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ON STRONG SLOT INJECTION INTO A SUBSONIC LAMINAR BOUNDARY LAYER

M. Napolitano and R.E. Messick

ABSTRACT

This paper is concerned with the problem of strong slot injection into
a subsonic laminar boundary layer at asymptotically high Reynolds number.
The problem is formulated and the governing equations are presented within
the context of triple deck theory. 'The linear problem, valid when the
injection velocity is small, is solved analytically by Fourier Transform
techniques. Graphical results are given for a wide range of slot lengths.
A numerical technique for the nonlinear equations is presented and used to
obtain solutions for various injection velocities. Separation is found to

first occur downstream of the slot, where a recirculating flow bubble is formed.
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I. INTRODUCTION

Injection of a secondary fluid into a well developed boundary layer is 1
a widely used technique in the aeronautical industry. It is used, for example,

for cooling gas turbine blades and for controlling transition and/or separation

A

(blow off) of the boundary laver over airplane control surfaces. It is therefore
of great practical significance, for the aerodynamicist and the thermal analyst
as well, to be able to analytically predict the effect of injection on the flow
pattern and temperature distribution around a turbine blade or any other piece
of machinery. Our interest is presently limited to the aerodynamic aspect of
the problem. In this respect, most of the earlv, classical work on injection

I is concerned with the case of weak blowing into an incompressible, laminar boundary
layer; that is, the ratio between injection and free stream velocities is assumed

' to be inversely proportional to the square root of the characteristic Reynolds

number, Re., For this case, classical boundary layer theory is valid and self
similar solutions are possible [1]. The most important conclusion of such

studies is that weak injection has a much greater effect on the boundary laver
properties (wall shear, displacement thickness etc) than one might expect, and
such injection can even blow the layer off the plate, i.e. induce separation.
Subsequently, the interest of most researchers has been attracted by the
supersonic mainstream case. See Smith and Stewartson [4] for a critical review

of their efforts. In particular, after the formalization of the asymptotic triple
deck theory of Stewartson et al. [2,3] a rigorous definition for moderate and
strong blowing has become available, together with the appropriate governing

equations. Smith and Stewartson [4] consider the problem of strong slot injection

’ into a supersonic laminar boundary layer; for this, they provide analytical




solutions to the linear problem, valid when the injection velocity is small l

in the triple deck scaling, and a numerical technique for the full nonlinear

problem. Such a numerical technique, though, developed a "pressure sensitivity

or instability, due to ineffective imposition of the downstream boundary

condition, and could not account for separation ahead of the slot. Napolitano

[6] has recently overcome these two difficulties and provided more complete

results, in which separation is indeed found to first occur ahead of the slot.

Finally, Smith and Stewartson {5] also considered the problem of strong (and ‘

massive) plate injection into a separated supersonic laminar boundary layer. ) A
Sychev [7] has recently shown that triple deck theory is valid for subsonic

flow conditions as well. The problem of strong slot injection into a subsonic

laminar boundary layer, has thus become feasible, and is the subject of this

paper. In section II the problem is defined and the triple deck governing equations

presented. In section III, the case in which the injection velocity is small,

is considered: the governing equations are linearised and solved analytically

by Fourier transform Techniques. In section IV a numerical technique for the

full nonlinear problem, derived from that of Napolitano et al [8], is presented.

Finally, in section V results are provided for the linear and nonlinear problems,

Linear pressure and wall shear solutions are presented for a wide range of slot

lengths. Nonlinear results are instead provided for one slot length only but for

various values of the injection velocity.




