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ON STRONG SLOT INJECTION INTO A SUBSONIC LAMINAR BOUNDARY LAYER

M. Napolitano and R.E. Messick j

ABSTRACT

This paper is concerned with the problem of strong slot injection into

a subsonic laminar boundary layer at asymptotically high Reynolds number.

The problem is formulated and the governing equations are presented within

the context of triple deck theory. The linear problem, valid when the

injection velocity is small, is solved analytically by Fourier Transform

techniques. Graphical results are given for a wide range of slot lengths.

A numerical technique for the nonlinear equations is presented and used to

obtain solutions for various injection velocities. Separation is found to

first occur downstream of the slot, where a recirculating flow bubble is formed.
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I. INTRODUCTION

Injection of a secondary fluid into a well developed boundary layer is

a widely used technique in the aeronautical industry. It is used, for example,

for cooling gas turbine blades and for controlling transition and/or separation

(blow off) of the boundary layer over airplane control surfaces. It is therefore

of great practical significance, for the aerodynamicist and the thermal analyst

as well, to be able to analytically predict the effect of injection on the flow

pattern and temperature distribution around a turbine blade or any other piece

of machinery. Our interest is presently limited to the aerodynamic aspect of

the problem. In this respect, most of the early, classical work on injection

is concerned with the case of weak blowing into an incompressible, laminar boundary

layer; that is, the ratio between injection and free stream velocities is assumed

j tc be inversely proportional to the square root of the characteristic Reynolds

number, Re. For this case, classical boundary layer theory is valid and self

similar solutions are possible [1]. The most important conclusion of such

studies is that weak injection has a much greater effect on the boundary layer

properties (wall shear, displacement thickness etc than one might expect, and

such injection can even blow the layer off the plate, i.e. induce separation.

Subsequently, the interest of most researchers has been attracted by the

supersonic mainstream case. See Smith and Stewartson (4] for a critical review

of their efforts. In particular, after the formalization of the asymptotic triple

deck theory of Stewartson et al. [2,31 a rigorous definition for moderate and

strong blowing has become available, together with the appropriate governing

equations. Smith and Stewartson (4] consider the problem of strong slot injection

into a supersonic laminar boundary layer; for this, they provide analytical
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solutions to the linear problem, valid when the injection velocity is small

in the triple deck scaling, and a numerical technique for the full nonlinear

problem. Such a numerical technique, though, developed a "pressure sensitivity"

or instability, due to ineffective imposition of the downstream boundary

condition, and could not account for separation ahead of the slot. Napolitano

[6] has recently overcome these two difficulties and provided more complete

results, in which separation is indeed found to first occur ahead of the slot.

Finally, Smith and Stewartson [5] also considered the problem of strong (and

massive) plate injection into a separated supersonic laminar boundary layer.

Sychev [7] has recently shown that triple deck theory is valid for subsonic

flow conditions as well. The problem of strong slot injection into a subsonic

laminar boundary layer, has thus become feasible, and is the subject of this

paper. In section II the problem is defined and the triple deck governing equations

presented. In section III, the case in which the injection velocity is small,

is considered: the governing equations are linearised and solved analytically

by Fourier transform Techniques. In section IV a numerical technique for the

full nonlinear problem, derived from that of Napolitano et al [8), is presented.

Finally, in section V results are provided for the linear and nonlinear problems.

Linear pressure and wall shear solutions are presented for a wide range of slot

lengths. Nonlinear results are instead provided for one slot length only but for

various values of the injection velocity.

2
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II. Problem Definition and Governing Equations

A Newtonian fluid, of kinematic viscosity v*, flows past a semiinfinite

flat plate with subsonic free stream velocity, U*, parallel to the plate. At

a distance x* from the leading edge of the plate, fluid is injected perpendicular
0

to the wall, with velocity v *, thru a slot of length Xk - x*. The
s 0

characteristic Reynolds number, Re = TI* x*/v*, is asymptotically large and the
0

injection velocity and slot lengths are of order Re-
3/ 8 U* and Re-3/8x,

00 09

respectively. For this flow situation, (see Figure 1) three region or decks

develop around the injection region, the lower, middle and outer decks, all
3

having the characteristic length of the interaction region, of order c x*
0

(e = R )and characteristic height of order e , 4 x* and e x*
0 0 0

respectively. The middle deck is a displaced Blasius boundary layer, having

the passive role of communicating the pressure interaction between inner and

outer decks. This last one is a potential flow past a "thin airfoil"

produced by the viscous effects in the lower deck underneath. The inner (lower)

deck, finally, is a viscous region which arises from the need to satisfy

the wall boundary conditions on the plate. After appropriate scaling of the

independent and dependent variables and proper matching between the neighboring

decks, the Navier Stokes equations reduce to the triple deck ones. These

are basically the lower deck boundary layer like equations coupled to the outer

deck (linear airfoil) pressure interaction law. The continuity and momentum

equations are given as:

