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PREFACE

The Specialists’ Meeting on Damping Effects in Aerospace Structures stemmed from a
proposal made by the writer, leading to the formation of a Sub-Committee on Structural
Damping during the 44th Panel Meeting in Lisbon, April 1977. I do believe, in fact, that
the effects of damping on the problems of elastic stability are of the highest interest for
several NATO countries, for their national activities and also for some multi-national co-
operative programmes, e.g. POGO effect, dynamic response of structures, flutter.

In view of the need to have available pertinent information and reliable rules to account
for these effects, which in some cases are of vital importance, the Sub-Committee undertook
the organisation of the present Specialists’ Meeting. The first step was the preparation of two
pilot papers, presented.at the 45th SMP Meeting in September 1977 and published as
AGARD Report No.6631 €An Introduction to the Problem of Dynamic Structural Damping”
by P.Santini, A. Castellani and A. Nagﬂ, The interest shown in this subject enabled all details
of the Specialists’ Meeting to be established by the following April.

- The Specialists’ Meeting covered the most general aspects of structural damping;
physical roots, mathematical formulation, damping characteristics of aerospace structural
components, effects on dynamic response, investigation of damping in composites and
effects in joints.

The Meeting was very successful, as was agreed by all the Sub-Committee members; this
was essentially due to the spectrum of practical information presented dy the participants,
covering the whole area of the subject. The importance of the problem and the need for up-
dating technical information is such that AGARD will be requested to consider the possibility
of continuing the activity in the future in order to disseminate as much as possible all
pertinent data, as is the aim of thic present volume.

P.SANTINI
Chairman, Sub-Committee on
Structural Damping
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TECHNICAL EVALUATION REPORT
by

Paolo Santini
Scuola di Ingegneria Aerospaziale
Rome University
Rome, Italy

1. INTRODUCTION

There are many aerospace problems of engineering interest where structural damping plays a basic rcle. Suffice here
to list just some of them:

(i) Itis well known that, for an undamped structure, the response near resonance peaks increases without limits.
If damping is present (e.g., of a viscous kind) a very elementary analysis shows that the response is roughly in
inverse ratio to the damping coefficient. Therefore, if one has to evaluate design stresses, uncertainties in
damping coefficient are exactly equal to uncertainties in such stresses.

(ii) The aeroelastic behaviour of a panel in supersonic flow is such that a pre-critical phase is followed by the
critical phase at a certain dynamic pressure — q; the value of q, is little influenced by damping, although in
special cases a dangerous reduction may be observed. The postcritical phase (dyn. press. q > q.) corresponds to
the appearance of a “limit cycle”, the amplitude of which is governed by the balance between energy input
(from air) and energy dissipation (from structural damping). It is easily understood that, again, the dynamic
damping coefficient is of paramount importance.

(iii) A typical problem of large liquid fuel booster structures is the so-called “POGO” effect, i.e., a case of dynamic
instability where structure, propulsion system, and fuel pipelines are involved. The overall loop is equivalent
to a system with negative damping; so that structural damping is the only source from which stability can be
obtained. This phenomenon is associated with a particularly dangerous and uncertain situation, since loss of
stability inevitably leads to the loss of the rocket.

Several other examples might be given. From analysis of all of them, one can conclude that what is missing is the
basic conception of damping, and the numerical values of the relevant coefficients, for which nnly empirical rules are
available.

It seemed therefore quite important to have a Specialists’ Meeting on the subject, so as to gather as much informa-
tion as possible from scientists and technical personnel of NATO countries. Some of the results of the meeting are
summarised here.

2. GENERAL ASPECT OF DAMPING IN AEROSPACE STRUCTURES

2.1 General Papens

Ottens! presented a survey of damping models, ranging from the very simple viscous model to the more sophisticated
hysteretic damping concept, and to multiparameter approaches. Special attention is given to implementation of models
in response calculations; although the mathematical formulation can be very simple, reliable numerical values are still
missing for a complete structure. In other words, if the damping properties of each individual component are known,
this by no means implies that, by (inite element analysis, or any other similar technique, the complete damping matrix
for the structure may be constructed. According to Ottens, this method does not seem feasible, and damping can be
represented only by quantities dealing with the energy dissipation in the entire structure; so one is Jed to the concept of
mouai damping factor. For s particular structure, measured modal damping values are the most reliable, in spite of the
fact that they are generally available at a late stage of design. A resronabie collection of data is also presented for
European spacercaft: the values of damping ratio (actual damping coefYicient /critical damping coefficient) are centered
around 4 x 1073, with a rather large acatter.

Meud? npasented & very interesting atterpt at entering into the physics of the probiem. Of all the sources of
damping, fu: 2 vibrating stiffened plate, the most important seems t0 be the one associated with the riveted joints

Raferenco rumbins refer to Peper sumbers published in this Cenference Procsedings (CP-277).
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attaching the skin to the stringers. Each structural joint is characterized as a “semi-rigid dissipator”, quantified by the
“joint dissipation coefficient (JDC)”; i.e., the ratio of cy=lic energy dissipation to the square of the force transmitted
across the joint. The Author then shows, in a very ingenious way, how it is possible to obtain, from measured values of
JDC, modal damping values in a structure whose vibration modes are known. However, comparison of calculated and
measured values (for a given stiffened flat plate) shows that the latter are one third of the former. In the author’s
opinion, this result is “disappointing”, in my opinion it is encouragir:g, if one considers that nothing is known on the
prediction of damping of complex structures. It appears that the single joint, on which the dissipation coefficient
measurement was made, did not adequately represent the actual joint in the reinfor ed plate. Mead also discussed the
inear behaviour of the joint. According to his results, such linear behaviour holds reasonably well for joints loaded in
ionsion or by moments, but, for joints loaded in shear, there is a sudden rise in the JDC above a given level.

Baldacci et al.? discussed different techniques of analysis (from the point of view of the structural behaviour) when
finite element models including damping effects are introduced. Also, the most popular de-coupling approaches are
reviewed ; such techniques are only approximate when the damping matrix pertinent to the structural mode] exhibits a
non-proportional trend. The authors also presented various diagonalization schemes, and special emphasis is given to
evaluation of errors arising in computations. Such errors can be identified on an *“‘a posteriori” basis, through parametric
numerical studies or, in many cases, an “a priori” evaluation is possible. Thus one is led to define a set of “admissibility”™
criteria.

2.2 Experimental Results

Phillips* presented values of structural damping obtained from tests upon a complete aircraft and upon aircraft
components. For the first case, the wing was excited by vertical impulses, reasonably careful elimination of aerodynamic
damping being ensured. Damping of each mode of the structure (a typical integrally machined one) was determined from
the logarithmic decrement of the signal. Examination of the results shows that damping was consistently higher in anti-
symmetric modes than in symmetric modes the values of the former being centered around 3.5%, those of the latter
around 2%. It would be of great interest to ascertain whether these results can be extended to many other kinds of
similar w.ngs.

.

The second typical structuse tested by Phillips was an underwing mounted pod, (a component that recently became
famous on account of a series of cracks). Here amplification factors, and not damping itself, were measured: however,
comparison of the response amplitudes gave important information about the variation of damping vs vibration
amplitude; clearly, a non linear effect.

One of the main results was that decrease or increase of damping is strongly related to the type of suspension. For }
excitation at pod nosc and tail, damping was directly measured; a very useful set of data was presented, which seems to -
be rather low if compared to similar other results.

The third series of tests was concerned with a box-type structure, on the upper and lower surfaces of which various
items of avionics equipment were mounted. The results are centered around a rather high value; (about 5—6%), and this
is easily understood since the primary objective of the test program was to demonstrate that vibrations attenuation by the
shelf and the anti-vibration mounts were satisfactory. In my opinion the results are far from general, but the technique
reported in the paper could usefully be applied to space instrumentation supports, 5o as to help in avoiding undue
acceleration peaks, which might jeopardize the integrity of electronic equipment. In any case, this seems to be a very
important paper for design purposes.

Experimental data on composite materials (with reinforcement by boron-, carbon-, glass-, and synthetic-fibres),
structural components (sandwich and I-beams): composite structures (wing box beam, rotor blades) were presented by
Georgi®. The main goal of the tests was directed towards a collection and comparison of damping data of such different
compcsite materials and structural components, and a discussion of a ssmiempirical approach to damping behaviour of
composite beams in different configurational and operational conditions. Here too, while the prediction of structiral
damping of compaosite systems based on damping measurements of simpler, but similar configurations seems to be
passible, prediction of structural damping of more complex structures (rotor biades) is not yet achieved. The author
proposes a future damping program on composites that should be directed towards a systematic completion of experi-
mental damping dats and a study of damping behaviour under severe environmentai conditions.

Further experimental results were presented by Balis Crema et al.'>. In this paper the importance of damping in
riveted joints is considered in detail. The state of the art in the field of joint damping was illustrated and 3 genera!
demand for development of experimental research was pointed out, since available theoretical approaches do not seem to
be adequate to make sstisfactory predictions on complex structures. Further, a series of tests on riveted specimens of
different types is described and discusscd. The purpose of the research was to evaluate the contribution of riveted joints
to global damping properties and the analysis of the results obtained for elementary structural components shows that
significant dats concerning energy losses in riveted joints can be obtained by means of standard test facilities. Future
programs should be directed towards evaluation of temperature and vacuum conditions.




2.3 Influence of Damping Upon Response

Degener’s paper® was chiefly concerned with one of the major items listed in the Introduction, i.e., the response of
a structure to sinusoidal excitation at frequencies near resonance. 3atellite structures were mainly investigated. Firstly,
a general survey of mathematical manipulation for obtaining structural response is reported; it is shown that neglecting
intermodal coupling would drastically reduce computing time. The question then arises, whether or not such coupling ;
can actually be neglected. In order to give an answer to this question, two methods were used: firstly, a five-mass
dynamic model, with realistic values for dampers was studied; secondly, experimental results of satellite ground vibration
tests were employed for dynamic response analysis. In both cases, the Author finds just small differences between
diagonal and nondiagonal damping matrix, “in spite of large [artificially introduced] off-diagonal elements in such
generalised damping matrix”. A very important rasult (that should however be taken with some caution) is therefore /
that influence of intermodal coupling is very small and may be neg'ected in response analysis; for the example reported
by the Author, computing time was reduced by a facior of 4. Intermodal coupling could be very important in other
problems, e.g., modal synthesis.

A survey of test results was then presented, with the following conclusions:

— In general, damping of spacecraft structures is an increasing function of input level.
— Damping properties are different for each normal mode.
— Typical damping values of reduced damping for spacecraft structures are between 0.5% and 5%.

The third important subject considered by Degener was dynamic response in the case of nonlinear damping, where
reduced damping is linearly dependent on mode amplitude. A numerical iterative method is presented: results based on
such method indicate that, in frequencies far from eigenfrequencies, the effect of damping is quite small, but, in their
vicinity, dynamic amplification decreases rapidly with increasing input.

Giavotto et al.® presented a paper on Damping Problems in Acoustic Fatigue. Firstly the Authors point out the
importance of a more accurate knowledge of the damping values on prediction of durability and safety of structures
operating in an acoustic fatigue environment. They then considered the different mechanisms developing some damping,
such as material damping, joint damping and a.oustic radiation damping. The wide gap existing between the needs for
structural analysts and data collected by researchers was pointed out. In particular, the Authors remark that, all that is
available now are experimental data on damping ratio plotted vs frequency, and such plots have the aspect of clouds of
points; so it seems obvious that mode ‘requency alone is not enough to obtain a reasonable correlation cf damping ratios.
So the authors launch a program of tests, with the aim of clarifying damping phenomena in riveted joints and, possibly,
of evaluating damping from acoustic sources. i

2.4 Design Problems

Wada® empliasized the circumstance that damping plays a significant role in the prediction of spacecraft structural
response and loads, that in turn influence the structural design. The Author reviews some of the iechniques adopted to
incorporate such effects in the overall model, but, again, the main problem is that of defining clearly damping charac-
Erigilon A design b ie that of sobdbeiding the seacerealfl inlo wissompomenti. estimating U winetic cobtrbutions of
each of them in the various modes, and performing a weighted sum of the component modal damping ratio, each
weighted by its kinetic energy fraction. When a launcher is coupled to a payload, individnal damping matrices are
coinbined via the coupled modal matrix to obtain a nondiagonal modal damping matrix. in some other cases (Space
Shuttle, HEAL) a constant damping ratio is assigned to payload modes (0.5 to 1.5%). The importance of such damping x
values on POGO qualities are illustrated. Model Test/Data Reduction can be performed in many ways; resu’ts obtained '
for the Voyager spacecraft indicate considerable variations between methods in many instances. Another Jactor is the
test article, which is not always flight hardware, but engineerinyg mr..dels, or dynamic simulators, so that wiring harness, !
electronic equipment and mounting hardware which do not add to the integrity of the structure may contribute to |
damping values. Also, response amplitude level should be considered. Air damping (influence of the air of the total
damping in a vibrating structure) may be regligible in some cases and significant in other cases: general methods to
account for such effects are still missing.