II. Problem Definition and Governing Equations

A Newtonian fluid, of kinematic viscosity v*, flows past a semiinfinite
flat plate with subsonic free stream velocity, U:, parallel to the plate. At {
a distance x; from the leading edge of the plate, fluid is injected perpendicular

! to the wall, with velocity vw*, thru a slot of length X; - X:. The

characteristic Reynolds number, Re = UX x:/v*, is asymptotically large and the A

3/8 3/8

injection velocity and slot lengths are of order Re U and Re xg,

respectively. For this flow situation, (see Figure 1) three region or decks
develop around the injection region, the lower, middle and outer decks, all
having the characteristic length of the interaction region, of order 53 xg

-1/ 4 3

(¢ = Re 8) and characteristic height of order esxg s € xg and ¢ Xg

respectively., The middle deck is a displaced Blasius boundarv layer, having

the passive role of communicating the pressure interaction between inner and
outer decks. This last one is a potential flow past a "thin airfoil

produced by the viscous effects in the lower deck underneath. The inner (lower)
deck, finally, is a viscous region which arises from the need to satisfy

the wall boundary conditions on the plate. After appropriate scaling of the
independent and dependent variables and proper matching between the neighboring
decks, the Navier Stokes equations reduce to the triple deck ones. These

are basically the lower deck boundary layer like equations coupled to the outer
deck (linear airfoil) pressure interaction law. The continuity and momentum

equations are given as:

ux'+ v.=0; u u_ +v uy - -4 +u_3; (2.1,a,b)




with boundary conditions:

u{x,0) = 0

vV, for 0 < x < xg

v(x,0) =
0 elsewhere

u(x,y»w)-»y-t— 8,
u(x » == ,y) ~ y.

The pressure displacement interaction law is finally given by

-1

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

where the integral denotes the Cauchy prinmcipal value. Note that S is the

total displacement, due to the viscous effects and to the injected fluid as

well. Also note that § and p are independent of the normal coordinate y.

For these two quantities the X subscript indicates a total (rather than a

partial) derivative.




I1T. Solution to the Linear Problem

The problem described by equations (2.1) thru (2.6) is nonlinear, because
of the convective terms u u and v uy in the momentum equation (2.1b) and,
at present, can be solved only numerically. The case in which the injection
velocity Vw is very small (Vw<<1), however, can be studied analytically. This
analytical solution is very important since it provides interesting information
on the asymptotic decay of the solution for x + + « and is the only tool
for assessing accuracy and reliability of the numerical results. Moreover, its
usefulness can be reasonably expected to be even greater, because, for the super-
sonic mainstream case, it has been found that the linear solution is relatively
close to the full nonlinear one, for Vw as large as 1 [6] , A broad range of
validity for the linear solution has also been found for both supersonic and
subsonic flow past a hump on a flat plate [8,9]. For Vw equal to zero, the flow
field is one characterised by uniform shear (u=y) with v, p and § identically
equal to zero. For Vw<<l’ thus, the solution is a small perturbation of such a

uniform shear flow, that is

u(x,y) = y + v, u (x,¥) + ... (3.1)
v(x,y) = V;;(x,y) + cee (3.2)
§(x,y) = vwE(x,y) + (3.3)

P(x,y) = V p(x,y) + (3.4)




In order to obtain the governing equations for the linear problem, equations '
(3.1 - 3,4) are substituted into equations (2.1 - 2,6) and only the terms
containing Vw linearly are retained, to give:

T+ =0;yu +v=s -L 4 3 (3.5 a,b)

U(x,0) = 0 (3.6) /j

v(x,0) = s 3.7
0; elsewhere

U (x,y+® = 3§ (3.8)
u (x +» =o,y) = 0 (3.9)
2 —;2 —r: (3.10)

Linearization makes it possible to construct the solution for the case
of a finite slot from the solution for the infinite slot (xs-w) by translation f
and superposition. For clarity and convenience the superior bars will be omitted
from the dependent variables for the case of the infinite slot.

