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CHAPTER 1
INTRODUCTION

Among the various problems of electromagnetic scattering by arbi-
trary bodies, only a few simple shapes have led to exact solutions.
The diffraction of an electromagnetic plane wave by a conducting circu-
lar disk long remained unsolved. The presence of an edge led to much
greater complications than, for example, the sphere which was solved by
Mie[1] very early in this century.

First, some limiting cases were derivad for the disk problem.
Approximate solutions were obtained by Kirchhoff diffraction theory
for disks of large electrical circumference kd where k is the wave
number and d the diameter of the disk and by Lord Rayleigh[2] for
disks of small electrical circumference. After the second world war,
extensive work was directed at the disk problem, and two complete gen-
eral solutions were developed. Meixner and Andrejewski[3] used Hertzian
vector potentials to compute the scattered field. They derived the form
of the potential from the appropriate boundary conditions, and the uni-
queness of the solution was insured by the edge condition developed by
Meixner[4]. He showed that the energy density of the total field in the
vicinity of an edge must be integrabl?. This insists that the compon-
ents of the fields vary at most as s~ /2, where s is the distance to the
observation point from the edge. Bouwkamp[5] showed that the tangential
elﬁgtric field is zero on the edge, that it approaches this value as
s , and that the tangential magnetic field remains finite. Tangen-
tial, in this context, means parallel to the edge. This solution has
been checked by numerous computations made in recent years. Since the
development by Hodge[6] of an efficient method of computing the spher-
oidal eigenvalues, even more efficient computers have allowed extensive
comparison between experimental data and computational results with very
good agreement.

Shortly after Meixner, Flammer[7] derived another solution using

" oblate spheroidal vector wave functions to expand the fields. As in the

Mie solution for the sphere, the fields of the incoming plane wave were
expanded in terms of the vector wave functions. The boundary conditions
on the surface of the disk determined the scattering components. In.
order to insure that the tangential component of the electric field is
zero on the edge, two sets of vector wave functions were used and their
relative weights in the expansion of the incident plane wave were deter-
mined by the edge boundary condftion. This led to a unique solution.
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The purpose of this work is to compare Meixner's and Flammer's
solutions. Apparently, no numerical results have ever been obtained
from Flammer's formal solution. Thus, it is necessary to establish that
the formal solution is, in fact, valid. If this validity is established,
the vector wave function formalism may be more convenient for examina-
tion of such characteristics as the surface current distributions and
the natural resonances. The reference work used for Meixner's solution
is Hodge's version. Hodge[8] used the notation and normalization of the 1
spheroidal functions introduced by Flammer. In order to match Hodge's
geometry, Flammer's solution is rederived for the same configuration.
The bistatic normal incidence case is more deeply studied, and problems
encountered in the derivation of the solution are pointed out. Compu-

tations made in the normal incidence case, as studied by Flammer, are l
compared to the results obtained by Hodge[9]. In addition, Meixner's ;
fields are expressed in terms of spheroidal vector wave functions as

well as the vector potentials. Another praof of Meixner's solution with '

vector wave functions is given.
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CHAPTER T1
SPECIFICATIONS OF THE PROBLEM

A. Geometry

The scattering object is an infinitely thin, perfectly conducting
circular disk of raaius a. It lies in the x-y plane of a right-handed
Cartesian coordinate system and is centered at the origin.

The following study will be made in the oblate spheroidal coordi-

nate system (n,£,¢), Figure 2.7, in which the disk is the surface repre-
sented by £=0.
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Figure 2.1. The oblate coordinate system.

The transformation from oblate spheroidal to Cartesian coordinates
are, as given by Flammer[10],

BB, #a 5o . ot




x = a[(1-n2)(1+2)1Y/2 cosg j=2a
y = a[(1-n2)(1+:2)1/2 sing (1)
tz = a n¢

———— o

In Appendix A, the transformations between the different coordi-
nate systems - Cartesian, cylindrical and spherical - and the oblate \
spheroidal coordinate system are summarized. Their limiting forms are \
listed for three cases: at large distances from the disk -£ large - on
the surface of the disk and in the vicinity of the edge.

B. Problem

Because of the rotational symmetry about the z-axis it is possible, |
without Toss of generality, to choose an arbitrary plane of incidence.
we will use the notation of Hodge's work[9]. The incident plane wave |
direction lies in the x-z plane, coming from the x>0 half plane, Figure

2.2. Flammer used the y-z plane as nlane of incidence, instead. The !
whole system is located in free-space. ‘
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Figure 2.2. Geometry.
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We will use the following symbols:

c=ka electrical circumference

(e
'

o - angle of incidence

polarization angle

]
]

time dependence

1]
]

The incident wave vector k! is expressed by:
ki o= k[-sing, éx - €086, éz] (2)

The polarization of the incident electric field is measured b,
the angle o between the plane of incidence and the incident electric
field, E', in such a way that o is the conventional azimuthal angle, ¢,
of a coordinate system defined by the unit vectors (cosgy ex-sing, e,,
ey, sing, ex+cosdy e,) as shown in Figure 2.3. Parallel polarization
iS obtained for =0 and perpendicular polarization for a=n/2. The
incident electric field is given by

E' = E (cos8, cosa e, + sina &, - sind, COSa @)
0 o] X Y (o] Z

. e-iP-F elwt (3)

where r is the usual position vector.

Note that Flammer[7] characterizes the incident wave by the angle
. between the positive direction of the propagation vector and the posi-
tive z axis instead of the angle of incidence 6,. Those angles are re-
Tated as follows: ,=n-6,.

In the spheroidal coordinate systems, the boundary conditions sat-
isfied by the electromagnetic field on the surface of the disk and at
the edge are on the disk, £=0:

(E1+E5) - én =0
(EV+E3) - é¢ =0 (4)
(HI+H3) - e, = 0

where HS, E> is the scattered electromagnetic field.
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At the edge, =0 and n=0, the energy density of the total field
must be integf78]e. The components of the fields may become infinite
at most as s~ , where s is the distance from the edge to the observa-
tion point. Bouwhamp[10] showed the following more restrictive condi-
tions on the ¢-component of the fields:

~

= 0(51/2)
0(1) (5)

(E°+

1 ‘E“‘) R
(H1+H5) -

0
€4

Those orders of variation as function of s are valid only in the
vicinity of the edge, s<<a, for the curved edge of a disk.

In this work, we will refer to these behaviors of the components
of the total electromagnetic field in the vicinity of the edge as the
edge condition. The ¢-components will also be refered to as tangential
to the edge, or parallel to the rim.

We will see that, in Flammer's solution, the condition on [§ﬁ+ET]
is equivalent to the whole edge condition. This is due to the particu]gr
choice of the vector wave functions used. This will not be true for

Meixner's solution, where all the conditions on the components of the
field will be needed.

Before we present Flammer's and Meixner's solution we need to
introduce the functions that we are going to work with and some of their
properties. 1In Chapter 1II1 we will define the spheroidal functions, and
in Chapter IV we will derive various plane wave expansions. In the fol-
lowing work, the time dependence eiwt will be omitted.
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CHAPTER 111
THE SPHEROIDAL FUNCTIONS

In this chapter the scalar wave function solution of the scalar
wave equation will be introduced and some properties of the spheroidal
radial and angular functions will be summarized. The large radial argu-
ment, cs, approximation of the vector wave function solutions of the
vector wave equation will be listed.

A. Differential Equation and
Scalar Wave Function

In the oblate spheroidal coordinate system, the scalar wave equa-
tion can be solved by the method of separation of variables. In Appendix
B the different differential operators have been expanded in spheroidal
coordinates. The scalar wave equation is:

. V2(b+k2("ﬁ =0
CL | _2n op 10 8%y, 2 ay, 142 o%
22 |7 202 an e24m? an2  £24n2 BE 124p? 52
2
s : ‘”] + K2y = 0 (6)

(1462)(1-n2) 202 |

The eigenfunctions associated with the eigenvalue X . are:

wﬁél)(n,s,¢) = Spn(-icsn) Réa)(-ic,is){??; Qi} (7)

where Sp,(-ic,n} is the angular function

s (-icon) = J'd(-ic) P (n) (8)
r=0,1
as defined by Flammer[10].
8
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pm r<") is the Legendre associated function as used in spherical
coordin@tes. The expansion coefficients di"(-ic) are computed from a
recursion relationship as seen in Flammer's book[10].

