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I. Introduction.

1.1. Consider, for n l, the coordinates, xi, ... ,x of a

general point of the n-dimensional space, depending on and arbi-

trarily often differentiable with respect to m parameters TI,.... ,Tm .

Denote generally the derivatives "XZT by p* (Vi ,... n;pl....,m).
b TI

-bIn this paper we are going to consider the transformation

(i~i) yj, - Y*(x,,p,, (V=1,...n) ,
L' ,t5. A , L.

where the YV are homogeneous of dimension 0 in the p, and have

the further property:

Differentiating y. in (I.I) with respect to the Te and Puttin_

we can, eliminating the p. and their derivatives, express the xv

in function of yv and qV,

(1.2) xv = X (y, P(I) (=l,...n) ,

where the X0 are homogeneous of dimension 0 in the q. ; and inverse-
V 7

ly (I.1) can be deduced differentiating (1.2) and eiim .nating the

q,. The functions 4, 4 are assumed arbitrarily often differen-
tiable in their arguments. We will denote the transformation, des-

cribed by (1 i) and (1.2), with T*.

1) Here and everywhere later in this paper, if expressions like

U, vO , w 9 occur inside parentheses, (u,.v.w,,At), this

stands for
(u.I 9 ... • a ,u ;vI , V • •w i V ll .. 9 , nin;t 1 " .. " 'tk)

independently of the same greek indices occurring outside of these

parentheses.



Such transformations will be called reversible transformations. 
2

1.2. We prove in chapter II that the matrices

(1.3) -,( )) 3)

have the same maximal rank which is denoted throughout the whole

paper with k. We obtain then in the same chapter the existence of

two Bets of k functions

(1.4) r. = r (xV,pV ) , s = s (yy, qI) (X=l,...,k)

where each set is independent, and which have the property that

the expressions Y in (i.1) and A in (1.2) can be written as

2) These transformations for n=2, m=l were discussed in the

author's paper, Sur une classe des transformations diff4ren-

tielles dans l'espace A trois dimensions, Commentarii mathe-

matici helvetici, vol.13, pp.156 -194, vol.14, pp.23- 6 0 (1942),

and for arbitrary n and m=l in a second paper by the author,

Sur lee transformations reversibles d'6l6ments de ligne, Acta

mathematica,.vol.16 , pp.151-182 (1942). See also G. Stohler's

doctoral didbertation, Ueber sine Klasse von einparametrigen

Differentill-Transformationsgruppen, Commentarii mathematici

helvetici, vol.18, pp.76 -121 (1945)

3) The expressions used here and in what follows serve to denote

the rectangular differential matrix formed of all derivatives of

the expressions in the "numerator" with respect to all variables

ocurring in the "denominator".

T
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(1.5) Ya Y,(x,r ~ X*V X V(Yvj, SA) 04=1,...,n)

where the matrices

have the same rank k.

Hence, there exists a one to one transformation between two

(n+k)-dimensional spaces (xv,rt) and (y,,sV),

TV Yy Y(X , r,,) I, 3 St(zvri.)
(1.6) x.0 = Xv(yvS9t) , rt = R.,(yy ,se)

Now we can formulate the main problem with which we deal in

this paper. If a one to one transformation T, (1.6), is given, to

describe necessary and sufficient conditions which must be satis-

fied in order that there exists a reversible transformation T*

leading to the transformation T (chapter II).

1.3. In order to deal with this problem we introduce in

chapter III the so called property U. An expression U(X,,rp,,)

is said to possess the property U, if, using the relation (1.6)

and the relations obtained by differentiation of these equations

with respect to the TF, it can be expressed in the form,

(1.7) U V(y , es*, q A)

It turns out that the following partial differential equations

are characteristic for the functions U with the property U:

n

(1.8) 1 U t U' 0 ... 9k
)A'71 V= s PV

n(0,(I9) A U X- PVA U' 0 (F,=l,...,m)
V- =lL



The meaning of the system (1.9) is discussed in the Appen-

dix B. The partial differential equations (1.8) are independent

and their system is complete. The same holds for the partial

differential equations (1.9). The system consisting of (1.8) and

(1.9) taken together is also complete but in exceptional cases

it could happen that linear relations exist between the equations

(1.8) and (1.9):

n

where the Gxand p do not depend on 1. If there are exactly d

such independent relations, the total number of independent

integrals of the equations (1.8) and (1.9) is

(1.1i) N mn - m(m+k-d) = m(n-m-k+d)

where mn is the total number of the variables p V4

1.4. The above problem with d=O is treated in chapter VII.

We construct here a system of N functions U(C ) (6=k+l,...,k+N)

which are independent, as long as the rt are considered as inde-

pendent variables, and form the total system of N independent

integrals of the equations (1.8) and (1.9). We can therefore write

(1.12) r. = f(U(k+l),... ,U(k+N)) (=l,...,k)

These equations can be solved with respect to the r. and ive

the corresponding expressions (11.6) of r*, provided that the

equations (1.12) are solvable,

(1(13) jrl,0,k'rk)(I1)b(rl,...,rk) 0



where the & are differentiated "through the" U (  
. We have to

add to (1.13) the additional condition

(u k~),...,ukN)

(1.14) (rlp ... r k) r14* =

The functions f in (1.12) are indefinitely often differentiable

arbitrary functions.

As soon as the expressions (1.4) of the rz are found we can

obtain, using (1.6) for s,, the expressions (1.4) of the s. in

the yO and qV.

At the end of the chapter VII we discuss the method on an

example.

1.5. As to the exceptional cases, d=l,...,m, we give in the

chapters IV and V the complete discussion for the case d=m. As to

the cases ldSm, we derive in chapter VIII, section 9, the in-

equality

(1.15) kfnm 0 0<Q
d+l d+1

Further, using a method leading to (1.15), we solve in the

sections 7.10-7.16 our problem completely for d=l.

The method used in the chapter VIII consists, in principle,

in adding to the equations (1.6) d additional equations of the type

X n+S = Yn+$ .. d

In this way we make d to 0 for the enlarged system without chan-

ging the rE and on. This allows to obtain (1.15). However, the

method of chapter VIII can apparently be only extended to our

,- . -lo w _-



new enlarged system for d=l, since for d•) ! the condition corres-

ponding to (VII.16) is no longer satisfied.

The discussion given in the chapter VI ought to become use-

ful for the cases d=2,...,n-1.

The author hopes to discuss in another communication applica-

tions of the results of this paper to the theory of differential

equations solvable without integration (integrallos auflsbare

Differentialgleichungen).

-
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ii . .',lai n 'iefini its an~k.

.'. , hinshder in wht ro n thrih th often
di??eent Jble fun,-t i,)n z

x , ' x ./ ,..., ,

"pendi n,, ();n -i <n -i r Ia -lFs T] ,. ., . ;e will use in a~rticular

t}e 1' rLe ,V' ; ),' Rf ;A, ' ,which run throu~Fh the corres-

ncnlini- ranges: 1 ,..., ; 1,... ,k ; 1,... ,m ; k+l,... ,n. These

"{:' hod ;" , ,,s if t}ecorresponding letters are summation

indijes r in a rj umens so that for instance f(xv') means f(x I , ... x )o1 n
{D~ t

and consiler the three following (open) domains:

1) (T an m-dimensional domain in the space of the T ,...,T
T 1 m

2) G an (m+l)-dimensional domain in the space of the
P
(m+l)n variables xV, p

3) G an (m+l)n-dimensional domain in the space of the
q
(m+l)n variables y qv

Assume that to the points of G, correspond always points

lying in G and G
p q

We choose an inner point A in G TIto which correspond points

in GP) Gq and GpKG These three points in Gp, Gq and G pXGq will

be also denoted by A0.
0

2.2. A reversible transformation, T, of the xj into the yV

is defined by two systems of equations:



(II.2a) YV = Y(X,...,xn;p 11 , ...,p) (vi.... ,n),

(II.2b) xv = X*(Y I ... ,y ;qll,...,qn) (v:l,...,n)

if the Y*, X; have derivatives of any order in G , G and possess
p q

the following four properties , A, B, C and D:

A. The Jacobians of order n,

(11.3) (xv)

remain #0 in G , G .p q

B. The functions X, YV remain invariant for any non-singu-

lar arbitrarily often differentiable transformation of the va-

riables T. , ..., TM .

C. The relations (II.2b) follow from the relations (II.2a)

by differentiation and elimination and the equations (II.2a)

follow from the equations (II.2b), again by differentiation and

elimination.

The content of the assumption B will be investigated in

the section III.

We denote the maximal rank of the ngnm-matrix

(11 .4 ) ( )(

in G by k and that of the matrixp

(I.5) b (q )

in Gq by k'. Then our fourth property is:

* 4



D. A can be chosen in such a way that the ranks of the
ML 0

matrices (11.4) and (11.5) have in A their maximal values, k,0

k'. Obviously we can assume, restricting if necessary the domains

GT, G and G around A., that the rank of (11.4) is k everywhere

in G and that a fixed subdeterminant of order k of (11.4) remainsP

40 in G and that the analogous property subsists for (I.5) in GP q

2.3. Then there exists a set of k functior-

(11.6) r3 = r*(xl,..,xn;p 1 1 ,..,p) R,(xl,..,x;Y*,..,Y*) (S~l,..,k)

which are independent in G as functions of the p.. , and whichP

have derivatives of all orders and are such that all n expressions

Y* can be written in the form

(1=.7) YV =: YV(xl".'' xn;rl''''rk) (v=l...,

and the rank of the nXk-matrix

(.8),k)

has exactly the value k. The (n+k)-dimensional domain Ix,, rM]

which is a proper part of Gp, will be denoted by G r. For instance

we can choose as the r a subset of k among the n functions Y*,S
corresponding to a non-vanishing subdeterminant of order k of the

matrix (11.4).