The infinite slot problem may thus be formulated as follows:

u + v, ™ 0,y u +ve= -p + - (3.11 a,b)




t for (x,y) e{(-»,»)X[0,»)}, with the subgsidiary conditions:

u(x.0) = 0 (3.12)
v(x,0) = h(x) (3.13)
u (~=,y) =0 (3.14)
u(x,=) = 6(x) (3.15)
p(#=) = 0 (3.16)
6 (0 = =% Zpif:)dg (3.17)

where h(x) denotes the Heaviside step-function and the integral the Cauchy
principal value.

The system (3.11) may be transformed to a single equation by
differentiating (3.11 b) with respect to y and using (3.11 a) to eliminate

vy. The result is

wyy —yw = 0 (3.18)
J where w = uy. Let capital letters denote the Fourier transforms of the

corresponding (lower-case) dependent variables e.g.

w -L w e—iwx dx (3.19) ‘




The Fourier transform of (3.18) using (3.14) then provides the Airy

differential equation

W =dwyWs=20 (3.20)
yy = Y
where, again for clarity and convenience, the product iw will be understood to
stand for ¢ + iw, with € > 0 an arbitrarily small constant to assure convergence
of the transform at the upper limit, The limit as ¢ + 0 is to be used in all results.
The only non-integral powers of iw to be encountered here involve the cube root. A

natural branch for these, leaving the real w axis free is

L 1 11 m
M2 e+ 1013 = [10)7 = |u]7 &3 (¢+5) (3.21)
for - -321 <4< % which defines the cut indicated in the figure.
(V]
ie ¢
The general solution of (3.20) is usually written as
L 1
W= Cy Al ([10]3 y) + c, Bi ([1w]3 ) (3.22)

where CO’ C1 are constants and Ai, Bi are the Airy functions of the first and

second kind, respectively. However, it now follows that W is exponentially




unbounded as y + =, violating conditions (3.14) and (3.15), unless C1 = 0,
With Cl = 0, condition (3.12) implies that
y L
U=C¢C [ AL ([1w]3£)de (3.23)
0 Jo
The Fourier transform of (3.15) then requires that
® L
a=c L AL ([1w]3£)de (3.24)

However, for precisely the branch defined in (3.21), the integral in (3.24)

evaluates to ——l—r . Thus,

31wl

wie

c0 = 3[iw]d A (3.25)

Now A is related to P by means of the transform of (3.17), using (3.16). i.e.
iwd =1 P sgnuw (3.26)

1, w>0

where sgn w -{
-1, w<O

Condition (3.13) remains to be satisfied. However, by continuity it can be

used with (3.11 b) to give:




Yoy =p, *+ h(x) for y + 0 (3.27)

The transform of this (with our limiting convention) is

1
Uyy iwP + i for y+ O (3.28)

Substituting from (3.28) for U, we have

1

3 L - 1
Co[iw] Ai11(0) iwP + i (3.29)

Equations (3.25), (3.26) and (3.29) maybe solved to give

2
- 3
p - ~{i0) (3.30a)
D
2
. =3i1(w) 3sgn w ‘
¢, S (3.30b)
-
- 3
A= _i_<i_w>.D_£an_ca (3.30¢)
N N 3

where D = (1w)3' +63 1 sgh w and O = [—3A1‘0)]K- = 0,8272 ... is Lighthill's
constant,

U is now known from (3.30b) and (3.23), so its inverse transform u, together
with p from (3.30a), maybe used with (3.11) to find v and check the results.

The inverse transforms can be put into a suitable real form after some
cumbersome but straight-forward manipulations. These manipulations iuvolve

altering the paths of integration to radial lines at angles of ¢ = + %- in the

10
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w-plane, depending upon whether or not + x > O,

The result for the pressure then takes the compact form:

x) 3 z olxlog,
p(x) =
Zh(X)we -/0 08__/5 pah(x)+1

(3.31)

It now follows by superposition that the pressure for the finite slot

is:
P(x) = p(x) = plx-x) (3.32)

It is obvious that ;(x) is continuous everywhere except possibly at the slot

& ends i.e. at x=0, X e Let the jump in a function f(x) be defined as
{£(x)} = £(x+) - £(x-) (3.33)
then

