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AAR-146i
Final Report

on

I Air Force Grant No. AF-AFOSR-76-3075

New Techniques in Numerical Analysis

and Their Applications to Aerospace Systems
1 '2

by

ANGELO MIELE3

Abstract. This document summarizes the research performed

at Rice University during the period 1976-79 under Air Force

Grant No. AF-AFOSR-76-3075 in several areas of numerical

analysis of interest in aerospace systems theory, namely:

Isolution of nonlinear equations, solution of differential
f equations, mathematical programming problems, and optimal

control problems. The work summarized here is applicable to

Ithese areas of aerospace engineering: optimum atmospheric
flight trajectories, optimum extra-atmospheric flight trajec-

tories, optimum aerodynamic shapes, and optimum structures.

iPeriod September 1, 1976 through December 31, 1979.

2This research was supported by the Office of Scientific

Research, Office of Aerospace Research, United States
Air Force, Grant No. AF-AFOSR-76-3075.

3professor of Astronautics and Mathematical Sciences, Rice
University, Houston, Texas.
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Key Words. Aerospace engineering, applied mathematics, I
algorithm research, algorithm development; optimum atmospheric

flight trajectories, optimum extra-atmospheric flight trajec-

tories, optimum aerodynamic shapes, optimum structures.

Structural optimization, dynamic optimization, axial

vibrations, frequency constraint, fundamental frequency con-

straint, cantilever beams, bars, rods.

Numerical analysis, numerical methods, computing methods,

computing techniques, complexity of computation, philosophy

of computation, comparison of algorithms, computational speed,

measurement of computational speed, number of function evalu-

ations, equivalent number of function evaluations, time-

equivalent number of function evaluations, unconstrained min-

imization, mathematical programming. I
One-dimensional search, cubic interpolation process,

quadratic interpolation process, Lagrange interpolation

scheme, modifications of the cubic interpolation process,

alternatives to the cubic interpolation process, bisection

process, interval of interpolation.

Differential equations, two-point boundary-value

problems, multi-point boundary-value problems; method of

particular solutions, quasilinearization algorithm, modified

quasilinearization algorithm, restoration algorithm.

:1



i iii AAR-146

Gradient algorithms, conjugate gradient algorithms,

gradient-restoration algorithms, conjugate gradient-restoration

algorithms, sequential gradient-restoration algorithms,

sequential conjugate gradient-restoration algorithms.

Optimal control, calculus of variations, differential

constraints, nondifferential constraints, bounded state,

bounded control, bounded time rate of change of the state;

fixed initial state, free initial state, general boundary

g conditions; transformation techniques; state inequality

constraints, linear state inequality ccnstraints, partially

linear state inequality constraints.
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I AAR-146

I. Introduction

This document summarizes the research performed at

Rice University in the period 1976-79 under Air Force Grant

No. AF-AFOSR-76-3075. The total duration of the grant was

40 months. The grant was successively monitored by Lt. Col.

E.H. Ramirez, Dr. R.N. Buchal, and Captain C.E. Oliver.

The personnel participating in the research effort

included the following people:

Faculty Personnel

Prof. A. Miele

Senior Personnel

Dr. A.V. Levy Dr. A. Mangiavacchi

Junior Personnel

Mr. F. Bonardo Mr. E.J. Koo
Mr. J.R. Cloutier Mr. C.Y. Leung
Ms. E. Coker Mr. C.T. Liu
Mr. S. Gonzalez Mr. S. Meenaphant
Mr. G.T.C. Huang Mr. B.P. Mohanty
Mr. C.J. Kao Mr. A.K. Wu

As a partial result of the research performed under this

grant, the following advanced degrees were awarded:

[MS Degrees

J.R. Cloutier A.K. Wu

PhD Degrees

J.R. Cloutier B.P. Mohanty
S. Gonzalez A.K. Wu

I
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2 AAR-146 !
II. Research Achievements

The research undertaken under Grant No. AF-AFOSR-3075

over the past three years has spanned several areas of numer-

ical analysis, namely: solution of nonlinear equations, solu-

tion of differential equations, mathematical programming

problems, and optimal control problems. The principal results

of this effort, summarized in 13 reports and 13 journal arti-

cles are described below.

(a) Development of criteria for testing and evaluation

of algorithms for mathematical programming problems (Refs. 3

and 16).

(b) Modifications and alternatives to the cubic inter-

polation process for one-dimensional search (Refs. 4 and 23).

(c) Conversion of optimal control problems with free

initial state into optimal control problems with fixed initial

state (Ref. 15).

(d) Transformation technique for optimal control prob-

lems with linear or partially linear state inequality con-

straints (Refs. 8 and 22).

(e) Numerical determination of minimum mass structures

with specified natural frequencies (Refs. 6, 7, 9, 18).

(f) Sequential conjugate gradient-restoration algorithm

for optimal control problems with nondifferential constraints

and given initial state (Refs. 1, 2, 19, 20, 21).

(g) Sequential ordinary gradient-restoration algorithm

M
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3 AAR-146

for optimal control problems with general boundary conditions,

with and without nondifferential constraints (Refs. 10, 11, 17).

((h) Sequential conjugate gradient-restoration algorithm

for optimal control problems with general boundary conditions,

with and without nondifferential constraints (Refs. 12, 13, 25, 26).

In addition, two tutorial papers have been written, one

dealing with some philosophical views on algorithms and com-

puting methods in applied mathematics (Refs. 5 and 14) and

one dealing with gradient algorithms for the optimization of

dynamic systems (Ref. 24).

Areas of application are reviewed in Section III, and

collaboration with Air Force personnel is reviewed in Section

IV. A list of research reports is given in Section V, and a

list of research papers is given in Section VI. Then, the

abstracts of reports are given in Section VII, and the abs-

tracts of papers are given in Section VIII.

[
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III. Areas of Application

Attention to USAF technical personnel is called on the

fact that the research summarized in Refs. 1-26 is eminently

applicable to concrete problems of applied mathematics arising

in several areas of aerospace engineering, namely: optimum

atmospheric flight trajectories, optimum extra-atmospheric

fligth trajectories, optimum aerodynamic shapes, and optimum

structures. With particular reference to optimum structures,

see Refs. 6, 7, 9, 18.

IV. Collaboration with Air Force Personnel

As a result of seminars given by the principal investi-

gator at Wright-Patterson Air Force Base, Ohio, a collabora-

tion has been undertaken with Dr. V.B. Venkayya, AFFDL.

This collaboration has led to the employment of the sequential

gradient-restoration algorithm and the modified quasilineari-

zation algorithm in some problems of structural analysis

(Refs. 6, 7, 9, 18). It is anticipated that this preliminary

effort will lead to further research on optimum structures.

Further collaboration might be possible with Dr.

E. Miller, AFFDL, on certain optimization problems of flight

mechanics which arise in the reentry of hypervelocity vehicles.

4i
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5 AAR-146

V. Reports of the Aero-Astronautics Group

1. CLOUTIER, J.R., MOHANTY, B.P., and MIELE, A., Sequen-

tial Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Con-

straints, Part 1, Theory, Rice University, Aero-

Astronautics Report No. 126, 1977.

2. CLOUTIER, J.R., IOHANTY, B.P., and MIELE, A., Sequen-

tial Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Con-

straints, Part 2, Examples, Rice University, Aero-

Astronautics Report No. 127, 1977.

3. MIELE, A., GONZALEZ, S., and WU, A.K., On Testing

Algorithms for Mathematical Programming Problems, Rice

University, Aero-Astronautics Report No. 134, 1976.

4. MIELE, A., BONARDO, F., and GONZALEZ, S., Modifications

and Alternatives to the Cubic Interpolation Process for

One-Dimensional Search, Rice University, Aero-

Astronautics Report No. 135, 1976.

5. MIELE, A., Some Philosophical Views on Algorithms and

Computing Methods in Applied Mathematics, Rice Univer-

sity, Aero-Astronautics Report No. 136, 1976.