As a conclusion by the Author, for to-day’s spacecraft current methnds of predicting damping appear to be
adequate: new methods do not seem to be forthcoming, althougn improvements in current methcds are expected. Good
engineering judgement and design practice arc the oest basis. More sophisticated analysis will surely be required for
future larger spacecraft.

Jones, et al.'® discussed Viscoelastic Damping in USAF ayplications. Main application in the future may be damping
technology for vibration control in large flexible space structures, ¢.g., extremely exacting requirements for positional
stability requires passive damping to supplement active controls. Other areas are jet engines, printed circuit boards,
gircraft avionics and ecuipment structures. Current technological problems involve: (i) damping materials data;

{ii) techniques of treatment for protecting from severe environments; (iii) cost reduction; (iv) more advanced design
techaiques; (v) technology transfer to industry ; (vi) damping at very high (200°-450°C) and very low (< —20°C)
TRt




Once the above problems are solved, design of damping treatments on a rational basis will be possible. (Most of such
treatments used at present time consist of one or more layers of viscoelastic material bonded between metallic or other
st streevial mrember.) As 8 maetver of fiet, equalions providing mulifeyet beams o plate fexors! rigidity o be owed
to derive elastic modulus and loss factor (the pair of parameters used commonly to describe viscoelastic materials) from
observed resonant frequencies and modal damping. Applications are widely described; jet engines, inlets and components,
avionics, as said above. From an aeronautical standpoint, however, the most important applications are constrained layers
of elastomeric damping materials, either to increase service life or to reduce noise; so, fatigue cracks in secondary
structures can frequently be prevented or minimized through the application of additive damping.

2.5 Special Problems

Arduini” analyzed some anomalous behaviour observed in the San Marco satellite. The anomalies can be explained if
one introduces damping into the equation of motion of the satellite. Detailed analysis (and suggestions for future work in
this area) proves the importance of the subject, for which further data may be of significant value.

Gaudriot et al.!! examined the effects of instrumentation to be applied to a structure when applied for damping
purposes. Several examples of special techniques developed for general and for special purposes are given by the Authors.
The resuits could be applied also to non-aerospace structures.

In my opinion, some of the ideas and concepts of this paper can be considered to be a real guide in mounting of anti-
vibration and shock devices. The reader is referred to the written version of the paper for technical details.

3. RESULT OF THE MEETING
It is now possible to draw a general conclusion on the result of the Meeting. Was it successful? Was it useful?

It was certainly successful, also on account of the interesting discussions with which every session was concluded,
and which cannot even be summarized here. However, such discussions proved the great interest of the subject of
damping to the aerospace community.

As far as the usefulness of the Meeting is concerned we must define the different areas of the aerospace community
to which it was directed:

(i) Universities — In my opinion, the general papers (e.g., Ottens, Mead, Baldacci) are of prime interest from a
didactical point of view. In courses of Appiied Mechanics, Asrospace Structures, Aircraft Vibration, very little
is said about the problem of incorporating damping into the frame of the general mechanical problem. Also,
the complete Report can be considered as the first textbook on Damping in Aerospace Structures.

On the basis of a careful selection of the topics listed in all the papers, a basic impiementation of such items is
possible. Bibliographic references (some 239 altogether) are such that also preparstion of a complete teaching
course on the subject seems to be possible.

(ii) Industry — Nearly all the papers presented at the Meeting are of interest for industrial applications. Designers
may find useful data in the work done, e.g., by Georgi, Degener, Phillips, Jones and Wada. Procedures for
experimental determination of coefficients, numerical values to be used, practical rules to account for damping
effects, are basic information that can be found in such papers. The reader might sometimes be surprised or
disappointed by the data scattering, it should be borne in mind, however, that this is a feature of the
phenomenon itself, reflecting the state of the art of our present knowledge. It is also important to notice,
however that scattering is greatly reduced if damping for wide classes of structures (e.g., “aircraft™, “spacecraft™
“roci:ets™) is considered and a basic improvement may be reached ounly if such areas shall be considerably
reduced (e.g., “wing™; “aileron™: “mounting pod”, etc.).

(iii) Research — Substantially similar considerations will hold also for research. Many papers, even those devoied to
special problems. contain observations and description of phenomena which are really starting points for new
research areas.

4. WHAT IS MISSING?

A deeper insight into the physical mechanism and the inherent reasons of damping is a goal that has not yet been
achieved. This is a feature common to many other fields, such as stress, rirain analysis, heat conduction, electricity, etc.;
until the “core™ of such phenomena is discovered and studied, there is Httle hope that significant advances in the
prediction of them may really be obtained. Such goals may be achieved only from cooperation between engineers and
physicists.

Also, another objective was missing (and this is my fault): the “design” of & material with specified damping
properties (sithough a first example of this approach is provided by Jones’ paper in this collection). Here again, however,
a closer insight into the real understanding of the phenomenon will be necessary.
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From a practical standpoint, the review and listing of experimental data is far from being complete. What is known
to us to-day is that typical values may be given for special classes of structures: but, as said before, such elasses are too
broad to be of a real help to the designer. Factors of uncertainty of 10 are far from being uncommon, and the same
factor is applicable to related design quantities. A more careful review of existing data and classification into narrower
categories should be performed. This is a very big, time consuming, and expensive job, and doubts might be inferred
whether this is within AGARD’s scope. This is, however, in my opinion, the most ambitious medium term objective that
the aerospace technical community can reasonably consider reaching in the future for so important a problem. Because
this at least has bezn a great result of our meeting — damping is a real problem.
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MATHEMATICAL FORMULATION OF DAMPING FOR STRUCTURAL RESPONSE ANALYSIS

by
H.H, Ottens
National Aercapace Laboratory NLR
1059 CM Amsterdam, The Netherlands

SUMMARY

A survey is presented of damping models that are commonly used in the structural response analysis of
serospace structures. The variocus damping models are evaluated with respect to the required knowledge of
structural damping, the mathematical complexity and the accuracy of the calculated response. The survey is
limited to linear damping models and special attention has been given to models which represent lightly
dsmped structures.

LIST OF SYMBOLS

a = maximm amplitude of mass spring system
¢ = viscous damping factor

Sp critical viscous damping factor

c = gencralized viscous dsmping factor

D = disgipated encoray

F.

D a damping force
£(t) = force
F(t) = generalized force
h = hyasteric damping factor
: = generalized hysteretic damping factor

i,j,n ® indices referring to vibration modes
k = stiffness

= = pass

M = generalized mass

= generalized coordinate

= potential energy

= digplacement

= proporticnality factor

s viscous damping ratie (c/ccr)
= equivalent viscous demping ratio
= loss factor (D/2wV)

= nemory function

= mode shape function

= frequency

= vector

= patrix

® I ™ B 2 N <D
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1.  INTRODUCTION

The effect of material damping on the vitrations of structures is easily observable. When the driving
forces are removed, each vibration deceys and comes to rest (leaving additional effects, e.g. due to
rotation, cut of consideration). This almost wulgar observation does not alter the fact that the physical
understanding of the dmmping mechanism and the theorstical models to describe them are far from ccaplete,
Eut even vith the knowledge of damping onm microscale svailable it is hardly possible to predict overall
damping of e.g. » complex built-up structure.

For structural response anslyses mathematical models to describe the damping are aecessary. One way
may be to base these models on the mathematical formmlation of the physical mechanism. They should at least
involve the experimental evidence obtained in lsdorsiory tests with suitable test specimens.

A different vay is the phennmenclogical approach, vhere models are designed which are adle to relect
chserved damping charucteristics of a vide range of rtructures. It is clesr that the latter approsch is
commonly preferred in response analyses of camplex structures.

Inwviehmpﬁ-imn:t of this symposium it is perticularly the phentmenological approach
that is considered. The commonly used damping models will de discussed and illustrated with & single degree
of freedom system (chapter 2). Their spplication in the dynmmic enalysis of complex structures is discussed
and esvalusted.




2. MODELS OF THE DAMPING MECHARISM

In a vibrating structure an exchange takes place between kinetic and potential energy. During this
interaction damping removes energy from the vibrating structure by radiation and dissipation. The radiated
part is associated with acoustic or aerodynam’c damping, the digsipated part with structural damping. This
distinction, however, is rather formal as in many cases the two parts cannot be separated. Anyway, the
damping models treated in this paper will be concentrated on structural darxing.

With that, nothing has been said about the way in which the energy dissivates: by internal friction,
friction of slipping surfaces or cther sources, The effect of these demping mechaniams has to be incorp-
orated in the specific damping models.

According to the phenomenological approach it is necessary to 2pply damping models in response analyses
which are adequately managable in calculations and which are able to stand the confrontation of analytical
and experimental response results. The question remains unresolved as to vhich extend these models should
be inherantly consistent in their physical features. It may come out, therefore, that different linear
damping models have to used for low and for high amplitudes.

A damping measure which is cormonly employed in setting np damping models is the quantity of the
energy, D, that is digsipated during one cycle of a harmoni¢ motion. This quantity is related to the
maximum potential energy stored in the structure, V, by the introduction of a loss factor n

n = D/2xv

In general this loss factor is a functiorn of frequency and amplitude, For aerpspace structures the loss
factor is usually small (1.10-5 to 0.2} slthough larger values may occur vhen special dampers are impliment-
ed in the structure,

In looking for an adequate mathematical formulation for the damping model an important point that has
to be Jecided ig whether the loss factor should depend on amplitude or not, in other words whether the
model should be linear. In a vast majority of the publications linearity has been adopted, mainly because
of two reasons (Ref.1):

& the models are sufficiently accurate
b they are computationally more economical

In engineering practice the idea is generully accepted that linearity is allowed in the case of low
amplitudes levels. When the loar factor is expected to depend on the amplitude different loss factors are
estimated for various amplitude levels.

In gpecific cases, hovever, it is admitted that linear damping models are not accurate enough. Study-
ing e.g. phenomena where friction of joints plays an important role a nonlinear damping model, vhere the
damping force depends on the sign of the relative velocity, should be adopted. Effects of nonlinearities
for aircraft structures are discussed e.g. by Haidl (Ref.2) and Breittach (Ref.3).

In this paper a restriction will be made to linear damping models as they govern & major part of
structural response problems. Various damping models have been proposed and used, Reviews of these models
are given e.g. by Fraeys de Veubeke (Re’. i), by Bert (Ref.1), by Crandall (Ref.5) or by Graham {Ref.6).
The most ususl models will be discussed here in some detail in spplication to a simple mass-spring system.
2,1 Viscous damping model

This model has a clear physical meaning. Energy is dissipated by fluid friction and a typical applicat-
ion is the dash pot. The damping force, F'p, is proportional to the velocity of the motionm, %:

FD--ct

where ¢ is the viscous damping factor. The dissipated energy during cne cycle of a harmonic motion wvith
frequency w is

Dwawec t2 »
vhere a is the mmplitude of the motion.

Commonly, the damping factor is given a3 a fraction of the critical damping vhich is the dmmping for
which the motion is just not harmonie anymore. This critical value is

=
Cer 2n “n

vhere m and w, &°e the mass and the nstural frequency of the mass-spring system. The viscous damping ratio,
8, is

¢
8 ,ccr

The nmaxizum stored potential energy is

vejxe

vhere k is the gpring stiffness. The relationship hetween 8 and the loss factor n is
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This shows that the loss factor is proportional with w.

When the viscous damping model is applied to represent the structural damping its phenmomenclogical
value fades away as the frequency dependence of the loss factor is not obszrved generally. In reference S
it is discussed that the role of damping is only important when the frequency of the driving force is near
the resonance frequency of the structure, This is illustrated in rxgure 1, where differences in frequency
response functions emerge only near the resonance frequency.