PO} = -{p(x )} = {p(D)}

- -2 _L
2179
-/—p +1 op+1

' m
| V2ncos F Y/2Tcos §
m[ -2 ] 0 (3.34)

l'. 11




Also,

{p, (0} = ~{p (x)} = {p (0)}

A 3 ® 53
e I e = vl e vox
0o o -/30+ b o+l

3 5t 7
-3 [ﬁ + 2 .g:l = =] (3.35)

This shows that p is (i.e. may be defined to be!) continuous on (-»,»), but
that its derivative, the pressure gradient, displays unit jump discoutinuities at
the ends of the slot in opposite directiomns.
Considering (3.31) and (3.32), it is seen that outside of the slot the
denominators of both integrands in (3.32) are the same. gNote that p8 - Eph +1>0
for all p so p(x) > 0 for all x.) However, for x < 0 the exponential function
in the integrand of p(x) exceeds that in p(x-xs). The situation is reversed for
x> x..
It follows then, because of the difference in p's in (3.32), that p(x)
is positive to the left of the slot (x<0) and negative to the right of the slot
(x>xs). Also, differentiation of p(x) for x < Odoesnot alter this sign relationship ’
while for x > xg it reverses it., This means that in both cases p(x) is a monotone
increasing function of x. Now p(+=) = 0, so that p(x) starts from zero at x = == t

and increases positively to the maximum of p(0) >0 at x = 0. To the right of the -r

slot p(x) starts at the negative value F(xs) for x = X and increases to zero

as x 4+ =,




Sy

Within the slot, differentiation of P(x) results in the derivative of
p(x) being negative while the derivative of p(x—xs) remains positive. This means
that the derivative of p(x) within the slot is negative and that p(x) is monotone
decreasing from p{(0) >0 to the minimum of E(xs) < 0 at the r.h. end of the slot.
Finally, it is clear that for x < 0, p(x) is a monotone increasing function
or X The maximum p(0) increases from 0 for x, = 0 to the maximum
p(0) = %éz c05<§ , (see (3.34)), for xs+ » , Conversely, for x > X, ;Yx) is a
monotone decreasing function of X e The minimum ;(xs) decreases from 0 for x, = 0

3/2

to the minimum -p(0) = = s ©°os %-for xs'fm .

The skin friction coefficient T(x) = ﬁ;(x,O) is also of primary importance.

For the infinite slot t/x) = uy(x,O) can be written in the compact form:

/3 3 ‘GIXIO hx)
R s il e (OB j Zo 1) ""] (3.36)
0

21293 M - VI h(x) + 1

So that, as before, for the finite slot;
T(x) = 1(x) - T(x-x_) (3.37)

Here too.?(x) is obviously continuous except possibly at the slot ends.

13




{70} = -{;Yxs)} ={7(0)}

[f oz(f-%_ol'-l)do_},”ﬁp_]

2ﬂ 9 08-/§b4+1 0 08+1

9/3 /2 sin% /2 sin %] - (3.38)
2 2,3 4 - 4 *
L
Also,
—elxlp
3 1 h(x) = -
) = - 23 () [ o2 '/-"h(")]e de (3.39)
x 278 0 p -/—b hi(x) + 1
Therefore:
(@} = ={t_(x)} ={ (@)}
E; [” ©=p)dp _ f 0 ap]
2]y oB/mta o oo
9/3 V27 /27
- -Z'rrzez = - 3 ]- 0 (3.40)
Again,
W)~ T 8}x|p>
r(x>--9f%x*3—1-f§xpd°:] (3.41)
xx 2n20 36437 Jy pP-/Iph(x) +1

14




So that

1
1 h(x) T =
T - (:( 2 - -@95—8—] as |x| + 0 (3.42) |

21r 8 393(x)3 4

In summary then T(x) and its derivative are continuous on (~»,), but

1/3 |1/3)

T (X = 0(1/]x]

) or 0(1/|x-xs as x tends to 0 or X respectively.




