0.5754
1.2	0.0898	- 0.2787	- 0.6882	- 0.8497
1.4	0.0541	- 0.1871	- 0.7730	- 1.0991
1.6	0.0330	- 0.1267	- 0.8099	- 1.3047
1.8	0.0206	- 0.0872	- 0.8138	- 1.4662
2.0	0.0132	- 0.0612	- 0.7979	- 1.5905

1. A 1. A 1.

Table D2.6.In-Plane Displacements and Slope CoefficientsAssociated with Table 2.6

a/b	Uh/a_2 ^t T_1b^2	$(Vh/\alpha_2 t \bar{t}_1 b^2) \times 10^1$	Xh/a_2 ^t \overline{T}_1b^2	$(Yh/\alpha_2 t \bar{T}_1 b^2) \times 10^1$		
	Aramid-Rubber (NL=1)					
0.5	- 0.1596	- 0.1163	- 6.9363	~ 0.6982		
0.7	- 0.2226	- 0.1669	- 0.1430	- 0.6081		
0.9	- 0.2854	- 0.2034	- 0.2395	- 0.5857		
1.0	- 0.3168	- 0.2172	- 0.2959	- 0.5886		
1.2	- 0.3795	- 0.2383	- 0.4236	- 0.6131		
1.4	- 0.4421	- 0.2531	- 0.5692	- 0.6556		
1.6	- 0.5045	- 0.2638	- 0.7298	- 0.7110		
1.8	- 0.5669	- 0.2716	- 0.9018	- 0.7765		
2.0	- 0.6292	- 0.2775	- 1.0813	- 0.8495		
		Polyester-Rubber	· (NL=1)			
0.5	- 0.1619	- 0.1333	- 0.0767	- 0.2048		
0.7	- 0.2226	- 0.1848	- 0.1587	- 0.1833		
0.9	- 0.2826	- 0.2197	- 0.2639	- 0.1846		
1.0	- 0.3124	- 0.2325	- 0.3238	- 0.1906		
1.2	- 0.3719	- 0.2516	- 0.4550	- 0.2108		
1.4	- 0.4310	- 0.2647	- 0.5959	- 0.2393		
1.6	- 0.4898	- 0.2740	- 0.7388	- 0.2736		
1.8	- 0.5482	- 0.2807	- 0.8760	- 0.3114		
2.0	- 0.6062	- 0.2858	- 1.0002	- 0.3503		

Table D4.2. In-Plane Displacements and Slope Coefficients Associated with Table 4.2

a/b	$(Uh/a_2t \bar{1}_1b^2)x10^{-1}$	$(Vh/a_2 t \bar{T}_1 b^2) \times 10^{-1}$	$Xh/a_2 t \bar{T}_1 b^2$	Yh/a_2 ^t \overline{T}_1b^2			
	Aramid-Rubber (NL=2)						
0.5	- 3.3455	-0.1701×10^4	2.6210	- 1.1264			
0.7	- 5.4763	-0.2371×10^4	4.7012	- 1.0100			
0.9	0.0229	- 0.7557	- 0.0397	- 1.2135			
1.0	0.0547	- 0.7789	- 0.0558	- 0.2227			
1.2	0.1112	- 0.8233	- 0.0853	- 0.2403			
1.4	0.1513	- 0.8597	- 0.1081	- 0.2548			
1.6	0.1738	- 0.8867	- 0.1240	- 0.2655			
1.8	0.1821	- 0.9054	- 0.1341	- 0.2730			
2.0	0.1803	- 0.9177	- 0.1401	- 0.2779			
	Pol	yester-Rubber (NL=2)					
0.5	- 46.395	- 32.850	6.2344	- 3.9037			
0.7	- 66.708	- 33.152	8.9231	- 3.8930			
0.9	- 63.472	- 34.827	8.1669	- 4.2283			
1.0	- 55.893	- 36.025	6.9217	- 4.5183			
1.2	- 40.106	- 37.695	4.3247	- 4.942			
1.4	- 37.079	-0.1555×10^3	1.1373	0.3559 x 10 ³			
1.6	- 42.873	-0.1650×10^3	1.2790	0.3544×10^3			
1.8	- 47.826	-0.1578×10^{3}	1.4415	0.3404 x 10 ³			
2.0	- 52.199	- 0.1428 x 10 ³	1.6249	0.3218 x 10 ³			

Table D4.3. In-Plane Displacements and Slope Coefficients Associated with Table 4.3