The prime over the summation is a notation that will be used

throughout the following work to denote that the summation must involve
’ only the even or odd indexes when n-m is even or odd, respectively.
- (;)(-ic,ig) is the radial function
’ From Flammer's book[10],
i 2ym = rm- .
(:])(‘ic,'lg) - L-!'Fé) z ]r""m n dr;.ln(_m)
hos +r)t r=0,1
£m Z dmn(-ic) _(@‘:'_O_
r=0,1 T ’

@m+e)t () (cey (9)

i
r! n+r

The index (i) denotes the kind of ??herical Bessel ggnction, z(‘),
used: i=1 for j,, i=2 for np, i=3 for h and i=4 for hS . We will
refer to i as the index of the radial function in the rest of this work.
The normalization of the radial and angular spheroidal functions are
those used by Flammer.

In the following two sections, we will summarize some properties
of the angular and radial spheroidal functions.

B.  The Angular Function Spn(-ic,n)

The equation satisfied by the angular functions is:

2
d a2y d ; 2.2 _m - =
E [(1 n ) Esmn('l(:’n)] + (>\mn+c n- - ]-n> Smn( TCm) 0
-1 <n <1
(10)
The angular functions are orthogonal with weight function 1:
1
j Smn(=1csn)Spo(-ic,n)dn = & Npg (11)
-1

where




. 2
w (d™(-ic))
= ' (r+2m)! r
Nm" 2 r=g 1 r! 2r+2m+1

1. Evaluation at n=0

From Formula (8), or more easily from the expansion of Smn(-ic,n)
in powers of (1-n2), - Formula (3-2-7) in Reference [10] -, we can see
that

for n-m even Sma(-icsn) is an even function of n

for n-m odd Smn{-ic,n) is an odd function of n

From the differential equation and its derivatives, we can evalu-
ate the derivatives of Syp(-ic,n) for zero argument:

4
2
i? [Sun(-ic,0)] = = (A -m?) Spn(~ic,0)
d3 : 2 o
< a;§- (Sun(-ic,0)) = - (Apy-m -2) Smn(-1c,0) (12)
d* e (s . 2)( 2_6) + 2m?-2¢%1 s__(-ic,0)
LE;E— (Spn(-ic,0)) = [(App-me) (App-m©- mé-2¢ mn{-1¢s

Thus, the evaluation of Sp,(-ic,n) and its derivatives around n=0 can
then be described by taking into account the odd and even properties:
n SMALL n<<]

a-m_evenp

(Smn(‘iC,n) = Smn(‘iC,O) [] - %E.(xmn_mZ)] + 0(n4)

-

S2 (<ican) = Spn(-1€,0) [= n(apy-n?)] + 0(n) (13)

2
San('ic,n) = Smn('icﬂo) ['(an'm2)+ %"[(Amn‘mz)(xmn‘mz'G)

y + 2m2-2¢217 + o(nt)

10




where the normalization has defined Syn(-ic,0) = Pﬂ(o).

n-n_odd
Smn(=ic,n) = Sin(=ic,0)[n] + 0 (n3)
San(-1¢sn) = Sgn(-ic,0) (1 - %E (gn-m2-2)7 + 0(n%) (14)
Siat=ican) = Spo(=ic,0) [-n(ipq-m?-2)] + 0(n®)
where the normalization has defined Sp,(-ic,0) = %h[Pg(O)J

2. Evaluation at n=t1

The power series expansion is led by (l-nz)m/2 due to the P$+r(n)
functions. For m greater than zero,

’ m>1 S (-ic,+1) =0
mn (15)

‘ ' m>3  Spp{-ic,t1) =0
| | The evaluation for m=0 and 1 has been given by Flammer[10].
K . - . On, .
\ Son(-ic:1) = 1 d2(-1c)

' r=0,1
x Sop(-ic,1) = % ' or(r+l) d?"(-ic)

1in(10)7 & syl == 5 I (r)(r2) a-e)

n'*] s

——

S (-iC,n) bt
. In n, .
: Tim A 50 d(=ic) Pl (1)
( A A r]

f\

o 1 ]
5 r=g ] (r+1)(r+2)dr"(-1c)

———
u
|—a

n




C. The Radial Function (;)(—ic,ia)

The equation satisfied by the radial functions is:

d_ (i : m?
[(Hf,z) a R[f]:])(-ic,m)] o

Rmn -ic,i¢) = 0,

Q.lQ.
o

]+g
0 <¢g <
(17)

Unlike their spherical counterparts, Bessel, Neuman and Hankel
functions - the oblate spheroidal radial functions and their derivatives
are well defined over the whole range of values of £. The normalization
coefficients of these functions have been defined by Flammer[10] so that
they match convenient formulas for large values of the argument cg,

R&A)(-ic,c&)ézjz %E- cos %& - %-(n+1)4
‘ (18)

Ccé, rm C?:

(4)( Sic,ir) —e 1 exp -i[cﬁ - ]5 (n’“])ﬂ)

With those definitions, we see that the suitable functigns for
the series expansion of an incoming pl?n$ wave will involve Rxl , and
outward traveling waves will involve Rm

1. Wronskian

The Wronskian of the differential equation is, as computed by
Flammer[10]:

d (2)(-ic,1‘t:) dR(l)(-ic,i&)

(])( -ic,ig) — a - (ﬁ)(-ic,ia) L dE
=4 ]
) )

This can be written in terms nf the Rm and Rmn functions. vsing
the property R&ﬁ R&%>-1R&%), and the fact that the Wronskian of two
linearly dependent solutions is zero:

12
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R (-iesie) & IR (1,101 - R (iesie) & ) -ic,ie))

i
= 20)
c(1+£2) (

2. Evaluation at £=0

In his book, Flammer lists the values of the radial functions and
their derivatives at £=0. Appendix C of this work contains some correc-

tions to those {? ulas, ?fter presenting some general properties, we
focus on Ry’/ and Rm separately.

From the differential equation and its derivatives we can evaluate
the derivatives of R&A)(-ic,ig) at £=0:

i

dz{%jh(1c10) ) R4 (-ic,10)

(i) s s
dr;.’(~ic,i0)
(Amn'mz'z) _Eﬂﬂaz____.__

n

3 .
%gg (R{1(-1c.10)

4 [Rm])]( -ic,i0)
. where c=ka (21)

[ (Agm2) g -m-6) + 2m2-2c2] R (Lic,10)

a. Properties of R(])

Flammer[10] develops a power series expansion of &n ic,ig).
This function, if extended over the domain -«<f<w, would ?ead to an

even or odd function for n-m even or odd, respectively. We can also
conclude that, for k>0:

k
ﬁg; [RiN)1(~ic,i0) = 0 (22)

for k even or odd when n-m is odd or even, respectively.