IV. NUMERICAL TECENIQUE

The numerical technique of Napolitano et. al. [8,9], when applied to the
triple deck equations for subsonic flow past a parabolic hump, successfully
accounted for the discontinuous pressure gradients at the leading and trailing
edges of the hump. Therefore, it could be reasonably expected to be applicable
to the present strong slot injection problem by changing the wall boundary
condition for the normal velocity component. However, another modification was
found necessary, i.e. the downstream boundary condition for the displacement
thickness § had to be applied as a derivative one, %% = 0, in order to obtain
correct results. .This was needed because, due to the injected fluid, & decays
to zero very slowly as x + », When § was set equal to zero at a finite dowmstream
location,very inaccurate results were produced, probably due to an artifical
blockage of the flow. The derivative condition was instead quite satisfactory
and was used throughout this study. In the results section, the wall shear
distribution obtained by this technique for Vv = 0,1 18 shown to be in good agreement
with the linear solution., However, for largef values of the injection velocity v;, the
slower convergence rate of the numerical technique, together with the necessity of
imposing the upstream and downstream boundary conditions farther away from the slot,
caused the computational time to become prohibitivg. An effort was made.theref;re to
remove these two major limitations. A stretching transformation of the longitudinal
coordinate x was used (as in Ref. 6), to reduce the number of computational grid
points without affecting the accuracy. Also, a direct (non-iterative) solution
of the second sweep equation was employed to enhance the convergence rate. The
numerical technique as modified for the present problem is cutlined below, details

being provided only for the new featuras.

16
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A relaxation-like time derivative of the displacement thickness § was

added to the right hand side of the momentum equation (2.1b) so that

uu_+vu --9-2+u + 2 . (4.1)
X y

Then, a two-sweep Alternating Direction Implicit (ADI) technique, which is

accurate to second order in time, was used; the computation proceeded from time

% * * 1
t? to time t = t" + %E and from t to tn+1 = ¢ +~%£ as follows: *

% dp. n * n
(uux + vuy - uyy) = - (dx) +A(8§ -8 (4.2)
and
o+l
* %*
N I - - IR R (L D B (4.3)
with A = % ) (4.4)

n
In practice, at the * time level (%ﬁ) and 6" are known at all the Xy locations

and equation (4.2) is solved, coupled with the continuity equation (2.la), by

x % *
finite difference methods. These provide the u , v and 8 arrays. This step

oy SRR AR e

is identical to that used by Napolitano [6] to solve the supersonic mainstream

strong injection problem and those details will not be repeated here. A second

sweep equation for the ADI procedure is needed to obtain the new time level
ml
values of (%E) and 6n+1. The whole process can then be repeated until a

suitable convergence criterion is met. Such an equation is obtained from
equations (4.2), (4.3) and the interaction law, equation (2.6) as follows: since %& Y
and § do not depend on the normal coordinate y, equations (4.2) and (4.3) were

combined so as to eliminate all of the velocity terms,




n+l n
dp. - (4p ntl % n
(dx) (dx) + A(8 28 + &) . (4.5)
d n+l
Then, this expression for (35) is introduced into the interaction law

equation (26) which is also evaluated at the n+l time level. This gives

n
2. ot o @By 4 a¢s™ _ 25™sD
&L =-L1 g di dE (4.6)
dx2 LI x-£ * ‘

ntl dp, ™1
Next, equation (4.6) is solved for § and the pressure gradient (35)

is evaluated explicitely by means of equation (4.5), which completes the two
sweep ADI process. Note that equation (4.6) is a second order differential
equation and can satisfy both the upstream and downstream boundary conditions
on §. Together, these constitute a properly formulated two-point boundary
value problem. 1In order to obtain the 6n+1 array, by numerically solving
equation (4.6), the integration domain is limited to a finite range %, X where