"
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6 AAR-146 I
6. MIELE, A., Minimum Mass Structures with Specified

Natural Frequencies, Rice University, Aero-Astronautics

Memorandum No. WP-I, 1976.

7. MANGIAVACCHI, A., and MIELE, A., Some Qualitative

Considerations on the Numerical Determination of

Minimum Mass Structures with Specified Natural Frequen-

cies, Rice University, Aero-Astrona,-tics Memorandum

No. WP-2, 1977.

8. MIELE, A., WU, A.K., and LIU, C.T., A Transformation

Technique for Optimal Control Problems with Partially

Linear State Inequality Constraints, Rice University,

Aero-Astronautics Report No. 137, 1977.

9. MIELE, A., MANGIAVACCHI, A., MOHANTY, B.P., and WU,

A.K., Numerical Determination of Minimum Mass Structures

with Specified Natural Frequencies, Rice University,

Aero-Astronautics Report No. 138, 1977.

10. GONZALEZ, S., and MIELE, A., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems

with General Boundary Conditions, Rice University, Aero-

Astronautics Report No. 142, 1978.

11. GONZALEZ, S., and MIELE, A., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems with

I



7 AAR-146I
i Nondifferential Constraints and General Boundary Condi-

tions, Rice University, Aero-Astronautics Report No.

143, 1978.

I 12. WU, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

General Boundary Conditions, Rice University, Aero-

Astronautics Report No. 144, 1978.

13. WU, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Condi-

tions, Rice University, Aero-Astronautics Report No.

145, 1978.
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8 AAR-146 1
VI. Papers of the Aero-Astronautics Group

14. MIELE, A., Some Philosophical Views on Algorithms and

Computing Methods in Applied Mathematics, Proceedings

of the Workshop on Decision Information for Tactical

Command and Control, Airlie, Virginia, 1976; Edited by

R.M. Thrall, C.P. Tsokos, and J.C. Turner; Robert M.

Thrall and Associates, Houston, Texas, pp. 192-208,

1976.

15. MIELE, A., MOHANTY, B.P., and WU, A.K., Conversion of

Optimal Control Problems with Free Initial State into

Optimal Control Problems with Fixed Initial State,

Journal of the Astronautical Sciences, Vol. 25, No. 1,

pp. 75-85, 1977.

16. MIELE, A., and GONZALEZ, S., On the Comparative Evalu-

ation of Algorithms for Mathematical Programming Prob-

lems, Nonlinear Programming 3, Edited by O.L. Mangasa-

rian, R.R. Meyer, and S.M. Robinson, Academic Press,

New York, New York, pp. 337-359, 1978.

17. GONZALEZ, S., and MIELE, A., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems

with General Boundary Conditions, Journal of Optimiza-

tion Theory and Applications, Vol. 26, No. 3, pp.

395-425, 1978.

! wI



9 AAR-146

18. MIELE, A., MANGIAVACCHI, A., MOHANTY, B.P., and W,

A.K., Numerical Determination of Minimum Mass Struc-

tures with Specified Natural Frequencies, Internatio-

nal Journal for Numerical Methods in Engineering, Vol.

13, No. 2, pp. 265-282, 1978.

19. MIELE, A., and CLOUTIER, J.R., Sequential Conjugate

Cradient-Restoration Algorithm for Optimal Control

Problems with Nondifferential Constraints, Applied

Nonlinear Analysis, Edited by V. Lakshmikantham, J.

Eisenfeld, and A.R. Mitchell, Academic Press, New York,

New York, pp. 89-93, 1979.

20. MIELE, A., CLOUTIER, J.R., MOHANTY, B.P., and WU,

A.K., Sequential Conjugate Gradient-Restoration Algo-

rithm for Optimal Control Problems with Nondifferen-

tial Constraints, Part 1, International Journal of

Control, Vol. 29, No. 2, pp. 189-211, 1979.

21. MIELE, A., CLOUTIER, J.R., MOHANTY, B.P., and WU,

A.K., Sequential Conjugate Gradient-Restoration Algo-

rithm for Optimal Control Problems with Nondifferen-

tial Constraints, Part 2, International Journal of

Control, Vol. 29, No. 2, pp. 213-234, 1979.
(

22. MIELE, A., WU, A.K., and LIU, C.T., A Transformation
I

Technique for Optimal Control Problems with Partially

T
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Linear State Inequality Constraints, Journal of

Optimization Theory and Applications, Vol. 28, No. 2,

pp. 185-212, 1979.

23. MIELE, A., BONARDO, F., and GONZALEZ, S., Modifica-

tions and Alternatives to the Cubic Interpolation

Process for One-Dimensional Search, Arabian Journal

for Science and Engineering, Vol.4,No. 2, pp. 121-128,1979.

24. MIELE, A., Gradient Algorithms for the Optimization of

Dynamic Systems, Advances in Control and Dynamic Sys-

tems: Theory and Applications, Vol. 16, Edited by C.

T. Leondes, Academic Press, New York, New York, 1979.

25. WU, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Condi-

tions, Part 1, Optimal Control Application and Methods,

Vol. 1, No. 1, 1980.

26. WU, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Condi-

tions, Part 2, Optimal Control Application and Methods,

Vol. 1, No. 2, 1980.
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VII. Abstracts of Reports

1. CLOUTIER, J.R., MOHANTY, B.P., and MIELE, A., Sequen-

tial Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Con-

straints, Part 1, Theory, Rice University, Aero-

f Astronautics Report No. 126, 1977.

Abstract. A sequential conjugate gradient-restoration

algorithm is developed in order to solve optimal control

problems involving a functional subject to differential con-

straints, nondifferential constraints, and terminal con-

straints. The algorithm is composed of a sequence of cycles,

each cycle consisting of two phases, a conjugate gradient

phase and a restoration phase.

The conjugate gradient phase involves a single iteration

and is designed to decrease the value of the functional,

while satisfying the constraints to first order. During

this iteration, the first variation of the functional is mini-

mized, subject to the linearized constraints. The minimiza-

tion is performed over the class of variations of the con-

trol and the parameter which are equidistant from some

constant multiple of the corresponding variations of the

previous conjugate gradient phase. For the special case of

a quadratic functional subject to linear constraints, various

orthogonality and conjugacy conditions hold.

4.



12 AAR-146 I
The restoration phase involves one or more iterations

and is designed to restore the constraints to a predetermined

accuracy, while the norm of the variations of the control I

and the parameter is minimized, subject to the linearized

constraints. The restoration phase is terminated whenever

the norm of the constraint error is less than some predeter-

mined tolerance.

The sequential conjugate gradient-restoration algorithm

is characterized by two main properties. First, at the end

of each conjugate gradient-restoration cycle, the trajectory

satisfies the constraints to a given accuracy; thus, a se-

quence of feasible suboptimal solutions is produced. Second,

the conjugate gradient stepsize and the restoration stepsize

can be chosen so that the restoration phase preserves the

descent property of the conjugate gradient phase; thus, the

value of the functional at the end of any cycle is smaller

than the value of the functional at the beginning of that

cycle. Of course, restarting the algorithm might be occa-

sionally necessary.

To facilitate numerical integration, the interval of

integration is normalized to unit length. Variable-time

terminal conditions are transformed into fixed-time terminal

conditions. Then, the actual time at which the terminal

boundary is reached becomes a component of a vector parameter

being optimized.

1 
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13 AAR-146I
Convergence is attained whenever both the norm of the

constraint error and the norm of the error in the optimality

conditions are less than some predetermined tolerances.

Several numerical examples illustrating the theory of this

i paper are given in Part 2 (see Ref. 2).

Key Words. Optimal control, gradient methods, conjugate

gradient methods, numerical methods, computing methods,

gradient-restoration algorithms, sequential gradient-

restoration algorithms, sequential conjugate gradient-

restoration algorithms, nondifferential constraints.

I
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2. CLOUTIER, J.R., MOHANTY, B.P., and MIELE, A., Sequen-

tial Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Con-

straints, Part 2, Examples, Rice University, Aero-

Astronautics Report No. 127, 1977.