A constent equivalent viscous damping ratio, feq, may be established which ~matches the loss fector
velue for w = «p, no matter how the factor depends on fresquency:

B, =2n

eq w=w,
This is shown in figure 2. Although this equivalent damping value may be incorrect for all other fregencies
except the resonance frequency the response results will still be sufficiently accurate.

A great advantage of the use of the viscous damping model is its applicability in both tramsient and
steady state response analyses without being troubled by inherent inconsistence in the damping model.

2.2 Hysteretic damping model

For many structures it has been observed that the loss factor is independent of the frequency, at
least in a certain frequency range, The hysteretic damping model has been designed to cover this observation.
The damping force is proportional to the displacement of the motion, x, and 90° out of phase

FD--ihx

where h is the hysteretic damping factor. The dissipated energy per cycle of a harmonic motion is

D=xh a2
where a is the amplitude of the motion.
The maximum stored potential energy is V = 3 k a2 and the resulting loss factor is

h
n.' X
which is indeed independent on frequency. .

It should be noted that material hysteresis due to the plasticity is not included as this is nonlinear
in nature.

A main disadvantage of using the hysteretic damping model is discussed by Fraeys de Veubeke, Crandall
and others (Ref.4,5,7). It was shown that using a hysteretic damping model the response on a unit impulse
is not causal that means the response depends not only on the previous history of the excitation but also
on the future behaviour. It is therefore stated that thec hysteretic demping model can only be used for
steady state response analyses but nnt for transient anelyses.

2.3 More advanced niodels

For the description of the damping charscteristics the previously described models can be considered
as firat approximations. For the hysteretic damping model only the stiffness has to be known besides the
damping factor, and for the equivalent viscous damping model also the resonance frequency. More advanced
damping models have been designed by taking the freedom to choose one or more additional system parameters.
This implies of course that more experimental data concerning material and structure should be available.

An extension of the simple viscous damping or Kelvin-Voigt model (shown in figure 3) is the so-called
standard linear solid. This three parameter model is shown in figure L. In this model not only the

instantaneous applied force but also the previously applied loading is taken into account. Formally written
the damping force is

t
Fp= 7 #(t,7) x(1) ar

-t

vhere x is the diaplacement and ¢ is a memory function. Fraeys de Veubeke (Ref.h) has shown that vhis model
can be interpretated as a viscous dsmping model with frequency dependent damping and stiffness parsmeter.

An evaluation of more parameter models is given by Milne (Ref.8). A wide class of frequency dependent
dsmping behaviour can be constructed if only enough experimental dsta are svailable to establish all
necessary parsmeters,

The epplication of thes: more compliceated damping models for response calculations on aerospace

structures is very limited. They are mainly useful for dmmping investigations cu specific material rather
than on complex structures,
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3.  IMPLEMENTATION OF DAMPING MODELS IN RESPONSE CALCULATIONS

Besides reflecting essentiaml physical features, the damping mechanisms should allow proper
implementation in response calculation formulations. These calculations can be as simple as modelling
the structure into a single beam element but alsoc ss complicated as using a finite element representat-
ion. The refinement of the model depends of course on the available information and the desired
accuracy of the results.

When the structure is built up from elements with known damping characteristics a proper damping
matrix can be determined leading to the equations of motion, for viscous dsmping

[=] (%} + [e] (%} + [k} (x} = {£(2)}
and for hysteretic damping
[m] (2} + ([x] + i [n]) {x} = {£(¢)}

{x} is a vector represerting the displacements in & number of points of the structure. The elements
of the damping matrix [e] or [r] may be derived from results of investigations in which the damping
characteristics have been determined of more or less homogeneous test specimens. These characteristies
have provided sometimes the basis to design the more advanced damping models pointed out before.

A large number of publications on damping deals with this kind of investigations. In particular
damping of joints (e.g. Ref.9,10), of stiffened panels (e.g. Ref.11,12), of sandwich plates and beams
(e.g. Ref.13,1k) and of multilayered beams with visco-elastic layers (e.g. Ref.15) have been reported.

The results of these investigations are used in the design phase of a structure in order to pursue an
optimal solution. For example, while designing an acoustically loaded stiffened panel the results of
comparitive studies of damping of various panel configurations may be very useful, An optimsl panel cen
be designed and the danger of acoustic fatigue can be diminshed, Another important application of the
results of these specimen studies is the improvemert of damping properties of existing structure e.g. by
adding visco-elastic layers. '

Theoretically it is possible using the damping data for each component to comstruct & damping matrix
for & complex structure e.g. by applying & finite element method. In practice, however, the damping data
of the individual components show a wide scatter. This is illustrated in figure 5 where damping data of
stiffened panels are shown, as gathered by Hay (Ref.11). A complex aerospace structure consists of a
large number of panels and joints each with its own uncertainties with respect to damping that an accurate
determination of the damping in this way seems unfeagible,

For these structures damping can only be represented by quantities delaing with the energy dissipat-
ion of the total structure disregarding the damping in the individual components. In that case introduct-
ion of modal damping factors is appropriate. Because of the importance of this category a separate
discussion is given in the next chapter.

L, MODAL METHODS FOR STRUCTURAL RESPONSE ANALYSIS

A very common way to analyse damped structures is to use a modal approach, which is permitted when
only the response of the structure within a certain frequency range is of interest. Then the response can
be expressed by means of a limited number of vibration modes. The reduction of the extent of the calculat-
ions is the advantage of this approach.

k.1 Methods using vibration modes of the undsmped structure

For lightly damped structures the vibration modes of the undamped structure ere taken in the modal
representation. These modes follow from the equations of motion

[m] (%} ¢ [k} {x} = {0}
Substitution of a harmonic solution {x} = {#} eitt leads to an eigenvalue problem from which the natural
frequencies wj and their corresponding mode shapes {@}i can be established. Introduction of the amplitudes
of the modes qj as generalized coordinates the following transformation

(x} = ] (o), q
1

leads to the uncoupled, modal equations of motiom
2
Mog G ey Mg !‘i(t)
vhere ¥j; and Fy(t) are the generalized masses and forcing functions defined by

T
Mg = (9}] [n] (o},
P (t) = {9)] (£(t))

Using the same transformation generalized demping matrices can be derived




'
L
¥
!

T
G5 = {o}; [e] {w}j

T
By, = {o}; [n} {v}j

In general the generalized damping matrices are nondiagonal so that the model equations are coupled.

- Hasselman (Ref.16) has shown that for viscous damping the influence of the coupling terms on the
respons. can be neglected if

C..
il
C..,

<< 1

where B; is the viscous damping ratio of the ith mode.
This inequality holds depending on three parameters:

1 magnitude of B;
2 ratio of off-diagonsl and diagonsl terms (cij/cii)
3 frequency separation (“’j/“’i‘”

Writing the derivation of the generalized damping matrix in this way is a tit formal as the proper

determination of the matrices [e] or [h] is nearly impossible for a complex aerospace structure, as
discussed in the previous chapte?.

Sometimes the concept of the proportional damping matrix, introduced by Rayleigh, is used
fe] = a, [m] + a, (]

or the extension given by Caughey (Ref.17)
e =[u] Jo; (m)”" &)}
) i

This damping matrix is introduced for mathematicel convenience, as it does not couple the modal equations
of motion. But &s this matrix bas no physical meaning proper determination of the proportionality factors
is difficult. Usually these factors are related to the modal damping factors, but then the modal damping

factors can better be used directly instead of firstly derive a proportional dsmping matrix which will be
used in the modal equations.

Commonly dsmping is introduced on modal level, This means that each mode has its own viscous or
hysteretic damping value. These modal damping values have to estimated from previous experience on similar
structures or can be measured afterwards by means of ground vibration tests.

An assessment of the modal damping values can be obtained using the method proposed by Biggs. The
modal damping value is derived from the loss factor of the various used materials

) n;/2 vg‘)m
A .
R U
i Y max
vhere n; is the loss factor of element j and ng is the maximum potential energy of element j in the ith
mode, Tgia method is used to determine the damping values of structural components.
Application to serospace structures has not been reported and msy bde rather difficult also because Loup
{Ref.19) has reported that for spscecraft structures up to 25 § ~f the demping results from non-locad
carrying parts such as cable booms and thermal dblankets.

For s particular structure messured modsl damping values are the most relisble but, as they can only
be cbtained from ground vibration ests, they are only available in s rather late stage of the design.
This disadvantage can partly be overcome vhen vibration tests are performed om substructures. Kans et al
{Ref.20) have proposed s method to derive modal dmping dats for the tomplete structure from messured

lot)hl damping values for the substructures. The method has been applied mnalyzing the Space Shuttle (Ref.
21).

k.2 Methods using vidration modes of the demped structure

When the modal equations are uncoupled the response is obtained by summation of the respouse of the
individual modes. The modal respomse can de calculated by direct stepwise integration or using Duhemel
integrals.

When the equations of motion are coupled s direct stepwise integration method can still be applied.
Por transient snalyses this msy be an sppropriste method dut for harwonic response enalyses this method
By be unwieldy as it takes some time Defore the stesdy state¢ solution is odtained.

Por harmonic loading and slso for random loeding decoupling of the equations by imtroducing Gemped
vibration modes may be useful, Por structures with viscous damping the derivation i{s given by {Ret.2h)
and for structures with hysteretic damping by Mead (Ref.25). The emplitudes of the dsmped vidration modes
are chosen a3 new generalized cocrdimates which now Sepend on the dmmping. Mead has applied this method in
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analyzing sandwich beams and plates (Ref.13). Changes in the dampi.g, however, alter the generalized
coordinates which is unattractive as damping is a rather uncertain parameter. Further, the modal response
analysis using damped vibration modes is slightly more complicated as all generalized quantities are
complex.

Reviews of the features of various general purpose computer programmes for vibration analyses are
given by Nelson (Ref.26) and by Imbert (Ref.27). In tsble 1 a list is presented taken from reference 27
showing the modelling features availsble in the various programmes.

5. RESPONSE CALCULATIONS

When response calculations are made damping values have to quantified. Even for a simple demwing
representation using modal damping values it is difficult to obtain proper damping values already in the
design phase. A3 the role of damping on the response is important the question arises whether incorrect
damping values lead to ~n improper basic design of the structure. This is true for spacecraft structures
but hardly true for aircraft structures.

Consider for example the response of an aircraft on & landing impact or store separation., For these
calculations the structural damping is only 2 small part of the total damping as the aerodynamic loading
provides the major contribution. For the design of specific parts, such as panels which are acoustically
loaded, the structural damping is en important parameter. If no proper damping information is available low
values are taken as a conservative measure., Such a proceeding does hardly not affect the basic design of
the structure,

An important design criterium for a spacecraft, on the other hand, is that the spacecraft structure
must withstand severe dynamic tests. Having calculated the transient response of a spacecraft-launcher
combination on ignition of one of the various stages the maximum loading is used in the dynamic tests as
an upper limit. An example of these calculations is given in figure T. The response is calculated of the
ARS satellite and SCOUT launcher on the ignition of the third stage. (Ref,22,23)

If during the tests these limit load levels are still exceeded the input test levels may be notched.
As these load levels are derived from response calculations the role of damping is cbvious: the limit load
levels in the spacecraft structure are more or less dictated by the used damping values.

A review of all available damping data for spacecraft structures will be very helpful. For European
spacecraft such a review has been given in figure 7 (Ref.18).

6. EXPERIMENTAL VERIFICATION

The choice of the method to calculate the response is also influenced by the possibility to adjust
the damping factor afterwards so as to agree with measured results. When the modal approach using undamped
vibration modes is applied not only the final response but also intermediate results can be checked. By
performing a ground vibration test, modal quantities (netural frequencies, mode shapes, generalized masses
and modal damping factors) can be measured. These quantities can be used to improve the analytical model,
As already discussed in chapter 4 this vibration test may be the first opportunity to obtain proper damping
data for this particular structure.

Also basic assumptions, such as whether the intermodal coupling can be neglected or not, can be
experimentally verified. The difficulties and possibilities of measuring modal cnupling terms are discussed
by Coupry (Ref.28),

When damped vibration modes are used in the modal representation experimental verification of the
modal results is very difficult as measuring damped vibration modes is nearly impossible, Then, and aiso
when the original set of equations of motion is directly integrated, only the final response can be
verified, If the sgreement between calculated and measured results is poor little is known asbout the
defects in the analytical model.