	Aramid-Rubber (NL=1)		Polyester-Rubber (NL=1)		
a/b	U (1)	V (†)	(1)	(1)	
0.5 0.6 0.7 0.8	0.3214×10^{-5} 0.5647×10^{-5} 0.9079×10^{-5} 0.1366×10^{-4}	-0.1441×10^{-5} -0.2798 x 10^{-5} -0.4861 x 10^{-5} -0.7005 x 10^{-5}	0.1377×10^{-4} 0.2374×10^{-4} 0.3743×10^{-4} 0.5517×10^{-4}	-0.5047×10^{-5} -0.9305×10^{-5} -0.1730×10^{-4} -0.2304×10^{-4}	
0.9 1.0 1.2 1.4 1.6 1.8 2.0	$0.1958 \times 10^{-4} \\ 0.2688 \times 10^{-4} \\ 0.4615 \times 10^{-4} \\ 0.7139 \times 10^{-4} \\ 0.1027 \times 10^{-3} \\ 0.1382 \times 10^{-3} \\ 0.1758 \times 10$	-0.1185×10^{-4} -0.1717×10^{-4} -0.3269×10^{-4} -0.5631×10^{-4} -0.9065×10^{-4} -0.1379×10^{-3} -0.2007×10^{-3}	0.7719×10^{-4} 0.1029×10^{-3} 0.1651×10^{-3} 0.2345×10^{-3} 0.3018×10^{-3} 0.3567×10^{-3} 0.3981×10^{-3}	-0.4209×10^{-4} -0.6247×10^{-4} -0.1199×10^{-3} -0.2068×10^{-3} -0.3290×10^{-3} -0.4887×10^{-3} -0.6347×10^{-3}	
a/b	U (11)	V (11)	U (ii)	V (ji)	
0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0	$\begin{array}{c} 0.7656 \times 10^{-3} \\ 0.1195 \times 10^{-2} \\ 0.1605 \times 10^{-2} \\ 0.1857 \times 10^{-2} \\ 0.1857 \times 10^{-2} \\ 0.1816 \times 10^{-2} \\ 0.1382 \times 10^{-2} \\ -0.6104 \times 10^{-3} \\ -0.3813 \times 10^{-2} \\ -0.7777 \times 10^{-2} \\ -0.1216 \times 10^{-1} \\ -0.1675 \times 10^{-1} \end{array}$	$\begin{array}{r} -0.3512 \times 10^{-3} \\ -0.6279 \times 10^{-3} \\ -0.1012 \times 10^{-2} \\ -0.1543 \times 10^{-2} \\ -0.2295 \times 10^{-2} \\ -0.3351 \times 10^{-2} \\ -0.6757 \times 10^{-2} \\ -0.1221 \times 10^{-1} \\ -0.1981 \times 10^{-1} \\ -0.2949 \times 10^{-1} \\ -0.4106 \times 10^{-1} \end{array}$	$\begin{array}{r} 0.2051 \times 10^{-2} \\ 0.2072 \times 10^{-2} \\ 0.9315 \times 10^{-3} \\ -0.1215 \times 10^{-2} \\ -0.4870 \times 10^{-2} \\ -0.9015 \times 10^{-2} \\ -0.1856 \times 10^{-1} \\ -0.2876 \times 10^{-1} \\ -0.3886 \times 10^{-1} \\ -0.4835 \times 10^{-1} \\ -0.5686 \times 10^{-1} \end{array}$	$\begin{array}{r} -0.8036 \times 10^{-3} \\ -0.1289 \times 10^{-2} \\ -0.2085 \times 10^{-2} \\ -0.3786 \times 10^{-2} \\ -0.5964 \times 10^{-2} \\ -0.9549 \times 10^{-2} \\ -0.2047 \times 10^{-1} \\ -0.3620 \times 10^{-1} \\ -0.5615 \times 10^{-1} \\ -0.7949 \times 10^{-1} \\ -0.1053 \end{array}$	