Abstract. In Part 1 ( see Ref. 1), Cloutier, Mohanty, and Miele

developed the sequential conjugate gradient-restoration algo-

rithm for minimizing a functional subject to differential

constraints, nondifferential constraints, and terminal con-

straints. In this report, sixteen numerical examples are

presented, four pertaining to a quadratic functional subject

to linear constraints and twelve pertaining to a nonquadratic

functional subject to nonlinear constraints. These examples

demonstrate the feasibility as well as the convergence char-

acteristics of the sequential conjugate gradient-restoration

algorithm.

Key Words. Optimal control, gradient methods, conjugate

gradient methods, numerical methods, computing methods,

gradient-restoration algorithms, sequential gradient-restoration

algorithms, sequential conjugate gradient-restoration algorithms,

nondifferential constraints.

0 4L



15 AAR-146

3. MIELE, A., GONZALEZ, S., and WU, A.K., On Testing

Algorithms for Mathematical Programming Problems, Rice

University, Aero-Astronautics Report No. 134, 1976.

Abstract. This paper considers the comparative evaluation of

algorithms for mathematical programming problems. It is con-

cerned with the measurement of computational speed and exa-

mines critically the concept of equivalent number of function

evaluations 1e . Does this quantity constitute a fair way of

comparing different algorithms?

The answer to the above question depends strongly on

whether or not analytical expressions for the components of

the gradient and the elements of the Hessian matrix are

available. It also depends on the relative importance of

the computational effort associated with algorithmic opera-

tions vis-a-vis the computational effort associated with

function evaluations.

Both theoretical considerations and extensive numerical

examples carried out in conjunction with the Fletcher-Reeves

algorithm, the Davidon-Fletcher-Powell algorithm, and the

quasilinearization algorithm suggest the following: the Ne

concept, while accurate in some cases, has drawbacks in other

cases; indeed, it might lead to a distorted view of the

relative importance of an algorithm withrespect to another.

The above distortion can be corrected through the

1T"
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introduction of a more general parameter N e This general-

ized parameter is constructed so as to reflect accurately

the computational effort associated with function evaluations

and algorithmic operations.

From the analyses performed and the results obtained,

it is inferred that, due to the weaknesses of the N concept,e

the use of the Ne concept is advisable. In effect, this is

the same as stating that, in spite of its obvious shortcom-

ings, the direct measurement of the CPU time is still the

more reliable way of comparing different minimization algo-

rithms.

Key Words. Numerical analysis, numerical methods, computing

methods, computing techniques, complexity of computation,

philosophy of computation, comparison of algorithms, computa-

tional speed, measurement of computational speed, number of

function evaluations, equivalent number of function evalua-

tions, time-equivalent number of function evaluations, uncon-

strained minimization, mathematical programming.

r1
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4. MIELE, A., BONARDO, F., and GONZALEZ, S., Modifications

and Alternatives to the Cubic Interpolation Process for

One-Dimensional Search, Rice University, Aero-

Astronautics Report No. 135, 1976.I
Abstract. In this paper,the numerical solution of the prob-

lem of minimizing a unimodal function f(a) is considered,

where a is a scalar. Two modifications of the cubic inter-

polation process are presented, so as to improve the robust-

ness of the method and f&rce the process to converge in a

reasonable number of iterations, even in pathological cases.

Modification Ml includes the nonoptional bisection of the

interval of interpolation at each iteration of the process.

Modification M2 includes the optional bisection of the inter-

val of interpolation: this depends on whether the slopes

f c(c) and fL (x) at the terminal points a 0 and a 0 of two

consecutive iterations have the same sign or opposite sign.

An alternative to the cubic interpolation process is

also presented. This is a Lagrange interpolation scheme in

which the quadratic approximation to the derivative of the

function is considered. The coefficients of the quadratic

are determined from the values of the slope at three points:

c11 ,1 2 , and cc3 = (ci+ 2)/2, where ai and c 2 are the end-

points of the interval of interpolation. The proposed al-

ternative is investigated in two versions, Version Al and

11
.4A
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Version A2. They differ in the way in which the next interval

of interpolation is chosen; for Version Al, the choice

depends on the sign of the slope f (a ); for Version A2, the

choice depends on the signs of the slopes fa (c0 ) and f '(3)

Twenty-nine numerical examples are presented. The

numerical results show that both modifications of the cubic

interpolation process improve the robustness of the process.

They also show the promising characteristics of Version A2

of the proposed alternative. Therefore, the one-dimensional

search schemes described here have potential interest for

those minimization algorithms which depend critically on the

precise selection of the stepsize, namely, conjugate gradient

methods.

Key Wordr. One-dimensional search, cubic interpolation pro-

cess, quadratic interpolation process, Lagrange interpolation

scheme, modifications of the cubic interpolation process,

alternatives to the cubic interpolation process, bisection

process, mathematical programming, interval of interpolation,

numerical analysis, numerical methods, computing methods,

computing techniques.
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i 5. MIELE, A., Some Philosophical Views on Algorithms and

Computing Methods in Applied Mathematics, Rice Univer-

sity, Aero-Astronautics Report No. 136, 1976.

I Abstract. This paper summarizes some of the work done by the

Aero-Astronautics Group of Rice University in the area of

numerical methods and computing methods. It describes some

of the philosophical thoughts that have guided this work

throughout the years. Recommendations are offered concerning

allocation of funds and distribution of funds. Additional

recommendations are offered in order to bridge the gap between

the top management of government agencies and the academic

community.

Key Words. Aerospace engineering, applied mathematics,

numerical methods, algorithm research, algorithm development.

i
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6. MIELE, A., Minimum Mass Structures with Specified

Natural Frequencies, Rice University, Aero-Astronautics

Memorandum No. WP-l, 1976.

Abstract. The problem of the axial vibration of a cantilever

beam is investigated numerically. The mass distribution that

minimizes the total mass for a given fundamental frequency

constraint is determined using both the sequential ordinary

gradient-restoration algorithm (SOGRA) and an ad hoc modifi-

cation of the modified quasilinearization algorithm (MQA).

Key Words. Structural optimization, cantilever beams, axial

vibrations, fundamental frequency constraint, numerical me-

thods, sequential ordinary gradient-restoration algorithm,

modified quasilinearization algorithm.
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7. MIANGIAVACCHI, A., and MIELE, A., Some Qualitative

Considerations on the Numerical Determination of

Minimum Mass Structures with Specified Natural Frequen-

cies, Rice University, Aero-Astronautics Memorandum

I No. WP-2, 1977.

Abstract. The problem of the axial vibration of a cantilever

beam is investigated analytically. The range of values of

the frequency parameter having technical interest is deter-

mined.

Key Words. Structural optimization, cantilever beams, axial

vibrations, fundamental frequency constraint.
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8. MIELE, A., WU, A.K., and LIU, C.T., A Transformation

Technique for Optimal Control Problems with Partially

Linear State Inequality Constraints, Rice University,

Aero-Astronautics Report No. 137, 1977.

Abstract. This paper considers optimal control problems in-

volving the minimization of a functional subject to differ-

ential constraints, terminal constraints, and a state inequa-

lity constraint. The state inequality constraint is of a

special type, namely, it is linear in some or all of the com-

ponents of the state vector.

A transformation technique is introduced, by means of

which the inequality constrained problem is converted into an

equality constrained problem involving differential con-

straints, terminal constraints, and a control equality con-

straint. The transformation technique takes advantage of the

partial linearity of the state inequality constraint so as to

yield a transformed problem characterized by a new state vec-

tor of minimal size. This concept is important computation-

ally, in that the computer time per iteration increases with

the square of the dimension of the state vector.

In order to illustrate the advantages of the new trans-

formation technique, several numerical examples are solved

by means of the sequential gradient-restoration algorithm for

W.,T4
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I optimal control problems involving nondifferential constraints.