Similarly there exists a set of k' functions

(11.9) s = s(Yl..,y;qll,..,q =: Sr(yl,..,y ;X*,..,X*) (€=l,..,k')V 0 nl rm 1 n 1 n

which are independent in Gq as functions of the qI&I and which

..
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have derivatives of all orders and are such that all n expres-

sions X* can be written in the formV

(II.1O) xv = X = 1 Xy ... .Y ;S ... S (=l,. .. ,n)

where the rank of the n k'-matrix

(xI  .... Oxn)

has exactly the value k'. The domain [yV,sa]which is a part of

G will be called G
q s

2.4. As the ri are independent as functions of the p

the n+k variables

(11.12) X ,...,xn ; r 1 ... ,rk

are independent in G , since any relation between these variablesp

would give a differential equation satisfied by the xy. Denote

the space of all arbitrarily often differentiable functions of

the variables (11.12) in G by F1 .r x

rimilarly the n+k' variables

Yl, ...-,Yn ; S , - , k ,

are independent in G , and we denote the space of all arbitrarilyq
often differentiable functions of these variables in G by P .

8 y
Replacing now in the formula (11.6) the Y* by y. and theV x V

by their expressions X in the YV and s,, we obtain

9W NOPPOI



(11.13) r3  = R3 (ygs() (S=l,...,k)

and similarly

(11.14) so = SW(xv,r,) ('=l,. .. ,k')

But the formulas (II.10) and (11.13) give a continuous trans-

formation of G into G and the formulas (11.7) and (11.14) a
0 r

continuous transformation of G into G . It follows that the
r B

dimensions n+k, n+k' of G and G are equal and thereforer 5

(11.15) k = k'

2.5. Consider the values of the rt corresponding to A
O

and those of the sX equally corresponding to A . The correspon-
0

ding points of G and G will be again denoted by A as well asr s o

their projections into the spaces of the rZ and of the sX.

The point-to-point reversible transformation between the

regions G and G given by the formulas (11.7), (11.10), (11.13)
r 8

and (11.14) will be called characteristic transformation, T*,

belonging to T. This transformation is of course not uniquely

determined by (II.2a), (II.2b), as the choice of the expressions

4 and s is highly arbitrary. The main problem of this paper is:

Given a point-to-point transformation, T*, between G and G
r - s

how to find suit ..,le expressions rg and so hat, introducing

the values of rS and sy from (11.13) and (11.14) into the

equations (11.7) and (II.lO), we obtain formulas (II.2a) and

(II.2b) defining a reversible transformation T.

-- I C
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2.6. As the rank of (11.8) is k, we can assume, after a

convenient reordering of the Yy, that

(11.16) 1 *'k) 0

Therefore the following equations

(11.17) Y(V,r - = 0 (x,... ,k)

can be solved with respect to the r in a neighbourhood of A
0

so that we can write

(11.18) rX = 3z(xyY I ... ,Y ()i,... k) k

Introducing these values into the expressions of Y.,

(11.7) (V=l,... ,n), we obtain in a neighbourhood of A

nV := Y V+k(Xv'R') - - '... ' np = 0

(11.19)
(V=I,... ,n-k)

Obviously the rank of the matrix

(11.20) )

is n-k as the last n-k variables Y, are isolated in the n..

2.7. We are now going to show that the rank of the matrix

(11.21) ,F l""' - n-k)

is also n-k.
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This follows easily from the lemma Al of Appendix A making

the following identifications: Replace the r. by z,, n-k by m=mo ,

the Y V+k-Y+k (y=l,...,n-k) by a, (=l,... ,n-k), the YX (t=l,...,k)

by A3and y, (2=1,...,k) by U1 . Then the assumption (A 2) is

satisfied by (11.16) while the matrix (A 3) with m+k columns has

the rank m+k. The 7% becomes RX and it follows that the rank of

(11.21) is .n-k and therefore =n-k as the matrix (1.l) has n-k

columns.

2.8. Denote now the 2n-dimensional space of [Xl,...,Xn;Yl,

y2,..,yn] by r*. Then the n-k relations (11.19) cut from P* a

region, r, of n+k dimensions. We can therefore say that those

points of r* belong to P whose coordinates are related by the

relations (11.7) for convenient rw. But these relations are equi-

valent to the relations (11.9) for convenient s and this signi-

fies that we obtain the same region P starting from the formulas
(11.9) and eliminating the sa. We will therefore generalize the

system (11.19) of the SL1 admitting each system of equations

(11.22) a V (Xl,...XP;l ,.y n) = 0 (V=l,...,n-k)

defining r in P* and such that the ranks of the corresponding

matrices (11.20) and (11.21) are exactly n-k, while the-lvare

arbitrarily often differentiable.

In so far we could use the characterization of points in

r the 2n+2k variables

or any subset of these 2n+2k variables containing at least n+k

La
-l

g. _________________________________________________



variable. independent with respect to the relations (11.7),

(II.10), (11.13) and (11.14). For instance we could characterize

a point of P by the 2n variables (xv,yv ) satisfying the relations

(11.22).

2.9. In the expressions F(r,s4) containing rg and sM

these quantities are usually assumed to be "free variables"

subject only to the relations (11.7), (11.10), (11.13) and

(11.14). The corresponding expressions are then said to be

"undevelopped". If however r. and s are assumed to have the

meaning (11.6) and (11.9), we speak of "developped" expressions

and denote them by F*(r.,s2 ).

Further we denote by W* the set of all arbitrarily often

differentiable functions in convenient neighbourhoods in

variables xy, rt, yV, sZ.

Observe that, if a characteristic transformation T* is

fixed, then any function of W* can be expressed as a function of

r as well as a function of .

77-iy



III. Functions U,V.

3.1. We return now to the "invariancy" condition B. By

the lemma B1 in the Appendix B, this condition amounts to the

fact that the functions Y(xl,.',x n;Pll... Opnm), as functions

of the p V, depend only on quotients of determinants of order m

of the matrix

(III.1)

Pnl " nm

and to the fact that the functions X*, as functions of the q

depend on the quotients of the subdeterminant of order m o'

(B 1) in Appendix B. Therefore the expressions rS in (11.6) and

ew in (11.9) have also the corresponding properties.

Replacing in the lemma Cl in Appendix C the YV by the X*,

respectively the q and Yp by the pV and Y*, we obtain the

relations V

n

(III.2a) P ,.J;,=
YV I 1 A

(III.2b) - p = 0 n)

where the Y* and X~' are assumed to be developped.

r!06- " o !
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3.2. We consider arbitrarily often differentiable functions

U(x,,r 1 ,p,,) of the xV, re and pA with the U Property consisting

in that that they can be represented, using (11.7), (11.10), (11.13)

and (11.14), as arbitrarily often differentiable functions of the

y, q, sit$

(111.3) U(x1,rApy) V(yvs, q)Be )

The functions V(y,,sX, q,,) in (111.3) are then said to possess

the V property. Obviously the Y* in (II.2a), the YV in (11.7) and

the r* in (11.6) have the U property, while the X; in (II.2b),
0

the XV in (II.10) and the st. in (11.9) have the V property.

3.3. Differentiating the relation (II.10),

(111.4) - xv(YV, )

we obtain

(111.5) PVp =1 + =XsV5  s ,'

Introducing the values (111.4) and (III.5) of the x. and py

and (11.13) of the rX in U(xy, rp,) we obtain an expression

and we have to obtain conditions under which the U* is independent

of the a +* But in virtue of (111.4) and (TII.5) we obtain, since

the ' can be considered as arbitrary variables,

"y=U'p s' -- 0 (3=l,...,k;r l,...,m))

D U *_ _ . - V0

. ... ... $ ,



and U becomes

(111.6) v(yr , 1 V(yrs , ) , X ; Y 1' ,]

We see that the km relations, with developped X'

(111-7) x, u' - 0

are necessary and sufficient in order that the s' fall out from

U*, that is that U satisfies (111.3).

3.4. The system of km linear homogeneous partial differen-

tial equations (111.7) consists of km linearly independent equa-

tions, as follows from the fact that the rank of (II.11) is k.

It follows immediately that the system of the equations

(111.7) is complete, that is that, putting

(111.8) 1p : , !(-l..mXl..k

the 'parentheses expressions

( ,A'j'%,r) := jAa" - J JX (,-1,...,m;V,4r=l,...,k)

are linearly expressible through the set of the J A,'"

For obviously

since the functions

ILAVer IV



vanish. For the X' satisfy the equations (111.7), since the

X' are expressible both in G as in G
Vs5 p q

3.5. As the system (111.7) is complete it follows that this

system implies exactly mk independent relations and possesses

exactly nm-mik independent integrals as functions of the p .

But the k functions r*(xv,p,,) satisfy (111.3) in virtue

of (11.13) and (11.14). It follows, as the r* are independent

in the p I' using (111.8):

(III.1o) k m(n-k) k = n--

In particular it follows that

(III.11) k n

In (III.10) the equality sign holds in particular for k=m=n-l.

Then we have the contact transformations in 1 n (see Ostrowski [1)).

3.6. In the above discussion the invariancy of the ' with

respect to a transformation of the Tp was not assumed. If we now

assume that the functions U are invariant with respect to a

transformation of the Ti, then we must add (see Appendix C) to

the equations (111.7) the equations

(111.12) p Ut 0 o

and assume that all r* satisfy these equations.

The equations (111.12) could completely or partly be con-

tained in the system (111.7). For instance in the case k=n-1

I
=!WON V!

__ __ !1W
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the set (111.12) completely depends on the equations (111.7).

Denote by N* the total number of linearly independent

among the equations (111.7) and (111.12). Then we can choose

among the equations (111.12) exactly N*-mk,

(111.13) (l) = O,...,U = 0

which imply, taken together with (111.7), both systems (111.7)

and (111.12). It is easy to show that the system consisting of

(111.7) and (111.13) is complete.

3.7. Indeed, put generally

V1,

Then we have for

the expressions

'j~= , (A ,

But the terms A XI-  vanish, as the X' are homogeneous of

dimension 0, while

j P xe

VOW-~9 ~I v~



Therefore

(111.15) (A,. - . X'1Mp - J.