T. COMTLUSIONS

At this moment various damping models are available to descridbe structural damping mechanisms. Success
in spr.ying thew depends on the fortunste choice of the varicus parameters which, however, is not guaranteed
by “.arrent experience,

For response analyses of complex aerospace structures s modal spproach and the comsequent use of modal
denping values is appropriate. The modal dsmping can be considered either visecous or hysteretic.

In the design phase the damping values that have %o be chosen are often cnly conjectured. For aircraft
structures this does not lesd to uncertainity in the basic design but for spacecraft structures the limit
loed levels are dependent on the spplied damping values. Incorrect damping values may lead to an inproper
design.

Collection and evaluation of available mesgured demping dats of satellite structures seem a rational
rfirst step to clear up the design uncertsinities.
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Linear dynamic modelling features in general purpose computer programmes (Ref.2T)
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PREDICTION OF THE STRUCTURAL DAMPING
OF A VIBRATING STIFFENED PLATE

by
Denys J. Mead

Department cf Aeronautics & Astronautics
University of Southampton
Southampton, S09 5NH, England

SUMMARY

This paper outlines the sources of energy dissipation in a vibrating stiffened
plate, typical of a fuselage stringer-skin structure. For a particular specimen,
the principal source was identified as the riveted joints attaching the skin to the
stringer. These undergo oscillating tension / cowpression loads (in the direction
of the rivet axis) when the plate vibrates.

An experiment is described which attempted to measure the basic damping
characteristic of a single riveted joint loaded harmonically in this way. The non-
linearity of the damping was clearly demomstrated, as was the effect of an air-
pumping mechanism in the joint. The results of the experiment were used to predict
the damping of e riveted stringer—skin structure containing memy such joints. The
predicted damping is compared with the velue actually measured. The results are of
the same ovder of magnitude, but the numerical difference highlights the difficulties
involved in undertaking such damping studies.

1. INTRODUCTION

Several different energy sinks contribute to the damping of the high frequency vibretions of
stiffened plete structures. The material of the structure is never perfectly elastic, and dissipetes
energy as it undergces stress cycles, As the surface of the structure vibretes in its plete flaxural
modes, the surrounding medium (air) is made to vibrete and scoustic energy is radieted away from the sur-
face. If there is an aerodynamic flow over the surface, further vibretionel energy can be lost to the air
by a different mechanisa.

It is well-known thet a jointed structure is more highly damped than one which is continucus and
machined out of e solid block. As the riveted or bolted joints are subjected to oscilleting loads due to
the vibretion, the inherent flexibility of the joint permits some degree of reletive motion between the
joint interfaces. This mey only be due to high shear strains in the surface layers, but on account of the
high strain more energy is dissipeted in the layers than would be dissipated if the structure were
continuous. The locel discontinuities and stress comcentrations due to joints therefore cause extra energy
to be dissipated. If the relative motion involves actual slipping and dynamic friction, much more energy
will be lost at the interface.

Further structurel damping can derive from now~structural items attached to the structurs, e.g. pipes
aud cables, passenger chairs snd luggage pallets. The sttachments of these components will not be
perfectly rigid, will allow some reletive movemsnts and go will allow energy to be dissipated. REowever,
it is in those regions of the aerospace vehicle which do not hawve such attached items that the dsmping is
lowest, and of greatest importance. In those regions, ths rssonant vibration responses are likely to be
highest. It is of valus, therefore, to study the sources and machanisme of damping in lightly-damped
buile-up structures.

The material Wiu of aluminium allo’ structures is known to contribute only a tiny proportiom to
the total demping . Acoustic demping (2) can sometimes be the msjor demping sink, but this has a
frequency~dependent damping mechanise which is amensble to analytical study and is now well-understood.
Soms wodes of vibration of stiffened plates have very low acoustic damping. Aerodynmmic dawping depends
on the speed of the flow over the structure and vanishes at zero flow speed. PFor some structural wodes
and under some operating conditions, the structural demping from the joints is the largest conmtributor to
the total damping and for this reasoc this present work was undertsken.

Waen a stiffened plate vibrates, the mode of flexural plate vibration along a line scross the
stiffeners (stringers) may be of the form indicated in Figurs 1. In some wodas (s.g. lc) the plate
inertia forces tend to pull the plate away from the stiffeners, and put the attachment vivets in a stste
of fluctuating "normal tension'. I other modes (e.g. la) the plate is tending to twist the stiffener,
and is subjecting the attachment riwet and joint to a mement which is tramsferved into the stif fener.

The joint then has 2 'moment' loading. When the stiffemer itself bends, the same joints are subjected to
shaar forces which lead to the rate of change of bending loads in the stiffener-besm componcnts. ¥The joint
then has a2 "shear loading’.

These three types of loadisg, to be known as Mode A, Mode B snd Mode C, are fllustrated ia further
Modes A and B, tha oscillating curvature in the plats must csuse
tweea the plats and the stiffener fleage, provided thers is no
jointing coupound between ths interfaces. This way cause sm sctuwal periodic impact of the plate and
flmmgs surfsces vhich may csuse ensrgy 2o be dissipated through macroscopic local plastic deformstiom.
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It will certainly ceuse air to be pumped in and out of the fluctuating gap and this results in a powerful
air-pumping damping mechanism (3). This is pertielly due to viscous serodynamic losses in the small gap
but elso to acoustic energy losses as the air gap acts as an acoustic line source.

The rivet in Mode A is subjected to oscillating normal tension and it is conceivable that bigh shear
strains (and reletive slipping?) can occur between the rivet sides and tbe internal surface of the rivet
hole. Oscillating compression stresses --i1l1 exist between the rivet 1ead and tbe plate surface, and at
all such points of stress concentration, energy will be dissipated. Iu will be assumed thet the amount
of energy dissipated per cycle in this mode depends on the amplitude of the normal tension force acting
on the rivet.

In Mode B, the whole joint is subjected to an oscillating moment., If the joint interfaces are
initielly in good contact, this moment will cause oscillating tension/compression forces on the rivet,
with associated oscilleting compression forces on the adjecent interfece surfeces. Some of the moment
may elso be transmitted along the rivet in a rivet bending mode. Each of these fluctuating forces can
cause energy to be dissipated as described for Mode A, The energy dissipatad per cycle depends on tbe
amplitude of the moment transwitted from plate to stiffener.,

In Mode C, the joint is subjected to simple shear in the mod? for which a rivet is designed. The
mechanism of the interfece damping has been described previously and is clearly associated with shear
deformation and ultimately with reletive slipping of the interfeces. The energy dissipated per cycle
depends on the amplitude of the sheer force transmitted ecross the joint,

Attempts have been made to analyse the energy dissipetion of very ideal joints under Mode C
loading (5). The frictional shear stresses and degree of slipping all depend upon the normal pressure
between the plates, and in e riveted joint this depends upon the technique of forming the rivet. Fer
the averege riveted joint the normal pressure is unknown and elmost uncontrollabla. There seems to be
little hope of e mathemsticel analysis of the damping of such ¢ riveted joint. Analysis of the dewping
of the joints under the Mode A& and B types of loading is even more intrectable, and its magnictude is
even more gensitive (it would seem) to menufscturing inconsistencies from ome joint to another. A
series of experimants has therefore been conducted to measure the energy dissipation in specielly prepared
single-joint specimens, designed to subject the joints to either Mode A, B or C type loading. Severel
jointe of eech type were made in order to investigate consistency of damping (or otherwise) between
different specimens, Eech specimen consisted basically of two Alclad strips 25 mm wide, 1.2 mm thick,
jointed with e single mushroom-hesd rivet (Durel) of 3 mm dismeter.

When the energy dissipetion charscteristics of ¢ joint are known, it is possiblz to estimate the
contribution of that joint to the tutel damping of e structure in which the joint is incorporeted. The
mode of vibretion of the structure must, of course, be known. This paper presents ¢ simple theory for
predicting the total damping of ¢ multi-jointed structure, vibreting in e known mode. Also derived is
the cross-damping coefficient deriving from the joint dissipetion which ciuples e peir of the otherwise
normel modes of vibretion of the structure.

This theory, and the measured values of the joint energy dissipetion rete, are them used to predict
the damping of ¢ plete with multiple stiffening, sll of which is ettached to the plete by rivets of the
sama type as used in the single~joint tests. Ouly one mode of vibretion has been comsidersd, in which
the riveted joints between plete and stiffening wers subjected to Mode A loads. This wode of vibretionm
was chosen as it was reletively simple to celculate the joint losds. In the other modes, the joint
loads could only be found spproximately and with great difficulty.

The wurk described in this paper is associated only with stesdy-stete harmonic (or near-harmonic)
vibretion. Purther work is required to investigate its relevance to transient or random vibretiom.

2. THE CHARACTERIZATION OF STRUCTURAL JOINTS

A joint pousesses both flexibility and dmmping capacity. To incorporete its effect in e vibratiom
snalysis one requires ¢ model of its stiffness and dawping mechsnisme. The stiffness must teke account
of the loss of stiffness in the adjacent structure due to the stress re-distributions close to the joint,
as well a8 of the stiffness of the joining element icself. The demping must take sccount of any
slipping asd Coulomb friction occurring within the joiat, as well ss the effects of macroscopic plastic
deformstions at the joint stress concentratioms.

To obtsin a detailed modal of spring-damper-friction elemsnts for only ome particular joint would
involve a formidable smalysis. It would be unthinkable to exemine all the different joiats im a typical
sern~space wehicle. However, it will he argued that a detsiled wodel of the joint is not required., It
is only necessary to know the smount of smergy dissipated in ome cycle of given load oo the joint, rather

than & detalled losd~duflection relationship for the joint. The former is aasy to determine experimsntally.

The latter is mot. It is also desirsble (but not always mecsssary) to kanow the overall stiffmess of the
joint, and this can somstimes be measured, theugh with difficulty. These two quentities can be aseacisced
with just two series elements in a model of the joint. The dissipation will be associated with a *SEMI-
XICID DISSIPATOR' represented by D on Figure 3s, sud the stiffuess by the spring kj om Pigure la.

A "Semi-Rigid Dissipator’ is & hypothetical slemsnt which dissipates emergy at a cyclic rate which
is depeudent on the amplitude of the forcs sctimg on it. It is called 'vemi-rigid' because the relative
displacemsnt across its extrenities A and B is megligibly smell. If it were actually sere, of coerse,

80 energy could be dissipated in 2 veal slement of this type, but ia a real jeint the sctual displace-
aent across the eclemsuts which do the diseipating is certainly much less thea the displacemsat stxoss the
quut vhich represents the stiffness (sod flexidility) of the swrrounding pert of the jeint. Purther-

, thl potentisl ensrgy sssocisted vith displacements within the dissipating pert of the joint is likely
ubouekhumunnu-ddmmhudduﬁqhemudm parts.
Altogether, them, it is justifisbls to sepurate the joint into the two componsnts -ome which deflects
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and stores energy, and the other which does not deflect but dissipates energy.

The semi-rigid dissipator will be quantified by the 'Joint Dissipation Coefficient', J. If the
joint (and the element) is subjected to a cyclie load of amplitude P, then the cyclic energy dissination
D is given by

D= J.p2, 1

If the dissipator is linmear, J is constant and then represents the cyclic dissipation at unit load
amplitude. When dissipation stems from non-linear mechanisms, such as Coulomb friction or plastic
deformation, J depends on the magnitude of P. Experimental evidence (as will be seen later) suggests that
J is constant at low load levels but increases at higher load levels.

For further justification of the semi-rigid dissipator hypothesis, consider Figure 3b which represents
the joint by three simple (and conventional) elements - two springs and a linear hysteretic dawper. This
is the rext-to-simplest model of a real joint. Separate values cannot reliably be assigned to the three
elements. Experiments can determine the overall stiffness and the overall cyclic dissipation, but a third
quantity must be measured if the three element values are to be determined. The quantity required is the
ratic of relative displacements A to C and A to B. The relative displacement A to C clearly cannot be
measured as point C is inaccessible inside the real joint. The two-element model of Figure 3a can just
as adequately represent the joint, at least for harmomic vibration conditions.