I

X and x, are locations sufficiently far upstream and downstream of the slot,

respectively. Equation (4.6) is then modified to

n+l x X
2 I  .ntl I n n *
(d g) _+% é $ dg = ..%_ g (dp/dE) " + A (& - 28 )
dx

- - € (4.7

1

o

In References (8,9)it was shown that the error in the Cauchy integral due
to the omitted integration (-w,xl) and (xI,m) was negligible for a proper choice
of x; and Xy. In the present study, it was also verified that moving x; and x;
farther from the slot did not produce any significant change in the results. 1In
equation (4.7), the Cauchy integral has been split in order to place the unknown
terms on the left-hand side of the equation. The Cauchy integrals here were

reduced to finite difference form by the methods given in Reference 9, i.e.,

the § and (dp/dE)n functions were taken as constant over each mesh of the

18




computational domain and removed, so that the singular terms, ;%E , could be

integrated analytically from each grid point to the following one. This provided T
n
the proper coefficient for the previously extracted Ggand (g%) values.
2. otl ' i
Also, (é—%) was expressed in finite difference form using the variable grid
dx
second order accurate representation of Blottner [10] i.e. +
2 $11 1 1 Sin1
(x,,,-Xx, ,) { X,-X -8 G tro=) ¢t X, "X b (4.8)
i+l Ti-1 i"i-1 i "1-1 i+l “i i+1 i
A

As described above, equation (4.7) is reduced to a system of linear algebraic

equations of the form:

(4.9)

n+l

whose solution finally provides the sought after Gi array. The main difference

between this technique and that of References (8,9) lies in the solution procedure
for equation (4.9). This will now be discussed.
In References (8,9) an iterative procedure was used to solve the system (4.8)

at every n+l time level. Equation (4.9) was first rewritten as

ol 3 , (4.10)

(Tyg = Gyy = TP &5 =5

where T, 6 1s the tridiagonal matrix containing all the Aid elements belonging

1}
to its main upper and lower diagonals. The (A1j - Tij) 6§+1 contributions were

then evaluated at a previous iteration level and combined with the known right-

hand side vector 31 to give 4
nt+l n+l
T,, 67 =8, -(,, -T .
1385 P17 By - Ty Sy 1

This was solved repeatedly by the very fast Thomas Algorithm until a convergence

roa e

criterion for 6:+1

ry

and 6?+1 was satisfied.
19
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In the present techaique the matrix Aij; which does not depend on the
solution and is therefore the same at every n+l time level, is inverted once and
for all at the beginning of the computer program. The inversion is obtained by
means of the Fortran double precision version of the IMSL LIB1-0006 LINVZF
subroutine designed for ill-conditioned matrices such as the present one.

It uses the Gauss elimination procedure with iterative improvements until the
inverse AEI

3

here to be eight). By using this inverse, the solution of the second sweep

is correct to a prescribed number of significant figures (chosen
equations involved only a very fast direct matrix multiplication, i.e.

67 = AL, ] (4.12)

In practice, the matrix A was reduced to a 1-2 by 1-2 square matrix, I being

i}
i the total number of grid points in order to properly satisfy the boundary con- l

ditions on 6n+1. These conditions were taken to be G(xl) = 0 and %% (xI) =0,

———

respectively, which in finite difference form became |

6, =0 3 & =& o (4.13a,b)

The I by I to I-2 by I-2 matrix reduction, needed to enforce equétions (4.13a,b)
is very straightforward and is omitted here. Note that in equation (4.12) the
indexes 1 and j vary between 2 and I-1. In the computer program they were all
reduced by one to accommodate the Fortran language implementation.