In the vicinity of the disk, the radial functions of the first kind
can be expanded as follows:

£ Small cg << 1

n-m evan

(
Rrglu)(“'c*"ﬁ) = R%,P(-ic,io)[“(kmn-mz) 2—2] + 0(c%)

‘J RO (-icuie) = RED(-ic,10)[EOpyn?)] + 0(&3) (23)
RISIJ])"(-.iC’iE) = Rrg':ll)(‘iC,'iO)[)\mn_mz + 2_2_ [()\mn_mZ_G) + 2m2_2c2):ﬂ

+ 0(e%)

n-m odd

,
(Vi-icic) = RUD' (i, i0)] + 0(e3)

S Ciesie) - 1) (et [1+<xmn-m2-z)%2—j+ och ()
(:l)"(-ic’ig’) = R'[g]l])'("iC,‘iO).Z()\mn-mz-Z) + 0(53)

\

b. Properties of (ﬁ)

From Equation (19), the Wronskian of R&A) and Réﬁ) leads us to the
following identities

- i
c (l)(-ic,iO)

n-m even (ﬁ) (-ic,i0)

(25)

(4 e s i
-m odd (-ic,i0) = 0
n-m o Ran (-ic,i0) - (;) Cie.10)

We then get the following expansions in the vicinity of the disk:

14




B aand

For ¢ Small, c¢ << ]

n-m even
r‘(4)-~_(4)-- g2 2
n (-1c,1e) = Ryp/(-ic,i0) |1 + 3~ Oygp-m®)
) £ ] v 0(e3
c R cici0 )
- 2
4)" (5c.ie) = - 1 e -mé-
\ i (et ¢ Ri (~ic,i0) [] "2 Do 2)]
+ £ O IRU) (1ic,10) + o(e3)
R (<icie) = R (-ic, i) (26)

[()‘mn-mz) + £ [n-n?) (yen-6) + zm2-zc2)1]

. ] m2- 3
L - q)(-ic,iO) £(Apgp-m©-2) + 0(£>)

Note that the coefficients of &%ﬁ)(-ic,io) in these equations are

?gggl to those of Rég)(-ic,io) in the corresponding equations of Formula

n-m odd

[ 2
(8)(ic.ic) - i [ 5 -z]
Rmn’ (-ic,ig) ] Ré;)'(—ic,iO) 1+ 5~ (Agp-m©)

+ ¢ R (Cic,i0) + o(e3)

' , 2
J RER" (-ic,ie) = RI " (ic,in) E g ()‘mn'mz'Z)]

) (27)
[ + (])f] g(}\mn-mz) + 0(53)
¢ Rpy’ (-ic,i0)
" . . ¥ 2 2 2
n (-16,16) - c (,],}'z-ic,m) [A"'"'mz * 5 [Oyen™) Oy -n-6)

+ 2m2-2c2]] + ¢ R (Lic,10) (\py-m2-2) + 0(e3)

15




Note that the coeff1c1ents of Rmn (-ic,io) in these equations

are equal to those of Rm -ic,i0) in the corresponding equations of
Formula (24).

3. Evaluation of Réﬁ) for large arguments

Equation (18) gives the large argument approximations

.

(4)(_ics i1+
n’(-ic,ig) —» — exp(-icF)

: n-1
{3—& [R,gf,)](—ic,if,) — i [ic +]€] exp(-icg)

cg

d2 .n-1 i
[Rmn -ic,ig) —P ]cg [62 - 2—;9 - -27] exp(-icg)
£

;
In the far field expansions, only the terms with 1/z dependence
will be kept.

D. The Vector Wave Functions

Solenoidal soluticns of the vector wave equation can be expanded
as summations of spheroidal vector wave functions. Those will be de-
fined, following Flammer's notation, by:

M, (D naese) = v x ({1 (00008,

e

mn mn

0 0 (29)
(x(]) :l- xﬁa<1) 3Gy )

Ngmn (n,6,8) = 1 V 8mn(n £

where e is either a constant vector in Cartesian coordinates (a=x,y,2)
or the Position vector ¥=r &.(a=r).

Extensive work has been done on these functions by Flammer, who
lists them all in his book[10]. In contrast with the orthogonality of
the scalar wave functions, the spheroidal vector wave functions are not
orthogonal. They are not even independent as will be seen in Chapter
IV-C. We will 1ist here the behavior of those functions on the surface
of the disk and for large radial arguments.

16
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1. Behavior of the vector wave
functions at <=0

We have seen Chapter I11-C, Equation (21), that, on the surface
of the disk, all radial functions and their derivatives can be expressed

in terms of Réﬁ)(—ic,io) and Rég)'(-ic,io). We can show that, on the

surface of the disk, each component of any vector wave function defined
by Equation (29) is proportional to only one of these values. We list
the different cases.

a. Tangential components at ¢=0

_ () 7(]) -—'_('i) , _.V(1) ,—Z(i)

[ (11, [Mgmn 1, [Mémn 1 [Mgmn 1, [Ngmn 1 and

[Né;;)]¢ are proportional to Ré;)'(-ic,iO). (30)
0

wiy o g, ) mtdy el

[ gmn I [ omn ]¢ [ gmn n [ mn ¢ gmn "

[M2(i)]  are proportional to Rég)(-ic,io)- (31)
omn ¢

b. Normal components at £=0

s [ﬁ_ey“)]E are proportional to R&;)'(-ic,io) (32)

mn
0

[p%x(i)lg . [WEY(T)]E [KLZ(i)]E are proportional to
mn mn & mn .
) ) 0 (;)(-ic,iO) (33)

We notice that at the surface of the disk the tangential components
of any of these vector wave functions, and the normal component of their
curl - that is, for example, [N®] and [M®], or vice-versa - have the
same radial dependence. That ensures that both boundary conditions on
E and H at the surface of the disk are matched by the same expansion.

17

—_— e e




2. Behavior of the vector wave functions
of index i1=4 for Targe arguments of
the radial part

In this section, we list the large radial argument approcximations
of the vector wave functions, keeping only the 1/¢ terms. From Equation

(29),
(M'X(4) 2210 S (-ic,n){-sine € +n cosy 6.} “mg eTict 1
e d 7 SmntT'en e €t COSE €40 cqpy
0
My(a) - 2i" i 5 LA} COS -icg :
Memn 53 Sun(-=icsn){cos¢ e +n sing e,} (ooms e ‘
0 A
Tz(4) - 2 J_2 iy i cos . -ice 2
Mgmn d V1-n® Spn(-ic,n) = oin™ € e (38)
) = y(a) _ 2 i . S eima 4.y €COS_ . -icE
Ne;n ) = d7 Smn(—1c,n){n cosd en+s1n¢ ey} cinMe e
e 3
(4 . 2 in-] s . . ~ €0S -icg
Néin ) Z1 San{-ic,sn){n sine e -cos¢ eyl o mo e ‘
o 3
-~ n — | R .
N2(8) = 22 i 2 Sn(-ic,n) 10 cosmy o e-icE
&mn d £ sin n
.

We now have enough tools to find the expansions of scalar and
vector plane waves in terms of the spheroidal functions. |

J——
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CHAPTER 1V
PLANE WAVE EXPANSION

In order to expand the incident fields, we need the expansions
of vector plane waves in terms of the spheroidal vector wave functions.
First, we will derive the scalar plane wave expansion in terms of scalar
wave functions. Taking its curl associated with different basis vectors )
will lead us to various vector plane wave expansions. The special cases A
of normal incidence to the disk are reviewed.

A. Scalar Plane Wave

By scalar plane wave we denote the function exp[ik(x sinsg +
z coseo)] in our geometry. We do not know enough about the angular
spheraidal functions to directly obtain the coefficients of the expan-
sion of the scalar plane wave in terms of spheroidal functions by
applying orthogonality on the trigonometric and angular functions. We
will use another method as derived by Flammer[10]. The plane wave is
considered to be due to a point source removed to infinity in the
direction of arrival of the incident wave. The scalar plane wave will
then be obtained from the asymptotic form of the free-space Green's
function.

Because of our choice of the time dependence, eiwt, the Green's
function used here will be the complex conjugate of that obtained by
Flammer[10]:

— . © o 2«6
exp(-ik]r'-r']) - . ik Om ¢ (—icyn)S(~ic,n')
4vlr'-r| 2n mZO nzm Ym0 "
Rim) (~ic, it ORG (<ic,ie) cosm(o-6') when €'>e,

(35)
where (n',£',¢0') are the coordinates of the source point.

For a point source at infinity, we can use the approximations:

exp(-ik]rr']) _ _ exp(-ik(r'-T.y'p')] (36)
Br|F-T | ce'ee e
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+
» Rf(n4)('ic ig') ——ly —l— ex r«i/cr' - + TT) - ln__] e'iC’Z' (37)
n s 15 i ce’ pL \‘ A 2 ce’

n — COSO0

ct,'om

(38)
ct' e kr' as seen in Appendix B
C,-:"?(.n
Finally ‘
_ 0w (2-6O )in
exp(ikr=v'r') =2 7 ——— s{ (e cosag)s(T) -ic !
m=0 ngm Nmn mn ( Jo) mn ( an)
R (-icuiz) cosplens')  (39)
and
rey'e! = F’-[sinoocos¢' ey + singgsing' éy + cos8, €]
rev'r' = x s1n0oCose’ + y singgsing' + z coss, . (40)

For a wave incident from the positive x half x-z plane, ¢'=0
and we obtain the expansion

% 2-8gp |
z__n

exp[ik(x sinog+z cossy)] = 2 mZO L T it S ,(-ic,cose)

< Sanl-ic,nIR{ (~ic,18) cos mo . (41)

We define the coefficients, ymn(no), of the scalar wave functions,
as in Flammer[10], Equation (7):

(2-ton) | ‘
(o) = 2 Th Smn(-1€sc0s0,) (42)

172 g

exp[ik(x sinoy + z cosog)] = | 7 Ymn(ﬁo)wé])(ﬂ,€,¢) - (43)
m=0 n=m mn

()
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B.