+ vy 0; uu +vu - _ + u (2.1,a,b)ux  Vy=x y -dx Uyy,

3
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with boundary conditions:

u(x,O) = 0 (2.2)

v(x,0) = for 0 < x < x (2.3)
0 elsewhere

u(x,y - y + 5, (2.4)

u(x -= ,y) - y . (2.5)

The pressure displacement interaction law is finally given by

is = x1 (2.6)
xx I -

where the integral denotes the Cauchy principal value. Note that 6 is the

total displacement, due to the viscous effects and to the injected fluid as

well. Also note that 6 and p are independent of the normal coordinate y.

For these two quantities the x subscript indicates a total (rather than a

partial) derivative.

4



III. Solution to the Linear Problem

The problem described by equations (2.1) thru (2.6) is nonlinear, because

of the convective terms u u and v u in the momentum equation (2.1b) and,x y

at present, can be solved only numerically. The case in which the injection

velocity Vw is very small (V w<<), however, can be studied analytically. This

analytical solution is very important since it provides interesting information

on the asymptotic decay of the solution for x ) + c and is the only tool

for assessing accuracy and reliability of the numerical results. Moreover, its

usefulness can be reasonably expected to be even greater, because, for the super-

sonic mainstream case, it has been found that the linear solution is relatively

close to the full nonlinear one, for V as large as 1 [61 . A broad range of
W

validity for the linear solution has also been found for both supersonic and

subsonic flow past a hump on a flat plate [8,9]. For V equal to zero, the flow
w

field is one characterised by uniform shear (u=y) with v, p and 6 identically

equal to zero. For V 1<<, thus, the solution is a small perturbation of such aw

uniform shear flow, that is

u(x,y) = y + V u (x,y) + ... (3.1)w

v(x,y) - Vwv(xy) + ... (3.2)

6(xy) - Vw (X,y) + ... (3.3)

p(x,y) - Vp(x,y) + ... (3.4)

5WV
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In order to obtain the governing equations for the linear problem, equations

(3.1 - 3.4) are substituted into equations (2.1 - 2.6) and only the terms

containing V linearly are retained, to give:
w

u +v f0; yu +v= _d + u (3.5 a,b)x y x dx yy

u(x,O) = 0 (3.6)

.0; <x<x

V(x,O) = s (3.7)
to elsewhere

u (x,y CO) - 6 (3.8)

u (x -,y) = 0 (3.9)

d2 T (3.10)dx 2  T _ CO X-C

Linearization makes it possible to construct the solution for the case

of a finite slot from the solution for the infinite slot (xs=W) by translation

and superposition. For clarity and convenience the superior bars will be omitted

from the dependent variables for the case of the infinite slot.

The infinite slot problem may thus be formulated as follows:

ux + vy 0, y ux + v , - + uyy (3.11 a,b)

6

4S



for (x,y) E{(-,-)X[O,-)}, with the subsidiary conditions:

u(x.O) - 0 (3.12)

v(x,O) - h(x) (3.13)

u (-,y) - 0 (3.14)

u(xm) - 6(x) (3.15)

p(+) - 0 (3.16)

6x) - p E ____ (3.17)

where h(x) denotes the Heaviside step-function and the integral the Cauchy

principal value.

The system (3.11) may be transformed to a single equation by

differentiating (3.11 b) with respect to y and using (3.11 a) to eliminate

v . The result is
y

w - y w - 0 (3.18)

where w - u . Let capital letters denote the Fourier transforms of theY

corresponding (lower-case) dependent variables e.g.

W w e"i x dx (3.19)

7iWOWWWWO W -I-MM
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The Fourier transform of (3.18) using (3.14) then provides the Airy

differential equation

W - iy W - 0 (3.20)YY

where, again for clarity and convenience, the product iw will be understood to

stand for E + iW, with c > 0 an arbitrarily small constant to assure convergence

of the transform at the upper limit. The limit as c + 0 is to be used in all results.