In Reference (9) it was shown that for a constant step size all the logar-
ithms needed for evaluating the Cauchy Integrals in equation (4.6) peed be !
evaluated only once and stored in a vector of dimension 2I. In this way the

-
' !
<
L3

computational effort was reduced drastically with respect to evaluating all the

logarithms at every second sweep of the solution process. In the present study

‘ 11
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due to the variable grid distribution, a I by I matrix was necessary to store
all the above mentioned logarithms,

In the results section it can be seen that the improved algorithm was
able to compute the solution for Vw -‘1.5 in a reasonable CPU time. The

technique of References (8,9) in this case, would have required a significantly

higher computer storage space and a CPU time one order of magnitude higher.




V. RESULTS

a) Linear Equations Results

A small computer program was used to evaluate the linear theory pressure
and wall shear given by equations (3.31, 3.32) and (3.36, 3.37). All the
integrals were evaluated by the simple trapezoidal rule with the range of
integration for p limited to 0 < p < pmax = 100. 1t can be seen that this
approximation leads to an error of order p;:x or less, which is obviously

negligible. However, the integrand of the integral,

? /3/2 06-02

I= ———— dp (5.1)
o ps; V3 p4+1

is of order li as pt=, This appears in the expression for the wall shear

- p
T equation (3.36),when either x or x-x_ are equal to zero. It is easily seen

that,

P nax
I-f Q/—Z—L—-Ldp-i-f /_/29 dp+0(p ) . (5.2)

o 98- /—p4+1 max

Therefore a very accurate evaluation of I can be obtained by using the trapezoidal
rule numerical integration for the first term.in the right-hand side and adding

to it the second term contribution of /§I(meax). A step size Ap = 0.02 was used
for the numerical integration throughout. Smaller values for Ap were found to
change the numerical results only in the seventh or eight significant figure.

The numerical evaluation of p(0) provided agreement to eight digit accuracy

with the analytical value given in section III. Furthermore, p(0) and 7(0) were

evaluated using both of the expressions valid for x = 0 —and x = 0 +. The two

results coincided up to the seventh digit, again showing very good accuracy.




Veliingret omatngmg

The results for Ew and p(x) corresponding to a wide range of slot lengths L

are presented in figures 2 and 3, where all the features anticipated in Section
III can be easily observed. In particular, it is interesting to notice the
asymptotic tendency of the results for finite x, toward that of the limiting case
for xs+w. Also of interest is the fact that the present results are qualitatively
very similar to those obtained by Smith and Stewartson [4] for the supersonic
mainstream case. A noticeable difference is that the supersonic mainstream

x (x-x )
pressure ahead of the slot [p =3 (e -e s )] is essentially independent

40
of the slot length Xy for x, > 5, 1In the subsonic mainstream case the pressure
rise ahead of the slot is spread out over a much longer region and it changes
much more significantly as X, Brows larger. This is consistent with the fact
that in subsonic maintream flow disturbances usually can extend upstream over
a3 longer region. Incidentally, note that the graphical results in Reference 4
are scaled with respect to the p(0) and T(0) values, respectively, so that p(x)
and t(x) appear to be independent of Xo» which is untrue. It should also be
pointed out that very similar results for the supersonic and subsonic mainstream
cases were found by Smith [11] for the problem of flow past a small hump on
a flate plate. For that case Napolitano et. al. [8] also found that such a
similarity was maintained by the nonlinear results, and actually for both cases
geparation first occurred at the downstream side of the hump as anticipated by
linear theory. For the supersonic slot injection problem Napolitano [6] has

found that,due to nonlinear effects,separation first occurs ahead of the slot

for a length of the same,x_ = 5. An even more remarkable result, for the present

subsonic mainstream case,is discussed next.
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b) Nonlinear Equations Results

