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I. Introduction.

1.1. Coneider, for nd>»1l, the coordinates, xl,...,xn, of a
general point of the n-dimensional space, depending on and arbi-
l,...,Tm.
Denote generally the derivatives'%%l by p,,'l (9=l,...,n;r=l,...,m).

trarily often differentiable with respect to m parameters T

'““”'f>>1n this paper we are going to consider the transformation

(1.1) I e L P )
L.":lnu,’/ L /'—’Itu.
« LT Sub fu nu.(';_‘*]
where the Yy are homogeneous of dimension O in the p and have
» <y

R
the further property:
Differentiating Iy in (I.1) with respect to_the TF and putting

3y,

q H
b o )TP

we_can, eliminating the pvp and their derivatives, express the xy
in function of yv and qﬁ‘,

(1-2) Xy = x;(}'vi(lv") (V-‘-l.---.n) ’

where the X: are homogeneous of dimension O in the q~P; and inverse-
ly (I.ll can be deduced differentiating §I.2) and eiiminating the

q'P' The functions X:, Y’ are assumed arbitrarily often differen-
tiable in their arguments. We will denote the transformation, dee-

cribed by (I.1) and (I.2), with T*.

1) Here and everywhere later in this paper, if expressions like
Uy YP' Wﬁp, tw occecur inside parentheses, (u,,vp,wir,tw), thie
stande for

(ul,...,un;vl,...,vm;wll,...,wnm;tl,...,tk)

independently of the same greek indices occurring outside of these

parentheses.
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Such transformations will be called reversible transformations.z)

l.2. We prove in chapter II that the matrices

b(YI ) D(XE ) 3)

b (I.3) a(va) ’ a(qvp.) (V=l,...,n;r.=l,...,m)

have the same maximal rank which is denoted throughout the whole
paper with k. We obtain then in the same chapter the existence of

two Bets of k functions

(1.4) Ty = r;{(xv.p\,P) y Bp = s;;(yy.qv") R=1,...,k) ,

where each set is independent, and which have the property that

the expressions Y: in (I.l) and Xg in (1.2) can be written as

2) Thepe transformations for n=2, m=1l were discussed in the
author's paper, Sur une classe des transformations différen-
tielles dans l'espace & trois dimensions, Commentarii mathe-
matici helvetici, vol.l3, pp.156-194, vol.l4, pp.23-60 (1942),
and for arbitrary n and m=1l in a second paper by the author,
Sur les transformations réversibles d'éléments de ligne, Actae
mathematica, -vol.16, pp.151-182 (1942). See also G. Stohler's
doctoral didsertation, Ueber eine Klasse von einparametrigen
Differentitl-Transformationsgruppen, Commentarii mathematici

helvetici, vol.18, pp.76-121 (1945)

3) The expressions used here and in what follows serve to denote !
the rectangular differential matrix formed of all derivatives of
the expressions in the "numerator" with respect to all variables

ocurring in the "denominator".

{
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(1.5) Y: = Yv(x\,.ra) , X% = Xy(vy,sy) (¥=1,...,mn)

where the matrices

a(vy) ax,,)
a(r)l) ’ 3(5’1)

have the same rank k.

Hence, there exists a one to one transformation between two

(n+k)-dimensional spaces (xv,rn) and (yy,8y),

vy = Yylxy,rg) , s = Sx(xv,ﬁ‘)
T
(1.6) Xy = XV(YV 'BR) 1 Ty = Rx(yv usx)
(v=1,...,n;R=1,...,k) ]

Now we can formulate the main problem with which we deal in

this paper. If a one to one transformation T, (I.6), is given, to

describe necessary and sufficient conditions which must be satis-

fied in order that there exists a reversible transformation T*

leading to the transformation T (chapter II).

1.3. In order to deal with this problem we introduce in
chapter III the so called property U. An expression U(xv,q*,pwu)
is said to possess the property U, if, using the relation (1.6)

and the relations obtained by differentiation of these equations
with respect to the Tr. it can be expressed in the form,

(1'7) U = v(Yyisx,qv") .

It turns out that the following partiasl differential equations

are characteristic for the functions U with the property U:

(1.8) Jr’* U = E‘:l x",s’ U"’vp = 0 (r(=l,...,m;‘l2=l,... k)
. a - 3 ! = =l,.e.,m .
(1.9)  Bup U gpﬂ U = © (pA=1,....m)

Skt ket A s




The meaning of the system (1.9) is discussed in the Appen-
dix B. The partial differential equations (I.8) are independent
and their system is complete. The same holds for the partial
differential equations (I.9). The system consisting of (I.8) and
(1.9) taken together is also complete but in exceptional cases
it could happen that linear relations exist between the equations 1

(1.8) and (I.9):
n

(I.lO) o, J 3 faX ( =l,...,m; =11"-vk) ’ )

%x R gpm P il A

where the &y and Pg do not depend on P If there are exactly d
such independent relations, the total number of independent
integrals of the equations (I1.8) and (I.9) is

(I.ll) N :(= mn - m(m+k~d) = m(n-m-k+d)

where mn is the total number of the variasbles pﬁﬂ'

1.4. The above problem with d=0 is treated in chapter VII.
We construct here a system of N functions U@') (@=k+1l,...,k+N)
which are independent, as long as the Ty are coneidered as inde-
pendent variables, and form the total system of N independent

integrals of the equations (I.8) and (I.9). We can therefore write
k+1 k+N
(1.12) Ty = fu(u( ),...,U( )) (=1,...,k) .

These equations can be solved with respect to the Ty and give
the corresponding expressions (II.6) of r*, provided that the . ‘

equations (I.12) are solvable,

a(fl-rl....,f -r. )

. ®« 0 ,
(1.13) a(rl,...,rk

CLIT R L, o VORI
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where the fn are differentiated "through the" . We have to |

add to (I.13) the additional condition j

Q(U(k+l)

g e oy

U(k+N)) 1

(1.124) 3(r1""’rk) -
The functionesa *’in (I.l2) are indefinitely often differentiable !
arbitrary functions. ‘

As soon as the expressions (1.4) of the rﬁ are found we can !
obtain, using (I.6) for sl, the expressions (I.4) of the S in A
the y, and %*‘. ) J
At the end of the chapter VII we discuss the method on an !

example. *

1.5. As to the exceptional cases, d=1,...,m, we give in the
chapters IV and V the complete discussion for the case d=m. As to

the cases 1€d€ m, we derive in chapter VIII, section 9, the in-

equality
(1.15) ke 28 . 0 0¢ Qg === X
S d+l ' a+l |

Further, using a method leading to (I.lS), we solve in the |
sections 7.10-7.16 our problem completely for d4d=1.
The method used in the chapter VIII consists, in principle,
in adding to the equations (I.6) 4 additional equations of the type
xn+s = yn+s (‘=1,--.,d) .
In this way we make d to O for the enlarged system without chan-

ging the ry and syx. This allows to obtain (I.15). However, the

method of chapter VIII can apparently be only extended to our




new enlarged system for d=1, since for d% 1 the condition zorres-
ponding to (VII.16) is no 1longer satisfied.

The discussion given in the chapter VI ought to become use-
ful for the cases d4=2,...,m-1.

The author hopes to discuss in another communication applica-
tions of the results of this paper to the theocry of differential

equations solvable without integration (integrallos aufldsbare

Differentialgleichungen).
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II. Main “lefini* oas. ank.

2.l we cornsider in what follows Zn arbit-arily often

diftferentiable functions

X y X v I y S
z n 1 n
dependin.s or m€n rariables T],...,i . Wie will use in particular
m <
tie inilres ¥Y,¥';0,N ;f‘,/A,' XN, which run through the corres- ,‘
pondine ranges: T ,...,n 3 l,.ee,n 3 1,...,m ; ¥+1l,...,n. These -
~anzes neold wlenrs if tre corresponding letters are summation
indices ~r in ar/ument*s so0o that for instance f(xy') means f(xl....x ).
n
Sut
bxv by
(11.1 ) —— . . v — ( .
{ .1 = =: o) : —_— = qv v=1l,...,n; =l,....m)
S > /‘

and consider the three following (open) domains:
1) GT an m-dimensional domain in the space of the Tl,...,Tm;
2) Gp an (m+1)-dimensional domain in the space of the
(m+1)n variables xy, Py

3) G an (m+l)n-dimensional domain in the space of the
qu‘- .

Assume that to the points of G, correspond always points
4

(m+l)n variables yv,

lying in G and G .
p Q

We choose an inner point Ao in G ,to which correspond points

T
in G »yG_ and G ¥XG . These three points in G , G and G XG will
P’ a P g p q P q

be also denoted by Ao.

2.2. A reversible transformation, T, of the xy into the yv

is defined by two systems of equations:

PSS
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(II.2a) y9 = Y;(xl,...,xn;pll,...,pnm) (V:l,...,n) .
(II.Qb) Xv = x‘\t’(yl"”'yn;qll""'qnm) (v=1"-°rn) ’
if the Ys, X; have derivatives of any order in Gp, Gq and possess

the following four properties , A, B, C and D:

A. The Jacobians of order n,

d (vg) d(x3)
(11.3) b(xy) ’ A(YJ)

remain #0 in G , G .
P q

B. The functions X;, Y; remain invariant for any non-singu-
lar arbitrarily often differentiable transformation of the va-

T .

riables Tl""' -

g: The relations (II.2b) follow from the relations (II.Qa)
by differentiation and elimination and the equations (II.2a)
£0llow from the equations (II.2b), again by differentiation and
elimination.

The content of the assumption g will be investigated in
the section III.

We denote the maximal rank of the nxnm-matrix

a(x3)

(11.4)
3(psr)

(v,8=1,...,n;F=l,...,m)

in Gp by k and that of the matrix

(11.5) _"—b(x.)
* b(q‘ )
r.

in Gq by k'. Then our fourth property is:

(V,8=1, o ,n;r;=l, cee,m)

a




g. AO can be chosen in such a way that the ranks of the
matrices (II.4) and (II.5) have in A their maximal values, k,
k'. Obviously we can assume, restricting if necessary the domains
GT, Gp and Gq around Ao' that the rank of (II.4) is k everywhere
in Gp and that a fixed subdeterminant of order k of (II.4) remains

#0 in Gp and that the analogous property subsists for (II.S) in Gq.

2.3, Then there exists a set of k functior-
= rk .o H P =3 y oo sY*, ., * =1,..
(11.6) 7y rs(xl. sX iPyqse P ) Hs(xl bX_3Y%, .., Y%) (@=1,..,k)

which are independent in Gp ag functions of the Py’ and which
have derivatives of all orders and are such that all n expressions

Y; can be written in the form

(11.7) r. )  (v=1,...,n)

T =: Yy(xl,...,xn;rl,..., X

v T 'y
and the rank of the nXk-matrix

¥, -0, )

(11.8) ENEENI

has exactly the value k. The (n+k)-dimeneional domain Ecv,rﬁ]
which is a proper part of Gp, will be denoted by Gr' For instance
we can choose as the rs a subset of k among the n functions Y¥*,
corresponding to a non-vanishing subdeterminant of order k of the
matrix (II.4).

Similarly there exists a set of k' functions

(11.9) sq = 8§(yy,- vy 50375 0a, ) =¢ Selye- v 5X8,..,X2) (€=1,..,k")

which are independent in Gq as functions of the q”" and which

fos g o o




have derivatives of all orders and are such that all n expres-

sions X§ can be written in the form

(11.10) Xy = X; = XV(yl""’yn;sl""’sk') (V:l,...,n)
where the rank of the nxk'-matrix
(X veen X )
(11.11) é(sl sn ] y
IRRRRELS )

has exactly the value k'. The domain EN,E%JWhiCh is a part of
G will be called G _.
a 8

2.4. As the rg are independent as functions of the pv ,

the n+k variables

(11.12) X seeasX 5 Foaeee,T
are independent in Gp, since any relation between these variables
would give a differential equation satisfied by the xy - Denote
the space of all arbitrarily often differentiable functions of
the variables (II.12) in Gr by rjx'

Similarly the n+k' wvariables
yl.-..,yn H Blpo-.,sk'

are independent in Gq, and we denote the space of all arbitrarily
often differentiable functione of these variables in GB by ij.