The only non-integral powers of iw to be encountered here involve the cube root. A

natural branch for these, leaving the real w axis free is

1 1 1 1
Lin [  + i w] = [iw]3 - T e3  (+ (3.21)

for - < which defines the cut indicated in the figure.

The general solution of (3.20) is usually written as

1 1

W - C Ai ([iw] 3 y) + C1 Bi ([iw] 3 y) (3.22)

where CO, C1 are constants and Ai, Bi are the Airy functions of the first and

second kind, respectively. However, it now follows that W is exponentially

8l
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unbounded as y + -, violating conditions (3.14) and (3.15), unless C, 0.

With C1 = 0, condition (3.12) implies that

y1
U C 0 Ai ([iw]T3 )dE (3.23)

The Fourier transform of (3.15) then requires that

CA - Ai ([iW1])dC (3.24)

However, for precisely the branch defined in (3.21), the integral in (3.24)
1

evaluates to -- *" Thus,
3[iw]3

1

C0 . 3[iw,]3  (3.25)

Now A is related to P by means of the transform of (3.17), using (3.16). i.e.

iwA - i P sgn w (3.26)

1 >0
where sgn w -

Condition (3.13) remains to be satisfied. However, by continuity it can be

used with (3.11 b) to give:

9
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uyy = Px + h(x) for y + 0 (3.27)

The transform of this (with our limiting convention) is

U i 1P + for y 4 0 (3.28)
yy iw

Substituting from (3.28) for U, we have

1

C0 [iw]3 Ai'(0) = iwP + 1- (3.29)
iW

Equations (3.25), (3.26) and (3.29) maybe solved to give

2

P a -(3. 30a)

-- (i ) 3 (3. 30b)D

-3i(iw) -sgn w (3.30b)C0 D

A W -i(iw) 3 sgn w (3.30c)

4 54 3

where D - (iw) - + e " i sgn w and 8 = [-3AikO)]4  = 0.8272 ... is Lighthill's

constant.

U is now known from (3.30b) and (3.23), so its inverse transform u, together

with p from (3.30a), maybe used with (3.11) to find v and check the results.

The inverse transforms can be put into a suitable real form after some

cumbersome but straight-forward manipulations. These manipulations iuvolve

altering the paths of integration to radial lines at angles of -= + in the

10 J
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w-plane, depending upon whether or not + x > 0.

The result for the pressure then takes the compact form:

3 0 -ejxjP 3
43 e-_,_ (3.31)

2h(x)O P0 8-v p4 h(x)+l

It now follows by superposition that the pressure for the finite slot

is:

p(x) - p(x) - p(x-x ) (3.32)

It is obvious that p(x) is continuous everywhere except possibly at the slot

ends i.e. at x-0, x s  Let the jump in a function f(x) be defined as

{f(x)) - f(x+) - f(x-) (3.33)

then

{P(0)} - -{p(x )} - (p(O)}

3 [Idp -2 

21r8 L 0 
8 -r3 P4+1 1 8+1

3 L /2"Trcos T 2 "2rcos" 0 (3.34)
21rOL 2 2]4
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Also, I

I
TP (O)1 -{P x (x ) = p (O)}

8/~d4+ ff 3do_ I
8f i

3 + 2 -1 (3.35)

This shows that p is (i.e. may be defined to be!) continuous on (-ooo), but

that its derivative, the pressure gradient, displays unit jump discoutinuities at

the ends of the slot in opposite directions.

Considering (3.31) and (3.32), it is seen that outside of the slot the

denominators of both integrands in (3.32) are the same. (Note that pa - /€ -4 + 1> 0

for all p so p(x) > 0 for all x.) However, for x < 0 the exponential function

in the integrand of p(x) exceeds that in p(x-x s). The situation is reversed for

X > Xos

It follows then, because of the difference in p's in (3.32), that p(x)

is positive to the left of the slot (x<0) and negative to the right of the slot

(x>xs). Also, differentiation of p(x) for x < 0 does not alter this sign relationship

while for x > x5 it reverses it. This means that in both cases '(x) is a monotone

increasing function of x. Now 0(+c) 0, so that D(x) starts from zero at x - -

and increases positively to the maximum of p(0) > 0 at x - 0. To the right of the -.

slot F(x) starts at the negative value (x ) for x -x and increases to zero

as x + .