Table D5.2. In-Plane Displacements Associated with Table 5.2

And the second second second second second

And a second second second

	Aramid-Rubber (NL=2) Polyester-Rubber (NL		ubber (NL=2)	
a/b	(1)	(^Y)	(†)	(¥)
0.5	0.4194×10^{-5}	-0.6301×10^{-6}	0.1982×10^{-4}	-0.9016×10^{-5}
0.6	0.7255×10^{-5}	-0.1140×10^{-5}	0.3383×10^{-4}	-0.1823×10^{-4}
0.7	0.1148×10^{-4}	-0.1889×10^{-5}	0.5280×10^{-4}	-0.3298×10^{-4}
0.8	0.1705×10^{-4}	-0.2944×10^{-5}	0.7696 x 10 ⁻⁴	-0.5484×10^{-4}
0.9	0.2412×10^{-4}	-0.4382×10^{-5}	0.1062 x 10 ⁻³	-0.8536×10^{-4}
1.0	0.3282×10^{-4}	-0.6299×10^{-5}	0.1399 x 10 ⁻³	-0.1259 x 10 ⁻³
1.2	0.5547×10^{-4}	-0.1200×10^{-4}	0.2173 x 10 ⁻³	-0.2402×10^{-3}
1.4	0.8529×10^{-4}	-0.2126×10^{-4}	0.2972 x 10 ⁻³	-0.3993 x 10 ⁻³
1.6	0.1214×10^{-3}	-0.3567×10^{-4}	0.3708×10^{-3}	-0.5964×10^{-3}
1.8	0.1626×10^{-3}	-0.5737×10^{-4}	0.4308 x 10 ⁻³	-0.8177×10^{-3}
2.0	0.2055×10^{-3}	-0.9012×10^{-4}	0.4750 x 10 ⁻³	-0.1046 x 10 ⁻²
a/b	U (ii)	V (ii)	U (11)	V (ii)
	2			

Table D5.3. In-Plane Displacements	Associated	with	Table	5.3
------------------------------------	------------	------	-------	-----

_				
a/b	U (ii)	V (ii)	U (ii)	V (ii)
0.5	0.2483×10^{-2}	-0.1847×10^{-2}	0.7623×10^{-3}	-0.1374×10^{-3}
0.6	0.2562×10^{-2}	-0.3998×10^{-2}	0.1194 x 10 ⁻²	-0.2888×10^{-3}
0.7	0.1401×10^{-2}	-0.7835×10^{-2}	0.1599×10^{-2}	-0.6180×10^{-3}
0.8	-0.1053×10^{-2}	-0.1391 x 10 ⁻¹	0.1849×10^{-2}	-0.1338×10^{-2}
0.9	-0.4506×10^{-2}	-0.2240×10^{-1}	0.1807×10^{-2}	-0.2729×10^{-2}
1.0	-0.8479×10^{-2}	-0.3307×10^{-1}	0.1391×10^{-2}	-0.5014×10^{-2}
1.2	-0.1568×10^{-1}	-0.5676×10^{-1}	-0.4823×10^{-3}	-0.1241 x 10 ⁻¹
1.4	-0.1938×10^{-1}	-0.7625×10^{-1}	-0.2872 x 10 ⁻²	-0.2195×10^{-1}
1.6	-0.1973×10^{-1}	-0.8835×10^{-1}	-0.2872×10^{-2}	-0.2195 x 10 ⁻¹
1.8	-0.1835 x 10	-0.9482×10^{-1}	-0.5559×10^{-2}	-0.3967×10^{-1}
2.0	-0.1636×10^{-1}	-0.9814 x 10 ⁻¹	-0.5559×10^{-2}	-0.3967 x 10 ⁻¹

APPENDIX E

TYPICAL COMPUTER SOLUTIONS

Sample computer printouts are attached. The programs are presented separately for each problem. They are self-explanatory. The dimension statement allows required values for different quantities. For example, reduced stiffnesses take 5x5x2x2 values (2 represents 2 layers, and the other 2 indicate different properties in tension (1) and compression (2)) and THETA takes either zero or 1.5708 radians.

The ISML library subroutine LEQT2F solves N equations in N unknowns. EIGZF solves eigenvalue problem, and ZRPOLY solves cubic equation. It should be mentioned that WKAREA, WK, etc. are part of such subroutines.

The values of z_{nx} and z_{ny} are assumed in the beginning to get the displacements. An iterative procedure is then adopted until a precision of <u>+</u> 0.0001 is achieved to get the actual deflections. Later on the whole procedure is repeated for different aspect ratios.

Computations are carried out for a single-layer rectangular plate by making NL=1 (number of layers) and, of course, with a proper set of equations for A_{ij} , B_{ij} , and D_{ij} . With proper A_{ij} , B_{ij} , and D_{ij} and NL=2, the program calculates the deflections and neutral-surface locations for a two-layer, cross-ply rectangular plate. THETA takes the values 0 and 1.5708 (corresponding to 0° and 90°) radians for the two-

layer, cross-ply case.