Replacing now in the formula (II.6) the Y% by y, and the x,

by their expressions XV in the Yy and By, We obtain




(11.13) g = Rs(y“,sc) (g=1,...,k)
and similarly
(11.14) sy = Sglxy,rg) (¢=1,...,k") .

But the formulas (II.lO) and (II.13) give a continuovs trans-

formation of GB into Gr and the formulas (II.7) and (II.14) a
continuous transformation of Gr into Gs' It follows that the A

dimensions n+k, n+k' of Gr and Gs are equal amd therefore
(11.15) kK = k' .

2.5. Consider the values of the Ty corresponding to Ao
and those of the Sy equally corresponding to Ao. The correspon-
ding points of Gr and GS will be again denoted by Ao as well as
their projections into the spaces of the Ty and of the sy.

The point-to-point reversible transformation between the
regions G and G_ given by the formulas (II.7), (II.10), (II.13) |

and (II.14) will be called characteristic transformation, T*,

belonging to T. This transformation is of course not uniquely

determined by (II.2a), (II.2b), as the choice of the expressions
% and &% is highly arbitrary. The main problem of this paper is:
b R

Given a point-to-point transformation, T*, between Gr and Gs’

how to find suit..le expressions rg and sy s1 ' ‘hat, introducing
the values of rg and sy from (II.1 and (II.1l into the

equations (II.7) and (II.10), we obtain formulas (1II.2a) and

(I1.2b) defining a reversible transformation T. ‘

gk B R
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2.6. As the rank of (II.8) is k, we can assume, after a

convenient reordering of the YV’ that

b(Y l"',Y )
(11.16) i(rx) k ¢ 0 .

Therefore the following equations
(11.17) Yplxy,rg) =y = 0 (R=1,...,k)

can be solved with respect to the Tn in a neighbourhood of Ao

so that we can write
(11.18) ryy = En(xv,yl,...,yk) (R=1,...,k) .

Introducing these values into the expressions of YV’

(11.7) (v=1,...,n), we obtain in a neighbourhood of A,

j}v t= Yv+k(x9’R3) - yv+k = S}Jxl,...,xn;yl,...,yn) =0
(11.19)
(v:l,...,n-k) .

Obviously the rank of the matrix

2,
(11.20) —a-—E—

a(yv) (v=l""tnir=l,...,n-k)

is n~k as the last n-k variables yy are isolated in thellv.

2.7. We are now going to show that the rank of the matrix

a(Ly)
(11.21) a—(;‘)i— (v-l.....n;p=1...-.n-k)

is also n-k.

43




This follows easily from the lemma Al of Appendix A making
the following identifications: Replace the Ty by Zys n-k by m=m_,
the Y =¥y, (¥=1,...,n-k) by oy (¥=1,...,n-k), the ¥y (®=1,...,k)
by Fh'and Y% (®R=1,...,k) by Ugx. Then the assumption (A 2) is
satisfied by (II.16) while the matrix (A 3) with m+k columns has
the rank m+k. The ;1 becomes ﬁx and it follows that the rank of
(11.21) is 2 n-k and therefore =n-k as the matrix (IX.1) has n-k

columns.

2.8. Denote now the 2n-~dimensional space of [xl,...,xn;yl,
y2,...,yA] by P*. Then the n-k relations (II.19) cut from " e
region, I", of n+k dimensions. We can therefore say that thoae
points of ' belong to I whose coordinates are related by the
relations (II.7) for convenient Toge But these relations are equi-
valent to the relations (II.9) for convenient 8y and this signi-
fies that we obtain the same region D starting from the formulas

(II.9) and eliminating the 8yn. We will therefore generalize the

syastem (II.19) of the 'Q'V admitting each system of equations
(11.22) jlv(xl,...,xn;yl,...,yn) = 0 (v=1,...,n-k) ,

defining M in ™ and such that the ranks of the corresponding
matrices (II.20) and (II.21) are exactly n-k, while the.‘lvare
arbitrarily often differentiable.

In so far we could use the characterization of points in

P the 2n+2k variables

[‘V'JQ’ "’ 31] ' j

or any subset of these 2n+2k variables containing at least n+k




variables independent with respect to the relations (II.7),
(1r.10), (II.13) and (II.14). For instance we could characterize
a point of " by the 2n variables (xv,yv) satisfying the relations
(11.22).

2.9. In the expressions F(r”,sn) containing rg and sq
these quantities are usually assumed to be "free variables"”
subject only to the relations (II.7), (II.10), (II.13) and
(11.14). The corresponding expressions are then said to be
"undevelopped". If however Ty and sy are assumed to have the
meaning (II.6) and (II.9), we speak of "developped" expressions
and denote them by F*(rx,sxl

Further we denote by W* the set of all arbitrarily often
differentiable functione in convenient neighbourhoods in
variables Xys Ty Yyr Sy

Observe that, if a characteristic tranaformation T* is

fixed, then any function of W* can be expressed as a function of i

r‘x as well as a function of f“y.

RS p s P -




III. Punctions U,V.

3.1, We return now to the "invariancy" condition 2’ By
the lemma Bl in the Appendix B, this condition amounts to the

fact that the functions Y§(x1,...,xn;p as functions

ll""'pnm)’
of the Py’ depend only on quotients of determinants of order m

of the matrix

(111.1) ’ : ,

and to the fact that the functions X;, as functions of the qwu,
depend on the quotients of the subdeterminant of order m of
(B 1) in Appendix B. Therefore the expressions r8 in (II.6) and
Sy’ in (II.9) have also the corresponding properties.

Replacing in the lemma Cl in Appendix C the Yy by the X;,

we obtain the

3 *

reaspectively the q‘P and Yv by the p%P and Yv,
relations

>
(111.2a) R S = 0 (p,Mh'=1,...,m;¥=1,...,n) ,

2 i, T O P

n .
* 0 = ! = PR, 1 X= s 0.
(III.2b) ?sl qV,‘xtqu, 0 (Y"F 1, ,ym 3% 1, In) ’
where the Y:; and %&' are assumed to be developped.
1

?‘l
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3.2. We consider arbitrarily often differentiable functione
U(x,,ra,pvr) of the x,, ry and pyP'with the U property consisting
in that that they can be represented, using (II.7), (II.10), (11.13)
and (II.14), as arbitrarily often differentiable functions of the
y' ’ quv sns
(111.3) U(x‘,rx,pv") = V(yv,sx,q‘r)

The functions V(yv,sx,qv ) in (III.3) are then said to possess
the V property. Obviously the Y} in (11.2a), the Yy in (1I.7) and
the r* in (1I.6) have the U property, while the X} in (I1.20),

8
the XV in (II.10) and the sé in (II.9) have the V property.

3.3. Differentiating the relation (II.10),
(111.4) xy = Xylyy .y R

we obtain

k
I111.5) = S X! a + X! 8, . :
( Pup 5o v YR Z: Vo, “Xp i

xn=1

Introducing the values (III.4) and (III.5) of the xy end p,"
and (II.13) of the ry in U(xy,Ty,Pw,) wWe obtain an expression
R voR ‘P

U+ (y” ’ an qv’l' s'x")

and we have to obtain conditions under which the U* is independent
of the a*r. But in virtue of (III.4) and (TII.5) we obtain, since

the s*P'can be considered as arbitrary variables,

JU* ' ' - = .
'ST,';" = Sv-- Upvrx”u = 0 (&—l,....k,'l-l,...,m) )

P.
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and U becomes

(111.6)  V(yg.ogpay,) = U[Xy(yg o) Raky s)sx' a

N v ’ ’ Lt ¥ ) 4 .

L M G’ (3 & Vi vf
We see that the km relations, with developped X;s ,
»
(111.7) 2 U = 0 (®R=1,...,k;m=1,...,m)
are necessary and sufficient in order that the s#r fall out from
/

U*, that is that U satiefies (III.3).

3.4. The system of km linear homogeneous partial differen-
tial equations (III.7) consists of km linearly independent equa-
tions, as follows from the fact that the rank of (II.11) is k.

It follows immediately that the system of the equations
(111.7) is complete, that is that, putting

(111.8) Jo 2 1= :x' -;L (p=1,...,m;a=1,...,k) ,
o €y Vex p,r

the'parenthesee expreesions“

(IpaesIng) 2= upiag - Ingime (BA=1,...,mR0=1,...,k)

are linearly expressible through the set of the Jrg.
H

For obviously

2 b
(I11.9) (JP'”vJQ'c) = g (Jl‘"'x“sc) -;-3; - g (JqFx,sx) 0, _

since the functione




vanieh. For the x;s satisfy the equations (III.7), since the

X! are expressible both in G as in G .
VSye¢ D q

3.5. As the system (III.7) is complete it follows that this
system implies exactly mk independent relations and possesses
exactly nm-mk independent integrals as functions of the pyy-

But the k functions r.;‘(xv,pm) satisfy (III.3) in virtue
of (I1.13) and (II.14). It follows, as the r¥ are independent

b
in the p,’", using (III.8):

mn n
(111.20) k€ m(n-k) , k§—s = n-=

In particular it follows that
(Irr.11) k € n .

In (II1.10) the equality sign holds in particular for k=m=n-1.

Then we have the contact transformations in Rn (see Ostrowski tq).

3.6. In the above discussion the invariancy of the . with
regpect to a transformation of the T" was not assumed. If we now

assume that the functions U are invariant with respect to a

transformation of the TP’ then we must add (see Appendix C) to

the equations (III.?) the equations

b ¢

(111.12) %p""’%\o’v = 0 (r,r'=1,...,m) .

and assume that all ri satisfy these equations.

The equations (III.12) could completely or partly be con-

tained in the system (III.7). For instance in the case k=n-1

B e At - . " - e




the set (III.12) completely depends on the equations (III.7).

Denote by N* the total number of linearly independent
among the equations (III.7) and (III.12). Then we can choose
among the equations (111.12) exactly N*-mk,

* .
(111.13) Ay <o, ... AN =Ry g
which imply, taken together with (III.7), both eystems (III.7)
and (III.12). It is easy to show that the system consisting of

(I1I.7) and (III.13) is complete.

3.7. Indeed, put generally

n
— -
(111.14) Al“)"‘ 1= > Py D p"}* (p.‘h-l,...,m) .

Then we have for

(AFA,JP, m) :=¢)§me, - J", ,’RA,A.‘A

the expressions

P
(AI‘""JPWR) = gl A% ys,z 3 Py :!:':_L(J " 2Py 2 7y

But the terms A a ; vanish, as the X;B are homogeneous of
p
dimension O, while

J}".ﬂpV% = sﬁrﬁxss” :




Therefore

(111.15) (A!“"A' l‘m) 8'7;' g Xvsxb pvr S'/\,a' Jp.az

Finally we obtain easily

(Ar.'h’A,x: ) = S)L'N vg(pv%b_p};)" sﬂ" gg—l(pv'x SJL;; ). A

(111.16) (A ,\'A’L;‘X') = Sr\'A"A!‘) - SPWAA,"%. ’

and we see that the system of operators generated by (III.7) and
(III.12) is complete.
In particular it follows that the linear system of opera-
tors generated by the £ﬁmv for a fixed rlis complete and the
same holds for the linear system of operators generated for a ‘
fixed r.l by the operators J}L,‘ﬁ (!=l, oo ,kﬂ:lé. . ,n) .
On the other hand, the system of the m“ equations (III.12)

is complete and has therefore m(n-m) independent integrals in

the p”l. Since there are k integrals Ty it follows
(111.17) m(n-m)Pk , mgn-1 .