The examples show tle substantial savings in computer time

for convergence, which are associated with the new transforma-

tion technique.I
g Key Words. Optimal control, numerical methods, computing

methods, transformation techniques, sequential gradient-

l restoration algorithm, nondifferential constraints, state

inequality constraints, linear state inequality constraints,

i partially linear state inequality constraints.

I
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9. MIELE, A., ANGIAVACCHI, A., MOHANTY, B.P., and WU,

A.K., Humerical Determination of Minimum Mass

Structures with Specified Natural Frequencies, Rice

University, Aero-Astronautics Report No. 138, 1977.

Abstract. The problem of the axial vibration of a cantilever

beam is investigated both analytically and numerically. The

mass distribution that minimizes the total mass for a given

value of the frequency parameter 8 is determined using both

the sequential ordinary gradient-restoration algorithm (SOGRA)

and the modified quasilinearization algorithm (MQA). Concern-

ing the minimum value of the mass, SOGRA leads to a solution

precise to at least 4 significant digits and MQA leads to a

solution precise to at least 6 significant digits.

Comparison of the optimal beam (a variable-section beam)

with a reference beam (a constant-section beam) shows that the

weight reduction depends strongly on the frequency parameter 3.

This weight reduction is negligible for 0, is 11.3% for

S=1, is 55.3% for 3= 1.4, and approaches 100% for g +1T/2.

Key Words. Structural optimization, dynamic optimization,

axial vibrations, frequency constraint, fundamental frequency

constraint, optimal structures, cantilever beams, bars,

sequential gradient-restoration algorithm, modified quasi-

linearization algorithm, numerical methods, computing methods.
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1 10. GONZALEZ, S., and MIELE, A., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems

with General Boundary Conditions, Rice University,

Aero-Astronautics Report No. 142, 1978.I
i Abstract. This paper considers the numerical solution of the

problem of minimizing a functional I subject to differential

constraints and general boundary conditions. It consists of

finding the state x(t), the control u(t), and the parameter

7 so that the functional I is minimized, while the constraints

and the boundary conditions are satisfied to a predetermined

accuracy.

The approach taken is a sequence of two-phase cycles,

composed of a gradient phase and a restoration phase. The

gradient phase involves one iteration and is designed to de-

7 crease the value of the functional, while the constraints are

satisfied to first order. The restoration phase involves one

or more iterations and is designed to force constraint satis-

faction to a predetermined accuracy,while the norm squared of

the variations of the control, the parameter, and the missing

components of the initial state is minimized.

The principal property of the algorithm is that it pro-

duces a sequence of feasible suboptimal solutions: the fun-

ctions obtained at the end of each cycle satisfy the con-

I straints to a predetermined accuracy. Therefore, the values

I
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of the functional I corresponding to any two elements of the

sequence are comparable.

The stepsize of the gradient phase is determined by a

one-dimensional search on the augmented functional J, while

the stepsize of the restoration phase is obtained by a one-

dimensional search on the constraint error P. The gradient

stepsize and the restoration stepsize are chosen so that the

restoration phase preserves the descent property of the gra-

dient phase. Therefore, the value of the functional I at the

end of any complete gradient-restoration cycle is smaller

than the value of the same functional at the beginning of that

cycle.

The algorithm presented here differs from those of Refs.

1 and 2, in that it is not required that the state vector be

given at the initial point. Instead, the initial conditions

can be absolutely general. In analogy with Refs. 1 and 2,

the present algorithm is capable of handling general final

conditions; therefore, it is suited for the solution of opti-

mal control problems with general boundary conditions. Its

importance lies in the fact that many optimal control prob-

lems involve initial conditions of the type considered here.

Ten numerical examples are presented in order to illus-

trate the performance of the algorithm. The numerical results

show the feasibility as well as the convergence characteris-

tics of the present algorithm.

, | -
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i Key Words. Optimal control, numerical methods, computing

methods, gradient methods, gradient-restoration algorithms,

sequential gradient-restoration algorithms, general boundary

conditions.
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11. GONZALEZ, S., and MIELE, A., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Condi-

tions, Rice University, Aero-Astronautics Report No. 143,1978.

Abstract. This paper considers the numerical solution of the

problem of minimizing a functional I subject to differential

constraints, nondifferential constraints, and general boun-

ary conditions. It consists of finding the state x(t), the

control u(t), and the parameter fr so that the functional I is

minimized,while the constraints and the boundary conditions

are satisfied to a predetermined accuracy.

The approach taken is a sequence of two-phase cycles,

composed of a gradient phase and a restoration phase. The

gradient phase involves one iteration and is designed to de-

crease the value of the functional, while the constraints are

satisfied to first order. The restoration phase involves one

or more iterations and is designed to force constraint satis-

faction to a predetermined accuracy,while the norm squared of

the variations of the control, the parameter, and the missing

components of the initial state is minimized.

The principal property of the algorithm is that it pro-

duces a sequence of feasible suboptimal solutions: the fun-

ctions obtained at the end of each cycle satisfy the con-

straints to a predetermined accuracy. Therefore, the values

__ Iii,
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of the functional I corresponding to any two elements of the

sequence are comparable.

The stepsize of the gradient phase is determined by a

one-dimensional search on the augmented functional J, while

the stepsize of the restoration phase is obtained by a one-

dimensional search on the constraint error P. The gradient

stepsize and the restoration stepsize are chosen so that the

restoration phase preserves the descent propetty of the gra-

dient phase. Therefore, the value of the functional I at the

end of any complete gradient-restoration cycle is smaller

than the value of the same functional at the beginning of that

cycle.

The algorithm presented here differs from those of Refs.

1 and 2, in that it is not required that the state vector be

given at the initial point. Instead, the initial conditions

can be absolutely general. In analogy with Refs. 1 and 2,

the present algorithm is capable of handling general final

conditions; therefore, it is suited for the solution of opti-

mal control problems with general boundary conditions. Its

importance lies in the fact that many optimal control problems

involve initial conditions of the type considered here.

Fourteen numerical examples are presented in order to

illustrate the performance of the algorithm. The numerical

results show the feasibility as well as the convergence char-

acteristics of the present algorithm.

[ 
i

11'



30 AAR-146

Key Words. Optimal control, numerical methods, computing

methods, gradient methods, gradient-restoration algorithms,

sequential gradient-restoration algorithms, general boundary

conditions, nondifferential constraints, bounded control,

bounded state.

!
1

. ~I i

.j-~~--jjI - -. __ __ __ __ __ __....__ __



31 AAR-146I
12. WU, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

General Boundary Conditions, Rice University, Aero-

Astronautics Report No. 144, 1978.
i

Abstract. This paper considers the numerical solution of

the problem of minimizing a functional I subject to differen-

tial constraints and general boundary conditions. It consists

of finding the state x(t), the control u(t), and the parameter

T so that the functional I is minimized,while the constraints

and the boundary conditions are satisfied to a predetermined

accuracy.

The approach taken is a sequence of two-phase cycles,

composed of a conjugate gradient phase and a restoration

phase. The conjugate gradient phase involves one iteration

and is designed to decrease the value of the functional, while

the constraints are satisfied to first order. During this

iteration, the first variation of the functional is minimized,

subject to the linearized constraints. The minimization is

performed over the class of variations of the control, the

parameter, and the missing components of the initial state

which are equidistant from some constant multiple of the cor-

responding variations of the previous conjugate gradient phase.

The sequence of conjugate gradient phase generated by the

algorithm is such that, for the special case of a quadratic

I
I.
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functional subject to linear constraints, various orthogona-

lity and conjugacy conditions hold. The restoration phase

involves one or more iterations and is designed to force

constraint satisfaction to a predetermined accuracy, while

the norm squared of the variations of the control, the para-

meter, and the missing components of the initial state is

minimized.

The principal property of the algorithm is that it pro-

duces a sequence of feasible suboptimal solutions: the fun-

ctions obtained at the end of each cycle satisfy the con-

straints to a predetermined accuracy. Therefore, the values

of the functional I corresponding to any two elements of the

sequence are comparable.