Close attention is needed to use the equations for stiffnesses and neutral-surface locations. COMPUTER PROGRAM FOR STATIC BENDING (SINGLE LAYER)

	\$JCB	TIME=(1,55)
1		INFLICIT SEAL+B(A-F(C-Z))
2		DIFENSION Ell(2) FERRI2) -512(2) +023(0) FG31(0) + 4NU12(2) + 3NU21(2) +0
		本保(ちゅちょこ)。((ちゅち・2・2)。)(さっき)。((ちょき)。((ちょち)。(ひょち)(う。())。
		****AREA(50).THETA(2)
3		READ.211(1).211(2).222(1).222(2).012(1).012(2).073(1).073(2).
		4631(1)+631(2)+ANJ15(1)+ANJ1-(2)+ARJ91(1)+15,301(2)+TestA(1)+
		*18874(2)
is.	:	FC 20 1=1.5
•:	• •	
ц. У		
, c		
с С		
9		G(1+J+K+L)=G+0
10	20	J CENTIAUE
11		NL = 1.0
1		DC 30 I=1,5
13		DC 30 J=1.5
1		CC 30 K=1+2
1.5		DENCN = 1 + ANU12(K) + ANU21(K)
;		GG(1.1.K)=E11(K)/DENCN
17		GC(2+2+K)=E22(K)/DENCM
1:		CQ(1.2.K)=ANU12(K)+G((2.2.K)
15		QG(2, 1, K) = QG(1, 2, K)
20		(0 (3 + 3 + K)) = (1 + 2 (K))
		(0)(4,4,4,k) = (2)(k)
2		
- 21 14 - 12		
<u> </u>		
07		
<i>с</i> ,		
••••		x4 = x4 + 4
را ہے		
3.0		G(1+1+K+L) = GO(1+1+K) + X + GO(2+2+K) + Y + GO(2+2+K) + GO(2+K)
21		G(1+2+K+L) = GO(1+2+K) + (Y4+X4)
		C(2+1+K+L)≃C(1+2+K+_)
- B		G(2,2,K,L) = GO(1,1,K)#Y44GQ(2,2,K)#/4
<u>_</u> 4		Q(3+3+K+L)=GU(3+3+K)* (*4+X4+
35		Q(4,4,4,K)=CQ(4,4,K)+20Q(5×5,K)+32
23		Q(5,5,K,L)#QQ(4,4,K)#Y2+CQ(3,3,K)#X2
u 7	3 U	CENTINUE
2.0		Ax=5.0
<u>ئە ت</u>		87=10.0
40		2x=0.001
41		ZY=-C.001
- 2		PRINT 16.211.222.612.623.631.ANU12.ANU21.THETA.ALFA.T2ARO.TEARI
ن.	40	2x2=2xx+2
ć, 4		2 * 2 = 2 * * * *
46		2 > 3 = 2 × 4 + 3 3 - 1
4 6		2 13 = 2 1 + + 3
49		
4.2		N N = 1
40 40		ALEHA = 6000-141623X
2 C. - C. 1		
- 1 - 1		
3	,	- UNE DU JAINE Alter a chilte de la contra de la
3 . 2		- MANAAAA = LUKIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
- -		O(1 + J) = (U(1 + J) + (1 + 1) + G(1 + J) + 2 + (1) + 2 + (1 + J) + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
- E		- 543 3.6 4.7 5 1.7 1.7 5 1.6 1.7 6 4.7 1.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Contraction in the second second