Vector Plane Wave Expansion

The vector plane wave can then be expressed in terms of the vector

wave functions by taking the curls of Formula (43) associated with a
constant vector (see Equation (29)).

(29).

We 1ist the obtained formulas, with the notations of Equation

éy explik(x sing, + z cose,)]

-1 vy x(1)
= — M 2y 44
ik cose, mgo nzm Ymn(ao) CEN %) (44)

(—éx cosey + e, singy)exp[ik(x sineg + 2z coseo)J

Ly
Tk m=0

Tr~rg
=

van(80) MX {1 (n,,4) (45)

éy exp[ik(x singy + z cosey)]

T T 3K sine. s1ne E E ¥mn (85) (])(n,é $) (46)

(-e, coso, + e, sinog)exp[ik(x sine, + z cos6,)]

(

co T T w(eg) T (e ) (47)

k cos0y =0 n=m

~ . . T v oo 7 ¥(1)
ey explik(x sin6y + z cose )] =L § ¥ y (o) N {ns€,¢)
Y oL ° ° Km=0 nsm ™ © “emn
(48)
(-, cosg  + éz sinegJexp[ik(x singy + 2 cos8,)]
e T T vnteg) R () (49)

k sineo m=0 n=m

B — e S e




C. Normal Incidence Case, 04,=0

In this section, we will study the behavior of Equations (44) to
(49) in the case of a plane wave normally incident on the top of the
disk. As we have seen in Formula (15), the angular functions of order
greater than zero are equal to zero for unity argument.

m>1 Smn(-ic,coseo) =0 for 6y = 0.

From Equation (42), we deduce that yon(O) is the only non-zero
expansion coefficient. The expansions Equations (44), (45), (47) and
(48) can be readily seen to be single summations on n, O<n<e with m=0.
The expansions Equations (46) and (49), however, involve a 1/sing, |
factor that leads to indeterminacy of the 1imit when 64 tends towards
zero.

As we can see from the definition of Spn(-ic,n), Equation (8),
the angular function is led by a (1-n2)M/2 factor. Therefore, from
Equation (42), we can write:

Yan(8g) = (1—c05260)m/2 = sinmeo (50)

or

1

' m-1
sing, Ymn(

8g) = sin’ '8,

We can then conclude that the value of the 1imit when 8, goes
to zero for the different values of m.

For m>1 Tim ——=m —
)

For m=1, we have seen in Equation (16) that:

Si.(-ic,cos6,) ®
pin Mon L LT () (r42) 4N (i)
0,0 0 r=0,1
0
Thus,
vmn(60) 2.0 ¢ n, .
Vim ~“3mo, - N T (r1)(r+2)d " (-ic) . (51)
0 0 In r:O’] ‘
’ ;
v
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For m=0, vy n(00)/sine goes to infinity when 64 approaches zero.
We will show tha?, despite he fact that each coefficient diverges, the
partial summations over n for m=0 in Equations (46) and (49) are globally
equal to zero. This will lead to two dependence relationships for the
spheroidal vector wave functions. Consider first the case of Equation
(46). Because of an m coefficient, the n- and ¢-component of ﬁé 1) are
equal to zero. We prove that the ¢-component of the partial sum 8tion
for m=0 in Equation (46) is also equal to zero; this is expressed in the
following equation:

°§

L Yon(Q) [n %;—SOn(-ic,n) Rég)(—ic,ig)-a Son(-icsn) (52)

%E-Rél)(-ic,ia)}=0

This must be valid for any pair (n,£). In order to prove this
identity, we must go back to the scalar plane wave, Equation (41), and
specialize to our normal incidence case.

(1)

exp[ikz] = EO Yon(0) Sgp(-ic.n) Ry, (~ic,ig) (53)
n:

From Appendix B, we know that z can be expressed very simply in
terms of n and ¢:

Z = ant . (54)

Taking the derivative of Equation (53) with respect to n and ¢
separately, we obtain two expansions as follows

1]
n

1 100(0) Spp(-icon) RS (-ic,ie)
(55)

%ﬁ-[exp(ikz)] ikag exp(ikz)

%E-[exp(ikz)] ikan exp(ikz) = nEO YOn(O) SOn(-ic,n) RSA)'

(‘T.C,'ii)

(56)

Multiplying Equation (55) by n and Equation (56) by -t and adding
?hem)leads directly to Formula (52). We have shown that, for any pair
n,¢&):

Uin,e,0) =8 (57)

T vgn(0) M2
n=g On €0

S e
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Taking the curl of this equation leads to:

w N .
z Y (0) N Z( ’(”a{a‘f‘) =0 (58)
n=g On On

To suppress the indeterminacy of the limit of the ratio of Equations
(57) and (58) to sino, when 6o goes to zero, we will apply L'Hospital's
rule to each componeng of those equations:

] 1 ) 0o) [F
51T0 siné, nZO YOn( o) [Fl |
0
w ,.n Syplic,cos6,)(-sine,)
n 20n\1c, 0 o/
= Tim X —-ﬁ1 cOSo [F]B =0 (59) '
070 [ n=0 "On 0 :

where [F]z represents the g-component of either ﬁéz(]) or N, Z(]), and
B=nsf 0. On €0n
Thus we conclude that, in the normal incidence case, the expansions
(46) and (49) can be expressed as single summations on n, l<n<= with m=1,
flammer[7] gives a vectorial proof of Equation (57) by taking the curl of

e, exp(ikz), Equation (53), which is zero as the curl of a z-directed
vector whose component is a function of z only.

l For convenience in the study of the normal incidence case, we de-
five, as Flammer(10], the following coefficients:

Kt

21Nl 7 d9(ie)

a =

| On r=0,1
-1 -1 :

| = 2™ NGy Sp(-ic,1)
|
r ]
| =5 Yonl0) (60)
| PR (L Y T r+2)0  In, .

I S asn (61)

The vector wave expansions are then, for normal incidence:

e

: . 1 = x(1)
ey exp(ikz) = K Toa. M

(62)
n=0 On €on

e

R .
vt \-‘-J
AL s 7 s henns e &3 s~

24




[T

o ——

—— gy

. )21 T (1)
e, exp(ikz) k £=o a0, MeOn (63)
& 1 =1 w z(1)
ey exp(ikz) ) b]n M (64)
n=1 €1n
Ax exp(ikz) = 1 a. nx(1) (65)
n=0 €on
- i y(1)
exp(1kz) =L J an, N (66)
y k n=0 On €0n
e, exp(ika) =+~ 1 b N 2z(1)
x explika) k n=1 In ey (67)

D. Dependence Relations

In the previous two sections, we have derived various relation-
ships between spheroidal scalar functions, and between spheroidal vector
wave functions. Some limiting cases will allow us to show some depend-
ence relationships, as follows.

Equations (55) for £=0 shows that the derivatives of SOn(-ic,n)
are not independent and therefore not orthogonal as the original func-
tions were.

Equ? sons (57) and (58) show the lack of independence of the func-

tions Me , and N z(1 » respectively. Equations (44) and (47),_mu2¥3-
plied by coseo, lead go dependence relationships for M x{1), and Nex

respectively, when 6, approaches n/2. That kind of re]a%1onsh1p ran be
derived for each family of vector wave functions of index i=1. We do
not deal with independent sets as in the spherical case. In the next
two parts, we will derive two different solutions for the scattering
problem. In both cases, the fields will be expanded in spheroidal vec-
tor wave functions. For the incident fields, we will use the expansions
derived in the previous two sections. We will not be able to consider
individual terms in the summation expressing the incident field to be

modes as we do in simpler problems, where orthogonality properties exist.