The stepsize of the conjugate gradient phase is deter-

mined by a one-dimensional search on the augmented functional

J, while the stepsize of the restoration phase is obtained by

a one-dimensional search on the constraint error P. The con-

jugate gradient stepsize and the restoration stepsize are

chosen so that the restoration phase preserves the descent

property of the conjugate gradient phase. Therefore, the

value of the functional I at the end of any complete conjugate

gradient-restoration cycle is smaller than the value of the

same functional at the beginning of that cycle. Of course,

restarting the algorithm might be occasionally necessary.

The sequential conjugate gradient-restoration algorithm
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I
presented here differs from that of Refs. 3 and 4, in that it

is not required that the state vector be given at the initial

3 point. Instead, the initial conditions can be absolutely

general. In analogy with Refs. 3 and 4, the present algorithm

Iis capable of handling general final conditions; therefore,

it is suitable for the solution of optimal control problems

with general boundary conditions. Its importance lies in the

fact that many optimal control problems involve initial con-

ditions of the type considered here.

Nine numerical examples are presented in order to illus-

trate the performance of the algorithm. The numerical results

show the feasibility as well as the convergence characteris-

tics of the present algorithm.

jKey Words. Optimal control, numerical methods, computing

methods, gradient methods, gradient-restoration algorithms,

Isequential gradient-restoration algorithms, conjugate gradient-
jrestoration algorithm, sequential conjugate gradient-

restoration algorithms, general boundary conditions.
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13. W U, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Condi-

tions, Rice University, Aero-Astronautics Report No.

145, 1978.

Abstract. This paper considers the numerical solution of

the problem of minimizing a functional I subject to differen-

tial constraints, nondifferential constraints, and general

boundary conditions. It consists of finding the state x(t),

the control u(t), and the parameter r so that the functional

I is minimized, while the constraints and the boundary condi-

tions are satisfied to a predetermined accuracy.

The approach taken is a sequence of two-phase cycles,

composed of a conjugate gradient phase and a restoration

phase. The conjugate gradient phase involves one iteration

and is designed to decrease the value of the functional,

while the constraints are satisfied to first order. During

this iteration, the first variation of the functional is

minimized, subject to the linearized constraints. The minimiza-

tion is performed over the class of variations of the control,

the parameter, and the missing components of the initial

state which are equidistant from some constant multiple of

the corresponding variations of the previous conjugate gra-

dient phase. The sequence of conjugate gradient phases

7W1
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j generated by the algorithm is such that, for the special

case of a quadratic functional subject to linear constraints,

various orthogonality and conjugacy conditions hold. The

restoration phase involves one or more iterations and is

designed to force constraint satisfaction to a predetermined

9 accuracy, while the norm squared of the variations of the

control, the parameter, and the missing components of the

initial state is minimized.

The principal property of the algorithm is that it pro-

duces a sequence of feasible suboptimal solutions: the fun-

ctions obtained at the end of each cycle satisfy the con-

straints to a predetermined accuracy. Therefore, the values

of the functional I corresponding to any two elements of the

sequence are comparable.

The stepsize of the conjugate gradient phase is leter-

mined by a one-dimensional search on the augmented functional

J, while the stepsize of the restoration phase is obtained

by a one-dimensional search on the constraint error P. The

con4jigate gradient stepsize and the restoration stepsize are

chosen so that the restoration phase preserves the descent

property of the conjugate gradient phase. Therefore, the

value of the functional I at the end of any complete conju-

gate gradient-restoration cycle is smaller than the value of

the same functional at the beginning of that cycle. Of

course, restarting the algorithm might be occasionally necessary.

I
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The sequential conjugate gradient-restoration algorithm

presented here differs from that of Refs. 3 and 4, in that it

is not required that the state vector be given at the initial

point. Instead, the initial conditions can be absolutely

general. In analogy with Refs. 3 and 4, the present algorithm

is capable of handling general final conditions; therefore, it

is suitable for the solution of optimal control problems with

general boundary conditions. Its importance lies in the fact J
that many optimal control problems involve initial conditions

of the type considered here.

Twelve numerical examples are presented in order to

illustrate the performance of the algorithm. The numerical

results show the feasibility as well as the convergence char-

acteristics of the present algorithm.

Key Words. Optimal control, numerical methods, computing

methods, gradient methods, gradient-restoration algorithms,

sequential gradient-restoration algorithms, conjugate

gradient-restoration algorithms, sequential conjugate

gradient-restoration algorithms, nondifferential constraints,

bounded control, bounded state, general boundary conditions.
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i VIII. Abstract of Papers

14. MIELE, A., Some Philosophical Views on Algorithms and

Computing Methods in Applied Mathematics, Proceedings

I of the Workshop on Decision Information for Tactical

Command and Control, Airlie, Virginia, 1976; Edited by

I R.M. Thrall, C.P. Tsokos, and J.C. Turner; Robert M.

Thrall and Associates, Houston, Texas, pp. 192-208,

1976.I
Abstract. This paper summarizes some of the work done by the

Aero-Astronautics Group of Rice University in the area of

numerical methods and computing methods. It describes some

of the philosophical thoughts that have guided this work

throughout the years. Recommendations are offered concerning

allocation of funds and distribution of funds. Additional

recommendations are offered in order to bridge the gap

between the top management of government agencies and the

academic community.

Key Words. Aerospace engineering, applied mathematics,

numerical methods, computing methods, algorithm research,

algorithm development.
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15. MIELE, A., MOHANTY, B.P., and WU, A.K., Conversion of

Optimal Control Problems with Free Initial State into

Optimal Control Problems with Fixed Initial State,

Journal of the Astronautical Sciences, Vol. 25, No. 1,

pp. 75-85, 1977.

Abstract. This note considers optimal control problems

involving the minimization of a functional subject to dif-

ferential constraints, initial conditions, and final condi-

tions. The initial conditions can be partly fixed and partly

free. Transformation techniques are suggested, by means of

which problems with free initial state are converted into

problems with fixed initial state. Thereby, it becomes

possible to employ, without change, some of the gradient

algorithms already developed for optimal control problems

with fixed initial state (for instance, the sequential

gradient-restoration algorithm).

The transformations introduced are two: (i) a linear

transformation and (ii) a nonlinear transformation. In the

linear-quadratic case, the former preserves unchanged the

basic structure of the optimization problem, while this is

not the case with the latter.

The application of these transformations to a problem

of interest in the aerodynamics of a nonslender, axisymmetric

body in Newtonian hypersonic flow is shown. It consists

Imi
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of minimizing the pressure drag for given values of the

length and the volume, with the nose radius and the base

radius being free. After transformations (i) and (ii) are

introduced, this problem is solved by means of the-sequential

I ordinary gradient-restoration algorithm (SOGRA) and the

sequential conjugate gradient-restoration algorithm (SCGRA).

Key Words. Optimal control, numerical methods, computing

methods, transformation techniques, sequential ordinary

gradient-restoration algorithm, sequential conjugate gradient-

restoration algorithm, problems with free initial state,

applied aerodynamics, optimum aerodynamic shapes.
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16. MIELE, A., and GONZALEZ, S., On the Comparative Evalu-

ation of Algorithms for Mathematical Programming Prob-

lems, Nonlinear Programming 3, Edited by O.L. Mangasa-

rian, R.R. Meyer, and S.M. Robinson, Academic Press,

New York, New York, pp. 337-359, 1978.

1
Abstract. This paper considers the comparative evaluation

of algorithms for mathematical programming problems. It is

concerned with the measurement of computational speed and

examines critically the concept of equivalent number of

function evaluations N Does this quantity constitute a

fair way of comparing different algorithms?

The answer to the above question depends strongly on

whether or not analytical expressions for the components of

the gradient and the elements of the Hessian matrix are

available. It also depends on the relative importance of

the computational effort associated with algorithmic opera-

tions vis-a-vis the computational effort associated with

function evaluations.