3.8. Assume now generally that there exists a non-trivial
t n the J d & 4a th
linear relation betwee e e an Fv“ and assume e J,u,‘! as
developped:

'l

(111.18) %NF‘J,", = ”AA A.'A ,

where not all O(rm and not all Ara vanish. Then, equating on the :




right and on the left the parts corresponding to a general

fixed P" we obtain the relations

m

K
(1I1.19) ;“,m",xpz = %A’AA)"" (’1=1,...,m) .

Assume that for a fixed H.the relation (III.19) is not

trivial and write it as

(111.20) i J = mAA .
2 ;)z:o(x}"& éﬁp,ﬁ

Then, introducing from (111.8) and (III.14) the expressions of
J and A it follows, if we equate on both sides the coeffi-
BrR P

cients of the single differential operators D , the system of
\/
n relations equivalent with (1II.20): r
> >
(111.21) Kp X! = p (¥=1,...,n) .
x:l vs! A=l A‘ ”

But the relatione (III.21) do not contaian We see that

if a non-trivial relation

< . S aa
(111.22) é[e‘an‘"’ = ;Am My

holds for a certain ,b the same relation holds for le,...,m.

It follows then that if there exist for a fixed r;exactly




(111.23) d € Min(m,k)

linearly independent relations of the type (III.22), then the
number of independent equations among the equations (III.7) and
(III.12) is exactly mk+m2-dm end therefore the number, N, of
independent integrale of these equations is precisely

(111,24) N := m(n-k-m+d) 3 k
so that the coefficient of m is » 0O,

(III.25) n » k+m-d , n-k » m-d .

3.9. Observe that the nx(k+m)-matrix

X! s . o« X! P « « « P \
/ lsl 1sk 11 1m
X! ... X pe) e +« « P
231 2sk 21 2m
(1I1.26) K* := . . ,
x
X! . .« X! p .+« P
nsl nsk nl nm}

where all X;su are agsumed as developped, has the rank $k. Deno-~
ting this rank by k+m-d, we have therefore d & m.

On the other hand, by the above definition of d, 4 is the
number of columne of the matrix (III.26) which linearly depend
on the other columns.

~ Observe that, by (III.24),

(111.27) m(n-m+d) P (m+l)x .




3.10. QObserve finally that, putting

I

-~

- n
(111.28) »p = X! q , a = v jo )
WP ;2; vxs qw qA &T vgs !ql

the formula (III.G) and the corresponding formula for U become

(111.29) U(varxspv”) = V(Yvyserv") U(XV,Ru,;Vr‘) ’

(111.30) V(y,.sx,q,r) U(Xv,rg.P,P) V(Yv,sa,qy”) .
The expressions (III.28) can be obviously considered as the

corresponding derivatives of the Xy and the Yy computed in the

assumption that the Sy Ty 2re constants.

.




IV. The forms u and v.

4.1. A u~-form is by definition an expression

(Iv.1) Z_Uw'“p\,,‘l , UvFew* ,

where the_Uv* belong to W*, with the property that, using the

characteristic transformation T*, u can be transformed into a

v-form,

(1v.2) v = ZVVIJQV’A , VVPG U
s

The cocefficients Uﬁu and un can be expressed both as func-
tions of the Xy, Ty and as functions of the Yys Sp:

If we introduce into (IV.l) the expressions (III.S) of the
pﬁu we obtain

(1v.3) u = %Uv)u vy, qu,,. Z ZUV}‘ vsy ‘7“‘ '

where the indices ¥ and A run from 1 to n, the ind#x‘F.runs from
1 to m and the index X from 1 to k.
Since here the ei#.cen be considered as independent variables,

we obtain as necessary and sufficient for the u-form (IV.1):

(1v.4) é;nv,x;sn = 0 (,A:l,...,m;x:l,....k) .

TP el N S

. s

1
‘\
|
1




4.2, If we make in (IV.3) all UﬁP with P#Fo to zero, we

obtain a gingle u-form corresponding to Fb:

: Y . . : ()

and we see that, taking in (IV.1l) together the groups of terms

belonging to the same index r, u ie decomposed into a sum ,

of single u-forms u(F) belonging each to another F.
It follows that we can restrict ourselves to the consideration
of the single u-forms and the single v-forms.

Observe that by definition the u-forms form a linear system

if we admit as coefficients all functions from W*. And the same
holds also for the system of all single u-forms corresponding to {
a fixed value of r‘,
But the k equations (IV.4) corresponding to a fixed are
linearly independent with respect to the U%“ since (II.ll) has
the rank k. Thence there are exactly u?_k single u-forms for each F.

4,3. Therefore the question arises to find a convenient basis
for all gingle u-forms corresponding to a fixed’k.
We obtain a system of n-k single u-forms and single v-~forms,

differentiating the .Qy in (II.22) with respect to 'I‘r ('1-—-4, cee,m),

(1v.6) 'ﬁé!") t= Zne,xvpvr = -Zﬂ«yqup =3 -'«7ér) .

And it follows from the rank condition for the matrices




(I1.20) and (II.21) that the n-k forms Gér) are linearly indepen-
dent as well as the §§P).

Therefore the u-forms (IV.6) form a basis for the single
u-forms corresponding to a ficed and the same holds for the

v-forms qéF) defined by (IV.6).

4.4. Another basis for the single u~forms can be obtained
using the functions Xy in (II.10) defining the characteristic
transformation T*., Since the rank of (II.ll) is k we can and will
assume, changing if neceseary the numbering of the Xy and YV’ the

non-vanishing of the developped determinants

X! y X! . .. Y
181 stl lrl kr1
(IV.7) J := , K := .
X! . e . ' Y! D 44
lsk xksk lrk krk

For the derivation of our basis for the single u-forms’using the
Xv, it is not even necessary to assume that the Xy belong to T*,
It is sufficient to require that the n functions Xy(yl,...,yn;
sl,...,sk) have with respect to the 83 the Jacobian rank =k, that
is that one of the determinants of order k from the Jacobian matrix

3(%qy...) %n does not vanish, where in particular we can assume

3L 84, Sk 3 Xy -5 ¥ic)
that the determinant J= -———l—-L——)doee not vanish. We can then
d(Sqy---ySk)

define the u~form (IV.1) by the mk relations (IV.4). In order to
distinguish our generalized assumptione from the original ones
based on the relation U=V, we will denote the u-forms defined
solely by (IV.4) as unilateral u-forms. Then it is easy to see

that a basis for the single unilateral u-forms corresponding to

a '& is given by

A R, it o1y




o P kp
X! X! . . X!
ﬁsl 1s, ksl

(1v.8) u;") ‘= (M=k+1,....n) .

with respect to a system of coefficients consisting of all inde-
finitely often differemtiable functions belonging to f;#
Indeed, each ugr) satisfies the equation (IV.4) since repla-

2

cing in ugp) the pYP with X;s amounts to making in u(P) the first
R

line identical to the (Q+l)at line. The independence of the ugﬂo

follows from the fact that to each u&P) corresponds a qu occuring

with the coefficient J in this ugr) only.

4.5. It follows now that a unilateral u-form written as

n
u = Efp
=T ' »

with f,, from r; contains at least one of the p peeeaD with a

k+1p
non-vanishing coefficient unless it vanishes identically. For, re-
presenting u linearly through the basis ugP), none of the p%p(“>k)
is destroyed if the corresponding uqr) has a non-vanishing coeffi-

cient in the representation. We obtain now the rule: If a unila-

teral u~form is written for a fixed F” as

(1v.9) u = i :ﬁ‘,p,'1 y Ty € PY ’

v=1

it follows, using the uSVQ from SIV.B},

(1v.10) u = % f,ugr) )

v=k+




Indeed, as

D (V=k+1,...,n)

»

we obtain from (IV.9)

u =—§gf\v“§r)*{plr""’pk} ’

denoting generally by {; se sy a linear form in the p_. . ,...,p

Tl s e

1
with coefficients from rg. And this {plr,...,p%#}, being a unila-

teral u-form, vanishes identically.

4,6, Similarly there exists a basis of all single v-forms

belonging to a r, consisting of the following n-k v-forms:

qm,‘ qlr . s qu

w Yirl Yirl ... Yirl
(1v.11) vdr = ("= k+1,...,n) .

. . . . - . . . - .

Y! . e e X!
%rk lrk krk

To obtain a representation of u&r) in terms of the véﬂ)
observe that, by (III.5),

P,

NE SRR L —

Introducing this into (IV.8) we obtain for Q;k+l,...,n :

—nm -




:E X} qQ 2 X! aq e e e X' aq
S %yt trL T lyt tf‘ Z kyt tp.
X! X! . . X
s 1s ks
ne - 1 1 1 .
X2 X! . . X!
%Bk lsk ksk
xl L xl ] . R . x! J
T L gy
X! X! . . X!
%sl lsl kel
+ .
X ! e o o X!
ﬁsk lsk ksk

Here the second determinant vanishes as its first line is a linear
combination of the following lines. Taking in the first determinant

the summation E qtr‘ out, it follows further
L3

X} X! o o . X{
vy 1y, Y
X! X! « v e X}

n s le ks
:EE: 1
=T M

X} P& o o '
Qek lek xksk

But here the terms corresponding to t=1l,...,k vanish and we obtain




\ X! . .. b &
x'kyt lyt kyt
X X! e . . '
u(F’) - aQ ml lsl kBl
- ’
s
X X! . e . X!
hsk lsk ksk
(w -
(1v.22) Y T =4y, 9, , )
tok+1 P
X! X! e . X'
ayt lyt kyt
X} X! e e e '
s 1ls ks
(Iv.13) &, = 1 1 1 . DXA.Xa,....Xe)
byt'sl’...’ek
Xa X2 . e e p & {
ﬂsk 1s ks,

Applying to the form on the right in (IV.12) the analogue of
the rule concerning (IV.9) and (IV.10), we obtain

(B _ L~ (W
(1v.14) u,'\" = < tE=k+1 Aﬁt vtP' (A=k+1l,...,n) .
Similarly, i+t follows
(1v.15) vét") =_1..Zn B, uM ’ 4
J ooy At t ;
NY’A'Y;""'Y )

(1v.16) B =

at a(xt»rl.--.,r:r (a=k+1""ln) . .




V. Traneformation with d = m.

5.1. It follows obviously from the relation (III.24): If

(v.1) k = e ,

then d must be =m. It will be seen from the following discussion J

that the relation (V.l) follows, from d=m. -
Assume d=m. Each of the last k columns of K* in (III.26)
X

must be a linear combination of the first k columns, that is

k
(v.2) D - ,;% mg")x\"sx = 0 (¥=1,...,n;M=1,...,m) .

This signifies that in each of the determinants (IV.8) the first

line is a combination of the following lines, therefore all

m{n-k) formse u()"') vanish and we can write, developping the u,({") '
in (1IV.8),

k
(v.3) u(”) f(")

2 =me"- > ax Py = © (‘A=k+1,...,n;r=1,...,m),

where the f&:) belong to W*,
In the equations (V.3) we can express, in virtue of the
characteristic transformation T*, all coefficients ﬂ&:?J in Gr’

that is through the variables

xl,...,xn;rl,...,rk .




Denote the rank of the Jacobian matrix of the m(n-k)¥» k

expressions in (V.3) with respect to the Ty

d (ui)
(v.q) b(r,) ,

by §* & k.

5.2, We are going to show that the number m(n-k) of the

equations (V.3) cannot exceed g*,
(v.5) m(n-k) ¢ s* .

For otherwise the Toe could be eliminated using certain 3*

different equations

(v.6) u;t") = 0 («:1,...,8*) .
)

identically satiafied differential equation, as the ugc:) in

A ug£°) different from all u&t? in (V.6) becomes then a not

(v.6) do not depend on Since this is imposeible, (V.5) is
proved and it follow§, by (III.A0), m(n-k)(s*‘k‘m(n-k) and thence

m(n-k) = 8* =k .

We see that the matrix (V.4) is a square, kXk, non-singular

matrix, and from m(n-k)=k follows (V.1l).