To each vector wave function of the expansion of the incident field will
correspond not only one vector wave function in the scattered field but
a summation of the scattered counterparts of all the vector wave func-
tions appearing in the dependence relationship satisfied by the initial
wave function. This will be shown in part VI-C. We have not, howrver,
proved that the spheroidal vector wave function of index i=4 are
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dependent since the relationships obtained for index 1 are not appli-
cable to functions of index i=4.

In the following chapter, we will rederive Flammer's solution.

-
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CHAPTER V
FLAMMER'S SOLUTION

Unlike Meixner, Flammer[7] deals directly with the electric and
magnetic fields in order to find a solution to the scattering problem.
This approach allows simpler, more physically interpretable boundary i
conditions, but at the expense of more complicated expansions. The
major problem encountered in the scattering by a disk is that satis-
fying the boundary conditions on the surface of the disk leads to solu-
tions that do not necessarily satisfy the edge condition. The edge con-
dition puts restrictions on the behavior of the components of the total
electromagnetic field in the vicinity of the edge as explained in Chap-
ter I of this work. For the electromagnetic energy density to be inte-
grable in f?g vicinity of the edge all components of the fields vary at
most as s~ where s is the distance from the edge, while the ¢-compon-
ent of the total magnetic field remains fiTiﬁe and the ¢-comnonent of
the total electric field goes to zero as s1/2. A very remarkable point
in Flammer's solution is that the satisfaction of the condition on the
¢~component of the electric field directly ensures the satisfaction of
the edge condition.

Whatever the expansion of the electric field of the incident plane
wave in spheroidal vector wave functions of index 1, the summation of
spheroidal vector wave functions of index 4 which satisfies the E-field
boundary_conditions on the surface of the disk has a singularity of
order s=V/2 in its ¢-component. Flammer chose to express the incident
plane wave as sum of two different expansions. The relative weights of
each expansion are then chosen in such a way that the coefficients of
the singularity in the ¢-component of the corresponding E-field expan-
sions of index 4 cancel each other. With the proper choice of the two
plane wave expansions, the above procedure also leads to the satisfac-
tion of the whole edge condition.

First we will study the normal incidence, perpendicular polariza-
tion bistatic case because of its greater simplicity. Perpendicular
polarization is here understood as defined in Chapter II, considering
the x-z plane as plane of incidence. The problems encountered in ex-
tending the method to the arbitrary incidence, arbitrary polarization
bistatic case will be noted, and the results of a numerical test of the
far-field for the normal incidence case will be presented.




A. Normal Incidence, Perpendicular
Polarization Bistatic Case

This corresponds to the case a=n/2, E'|]e,, and ﬁ’ilé . The
incident E-field can be expanded according to EQuations (62), (64) or
(66) and the corresponding H-field according to Equations (65), (67)

or (63), respectively. To represent the outgoing scattered waves, we
use vector wave functions of index 4 which match spherical waves when
t. becomes large. i

We will successively consider the boundary conditions on the sur-
face of the disk, an expansion of the ¢-component of the electric field ‘
in the vicinity of the edge, the [E]¢ condition, and the final solution { 1
where we will check the satisfaction of the edge condition.

1. Field boundary conditions i A
on the surface of the disk ‘

We will successively consider the three possible expansions and
the scattered fields they lead to. Despite the lack of orthogonality
of the spheroidal vector wave functions of index 1, we will use a term ‘
by term, function by function, matching technique to obtain the expan-
sion of spheroidal vector wave functions of order 4 which satisfies
the boundary condition on the surface of the disk for given incident
wave_expansion. These expansions will be called "reflected" fields EY
and H". The reflected fields are not equal to the scattered fields
unless the edge condition is satisfied by EV+E" and H1+H", but they ;
satisfy the boundary conditions on the surface of the disk. The bound-
ary condition is given in Equation (4):

The term by term matching technique does not lead directly to the scat-
tered field since the spheroidal vector wave functions of index 1 are
not independent. We now express the reflected fields for the three
possible expansions of the incident fields.

On

ﬁéx(]) expansion

From Equations (62) and (65),

E _ « |
[ F;l i N x(1) :

23 . H 17
X — x(1) i . o

an. M s, H = Z a
ko “0n Mgy & ko "0n Meon (68) S

where H =E /7, and Z, is the free space impedance.
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From Equations (30) to 533), and Equation (22), we see that, for
n even, the components of M X tangential to the disk and the normal

component of Neo(]) are equaq to zero. Therefore, in Equation (68),

the vector wave functions for n even do not lead to any reflect ? f1e1d.
For n odd, the above three components are all proportional to R n’(-ic,
i0), and the same components of the functions of index 4 are propor

tional to R84) ic,i0). Since the only difference between a spheroidal
vector wave ?unct1on of index 1 and its counterpart of index 4 is their
radial dependence, it is possible to cancel a component of one by that
of the other on the surface of the disk with appropriate coefficients
in order to satisfy the boundary condition.

Ré;)l(-ic,iO)

Réﬁ)'(-ic,io)

F(1)(n,0,9) -

F{(4)(1,0,6) = 0 for 0<|n[<0  (69)
where

F(i)(n,g,¢) = [Mégﬁi)] , [M‘X( )]¢ [N, x(1)]E

n €0n €0n

The term by term cancellation method leads to the following
reflected fields which satisfy the boundary conditions on the surface
of the disk

@ ( ) -ic,10)
. ot Ry U g x(4) (70)
- k n§1 ’ N Ry (-ic,i0)  COm
) ', ..
m_ _ 1—H_2 °°I R(On) (—'lC,'lO) _ X(4) (7])

1 a N EPTT N
Conn MRy, q0) Om

where the prime over the summation means that the index of the summation
varies by increments of 2 from its initial value. This notation will be
used throughout the rest of this work. In the same way, for the other
two expansions, we obtain the following formulations.

=2(1)

expansion
€in

From Equations (64) and (67),
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k n

i i g2() | o f b, 5 z(M) (72)

b]n e]n ?

From Equations (30) to (338i and Equation (22), we see that for n-1]
odd, the components of Me] tangential to the disk and the normal
component of N z(1) are equal to zero. For n-1 even, the same com-

ponents are proport1ona] to R(])( -ic,i0) and the corresponding compon-

in
ents of the functions of index 4 to R%i)(-ic,io). ‘
Using the same term by term matching technique, we obtain the ]
following reflected fields: ‘
(v, . .

E - Ry, (-ic,i0) _ z(4)

0 , In 4
o= - by My, (73)

n-1 Rip (-ic,10)

iHo R{D (<ic,i0) L4

W= - Iy, "127*—-———*—~ N, ) (74) }
n=1 R1 (-ic,i0) in
n
< y(1) : l
N expansion
€on P
From Equations (66) and (63), ]
Ed o H =
=i_ O = y(1) i 0 y(1)
B = — an, N , H =-— 7 ag, M (75)
k nZO On “egp Kk nZ0 On eon

From Equations {(30) and (33), and Equation (22), we can see that for

n odd, the components of Négn tangential to the disk and the normal

y(1)

component of M are equal to zero. For n even, the same compon-

€0n

ents are proportional to RJS])(~*”,f 9. and the corrssnond1ng comnonents
of the functions of index 4 ave proportional to RO ic,i0)

Using the term by term matching technique, we obtain:

. (1), . . -
E o R -ic,i0) _ ; ]
- —]—EQ }‘! a On ( 16,1 ) N y(4) (76) 1

A iy e
nzo 0" Rgﬁ)(-ic,iO) On

3

e A———— O o+ ——— o ———
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-

), . .

H R} -ic,i0

aro_. 0o 7 On (-ic,10) v v(4) (77)
n=0 Rgn)(-ic,io) €0n

A1l three pairs of incident and reflected fields satisfy the
boundary condition on the disk, excluding the edge. We will study the
behavior of [E‘+E*]¢ at the edge in the following section for each case.