Both theoretical considerations and extensive numerical

examples carried out in conjunction with the Fletcher-Reeves

algorithm, the Davidon-Fletcher-Powell algorithm, and the

quasilinearization algorithm suggest the following: the N
e

concept, while accurate in some cases, has drawbacks in other

cases; indeed, it might lead to a distorted view of the

_ _ WI ;
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relative importance of an algorithm with respect to another.

The above distortion can be corrected through the intro-

duction of a more general parameter, the time-equivalent

number of function evaluations N e T/ 0 ' where T denotes

the CPU time required to solve a particular problem on a

g particular computer and -0 denotes the CPU time required to

evaluate the objective function once on that computer. This

generalized parameter is constructed so as to reflect accu-

rately the computational effort associated with function

evaluations and algorithmic operations.

From the analyses performed and the results obtained,

it is inferred that, due to the weaknesses of the Ne concept,
eethe use of the Nie concept is advisable. In effect, this is

the same as stating that, in spite of its obvious shortcom-

ings, the direct measurement of the CPU time is still the

more reliable way of comparing different minimization

algorithms.

Key Words. Numerical analysis, numerical methods, computing

methods, computing techniques, complexity of computation,

philosophy of computation, comparison of algorithms, compu-

tational speed, measurement of computational speed, number

of function evaluations, equivalent number of function

evaluations, time-equivalent number of function evaluations,

unconstrained minimization, mathematical programming.
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17. GONZALEZ, S., and MIELE, A., Sequential Gradient-

Restoration Algorithm for Optimal Control Problems

with General Boundary Conditions, Journal of Optimiza-

tion Theory and Applications, Vol. 26, No. 3, pp.

395-425, 1978.

Abstract. This paper considers the numerical solution of

two classes of optimal control problems, called Problem P1

and Problem P2 for easy identification.

Problem P1 involves a functional I subject to differen-

tial constraints and general boundary conditions. It consists

of finding the state x(t), the control u(t), and the parameter

Tr so that the functional I is minimized,while the constraints

and the boundary conditions are satisfied to a predetermined

accuracy. Problem P2 extends Problem Pl to include nondif-

ferential constraints to be satisfied everywhere along the

interval of integration. Algorithms are developed for both

Problem P1 and Problem P2.

The approach taken is a sequence of two-phase cycles,

composed of a gradient phase and a restoration phase. The

gradient phase involves one iteration and is designed to

decrease the value of the functional, while the constraints

are satisfied to first order. The restoration phase involves

one or more iterations and is designed to force constraint

satisfaction to a predetermined accuracy, while the norm

U
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squared of the variations of the control, the parameter,

and the missing components of the initial state is minimized.

3 The principal property of both algorithms is that they

produce a sequence of feasible suboptimal solutions: the

I functions obtained at the end of each cycle satisfy the con-

straints to a predetermined accuracy. Therefore, the values

of the functional I corresponding to any two elements of the

sequence are comparable.

The stepsize of the gradient phase is determined by a

one-dimensional search on the augmented functional J, while

the stepsize of the restoration phase is obtained by a one-

dimensional search on the constraint error P. The gradient

stepsize and the restoration stepsize are chosen so that the

restoration phase preserves the descent property of the gra-

dient phase. Therefore, the value of the functional I at the

end of any complete gradient-restoration cycle is smaller

than the value of the same functional at the beginning of

that cycle.

The algorithms presented here differ from those of Refs.

1 and 2, in that it is not required that the state vector be

given at the initial point. Instead, the initial conditions

can be absolutely general. In analogy with Refs. 1 and 2,

the present algorithms are capable of handling general final

conditions; therefore, they are suited for the solution of

optimal control problems with general boundary conditions.

L__
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Their importance lies in the fact that many optimal control

problems involve initial conditions of the type considered

here.

Six numerical examples are presented in order to

illustrate the performance of the algorithms associated with

Problem P1 and Problem P2. The numerical results show the

feasibility as well as the convergence characteristics of

these algorithms.

Key Words. Optimal control, numerical methods, computing

methods, gradient methods, gradient-restoration algorithms,

sequential gradient-restoration algorithms, general boundary

conditions, nondifferential constraints, bounded control,

bounded state.
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18. MIELE, A., MANGIAVACCHI, A., MOHANTY, B.P., and WU,

A.K., Numerical Determination of Minimum Mass Struc-

tures with Specified Natural Frequencies, Internati-

nal Journal for Numerical Methods in Engineering, Vol.

13, No. 2, pp. 265-282, 1978.

Abstract. The problem of the axial vibration of a cantilever

beam is investigated both analytically and numerically. The

mass distribution that minimizes the total mass for a given

value of the frequency parameter 6 is determined using both

the sequential ordinary gradient-restoration algorithm (SOGRA)

and the modified quasilinearization algorithm (MQA). Con-

cerning the minimum value of the mass, SOGRA leads to a solution

precise to at least 4 significant digits and MQA leads to a

solution precise to at least 6 significant digits.

Comparison of the optimal beam (a variable-Section beam)

with a reference beam ( a constant-section beam) shows that

the weight reduction depends strongly on the frequency para-

meter 6. This weight reduction is negligible for 6 0, is

11.3% for 6= 1, is 55.3% for 6= 1.4, and approaches 100% for

T=/2.

Key Words. Structural optimization, dynamic optimization,

axial vibrations, frequency constraint, fundamental frequency

constraint, optimal structures, cantilever beams, bars, rods,

sequential gradient-restoration algorithm, modified quasi-

linearization algorithm, numerical methods, computing methods.
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19. MIELE, A., and CLOUTIER, J.R., Sequential Conjugate

Gradient-Restoration Algorithm for Optimal Control

Problems with Nondifferential Constraints, Applied

Nonlinear Analysis, Edited by V. Lakshmikantham, J.

Eisenfeld, and A.R. Mitchell, Academic Press, New

York, New York, pp. 89-93, 1979.

Abstract. A sequential conjugate gradient-restoration

algorithm is developed in order to solve optimal control

problems involving a functional subject to differential

constraints, nondifferential constraints, and terminal

constraints. The algorithm is composed of a sequence of

cycles, each cycle consisting of two phases, a conjugate

gradient phase and a restoration phase.

The conjugate gradient phase involves a single itera-

tion and is designed to decrease the value of the functional,

while satisfying the constraints to first order. During this

iteration, the first variation of the functional is mini-

mized, subject to the linearized constraints. The minimiza-

tion is performed over the class of variations of the control

and the parameter which are equidistant from some constant

multiple of the corresponding variations of the previous

conjugate gradient phase. For the special case of a quadra-

tic functional subject to linear constraints, various ortho-

gonality and conjugacy conditions hold.
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The restoration phase involves one or more iterations

and is designed to restore the constraints to a predetermined

accuracy, while the norm of the variations of the control and

the parameter is minimized, subject to the linearized con-

I straints. The restoration phase is terminated whenever the

norm of the constraint error is less than some predetermined

tolerance.

The sequential conjugate gradient-restoration algorithm

is characterized by two main properties. First, at the end

I of each conjugate gradient-restoration cycle, the trajectory

satisfies the constraints to a given accuracy; thus, a se-

quence of feasible suboptimal solutions is produced. Second,

the conjugate gradient stepsize and the restoration stepsize

can be chosen so that the restoration phase preserves the

descent property of the conjugate gradient phase; thus, the

value of the functional at the end of any cycle is smaller

than the value of the functional at the beginning of that

cycle. Of course, restarting the algorithm might be occa-

sionally necessary.

To facilitate numerical integrations, the interval of

integration is normalized to unit length. Variable-time

terminal conditions are transformed into fixed-time terminal

conditions. Then, the actual time at which the terminal

boundary is reached becomes a component of a vector parameter

being optimized.

Ii
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Convergence is attained whenever both the norm of the

constraint error and the norm of the error in the optimality

conditions are less than some predetermined tolerances.

Several numerical examples are presented, some pertain-

ing to a quadratic functional subject to linear constraints

and some pertaining to a nonquadratic functional subject to j
nonlinear constraints. These examples illustrate the feasi-

bility as well as the convergence characteristics of the

sequential conjugate gradient-restoration algorithm.