12
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Within the slot, differentiation of F(x) results in the derivative of

p(x) being negative while the derivative of p(x-xs ) remains positive. This means

that the derivative of p(x) within the slot is negative and that p(x) is monotone

decreasing from p(O) > 0 to the minimum of p(x s) < 0 at the r.h. end of the slot.

Finally, it is clear that for x < 0, p(x) is a monotone increasing function

or x . The maximum p(0) increases from 0 for x 0 to the maximum

p(O) 3 cos , (see (3.34)),for x 8 . Conversely, for x > x, p(x) Is a

monotone decreasing function of xs . The minimum p(xs) decreases from 0 for xs - 0
3v/2

to the minimum -p(O) - r cos for x t

The skin friction coefficient T(x) U (x,O) is also of primary importance.
y

For the infinite slot T(x) - Uy (x,O) can be written in the compact form:

3 r3 h(x)

T ~ (X) 9 r h x) + p2 e j -lT _) h dx (3.36)
[2r(.) 0

So that, as before, for the finite slot;

T(x) T r(x) - T(x-x ) (3.37)

Here too T(x) is obviously continuous except possibly at the slot ends.

-_._,_ 13
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{( - Tx s )1 ={z(o))

- - 2
3 L o 8 3 4 1 8 1 P

272 0  p8-VP4+1  p8+l

r r2' sin - Trr2 s in "
9 r=3 8 8  0 (3.38)27r2 e3 L 4 4

I
Also,

- h (x ) 
-=Ixp 3

T (x) 9,/3 - [p5-r/ph(x)]e dp (3.39)
x 2w'282  0 P8-tp 4h (x) + I

Therefore:

{T x(0)= -( x(X ) (Tx (0)1

9r3- f o (p5-/3p)dp _ O p5dp
2 2 2f 8,- 1821 2 8 "

0  p8-'3p4+l 4 +I

9 2 2  - 0 (3.40)
22 2L1 8 8

Again,

1 3

9(J) . _ ( x) - J e-B - (3.41)
212e f3(x)T P 8-ph(x) +1 "i

14



So that

T9 ()h(x) W(9/ / cos 8 as ,x, . 0 (3.42)
27 2 36'3"(x)T

In summary then T(x) and its derivative are continuous on ( but

xx - O(/IxI 3) or 0(1/Ix-x s113) as x tends to 0 or x., respectively.

I
I
I

1 ''
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IV. NUMERICAL TECHNIQUE

The numerical technique of Napolitano et. al. [8,9], when applied to the

triple deck equations for subsonic flow past a parabolic hump, successfully

accounted for the discontinuous pressure gradients at the leading and trailing

edges of the hump. Therefore, it could be reasonably expected to be applicable

to the present strong slot injection problem by changing the wall boundary

condition for the normal velocity component. However, another modification was

found necessary, i.e. the downstream boundary condition for the displacement

d6
thickness 6 had to be applied as a derivative one, L - 0, in order to obtain

correct results. This was needed because, due to the injected fluid, 8 decays

to zero very slowly as x - -. When 6 was set equal to zero at a finite downstream

location,very inaccurate results were produced, probably due to an artifical

blockage of the flow. The derivative condition was instead quite satisfactory

and was used throughout this study. In the results section, the wall shear

distribution obtained by this technique for V - 0.1 is shown to be in good agreement

with the linear solution. However, for larger values of the injection velocity Vw, the

slower convergence rate of the numerical technique, together with the necessity of

imposing the upstream and downstream boundary conditions farther away from the slot,

caused the computational time to become prohibitive, An effort was made- therefore to

remove these two major limitations. A stretching transformation of the longitudinal

coordinate x was used (as in Ref. 6), to reduce the number of computational grid

points without affecting the accuracy. Also, a direct (non-iterative) solution

of the second sweep equation was employed to enhance the convergence rate. The

numerical technique as modified for the present problem is outlined below, details

being provided only for the new features.