5.3. It follows that the expressions of Ty in the Xy and p,

can be obtained solving the equations (V.3) with respect to r,

r2.....rk. Obviously a completely analogous result holde foxr the

i & Al Bt 0 on




expressions of the Sx in terms of the Yy and Upoppr 88 in virtue
of (IV.14) and (IV.lS) all viPJ vanish then and only then if
all u&P) vanish, and then the rank of the kXk-matrix

Y o e .

1
lrl er Q1 9y

i}

(v.7) K*

[le]

is k.
We denote the determinant corresponding to the square matrix

(v.4) by dh'

5.4. assume on the other hand that we have given a priori
the transformation T* by the relations (II.7), (1I.10), (II.13)
and (II.14) where all functions Xv, YV’ Rﬁ’ %l are indefinitely

often differentiable.

Then, assuming that the Jacobian, Au' of the u;») with respect

to the zb does not vanish, we can solve the equations (V.3) in

the form

k
(v.8) :,&f‘)(p,r,x,,rv) = o - %gfés)pﬁr‘ < 0 (p=1,....miA=ks1,...,n)

with respect to the Ty in a neighbourhood of a point Bo and obtain

the expressions
(v.9) T = ﬁ,(xy.p,r) ®=1,...,k)

of the ra in terms of the Xy and Pou’ Putting these expressions

into (II.7) we obtain expressions for the ¥y in function of the ;

Xy P‘rg




- - x
corregponding to (II.2a).
Further, putting the Rs for the {9 in {II.14) we obtain the

expressions

(V.IO) S:I(xv'rs) = E‘(x,vpy,‘) ("'—'l,""k)

where the functions s:(x', gs), E;(xy'pﬂﬂ) have in a neighbour-

hood of Bo the values of the e‘-corresponding to the transformation T*.

5.5 We have now to show the existence of the representations
of the sy a? gunctions of the q]l""’qnm' Expressing in (V.8) the
. ] . ' .
quotients f)!./J in terms of the Yy and sy e obtain

w(p) 1 £ (w)
u,,!‘ (p,,,;yv.ek) 1= p," " oy gf,.g (vy »5¢) p’?"
(v.11)
(a=k+l,...,n) .

And all these forms vanish in the neighbourhood of B .

o]
But now it follows from (IV.14) that all Wyu)’
& (p
(v.12) T 1= Koy - ;s“ (vy rog)agy = 0 (Aeictl,oooom)

vanish for sg ='§i in a neighbourhood of Bo. If we now assume
that the Jacobian,

(®
)(va )
(V. 13) Au = b (B') »

A




of the vgp) with respect to the s¢ does not vanish in the neigh-

bourhood of Bo' it follows that the §e are unigue solutions of
the equations (V.12) in a convenient neighbourhocod and can there-
fore be represented in terms of the q.,,...,Q .
11 nm
Introducing these expressions into (II.9) we obtain (II.2b),
and the inversgibility of the transformation T obtained in this way

follows from the assumed inversibility of T*,

5.6. We have still to prove that the ™ are independent as
b 4

functions of the p," and that the s'; are independent as functions

of the q'”.
But it follows from (V.8) that with A=k+l,...,n and F:l,...,m,
=(m)
AMua")
(v.14) —2— _ i1 ,
)(Pa)

'I.

where the determinant is for variable A and rtof the order k=m(n-k).

On the other hend, if we put with A=k+l,...,n and,;:l,...,m,

d(rg) AGEM) )
(v.15) 4 - m ; A:= —5(—1:;)—'= A/IT#o0,

both determinants are of the order k and the inequality 440 follows
from the assumption. But by (V.14) and (V.15) lll§l=11, ¢§l#0. The
independence of the rg; is proved and the independence of the sg,

follows by symmetry.

5.7. We have finally to prove that the ryp and sgn are abso~
lutely invariant with respect to the linear transformations of

the TP' that ies to say that for the ryq and sy the relatione

v
%D,’.g;”—.= o ('D.F=l,...,m)




—— >

are linear combinations of the relations

o}

ow
S X! —_— = 0 .
=1 vrﬂ apyra

This signifies that the relations hold:

k

(M),
pvr. = ’Z_lmu XVI‘I ('l=l,...,m) .

But these relations follow from the fact that K; has the
rank k in virtue of the relations (V.8).

5.8. We observe finally that the special choice of the basis
forms ung and v;rJ is not essential. Indeed, if an arbitrary basis
for the u-~-forms is given, obvicusly their Jacobian with respect to
the rg does not vanish then and only then when this is true for the
ugr), and similar situation prevails for the v-forms and sy. We can
therefore obtain the Tyr equating to O a complete set of the basis

elements of the u-forms, and similarly for the sz‘and the v-forms.

5.9. We can summarize our results in the following statement:

Assume given a transformation T* with (II.7), (71,10), (II.13) and

(I11.14), where all functions occurring in these formulas have deri-

vatives of all orders in certain domains_corresponding by T*.
Assume that d=m and that JKgO.

1) If T* is a characteristic transformation of a reversible
T, given by (II.2a), (II.2b), then both Jacobians A, A do not

vanish with indeterminants Pyu’ 9y and the expressions of the

¥ (xy, o), eR(¥yrayy) satisfy (V.8) and (V.12).
R v Py SR\ Yyrdyn/ 2850
2) If the functions Xy, Yy, Ry, Spdefining T* satiefy (V.4)

and ‘V.lzz then T* is a characteristic transformation of a reversible

transformation T, and the expressions of the r{, sgj_n_ p'r, qv" are
obtained, uniquely in convenient neighbourhoods, from the equations

‘V.Bz and ‘V.lzz.

L e e e




5.10. Example. ‘

Asgume

(7.16)

n=6, k=4, m=2 f
and put for T%: i
{
Xa=Ya= r’=s' ( =l!"'!4]). ’ /;
1, 2. 2 _ 1, 2 2
(v.17) Xy = yg+ 3(31“32) » Xg = v+ 2(83+e4) , )
1, 2 .2 v 1,2 2
T, = xg- -2-(r1*r2) , Ty = %% 2(r3+r4)
Then f
me’ plP . e e D4F
Xia,
(V.18) ugp) = ()=516;r=1'2)
U
X,

where U is the Unity Matrix of order 4, and the V;P) are obtained
replacing in the u&P) the g8y with the ry and the nﬁ“ with the qar.

Developping we obtain

“é") = Poy T P¥se, T PopSe, = Pop T Piu®i T Poufs

“ér‘) = Pep ~ Pau¥6s, " Pap’s, ~ Peu T P3u®s T Pap®s
(v.19) vép) g T * T

P < o+ s +




/ '
and, solving the equations uaﬂ) =0 , viFJ = 0 , |
1
o - s oDs1P22 T FsoPa1  351%00 7 950901
= = = - — ’
11 PyyPpy T PppPy 331%0 32921
1
] - i
. PuiPs2 P12P51 %1195 %12%s53
T2 7 %2 ST % - P;,Poy Q.44 - Qq,,q ’ ‘
11¥22 12P21 11322 22821 ;
1
(v.20) i
o - o - lPeafaz " PeoPar  Ze1%c T 962%1 i
= s, = - - - ~ ,
> 7 PmiPasp P32Pa1 131%2 12291 o
|
. .o o imaFe2 T P3oPer | xfz T 93261 |
= s, = . = - - - )
4 Pz1%40 P3oP41 U31%02 922% |

Eliminating ryg and sy the invertitle transformaticr T belonging

‘ to T* is immediately obtained.

P ) S TP s e i - = . . e e




VI. Determinantal Forms.

6.1. We define multiple indices x,s,c of order i as

- {yl,v ,...,vi} (1§V,€V,<...<V €n) ,

{f‘l’f‘z"""‘i} (1gp <p,<... <p€n) ,
{al,me,...,'xi} (k+1€A <A, <... <A &n) ,

8:
(vi.1) §:
&:

and put

(v1.2) 2‘-) U o T A
I.2 )S A t= . . . .
dg vip

d
We write further (s! for the determinant formed with the

5%

q correspondingly to (VI.2).

VM IE

6.2, ABsume now s fixed characteristic transformation T*

and consider the general expression

(VvI.3) Toeg ..’.K.) '

where the Trs are functions from W* and the summation extends
over all ¥ and $ as defined in (VI.1).

If the expression can be represented in terms of the Xy Top

and qu’ we call it a determinantal form of order i. We have then

(V1.4) %TK‘ (%%)P ) %538 %)q '

where the Tx‘ belong to W*.




If in such a form only the sz corresponding to a fixed &

are different from zero, it will be called a single determinantal

form.

In exactly the same way we define the determinantal forms
and single determinantal forms belonging to the q,P. Obwviously
in (VI.4) the right-handed sum is a determinantael form of order

i belonging to the qu.

6.3. Observe that the relation (VI.4) reduces to the require-
ment that the left-handed expression in it has a U property in the
sense of chapter 3. Indeed the determinants (VI.2), if expressed
through the qu, becomes a linear combination of the (%E) with
coefficients from W*. Therefore, for a determinantal formﬁwe ob-
tain the differential equations (III.?) belonging to r:ri,...,ri.

As in the case of u-~forms the differential equations (ITI.?)
depend only on the functions Xy in (II.IO), therefore it is rea-
sonable to define an expression of the type (VI.3) s a unilateral

determinantal form of order i, if it satisfies all ejuations (III.?).

6.4. Our first problem is to find a linear basis for the

unilateral determinantal forms (VI.B). In particular, if we con-
sider in (VI.4) on the left the aggregate of the terms depending
on a fixed S=81, this aggregate depends on the right only on the
(ﬁ)* corresponding to the same Sl and represents therefore a
single determinantal form with a fixed 8:81. Obviously we have

only to consider,for an arbitrary S,

(Vvi.s) Dg := g%‘s \%)P .

In order to define convenient elements of such a basis, we

return to the expression ung in (IV.8) and rewrite it here:

%4

-




(vi.s6)

u(;u~)

X! . e e
1ls

Choosing then multiple indices §,&

(VI.l), consider the expression

(VvI.7)

(&)

Ps

(
-
u,}:

.

(M0
Uai

nC
M

L)
M

R

P

!
ks

()
g
o)

%

L)
%

(A=k+1l,...,n) .

of order i, as given by

€:= ’i""'ai‘ .

= (ko)

We are going to show that these expressions are single unilateral

determinantal forms of order i belonging to §

(vi.s)

(g)
Gg

[ ] ]
Xlsl - XP
L] L
stl . . st
X, D &
N8y 2
X! R ¢
“i 8, Qi

Form the determinant of order k+i:

plri
Prp,

P
al"i

p
LI




6.5. The relation between G(E) and P(a) ag given by Syl-
$ §
vester's theorem is
i-1.(e) _ (&
(vi.9) J TG = Pg .

Since J does not depend explicitly or the p we obtain,

(g)
$

V'l !

developoing the determinant G in subdeterminante of order i

’
taken from the last i columns, a representation ¢ G%t) in the
form (VI.5) for a fixed § and thence a similar represertation of
(e)
s .

i)

\
On the other hand each of the elements u;L" of (¢)
€)

fies the relations (III.?). Therefore the determinant P‘ is also

satis-

a single unilateral determinantal form belonging to 8.

(&)
s »

Further it follows that P if exvressed thrcugh the Yy

84 and the GVF' is equal to a single determinantal form in the q"‘

telonging to the same §.

(e)

The determinants Gs ‘" in fVI.8) are subdeterminans of the

fixel matrix (III.6), con*sining the Tixed kX®k-subdetermi .

o
m B

! >

The rank k#, »f the matrix 'III.€) ras veen compuatel :n (1

Using this value i* folilzwe that a3ll detern:i

(%4
I
by
ot
0]
4
on

correspon-

ding to an i»9Q vanish, wrile for =ach iss tnere exist non-vani-

(&)
s

shing

re
We are going to show that the P§£' are a tasis for single

determinantal forms belonging to S.