Key Words. Optimal control, gradient methods, conjugate

gradient methods, numerical methods, computing methods,

gradient-restoration algorithms, sequential gradient-

restoration algorithms, sequential conjugate gradient-

restoration algorithms, nondifferential constraints.
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1 20. MIELE, A., CLOUTIER, J.R., MOHANTY, B.P., and WU, A.K.,

Sequential Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Constraints,

Part 1, International Journal of Control, Vol. 29, No. 2,

1 pp. 189-211, 1979.

I
Abstract. A sequential conjugate gradient-restoration algo-

rithm is developed in order to solve optimal control problems

involving a functional subject to differential constraints,

Inondifferential constraints, and terminal constraints. The

3 algorithm is composed of a seuence of cycles, each cycle consist-

inq of two 'hases, a conjugate gradient phase and a restora-

I tion phase.

The conjugate gradient phase involves a single iteration

I and is designed to decrease the value of the functional,

while satisfying the constraints to first order. During this

iteration, the first variation of the functional is minimized,

subject to the linearized constraints. The minimization is

performed over the class of variations of the control and the

parameter which are equidistant from some constant multiple

of the corresponding variations of the previous conjugate

gradient phase. For the special case of a quadratic func-

tional subject to linear constraints, various orthogonality

and conjugacy conditions hold.

The restoration phase involves one or more iterations

[
!

.4

C- --



50 AAR-146

and is designed to restore the constraints to a predeter-

mined accuracy, while the norm of the variations of the

control and the parameter is minimized, subject to the

linearized constraints. The restoration phase is terminated

whenever the norm of the constraint error is less than some

predetermined tolerance.

The sequential conjugate gradient-restoration algorithm

is characterized by two main properties. First, at the end

of each conjugate gradient-restoration cycle, the trajectory

satisfies the constraints to a given accuracy; thus, a se-

quence of feasible suboptimal solutions is produced.

Second, the conjugate gradient stepsize and the restoration

stepsize can be chosen so that the restoration phase pre-

serves the descent property of the conjugate gradient phase;
(

thus, the value of the functional at the end of any cycle is

smaller than the value of the functional at the beginning of

that cycle. Of course, restarting the algorithm might be

occasionally necessary.

To facilitate numerical integrations, the interval of

integration is normalized to unit length. Variable-time

terminal conditions are transformed into fixed-time terminal

conditions. Then, the actual time at which the terminal

boundary is reached becomes a component of a vector parameter

being optimized.

Convergence is attained whenever both the norm of the

WAi-v
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constraint error and the norm of the error in the optimality

conditions are less than some predetermined tolerances.

I Several numerical examples illustrating the theory of this

paper are given in Part 2 (see Ref. 21).I
I Key Words. Optimal control, gradient methods, conjugate

gradient methods, numerical methods, computing methods,

gradient-restoration algorithms, sequential gradient-

restoration algorithms, sequential conjugate gradient-

restoration algorithms, nondifferential constraints.
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21. MIELE, A., CLOUTIER, J.R., MOHANTY, B.P., and WU, A.K.,

Sequential Conjugate Gradient-Restoration Algorithm for

Optimal Control Problems with Nondifferential Constraints,

Part 2, International Journal of Control, Vol. 29, No. 2,

pp. 213-234, 1979.

Abstract. In Part I (see Ref. 20), Miele et al developed the se-

quential conjugate gradient-restoration algorithm for minimi-

zing a functional subject to differential constraints, non-

differential constraints, and terminal constraints. In this

paper, several numerical examples are presented, some per-

taining to a quadratic functional subject to linear con-

straints and some pertaining to a nonquadratic functional

subject to nonlinear constraints. These examples demonstrate

the feasibility as well as the convergence characteristics

of the sequential conjugate gradient-restoration al-orithm.

Key Words. Optimal control, gradient methods, conjugate

gradient methods, numerical methods, computing methods,

gradient-restoration algorithms, sequential gradient-

restoration algorithms, sequential conjugate gradient-

restoration algorithms, nondifferential constraints.
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22. MIELE, A., WU, A.K., and LIU, C.T., A Transformation

Technique for Optimal Control Problems with Partially

Linear State Inequality Constraints, Journal of

Optimization Theory and Applications, Vol. 28, No. 2,

pp. 185-212, 1979.

Abstract. This paper considers optimal control problems in-

volving the minimization of a functional subject to differ-

ential constraints, terminal constraints, and a state in-

equality constraint. The state inequality constraint is of

a special type, namely, it is linear in some or all of the

components of the state vector.

A transformation technique is introduced, by means of

which the inequality constrained problem is converted into

an equality constrained problem involving differential con-

straints, terminal constraints, and a control equality con-

straint. The transformation technique takes advantage of

the partial linearity of the state inequality constraint so

as to yield a transformed problem characterized by a new

state vector of minimal size. This concept is important com-

putationally, in that the computer time per iteration in-

creases with the square of the dimension of the state vector.

FIn order to illustrate the advantages of the new trans-

formation technique, several numerical examples are solved

F by means of the sequential gradient-restoration algorithm for

* 1 _
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optimal control problems involving nondifferential constraints.

The examples show the substantial savings in computer time for

convergence, which are associated with the new transformation

technique.

Key Words. Optimal control, numerical methods, computing

methods, transformation techniques, sequential gradient-

restoration algorithm, nondifferential constraints, state

inequality constraints, linear state inequality constraints,

partially linear state inequality constraints.
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13. MIELE, A., BONARDO, F., and GONZALEZ, S., Modifications

and Alternatives to the Cubic Internolation Process for

One-Dimensional Search, Arabian Journal for Science and

Engineering, Vol. 4, No. 2, pp. 121-128, 1979.

9 Abstract. The numerical solution of the problem of minimiz-

ing a unimodal function is considered. Modifications and

alternatives to the cubic interpolation process are presented,

so as to improve robustness and force convergence in a reason-

able number of iterations, even in pathological cases.

Modification Ml includes the nonoptional bisection of the

interval of interpolation. Modification M2 includes the op-

tional bisection of the interval of interpolation. Alterna-

tives Al and A2 are Lagrange interpolation schemes in which

the quadratic approximation to the derivative of the function

is considered. They differ from one another in the technique

employed for choosing the next interval of interpolation.

Several numerical examples are presented, and the nume-

rical results show the promising characteristics of the pro-

posed modifications and alternatives., Therefore, the one-

dimensional search schemes described here have potential in-

terest for those minimization algorithms which depend

critically on the precise selection of the stepsize, namely,

conjugate gradient methods.

7
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Key Words. One-dimensional search, cubic interpolation pro-

cess, quadratic interpolation process, Lagrange interpolation

scheme, modifications of the cubic interpolation process,

alternatives to the cubic interpolation process, bisection

process, mathematical programming, interval of interpolation,

numerical analysis, numerical methods, computing methods,

computing techniques.
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24. MIELE, A., Gradient Algorithms for the Optimization of

Dynamic Systems, Advances in Control and Dynamic Sys-

3 tems: Theory and Applications, Vol. 16, Edited by C.T.

Leondes, Academic Press, New York, New York, 1979.

Abstract. In every branch of science, engineering, and

economics, there exist systems which are controllable, that

is, they can be made to behave in different ways depending

on the will of the operator. Every time the operator of a

system exerts an option, a choice in the distribution of the

quantities controlling the system, he produces a change in

the distribution of the states occupied by the system and,

hence, a change in the final state. Therefore, it is natural

to pose the following question: Among all the admissible op-

tions, what is the particular option which renders the

system optimum? As an example, what is the option which min-

imizes the difference between the final value and the initial

value of an arbitrarily specified function of the state of

the system? The body of knowledge covering problems of this

type is called calculus of variations or optimal control

theory. As stated before, applications occur in every field

of science, engineering, and economics.