Finally we obtain easily

(111.16) (Ar, 4,'i>6) = - %,,A .

and we see that the system of operators generated by (111.7) and

(111.12) is complete.

In particular it follows that the linear system of opera-

tors generated by the A for a fixed t is complete and the

same holds for the linear system of operators generated for a

fixed1 A by the operators J n).
2

On the other hand, the system of the m equations (111.12)

is complete and has therefore m(n-m) independent integrals in

the p . Since there are k integrals r. it follows

(111.17) M(n-m) .k , m4n-1 .

3.8. Assume now generally that there exists a non-trivial

linear relation between the J and and assume the J as

developped:

(111.18) F a -

where not all O(, and not all A, vanish. Then, equating on the

" -"I.. I I . J



right and on the left the parts corresponding to a general

fixed we obtain the relations

k m

(111.19) __IA J, = IA , (=i...,m)

Assume that for a fixed the relation (111.19) is not

trivial and write it as

(II .20) , = = A

Then, introducing from (111.8) and (111.14) the expressions of
JA and PS. it follows, if we equate on both sides the coeffi-

cients of the single differential operators D , the system of

n relations equivalent with (111.20): Pr

k m
(111.21) A.XpA ()=1,...,n)

But the relations (111.21) do not containr We see that

if a non-trivial relation

m

(111.22) ! pc = AA&A'

holds for a certain P the same relation holds for any

It follows then that if there exist for a fixed f exactly

Ilk __



(111.23) d4( Min(m,k)

linearly independent relations of the type (111.22), then the

number of independent equations among the equations (111.7) and

(111.12) is exactly mk+m 2-dm and therefore the number, N, of

independent integrals of these equations is precisely

(111.24) N m(n-k-m+d) ) k

so that the coefficient of m is >0,

III.25) n ) k+m-d n-k > m-d

3.9. Observe that the nX(k+m)-matrix

Xi is kp11 PlrnX, X'

rlsI " IkPlPl

Xs 2sk  P21 " 2m

(111.26) K*x

I 1 

8 
i2 

nm

X? X' Pnl

ns1  nsk " nm

where all X' are assumed as developped, has the rankj%.k. Deno-

ting this rank by k+m-d, we have therefore dam.

On the other hand, by the above definition of d, d is the

number of columns of the matrix (111.26) which linearly depend

on the other columns.

*. Observe that, by (111.24),

(111.27) m(n-m+d) ) (m+l)k

__oiL



3.10. Observe finally that, putting

n n

(111.28) p X;y' q , q = -_ '

the formula (111.6) and the corresponding formula for U become

(111.29) U(x¥rK, pV) : V(yVsB, q )  = U(X,R,pv )

(111.30) v(yV,sX, qr) = u(x ,#r,p v) -v(YVS.,q t0

The expressions (111.28) can be obviously considered as the

corresponding derivatives of the XV and the Yy computed in the

assumption that the sX, rX are constants.

'.C
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IV. The forms u and v.

4.1. A u-form is by definition an expression

(iv.i) u : -upv , Uv w- *

where the U belong to W*, with the property that, using the

characteristic transformation T*, u can be transformed into a

v-form,

(IV. 2) v = q VVy 6~ w*

The coefficients UVO and V can be expressed both as func-

tions of the x V , rR and as functions of the y., s7.

If we introduce into (IV.1) the expressions (111.5) of the

p., we obtain

(IV.3) u U X' + 3I(> U )s

where the indices V and % run from 1 to n, the index runs from

1 to m and the index X from 1 to k.

Since here the s, can be considered as independent variables,

we obtain as necessary and sufficient for the u-form (IV.l):

(IV.4) I = x, 0 (t=i,...,m;Z--,...,k) .

.T
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4.2. If we make in (IV.3) all UVI with # to zero, we

obtain a single u-form corresponding to t:

(IV.5) u (VO U p~ UVX~ :~Q

and we see that, taking in (IV.i) together the group,3 of terms

belonging to the same index r, u is decomposed into a sum,

u M U 4

of single u-forms u(P ) belonging each to another

It follows that we can restrict ourselves to the consideration

of the single u-forms and the single v-forms.

Observe that by definition the u-forms form a linear system

if we admit as coefficients all functions from W*. And the same

holds also for the system of all single u-forms corresponding to

a fixed value of f.

But the k equations (IV.4) corresponding to a fixed t. are

linearly independent with respect to the UV since (11.11) has
n-k ' ic I.1 a

the rank k. Thence there are exactly n- single u-forms for each

4.3. Therefore the question arises to find a convenient basis

for all single u-forms corresponding to a fixed A.

We obtain a system of n-k single u-forms and single v-forms,

differentiating thef V. in (11.22) with respect to T

And it follows from the rank condition for the matrices

£4

-



(11.20) and (11.21) that the n-k forms 4f) are linearly indepen-

dent as well as the

Therefore the u-forms (IV.6) form a basis for the single

u-forms corresponding to a fi.ed r and the same holds for the

v-forms VaV) defined by (IV.6).

4.4. Another basis for the single u-forms can be obtained

using the functions Xv in (II.10) defining the characteristic

transformation T*. Since the rank of (II.11) is k we can and will

assume, changing if necessary the numbering of the XV and Y., the

non-vanishing of the developped determinants

X *•y . . y,~:

is Ir kr

(Iv.7) J . . .. . K ;
X' . . y' . . . Y

isk . . wk irk krk

For the derivation of our basis for the single u-formsg using the

XV, it is not even necessary to assume that the XV belong to T*.

It is sufficient to require that the n functions X(Yl,...,yn;

l,...,sk) have with respect to the sx the Jacobian rank =k, that
is that one of the determinants of order k from the Jacobian matrix

1b (X4,... 'X does not vanish, where in particular we can assume

that the determinant J= !)) does not vanish. We can then

define the u-form (IV.i) by the mk relations (IV.4). In order to

distinguish our generalized assumptions from the original ones

based on the relation U=V, we will denote the u-forms defined

solely by (IV.4) as unilateral u-forms. Then it is easy to see

that a basis for the single unilateral u-forms corresponding to

a f. is given by

.+ t



7-Att pljA kp

X' I's X"s
(IV . ) u p ) X:--sX*

%8k isk *sk

with respect to a system of coefficients consisting of all inde-

finitely often differentiable functions belonging to r .

Indeed, each u 'A- satisfies the equation (IV.4) since repla-cing n u~ the winte frpta

l in ui )  the p thewith X' amounts to making in u- ) the first1h -)A 1s0 "3A

line identical to the ('X+l)st line. The independence of the u

follows from the fact that to each u corresponds a p .. occuring
(p )

with the coefficient J in this u) only.

4.5. It follows now that a unilateral u-form written as

with f from contains at least one of the p w'ith a

non-vanishing coefficient unless it vanishes identically. For, re-

presenting u linearly through the basis U!A, none of the Pc)fic)

is destroyed if the corresponding u has a non-vanishing coeffi-

cient in the representation. We obtain now the rule: If a unila-

teral u-form is written for a fixed L , as

(Iv.9) u fV :VP,~ ~f V re

it follows, using the u from (IV.8),

(IV.. .) .1 I u



Indeed, as

= u  
+ {P .... 'kp (=k+l,..,n)

we obtain from (IV.9)

1 n*' C-
U = - f uV + [ 1 .... tPk

denoting generally by ,...,p a linear form in the p ,...,p
with coefficients from And this p being a unila-

teral u-form, vanishes identioally.

4.6. Similarly there exists a basis of all single v-forms

belonging to a , consisting of the following n-k v-forms:

y1 y1  . . .

(IV.) - i k (= k+l ... ,n)

y' y' . y'

rk lir * krk k k

To obtain a representation of u(t ) in terms of the v(p )

observe that, by (111.5),

p x qt + x •s,t= v t ., , ., ,. .

Introducing this into (IV.8) we obtain for %=k+l,...,n

777,



X' X' I1IX'XI q XIy

ku1 +

x . . . . . . . . . . . .

X' Xi . .. X'

I is I  1
+

Xk Xi . . Xk

Here the second determinant vanishes as its first line is a linear

combination of the following lines. Taking in the first determinant

the summation 2qtt out, it follows further

rAYt lyt
X X••

ns is 1
.21 1

t=l

. . . . . .*

X k Zak y-sk

But here the terms corresponding to t=l,...,k vanish and we obtain

_ - ~ - -



%lYk kYt

X' Xe • X
n sI  isI  kl

(IV.12) U A

'A t=k+l t

X' X' XI X

9ie J.y . . . X

Yt lt kt(IV-13) A X 1Ai 1 . . tr

X' X' . . . . .

X' X

Ssk  is ks k

Applying to the form on the right in (IV.12) the analogue of

the rule concerning (IV.9) and (IV.10), we obtain

c. n v(P)  (=~..n(IV.14) = K gA~tK

t=k+l

Similarly, it follows

n

=I- 5 V, B X U
t=k+l

(IV.16) B k k kn)

%imilarlyiit follow

_7 ~ nBW



V. Transformation with d = m.

5.1. It follows obviously from the relation (111.24): If

( v . 1 ) k - -
m+l

then d must be =m. It will be seen from the following discussion

that the relation (V.1) follows, from d=m.

Assume d=m. Each of the last k columns of K* in (111.26)
X

must be a linear combination of the first k columns, that is

(V.2) - k (&)X 0 (V=l,...,nf.l...,m)

This signifies that in each of the determinants (IV.8) the first

line is a combination of the following lines, therefore all

m(n-k) forms uptk) vanish and we can write, developping the u " )

I
in (IV.8),

(V.3) = Jp - (P 0 (%=k+l,...,n 1'...,M)

where the NX belong to W.

In the equations (V.3) we can express, in virtue of the

characteristic transformation T*, all coefficients (t1 J in Gr9
r

that is through the variables

X19,...,X n ;rl, ...,r k •



Denote the rank of the Jacobian matrix of the m(n-k), k

expressions in (V.3) with respect to the ,

(V.4)

by 3  k.