6.6. We begin by deriving a converient representetion fcr
the determinant (VI.2). This will be the formula 'VI.izZ).
Solving the relation (VI.6) fcr APk with respect to p“"'

we obtain

Jp‘h'a. T Vg

with

o




0 Py . o e pk"
X! X! . . . X!
(F) Qsl ]:sl ksl
Sa, = - . ) ) ’
X&sk xisk e Xis,
(vi.10) s(") = -2' p (A»X) , AnnGW* .
a £ fon o DY

On the other hand, if y£€k we can write

8o that these S(r) are also linear forms in the p_n" ()z—l,... ,k)

Therefore, we can write generally

s‘sf‘) (v& k)
(vi.11) Jp, =
qu
usro + séfg (V> k) ,

where the expressions S$F) are in both cases linear forms in the
p1 ERERS N with coefficients from W* and can be written in the
form (VI lgB

6.7. In the following part of this chapter the iXi-determi-
nants are usually represented by writing out the general column
with the index ply, where ¥=1,...,1i.

For the indices sequence x in (VI.1) an h=0,1,...,i is
uniquely determined by the inequality

v, €k <V, , h=0,...,i ,

g
¢
{
¥
¢
'
i




where h=0 corresponds to Vl)vk. We denote then the elements of the
partial sequence of X’{?h+1’vh+2""’y;} y» in the same order by

'Al,‘hz,...,'xi_h, as long as yi>k.
Then multiplying the determinant

p'lf“V
(vi.12) .EI. : : (W=1,...,i)
.Y

#

P bViF“I

by J1 we can write, using (VI.ll),

S, gl

(
An Piow

Observe that, for fixed § and ‘, both the sequence of the
\ & Vl, e ,Vh,ﬁl, e 'ai-h and the sequence of the ’.hv corresponding

to § are fixed.

6.8. Decompose here the determinant according to its rows
and reorder the rows so as to bring all rowe containing the q&"ﬂﬂ

firet. We obtain

I B s VRNV TN




sg(}:")

( .
sc‘r:v) 0, <. . .S &n;

- i ; + ]
(vi.13) J (-5% = Z— kel €A €L (ﬁi_g‘n

o)
? 2

(poy)
upl?

i-g

where the right-hand algebraic sum consists of ?i_h terms and, of
course, g is Ph. Observe that in (VI.13) the @- and A-sequences
vary from one of the .’21"h determinants to another.

Observe that in the right-hand sum of (VI.13) the term con-
sisting only of the u;rq) occurs then and only then if h=0, that

is vl)'k’and then thie term has in (VI.]%) the plus sign. Introducing

1 (¥, 3kel)
€° =
0 (V,€ x)

and using (V1,7) we can therefore rewrite (Vvi.13) ae
sCP
e]

s.(,"")

(VI.14) Ji@' - cops(x)+ ¥ . ,
\S' eyl |, (M
™

(
S

i-g

P IR PR




— — e - - -

where 8’1. e .s’h coincide with Vl. e .Vh, while all further
Uh-tl’ e v .Q‘ are k.

If we now multlply (VI.14) by T!S and sum over all ‘, we
obtain on the left J D‘ As to the right-hand expression, obviously,
the first right-hand terme in (VI.14) only occur if x is an £ so

(¢)

that we obtain here the sum % TES PS taken over all multiple

indices & of order i. We can therefore write

S
. o’
(VI.15) Jlns = §£ Tee Pée) + Ex !Tas € ,
44

o Hw)

i-g ‘

where the right-hand expression is a polynomial in the p
(M) RMy
('V:l,...,i;‘!:l,...,k) and ua"v ('W:l,...,i;',\:k+l,...,n), linear

for each ¥=1,...,i.

6.9. We consider the expression in (VI.15) as function of

plh'pzrl, oo ’pkr]_

and of the ua . Obviously we can write

(VI.16) Jipe = i + Gud + v
. ‘ = %pnh a \ ’

=k+

where Bﬂ’ Cm and U no longer contain p yeee,sD y but are poly-
nomials in the p’h (W¢1,%=1,...,k) and in the u{m) (W#1) witn

S

A




coefficients from W‘, linear for <ach fixed WY#l.
Now, observe that in (VI.1l6) the differential equations
(III.7) for P=M, are satisfied for J'Dg, U and the sum f coule
== § PRI

Thence, they are also satisfied for the sum Lo

k

(VI.17) Z Janpu'Ll .

Reordering (VI.17) in products of the p,qu(ﬂkl), we can write

k

k
()
(vi.18) B = P
& T ST Zo R e,

where Fy are different products of the paqu(ﬂ4l) ordered in some
way, and the coefficients Bg?) belong to W*, Therefore for each Fg

which actually occurs in (VI.18) the corresponding sum

k
B e

satisfies for F:Hl the equations (III.?) and is therefore, being
linear, a single u-form containing only p FERRES T Such a form,
as was proved in chapter IV, must vanish identically. We see that
the sum (VI.17) identically vanishes. But pl}“ ,...,pkﬂ‘ in (VI.16)
occur only in the sum (VI.17). We see that DS is independent of
plﬁ'..',pkﬁ‘.

6.10. Proceeding in the same way, for ee.ch,.‘.v, we see that
the right-hand expression in (VI.15) is independent of all Pog
(R=1,...,k). Putting then all these Q%quo. we obtain from (VI.15),

e .y oy

e - hier

[ NS




JiDs - Ee TesPée) , |
-i (¢) !
J gﬂ’esl’s

and we see that D¢ can indeed be written as a linear expression
s p ‘

(€)

in the Pt with coefficients from rjy- Further, we find in

(vI.19) Dg

(VI.19) an explicit rule for the representation of Dg through the
p(€),
s -

Throw away in (VI.5) all terms corresponding to x with ylslc

and replace, since the remaining seguences x are also sequences §,

38 (g) -
n (38\ by p.¢/07.
eac (“ S

6.11. We show now that it does not exist a linear homo-

(¢)

geneous relation between the Ik for the order i with coeffi-
cients depending only on the Yy and s,afor independent variables

yv&dsﬁv
(vi.20) 2 'r‘spé‘) = 0 .
€$

Indeed, if we make all Py (x=l,...,k;'b=l,...,m) equal to zero,
we obtain from (VI.20)

phwrh .« 0. p"F‘

(vi.21) ai Z Teg . . = o} .

e.s P . o o P .
%qu. & P ‘

For an arbitrary E°={%< ""“i] and 8°={r1< . (F;} attribute to
the corresponding elements p, yeeeyh, seee D R o) the
Njaa Al N Npi

¢
1




weight 1 and to all other Py the weight 0. Then the terms of
the weight i occur only in the term of (VI.21) corresponding to
Tt“., while all other terms of (VI.21) have weights ¢i. Therefore
it follows T¥JB=° and since 80 and SL were arbitrarily chosen, we

see that all coefficients Tgg in (VI.21) vanish.

6.12. We assume now that the relations (II.10) and (II.13)
hold together with (II.7) and (II.11). We define similarly as in
(VI.7) for PQE),

(pa) ( i)
VNF‘ ce ol

(vI.22) () ‘= : :

(pa) ( i)
er‘ ﬁmi'

It has been proved with the formulas (IV.14) and (IV.16)
that the u&r) and the qir) are connected by a non-singular linear

transformation of order m(n—k). It is then obvious that the deter-

pl€)

minants of the order i, S and Qée), are also connected by non-
singular linear transformations the coefficients of which are
expresgible through the determinante formed by the A% and the Bﬁ

in (IV.13) and (IV.16).
(e)

Therefore, all Ps

then when all Qgt) of the same order vanish. This signifies that

of the order i wvanish then and only

both matrices K; and K; have the same rank k+s.
(e)
$

The expressions Q

the matrix K; in (V.7),

correspond to the subdeterminants of

\
"
.
Il
M
kY

- e @




Y! . . ' Q - q
lr1 lrk lFl lri

Y' « e . Y' q. . Q
(e) o kry kr, Tk kpy

(vi.23) He = v ¢ . .
! A M T T T

I):-r . . Y“.;rk %ir‘ o o e q%,,"'i

and are connected with them by the relation corresponding to (VI.9),

(VI.24) Ki~lH§8) _ Qge)

6.13. By the relations (VI.9) and (VI.24) it follows further
that the G£E) and the ng , again, are connected by non-singular
linear trensformations the coefficients of which belong to W*,

for a fixed i:

(VI,25) Géa) = zn‘s( §-’E') Héf") :
&l'sl )

It follows further from the relations (VI.9) and (VI.24)
that the relation (VI.25) holds also between the Pée) and the Qgs),

(v1.26) yé'i) = Z'Q_S(fs:a') Q(s'f,')
el.st

6.14. We will have in particular to do with the case i=m.

In this case § becomes

S,;:s l,2....,m} ,

-




and we put

. (e) _,
5o =.P£,Q$° =t Qg .

Then the relation (VI.26) can be written as

(vi.27) Py = z -Q-eli,Q,_. (i=2) .
&
If we now consider an expression, A(su;yv;Gés)), depending
on the Sy the Yy and the Gée), where all & and § belong to the

same i, we can express the G§£) linearly through the H§£) and then
eliminate the sm_and Yy replacing them with functions of Q”’xy.

We obtain thus an expreassion

(vi.2s) B(r&;x,;Hgs)) = A(S,,Syv:Gg(s)) .

I U




VII. Transformations with 4 = 0.

7.1. In the case that g=m it follows from (III.30):

(vir.1i) nd>k +m .
Interchanging in K;, if necessary, the rows with the indi-

ces k+l,...,n we can assume that

XX ... X! P . v . P
151 lsk 11 1m
| . \
| stl T xksk Pr1 Prm
(vir.2) D := g % o o ¢ O.
’ k+1 8, k+1 8 k+1 1 k+l m
1] - - - !
i k+m 8 k+m 8. Tk+m 1° Pitm m
1 k
P
|

We consider further the determinants DFR which are obtained
from D if, for r; with k+m)rt>k, the row in D with the index is
deleted and the row of K; with the index ¥, where € is one of the

indices k+m+l,...,n, is added at the bottom,

) L}
Xlsl . e e Xlsk pll e e s plm
] A
xksl stk Pr1 * Prm
X! e e e ' bo) p
(viI.s) Dr‘ = p-1 s, p-1 s “p-11 p-1m
L L}
xF+l ey e x,,H»l 8, pp+l 1 pF+1 m
y . e e y P « P
k+m sl k+m sk k+m 1 k+m m
L L]
}(‘t o, . e . X¢ o, p‘l . D,(m




The number of the determinants DFg is obviously
(ViI.4) m (n-k-m) = N .

7.2. More generally, put §:= {1,...,m} and, for an i with
1€i€m, denote by €', &' two combinations of i indices, §g' from the

seqguence {;,...,k+d} and 2Y from the sequence {k+m+l,...,n} ’

g = {Fl‘ ""Fi} , Piikﬂn s

(VII.s5) g - {t1< ,,.<4ri} , TP kemel , T €n .

Denote further by & the sequence obtained from {i,2,...,k+m} by

deleting the elements of §' and adding at the end the elements of
¢t'. The determinant obtained from D by deleting the rows corres-

ponding to &'and adding at the bottom the rovs corresponding to

€¢¥will be denoted by Dymj. It follows comparing with the deter-

minants Géi) (VI.S) of order m:

(VIiz.6) Ds.'e.. = s .

In particular, the determinants DF‘ corresponds to Sk:{r%,

"= {¢1.

The number of the DEHQ“ corresponding to a certain i is
k+m) ( n-k-m
i i

obviously ( i

) and therefore the total number of all Dyi,is
]

00

(VII.7) Moo:= Z(kzm)(n'li{'m)
i=1

where of course the series breaks up as soon as id k+m or i n-k-m.

T7.3. We are first going to show that the M+l functions

(VII.a) D [} D"|€'

a




are V functions in thé sense of chapter III, that is satisfy
(111.3), if they are expresnsed, using (I1.7) and (II.14), through
the xv, qnand pvr. Indeed, applying the operator‘#Hnin.(III.B)
to one of these determinants we are simply replacing the r-th
column with the R~th column and obtain a determinant with two
identical columns. Therefore the equations (III.7) which are

necessary and sufficient for the U property are satisfied.