2. [E]¢ condition at the edge

We will first give the expansion of [E'iH_-IY]¢ in the vicinity of
the edge, and then present Flammer's method.

a. Behavior of [E1+f”]¢
at_the edge

The edge is located at the coordinates n=0 and £=0. We will use
the small argument expansions for the angular and radial functions to
obtain a power series expansion of [EV+ET],. 1In each summation, we
will only retain the diverging and constan% terms, when they exist, and
the converging term of smallest order at the edge. We will use the
following expansions:

(]-nz)]/2 =1-L1q24 0(n4) for n and ¢ small

2
(1-2)71/2 = 1+ L w2 + o(n¥) [nl<< 1
(78)
(]+£2)]/2 = ] + ]? 5;2 + 0(£4) E << ]
(14e2)71/2 = 1 - 12+ o(eh)

We will now consider the three cases.

Case of the ﬁégﬁl) expansion

For this case only we will give the whole procedure:
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. . 2 }
40n d ;?;42 ["(]'” )i(=20p) \j + AOn'g‘”}

2 . .
* Q ) %_'AOnv ”(]+52)5 WMJ Rél)(-1c,10)50n(-1c,0)cos:

1 v 2 1 [ 2 n2

+ - Tay & £(1-r )(1 - ()on-z)i 1
k 27 Ond (242 2

+ n(]+{2)n é + %~ > Rél -ic,i0) SOn( -ic,0)coss ‘

)

(', .. .
1 2 ROn (-ic,i0) 1 » 22
Tk Z aon d R(ﬂl . - 2 2 E(]-n ) 1 2
n 5

1 - HE-() 2)) + n(1+:%)n " S0n -
? ‘On n . Ing “On (]
C ROn

2 2 R
+ [E“-nz) Q - = (’\On'z)'\ en(1+62) n<1 + <>0n-z>‘]

Réﬁ)'(—ic,io) X Sén(-ic,o) CoS% (79)

We can see directly that the n=odd terms of the incident wave are
cancelled by part of the terms of the "reflected" field in this expan-
sion. Finally Equation (79) reduces to:

” 2-)
2 o on (1)
¢ kd ° nzo 39n*on "2 ROn

(-ic,10)Sgn(~ic,0)

© 1 a A Sé (-iC,O)
e L [1 + —g—” (n2+~’,2)] (2). . |
n2+52 n=1 ¢ ROn (-ic,i0) |

x COS¢ (80) - ;

The singularity at the edge comes from the second term,




ousd  SEDUR GER GESR A weew  Ey

.5 L Sgn(-1¢.0)
n2+£2 n=1 c-on Ré:) (-ic,i0)

which does not converge when ¢-0 and n-0.

Case of the ﬁé?ﬁ]) expansion

The same procedure, taking into account the use of the approxima-
tions of Equation (78) leads to the following result.

S — 2 i Ma3 o, (1), . .
[E'+E ]¢ = -5 4" 22 byp =3 S]n(-m,o)R]n (-ic,i0)
n:
oo b A '2 S (-‘iCaO)
A ve o In [ In 2 2} In __
+ i— |1+ —— (n"+e%)| gy —— [ cosv
nl+e? RN 2 Rip (~ic.i0)

(81)

We notice that the s1ngu1ar1t1es in Equations (63) and (81) are
of the same order ¢/(n2+¢2). This is the reason why Flammer is able to
cancel the singularity by taking the incident field as a linear combi-
nation of Equations (68) and (72) with proper relative weights of the
two expansions.

Case of the Néy(]) expansion

The [N g(])] component involves second order derivatives of the

angular and ra21a1 functions and are, therefore, more complicated to
compute. We will use the following expression for that component:

- d .
T, - g [+ o )
+ (1-n2) & oz (Son) Rén) * € Son %" (R él))
dn
+ (]+52)S —QE r(1) (82)
On dEZ On ]

Using Equations (13), (14), (23), (24), (26) and (27), we finally
obtain for the tangential electric field at the rim:
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3+, -2)
[EY+Ej]‘ = - 4 cose {+in: 7' oa On SHn(-ic,0)
k2d2 <1 On 2 On
() . 3,2
(-ic,i0) + N+ 2 gted) - 20
0 22 n%o 3 on*c) 2
O SOn( -ic,0)
(,\On 2] _‘—)'———]C 0) (83)
i

These three expansions of the :-component of E'+E" for different
incident plane wave expansions behave in the same way in the vicinity
of the edge. They each have a singularity wnich comes from the i1l-de-
fined spheroidal vector wave functions at E?$ edge We have seen by
comparing the power series expansions of Rm -ic,i£) and its derivatives

for small argument °, Equations (23) and (24), to those of R(4)( ~ic,iz),
Equations (26) and (27), that part of the expansions of the ?Unct1ons of
index 4 is identical to the whole expansion of the function of index 1
except for the change of index, The term by term matching technique
¢xactly cancels these terms between the incident and reflected fields.
Therefore, in Equations (80), (81) and (83), the second summation con-
taining the singularity comes from the terms in the expansions of the
radial functions of index 4 that do not disappear in the term by term
matching. Their coefficient c/(n2+:2) shows that, as expected, E1+E' is
equal to zero on the surface of the disk. Furthermore, the first sum-
mation in Equations (80), (81) and (83) corresponds to the part of the
incident plane wave expansion that does not lead to a refliected field
since it is equal to zero on the surface of the disk. This summation is
also equal to zero at the rim as .the factor nZ shows.

b. Flammer's method

In order to satisfy the [E]. condition, Flammer[7] simply chose
to express the incident wave as the sum of two different expansions
whose weights would be adjusted so that the singularity in the ;-compon-
ent of the electric field at the edge would disappear. In order to
satisfy the whole edge condition by the procedure, it is necessary to
choose the two expansions so that the other components of the fields
hay ghe right behavior near the edge. T.e r- and i-comPogents of

N'% %) have higher order singularities than those of M and Me] .

while the latter have the same singularities, and so do the1r magnetic
field counterparts N, Sﬁl) and Ne?ﬁ])' de will show that the choice of
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. . — x(1 .
the two expansions in terms of Megﬁ ), Equation (68), and Mefél)

b

Equation (72), leads to a satisfactory solution.

Eo w

=i = X
E =% {8x 1 agn M
n=0 €0

m,

n

v i z(1)
8, nZ] b1n Melp, (84)

with g,+8,=1 in order to have ]Eﬁ|=Eo.

The scattered field will be:

() )
B - ;9. B, | ag Ron” (-1¢,10) = x(4)
. : .
Xz " Réi) (-ic,io) on ,

(1), .

R -ic,i0

+p, J by, In ( ) ﬁéz(4) (85)
n=1 Ry (-ic,i0)  €In

From Equations (80) and (81), we see that the coefficient of the
singularity of the expansion of [Eﬁ+ﬁs]¢ is:

© . SA(-ic,0) Toi, Saltic0)
] 0 =
%a‘ Bx 2 < Qon ‘12)' . t Bz nz] o b]n R<45( ic,i0) cose
" Fon' {-1¢:10) ] (se)

In order to set this coefficient equal to zero, we must choose
Bx and g, as follows:

, ‘i" b S]n(-'iC,O)
@y, . .
n=1 Tn R]z (~ic,i0)
By = - - ,
X = SOn(-1c,0) = . S1,(-1¢c,0) (87)
I'agn @y - L b @y

{ n=1 Ron (-ic,i0) n=1 Rin (-ic,i0)

B, = 1-8y

\

With 8, and 8, defined as above, E'+E> satisfies the [E], condi-
tion at the edge. Equation (85) gives, then, the bistatic sca%tered
field of_ the disk with normal incidence and perpendicular polarization
(i.e., E'[|ey). In the next section, we will verify that ES satisfies
the whole edge condition, underlining the convenience of Flammer's met-
hod which satisfies the edge condition by dealing only with the condi-
tion on the ¢-component of the electric field.
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3. The bistatic scattered field

The total scattered electromagnetic field obtained with Flammer's
solution is, in the normal incidence case:

(n:*, . .
E o Ry,  (-ic,i0) _ x(4
S I %Zﬁ Meofx )
n=} RO {(-ic,i0)
n
(1), . .
1 Ry (-ic,i0) (4
+6, §' b - i 2(8) l
Zpy o n R](ﬁ)(-ic,io) €ln
(88)
f (1) [
iH . Ry (-ic,i0) _ ,(a
B = - 2 {6y 1" ag, ay con
i n=1 Ron (-ic,i0)
(M) ie 5
+ Bl Zr b] R]n ( 'IC,'IO) Nez(])
Z sy 0 R%ﬁ)(-ic,iO) n )
where 6; and Bé are defined by Equation (87). i

First we will verify that the above fields satisfy the whole edge
condition in the vicinity of the edge. The behavior of each component
of the fields will be expressed in terms of local coordinates that have
been defined in Appendix A. Second, the bistatic scattered far field
will be computed in spherical coordinates.

a. Total field in the vicinity of the edge

The edge condition is expressed in terms of the distance from the
edge to the observation point. We will introduce the local coordinate
system, valid for n and ¢ small, shown in Figure 5-1. We use the follow-
ing notation:

s = distance from the edge, s<<a

t = angle between the top surface of the disk, n>0,
and the direction from the edge to the observation -~
point, O<t<2u.