50 A(L.I)=A(L.J) \$7 ヨ(コ・1)=巳(1)ゴ) 35 C(J.1)=C(1.J) 55 50 CONTINUE 60 *44#8@84+4+8+1)+8(4+4+2+2))/2+(8(++++2+1)+6(4+4+1+1))*2** * [0(++++2+2}-914+4+1+8)}+2* ÷ i | みちちゃくらしょうにっぽうよう せんしちっきっとっこう ソノアン しじくらっちっ とっよう ひっといしっしょう りとされつ A (Q (D + 2 + 2 + 2) + 2 (5 + 4 + 1 + 2) + 2 Y 62 SGRK4=0.833 ι3 SCAKE=0.873 04 C(1+1)=+4(1+1)+ALPEARX2-4(1+3)>00TA++2 61 C(1,2)=-(A(1,2)+4(3,3))+4LFHA+6ETA C: c C(1.3)=0.0 67 C(1+4)=-(E(1+2)+E(2+2))+ALPHA+EETA 68 C(1.5)=-6(1.1)**LPHA**2+8(3.3)*88TA**C 65 CCASE(1.1)=0.0 70 C(2,1)=C(1,2) 71 C(2+2)=+A(3+3)+ALPEANA2-A(2+2)+BRTAN+2 22 C(2.3)=C.3 77 C(2,4)=-E(3,3)+>LPHA++2+U(2,2)+U(Tx++2 74 C(2,5)=C(1,4) 74 CDASF(2,1)=0.0 0(2.1)=0(1.2) 2 17 C(2,2)=C(2,2)2. 「本小田下でよるの C(3+3)=+50R+06438 - +3628448 2-368844 - 244 7.4 C(B)()=-EGNMAR KAA - VEETA 보 C C(2,2)=-SCEKEA ARB #4LEEN CDAFF(3+1)=+622(2)/3va44 . 1 82 C(4,1)=C(1,4)23 C(4.2)=C(2.4) C(4.3)=C(3.4) 2: 4 で(4~1)=一C1313)キャドビトフォラーロック・ファンタ日日上がからたーランドメネルタイオ $\hat{\pmb{\varepsilon}} \gg$ 1.1 「(キャシ)ニー(つ(1・こ)・つ(こ・う))のみ、戸山のキャビとすみ 1.7 CD451(4.1)=0.0 C(E,1)=C(1,E) . . 3. 2(5+2)=0(2+5) 9.2 C(E.E)=C(3.E) 51 C(E+4)=C(4+8) C(5+5)=+0(1+1)+4L0H4++2+0(3+3)+00T4++2+5CR85+A55 22 43 CDASH(S+1)=0+0 • N= 1 1 N 75 31 11=5 47 1067=4 93 CALL LECTOPIC . V . N . IA . CUASH . LOUT . WK 4667 . LEN } ZXX=-CDASH(1.1)/CDASH(5.1) 1.1 100 271=-CEASH (2.1)/CEASH (4.1) :)1 Z X4 == CARE(CA35(2X)-CARE(ZXX)) 2.2 274 = CAES(CARS(27)-CARS(277)) 132 16 (CXA+CT+0+0001)2X=2XX - (2Y1.6T.C.0001) GG TO 60 104 11 132 GE TE 70 1.)1. 60 21=217 1.37 GC TC 40 70 U=CDASH(1+1) 1 21. 1.35 V=CD42H(2+1) 110 BEGDASE(2.1) 111 インエビジタミト (ル・1) 112 XX=CD45H(5.1) 112 PRINT IC.COASH.Z.S.LY.AX

.

•	a an a sa taga	
1.1		
11	The second for a second provide	
1		

.

·

.

COMPUTER PROGRAM FOR STATIC BENDING (CROSS-PLY)
	SJCB TIME#(1.55)
1	INPLICIT REAL#3(A+H+0+2)
5	DIMENSION ELL(2). E22(2). CL2(2). G23(2). G31(2). AMUL2(2). ANUL1(2). A
	\$Q(5+5+2)+Q(5+5+2+2)+A(2+3)+d(3+3)+d(3+3)+C(5+5)+CCA3H(3+2)+
	*#KPREA(5C),THETA(2)
	READ_EII(1) EII(2),E22(1)+822(2),G12(1),G12(2),G23(1),123(2),
	\$U31(1),G71(2),ANU12(1),ANU12(2),ANU21(1),ANU21(1),ANU21(1),
	*THETA (2)
4	10 DC 20 1=1.5
-	00 20 341.5
	JÚ 20 Kai,2
-	CC 20 L=1,2
6	GG((,,,,,,,)=0.0
é,	Q(1+J+X+L)=0.0
	20 CENTINUE
11	NL = 2
12	00 36 [=1,6
13	0. J0 J=1.5
1.4	30 30 x=i,2
. 12	CERCH = 1-ANU12(K) = ANU21(K)
•	GQ(1+1+K)=E11(K)/CENUM
1.7	QQ(2+2+K)=E20(K*/CCNCM
1 -	(G(1,2,K)=ANU12(K)AUG(2,2,K)
ý	CC(2-1-K)=CC(1-2-K)
20	20(3,2,K)=012(K)
a. 2	CO(4 4JR)=COB(K)
2.	QQ(5,6,K)=071(K)
2.2	CC 30 L=1.NL
2.4	X#DCCS(THETA(L))
15	Y=CSIN(THETA(L))
. C	x2=x**2
	¥2=¥**2
7.5	スキニ入りま ら
	A = = A + A + A + A + A + A + A + A + A
	Q(1+1+K+L) = QQ(1+1+K)+XQ+QQ(2+2+K)+Y4
	G(1+2*K*L) = GJ(1+2*K*4((+*X*)))
고	3(2+1+X+L)=0(1+2+K+L)
. 3	$2(2 \cdot 2 \cdot K \cdot L) = (0(1 \cdot 1 \cdot K) * Y \cdot 4 + 0(1(2 \cdot 2 \cdot K) + X))$
· •	Q(3+3+K+L)=GC(3+2+K)+(Y4+X4)
3.3	Q(4.4.K.L)=GG(4.4.K)#X2+GG(5.5.K)#Y2
	Q(d+5,K+L)=0C(4+4+K)+12+00(5+6+K)+X2
27	30 CENTINUE
•	A X 45 . 0
• [*]	EY=10,0
4 C	2 x=0. CO1
41	27=-0,001
· 2	PRINT 16.211.22.012.023.031.ANULL.ANULL.THETA.ALFA.THARD.THARL
-	40 ZH2=ZX**C
	242=24+92
4 3	23322,1003
d r	273#27m#2
. • 7	NWZI
د. م	
A	ALFHA = .MM43.1416/AX
50	95 TA 7 NN73.1410/EV
31	
52	
Ľ.	A(loJ)#(G(loJolo1)+G(loJo2))/2+(G(loJo2))/G(loJo1)+%2%<
~ ~	
34	}