16
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A relaxation-like time derivative of the displacement thickness 6 was

added to the right hand side of the momentum equation (2.1b) so that

uu + VUu - YY +-' . (4.1)
x y dx yy at

Then, a two-sweep Alternating Direction Implicit (ADI) technique, which is

accurate to second order in time, was used; the computation proceeded from time

* tn t * n+l At
t n to time t -t +--and from t to t = t +yT-as follows:

(uU + vi - u ) + X(6* n) (4.2)

y yy dx

and

(u u + X(6 n+l _ 6)
x + y yy dx

I with (4.4)
n

In practice, at the * time level (dpn and 6n are known at all the x locations

and equation (4.2) is solved, coupled with the continuity equation (2.1a), by
l , * *

finite difference methods. These provide the i , v and 6 arrays. This step

is identical to that used by Napolitano (61 to solve the supersonic mainstream

strong injection problem and those details will not be repeated here. A second

sweep equation for the ADI procedure is needed to obtain the new time level
n+l n+l

values of (4x) and 6 . The whole process can then be repeated until a

suitable convergence criterion is met. Such an equation is obtained from

equations (4.2), (4.3) and the interaction law, equation (2.6) as follows: since dx

and 6 do not depend on the normal coordinate y, equations (4.2) and (4.3) were

combined so as to eliminate all of the velocity terms,

j 17 AL
. . . ... . . . i j - M



I

(dx) = ) + dx8 26 + (4.5)

Then, this expression for (d) l is introduced into the interaction law

equation (26) which is also evaluated at the n+l time level. This gives

2n+l (Z) + X(Srrl - 2- n)
(d28)_ 1 _I d (4.6)

dx2  _E

Next, equation (4.6) is solved for 
6 n and the pressure gradient () n+l

is evaluated explicitely by means of equation (4.5), which completes the two

sweep ADI process. Note that equation (4.6) is a second order differential

equation and can satisfy both the upstream and downstream boundary conditions

on 6. Together, these constitute a properly formulated two-point boundary

value problem. In order to obtain the 6n+l array, by numerically solving

equation (4.6), the integration domain is limited to a finite range xi, xI where

x and xI are locations sufficiently far upstream and downstream of the slot,

respectively. Equation (4.6) is then modified to

d2 n+l x n+1  xi + nd) + d - (dp/dn + (6 -26) dE (4.7)
dx2  Xl Xl-

In References(8,9)it was shown that the error in the Cauchy integral due

to the omitted integration (-,x1 ) and (xl,') was negligible for a proper choice

of xI and xI. In the present study, it was also verified that moving xI and xI

farther from the slot did not produce any significant change in the results. In

equation (4.7), the Cauchy integral has been split in order to place the unknown

terms on the left-hand side of the equation. The Cauchy integrals here were

reduced to finite difference form by the methods given in Reference 9, i.e.,

the 6 and (dp/dEn functions were taken as constant over each mesh of the

18
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computational domain and removed, so that the singular terms, - could be

integrated analytically from each grid point to the following one. This provided
n

the proper coefficient for the previously extracted 6 nand values.
d126 nt+l

Also, (-_i)2 ) was expressed in finite difference form using the variable griddx 2

second order accurate representation of Blottner [10] i.e.

2 f i- a 1 + 1 + i+l (4.8)
(x i+l-xi_) xi-xiI ixi- xi 1  Xi+l-xi X i+l-Xi

As described above, equation (4.7) is reduced to a system of linear algebraic

equations of the form:

A 6 n+l . (4.9)
.nn~l

Aij j i  , 49

whose solution finally provides the sought after 6 array. The main difference

between this technique and that of References (8,9) lies in the solution procedure

for equation (4.9). This will now be discussed.

In References (8,9) an iterative procedure was used to solve the system (4.8)

at every n+l time level. Equation (4.9) was first rewritten as

Tij + (Aij -Ti) n+l . D (4.10)

where T is the tridiagonal matrix containing all the A i_ elements belnnging
.n+l cnrbtoswr

to its main,upper and lower diagonals. The (Au - Tij) 6 contributions were

then evaluated at a previous iteration level and combined with the known right-

hand side vector to giveiiv

T + - (Aij - TiJ) 6 pl (4.11)

This was solved repeatedly by the very fast Thomas Algorithm until a convergence

criterion for 6n+l and 6 n+l was satisfied.Pi i

I ,
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In the present technique the matrix Aij, which does not depend on the

solution and is therefore the same at every n+l time level, is inverted once and

for all at the beginning of the computer program. The inversion is obtained by

means of the Fortran double precision version of the IMSL LIBl-0006 LINV2F

subroutine designed for ill-conditioned matrices such as the present one.