¢ = same as in sphercidal coordinates.

” 1

Dz e i




{ z
: A
‘ n=I
| O\

P 4

70 ‘o, =0

' n=-|
, Figure 5-1. (s,t,¢) coordinate system.

| The correspondance between spheroidal coordinates and these co-
ordinates is derived in Appendix A.

r ' (s = 9 (n2+e2)
4
2_.2
{ cost = =55 (89)
n +g
\sint = g”g
n-+g

or, conversely,

ng cos(t/2)

n -
: (90)
i
‘ g =2 j% sin(t/2)
! The disk is characterized by t=0.
H In order to obtain the components of the fields in the new coordi-

t nate system, we first expand the radial and angular functions using




their small arqument approximations and then transform the terms of lower
order with the above formulas.

For the n-component of E=E' +EY, the singularity in [M X(4)]

[ﬁé7§4)]n (n2+:2)-V/2 or ¢ ]/2, and [~] has a sat1sfactory behavior
near the edge. More precisely, we have

5 N .
[E], = E g: %_ ag (}—;)S1nt/2 Son(-ics0) é ) (-ic,i0)sing
('L
" R (ic,i0)
R ) Is . Vs _ TOn
+ Eq By nZ] agn ( d).jd sint Sg(-ic,0) RTO47“'(‘.1.C"'1.'O)
n

« R (Zic,i0)sine
On

pum—l

1 - 2 s . . In
+ EO B, m z b]n d J-d. sint S]n(-1c,0) - m

x R(4)'(-ic,10)sin¢ (91)
In

The first summation is equal to zero on the surface of the disk
but apparently only there. However, if we differentiate Equation (56)
again by ¢, we obtain

;;f exp(ikz)]= -k“a™“ exp(ikz) = nZO Yon On\~1CsT

X Rél)“(-ic,ig)
(92)

At the edge, where =0 and n=0, Equation (92) becomes:

) Syl e < &




L R "y e L] oln s L e b Y P olnn

st P

The terms of this summation for n odd disappear since, for n odd,
Son(-ic,0) is equal to zero, Equation (14). Equation (93) is the coef-
ficient of sint/2 in the f1rst summation of Equation (91), recalling
that by definition ag,=-irg,(0). Finally we see that Equation (91)

contains no term larger than s1/2Z and therefore, we have at the edge:
[E], = 0(s'/2) sine sint (94)

For the g-component of E, we see that the singularity of [M X 4)]

and [M X(4) is due to a factor (1/(n 24¢2 )1/2) or s71/2, (see the
definitibn o% the functions in Flammer[10]) and therefore [ ¢ satisfy
the edge condition for this component.

(]
— By % ey
[E], = E El. v agn g-cost/2 Son(-ic,0) Rél)(-1c,10)s1n¢
& 0 n=0

d
l .
w0 St (-ic,0)
it 2-1_1703) (1) sing
k p21 ¢ (-ic,i0) Vs
1
gt w 1n(-ic,0)
+ g L ' b /s s1n2t/2 —T—7°———————— sing (95)
ok p3 In cd3/2 -ic,i0)

The second term varies as (s)']/2 and is therefore predominant.
Thus

[E); = 0(s™1/2) sing (96)
[E], has been computed to match the corresponding condition. We
obtain frgm Equations (80) and (81):
E © ia San(-ic,0)
= S 0 1 On On
£E], = -2]5 sint/2 +— {8 ' A T
[ ]¢ d k X nZ] ¢ On Ré:) (-ic,i0)
© jb Sqi.(-ic,0)
+ gt ) 1n (Ay.-2) In coS¢ (97)
z LcC In NOVNEN
n=1 Rin (-ic,i0)
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Thus, as expected,
[E]¢ = 0(51/2) cos¢ sint/2 (98)

The total electric field obtained from Equations (84) and (85)
satisfies the edge condition. We now need to check the components of
the total magnetic field, which are expressed in terms of the functions

Ne x(‘) and N %g‘). Because of the greater complexity of these functions,

we w1]] only determine their order of variation. Since the order of the
singularities of each component is not apparent directly from the defini- l
tion of the functions, we will write out the diverging terms for each

component as function of n and ¢, and then we can write the components

of the total magnetic field H. Since we will only be looking at singu- X
larities, we will not include in the following expressions, the summa-

tions corresponding to the incident waves since they are well defined

at the edge, that is to say, of order 1 or smaller.

For the n-component of H, we have the following singularities at
the edge:

For n odd,

4i S§p(-ic,0) coss

ckdzRén) (-ic,i0) (n2+52)5/2

(WX {43, (nse )

[n2-£240(n4,n2:2,4)]

(99)
- . S ("iC,O)
(N2 (9] (ac0g) = 14 “In coss
n ckd? R(}z(—ic,io) (n2+g2)5/2
[£2-n2+0(n4,n2€2,£4)3
From Equations (89) and (90) we find that:
2,2 _4s 2.2 45\-3/2
nc-¢¢ = 22 cost , n--g = (= cost
d (n2+€2)5;2 (d ) (100) -

and

4 22 4 -1/2
‘”"fffﬂjnf“ Cn sn e 4e7) = Ofs /

(

’ T




ﬁmmw

From the definition of the scattered magnetic field, Equation (88)
and from Equations (99) to (100), we obtain the following expansion:

H, ' S¢n(-ic,0)

M), = —5177 (s Z a - s73/2 cost
" aald 2 |x On Rgﬁ’ (-ic,i0)

+ B; b T s73/2 cost} cosg+0(s~1/2)
n=] R]n (‘1C:10) (]O])

By gef1n1t1on of Bx and 8 , Equations (86) and (87), the coeffici-
ent of s in [H] is equal to zero. Thus,

[R1, = 0(s71/2) cos¢ (102)

For the ¢-component of H, we have in the same way, for n odd:

_ 4i Son(-ic,0) cos¢ 3 c
[N x(4)] = - 2 } T 2 2 5 2 ['2“5‘“5 (]‘kon)+0kv)]
€n ¢ ckd Rg;) (-ic,i0) (n +¢ ) /
5. (-ic.0) (103)
-ic
), _ 4 ln ’ cos¢ [-2n£-n£3+0(5)]
[N, 2{ 1, = - nE-ng
€In T ka? §§l\(—ic,i0) (n2+£2)5/2
where 0(5) = 0(n%,n%e,n3c2,n263 045,65).
From Equations (89) and (90), we find:
-3/2
5577 - (g%) sint
(n°+¢<)
ng3 - A int sint/2 (104)

(2+2)5/2 25

and

0(5)
(n2+€2)§7§- - o)

We have then the following expansion of the g-component of t@e
total magnetic field, recalling that the terms coming from the incident
field are of the order of 1 or smaller:

S b e
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A o ———— b+ Sar—~

@ S1p(-ic,0)

1
+8_ b
z pzq 10 (4)( ic,i0)

( -3/24 & ]/2\ sin t/2 sint } cos¢+0(1)
y

(105)

1
Again by definition of By and Bz, the coefficient of the improper
s1ngu1ar1ty in [H}c, normal to the disk, disappears. Thus,

[ﬁ]; = 0(5—1/2) cost sint (106)

For the ¢-component of H. the singularities of the vector wave
function involved are of order s-1/2, They are, however, cancelled
by the coefficients introduced to satisfy the edge condition on [E]¢.