ł

		Wells(1) Je 20, (-0(1), Je 1, C) (90, 100, 20)
•	ı	D(I+J)=(C(I+1+1)+C(I+1+2+2)+2)+24++(C(I+3+1+1+C(I+3+1+1))+25+++3+1+2)
		(Q(I,J,J,E,Z)+G(I,J,J,E,))**===============================
÷.		A () + 1) = A ((+) +)
37		E(J+I)=B(1,J)
5.		C(J+1)=O(J+1)
5.50	50	CONTINUE
3	1	4 4 4 4 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5
. •		
	ļ	- 「大阪大学をつけたいなど」での人生学校を集まれなどであり、 - 人民間は、の人は、山、人、山、人、山、山、山、人、人、人、人、人、人、人、人、人、人、人、人
• •		
_	!	₩(utb)h;2:1=J(b;2+1+2))%u(
-2		SC5K4=0.432
52		SCRK4R0.E33
t: 🖬		U(1.1)=-A(1.1)*ALPHA#42-A(2.3)4887A4#2
43		C(1+2)=- (A(1+2)+A(3+3))* ALFHA*28FA
612		C(1.2)=0.0
13 T		C(1 + 4)=+(8(1 + 2)+8(3 + 3))*AL9HA\$8874
* *		
-		
		C(2,2)=+A(3,3)+ALPHA+A2+A(2,2)+BETA++2
*2		C (2 , 3 = 3 , 3
		C(2+4)=-C(3+3)+ALPHA0+C-E(1+2)*CETA0+2
* :		C(2, €)=C(1, 4)
7 5		CD45F(2+1)=0.)
、		C(2,1)=C(1,2)
• -		C(3,2) = C(2,3)
•		C(313)===================================
91		「白サウ州(3・1)主一省「玉(二))「白水(4)
32		
d 3		C(4+2)=C(2++)
۰. ب		C(4,3)=C(3,4)
3		2(4.4)=-0(3.2)+2(0+)4+4+2=3(7,2)+0275+230754+244
. :		こちゃうかい しんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう
93 T		CD (SE(4+1)=3+)
		C(5+1)=C(1,5)
-		
1.1		e a construction en la construction de la const
22		C15+5 (==C(1+1)+AL/HAWX_=C(2+3) &(C1+4+VL=5GRK5+A*2)
` -		
5.4		v = 1
95		N = 5
C		IA=5
97		
		ICCT=4
90		IDGT=4 Call Legt2f(C.M.N.IA.CDASH.IDGT.WKARE4.ier)
98 54		IDGT=4 CALL LEGT2F(C.M.N.IA.CDASH.IDGT.WKAREA.IER) ZXX=-CDASH(1.1)/CDASH(3.1)
96 95 96		100T=4 CALL LEGT2F(C.M.N.1A.COASH.IDGT.WKAREA.IER) ZXX=-CDASH(1.1)/COASH(3.1) ZYy=-CDASH(C.1)/COASH(4.1)
96 53 55 101		100T=4 CALL LEGT2F(C+M+N+IA+COASH+IDGT+WKARE4+IER) Zxx=-CDASH(I+1)/COASHI3+1) Zyy=-CCASH(C+1)/COASHI4+1) Zxa = DARSIDARS(ZX)-DARSIZXX))
88 55 101 401		100T=4 CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKAREA+IER) ZXX=+CDASH(I+1)/CDASH(3+1) ZYY=+CCASH(C+1)/CDASH(4+1) ZXA = DABS(LAGS(ZX)+DA9S(ZXX)) YA = DABS(LAGS(ZY)+CABS(ZY))
90 93 93 102 102		100T=4 CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKAREA+IER) ZXX=+CDASH(I+1)/CDASH(I+1) ZYY=+CCASH(I+1)/CDASH(4+1) ZXA = DABS(DAGS(ZX)+DA9S(ZXX)) ZYA = DABS(DAGS(ZY)+CA9S(ZXX)) IF (ZXA+01-0-0001)/ZX52XX
99 99 101 101 102 102		IOGT=4 $CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKAREA+IER)$ $ZXX=+CDASH(1+1)/CDASH(5+1)$ $ZYY=+CCASH(2+1)/CDASH(4+1)$ $ZXA = DAES(UABS(2X)+DABS(ZXA))$ $LYA = DAES(UABS(2X)+DABS(ZXA))$ $IF (ZX++GT+O+UCABS(ZX)+DABS(ZY))$ $IF (ZX++GT+O+UCABS(ZX)+DABS(ZY))$