T7.4. Further, applying the operator

d
. paN ¢\ =
(VII.9) F%r; :Ef:

Ty pvra' 6p,ru

to D and D,y We obtain again two identical columns if P':,;', while
’ .
if‘f:P?the corresponding determinant vanishes or is reproduced.

But then,. if D

AF"" we have
D(Apr i Dy, gn) = Dy ol Aptyr D)

Ap w Dg g0 /P = o2 =0

t,e.is reproduced, applying for F:r'the operator
H

We see that all M quotients

Dayen
(vir.1o) U(‘) t= £]')€ (®=k+1,...,k+M)
ordered conveniemtly, beginnimg with U(k+l), satisfy as well the

equations (III.7) as (1I11.12) and therefore are U functions in-~

variant with respect to the choice of the T . We choose

«) Y irer

in such a way that the first N of them,
(k+N)

the ordering of U

that is Ulk*1)

,.O.,U

vaelues of ®¥ in (VII.3) corresponding to a @ in the first N of

the U wi11 be denoted by Tg-

correspond to the DF$ in (VII.3). The




7.5. Consider now, for a fixed ¥, the m determinants DF‘
(F=k+l,...,k+m) and develop them each time in the elements of

the row with the index k+r. Then we obtain

(VvIr.i1) Dy = az-l n("\)p” + D;“) (Peksl, ... dkem)

where the terms of the developments corresponding to the first k

(o)

terms of the k+P—th row are taken together in DF
(A)

Here the coefficients D are subdeterminants of D and are ‘

therefore independent of ®. Thence, we can write (VII.ll) as

_ = (%) (o) s .
(viI.12) | Dlwc = % Dr Pea * D,“ (t{_k 1,...,k+m) .

(Q)

the r-th row and the k+A~-th column. By the generalized Sylvester's

The coefficients D are obviously obtained deleting in D

Theorem we have H
- *
(VII.13) | pM . gpm-l 0 )

The p‘ca for our fixed value of ® can be therefore expressed

through the Dk+1 T ’Dk+m e

#) Kowalewski, Einfiihrung in die Determinantentheorie, 3rd ed., 1942,

Observe that in Kowalewski's treatise the exponent of B in the
(n—h-_l

m—1 ), is false and must be replaced

last formula on page 100,
with (n-h-l)

Muir-Metzler, A treatise on the theory of determinants, Dover

1960, p. 190, Nr. 197.




(vii.14) Pton © an(Dk+1tr""’Dk+m‘!) ’

where the functions Q,‘% do not contain any pv" with v > k+m.

7.6. But writing then (VII.1l4) out for all ®=k+m+l,...,n
and A=1l,...,m we obtain the representation of the N derivatives
Pro, through the N quotients (viI.1o0) corresponding to the DPC' It
followe that the first N guotients (VII.10) considered as_undeve-~

lopped, are independent functions with respect to the 127 Thence,
denoting generally the rank of a matrix A by Rk A, we can write

(VII.15) Rk .l(U(kﬂ)J--yU(k*N)J

o p,")

where N, given by (VII.4), is the total number of independent

integrals of the joint system consisting of (III.7) and (III.12).

But the following U(") with @ »k+N are also integrals of this

system and are therefore functions of U(k+l),...,U(k+N). It followe

thence [
k+N+ k+1 K+ !

(VII.15a) a ® A«(r,,;U( ),...,U( ) (6=1,...,M-N)

where the functions Agr depend only on T* (but not on T).
Using (I1.7) and (II.14) we assume from now on that the

functions (VII.8) are functions of the Xyr T and pv".

7.7. We make a further assumption going beyond (VII.lS),

namely that (VII.15) remains true if the U(c-) are replaced with

the U* (G’) ’

(k+1)

ase U

a(Pv'D

(vi1.16) Rk S(u* (k+N))

]
=2

Then, the r;;,satistying also the property U, are expressible through
the U* (o) '

and the equations

——-




- 'fx(u(k*l),...,u(km))

(Vir.i7) (R=1,...,k)

™R

can be solved with respect to the Tyveees Ty if

(e ~15)
(VviI.is) %;L # 0

where the ﬁ! are k arbitrary, indefinitely often differentiable

functions. Thus the ry can represented as functions of the Xy pﬂP'
(Vvir.i19) n, = r;;(x,,,pv,‘) (e=1,...,k).
Therefore, the % defined, in virtue of (II.14), by

(vi1.20) s = Sy(xy,rf) (R=1,...,k)

have also the property U and can be expressed in function of

Yy Sx» Q’Po
(VII.21) Sp = ""y(yv,sx,q,") (R=1,...,k) .

Thus we obtain k equations

(VII.22) oy ‘V,,(y,,sx,qy,‘) (®=1,...,k)

which can be solved with respect to eu,if

b@ﬁn-ﬂx)
(viz.23) —m-;)—- £ O .

In this way we obtain the expressions




(VII.24) By = si(yV )Pvﬂ)

satisfying together with the r§ the equations (11.7), (rI1.11),
(II.13) and (II.l4),and our problem is solved.

Example for d=0, m=2

7.8. Take
(vir.2s) n=4 , m=2 , d4=0 , k=1 .
Then, from (VII.4) it follows N=2 and for D we have ¥ =k+m+l=n=4,

while M can assume the values 2 or 3. We obtain from (VII.2) and

(VII.3) more generally

X1g P11 P12
(viz.26) D = X3e Po1 Poy ’
X3s P31 P3p
Xe P21 P2 Xle P11 P1o
Dis = X3g P33 P3p |0 Dy = X356 P51 P3p |
X4e Pa1 P42 Xje Pa1 Pg2
(vii.27)
Xe P11 P1
Dy, = X3s Po1 P .

Xie Pa1 P42

We can therefore write, by (VII.1l0),

(2)
(Vi1.28) v'?) =p,,/p , v(3) . D,,/D




and obtain with an arbitrary function § of two variables (VII.17),

if U(2). U(j) are independent,

(VII.29) o ‘P(U*(2),U*(3)) .

7.9. We specialize now our transformation to

»
i

1= Xl(yv,s) = yl +.s V. = X, + r

>
|
[
<
¢
]
<
it
L
!
b

2 = XQ(‘V\”S)

(viI.3o0) ’
x3 = x3(yv13)

[

«
W

+
[/}
<
0}
[
+
L

E]
|

4 X4(yV'B) =Yy -8 Y, =x, -

and take r=-s.

We obtain from (IV.7) K=J=1 and further

pll p12 P +p P +p
(VII.31) D = -1 p,, b = 21 711 T2z 712 . |

Pz17Py1  Pxp7Pyp

1 Py Pay
=l Py Py oo +p .
(vir.s2) D, = 1 py P, - 317721 32 P02 '
-1 Pa17P21  Py27P22
Pa1 P42
1 p; Py

P -p P -p
31 T1l1 32 12
(viz.33) D = 1 pyy Pay = ,

24 +p p,,*+P
Py1*Py1 42" P12

=1 Py Py2
' P11 P12 P, +P P,,+P !
21*P12 22%Py12 ,
(viz.3s) D34 = 8 Py Py = 1 ’ :
1 Pa1™P11  Py2*Pyo '




where (VII.33) and (VII.34) are assumed as independent.

Thence

(VII.35) -e* = r* = p,,/D,D,,/D)

where the right-hand expression is easy to be transformefd into

a function depending only on the q‘r.




VIII. 1§d<m

8.1. Put

(VIII.1) n'

]
o]
+
o]
.

We change the notation of chapter II in so far that the
orderings of the Xy's and Yy's have a gap from k+l to k+d, where
in particular the

xl

lsx’x.zsx""'xl':sx’xl':+d+ls,,""’x'

oy

are expressed in terms of the Xy and Ty We further introduce d

auxiliary equations
(VIII.2) xy =Xy =%y » ¥y =Yy = xy (P=k+1,...,k+d) .
Consider n vectors of order k+m,

(VIII.3) Ilv = (X;Bl'..”)qsk,pvl"."me)

where ¥y runs through 1,...,k,k+d+l,...,n' so that there is a gap
from k+1 to k+d.

Consider further a matrix

‘Ul ( ]
(viiz.s) K2 = (L« o o L L o0 - Ln,)

where as also in the following the accent denotes that the rows

are to be written from above to below.

L4
8.2. Assume novw that the rank of K; is k+m-4,

(VIII.S) Rk(i’;) = kém-4 , 1€4da<m .




Then there exist exactly d independent linear relations between

the columns of ?&

(vi11.6) P(S)x' T ’*P(s Xye = “iS)pvf’ ' '+“r518)p9m (=4, djvmd “)":"‘d“)"')"‘)-

(8) (8)

Obviously the coefficients Pﬂ ,' are independent of the

pd_._"L (6=1,...,4). It is easy to see that in (VIII.€)

(virzr.7) Rk(h(’iw) = d ($=l,...,d;’.&=l,...,m) .

Indeed, otherwise we could obtain, eliminating the p a non-

*’

trivial relation,

'R \.’B Foaee v B! Ve = 0 (¥=1,...,k,k+d+1,...,n') ,

in contradiction to the formula (II.ll), where we have to replace

k' with k. ‘

8.3. From (VIII.7), it follows that there existe a non-

(8)

vanishing determinant of order d with d" and we can assume

without loss of generality that this is the determinant
(viII.s) |c( S)l 0 (€,8=1 d)
. c LA Bt ol BB L »

changing conveniently the ordering of the pﬂP' Further, changing
conveniently the order of the columne in (VIII.8), we can assume
that its diagonal product does not vanish,

ail)uéz) .. .uéd) ¢4 0 .

But then, dividing all relations (VIII.6) by the corresponding




“§‘)' we can finally assume without loss of generality that

(VIII.9) o(](_l) = «éz) - ... = o(((id) = 1 .

From (VIII.8) it follows that there does not exist a non-

trivial relation

(VIII.10) plx;sl+...+‘;kx;sk = Oy, 1Py gt TR, (v=1,...,k,k+d+1,...,n),

8.4, Consider now d vectors of order k+m corresponding to
(VIiIr.z),
(VIiIr.ii) By = (o,...,o,pvl,...,me) (V=k+1,...,k+d) ,
where the first k elements of each PV consist of zeros. Using
these vectors together with the wvectors (VIII.3), form the (k+m)x
n'-matrix

L ,P P

IRERREE W TR I L, .

* = d LI I
(VIII.12) K* (z k+d+1’ """ "n

k+d’

We consider further the determinants of the order k+m:

|
VIII.13) D 1= e
( 3) "4"‘2"'Wn°‘kqdu"'°lm lI"‘AL“: L‘kplm Pde"m L‘km' '
where
(VIII.14) 1€ef1 <o, € -« KN <N < .. KN L0

and none of the &y, assumes the values k+l,...,k+d.

On the other hand, we coneider vectors of order k+m-d,

"




(Viii.is) Ly := (x* ,...,x! )

9e0e¢,D
ysl vek v d+1 ym
obtained from the Ly by dropping the first d columns of Py
Correspondingly we define the determinants of order k+m-d,

~ ~

(VIII.16) ]3(......1.#.,“,,....«\.'... L O “mm‘l

and the (k+m-d)Xn-matrix

g+ := (L L .1 . )8
(vizrr.iv) K* := (Ll,...,Lk,Lk+d+l,..., n,) .

8.5. We are now going to transform in a convenient way the
matrix K‘ without changing its rank. We add to the (k+1) st column
of K* th. following columns multiplied subsequently with d( )

;l),...,d((l) and substract then the first k columns multlplled
by Pil),..., (l). Then we obtain a matrix in which the only

elements in the (k+1)-et column not necessarily vanishing are

- e (1)
Preg x+1 T i“ Peegy  °

+ Generally we apply the same transformation to the columns

with the index k+¢&, £=1,...,d, adding to each such column all
O, ), ) ),
then substracting the firest k columns multiplied by-P(e),..., PﬁF)

other p columns multiplied by

Then the only elements in the (k+§€)-th column are the expressions

(VIII.IB) ;k'l" k+€ t“(s) pk+‘v (fn‘=l,--o-d) .