5.2. We are going to show that the number m(n-k) of the

equations (V.3) cannot exceed S*,

(v.5) m(n-k) ( 3*

For otherwise the r. could be eliminated using certain V

different equations

(v.6) U(&) = 0
4.

A u t ) different from all u ( tV) in (V.6) becomes then a not

identically satisfied differential equation, as the u) in

(v.6) do not depend on p Since this is impossible, (V.5) is

proved and it followS, by (111.40), m(n-k)( 3 *4k4m(n-k) and thence

m(n-k) = 3* = k

We see that the matrix (V.4) is a square, kXk, non-singular

matrix, and from m(n-k)=k follows (V.1).

5.3. It follows that the expressions of r in the xV d p

can be obtained solving the equations (V.3) with respect to r1,

r2,...,rk. Obviously a completely analogous result holds for the

W_ .__ _ V ...... .



expressions of the s4 in terms of the y. and q ", as in virtue

of (IV.14) and (IV.15) all v ) vanish then and only then if

all u vanish, and then the rank of the k~k-matrix

lr " irk qll lm

(v.7) K*
y

y' Y; q..y,
nr 1  nrk n1 nm

is k.

We denote the determinant corresponding to the square matrix

(v.4) by J.

5.4. issume on the other hand that we have given a priori

the transformation T* by the relations (11.7), (11.10), (11.13)

and (11.14) where all functions X., YV, R*, St are indefinitely

often differentiable.

Then, assuming that the Jacobian, ,4u' of the u t ) with respect

to the r does not vanish, we can solve the equations (V.3) in

the form

(V.8) P 1P AxVfrV) := - 0

with respect to the r. in a neighbourhood of a point B and obtain

the expressions

(V.9) r= = (Ixewp) (=l....,k)

of the r, in terms of the xV and p . Putting these expressions

into (11.7) we obtain expressions for the Y9 in function of the

X 0, Pt



Y (x## 'Vp Y ; Y(xV,P)

corresponding to (II.2a).

Further, putting the R for the ;a in (11.14) we obtain the

expressions

(V.10) s*(X,)r,,) = art(x1vp) (i, ,)

where~~~ ~~ th ucinss(p 3 , (x,,P,,,) have in a neighbour-

hood of B 0the values of the 5r corresponding to the transformation T*.

5.5. We have now to show the existence of the representations

of the sw as functions of the q 1 ,. ... 1q. Expressing in (V.8) the

quotients f()Jin terms of the ypand atwe obtain

u (pvp;Yv'%s& := PA - -(2,s,

And all these forms vanish in the neighbourhood of B0

But now it follows from (IV.14) that all v '

(V.12) v Kh : 9 g()A)(yV s*) q~ 0 Nkl .,n

vanish for or = "Fo in a neighbourhood of B 0 If we now assume

that the Jacobian,

(V.13)Ag = bAug



of the v ) with respect to the sr does not vanish in the neigh-

bourhood of B 0 , it follows that the S are unique solutions of

the equations (V.12) in a convenient neighbourhood and can there-

fore be represented in terms of the q1l,... ,qnm

Introducing these expressions into (11.9) we obtain (II.2b),

and the inversibility of the transformation T obtained in this way

follows from the assumed inversibility of T*.

5.6. We have still to prove that the r* are independent as

functions of the p and that the s are independent as functions

of the q .

But it follows from (V.8) that with fA=k+l,...,n and /=l,...,m,

(v.14) ± + 1

where the determinant is for variable eA and /A of the order k=m(n-k).

On the other hand, if we put with fA=k+l,...,n andL=l...,m,

(Vl5a (_ = (p) b (_= (r4) ) Iin
(V.15) A,1 1 & ,

M(rn) )u

both determinants are of the order k and the inequality 440 follows

from the assumption. But by (V.14) and (V.15) ±l=1l, 0. The

independence of the rN is proved and the independence of the se

follows by symmetry.

5.7. We have finally to prove that the rU and on are abso-

lutely invariant with respect to the linear transformations of

the T that is to say that for the rt and sa the relations

2= 0 (il.,M)

Rpm-



are linear combinations of the relations

n 6

This signifies that the relations hold:

But these relations follow from the fact that K* has the
x

rank k in virtue of the relations (V.S).

5.8. We observe finally that the special choice of the basis

forms u and 7) is not essential. Indeed, if an arbitrary basis

for the u-forms is given, obviously their Jacobian with respect to

the rlt does not .-anish then and only then when this is true for the

uP) , and similar situation prevails for the v-forms and sg. We can

therefore obtain the r , equating to 0 a complete set of the basis

elements of the u-forms, and similarly for the sV and the v-forms.

5.9. We can summarize our results in the following statement:

Assume given a transformation T* with (11.7), (11.10), (11.13) and

II.14), where all functions occurring in these formulas have deri-

vatives of all orders in certain domains corresponding by T*.

Assume that d=m and that JK#O.

1) If T* is a characteristic transformation of a reversible

T, given by (II.2a), (II.2b), then both Jacobians A , Av do not

vanish with indeterminants p, qV and the expressions of the

(xP), (y,q,) satisfy (v.8) and (v.12).

2) If the functions Xp, Y1, RX, %defining T* satisfy (V.4)

and (V.13) then T* is a characteristic transformation of a reversible

transformation T, and the expressions of the r, s3 iLn p.., q,.A are

obtained, uniquely in convenient neighbourhoods, from the equations

(V.8) and (V.13).



5.10. Example.

Assume

(1.16) n =6 , k 4 , m-2

and put for T*:

X3 = Y r~ 31 an =,..4

(v.17) x = y + 1(8 (,+) X 186 282)

5% 5 -2 12 6=6 2' 3 4
Y ~ 1 I r ,) y6 =x 6 + 1(,

2 +r 2 )
5 = 5r212 3+r 4 )

Then

P ,At P IIA P4)4

(V.18) u = -
• U

''A 4

where U is the Unity Matrix of order 4, and the vtL) are obtained

replacing in the u ) the s9 with the ri and the p, with the qr,

Developping we obtain

u "f% = ,, - ; xp Is - p x 1, =  p 5t - p ;U'_ - P2 '2 '

(v.p) = - p Xv - p xf p6  -p(V-19- 6 , , , 6"84 " t 3#A%'3 - Pu 4 '

v p ) = q + q r1 + q r 2

5 =_ If& 1 2 2



and, solving the equations u = 0 , v = 0

PP22 - P5221 q5 1 q 2 2  - q5 2q2 1

rI =8s I -=Plmp 2 2  - P52 P 2 1  ql 1 q 2 2  - 2

PllP52 - P2P51 q1 q52 -q 1

11 52 C;1251 52 lcq

r 2  
8 2 p p 2 2  - P122 q q2 - q, 2 q 2 1

(v.20)

P 6 1 p 4 3  - P62P41 q 6 1 q 4 q - q6 2 q 4 1

s3-= P73lP42 - P32P41 q3 1 q 4 2  - q 3 2 q 4 1

P31P62 - P32P61 q 3 1 q 6 2  - q 3 2 q 6 1r = s 4  = = -

p3142 - 32 41 q 3 1 q 4 2  -

Eliminating r% and s the invertible transformation T belonging

to T* is immediately obtained.

.



VI. Determinantal Forms.

6.1. We define multiple indices I of order i as

and put

PV4 ,4 ... yAAi
(VI.2).

We write further ( l), for the determinant formed with the

q V correspondingly to (VI.2).

6.2. Assume now a fixed characteristic transformation T*

and consider the general expression

(VI.3) T (IS

where the TV are functions from W* and the summation extends

over all I and £ as defined in (VI.i).
If the expression can be represented in terms of the xy, r*

and q we call it a determinantal form of order i. We have then

(VI.4) = ~(x

where the To belong to W*.



_t4

If in such a form only the TVS corresponding to a fixed

are different from zero, it will be called a single determinantal

form.

In exactly the same way we define the determinantal forms

and single determinantal forms belonging to the q . Obviously

in (VI.4) the right-handed sum is a determinantal form of order

i belonging to the qVI"

6.3. Observe that the relation (VI.4) reduces to the require-

ment that the left-handed expression in it has a U property in the

sense of chapter 3. Indeed the determinants (VI.2), if expressed

through the q becomes a linear combination of the (I) with

coefficients from W*. Therefore, for a determinantal form we ob-

tain the differential equations (111.7) belonging to r= 4  ..*

As in the case of u-forms the differential equations (1! 1 .7 )

depend only on the functions xV in (II.10), therefore it is rea-

sonable to define an expression of the type (VI.5) as a unilateral

determinantal form of order i, if it satisfies all equations (111.7).

6.4. Our first problem is to find a linear basis for the

unilateral determinantal forms (VI.3). In particular, if we con-

sider in (VI.4) on the left the aggregate of the terms depending

on a fixed S=SL, this aggregate depends on the right only on the
(k\corresponding to the same and represents therefore a

single determinantal form with a fixed S=,. Obviously we have

only to consider for an arbitrary ,

(VI.5) DS :=T46

In order to define convenient elements of such a basis, we

return to the expression u$A) in (IV.8) and rewrite it here:

_ _ _ _ . .-- - - 1..... .



Is
%S Xis • s

(VI.6) u = ( =k+l,....n)

X' X' X'

X3k k k

Choosing then multiple indices £,E of order i, as given by

(VI.I), consider the expression

(VI.7) P

We are going to show that these expressions are single unilateral

determinantal forms of order i belonging to &

Form the determinant of order k+i:

is " I ik pl PIr

X' X' p

ks I  "~ k k  PkIA Pkft

(vI.8) k B Xk k kl .

X ' . . . X '. A

'As 1 k 4 V . .. i
i i i k ~ Ii

_______________________________ I__



6.5. The relation between G and PS as given by Syl-

vester's theorem is

(VI.9) i- lG(e) = (PI

Since J does not depend explicitly on the pW, we obtain,

developping the determinant G in subdeterminants of order i
£ 4)taken from the last i columns, a representation -f GS in the

form (VI.9) for a fixed & and thence a similar representation of

C(E)
On the other hand each of the elements uT' of p1  satis-

fies the relations (II.7). Therefore the determinant Ps is also

a single unilateral determinantal form belonging to S.
Further it follows that P" , if exnressed thrcugh the yy,

e. and the is equal to a single determinantal form in the q

belonginm to the same S.