Solutions to the nonlinear equations are presented for one slot length
only x, = 5. A comparison can then be made with the supersonic mainstream
results of Napolitano [6], particularly with respect to the occurrence and
location of separation. A small value of the wall injection velocity
(Vw = 0.1) was chosen first, in order to check accuracy and reliability
of the numerical technique by comparison with the linear theory results.
Both the numerical technique of References [8, 9] with the appropriate
boundary conditions, as described in section IV, and the new one using a
variable grid and a direct inversion of the second sweep equation were
used for this check. The wall shear results obtained by the two different
programs are shown in figure 4 together with the linear results. The
agreement between linear and nonlinear solutions is quite satisfactory,
considering that the nonlinear solutions are only first order accurate
in the longitudinal directioﬁ x and use a fairly large step size Ax = 0.25;

also, for Vw = 0.1 linear theory could have some error. Moreover, the

agreement between the two nonlinear solutions is almost perfect, considering

the several differences between the two schemes. For the first one, for
example, the step size Ax was constant everywhere (Ax = 0.25), x, and x;
were equal to -10 and 15 respectively, and the second sweep equation was
modified according to the way described in Reference 8, section IVc. The
new scheme, instead, used step size Ax variable outside the slot, according
to the stretching provided in Reference 6. % and Xy were equal to -20.8
and 25.8 respectively and the Cauchy integral of a discontinuous pressure

gradient 18 evaluated according to the method described in Reference 9,

section IV 3, The pressure profiles were also found to be in close
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agreement. A step size study was performed for the new numerical scheme.

The results for the shear and pressure at the leading edge of the slot

are shown in Figure 5; the second order accuracy in the normal direction y

and the first order accuracy in the longitudinal direction x are clearly

verified. The new technique was then employed to obtain numerical solutions

for larger values of the injection velocity. The wall shear distributions

obtained for three values of Vw, namely 0.5, 1 and 1.5, are presented in

figure 6. These results are very interesting and quite surprising.

As in the supersonic mainstream case [6] the wall shear decreases monotonically

upstream of the slot and has a dip immediately after the front of the slot.

It then decreases again along most of the slot length. In the supersonic

free streamproblem, as Vw increased to a value of about 1.1 the minimum

shear became negative just ahead of the slot indicating the occurrence

of separation and a small region of negative shear was found ahead and

through the slot frong for VQ = 1.5. In the present problem the shear

dip ahead of the slot also increases with V§ and separation would appear

likely there for a large enough Vw value. However, in this case, a new

feature appears, i.e., there is a more rapid shear decrease downstream of

the slot as Vw increases. This is small and very localized for Vw = 0.5

but it becomes more and more significant as Vw increases. For Vw = 1.3,

the shear actually goes to zero downstream of the slot and for Vw = 1.5

a reverse flow bubble is present over a fairly large distance on the plate.
All the results have been obtained using a constant step size in the

normal direction y, Ay = 0,3 and a variable one in the longitudinal direction

x, 4x > 0,25, The values for *1 and *I where taken to be -~ 20,8, - 30, - 35.2

and 25,8, 35, 45,8 corresponding to v; < 0,5, Vw = 1 and v, " 1.5, respectively. .




R

The outer edge boundary conditions were imposed at y = 12, 15, 18 and 21
corresponding to Vv, = 0.1, 0.5, 1 and 1.5. 1In all cases the solution did

not change appreciably when the domain of integration was increased. Two
points are of special interest. First, due to the direct inversion of the
second sweep equation the optimal time step for convergence was found to be
equal to two. This is the same as in the supersonic mainstream case [6].

(For the technique of References (8,9) it was equal to one). Second, the
convergence rate here was comparable to that for the supersonic mainstream.
for V& < 1 the average variation for § over one complete time step became of
the order of 107’ in less than one hundred iterations. For V, = 1.5 the
convergence rate was much slower so that it had to be reduced to one. 1In all,
500 iterations were required for a total computational time of about 8 CPU, on
the AMDAHL/470 computer. The solution was initialized with the uniform shear
flow configuration (u = y, v = § = dp/dx = 0 every where). The injection
velocity Yb was started at the value of 0.1 and increased by 0.1 after each

time step until the final, desired value, was reached.
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