3. THE DAMPING OF STRUCTURES DUZ TO DISSIPATION
AT JOIRTS

Suppose the rth joint in a structure is characterized by Jr and ky, and is used to connect two
flexible linear elements characterized by K; and Xy (see Figure 3c¢). The displacements at A and D are
X] and X2 Elements ky and Kp can be combined into the simple linear stiffness (1/ke + 1/K3)”l = Kcp.
1f the stiffness of the joint, ky, is much greater than that of the element Kz, then Kcp # Kp, and the
joint can be regarded as being effectively rigid. The relative displacement across CD is, by the hypo-
thesis regarding the dissipator, the same as that across AD. The force in the cowbined spring K¢p is
then Ken(Xs - X1). If Xjand Xz are varying harmonically, the smplitude of the force in the spring is
Kep(X2 - X1), and this is also the amplitude of the force onm the dissipstor. ‘fhe energy dissipated per
cycle by this joint is then

Dr = I K2 (Gp - XD, ()

Now suppose the whole system of all such elements together with the system masses is forced to vibrste
harmonically at frequency w in two principal modes whose principal co-ordinates are qucos wt and
qn cos (wt + ¢). The displacements X| and X; are now given by

X = 0;.q.cos wt +a; qcos (wt + )

and Xy ® G2,0,C08 Wt + 35 q cos (ot +e) .

Gims G2y €tc., clearly define the mode of vibration. The amplitude of the relative motion, X1 - X
can now be evsluated, from which one finds the following expression for the cyclic dissipation at the
joiat:

2
Dy = Jr{‘?m(“h - “1.)29: + lén (agy = ¥yp) q‘z‘
* nzw(“h v °1u) (“2u u alu)q-qncol £ } *

Let the generalized direct hysteretic damping coefficients for the two modas be Hyy and Hy,, and the
cross-dasping coefficient be Hy,. In terms of these coefficients, the eneryy dissipated per cycle when
the two modes co-exist is given by

t{u% +qu:+m-%m c} . 4)

Comparing the sbove two expressions, it is evident that the contributions from the joine dissipation
to the gmneralized dawping coefficients sre

&)

S = 3 Ky (o, = 1) (sa)
.1
B, = dp K (o - 0, )° (s
4
An_-%,xf, (agg = 810 (3, = 8y ) . (S¢)
Row the ters Kep( -u,.)umquwumtmhmmxa(-mtmumrﬂ'jom)
Mmmmvmamvld\dtq.hmmn. Likewise, Ken(22y = a19) is the mplitwie of the
force on the rt joint vhen the systew vidrates with wait ¢, ia a. Demote these force mmplitudes
by Pyn 80d pp,, o0 that - v ate. If there are R such joints in the whole system, the gemeral
fors for the total hystarstic coefficient from all the joints will be givem by
h- %J‘l‘tll' . (‘)
0 8
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This is true for m = n and m ¢ n.

The generalizad hysteretic damping coefficient is therefore ralated very simply to the energy
dissipation coefficients and to the modal forcea acting on the joints.

The LOSS PACTOR of a mode of vibration of the whole system can be defined by the dimensionless
quantity

n = 1 Energy dissipated per cycle of displscement in mode m
Il T4 Eﬂn energy stored during the cycla n

Wher the system vibrates harmonically at its natursl frequency, wy, the maximum potential and kinetic
snergies are equal, so that

Voex ” Tmex * fq:winnlz ®
vhere My is the generalized mais of the mode and is givenm by
my = [ ey oa )
v

p is the materisl density, 4y is the modal displacement function from which aip, ayg etc. ara darived,
and the integration extends throughout the volume of the vibrating system.

The energy dissipated by all the joints in the system in the course of one cycle of mode m is

& 2
Z Jepenital -
=] s

Tae loss factor of the nth mode is then

R
LIRS V- (10)

Now the generalized stiffness of this mode, Ky, is equal to w2M,. Using this in equation (10),
togather with the expression for Hyy from equation (6), ona finds

y * Hep/Fa . Qan
This is the alternative, fragquently-quoted form for the loss flet& of a hysteratically dsmped system.

4., TER MEASURRMENT OF JOINT DISSIPATION COEFFICIENTS

4.1 The general msthod

Joint dissipation coefficisuts may be measured by incorporating & single joint in a simple vibrating
system. Ideally, that system should bave no other significant damping sinka. Prom measurements of the
systen loss fsctor, nstural frequency and wode ¢y, Jy can be found frou the re-arrengsd form of equation

(10) with R = 1:-
Je = !ﬁ 12

*in

The joint load per umit generslised displacement, pyy can be calculated when ¢y, uy and the system
sass distribution are knowm.

If the joint has mow-linear damping characteristics, ng will vary with smplitude and mey be difficult
to measute relisbly. In that case, the actual power input vequired to maintain vidration at different
levels should be measured. Denote this W, 1If the joint is the only demping sink, them
VeDy«Jejalipd, . Nemce Jr = W/iefind, - ay

Some joints are subjected to moments (bending or twisting) rather tham forcss. In :3: cass,
mtummtudnumj?twdt Sa aod J, has the mits of work § momentt. om-’-r.'.
its mits are those of work + force‘.

The joints to be considered in Section 3 are subjectsd to three principal types of load. These axe

(a) 4n oscillating temsiom~compression loed along tie Tivet axis,

(») An ocscillating bending momsut trememitied through the riwet,

(c) 4An c2cillating shese loed perpesdiculer to the rivet axis,

Te masure the joiat dissipation for these different leading sctiens, thres diffavent types of test
were required, sach with a single jeint. Whem esch specimsn vidrated in ics fundemsutal mode
the jefat ia thet specimen wae loaded in ons of the sheve waps enly. The jeiats in the differest
with che sise and type of riwe (3.173
snd materisl
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(1.2 mm (= 0.048 in) Alclad L73) and made by thc same manufecturer.

4.2 The specimens used.

Specimen A subjected the joint to the oscillating temsion-compressicn load of Mode A. Figure (4a)
shows the cross-beam layout of the specimen ond its dimeneions. In the fundamental mode of flexurel ;
vibretion of the specimen (displacements normal to tha plete surfsces) the two cross~beams bent in anti- qﬁ
phase as shown in Figure (5a). The inertia loading due to this motion imposed e pure tension-compression
force on the joint along the line of the rivet axis.

Speciuen B subjected the joint to the oscillating bending moment of Mode B loading. Figure (4b)
shows its layout and dimensions end Figure (5b) shows the specimen deformed in its fundamentel mode. !
The inertia loading on the vibreting plates subje-ts the joint to pure bending, provided both the mode ;‘
of vibretion and the specimen ere symmetricel about the centre of the specimen.

Specimen C subjected the joimt tc the oscilleting shear load of Mode C. The joint was incorporated
in e "top-het" section beam (Figure (4c) et the centre of which the crown and the side webs were cut !
awey. A joint plate with two rivets in single sheer restored the comtinuity of the crown across the 3
cut., The beam vibreted in its fundementsl mode of free-free flexurel vibretion in ¢ direction normal
to the crown and flanges. The oscilleting bending moment in the besm ot ite centre genereted e tension-
compression load elong the crown and imparted the oscillating shesr load of Mode C to the joiat.

Three nominelly identicel specimens of types A and B, and two of type C, were manufactured and
tested with e view to checking the reproducibility of results from differemt, but nominelly identicsl
specimens. The neture of the specimens was such thet aercdynamic damping was expectad to contribute ,'
appreciably to the totel damping. Demping measurements were therefore made in eir and in vecuo in
order to assess the aerodynamic effects. Furthermore, specimens A and B were expected to be damped
additionelly by electro-magnetic effects due to the proximity of the vibretion exciter magnet. The
magnitude of this effect was investigated on plain, unjointed specimens similar to specimens A asnd B,
tested in air and in vacuo.

4.3 The vibretion measurement and excitationm.

To measure the damping of the specimens, they were suspended from ¢ massive frama by thin thresds
or wires atteched et (or close to) their nodel points. Vibretion of the specimens was perpendiculer to
the plane of the threads, to minimize restreint of the motion by the threads.

The specimens wers excited electro-~dynsmically. A small coil was attached to one and of specimens
A and B and was free to move in s permsnent magnetic field. A similar coil was ettached at the other
end of specimens A and B to msasure the amplitude of the velocity of motion. The exciter coil was
supplied with elternating current from e standard LY oscillator and power amplifier. Frequencies of

vibretion were measured on edigital frequency meter of high resolytion., Specimen C hed e crystal

strsin gauge sttached to measure vibretion smplitudes.

Modes of vibration were measursd with a non-contecting capacitive vibration meter. This was elso
used to celibrate the coils for the excitar and velocity transducer, and to calibrste the crystal strain
gauge output in terms of the beam displacement.

4.4, The experimental methods

Initielly, dewping messurements were made by exciting tha specimens with ¢ force of constant
amplitude (i.a. constant exciter current) and by varying the frequency through the fundamsatal resonanca.
The bandwideh of the frequency-response curve at the half-power point ylalded ¢ loss factor (= bandwidth
4 rescnsat frequency). Rowever, the force-wvelocity ralationship et the resonent frequency was not elways
linser, so the sccuracy of this measured loss-factor was at times in doubt.

Twe slternative methods wera therefors useds

() The energy input wethod :

At the frequency for mexisum response (wy) the swplityde of displacement at the exciter )
wss measured for different msasured cxeiting force amplitudes (7). The input foree was ganuinely simply
harmouic and the displacement was clmpgt simply hatwonic. (Nigher harmomic comtents wers very ssall).
The cyclic energy input is given by vPw, provided the harmonic comtents are small med the phase difference :
batween force and displacement is cioss to 90°, These comditions were satisfied in the experiments. .The i
foss factor iz then given by

h.

din

and the joint dissipation coefficient by
E: e 4
i ;’zn

where the sctusl joint leed is givea by wppy .
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(b) The bandwidth method et constant displacement smplitude. ]

The frequency of excitation was varied in the region of the rasonant frequency while the
displacement smplitude was kept et e constant level by adjusting the force amplitude. The two frequencies,
wg and wy, were identified et which the force smplitude was /2 times the force smplitude at resonance (the

nisum value). The'eguivelent linear half-power bandwidth’of this frequency response curve is (w, - wy) .
The equivalent linear loss fector of the system, corrasponding to the displacement smplitude of test, is
Ny = (g = wp) /um-

Loss factors were measured by these elternetive methode for e range of displacement amplitudes.
The tests were carried out both in still eir at normal tempereture and pressurs, aund in vacuo (< lmm Hg).

To determine the modes of vibretion of the specimen, the non-contacting vibration transducer was
traversed over the surfeces and smplitudes measured et e number of points. PFor this part of the experi-
ment, the spe.imens were supported in the horizontal plane on pieces of soft fosm rubber et (or nser) the
nodel points. This prevented swaying motion of the specimens and facilitated messurement.

For the energy input method, accurate celibretiom constants were required to relete the exciter
current to the force exerted, and the velocity tramsducer voltage to the actual velocity of motion. These
constants were obtained et frequent intervals during the whole test programme by calibreting the coils
in situ, To do this, the vibretion amplitude and voltage output of each coil were messured et e known
frequency using the displacement transducer, while the other coil was being used to excite the system.
From these measursments the coil constaut I' was obtained, i.e. I' = Voltage output amplitude # coil
velocity amplitude. By the reciprocity law, this is elso equal to the force amplitude # supply current
applitude, S.I. units being used,

4.5 Calculetion of Jp from messured results.

The amplitode of the exciting force is given by F = I' i, where i; ia the amplitude of the supply
current to the exciter. The amplitude of the velocity at the velocity trausducer locatiom is given by
Vo/Ty where Vg is amplitude of the output voltsge from the velocity coil. The messured mode of trans-
verse (flexurel) vibrstion is ¢(x). Let thie be normslized to have unit valus et the exciter coil
location. &t the velocity coil locatiom, its velue is ¢(x,). It follows that the velocity amplitude
et the exciter poiat is V,/(Ivé(x,) ) and the displecemsnt amplitude et that point is

v o= Y/ (Teb(zIow .-

The joint load, ppy, corresponding to unit Jisplacement et the exciter location was found by
sppropriate integration of the inertia forces of vibretion correspunding to ¢(x). Por specimen A, it
takes the form of wf/ué(x)dx, where u is the mass per unit length of the cross-besm and the integration
extends over one of the croes-tesms. Yor specimen B, in which the joint is subjected to an ocecillating

soment, the mowent swplitude is proportiomal to uz”w(:)dxdx

e Y ety oo

]
where the integretion axtands from the end of the specimenup to the centre of the joint. For specimen C,
in which the joint load i{s the direct load produced in the crown by the beam bending moment, the load {s

proportional to u:”ut(‘)w ¥ depth of beam et the joiat.

e

It follows that the joint dissipation coefficient for specimen A is found from the squation

i )

For specimens B and C, tha double integrals replace the single integre! in the demominator.

i, 1

Jp cen therefore be evaluated, using weasured values of i, and V, and the other qusatities. The
corrasponding saplitude of joint load, ?.. for specimen A is Wp,, vhgch is seen to be given by

?, - v,..[mmx/(r,o(x,) ) .