It uses the Gauss elimination procedure with iterative improvements until the
-l

inverse Ai is correct to a prescribed number of significant figures (chosen

here to be eight). By using this inverse, the solution of the second sweep

equations involved only a very fast direct matrix multiplication, i.e.

n+l -l A-
6i A D (4.12)i ijj

In practice, the matrix A was reduced to a 1-2 by 1-2 square matrix, I being

ij

the total number of grid points in order to properly satisfy the boundary con-

ditions on 6 n+ l . These conditions were taken to be 6(x1  0 and- (x1) 0 0,

respectively, which in finite difference form became

61 = 0 ; 6 -6 (4.13a,b)

The I by I to 1-2 by 1-2 matrix reduction, needed to enforce equations (4.13a,b)

is very straightforward and is omitted here. Note that in equation (4.12) the

indexes i and j vary between 2 and I-1. In the computer program they were all

reduced by oae to accommodate the Fortran language implementation.

In Reference (9) it was shown that for a constant step size all the logar-

ithms needed for evaluating the Cauchy Integrals in equation (4.6) need be

evaluated only once and stored in a vector of dimension 21. In this way the

computational effort was reduced drastically with respect to evaluating all the

logarithms at every second sweep of the solution process. In the present study
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due to the variable grid distribution, a I by I matrix was necessary to store

all the above mentioned logarithms.

In the results section it can be seen that the improved algorithm was

able to compute the solution for V - 1.5 in a reasonable CPU time. Thew

technique of References (8,9) in this case, would have required a significantly

higher computer storage space and a CPU time one order of magnitude higher.

2
1
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I

V. RESULTS

a) Linear Equations Results I
A small computer program was used to evaluate the linear theory pressure

and wall shear given by equations (3.31, 3.32) and (3.36, 3.37). All the

integrals were evaluated by the simple trapezoidal rule with the range of

integration for p limited to 0 < p < pmax 100. It can be seen that this

approximation leads to an error of order p 4  or less, which is obviouslyPmaxoreswchsobosl

negligible. However, the integrand of the integral,

C 3 /2 6 2

I f 8 4 dp (5.1)

1
is of order -2 as p+-. This appears in the expression for the wall shear

Tw, equation (3.36), when either x or x-x are equal to zero. It is easily seen

that,

max 12 p 6 _ p225

S- 8-f2 4+ dp + f F12 p-  dp + O(p ) (5.2)
0 P -Fp4+ ma x

ma

Therefore a very accurate evaluation of I can be obtained by using the trapezoidal

rule numerical integration for the first term in the right-hand side and adding

to it the second term contribution of r3/(2p max ). A step size Ap - 0.02 was used

for the numerical integration throughout. Smaller values for AP were found to

change the numerical results only in the seventh or eight significant figure.

The numerical evaluation of p(O) provided agreement to eight digit accuracy

with the analytical value given in section III. Furthermore, p(O) and ;(0) were

evaluated using both of the expressions valid for x - 0 - and x - 0 +. The two

results coincided up to the seventh digit, again showing very good accuracy.
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The results for w and p(x) corresponding to a wide range of slot lengths x.

are presented in figures 2 and 3, where all the features anticipated in Section

III can be easily observed. In particular, it is interesting to notice the

asymptotic tendency of the results for finite x toward that of the limiting case

for x +-. Also of interest is the fact that the present results are qualitatively

very similar to those obtained by Smith and Stewartson [4] for the supersonic

mainstream case. A noticeable difference is that the supersonic mainstream
-x (xn-x s )

pressure ahead of the slot [p =- (e - e S)] is essentially independent

of the slot length x5 for x a > 5. In the subsonic mainstream case the pressure

rise ahead of the slot is spread out over a much longer region and it changes

much more significantly as x grows larger. This is consistent with the fact

that in subsonic maintream flow disturbances usually can extend upstream over

a longer region. Incidentally, note that the graphical results in Reference 4

are scaled with respect to the p(O) and (O) values, respectively, so that p(x)

and T(x) appear to be independent of is, which is untrue. It should also be

pointed out that very similar results for the supersonic and subsonic mainstream

cases were found by Smith [11] for the problem of flow past a small hump on

a flats plate. For that case Napolitano et. al. [8] also found that such a

similarity was maintained by the nonlinear results, and actually for both cases

separation first occurred at the downstream side of the hump as anticipated by

linear theory. For the supersonic slot injection problem Napolitano [6] has

found that, due to nonlinear effectsseparation first occurs ahead of the slot

for a length of the samex s - 5. An even more remarkable resultfor the present

subsonic mainstream case,is discussed next.
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b) Nonlinear Equations Results

Solutions to the nonlinear equations are presented for one slot length

only x W 5. A comparison can then be made with the supersonic mainstream

results of Napolitano [6], particularly with respect to the occurrence and

location of separation. A small value of the wall injection velocity

(V = 0.1) was chosen first, in order to check accuracy and reliability

of the numerical technique by comparison with the linear theory results.