It must be noted that only a minority of current prob-

lems can be solved by purely analytical methods. Hence, it
iI is important to develop numerical techniques enabling one to
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solve optimal control problems on a digital computer. These

numerical techniques can be classified into two groups:

first-order methods and second-order methods. First-order

methods (or gradient methods) are those techniques which

employ at most the first derivatives of the functions under

consideration. Second-order methods (or quasilinearization

methods) are those techniques which employ at most the second

derivatives of the functions under consideration.

Both gradient methods and quasilinearization methods

require the solution of a linear, two-point or multi-point

boundary-value problem at every iteration. This being the

case, progress in the area of numerical methods for differ-

ential equations is essential to the efficient solution of

optimal control problems on a digital computer.

In this paper, we review recent advances in the area of

gradient methods for optimal control problems. Because of

space limitations, we make no attempt to cover every possible

technique and every possible approach, a material impos-

sibility in view of the large number of publications available.

Thus, except for noting the early work performed by Kelley

and Bryson, we devote the body of the paper to a review of

the work performed in recent years by the Aero-Astronautics

Group of Rice University.

Also because of space limitations, we treat only single-

subarc problems. More specifically, we consider two classes I

A -
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of optimal control problems, called Problem P1 and Problem

P2 for easy identification.

Problem P1 consists of minimizing a functional I,which

depends on the n-vector state x(t), the m-vector control u(t),

and the p-vector parameter ir. The state is given at the

initial point. At the final point, the state and the para-

meter are required to satisfy q scalar relations. Along the

interval of integration, the state, the control, and the

parameter are required to satisfy n scalar differential equa-

tions. Problem P2 differs from Problem Pl in that the state,

the control, and the parameter are required to satisfy k

additional scalar relations along the interval of integration.

Algorithms of the sequential gradient-restoration type are

given for both ProblemPI and Problem P2.

The approach taken is a sequence of two-phase cycles,

composed of a Sradient phase and a restoration phase. The

gradient phase involves one iteration and is designed to

decrease the value of the functional, while the constraints

are satisfied to first order. The restoration phase involves

one or more iterations and is designed to force constraint

satisfaction to a predetermined accuracy, while the norm

squared of the variations of the control and the parameter

I is minimized, subject to the linearized constraints.

The principal property of the algorithms presented here

is that a sequence of feasible suboptimal solutions is

TI
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produced. In other words, at the end of each gradient-

restoration cycle, the constraints are satisfied to a pre-

determined accuracy. Therefore, the values of the functional

I corresponding to any two elements of the sequence are

comparable.

The stepsize of the gradient phase is determined by a

one-dimensional search on the augmented functional J, while

the stepsize of the restoration phase is obtained by a one-

dimensional search on the constraint error P. The gradient

stepsize and the restoration stepsize are chosen so that the

restoration phase preserves the descent property of the gra-

dient phase. As a consequence, the value of the functional

I at the end of any complete gradient-restoration cycle is

smaller than the value of the same functional at the beginning

of that cycle.

A time normalization is used in order to simplify the

numerical computations. Specifically, the actual time 8 is

replaced by the normalized time t= e/, which is defined in

such a way that t= 0 at the initial point and t= 1 at the

final point. The actual final time T, if it is free, is

regarded as a component of the vector parameter f to be

optimized. In this way, an optimal control problem with

variable final time is converted into an optimal control

problem with fixed final time.

Section 2 contains the statements of Problem P1 and

It
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a Problem P2. Section 3 gives a description of the sequential

gradient-restoration algorithm. Section 4 discusses the

determinations of the basic functions for the gradient phase

and the restoration phase. Section 5 considers the deter-

I mination of the stepsizes for the gradient phase and the

restoration phase. A summary of the sequential gradient-

restoration algorithm is presented in Section 6. The exper-

imental conditions are given in Section 7. The numerical

examples for Problem Pl are given in Section 8, and the

numerical examples for Problem P2 are given in Section 9.

Finally, the discussion and the conclusions are presented

in Section 10.

Key Words. Optimal control, numerical methods, computing

methods, gradient methods, gradient-restoration algorithms,

sequential gradient-restoration algorithms, survey papers.
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25. WJ, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Conditions,

Part 1, Optimal Control Applications and Methods, Vol. 1,

No. 1, 1980.

Abstract. In this paper, a new member of the family of sequen-

tial gradient-restoration algorithms for the solution of optimal

control problems is presented. This is an algorithm of the con-

jugate gradient type and solves two classes of optimal control

problems, called Problem P1 and Problem P2 for easy identifica-

tion.

Problem Pl involves minimizing a functional I subject to

differential constraints and general boundary conditions. It

consists of finding the state x(t), the control u(t), and the

parameter 7 so that the functional I is minimized, while the

constraints and the boundary conditions are satisfied to a pre-

determined accuracy. Problem P2 extends Problem P1 to include

nondifferential constraints to be satisfied everywhere along

the interval of integration.

The approach taken is a sequence of two-phase cycles, com-

posed of a conjugate gradient phase and a restoration phase.

The conjugate gradient phase involves one iteration and is de-

signed to decrease the value of the functional, while the con-

* I
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straints are satisfied to first order. The restoration phase

involves one or more iterations; each restorative iteration is

designed to force constraint satisfaction to first order, while

the norm squared of the variations of the control, the parame-

ter, and the missing components of the initial state is mini-

mized. The resulting algorithm has several properties: (i) it

produces a sequence of feasible solutions; (ii) each feasible

solution is characterized by a value of the functional I which

is smaller than that associated with any previous feasible sol-

ution; and (iii) for the special case of a quadratic functional

subject to linear constraints, the variations of the state,

control, and parameter produced by the sequence of conjugate

gradient phases satisfy various orthogonality and conjugacy

conditions.

The algorithm presented here differs from those of Refs.

1-4, in that it is not required that the state vector be given

at the initial point. Instead, the initial conditions can be

absolutely general. In analogy with Refs. 1-4, the present al-

gorithrm is capable of handling general final conditions; there-

fore, it is suitable for the solution of optimal control prob-

lems with general boundary conditions.

The importance of the present algorithm lies in that many

optimal control problems either arise naturally in the present

format or can be brought to such a format by means of suitable

transformation (Ref. 5). Therefore, a great variety of optimal

!I
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control problems can be handled. This includes: (i) problems

with control equality constraints, (ii) problems with state

equality constraints, (iii) problems with state-derivative

equality constraints, (iv) problems with control inequality

constraints, (v) problems with state inequality constraints,

(vi) problems with state-derivative inequality constraints, and

(vii) Chebyshev minimax problems.

Several numerical examples are presented in Part 2 (see

Ref. 26) in order to illustrate the performance of the algo-

rithm associated with Problem Pl and Problem P2. The numerical

results show the feasibility as well as the convergence charac-

teristics of the present algorithm.

Key Words. Optimal control, gradient methods, conjugate-

gradient methods, numerical methods, computing methods,

gradient-restoration algorithms, sequential gradient-restoration

algorithms, sequential conjugate gradient-restoration algorithms,

nondifferential constraints, general boundary conditions, bounded

control, bounded state.
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26. WU, A.K., and MIELE, A., Sequential Conjugate Gradient-

Restoration Algorithm for Optimal Control Problems with

Nondifferential Constraints and General Boundary Condi-

tions, Part 2, Optimal Control Application and Methods,

Vol. 1, No. 2, 1980.!
Abstract. In Part 1 (see Ref. 25), Wu and Miele developed the

sequential conjugate gradient-restoration algorithm for mini-

mizing a functional subject to differential constraints, with

or without nondifferential constraints, and general boundary

conditions. In this paper, several numerical examples are

presented, some pertaining to a quadratic functional subject to

linear constraints and some pertaining to a nonquadratic func-

tional subject to nonlinear constraints. These examples demon-

strate the feasibility as well as the convergence characteris-

tics of the sequential conjugate gradient-restoration algorithm.

Key Words. Optimal control, gradient methods, conjugate-

gradient methods, numerical methods, computing methods,

gradient-restoration algorithms, sequential gradient-restoration

algorithms, sequential conjugate gradient-restoration algorithms,

nondifferential constraints, general boundary conditions, bounded

control, bounded state.
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