Trom the values of J, calculated in this wey, it is possible to compute the corresponding loss
factor of the speacimsns, using equation (10). This value can be compared with the loss factors mess
by the two other msthods.

ured

5. MEASUSED VALIRS OF TMR JOINT ATION CORTVICIRNTS

Figures 6, 7 and 8 show the values of J, for the joints loaded in worwel tension (Specimens A),
bendisg (SpecinemeB) and shear (SpecimmeC). Specimen A experimemts were carried out st (or sbout)
143 Bz, Specimea B ot 184 Uz and Specimem C at 193 Rs,

Consider first the joints loaded in movmal temsion (Pigwe 6). J. doas uot vary spprecisbly over
the zange of joiat loads covered. The surrcusding air makas ths mpjor contribution to the joiat dampiny, ,
(ssy 1/2 to 2/3 of the total). When testsd in vacuo, the walues of J, from each specimen are slmest FURLN

another. The same is set truws for the comtribution of the air demping which comes predomdinsntly frem
the sir pumping sechanisn between the twe joint plates. (This is suggested by the very smsll comtrib-
wjointed specimu, No.4). The damping ¢ ts sir pumpiag suet depend
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from specimen to specimen, considerable variations can be expected in the damping. This may account for
the variability of the J,'s for the different specimens of Type A when messured in air. The same may be
said for the specimens of Type B.

Specimen No.4 had no joint but an equivalent J; has been calculated for it using the measured i,
and Vo values. The corresponding curves of Jy on Figure 6 show that the sources of energy dissipation
apart from the joint are small, being due to material hysteresis, electro-magnetic effects (eddy-currents),
support damping, and aercdynamic viscous losses around the edges of the specimen.

When the joiats are loaded by moments (Figure 7) the air pumping mechanism is still predominant, and
is still very varisble in magnitude from one specimen to another. Whereas its contribution to J, increases
with increasing moment for one joint, it decreases for another. On the other hand, the J, values measured
in vacuo are more consistent and are scattered by about ¥ 20Z around the mean value. There is a slight
tendency for Jy in vacuo to increase with increasing moment on the joint. The unjointed specimen behaves
almost linearly and its J; remains con.tant with moment amplitude.

The joints loaded in shear (Figure 8) behave almost linearly at low amplitudes of load with constant
Jg, but J; rises very stee 1{ after the load amplitude exceeds about 70K. This steep increase has been
observed in previous work (4) and can be associated with increasing relative slipping of contiguous
interfaces. The two different specimens of Type C yield very similar values for J, at low amplitude, so
the joint dissipation characteristics are repeatable on different but nominally-identical joints. The
values of J, for these joints via mushroom-head rivets are about one-fiftieth of those previously
measured for countersunk rivets (), This is ptobably associated with the fact that the shear stiffness
of a countersunk rivet is less than that of a mushroom head rivet.

The magnitudes of J, for the joints under normal tension and those under shear may be compared, as
the dimensions of J, are the same for these two types of loading. It will be seen that the joint under
gormal tension has a J, value of about 0.6 x 10-58"1a (when electro-magnetic effects, etc., have been
subtracted), but under shear, the low-load value of J, is about 0.3 x 107 ¥°lm, These values differ by
several orders of magnitude but as quite different mechanisms of energy dissipation are involved, this
is not unexpected.

Figure 9 compares the loss factors of specimen C meesured by the different methods at different

amplitude levels. The agreement between values obtained from the different methods is not as close as
could be desired but is not unexpected from previous experience of measuring damping in different ways.

6. THE MEASURFMENT AND PREDICTION OF THE DAMPING OF A STIFFENED FLAT PLATE

6.1 The Plate Structure

A rectangular flat plate, 1.18m x 0.4lm x 1.22mm, of the same material as the jointed specimens
(L73) was reinforced by 'frame' type mesbers down each long edge, and by seven 'stringer' type members
et equal intervals (0.17m) perpendicular to the long edges. Figure 10 shows the panel and reinforcing
mesber dimensions. The reinforcing members were all of L73 and were 1.23mm thick. They were riveted to
the plate by the same type of rivet as used in the jointed specimens and were formed by the same process
and opevator es used for the small jointed specimens. The frames were cut away to ellow the stringers
to pass through and were attached to the stringers at the intersection points by small cleats, riveted
with the same type of rivet ss before. The rivets between the plate and the reinforcing members were
at 38mm pitch throughout.

6.2 Meesurement of the Loss Factor and Mode

The reinforced plate was susnanded from a rigid frame by two thin wires and was excited electro-
dynamicslly using light-weight coils at the centre of eech inter-stringer panel. The sxciters were so
inter-connected as to produce forces which were in the same phase on all panels. The mode which was
thus most readily and intentionally excited was the so~called "stringer-bending” mode and this was
driven at and around its resonant frequency of 240.3 Hz., All the panels vibrated in phase with one 1
another and exertcd forces on the stringers which tended to bend the stringers, albeit by imperceptible !
smounts, These forces betwsen the panels and stringers constituted 'normal tension' forces on the riveted
joints of the Mode A type.

The loss factor of this mode was determined from accuriats measurements of the bandwidth of the
frequency respouse curve, the response being messured with a strain gauge attached to the ceatre of one
panel. It was confirmed firstly that the response varied in direct proportion to the coil exciting current
at the resonsant frequency, i.e. the system was behaving lineerly. Ths bandwidth was measured at several
different lavels below the pask response level, and the differant bandwidths so obtained were suitably
used to improve the accurscy of the loss factor measurement, The velus of the modsl loss fector so
obtained was 0,017, Msasurement of the loss factor in vacuo gave almost the same result.

The mode of plata vibration wvas measured along the longitudinal centreé-line, /nd also across the
lateral centre-lice of one of the panels. The nom-contecting displecement transducer was used for this a
seacuresent, Piguve 11 shows the modal displacement patterns ro chtained, 8

6.3 jetion of the Factor

_ To predict the loes factor, use was mede of equation (10). The aaplitude of load on each rivet,

s is requived, corvesponding to vidration of s given magnitude of the plate in the measured mode.
miﬂwu joining the plats end airinger, sud plate and frame, ave subjected vo normal tension due to
the plate imertia forces, and to shear dus to the strimger or frame bending.
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In calculating the normal tension force on the stringer-plate rivets, it was assumed that each
rivet carried the inertia force on a rectangulsr eleaent of plate bounded by the lines mid-way between
adjacert pairs of riveta and by the lateral centre lines of the panels (see Pigure 12). It was assumed
that the displacement of a point (x,y) on the plate was given by

v = q(x,y) = qu £,(x) galy) .

fu(x) is given by the lengthwise mode of Figure 11 and x.(y) by the lateral mode. (y) vas assumed to
be the same for each panel. The inertia force on the rivet 'R' for unit value of qy is therefore given
by

Prm = mi oh r‘z rz fu(x) gly) dydx ,
1N

This is a good approximation for the losds on rivets near to the longitudinal centre-line, but is poor
for rivets close to the frame. However, these latter rivets only sustain very small loads, so even large
percentage en'ors in their magnitudes lead to very small errors in the calculated loss factor which
requires rpm'

The shesr loads (Mode C) on these rivets are zero at the longitudinal centre line, and close to the
frame have magnitudes of the order of 4 x pyy for the central rivet normal tension load. Values of Jp
for rivets under shear are orders of magnitude less than J, for rivets under normal temsion. Energy
dissipation due to shearing of these rivets is therefore negligible compared nth energy dissipated due
to normal tensiom.

The total inertia force on the plate and stringers ia transmitted to the frames through riveted
cleats at the stringer-frame junctions. From the normal tension loads on the plate-stringer rivets,
one can deduce the shear force on the stringer-frame-claat rivets. Once again, the energy dissipation
due to this shaaring was found to be negligible.

It now follows that the energy dusipntion term Y "er in the loss factor expression (Equation 10)
derives predominantly from tha rivets losded in normal tension, for all of which the value of J, is the
same. This ters can therefore be evaluated as Jp Z p%.. The velue of Z p%, cslculated for all the
rivets of the panel which were loaded in normal tansion was 8.39 x 109 K2.

Equation 10 also requires the generalized mass, given by

K - [f oh £3(x) g2(y) dydx
ell panels
+ contributions from stringers and frames

The frame contribution in this particular case included inertia asaociated with distortion of its cross-
section, together with inertia associated with daflection normal to the plata surface. The value so
obtained for My was 0.148 kg.

With uy = 240.3 x 27 rads/sec, tha loss factor is found to be
n o= 7921003, .

It remains now to use the appropriate value of J, for tha rivets under normal tension. Frowm tha in vacuo
tests on single joints (Figura 6) the average value of J, from thrae specimens is 1.1 x 10 =5 | pt W

This includes a contribution from ghc ro-magnetic and nuspouion damping, which, on the unjointed specisen
gave an equivalent Jp of 0.4 x 107 . The diffsrence between these (0.7 x 10~5) cam be ettributed to
the rivated joint alone, and should be used to find the plate loss factor. This then yialds

n = 0,055

6.4 Comparisom of Calculated and Messured Velues

The calculatad value i{s seen to be about three time: tha rsasured velue of 0.017, and does not include
any contribution from air-pumping diasipation et the joints. The best that can be said is that the
calculeted loss fector is of the same order of magnitude as the measured velue, but the discrepency {s
nevertheleas disappointing. 1Two possibla reasons can be sdvanced for the diacrepancy.

(a) Although tha joints on tha plate and cross~beam specimens wera msde by the same bssic
procass, it is possibla that thera wera significant diffarencea batwesn the mase~produced
multiple joints of the stiffened plete, and tha hand-made singla joints of each cross-
bess specisen. The valus of J,. foumd from the cross-beams may not have represented that
of the joints in the uiffmd plate.

(b) The aimple cross-besm, singla joint specimen: msy not have adequataly represented the
actucl joints on the structure. They consisted of two 25mm wide flat strips riveted
together. Around tha aingla rivet were four plat:c edges in contact with two adjacent
plate faces. On ths reinforced plate structure Jhers the plats was riveted to a
atringsr, there were only two stringer edges associsted with each rivet which were in
eonu:tviththephu. and one of these edges was the rounded edge of the bend between
the ctcinger flange and web, If the cyclic snergy dissipation were asspociated primarily
with fluctuating contact, pressute or elipping at such edges, the dissipation coefficieat
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of the joint in the simple cross-beam could be expected to be at least twice that
of a joint in the reinforced plate.

This latter possibility casts doubt upon the premise that the energy dissipatad at the cross-baam
joints depends upon the amplitude of the normal temsion load acting on the joint, Fluctuating pressura
between the joint plate surfaces and relative (slipping) displacements of the joint surfacas in this
mode must depend upor the fluctuating curvature of each plate surface. The megnitude of this, of
course, depends upon the magnitude of the bending moment in each plata close to the joint, and not just
upon the magnitude of the normal tension load on the joint,

As apreliminary investigation into this point, damping messurements were made om the 'A’ specimens
after one of the cross-beams had been 'cropped®, and reduced in span from 127 mm (5 in) to 65 mm (2§ in).
The degraa of curvature in the cropped beam when the whole specimen vibrated in its fundamental mode was
now greatly reduced, although the other beam was bending by the same amcont as befora. This should have
led to a marked changa in J; if the amplitude of curvature was the important controlling parameter. In
fact, there was no detectsble change in Jr, as deducad from in vacuo results. (The air-pusping energy
dissipation changed quite considerably, but erratically.) It was therefora concluded that the energy
dissipation was associated primarily with the normal tension load on the joint, but further confirmation
and investigation into this point would be desirable,

7. CONCLUSIONS

The damping and flexibility of a structural joint may be conveniently represented in vibration
analyses by a 'rigid dissipator' in series with an elastic spring. Tha charactaristic value of the
dissipator has been called tha 'joint dissipation coefficient’ and may be datarmined from measurad
values of the energy dissipated in s given joint when losdad harmonically with a force (or moment)
of known magnitude. To pradict the total damping of a structural wode, or the cross-damping between
two structural modes, knowledge is required of the load on each joint when the structura vibrates in
each mode, and of tha dissipation coefficients of all the significant joints.