Both the numerical technique of References [8, 9] with the appropriate

boundary conditions, as described in section IV, and the new one using a

variable grid and a direct inversion of the second sweep equation were

used for this check. The wall shear results obtained by the two different

programs are shown in figure 4 together with the linear results. The

agreement between linear and nonlinear solutions is quite satisfactory,

considering that the nonlinear solutions are only first order accurate

in the longitudinal direction x and use a fairly large step size Ax - 0.25;

also, for V - 0.1 linear theory could have some error. Moreover, thew

agreement between the two nonlinear solutions is almost perfect, considering

the several differences between the two schemes. For the first one, for

example, the step size Ax was constant everywhere (Ax - 0.25), x1 and x

were equal to -10 and 15 respectively, and the second sweep equation was

modified according to the way described in Reference 8, section IVc. The

new scheme, instead, used step size Ax variable outside the slot, according

to the stretching provided in Reference 6. x1 and xI were equal to -20.8

and 25.8 respectively and the Cauchy integral of a discontinuous pressure

gradient is evaluated according to the method described in Reference 9, :1
section IV 3. The pressure profiles were also found to be in close
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agreement. A step size study was performed for the new numerical scheme.

The results for the shear and pressure at the leading edge of the slot

are shown in Figure 5; the second order accuracy in the normal direction y

and the first order accuracy in the longitudinal direction x are clearly

verified. The new technique was then employed to obtain numerical solutions

for larger values of the injection velocity. The wall shear distributions

obtained for three values of Vw, namely 0.5, 1 and 1.5, are presented in

figure 6. These results are very interesting and quite surprising.

As in the supersonic mainstream case [6] the wall shear decreases monotonically

upstream of the slot and has a dip immediately after the front of the slot.

It then decreases again along most of the slot length. In the supersonic

free stream problem, as V increased to a value of about 1.1 the minimumw

shear became negative just ahead of the slot indicating the occurrence

of separation and a small region of negative shear was found ahead and

through the slot frong for Vw - 1.5. In the present problem the shear

dip ahead of the slot also increases with V and separation would appear
wI likely there for a large enough Vwvalue. However, in this case, a new

feature appears, i.e., there is a more rapid shear decrease downstream of

the slot as V increases. This is small and very localized for V - 0.5w w

but it becomes more and more significant as V increases. For V a 1.3,w w

the shear actually goes to zero downstream of the slot and for V - 1.5w

a reverse flow bubble is present over a fairly large distance on the plate.

All the results have been obtained using a constant step size in the

normal direction y, Ay - 0.3 and a variable one In the longitudinal direction

x, Ax > 0.25. The values for x1 and xI where taken to be - 20.8, - 30, - 35.2

and 25.8, 35, 45.8 corresponding to V < 0.5, Vw - 1 and V - 1.5, respectively.
w w w
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The outer edge boundary conditions were imposed at y - 12, 15, 18 and 21

corresponding to Vw - 0.1, 0.5, 1 and 1.5. In all cases the solution did

not change appreciably when the domain of integration was increased. Two

points are of special interest. First, due to the direct inversion of the

second sweep equation the optimal time step for convergence was found to be

equal to two. This is the same as in the supersonic mainstream case [6].

(For the technique of References (8,9) it was equal to one). Second, the

convergence rate here was comparable to that for the supersonic mainstream.

For V < 1 the average variation for 6 over one complete time step became of

the order of 10- 7 in less than one hundred iterations. For Vw - 1.5 the

convergence rate was much slower so that it had to be reduced to one. In all,

500 iterations were required for a total computational time of about 8 CPU, on

the AMDAHL/470 computer. The solution was initialized with the uniform shear

flow configuration (u - y, v - 6 - dp/dx - 0 every where). The injection

velocity W was started at the value of 0.1 and increased by 0.1 after each

time step until the final, desired value, was reached.

r"r
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Figure 1. THE STRONG SLOT INJECTION PROBLEM
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