We obtain in this way a matrix of dimensions n')X(k+m),




k 1 1
—* ‘= -~
(VIII.19) K* : 0, P Q, .
Jn-k 03 Q3

Here the matrices Jk and Jn are matrices of dimensions kXk and

-k
(n-k)Xk formed with the x"'s for ¥=1,...,k and y=k+d+l,...,n’'.
2

The matrices Ol. 02 and O, are matrices consisting of zeros, the

3
first of the dimensions kxXd, the gecond of the dimenaions dXk and
the third of the dimensions (n-k)xd. Further the matrices Ql' Q2

and Q3 are matrices from the last (m-d) columns of the p with
dimensions kX{m-d), dX(m-d) and (n-k)X(m-d). Finally the matrix
P is the matrix formed with the expressions (VIII.18),

(VIII.20) P o= ) (s8,g=1,...,d) .

(pk+s k+¢

Obgerve that the determinant |P| of P does not identically vanish
in the pd+8'&’ since the coefficients in (VIII.lB) do not depend

on these

I")<i+$ r.
8.6, It follows obviously from the decomposition (VIII.19)
that the determinants (VIII.13) can be written as

(Vviir.21) D“A""‘k“‘kmor"“m = |1>\ D“a""‘k“twu"-“mm .

On the other hand the rank of the nX(k+m~-d)-matrix K* is obviously
exactly

(viiz,22) Rk(K;) = k+m-a ,

since otherwise we would have a relation of the type (VIII.1O).

Therefore, by (VII1.2l), there exist subdeterminants Re,... ot

tf“‘kﬂn




which do not vanish and the rank of (VIII.19) and thence that of

K; is exactly k+m,
(VITI.23) Rk(K;) = k+m .

“e can therefore change the order of the Ly in (II.2b) in such

a waly that the determinants

Xisl C . xisk
(VIII.24) Jg o= ’ |
xﬂsl . e x;sk
(vizz.2s) Dl.“ kK k+leee k+dess k+m
and i
- |
(VIII.26)

Dl---k k+d+l -« k+m

do not vanish and we can assume without loss of generality that

it is the case from the beginning.

8.7. We now subdivide the sequence k+m+l,...,n' into &
consucutive sequences of the lenght d and a last one of the
lenght € d which could be also =0. The first f sequences are
k+m+l,...,k+m+d ;k+m+d+l, ..., k+m+2d; ... ;k+m+(C-1)d+1,...,k+m+€d

where

k+m+€d ¢ n' C k+m+(€+1)a

and thence




. . '- -
¢< E—ldc_ﬂ < &+1 ,
n'-k-m
= £ < .
(viir.a7) e — +8, , o0<e <1

We replace now, for 9=1,2,...,€, in (VIII.5) the rows with

the numbers k+l,...,k+d with the rows
k+m+(A-1)d+1,...,k+m+dd

and denote the determinants obtained in this way by

(viIir.zs) D ,D,,.--,Dg .

All rows of these determinants belong to i: and therefore vanish

80 that we obtain finally 8 equations
(VvIiiI.29) D, =0, ... ,Dg=0 .

8.9. Observe that each of DQ contains a rectangle of values
of the py" which is not contained in any other of the Dﬂ’ There-
fore, as J#0O, the €@ expremsions Dy, are independent as functions
of the Py * But the relations (VIII.29) contain € equations for

the k expressions r_,r_,...,r

1175 and we have therefore the inequality

k

_n'-k-m
(VIiIii.3zo) k€€ = — - 9 , o€o°<1 .

Solving this with respect to k we obtain

n-m d
(VIII.30a) k$m+ ) , O(O‘m .

N




¢
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8.10. We describe now the method we use for some cases with

1€3d<¢m. We consider the new transformation, introduced in 8.1.

~

and which we call the enlargement, T, of the original one, T. If

we put

(VIII.31) yy = Y3(xy,mg) » xyp = X3(3y,my) (¥=1,...,k,k+d+1,...,n")

(VIII.?32) Xy = Yy (¥=k+1,...,k+d) s

then T is given by (VIII.31) and D by (VIII.31) together with (VIII.32).
We are now going to show that for this enlarged transformation

4 vanishes, that is to say that no non-trivial relation of the type

I

(VIII.33) - X‘;S,z = i q" Py (¥=1,...,n")

xR=1 ,A:l
exigts. Indeed, such a relation would be in particular valid for
v=1,...,k,k+d+l,...,n'=n+d and therefore be a combination of

relations (VIII.6),

d

_ (8) RS (§)
Bx - fT—l“SPp AR g-“s"‘y

(92=l,...,k;'1=l,...,m) .

Since the relation (VIII.33) holds also for Y=k+l,...,k+d

we would have the relations

[N

ug 3 a(;f) D = 0 (¥=k+1,...,k+d) .
=1 'l=1 “r

Hence the determinant




I

|

ZN;‘S) pv" (8,9-k=l,...,d)

would vanish, contrary to the lemma D1 of the Appendix D, as the

(§)

coefficients «f‘ do not depend on the pvP with k<Vg§ k+d.

8.11. Therefore the method used in chapter VII can be tried

- for the enlarged transformation T given by (VIII.?1), (Vviiz.s2).

The expressions of the T+ SR obtained in this way have to be

chosen independent of the p (k<V € k+d) and belong to T. How-

'
ever thie is only possible for d=1, as in all other caees (VII.1l6)

is not satisfied.

8.12. We consider now the case d=1. The relations (VIII.6)
reduce here to relations which can be written, omitting the

superascript 1 and putting n':=n+l, as

Xk m
(VIII.34) ,xZPn ve, %«P By (D=Lreeoskkr2, i)

Here we let y run through 1,...,n' omitting k+l. Cur enlarged

system becomes (VIII.Bl) together with

(VIiiz.ss) %ol = Vieen
For this enlarged system N=m(n'-k-m)=m(n+l-k-m) is the same as for
the original one.

From the formula (VIII.30) it follows for d=1:
(VIII.36) ktm € n € 2k+m-1 .
8.13. We now form in notations of 7.1l. for the enlarged

system the expressions D and Dr~.

WVe have for D:




X! D & ) e« « « D
1
151 sk 11 Im
! « s = X]" P . . P
xksl sk k1l km
(VIII.37) D = o ... © P11 * ° Prslm ,
[} [ ]
xk+2s1 -t xk+2sk Pre21’ ° ° Preom
L] ? )
xk+msl ° xk+mak Pym1’ * Premm

while the expressions for DP“ are different for'1=k+l and F7k+1:

X! P P e e« o P
lsl lsk 11 1m
! ¢ e X! P o » e P
xksl ksk kl km
_ ! .+ X! D e o+ P -
(VIII.38) Dk+1,m = k+28, k+2e, “Tk+21 k+2m| = O

- . .

[] 1]
xk+msl' vl xk+msk Prem1® * ° Pkemm

' e o X! P, « o o P,
x*sl !-k <1 €n

(t=k+m+l,..o,n') ]

s W e st e e




(M)
X! e o o X! P ¢ e o P
lsl lek 11 lm
x’ * . Ll x' p L] . L p
ksl kek kl km
° © e 0 Pr+11° - Pr+lm
(VIII.39) Dr‘ = . ] . o D
k+2sl xk+25k k+21 k+2m
! .- . ! P .« . he) -
k+ms k+ms k+ml k+mm
1 k
] []
XWBI- . o e X‘Sk pfl . v e pltm
(F=k+2,...,k+m) ,

where the notations l(P) signifies that the row corresponding to

the index P.is omitted.

8.14. Without loss of generality we can assume that al=l.
Similarly as in 8.5. we add to the (k+l)-st columns in the deter-
minantes (VIII.37) and (VIII.39) the columns with the indices
k+2,...,m multiplied with the corresponding qp,and substract the
the columne with the indices 1,...,k multiplied with the corres-~
ponding FW' Then all elements of the (k+l)-st column become O

save the (k+l)-st element which becomes

m
(VIII.40) P = D + P .
k+11 %___:-2-“’& k1

Then D and Dyg in (VIII.39) become finally




] 1
Xl’l . . . xlBk p12 . . . plm
1 |}
Xksl ot xksk Pyo © ot Pyp
(virz.41) oo = p , ,
xk+2si\,' vt xk+2:5k Prs22® * * Pryom
[} [}
xk+msl' * 1‘:k+msk Pysm2* °* Py tmm
(] 1
xlsl T xlsk Pio = ¢ ¢ Pyn
] L
xksl e stk Peo * * ° Pyy
= ! . . . ! . .
(VIIL.42) Dps p xk+2al Xk+28k Pr+22 Pr+om
L} ]
xk-t-mal' * xk+msk Prem2® * ° Pxemm
L ]
x¢sl e e« o xcek pt2 o o e pcm
(r’k+2 g e ’k+m) P
8.15. From the relafzions (VIII.33) it follows that the r;lé
satisfy the equations
(vIII'43) Dk-.-lc(IV'r‘ ’p*) = o ((=k+m+l,...,n|)

which do not depend on the p"‘ (k+1€V € k+d) and their number is

3

e




(VIII.44) kl 1= n'=-k-m = n-k-m+l .

That this is € k followe from (VIII.36).

We assume now that

z(D
(Vizi.as) Rk( o(r,,.) =kl (€=k+m+1,...,n';R=1,...,k)

and that in particular

(D )

(virz.ss) Rk a(rl.-.-.r_F = ky (¢=k+m+1,...,k+m+kl=n.) .

Now we proved in section 7.5. that the D / together

k+1%¢
with the DF‘ are independent as functione of the p,. .. As their

number is N and they do not depend on the py, (k+16yY £ k+d) they
form a complete system of functions with the property U with res-

pect to the original system. Thence the rﬁ are functions of the

nk+u/p and the D’“,
(VIII.47) g = 'g(x,,lp'nhm,nw) (R=1,...,k) .

8.16. Since however the TR satisfy also (VIII.31) we can
1
replace the ¥y(xy,3 s1¢ Dug ) With the ‘Yn(x,.o....,o.nﬂx) =1
fa"‘v-”,u)' We assume now that

A(fy)
(virr.ss) Rk w = k-k; =: k, ,
and that in particular

2.8, )
(VIII.49) Rl ESIRTRIREN "] 2

"
.
e A

e o L A Lo Yl - : Ld




Finally we assume that

>(Dk+11’?i-rk‘+l""’?kg-rk)

(VIII.50) # 0 .
a(x,)
Then the k expressions r; can be obtained from the k equations
= - = =, Y P aR= oo
(virz.s1) Dk+1t =0, q& rk'+n 0 (T=k+m+l,...,n';R=1, ,k2)

as functions of the original p,F. Further, using (II.14), the
expressions S‘(xy,rx) can be represented through the yy and qVP
and give the representations (II.9) of the e‘,(yv,qv,‘), with which

our problem is solved.




APPINDIX A

Lemma Al. Consider the m+k functions of the n+k variables,

Pn(xl,...,xn;zl,...,zk) (R=2,...,x) , o?éxl;...,xn;zl,...,zk)
(A 1)

(’L:l,... .m) N

all functions being assumed to have continuous first derivatives

in convenient domains. Assume that the Jacobian

(a 2) -%—?Ei‘g— £ O

and further that the Jacobian matrix of the F.g and 0(,. with respect

to the Zy and Xy

(a 3) (—%—é%::%‘;—‘;—

with m+k columns has the rank m_+k, mogzn.

Congider the k equations

(A 4) Fx(xv'zn) = Uﬂ (‘2=l,---.k)

solved, for indeterminates Ul""’Uk' with respect to the Zy and

denote the solution

(4 5) Telxyseeerx ) (Re1,... k) .