The structural damping of high-frequency modas of reinforced platas originates in joints which
may be loadad by normal tension forcas, shear forces, or by moments. In different modes, the joints
will ba loadad in different ways. Experiments on typical joints loaded in these thrae ways have shown
that the damping characteristics of nominally identical joints (in vacuo) are almost the same. Joint
structural damping appears therefore to be reproduceable., The energy dissipated by air-pumping between
joint surfaces is not reproduceable. The structural damping of joints loaded in normal temsion or by
moments appears to be sensibly liunear, but for joints losded in shear, thara is a rapid rise in the
joint dissipation coafficient when the load amplitude axceeds a certain level.

When the joint dissipation coefficients so measured were used to predict the damping of a reinforcad
plate structure, the predicted damping was found to be about three times the measured damping., It
appears that the single joint, on which the dissipstion coefficient measurement was mada, did not
adequately rapresent the sctual joiunts in tha reinforced plate. Furthar careful work is required to
astablish the ideal form for a single joint specimen.
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FIG. 4  DIMENSIONS OF THE SPECIMENS USED FOR JOINT-DAMPING MEASUREMENTS.
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FIG. 9  THE VARIATION OF THE BEAM LOSS FACTOR, T}, WITH AMPLITUDE OF
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SUMMARY

From the point of view of the representation of the structural behaviour by means of finite element
models, the various analysis techniques are discussed, as concerning the inclusion of the structural dam~
ping effects, The different consequences of assuming some of the most widely used damping models are exami
ned, from the point of view of the solution algorithms. In particular, the most popular uncoupling techni-
ques, that are only approximate when the structural models possess a non proportional damping matrix, are
criticized.

Various diagonalization schemes are presented for the damping matrix and particulsr emphasis is given to
the evaluation of the errors involved in the computation. The errors can be identified on an "a posteriori"
basis, through parametric numerical studies or, ~l.ernatively, can be, in the majority of the cases, esti~-
mated "a priori". This consideration leads to a variety of admissibility criteria; some of these are also
discussed in the paper.

1. INTRODUCTORY REMARKS

In the context of dynamic structural analysis, the term "numerical model" is referred to a process, ty
pically reproduceable into a computer program, able to simulate the dynamic behaviour of a given structural
system, .

The mathematical structure of the model does not nrkyd to be chosen “a priori". Sufficiently well established
procedures are known, indeed, [13,[2], to select ‘recm a general class of functionals the most appropriate mo
del, provided experimental data taken from vibratior mesurements are given.

In engineering practice, however, it is more usual to derive "a priori” the mathematical structure of the mo
dels from the general principles of the structural dynamics. Such models involve analytically defined quanti
ties and parsmeters which still need to be determined from field observations.

Some of the methods available to perform this latte: task are discussed in [1], [3-8]., By the other hand,the
main pourpose of the present paper is to deal with the mathematical structure of the models themselves,

In particular, from the point of viaw of the representation of the structural hehaviour by means of fi~
nite element models, the various analysis techniques are discussed, as concerning the inclusion of the struc
tural damping effects.

Structural damping is responsible of a removal of energy from the system. The energy removed is dissipaced
vithin the system itself by some physical mechanism belonging either to the nature of the material or to the
characteristics of the structural details.

It is well known that many structural situations are strictly dependent from the presence of internal dam=
ping. Some of these situations are described, for instance, in [9], [10].

The damping mwechanism can be very different in nature; many attempts to mathematically descrihe the phenome
non csn be found in the literature togsther with papers offering comprehensive reviews of the various formu
lations (e.g.:[11]),

To be consistent with tie pourpose of the paper, it will he herein assumed that the above mentioned
formulations can be classified in two broad categories: a) viscous damping,snd b) hysteretic damping. Re-
gardless to the physical nature of the phenomena that the two categories describe, it is intended that the
so~called Coulowb damping, plasticity and ocher similevr kinds of dissipation are included, as special cases,
into the second category .

Trom the mathematical point of view, the dawping effect is visualized by the equation of motion of a single
degree~of-freedom system where & ters of resistive force is addad:

X+ kx +r = f(t) 1)

In the case of viscous damping, to the force r can be givea a form:
s
X
vk G

vhile, in the case of hysteretic damping, the most gensral expression of the resistive force ia:
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t = g(x, sgox, sgnx) (3

In very general terms, the resistive force arising from material dampiag, can be evaluated on the basis of
the linear hereditary theory by the integral:

t
rs= f d(t,T)x(r)dr

(4)

in which the kernel has, in some instances, an expression of the Volterra's type. EqQ. (4) is derived from
the most general constitutive law for linear viscoelasticity. Nevertheless, suitable techniques can be ap~
plied in order to give a similar representation to the hysteretic damping.

The idealization of a structural gsystem into a finite element model substantially consist in attribu~
ting to that structural system a finite number of degrees of freedom.

The dynamic behaviour of the system can be defined mathematically either by a set of differential equations
valid in a domain F:

D( {u} ) ={0} ()
together whit the associated boundary conditions on the boundaries C of F
B( {u} ) = {0} (6)
or by a variational principle requiring stationarity of some scalar functional y
M= fg aC u) )aF + [T {u} ddc %))
where u(x,y,z,t) denotes the state of displacement whithin the system, [14] .

In both cases the problem is discretized ([151,[16] by introducing a finite number of parameters {A} and
piecewise defined trial functions [N] such that the unknown functions ere approximated by:

{u} = [N] {a} (8)
or, breaking the domain F into m subdomains F;:

{ul; = [N); {8} (i=1,...,m) 6]
The discretization can be performed according to two alternetive criteria.

a) The triel functions [N] are only functions of the spece coordinetes, that is: [N] = [N(x,y,2)] ,
while {A} » {A(t)} . This epproech leads to resuiting equations which ere elgebraic with respect to tne
space veriables and differential with respect to the time.

By introducing, according to the usuel finite element techniques, the globel stiffness matrix [K] and the
consistent or lumped mass matrix [M] one gets the following matrix ordinary differential equation:

(M1 (A} + [ {8} + (¢} = {£(e)} (10)
b) The triel functions ([N] ere elso functioas of time, that is: [N] = [N(x,y,2,t)] . In other words,
the domain F, which is a spece-time domsin, is broken into subdomains F;, that still ere spece-tize domains.

The resulting equations zre, of course. fully elgebreic.

It should be observed that, in Eq. (10), th: vector {r} represents the resistive force arising from
damping.

The traditional approach, within the context of the finite element prectice, takes adventege of dam~

ping formuletions of the type shown in Eqe. (2), (3). This approech will be taken es a basis for the future
developenents.

Although they will not be treeted in this paper, alternative epproeches exist and must be, for sake of
completenass herein refarenced. These formuletions use dawping representations analogous to eq. (4). Impor-
tant contributions to the subject can be found in ([12], [13].

2. SOLUTION ALGORITHMS
In Eq. (10), the reeistive force {r} , for certain kinds of damping can be written ee:

{:} = [c) {a) ay
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where a, are arbitrary constants and n is the total number of degrees of freedom of the model {17). In this
case the modal superposition method can be applied. It should be observed that Eq. (11) corresponds to the
linear viscous damping derived from Eq. (2).
In particular, an important form of the matrix [Cl,satisfying condition (12), is the following:

{cl] =« BIK] + vIml 13)

Under the above assumptions, calling [.7] the modal matrix of the eigenvalue problem:

( X1-w?M1) {2} = {o) (14)
normalized as follows:

T
ZTIMl[z] = [11 (15)
Eq. (10) can be transformed into the uncoupled system:

(1l {q} + [B) {q} + [AMq} = {a} (16)

where:

@ =21t
8] = [217Cciz)
tA) = (217CRI0Z]
fae)}= (217 {£(e))

Eq. (16) can now be solved either in closed form, in a very restricted variety of cases, or uumerically, by
the evaluation of the Duhsmel's integral or by some time-stepping procadure. This latter method presents wma
ny analogies with the direct integration of the equations of motion and will be, therefore, discussed later
in this section, while the other solution procedures do not involve particular consideration of the damping
phenomenon.

It should be abserved, however, that the condition (13) physically implies that the damping phenomsnon
must be the same for all the elements of the model. Eq. (12) states the condition in more general terms but
the physical requirements ace not substantially modified.

Nevertheless, modal analysis represents a very powerful tool, when spplicable, expecially if the dynamic be
haviour is controlled by the first few natural modes.

The solution of the eigeavalue problem (14) constitutes, for models characterized by a large number of
degrees of freedom, a very expensive effort. Various techniques are applicable, however, to reduce the to~
tal number of degrees of freedow.

Mass lumping or special kinds of consistent mass matrices, obtained by employing reduced interpolation tech
niques, can be used for this pourpose. Detailed discussions of the subject are contained in (18], [19],[22],
Guyan reduction and dynamic substructuring can also be utilized in the condensation procecs, as described
in [201,[21].

In thase techniques, the choice of the master degrees of freedom is ususlly made "a priori", om the basis
of sa effective subdivision of the structure into substructures or, alternatively, is loft to some automa-
tic criterion as the one presented in [23] , which is based on the exsmination of the atiffness and mass
matrices of the complete model.

In order to keep the applicability of the modal analysis for the reduced model the damping matrix mmust
bs of the kind (13) for each substructure and the constants P and Y aust be the same for all the componeats.
If a static condensation is applied, howsver, condition (13) is not violated vhen & demping matrix o¢ the
same type ie superimposed to ths ane wdtained by the condansation process. .

This latter consideration provides the possibility of constructing simple models in whicu a localized cner-
gy dispersion is presmt.

When the resistive force is still represented by Eq. (11), condition (12) cam de omitted if, instead of
the modal superposition, the method of the complex response is applied.
By msking the Fourier travsform of BEq. (10) cue obtains:
(=2 + (X + i [C)) (8} = (f} an

where:

@ e [ taeen o gy M = [ o) e
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Eq. (17) i3 a set of complex algebraic equations in the unknowns {A} . The response in the time domain is
given by the inverse Fourier tranaform.

Numerically the procedure is realized by projecting displacement and load time histories into a discrete
spectrum of frequencies ,. (j = 1,...,8) via the discrete finite Fourier transform thus generating s sets
of linear algebraic compléx equations of the type (17). The inverse discrete finite Fourier transform gives
the time history of the response. The fast Fourier transform algorithm (Cooley-Tuckey or equivalent) can be
used as an efficient computational procedure for the direct and inverse Fourier transforms.

Often Eq. (17) is written in terms of a complex stiffness matrix derived from the complex moduli:

6" = G{1 + 2iB)
* *
E = 2(1 + V)G

where v is the Poisson's ratio, G is the (real) shear modulus and B is ameasureof the internal dissipation
of the marerial. The coefficient B is a constant in the case of hysteretic damping and is a function of the
frequency w if the damping is of a viscous type.

It should be pointed out that, in a finite element model, each element can have different damping cha-
racteristics [24] while substructuring techniques apply to eq. (17) in a way analogous to the static conden
sation process,

If the damping representation falls in one of the categories described above, either the modal super-
position or the complex response method is applicable depending from further conditions or analyst's choi-
ce. Often, structures possessing a dissipation mechanism suitable for such representation are said to be
“"classically damped".

Alternatively or in all the other cases, the matrix equations of the motion (10) can be directly solvud by
means of a numerical integration procedure. In very general terms a time-step integration consists in cal-
culating starting from initial values, a set of ®state vectors" to be associated with a corresponding fini
te number of instants originated by the stepping of the total interval in which the behaviour of the struc
ture has to be investigated.

It is interesting to point out that time~stepping schemes do not suffer, in principle, any limitation on
the representstion of the resistive force provided a suitable algorithm is chosen. Unless otherwise speci
fied, however, it will be assumed in the following that a representation (11) holds without rvestrictions
on the nature of the matrix [CI,

Under this assumption the "state vector" at the i-th point in time can be sxpressed as:
q
x,) - REO TSR N SR 19)
wvhere:
T T TR =T
(xj} ({Aj) {bj} {Aj))

is tha state vector containing the cowmputad veluas of the displacements, velocities and accelarations st
the j-th point, (A ] and [B, ] are transformation matrices.