The determinants G in fVI.8) are subdeterminants of the

fixed matrix (111.6), contsining the fixed k~k-subdeterminant j.

7he rank k+2 cf the matrix ''-.6) has *een conpute? i 'n 'II.").

Ujsing this value it follcws that all detei -- rs -% orrespon-

ding to an i) vanish, while for each iEs there exist nor.-vani-

shing p .

ie are going to show that the P) are a basis for single

determinantal forms belongina to S.

6.6. We begin by deriving a convenient representation fcr

the determinant (VI.2). This will be the formula '

Solving the relation (VI.6) fcr %)k with respect to pY

we obtain

+ St

with



'S X . . X'1

1 " ' X'

A k  k

(vi. 10) S = - A LPY ('tl k) , AaG W*

On the other hand, if Vfk we can write

so that these S(F) are also linear forms in the p (Xl,... ,k).

Therefore, we can write generally

( ))  (V4k)

( VI .11) p vp i J ) +)

where the expressions S are in both cases linear forms in the

Pl9A'' * PkrA with coefficients from W* and can be written in the

form (VI. .

6.7. In the following part of this chapter the iXi-determi-

nants are usually represented by writing out the general column

with the index t o where I=i,...,i.

For the indices sequence I in (VI.l) an h=O,l,...,i is

uniquely determined by the inequality

V •k ( + h=O,...,i

h h+l



45

where h=O corresponds to > k. We denote then the elements of the

partial sequence of I, h+lVh+2'.. VI , in the same order by

%119 1 A ,as long as v>k
3.--h

Then multiplying the determinant

vp

by ji we can write, using (VI.ll),

V 1"

-~~ 3I) <hk ;hO 0)

fu )+ s (PV )  k + I f <  "<i 9. n "

'i-h %4-

Observe that, for fixed S and 1, both the sequence of the

,VIv#"Pv °"ht ' % "0-9%i-h and the sequence of the A corresponding

to 9 are fixed.

6.8. Decompose here the determinant according to its rows

and reorder the rows so as to bring all rows containing the Sk

first. We obtain

Ci



+uigV

where the right-hand algebraic sum consists of 2 i- terms and, of

course, g is Nh. Observe that in (VI.13) the (- and 'A-sequences

vary from one of the 21-h determinants to another.

Observe that in the right-hand sum of (VI.13) the term con-

sisting only of the u ) occurs then and only then if h=O, that

is >i k Iand thien this term has in (V.]i) the plus sign. Introducing

1 V'k+l)

0e k

and using (VI.7) we can therefore rewrite (VI.V7) as

( ")

(v1.14co 
+ 

0  g1~I~

-(. IS, -'



where ''''h coincide with YuI''''Vh, while all further

Vh+l','' 1W are >k.

If we now multiply (VI.14) by Tg and sum over all , we

obtain on the left Ji D4. As to the right-hand expression, obviously,

the first right-hand terms in (VI.14) only occur if S is an f so
that we obtain here the sum TF taken over all multiple

indices F. of order i. We can therefore write

1

(VI-15) j jT (S) + gtV a

where the right-hand expression is a polynomial in the p M

,. =. and () =l,...,i;'=k+l,...,n), linear

for each '=l,...,i.

6.9. We consider the expression in (Vl15) as function of

p Pp ,...p and of the uC. Obviously we can write
JfLI 2 r, k~l

(VI.16) j.Dp + CuW + P

where B. C9 and U no longer contain p V ....,p , but are poly-o 1 nw



coefficients from W*, linear for )ach fixedrfll.

Now, observe that in (VI.16) the differential equations

(111.7) for r=lare satisfied for J DS U and the sum IC'

Thence, they are also satisfied for the 
sum

k
(VI.17) Bp

Reordering (VI.17) in products of the px (001), we can write

(VI.18) k B3 p, k B~p

where P6. are different products of the pw 2A(fl) ordered in some

way, and the coefficients B ( ) belong to W*. Therefore for each P

which actually occurs in (VI.18) the corresponding sum

p B p*

satisfies for the equations (111.7) and is therefore, being

linear, a single u-form containing only p 4''Pk " Such a form,

as was proved in chapter IV, must vanish identically. We see that

the sum (VI.17) identically vanishes. But p IP'-'. PA in (VI.16)

occur only in the sum (VI.17). We see that D& is independent of

p 1 A ' -p k "

6.10. Proceeding in the same way, for each " we see that

the right-hand expression in (VI.15) is independent of all pX

(=l,... ,k). Putting then all these 0, we obtain from (V.115),



JiD = j TES P

(vI.19) D J- jT $PjS)

and we see that Ds can indeed be written as a linear expression

in the P(C) with coefficients from P . Further, we find inS y
(VI.19) an explicit rule for the representation of D through the

Throw away in (VI. 5) all terms corresponding to v with yl k

and replace, since the remaining sequences 9 are also sequences e,
each b p(s )j-i

6.11. We show now that it does not exist a linear homo-
(s )

geneous relation between the Bs for the order i with coeffi-

cients depending only on the y, and sA for independent variables

yV and s, A
(VI. 20) T6 T1 P~ =

$,:

Indeed, if we make all p (w=l,...,k;l, ... m) equal to zero,

we obtain from (VI.20)

P~tA4 " ' " % P

(VI.21) jiT . . - 0

Si

For an arbitrary £=A( .& and S =[rc.ipj~atiuet

the corresponding elements p ,...,p , ...,p ,...,p the

~'t~ 4f 4

.



weight 1 and to all other pVI the weight 0. Then the terms of

the weight i occur only in the term of (VI.21) corresponding to

T,, , while all other terms of (VI.21) have weights <i. Therefore

it follows Tz=0 and since Z and S were arbitrarily chosen, we

see that all coefficients Tes in (VI.21) vanish.

6.12. We assume now that the relations (II.lO) and (11.13)

hold together with (11.7) and (II.11). We define similarly as in

(VI.7) for P

v( 41 (ri)

(vI.22)

(ri

It has been proved with the formulas (IV.14) and (IV.16)

that the u and the v. IA) are connected by a non-singular linear

transformation of order m(n-k). It is then obvious that the deter-

(L (E)minants of the order i, P and , are also connected by non-

singular linear transformations the coefficients of which are

expressible through the determinants formed by the A and the Bi

in (Iv.13) and (IV.16).

Therefore, all c:() of the order i vanish then and only
then when all Q of the same order vanish. This signifies that

both matrices K* and K* have the same rank k+.
X Y (S.)S

The expressions QS correspond to the subdeterminants of

the matrix K* in (V.7),
y

_ _ I,



ir I  irk 11 A.

(SkYr " k~r k  qk tl " qk1A

(vi. 23) H- 
.ri

and are connected with them by the relation corresponding to (VI.9),

6.13. By the relations (VI.9) and (VI.24) it follows further

that the G(E) and the H (E ) , again, are connected by non-singular

linear transformations the coefficients of which belong to W*,

for a fixed i:

(VI.25) GE '

It follows further from the relations (VI.9) and (VI.24)

that the relation (VI.25) holds also between the P(6 and the QE)

(VI.26) =( 2f (SX) (SO)

6.14. We will have in particular to do with the case i=m.

In this case becomes

mI



and we put

E

Then the relation (VI.26) can be written as

(VI.27) a 0. L. (i=M)

If we now consider an expres sion, A~.;,;(- ,depending

on he th Y.andtheG,- where all L and belong to the
sae ,wecn xresthe G linearly through the H adthen

eliminate the s ,and y. replacing them with functions of r~,V

We obtain thus an expression

(VI.28) B(r,,;x H~~ A(s,,;yV;Gs)

V,4

C ~ ~ ~ ~ I ________



VII. Transformations with d = 0.

7.1. In the case that s=m it follows from (111.30):

(VII.l) n > k + m

Interchanging in K*, if necessary, the rows with the indi-
X

ces k+l,... ,n we can assume that

X,' . . Xe

is 1 ksk Pi l Pk m

(vii.2) D 1km 0.

k+s 8 k+m 1 k+ml klm

km 81+m sk Pk+m 1 Pk+m m

We consider further the determinants D which are obtained j
from D if, for r with k+m-),>k, the row in D with the index 1 is

deleted and the row of K* with the index T, where T is one of the
x

indices k+m+l,...,n, is added at the bottom,

X1 . .Xsis I  " s ll Plmn

X . X'

ksI  k kl km

(vII.3) D . . . x,
to X= 1- P ~ k PA~ -

X1 p+5p p k+1X' . .. p'

k+m s 1 k+m sk  k+m 1 * kim m

X'P s I  . . . 1  P erm

4~ 81



The number of the determinants D1a is obviously

(VII.4) m (n-k-m) N N

7.2. More generally, put 6:= fi,... ,m3 and, for an i with
lii m, denote by 91, f."two combinations of i indices, LI from the

sequence tl,...,h+m and 11from the sequence {k+m+l,...,n,

k-m+l .

Denote further by the sequence obtained from fi,2,... ,k+ml by

deleting the elements of S' and adding at the end the elements of

El. The determinant obtained from D by deleting the rows corres-

ponding to ' and adding at the bottom the ro-,s corresponding to

£"will be denoted by Di,,N. It follows comparing with the deter-

minantsG ) (VI.8) of order m:

(VII. 6) D = E

In particular, the determinants D, corresponds to S'= r,

The number of the DF,, n corresponding to a certain i is

obviously (k+m)(n-k-m) and therefore the total number of all D ,is
1 i

00(VII.V) M := Z (k+m)(n-k-m)

i i

where of course the series breaks up as soon as i>k+m or i> n-k-m.