98 99 102 102 102 102		IOGT=4 $CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKARE+IER)$ $ZXX=-CDASH(1+1)/CDASH(5+1)$ $ZYY=-CCASH(2+1)/CDASH(4+1)$ $ZXA = DAES(UABS(2X)+DA9S(ZXA))$ $LYA = DAES(DABS(2X)+DA9S(ZXA))$ $IF (ZX+GT+0+0301)ZX=2XX$ $IF (ZX+GT+0+0301) GC TC 50$
98 22 20 20 20 20 20 20 20 20 20 20 20 20		IOGT=4 $CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKARE+IER)$ $ZXX=-CDASH(1+1)/CDASH(5+1)$ $ZYY=-CCASH(2+1)/CDASH(4+1)$ $ZXA = DAES(UABS(2X)+DA9S(ZXA))$ $LYA = DAES(UABS(2X)+DA9S(ZXA))$ $IF (ZX+GT+O+0001)ZX=2XX$ $IF (ZYA+GT+C+0001) GC TC 50$ $GC TC 70$
101 102 102 102 102 102 102 102 102 102	ద 0	100T=4 CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKAREA+IER) ZXX==CDASH(1+1)/CDASH(3+1) ZYY==CCASH(2+1)/CDASH(4+1) ZXA = DAES(UABS(2X)=DA9S(ZXA)) ZYA = DAES(UABS(2X)=DA9S(ZXA)) LYA = DAES(UABS(2Y)=CA9S(ZY)) LF (ZX++GT+C+0C01) ZX=ZXX LF (ZYA+GT+C+0C01) GC TC 50 GC TC 70 ZY=ZYY
98 93 101 102 102 102 102 102 102 102 102 102	ద 0	100T=4 CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKAREA+IER) ZXX==CDASH(1+1)/CDASH(5+1) ZYY==CCASH(2+1)/CDASH(4+1) ZXA = DAES(UABS(2X)=DA95(ZXA)) LYA = DAES(UABS(2X)=DA95(ZXA)) LF (ZX++GT+0+0001)ZX=2XX IF (ZYA+GT+C+0001) GC TC 50 GC TC 70 ZY=ZYY GC TC 40
98 93 193 193 193 193 193 193 193	ద 0 7 రె	<pre>IOGT=4 CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKAREA+IER) Zxx==CDASH(1+1)/CDASH(5+1) Zyx==CCASH(2+1)/CDASH(4+1) Zxa = DAES(UABS(2x)=DABS(ZxA)) ZyA = DAES(UABS(2x)=DABS(ZxA)) LYA = DAES(UABS(2x)=DABS(ZxA)) IF (2x++GT+0+GOS(2x)=DABS(ZxA)) IF (2x++GT+0+GOS(1)) GC TC 50 GC TC 70 Zy=Zyy GC TC +0 U=CDASH(1+1)</pre>
100 100 100 100 100 100 100 100 100 100	ა 0 7 ე	<pre>IOGT=4 CALL LEGT2F(C+M+N+IA+CDASH+IDGT+WKAREA+IER) ZXx==CDASH(1+1)/CDASH(5+1) ZYx==CCASH(2+1)/CDASH(4+1) Zxa = DAES(UABS(2x)=DABS(ZXA)) ZYA = DAES(UABS(2x)=DABS(ZXA)) LYA = DAES(UABS(2x)=DABS(ZY)) IF (Zx++GT+0+GOS(2Y)=DABS(ZY)) IF (Zx++GT+0+GOS(2Y)=DABS(ZY)) IF (ZYA+GT+0+GOS(2Y)=DABS(ZY)) GC TC +0 U=CDASH(1+1) V=CDASH(2+1)</pre>

100

111 192

· · · - - 로

· · · ·

YY=CDASH(1,1) XX=CDASH(1,1) <u>PRINT 104CCASH,2X+ZY+4</u> AX=1X+1+C IF (AX+CT+21+0) GD TO 40 IN F CRMAY(1,2+012+5) SYOP END