Introducing these values of the zx.into the o?Jxv,zn) put

1 k

(A 6) “r(xl,...,xn;’z' veeo B ) =2 a,‘(xv).

cam

S e 12 e T



Then the rank of the matrix

(A7) -g—gfy)-

is )m_, that is at most by k less than that of (A 3).

Corollary. If m_=m, then the rank of (A 7) is precisely m.

Proof. The matrix (A 7) has as its V-th line

(a 8) “ix, + é “iZuz"le""’“' ﬁ mzn ;vw ,

where the z, are to be replaced, after (A 8) has been written out,
by the Zy.

In order to prove that the matrix (A 7) has the rank )mo,
it is sufficient to show that to this matrix k further columne
can be added so as to obtain a matrix of the rank }mo+k.

But if we add to the general element (A 8) of the Y-th

lines the further elements z.! ,...,2' we obtain a matrix,
lx.' ka
whose ¥-th line is
k
2! ' -v [] [
(A 9) (zl,w,...,lkxv 1"9 + 210(1 yooos 0 gz-l“mzxz”v)

Therefore, subtracting in (A 9) from the (m+l)-th column
the firset k columns multiplied respectively by e("w , the (k+1)-th
R
element of the y-th line becomes uix . Proceeding in the same way

1 4
with the following columns of (A 9) we obtain the matrix

(a 10) (gl'.xv""';l':x' d]'_x ”"’“Qq) (v=1,...,n) . -

-

i
1




YO

Multiply this matrix from the left by the square matrix of order k+m:

(a 11) Pz,
0

where X and R' run from 1 to k and Im is the unity matrix of

order m, We obtain withvy=l,...,n:
1] '
%P].Zal :z'xy
[] E'
ZPkZa' 2'xv
(A 12) ® !
1ix,
ol
mxy

But differentiating totally (A 4) with respect to each y we obtain

ép;zatz'&'x' =T P;xv ("z=lv-'-vk3v=l,...,n) .

Therefore (A 12) becomes

L
$

-PkXy
o1y,

o

And this matrix has, by comparison with (A 3), the exact rank

m+k. Therefore (A 10) has at least the rank m°+k and lemma Al
is proved. .

e GNP, T B
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Lemma A2. Consider k egquations

(A 13) ww(rs,uy) = 0 (®g=1,...,k;y=1,...,n)
and assume that theu"xh v exist and are continuous in
313’ Iu, —_—

convenient domains and that the Jacobian matrix

3( W)z)
d(ry)

(A 14) \

is non-singular. Assume further that, solving the equations fA 122

with respect to the ry, we obtain the relations

(A 15) Ty = Mpluy) = 0 (®=1,...,x) .

Replacing now the uv with continuously differentiable

functions of the Tyes put for any continuously differentiable
function A of the r, and uy

s

A A JA 62!
drs )rg vgljuvar'

and consider the matrix

(a 17) ; t= %3 .

Then the relation holds:

d(rn - Mn(ul,...,un)) -1~

(A 18) T = Vv,

A r i WY

o bAS 3o M -




If in particular V is non-singular, then the matrix

d(r.a - Mii)

(A 19) d(rs)

is non-singular.

We verify first that, independently of the way in which
the uy depend on the ry, we have

(A 20) Q .- (w. ) ’ )

-1 ‘
M! = =V .
(A 21) ( ?uv) Ay |
Indeed, we have identically

| un‘Ml,..., ;ul,...,un)!O ’ |
r k n ‘

' d(Mg) w' d(uy) B0 (®R=1,...,k) .
| 8Z"‘.!rs S +y§$uy v

This can be written, ueing here the accents to denote the

transposed, that is vertical vectors,
(atmg)" = -va(wy)) = [y, Yatay)):

and (A 21) follows since the differentials d(uv) are arbitrary.
Assuming now the u, as continuously differentiable func-

tions of the ry put

- b(uy)
(A 22) U = m .

3 P

. g




The relations (A 16) can then be written applied to the Wy, a8

%) T FYO | |
m = b( rs) + 'Q'Qllr et 'unr) '
(A 23) v = v+ Qo

On the other hand, by (A 22) and (A 21),

d(rg“x) d(M) -
mrconn IR vics =I-M,;)U=
S S i
= I + v'l.n.ﬁ = v? [:v +_Q.ﬁ] = vy .

and (A 18) is proved.




APPENDIX B

Lemma Bl. Consider an mXn-matrix of nd>m row vectors

qv=(qv1.--—.qvm)=

9 91 YUn
(B 1) Qr = : = . cee o
qn qnl . 0 qnm
with arbitrary complex g ,and a function Y(ql,...,qn) of the

vectors qV' that is of mn variables q, . Assume that for an

arbitrary non-singular mxm-matrix, B, alwaye

(B 2) ¥(qB,...,q B) = Y(ql.---,qn)~

Then Y is a homogeneous function of dimension O of the

Bubdeterminants of order m of the matrix Q*, more precisely

(B 3) Y = Z(am+l.---,<.;n) ’

(.B 4) 5‘. = (3‘11°"’Z‘m) ’ a‘,L = A}i.’,/A (c=m+ly'--vn;rl=l"¢°pm)-

Here A is an az;bitrary but fixed subdeterminant of order m from

Q* and Aﬁis another subterminant of order m of Q*, conveniently

chosen, but having m-1 rows im common with 4.

If in particular A is the determinant formed with the first

m rows of ‘B 12, then Ap_i_g obtained from A replacing the P-th

row of A by the §-th row of Q*.

Ve 2801 B G -




Proof. Without loses of generality we can assume that A ie

the determinant of the matrix Q formed by the firet m rows of Q*,
(B 5) Q:= (qy,--0hq )’ MBi=det Q@ .

If we choose now B in (B 2) as Q-l, the firet m of the vectors

%Q-l reduce to the m unity vectors, Il,...,Im, and we can write

-1 -1 -
(B 6) Y(qlo'°'oqn) = Y(qlq r'°°:an ) = Y(Il’--':Im’qm+lr---'qn),

Q‘Q (¢’=m+l,...,n) .

(B 7) g
Consider the matrix

(B 8)

>
[

= (hep) = At

Then obviously

(B 9) 2 A = A (p=1,...,m) .
Syt A

Observe that the A%F a8 the algebraic complements of the
qr;,are for any fixed r.independent of the vector qP that is of
the m elements g, ,...,a_ . Therefore, if we replace in (B 9) QP
by ag (¢>m) the left side sum is A(;:,defined as the subdeterminant
of Q* obtained from A replacing there q', by qg;

(B 40) Aoy = A (@rm) ,
gq“" i ol

on the other hand the left-hand expression in (B 10) ie by (B 8)
and (B 7)




(B 1 (qeh)y = AlagQ”l), = AT :
2 Rl

where the subscript "denotes taking the 'A-th component of the
vector in parentheses. We obtain finally from (B 10) and (B ll)
the formula (B 4) and our lemma is proved.

Observe that inversely, if a function Y(ql,.. ,qm) can be

written as a function of the quotients of subdeterminants of

order m of Q*, then obviously the formula (B 2) holds.




APPENDIX C

We introduce first some notations useful when dealing with
matrices. We denote by Epj an mxm-matrix which has 1 as ite N-th
element in the p-th row while all other elements of %Pm vanish.
FPor the multiplication of such matrices we see at once that, if

85' is Kronecker's symbol, then always

(C 1) EF'A E«S = &'E"e .

Then if I denotes the unity matrix of order m, we have

m

1=,ZE)\7“l .

(c 2)

Lemma Cl. Under the assumptions of lemma Bl, necessary and

sufficient for the relation (B 2) being satisfied for any arbi-

trary non-singular mxm-matrix B, is that the FEulerian eguations

hold:
(c 3) > Y' = 0 (u2A=4,...,m) .
v2=1 Ay, r

Proof. We will have to specialize the matrix B in (B 2) in

two particular ways.

(c a) I+ (g-1)Epy (A=1,...,m) ,;

.

are m matrices such that




Q*(I + (g-1)E,9)
is obtained from Q* multiplying the A-th column of Q* with g.
(c 5) I+ eBun (A#p)
are m(m-1) matrices such that generally
(T + eByua)

is obtained from Q* if we add to the A-th column the product of

the Fﬁth column with g.
The matrices of the types (C 4) and (C 5) can in so far be

considered as elementary matrices, as any non-singular mxm-matrix

B can be written as the product of a final number of such matrices.

(Thie fact was repeatedly used in Kronecker's and Hensel's work

on determinants and matrices.) l
Our lemma Cl will therefore be proved if we prove that the

necessary and sufficient invariancy condition for
(c 6) B=1I+ (g-1)Enn

is the relation (C 3) for F=);and further that the relation (C 3)
corresponding to rland A is the necessary and sufficient condition

of invariancy for
c B=1I B .
(c7) +aBu ()

As to the relation (C 3) for a'4=% it ie by Euler's thaorem !

equivalent with Y being a homogeneous function of dimension 0 in




qlm!q2al “oe ’qna

and this is again equivalent with (B 2) being
true for

B=1I+ (g-l)E.xx

The invariancy with respect to B

I+ gErm amounts to the
relation, for fixed r‘,and N,

Y(qy'“.qvfgqu) = Y(qvlu,qv.‘)

where only the variables corresponding to the P-th and A\-th

columnsare written out. This relation is again equivalent to

(c 8)

a
EZ“%/.;"‘\J’A"“W,R = 0 .

On the other hand introducing in (B 3) instead of the qv2
the new variables,

i
(c 9) rv% i= qv“ + qu
we obtain

<5 quYI"“ ( ery rx%) = 0 .

But obviously by (C 9)

o

H

d
dr, = dqwa

3
(o]

<

4

We obtain therefore

L dride N




é; qyyéﬂ( qy/" r)ztx) = 0

and this is identical with (C 8). Our lemma Cl ies proved.
We are going now to verify that the system of m2 equations

(¢ 3) is complete. Indeed, we have

iq aqa Z%Y' - qvSLqu Yoy o ”
vor Y8%yw T W T W 0T it Yy

n

n
qQ,6 ., T - J::E:ta Q. _Y" +
y% Vi3V Swulve =T "MV qv.cqv’x

’V]_

8§ T - S, 8o T’ .
wﬁ;;qylg w“sg"; qv,‘ “12;1 Qy,.n W90 a v,¥

)yl

But here on the right the expression in the brackets vanishes

and we can account for the factor Syv‘ taking vl=v. We obtain

8&,&% q‘syc'lyp - &\g; qy&Yéw )

We see that combining two of the equatione (C 3) by Poisson's
parentheses we obtain at the most a linear combination of two
of the equations (c 3). The system (C 3) is indeed complete.
This system (C 3) has therefore aan-dlaclutions. But by

lemma Bl all soclutions of the system (C 3) can be expressed as

functions of m-vectors Em+1,...,3;. It follows that the system

[P LS PEUNE N




of componente of these n-m vectors,

- (¢)

_eL (6’=m+1,...,n;’.|=l,...,m)
JaN

is independent.
This independence could be alsoc deduced by lemma Bl from

the relation (B 2). .

g}

v g e




APPENDIX D

Lemma Dl. Consider d linear and linearly independent

functions Ls(xl,...,xm) (€=1,...,4) and 4 m-dimensional vectors

Vs(psl,...,gsm) with elements ps as dm independent variables.

Write LC(VS) for Lﬁ(psl""’pSm)' Then if d €m, the determinant
(p 1) ch(Vs)| (e,8=1,...,d) s

does not vanish.

Proof. Put

L = i d('f)x (8=1,...,4) .
pI p

(S)) is 4.

therefore, after suitable rearrangement of the indices 1,...,m,

Then, by assumption, the rank of the matrix (& We can

assume that the determinant

(s)
|°‘r

is not zero. But then if we replace all p8d+1""’p8m with zeros,

(S)rFlo' .. yd)

the determinant (D 1) becomes

u(‘)l p (Sup=1,...,d)
I P o ¢

and does not therefore vanish.

R