7.3. We are first going to show that the M+l functions

(VII.8) D ,D

i

.. m



are V functions in the sense of chapter III, that is satisfy

(111.3), if they are exprensed, using (11.7) and (11.14), through

the xT, 2iand pyr. Indeed, applying the operator Jin (III.8)

to one of these determinants we are simply replacing the r-th

column with the 34-th column and obtain a determinant with two

identical columns. Therefore the equations (111.7) which are

necessary and sufficient for the U property are satisfied.

7.4. Further, applying the operator

(vII.9)

V=l V P VP

to D and D ,L we obtain again two identical columns if KY, while

if = the corresponding determinant vanishes or is reproduced.

But then, if D ,,C is reproduced, applying for =the operator

are , we have

D /D D 2 v) = 0

We see that all M quotients

(vii.10) uqr D= (Ckl .k M)
D

ordered convenieYLly, beginning with U , satisfy as well the

equations (111.7) as (111.12) and therefore are U functions in-

variant with respect to the choice of the TV,... ,T m . We choose

the ordering of U(40 in such a way that the first N of them,

that is U(k+l) , . . . U(k+N) correspond to the D in (VII.3). The

values of i in (VII,3) corresponding to a I in the first N of

the U will be denoted by

'I



7.5. Consider now, for a fixed V, the m determinants Dpt

(f=k+l,...,k+m) and develop them each time in the elements of

the row with the index k+f. Then we obtain

Y(o) (p=k4l,...,k+m)

where the terms of the developments corresponding to the first k

terms of the k+r-th row are taken together in Do
)

Here the coefficients D are subdeterminants of D and are

therefore independent of Ir. Thence, we can write (VII.Ii) as

)m (E) ) ((=k)l,,km)(VII.12) D 2 D PVA + D ..

The coefficients D(P ) are obviously obtained deleting in D

the r-th row and the k+%-th column. By the generalized Sylvester's

Theorem we have

(vii-13) D (ID) = Dm-1  0

The P,, for our fixed value of #V can be therefore expressed

through the Dk+ l & , . . . ,D k + m g ,

e) Kowalewski, Einfithrung in die Determinantentheorie, 3rd ed., 1942.

Observe that in Kowalewski's treatise the exponent of B in the

last formula on page 100, ( n-hI ), is false and must be replaced
wih(n-h-i 

-

with m-h

Muir-Metzler, A treatise on the theory of determinants, Dover

1960, p. 190, Nr. 197.



(VIIo14) )= (k+lq , Dk+mt)

where the functions Q do not contain any Pl, with V >k+m.

7.6. But writing then (VII.14) out for all C=k+m+l,...,n

and 9=l,...,m we obtain the representation of the N derivatives

pV through the N quotients (VII.lO) corresponding to the D,.. It

follows that the first N quotients (VII.IO) consider#d as undeve-

lopped, are independent functions with respect to the p . Thence,

denoting generally the rank of a matrix A by Rk A, we can write

(VII.15) Rk u (k+N)

where N, given by (VII.4), is the total number of independent

integrals of the joint system consisting of (111.7) and (111.12).

But the following U(C ) with V )k+N are also integrals of this

system and are therefore functions of U ~k+l),... ,U~k+N). It follows
thence

(VII.15a) U k +  = (rUU 'l ...,U~ )  (rl..M-N)

where the functions Agodepend only on T* (but not on T).

Using (11.7) and (11.14) we assume from now on that the

functions (VII.8) are functions of the xV, rg and pVI"

7.7. We make a further assumption going beyond (VII.15),

namely that (VII.15) remains true if the U ) are replaced with
4s)the U*

(U (k+l)....(k.N)
(VII.16) R. & (PVA) -1)= N

Then, the r* satiefying also the property U, are expressible through

the U* and the equations



(VII.17) =j ( l,... , U k+N). (X=1,... ,k)

can be solved with respect to the rip,... ,rk if

(vII.l8) "0

where the fxare k arbitrary, indefinitely often differentiable

functions. Thus the r., can represented as functions of the X.s ,p

(VII.19) r r.,(xv,pvi (V=1,. .. ,k).

Therefore, the BsV defined, in virtue of (11.14), by

(VII.20) 8.0j S*V(xy,rx*) (*l ,)

have also the property U and can be expressed in function of

(VII. 21) Sj T. (yj ,l,...,yA)k)

Thus we obtain k equations

(VII.22) =~ VM'(y,sB,qytA) (CL..

* which can be solved with respect to egif

(VII.23) (*. st 0

In this way we obtain the expressions
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(VII. 24) 83 sA(Y 'L

satisfying together with the nkthe equations (11.7), (11.11),

(11.13) and (11.14), and our problem is solved.

Example for d=O, m=2

7.8. Take

(VII.25) n=4 ,m=2 ,d=O ,k=1

Then, from (VII.4) it follows N=2 and for DflI we have 'C=k+m+l=n=4,

while Pcan assume the values 2 or' 3. We obtain from (VII.2) and

(VII.3) more generally

is pl 12
(VII.26) D X1 s 31P 2

2~s P21 p2 2  Xis 11 P12

D14 98 3s 31 P32 ' X'24 ~s P31 P32

X4 p41  p4 2  X4 p4 p4

(VII.27)

Xis 11 P12

D34 2~s P21 P22

Sp 4 1  p4 2

We can therefore write, by (VII.lo),

(VII.28) U (2) D /D U3 D3 4/D24v34



w

and obtain with an arbitrary function I of two variables (VII.17),

(2) (3)
if U , U are independent,

(VII.29) r* = 4?(U*(2),U* (3))

7.9. We specialize now our transformation to

xl =x I(Y,') = yl + l = X + r

x IV 1 +8y x + r
x2 =x 2(ye') = Y 2 = x

(vnI.3o) 2 2  2 2  2

x3 =X 3(yV's) = y3 + s y3 3 + r

x 4 =x 4 (YW) = y4 - y4 
= x4 - r

and take r=-e.

We obtain from (IV.7) K=J=l and further

1 p1 1  p1 2
P 21 +Pl 11 p22 +P12(VII.31) D= -1 p2 1  p 2 2

p 31p 32P 31-pll P 32-Pl12
1 p3 1 p32

- p P21 p 2 2

(VII.32) D14 = 1 P P32p 3 1 p 2 1  p3222

-1P41-P21 p 42-P22

1 P1 1  p2 P31-PlI p32"DI2

(VII.33) D24 P 31  p 3 2  P 4 2 +P1 2

-1 p41  p4 2

P 11l p 12 j I
2 p p pl 1 1 P 22+p 1 2

(VII.34) D34  p2 1  p2 2  I 41+Pll P22 P4 42141+11 p 42 +p1

-" -1 -- ---



where (VII.33) and (VII.34) are assumed as independent.

Thence

(VII.35) -s =-r = f(D 24/D,D 34/D)

where the right-hand expression is easy to be transformed into

a function depending only on the va



VIII. i4d<m

8.1. Put

(VIII.1) n' : n + d

We change the notation of chapter II in so far that the

orderings of the XV's and Yv's have a gap from k+1 to k+d, where

in particular the

xis3  ,' X ' ,•.•,X'XSt' "233 ';I ' X d+l 1

are expressed in terms of the xy and rt. We further introduce d

auxiliary equations

(VIII.2) xv = X V yy Y= YV =  xy (V=k+l,...,k+d)

Consider n vectors of order k+m,

(VIII.3) L P ., I 0 9" O

s I  sk

where V rune through 1,...,k,k+d+l,... ,n' so that there is a gap

from k+1 to k+d.

Consider further a matrix

(VIII.4) W = (L1 . " Lk "k+d+l . n

where as also in the following the accent denotes that the rows

are to be written from above to below.

8.2. Assume now that the rank of K* is k+m-d,
x

(VIII.5) Rk(0) - k+m-a , I d<m

x.



Then there exist exactly d independent linear relations between

the columns of K*
X

(vI.6P ix +...iss Y m Irr Y

Obviously the coefe ntso Pn . and ow a,, re independent of the
Pd (--,...,d). It is easy to see that in (vII1.6)

(VIII.7) Rk(b#&)) = d (S=l,.... d;=l,... ,)

Indeed, otherwise we could obtain, eliminating the p , a non-

trivial relation,

P'X4,Sl + ... + k - (k=l,...,k,k+d+l,...,n')

in contradiction to the formula (II.11), where we have to replace

k' with k.

8.3. From (VIII.7), it follows that there exists a non-

vanishing determinant of order d with W and we can assume

without loss of generality that this is the determinant

(VIII.8) I Q(t() 0 (ok=0,...,d)

changing conveniently the ordering of the p . Purther, changing

conveniently the order of the columns in (VIII.8), we c&wM assume

that its diagonal product does not vanish,

,(1) ,(22) ,(d)
1 2 . . d # 0

But then, dividing all relations (VIII.6) by the corresponding

4
____



.6)(, we can finally assume without loss of generality that

(VIII.9) Ce(I) = (2) (d)
1 2 =d =

From (VIII.8) it follows that there does not exist a non-

trivial relation

(VIII.IO) PIX'+. .. +' PX; s k = d+ d+...+P p ( v ,...,k,k+d+l,.

8.4. Consider now d vectors of order k+m corresponding to

(vIII.2),

(VIII.ll) V = (o,".,O'Pvl' ... P.m) (v=k+l,...,k+d)

where the first k elements of each Fv consist of zeros. Using

these vectors together with the vectors (VIII.3), form the (k+m)X

n'-matrix

(VIII.12) K* (LI,...,LP .... LkL

We consider further the determinants of the order k+m:

(VIII.13) D IV L LP-... P L L~1 k~d44~wm kA4 k4d'( 4M 4(

where

(vzII.14) 14 4 02 < . . . "k<0k+l < <0k+m4n,

and none of the aW assumes the values k+l,...,k+d.

On the other hand, we consider vectors of order k+m-d,

7-,



(VIII.15) LV := (X' ,... ,Xs k  )Vd+l'" 'pm

obtained from the LO by dropping the first d columns of pM.