101

PREVIOUS REPORTS ON THIS CONTRACT

Tech. <u>Rept. No.</u>	OU-AMNE Rept. No.	Title of Report	Autho	or(s)	
١	7 9- 7	Mathematical Modeling and Micromechanics of Fiber-Reinforced Bimodulus Composite Material	C.W.	Bert	
2	79-8	Analyses of Plates Constructed of Fiber Reinforced Bimodulus Materials	J.N. C.W.	Reddy an Bert	ıd
3	79-9	Finite-Element Analyses of Laminated- Composite-Material Plates	J.N.	Reddy	
4 A	79-10A	Analyses of Laminated Bimodulus Composite Material Plates	C.W.	Bert	
5	79-11	Recent Research in Composite and Sandwich Plate Dynamics	С.W.	Bert	
6	79-14	A Penalty-Plate Bending Element for the Analysis of Laminated Anisotropic Composite Plates	J.N.	Reddy	
7	7 9- 18	Finite-Element Analysis of Laminated Bimodulus Composite-Material Plates	J.N. W.C.	Reddy an Chao	ıd
8	79-19	A Comparison of Closed-Form and Finite- Element Solutions of Thick, Laminated, Aniso- tropic Rectangular Plates (With a Study of the Effect of Reduced Integration on the Accuracy)	J.N.	Reddy	
9	79-20	Effects of Shear Deformation and Anisotropy on the Thermal Bending of Layered Composite Plates	J.N. Y.S.	Reddy an Hsu	d

The state of the second state of the second

adjust topp and " Internet I down it without

EQUATY CLASS	ICATION OF THIS PAGE (WA	n Dete Enteres)	
R	EPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMER		2. GOVT ACCESSION N	0. J. RECIPIENT'S CATALOG NUMBER
OU-AMNE-80	-17		
TITLE (and Jub	tila)		S. TYPE OF REPORT & PERIOD COVER
ANALYSES O	F CROSS-PLY RECTAN	GULAR PLATES OF	Technical Report No. 10
BIMODULUS	MATERIAL		4. PERFORMING ORG. AEPORT NUMBER
		·····	
AU THORYO		_	8. CONTRACT OR GRANT NUMBER()
V. Sudhaka	r Reddy and Charle	s W. Bert	N00014-78-C-0647
PERFORMING O	AGANIZATION NAME AND AC	SCAELS	10. PROGRAM ELEMENT, PROJECT, TAL
SCHOOL OF Frainsarin	nerospace, mechani n	Cal and NUClear	NR 064-609
University	y of Oklahoma. Norm	an. OK 73019	
CONTROLLING		18	12. REPORT DATE
Department	of the Navy, Offi	ce of Naval Research	h January 1980
Arlington.	Virginia 22217	(1008 4/4)	109
MONITORING	GENCY NAME & ADDRESSII	aliferent trem Cantrolling Office)	13. SECURITY CLASS. (of this report)
			Unclassified
			15. DECLASSIFICATION DOWNSRADING
This docum unlimited.	STATEMENT (of this Report) lent has been appro	ved for public relea	ase and sale; distribution
This docum unlimited.	STATEMENT (of this Report) ent has been appro	wed for public relea	ase and sale; distribution
Distribution This docum unlimited.	STATEMENT (of this Report) ent has been appro STATEMENT (of the charact NAY NOTES t is a slight cond	ensation of the firm	ase and sale; distribution
 DISTRIBUTION This docum unlimited. DISTRIBUTION SUPPLEMENT/ This report KEY WORDS (C Bimodulus materials, laminated frequencie bending, t 	STATEMENT (of this Report) ent has been appro STATEMENT (of the element ARY NOTES t is a slight cond materials, classic fiber-reinforced plates, large defl s, rectangular pla hermal bending.	ensation of the first al solutions, closed materials, free vibu ections, moderately tes, shear flexible	The DECLASSIFICATION DOWNGRADING ase and sale; distribution mem Report) st author's master's thesis. d-form solutions, composite ration, geometric nonlineari thick plates, natural plate theory, static plate

Sector Sector

•

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Men Deta Entered)

20. Abstract - Cont'd

neutral surface which is defined on the basis of fiber-direction strain. This provides a basis for rational design of such plates. Exact closed-form solutions are presented for freely supported rectangular plates subjected to a sinusoidally distributed normal pressure. Based on experimentally measured bimodulus properties, some numerical computations are carried out. Good agreement is obtained when compared with numerical results existing in the literature for special cases. The results presented here can be used to validate finite-element codes being developed for analysis of thick plates laminated of bimodulus material.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE Then Date America