The matrices Jand B ] can have different mathematical structuras depending on the particular intagra-
tion aigorithm and obvictsly involve manirnlations of the M1, [K] and [C] matrices.

As concarning tha algorithms, many of thess, old and new ones, ara currently in use within the context
of a finite clement reprasentation ol the structural behaviour, each one possessing advantages and dizadvan
tages for certain types of problem. Howevor, although & grest amount of work has been done on the subjact
und authoricative papers can be found in the !iteratura (see for instance Re.s.  [25-27] ), a general proce-
dure is lacking which can be used to compara the cecits of thesa methods in practical spplications for cow-
plax structural systemou.

Essentially, the various integration schemes can be deriv~d within two different genaral contaxts. The
firet one is based on a finite=differenca approximation of the ras;onse, leading to expansions of the kind:

a 0 dly

fa,,.} =L = e—— ’ (20)
AL det
or:
a (=o' s )
()t =1 > £0 (21)
i=0 i del

The second one gives an approximation of the responss in a finite element sanse, i.e.:
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where [N +iT]are "shape functions" and {At+ir} are determined in such & way to give the best average appro
ximation.

Generations of mudern algorithms or discussions on old ones can be found in the specific literature. We re-
fer, among the others, to [28-32].

In the choice of a time-stepping method, particular care must be given to the structure of the transforma-
tion matrices appearing in Eq. (19). This structure is indeed related to the performance of the muthod as
concerning stability. accuracy, convergence and filtering of high frequency components.

It is generally agreed that for a method to be competitive it should possess the following artributes
[271 :

a) inconditional stabilicy

b) no more than one se” of implicit equations should have to be solved at each step

c) second-order accuracy

d) controllable algorithmic dissipation in the higher modes

e) self-starting
It should be noticed that the above mentioned properties not only depend from the nature of the algorithm
(it is recognized, for instance, that explicit linear multi-step schemes are generally only conditionally
stable) but some of these properties may be influenced by the step size and by the physical damping of the
system.

It is possible todetermine an optimal choice of the step size, related to the resonant periods of the
system. There is, therefore, a difference between the ipplication of the method ¢o the uncoupled equations
(16), wheve the periods are known and each equation can be independently solved, and it's application to
the coupled set (10). In this latter case the time step must be unique and can oniy be guessed, for instan~
ce on the basis of the frequency contents of the loads, thus producing a filtering of some modes as en ef-
fect of the integration error. By the other hand, if the step size would be determined in order to get ac~
curate integration of high frequency compoments, it's value could result too small with respect to other re
quirements such as solution economy or round-off error propegation.

In most real situations, however, participetion of higher modes is undesirable or unnecessary and an
algorithm is needed which is able to filter out any unwanted frequency without loosing accuracy in the low
range. This implies the availability of parameters other than the step-lengtb. A detailed discussion of the
subject together with & contincusly controllable schese is contained in Ref, [33],

Algorithmic dissinetion it one of the major aspects to deal with when physical dampin: is present in the sy
stem. The two effects are simply superimposed when the [C] matrix is of the form (i2) while for purely hys-
teretic damping or more general cases the consequences on the perticipation of the various frequencies
cannot be so clearly estimated.

In conclusion, the direct integration of the eguations of wmotion is the most general procedure which
can be applied to the solution of dynamic structural problems but a certain smount of uncsrtainty is also
involved. Time-stepping procedures can show a better performance with respect to modal analysis when all
the frequencies of the system are clustered together but modal analysis can be superior due to it's simpli
city, reliability and evailebility through general pourpose finite element codes, sxpecially when eigenve-
lue economiszers can be used.

Fourier analysis is more gsneral and avan simpler than modal analysis but e design philosophy based
on response and load spectra is usually required.
Moreover, in standard modal analysis the definition of a suitable damping matrix involve a significant a~
mount of engineering judgement. This problem may be avoided, however, if the damping matrix is so cast es
to make the computed response as close as possible to amwasured one thus using the internally dissipated
snergy as a flywheal for all the uncartaintias of the aumerical model.
Condition (12) is also in this contaxt a sovere limitation and in any case the question arise to what extent
classical modal analysis can rapresent wore complex phenomena or how the procedure can be wmodified to ac~
count for non-classical damping reprasentation.

3. MODAL ARALYSIS FOR NON-CLASSICAL LINEAR DAMPING

The idsalization of a structura into a finita element model with a non-classical demping mstrix laads
to a {B] matrix in Bq. (16) which is a0 loager diagomal. Thie fact can be of little importanca if Eq. (16)
ara numerically intagrated ian time whila the knowledge of the natural frequanciea can sarve as a guide in
choosing the appropriata integration parametars. This knowledse doss zot justify, in general, the combined
affort of solving an sigenvalue problem and of directly integrating the complete set of uguations of mo—
tion in modsl coordinates.

The crudest way of overcowing this difficulty and etill hava all the simplifications of the classical
modal amalysie is to disregard the off-diagonsl terms. This techmique is in fact widsly veed vnder the by~
potasis that the reseiting ervor will be acceptable. Admissidility critsris cem be formulated and depend
from the smownt of damping, the ratio belween off-disgonal amd ca-diagonsal terms in the matrix (R],the fra
guency spaciag and the mode shapes. The subject was studied by ssversl Autheri. Awpag Chean we refer to [34
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-361 . They give, in particular, the following criteria:
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where: y_ is the modal damping factor brrlzw and ¢ 1is a tolerance parameter. It should be noticed that
formulas (23) and (24) must hold true for alI or the most relevant modes, while formula (25) must be veri-~
fied also for all or the most meaningful degrees of freedom.

All the above criteria are deduced, for small damping, by comparison of the responses when the models
are excited, in resongnce, by a harmonic load with a frequency u . Moreover, in Ref. [34) it is assumed
b > b while in Ref. [35]1 Z and 2 are assumed to be of the same order.
he psggaeter ¢ is not defined in Réf.’k[3a], while it is taken as 0.05 in Ref. [35) and is given by c¢?+8E
in Ref. [36], where E is the relative error and ¢ is a coefficient which can be taken as unity for a lar-
ge class of problems.
The applicability of the criteria is, therefore, restricted to the case of small damping but numerical evi

dence shows that formulas (24) and (25) can predict the order of magnitude of the error also beyond this
limit.

The next step is to Jefine a diagonal damping matrix for the modal equations of motion, to be used
instead of the matrix [Bl . This can be accomplished by means of several procedures.

A first class of methods consists in minimizing, over a given frequency interval, the sum of a measu-
re of the error between the Fourier transforms of the response in one or more points »f the models (see for
instance [37] ). This method it absolutely general but leads to very complicated analytical developments.
A siwmilar approach is to equate the moduli of the iransfer functions for ome particular node of the models
over a discrete set of n frequencies, being n the total number of degrees of freedom [38]. Alternatively
it could be proposed a method equating such moduli for one particular frequency over n nodal points. This
approach is relatively simpler but implies a suitable choice of the nodal points and of the frequencies.
As observed in {37] the two apjroaches give approximately the same results and, consequently, the first
one seems not to be fully justifiable.

It should be noticed [39] that the method presented in Ref. [38) can be substantially simplified if the
damping is small and if the natural frequencies are not very close to each other. In this case, however,
it can be proved that if the comparison is made for the natural frequencies, the modified matrix (diago—
nal) is practically equal to the original matrix in which only the diagonal coefficients are retained.

A second class of methods can be derived from energy criteria, analogous to the ones used to de-
fine equivalent viscous damping models [40) . In particulsc, a simple procedure [41] is based on the fact
that, for steady-state resonant vibrations of a single mode ~f a linear (uncouplable) system, the modal
Jamping factor may be expressed as: D

r

Y -

r (26)

4nl
4

where D is the energy dissipated per cycle of wotion and U is the maximum potential energy per cycle of
motion. If the system is not uncouplable, an equivalent modal damping factor is still defined by Eq.(26),
pruvided D and U_ are intended as relative to the actual system. As, in the majority of the real cases,
non-prupor{ional slupin; arises from non-howogeneity of the structural components, the energy is always
the sum of the contributious of the single components and the equivalent modal damping factors result as
a weighted average:

(27)

2
where xi - Di /4 =U° . The contributions of the single elements can be analitically computed, derived from

experiments 6s based on imtuition. A method belonging to this clses is the Biggs method, vhich is very po




7 pular among earthquake engineers [42] . It can be observed that all these methods bypass the computation of
the damping matrix [C].

P

|

} When the oa-diagonal coefficients of the matrix [B] are duminant, a third ¢’ ‘ss of methods can be ap-

} N plied. These methods are essentially of an iterative nature and improve, by repested calculations, an appro

i ximate solution obtained with the on-diagonal coefficients alone. An application to steady-state vibrations,

limited to the first-order iteration (and therefore of a perturbative nature) is presented in Ref. [43].
0f course the algorithm can also be applied when the on-diagonal coefficients are not dominant, provided

the damping is small. It should be noticed that in this case the undamped solution can be taken as the ap~

proximate one (zero-order), but the load may not put the structure in resonance.

A proof of the convergence of this latter technique is offered in Ref.[44].

b When the influence of the modes on the response of the system can be estimated "a priori"”, in the sen=-
se that few dominant modes can be individuated, a fourth approach is applicable.

. The method, presented in [45], is based on the direct integration of a subset of the coupled modal equations

of motion, In particular, only the equations related to the dominant modes are solved. Of course, if the do

minant modes are the first ones, the disregarded equations need not to be explicitly generated.

In Ref. [45] , however, it is suggested that the number of coordinates to be retained could be determined

numerically by observing the convergence of the results with increasing number of modes.

Theorically, ti.e procedure can be interpreted as a standard Ritz analysis, in which the assumed shapes are

the free vibration mode shapes of the undamped system.

All the above described methods are essentially approximate. It is always possible, however, to genera
te a diagonal damping matrix by projecting the equations (10) on the eigenvectors of the true, damped system.
The basic procedure was introduced in [46] and fully developed in [47] . By considering the velocities {v}
as independent variables, Eq. (10) can be rewritten as:

(ol M1} [{&} - 1] rol] ({4} {0}
5 (28)
Ml [clj (iv} ol [k1] |{a} \$1(3);
v The homogeneous problem associated with Eq. (28) possesses 2 n (complex) eigenvalues and corresponding eigen

vectors, both in complex conjugate pairs. Calling [W] the modal watrix, the modal Jecomposition still ap~
‘ z plies, formally as in the undamped case,leading to a set of 2n uncoupled equations 1u the unknowns {p}:

0y
-1
fe} = [wl {{A}} (29)

analogous to Eq. (16). Although, for systems controlled by the first few modes, substantial economies can be
obtained, it may be observed that the determination of the complex eigenvalues and eigenvectors of Eq. (28)
represents a serious computational problem.

An algorithm taking advantage of the banded structure of the matrices appearing in Eq. (28) is presented in
Ref, [48] . An analysis procedure substantially contained in this approach is applied in [49],

The procedures described in this sectior can be regarded as the more widely used. It should be noticed,

however, that other approaches can be conveniently applied to the analysis of non-classically damped systems,
One of these approaches is, for instance, the characteristic phase lag method, reviewed in Ref, [501.

4. CONCLUSIONS

e T e e e R

3

Numerical modelling of structures to account for internal damping must represent an accurate agreement
between the simulation of a physical phenomenon and the use of certain solution algorithms.
As shown in the previcus sections, the attempt to describe more realistically the material behavionr can
lead to a loss in the computational efficiency and in the immediatness of the solution offered by certain
algorithms,
For instance, a linear viscous damping model, when proportional, can be included in anv of the previously
described numerical models and, in particular, allows a straightforward use of the modal superposition
¥ ;' technique. Nevertheless, when proportionality is not admitted, classical modal analysis is only an approxi~
- mate tool, being it's applicability dependent from the way in which the method is employed and from the re-
. lated error criteria.
. Moreover, classical and complex modal analysis are no longer applicable when a linear hysteretic kind of
damping 18 of concern. Finally, non linear models, eather viscous or hysteretic ones, can only be in-luded
in direct integration procedures as the validity of both modal and Fourier analyses cesases, apart from ve-
ry particular situations.
In conclusion, physical and numerical models are very deeply related and their optimal choice is one of the
most important aspects of the structural analyst's activity,

=
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