Correspondingly we define the determinants of order k+m-d,

(VIII.16) 'q,.. : . ..A~r L . kV"'-

and the (k+m-d)Xn-matrix

(VIII.17) = (L ,.L.Lk . Lx l -"'Lk'Lk+d+l'- "'n'

8.5. We are now going to transform in a convenient way the

matrix K* without changing its rank. We add to the (k+l)-st column
x (i)

of K* the following columns multiplied subsequently with at 2

1)x of(1) and substract then the first k columns multiplied
043 j m (1)
by P1 .... . Then we obtain a matrix in which the only

elements in the (k+l)-st column not necessarily vanishing are

Pk+6 k+l ± X Pk+ %P"

Generally we apply the same transformation to the columns

with the index k+C, C=l,...,d, adding to each such column all(S) O( ) at(E ) (f w )
other p columns multiplied by 4C 1 '''. I-l' C+i' ") 1m and

then substracting the first k columns multiplied by (E)(C

Then the only elements in the (k+t)-th column are the expressions

(VIII.18) P k+S k+E Pk" V)

We obtain in this way a matrix of dimensions n' (k+m),

I,
P..



(VIII.19) 2 (= E
J n-k 0 3 Q3

Here the matrices Jk and Jn-k are matrices of dimensions kXk and

(n-k)Xk formed with the X' for V=l,...,k and y=k+d+l,....n'.VsjC

The matrices Ol , 02 and 0 3 are matrices consisting of zeros, the

first of the dimensions kxd, the second of the dimensions dk and

the third of the dimensions (n-k)rd. Further the matrices Ql' Q2

and Q3 are matrices from the last (m-d) columns of the pV with

dimensions kX(m-d), dX(m-d) and (n-k)X(m-d). Finally the matrix

P is the matrix formed with the expressions (VIII.18),

SvIII.20) P :=(pk+& k+% 1, d

Observe that the determinant IF of P does not identically vanish

in the pd+9 t' since the coefficients in (VIII.18) do not depend
on these pd+S'

8.6. It follows obviously from the decomposition (VIII.19)

that the determinants (VIII.13) can be written as

(VIII.21) D = g1 L.. k ,4..K4I

On the other hand the rank of the nX(k+m-d)-matrix K* is obviouslyx

exactly

(vIII.22) Rk(K*) k+m-d

since otherwise we would have a relation of the type (VIII.10).

Therefore, by (VIII.21), there exist subdetet ts ..

)1

S _ - - 'p .,. : _ _ l - - -- - -- W -



which do not vanish and the rank of (VIII.19) and thence that of

K* is exactly k+m,
x

(VIII.23) Rk(K*) =k+m

We can therefore change the order of the Xy in (II.2b) in such

a waL- that the determinants

XI k

(vIII.24) J

ks 1;k1I  ks

(VIII.25) DI...- k k+1.. k+d'.,- k+m

and

(VIII.26) D1.-.k k+d+l-k+m

do not vanish and we can assume without loss of generality that

it is the case from the beginning.

8.7. We now subdivide the sequence k+m+l,...,n' into

consucutive sequences of the lenght d and a last one of the

lenght < d which could be also =0. The first t sequences are

k+m+l,...,k+m+d;k+m+d+l,...,k+m+2d;... ;k+m+(t-l)d+l,...,k+m+5d

where

k+m+ d 4 n' < k+m+ ( C+i) d

and thence

t.



n'-k- <~
d

(VIII.27) e n-k-d +0 , 0 oIC 1

We replace now, for r=l,2,.... , in (VIII.5) the rows with

the numbers k+l,...,k+d with the rows

k+m+(N-l)d+l,...,k+m+%d

and denote the determinants obtained in this way by

(vIII.28) D1,D 2,...,D e

All rows of these determinants belong to K* and therefore vanish
x

so that we obtain finally e equations

(VIII.29) Dl = 0 , .D 0

8.9. Observe that each of DA contains a rectangle of values

of the p which is not contained in any other of the D.. There-

fore, as J*0, the t expressions D% are independent as functions

of the pI. But the relations (VIII.29) contain e equations for

the k expressions rl,r 2,... ,rk and we have therefore the inequality

(VIII.30) k, e n'-k-m - o 9 0 I

d 0 o

Solving this with respect to k we obtain

(VIII.30a) k$ n- + , d
d+l 7



'09

8.10. We describe now the method we use for some cases with

1,d< m. We consider the new transformation, introduced in 8.1.

and which we call the enlargement, T, of the original one, T. If

we put

(VIII.31) yV = Y*(xV,R), xy = X*(yV,s,,) (V=l,...,k,k+d+l,...,n')

(VIII.32) x= yV (v=k+l,...,k+d)

then T is given by (VIII.31) and T by (VIII.31) together with (VIII.32).

We are now going to show that for this enlarged transformation

d vanishes, that is to say that no non-trivial relation of the type

k n'

(VIII.33) X = a t pt (V=l,...,n')

exists. Indeed, such a relation would be in particular valid for

V=l,...,k,k+d+l,...,n'=n+d and therefore be a combination of

relations (VIII.6),

d d6

(Ot=l,...k l . .M) .

Since the relation (VIII.33) holds also for V=k+l,...,k+d

we would have the relations

u's = 0 (V=k+l,...,k+d)

Hence the determinant

I|

4k



would vanish, contrary to the lemma Dl of the Appendix D, as the

coefficients CC) do not depend on the pv with k<9 k+d.

8.11. Therefore the method used in chapter VII can be tried

for the enlarged transformation T given by (VIII.31), (VIII.32).

The expressions of the rt, s obtained in this way have to be

chosen independent of the p I (k<06 k+d) and belong to T. How-

ever this is only possible for d=l, as in all other cases (VII.16)

is not satisfied.

8.12. We consider now the case d=l. The relations (VIII.6)

reduce here to relations which can be written, omitting the

superscript 1 and putting n':=n+l, as

k -m

(VIII.34) ps, ...... , n

Here we let V run through 1,...,n' omitting k+l. Our enlarged

system becomes (VIII.31) together with

(VIII.35) Xk+l = Yk+l

For this enlarged system N=m(n'-k-m)=m(n+l-k-m) is the same as for

the original one.

From the formula (VIII.30) it follows for d=l:

(VIII.36) k+m f n < 2k+m-l

8.13. We now form in notations of 7.1. for the enlarged

system the expressions D and D .

We have for D:



XB ... XIS kPi, Pilm

(VIII.37) D 0 0 P k+ll1 * k+lm

X;+s k+2B k k+21' * k+2m

k+ 1  k

k+ms 1 +M k km*km

while the expressions for D %are different for vjk+1 and JAk+1:

xis XIS kpi * * * p l

XI 3 k s k p k1 * p km

1e . Xi p * * .pkm

Xk ra k+ms k k+m1 lk'

XI . IC p . . p
'Cs1 Sk 4c P



S " " kl " " km

0 • 0 Pk+ll" " k+lm

(VIII39) +2s "+2k Pk + 21 " k+2m

k +ms "  " Xk+msk Pk+ml" Pk+mm

X' . . . X pIts k  PAl " Pcm

(P=k 2,..,k+m)

where the notations 1( ) signifies that the row corresponding to

the index t is omitted.

8.14. Without loss of generality we can assume that l=l.

Similarly as in 8.5. we add to the (k+l)-st columns in the deter-

minants (VIII.37) and (VIII.39) the columns with the indices

k+2,...,m multiplied with the corresponding OIj, and substract the

the columns with the indices l,...,k multiplied with the corres-

ponding P. Then all elements of the (k+l)-st column become 0

save the (k+l)-st element which becomes

m
(VIII.40) P := Pk+ll + 5-@9APk+l1

Thon D and Dt in (VIII.39) become finally

i 7X



is . . . Xiik P2pl

Xe X k p k2 P km

(vn4) D =Xk+ 2 a * X;+2 Sk k+22' Pk+2m

xi XIskp1. . . p l

K +ms * k k+m2' k+mm

iks is k *2. V

(r XI, . .k .m)

Satsf the equaion

(VIII.42) D k+w2s~rv~t 0+2s -k+22l.. no+

whih o otdeen o te yrXkliVI k+msan their numbr is



(VIII.44) k := n'-k-m = n-k-m+l

That this is 4 k follows from (VIII.36).

We aisume now that

(vIII.45) = k1  ( =k+m+l,... ,n' ;3Z=3,o.o ,k)

('vI.-45) R, -] k1

and that in particular

(VIII 46) Rk 1( l, .. r )k = k l (#=k+m+l,...,k+m+k =n ) .

Now we proved in section 7.5. that the D k+l(/p together

with the DI are independent as functions of the p . As their

number is N and they do not depend on the p (k+l'V i k+d) they

form a complete system of functions with the property U with res-

pect to the original system. Thence the r; are functions of the

D ~l~ p  and the D

(VIII.47) rI D D) (X=l,...,k)

8.16. Since however the rt satisfy also (VIII.31) we can

replace the ' xD with the 11X,9.. ,

,(cV.D ). We assume now that

(VIII.48) Rky.£ - =k-k1 =: 2

and that in particular

(vIII.49) Ric k(rk 2...,rk) -

....r ,



Finally we assume that

(VIII. 50 ) J(Dk+l''l-r k4 +I'' lfk,-r k 0kg o

Then the k expressions r can be obtained from the k equations

(VIII.51) Dk+le = 0 , jt-rk4+n = 0 (It=k+m+l,...,n';,=l,...,k

2

as functions of the original Pp. Further, using (11.14), the

expressions S(xv,r) can be represented through the yj and q )&

and give the representations (11.9) of the a (y q . with which

our problem is solved.

N

I



APPENDIX A

Lemma Al. Consider the m+k functions of the n+k variables,

x19 .... Xn l . ,k ( i . . k) , (( Pl' P " n;zl "z'k

(A l)
( =i...,m),

all functions being assumed to have continuous first derivatives

in convenient domains. Assume that the Jacobian

(A 2) o

and further that the Jacobian matrix of the h and c( with respect

to the z. and xV

(A 3) (-1 ,: y]

with m+k columns has the rank m +k, mo04 m.

Consider the k equations

(A 4) xVz.) = UR (2=1,...,k)

solved, for indeterminates UI,... ,U k , with respect to the zX and

denote the solution

(A 5) RX,.,n l..k

Introducinw these values of the my into the 0t#,(x zm) put

(A 6) 0((i..9.O T(

n.

JA



Then the rank of the matrix

(C#)
(A 7) (X9
is )m o , that is at most by k less than that of (A 3).

Corollary. If mo=m, then the rank of (A 7) is precisely m.

Proof. The matrix (A 7) has as its V-th line

(A 8) ' + . +
lx1 z frl, 2  xy mX1, ±0_ ox'

where the z. are to be replaced, after (A 8) has been written out,

by the 7"3.

In order to prove that the matrix (A 7) has the rank )m

it is sufficient to show that to this matrix k further columns

can be added so as to obtain a matrix of the rank )m +k.

But if we add to the genera, element (A 8) of the Y-th

lines the further elements '' '' we obtain a matrix,
lx~i*' x

whose V-th line is

(A 9) IC ' ' + ' '

(A ~ lv kx x =1 s Ax, mx t=i ms

Therefore, subtracting in (A 9) from the (m+l)-th column

the first k columns multiplied respectively by s(' the (k+l)-th

element of the y-th line becomes 0i . Proceeding in the same way

with the following columns of (A 9) we obtain the matrix

(A 10),. ,'O ,.., /(J=l,...,n) .
V 1 xXv

WlJ: [



Multiply this matrix from the left by the square matrix of order k+m:

(A 11) PX )i

where X and 'A' run from 1 to k and I is the unity matrix ofm

order m. We obtain withl=l,...n:

( A 1 2 ) i d

mxV

But differentiating totally (A 4) with respect to each V we obtain

Therefore (A 12) becomes

-PxV

And this matrix has, by comparison with (A 3), the exact rank

T k herefore (A i0) has at least the ran~k m +k and lemma Al

is proved.t
[ 

' !



Lemma A2. Consider k eqatons

(A 13) w,,(r.,,u,) Q (32pS l ... ,k;V~l, ... ,n)

and assume that the a a W exist and are continuous in

convenient domains and that the Jacobian matrix

(A 14) V : ( r))

is non-singular. Assume further that, solving the equations (A 13)

with respect to the r, we obtain the relations

(A 15) r., - M:2(uV) =0 (32=,. . . ,k)

Replacing now the uV with continuously differentiable

functions of the r., put for any continuously differentiable

function A of the r. and u.;

(A 16) dA i_ + ___

and consider the matrix

(A 17) 

= 1 )

Then the relation holds:

(A 1) d~~t- ~q~lp..,u nV-1

-. - ________ ---- r -_ _ __ v
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If in particular V is non-singular, then the matrix

(A 19) (d(r2 - ML)

()d(rq)

is non-singular.

We verify first that, independently of the way in which

the uV depend on the rX, we have

(A 20) .W) ( )u

(A 21) MV .

Indeed, we have identically

w2 (M1 ,... ,Mk;ul ,...,u)EO

w' d(M) + w u) 0 ( L=a,...,k)

This can be written, using here the accents to denote the

transposed, that is vertical vectors,

(d( )  = -V-1Q())' = (N' 1d(u,))'

and (A 21) follows since the differentials d(u.) are arbitrary.

Assuming now the uy as continuously differentiable func-

tions of the rz put

(A 22)



The relations (A 16) can then be written applied to the we as

77 (wj + Z )(d ( r) 4~ fl(uj

(A 23) V = V + Mu

On the other hand, by (A 22) and (A 21),

d(r) M 4)- U

i+ v-flu v-= + v-'v

I= -1V lv+nA g=

and (A 18) is proved.

_ _ V-- IL---



APPENDIX B

Lemma BI. Consider an min-matrix of n> m row vectors

( ..
qv q~'' 11 q l

(B 1) * .

qnl "' q nm

with arbitrary complex q and a function Y(ql' ... qn) of the

vectors q., that is of mn variables q¥O. Assume that for an

arbitrary non-singular mxm-matrix, B, always

(B 2) Y(q1B... q
n B) = Y(ql ... ,qn)

Then Y is a homogeneous function of dimension 0 of the

subdeterminants of order m of the matrix Q*, more precisely

(B 3) Y Z(Zm+il,...,n ) I

(B 4) 1 .. l '" ' m' ' & (W. - .

Here A is an arbitrary but fixed subdeterminant of order m from

Q* and AYIis another subterminant of order m of Q*, conveniently

chosen, but having m-i rows im common with 6.

If in particular & is the determinant formed with the first

m rows of (B 1), then Ap is obtained fromA replacing the P-th

row of 4 by the W-th row of Q*.

I

1!



Proof. Without lose of generality we can assume that A is

the determinant of the matrix Q formed by the first m rows of Q*,

(B 5) Q := (ql...qm)' , A:= det Q

If we choose now B in (B 2) as Q -1, the first m of the vectors

qgQ-I reduce to the m unity vectors, Il, ... ,Im and we can write

(B 6) Y(ql ''',q n) = Y(qlQ - ' ' q nQ - ) = Y(Ii ''',Iq nQ'1

(B 7) ! -- Q-1  (,e=m+l,...,n)

Consider the matrix

(B 8) A = (AIC) .= .

Then obviously

(B 9) A = / (f=l,...,m)

Observe that the A as the algebraic complements of the

q Ftare for any fixed t independent of the vector q that is of

the m elements , . Therefore, if we replace in (B 9)

by qq ('> m) the left side sum is 6 defined as the subdeterminant

of Q* obtained from A replacing there q by ql,;

(B ,O) ±qm ,A > )

on the other hand the left-hand expression in (B 10) is by (B 8)

and (B 7)

- " . ... '_. -- -r



(B 11) (cadA)r

where the subscript A denotes taking the 1A-th component of the

vector in parentheses. We obtain finally from (B i0) and (B ii)

the formula (B 4) and our lemma is proved.

Observe that inversely, if a function Y(ql,. ,qm) can be

written as a function of the quotients of subdeterminants of

order m of Q*, then obviously the formula (B 2) holds.

I



APPENDIX C

We introduce first some notations useful when dealing with

matrices. We denote by EN an mxm-matrix which has I as its %-th

element in the p-th row while all other elements of Ep vanish.

For the multiplication of such matrices we see at once that, if

is Kronecker's symbol, then always

(C 1) =

Then if I denotes the unity matrix of order m, we have

m

(C 2) 1= : Err

A~l

Lemma Cl. Under the assumptions of lemma Bl, necessary and

sufficient fo, the relation (B 2) being satisfied for any arbi-

trary non-sinaular mxm-matrix B, is that the Bulerian equations

hold:

n

(C 3) 57 qY'm 0

Proof. We will have to specialise the matrix B in (B 2) in

two particular ways.

(C 4) i + (g-l)E (9=l,...,m)

are m matrices suoh that

A



Q-(+ (g-)E)

is obtained from Q* multiplying the f-th column of Q* with g.

(C 5) 1 + gE (~)

are m(m-l) matrices such that generally

Q*(I + gE,,g-)

is obtained from Q* if we add to the t-th column the product of

the ti-th column with g.

The matrices of the types (C 4) and (C 5) can in so far be

considered as elementary matrices) as any non-singular mxm-matrix

B can be written as the product of a final number of such matrices.

(This fact was repeatedly used in Kronecker's and Hensel's work

on determinants and matrices.)

Our lemma Cl will therefore be proved if we prove that the

necessary and sufficient invariancy condition for

(C 6) B = I + (g-l)Ea

is the relation (C 3) for p=X and further that the relation (C 3)
corresponding to tand % is the necessary and sufficient condition

of invariancy for

As to the relation (C 3) for a p=A it is by Euler's theorem

equivalent with Y being a homogeneous function of dimension 0 in

rA



ql~q 2 ' ' ' 'jq n  and this is again equivalent with (B 2) being

true for

B = I + (g-)En

The invariancy with respect to B = I + gEt amounts to the

relation, for fixed rand 'X,

-- Iq'AglV1 Y(qVA' qv V

where only the variables corresponding to the p-th and -th

columnsare written out. This relation is again equivalent to

(C 8)y( 7Ap, +gq ) = 0

On the other hand introducing in (B 3) instead of the q

the new variables1

(C 9) r% qp + gq

we obtain

But obviously by (C 9)

qV

We obtain therefore

I .. .... . . _ _ , [[ ___ -A

! I-

lb .E o



and this is identical with (C 8). Our lemma Cl is proved.2

We are going now to verify that the system of m equations

(C 3) is complete. Indeed, we have

qV 1  q. ,jYfA - V-. y

v~Qq e aq +

VV 1= VA VV 7I

n n

qVi9 qVrY q~ q Y ft +.

But here on the right the expression in the brackets vanishes

and we can account for the factor S&V, taking V =V. We obtain

n n

We see that combining two of the equations (C 3) by Poisson's

parentheses we obtain at the most a linear combination of two

of the equations (C 3). The system (C 3) is indeed complete.

This system (C 3) has therefore o solutions. But by

lemma B1 all solutions of the system (C 3) can be expressed as

functions of r-vectors *l'" * It follows that the system
in

I -q. .



of components of these n-m vectors,

(n=m+l,... ;

is independent.

This independence could be also deduced by lemma B1 from

the relation (B 2).



APPENDIX D

Lemma Dl. Consider d linear and linearly independent

functionsLS(x1 .. x) (9=1,... ,d) and d rn-dimensional vectors

VS~psir pp ) -with elementsp, as dm independent variables.

Write L,(V8 ) for L.(pS1 ,... ,p~m). Then if dirn, the determinant

does not vanish.

Proof. Put

Then, by assumption, the rank of the matrix ( ()is d. We can
14

therefore, after suitable rearrangement of the indices l,...,M,

assume that the determinant

is not zero. But then if we replace all Pgd+l'- ,6 with zeros,

the determinant (D 1) becomes

and does not therefore vanish.

--7 A L