For n odd,

8 Sén(-ic,o)
ckd?

H

sins + 0(1)

[N, X(4)]“(”,f',¢,) ;
eon 4 Rén) (=ic,i0) n2+£2
(107)

n

B .S, (-ic,0) ( 2
[Nef(4)]¢(u,i,¢) - —317 ]? sine + 0(1)
n ckd® Ry (-ic,i0) n +€

n
where =1 [d (oct/2
112+F,2 2 j:

From the definition of the scattered magnetic field and from
Equation (107), we obtain for the total field:
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aiiin [ LS o «

T 2H m. SI (-icso)
[y = — 3/2 Bx 1. aon ?2)- s71/2 costy2
ck®d n=1 " Ry’ (-ic,i0)

' S -
+8t 7 byp En s1/2 cost/2} sing+0(1)

N

(108)

By definition of B; and Bé, the coefficient of s~1/2 disappears
and finally

[ﬁ]¢ = 0(1) sing (109)

Therefore, the total magnetic field H satisfies the edge condition.

We have thus verified that the scattered field obtained by Flammer by
matching the ¢-component of the electric field at the rim satisfies the
whole edge condition.

We summarize the different results:

= 0(s1/2), [E], = o(s™/?), [E), = 0(s'/?)
= 0(s"1/2), [A]; = o(s”1/2), [A], = o(1)

—
m|
[
=
i

(110)

—
|
[
=
I

The formal solution for the bistatic, normal incidence, perpendi-
cular polarization case satisfies the boundary conditions on the disk
including the edge and is therefore proved. In the next section we
will compute the scattered far-field for the above case.

b. Bistatic scattered far-field
in normal incidence

The bistatic scattered electric far-field for normal incidence
and perpendicular polarization can be obtained from Equation (88) by
replacing the vector wave functions by their large radial argument
approximations, listed in Equation (34). From Appendix A, we will use
the approximation of the coordinate system for large .
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when ¢/ - -1,

én > -8,
Ae‘:‘ > ér
n - Cosun .
j]_HZ . sing i (11) |
- kr
2,1 |
F£d 0
* Thus the scattered field becomes: ! /
E, |- 1 R(()]) (-ic,i0)
ES = - FQ- ey Fx Y ag, (2). in So (-ic,cos5)sing
1 n=1 Ry, (-ic,10) n
. i g Rél) (-ic,i0) ( |
+ g ! ag ; i Ch.(-iCc,c086)c0s6
ol st Rt (ic,i) O
P Rgl)(-ic,10) ' .
-, L' bp Ty in Son(—1c,cose)sine
n=1 R (-ic,i0) |
cossl €X -ikr
x b - . (112)
N (', .
H A L - RO {-ic,iC)
S .0 . ' n .n-1 .
H =i —~1te, |ex T' agn ; i Son(-icscoss)cos?
Lok [ ° [_X ns1 RS (ic,i0)
1 i b ( )( ic, 10) 01 )
- F it < {-ic,cos8)sins}jcos:
| 1 R(4) -ic,i0) i
1y, . .
. w R (-ic,i0) -ikr -
- e Fl Z ?2). i”'] SOn(-ic,cosu)sin¢ x € . .
n=1 Ro (-ic,i0) r
(113) ?
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We can easily check that ESxH> is parallel to €, since we are in
the far field region.

The electric field given by Equation (112) has been programmed,
and the results are compared with those obtained from the program de-
rived by Hodge[9] with Meixner's solution in a later section. We will
now study Flammer's approach to the arbitrary incidence, arbitrary polar-
jzation bistatic case.

B. Arbitrary Incidence

In the previous section the disk scattering for a normally inci-
dent plane wave with perpendicular polarization has been solved. The
general solution for arbitrary incidence can be attempted following the
same approach.

The general formula for the incident field, Equation (3), can be
separated into two components

£l = Eo(c05a E1" + sina E14)

where

Kir

g

(cos8,. a, - sin®, a )e'i
0 X [ R 4 (]]4)

Ty

P B
a '1k r
ye

]
Let us deﬁine ESL as the scattered field corresponding to the in-
cident field E'Y. The general scattered field will be obtained from
ESY and ©" as follows:

ES = Eg(cosa E3" + sina ESY) (115)

In.order to follow the method of the previous sections, we will
expand E'" and E'L as sums of,two different expansions. We will use
Equations (44) and (46) for E'L, and Equations (47) and (49) for EVV,
The H-fields can be expressed with the corresponding spheroidal wave
functions.
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iy o= X \ g { x()
E kcos0g 120 nem mn{o) emn
1 o o
Pz 7 2(1)
" Tksi 8 116
ksino, mzo nzm Yon (%) Memn (116)
. N R B
E'w= __Px_ Yy Y Yan(8,) N x(1)

e
KCOSO, m=0 n=m mn

i (117)
i

o —% - T 7 2(1)
ksinug - nzm Youn (80) N

Xy w

L

where st + g3 = 1, By + 8y = 1.

x "z

Unlike the case of normal incidence these expansions involve all
the vaiues of m and, therefore, all the different ¢-dependences. The
reflected fields are calculated using the same term by term matching
technique as in the normal incidence case. From Equations (30) to (33),
we obtain the following expansions.

AT ‘_53(_ i = Y (%) Rn(]l)'(-ic,io) Mex(a)
Km0 nam+1 %0 RO qg)
mn
oL o~ (‘l) _
R i; ; ’mn(ﬁo) Rmn (-ic,i0) 2(4) )
ik - sinG 4Y, Ay e
m=0 n=m ] Rmn (-ic,i0) mn
" ‘ {1)
E”' - i)i z 1 lmn(',o) Rmn ( 1C,]O) )((4)
k m=0 n<m cos 9, (2)(-ic,i0) emn
M (1)"
+ Eg' ) o Ymnfno) _111 I(-1c,10) _62(4) 0y
m=0 n=m+] sINnG, i (-ic,i0) mn
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A,

il

For arbitrary values of s} and Bl, the edge conditions is not sat-
isfied. As in the normal 1nc1dence case, we will try to satisfy the
edge condition by simply satisfying the [E] condition at the edge. We
will study the perpendicular polarization case in more detail. The
method can be exactly paralieled for the paraliel polarization case.
We will now expand the &-component of the total electric field in the
vicinity of the edge for the perpendicular polarization case. We need

the expansion of the summations on M X(1) and N, Zg i) in terms of n and ¢.

In the same way that we derived the expansions of (B +—Y] in the
vicinity of the edge for the normal incidence, perpend1cu]ar polariza-

tion case for plane wave expansions in terms of Meo , Equation (80),

and Mezﬁl), Equation (81), we obtain here in the arbitrary incidence
case:

8

= Ayon(6) Ay ~M2- 2

2y _mn
né cosé, P 2

[E1+E7], = L 63
0 n=m

¢~ kd X

11~

x Ré; -ic, 10)5(])( ic,0)

oy (8,) A -m?

N z'm_no_( mn zz)

1+ T (nf4ef)
n2+g2 pame1 © €08% 2

x Spnl(=ic,0)
(4)", . .
Rin (-ic,i0)

x [(1+60m)cos(m+1)¢+(l—50m)cos(m-7)¢] +

2_
Ymn(eo) fmﬂ:T__a

singg

Il ~18

-ne 7
0 n=m+1

2 1
kd B2

m

xS' (-ic, O)Ré])'(-ic,io)

mn

2
) App=m©==1 ( -ic 0)
s b 20 Yan (%) (1 p T (2452 )S"‘“

n2+£2 nem © Sindg Rmn (-ic,i0)

x Ccosmé (120)

where 65, is the standard Kronecker symbol.

47




The condition on [E1+E7]‘ is that i1t be zero on the rim. :; and
must then cancel the coeffilient of the singularity g/(g2+;2)1n
Equation (120). If we reorder the coefficient of the singularity and

equate it to zero, we obtain the following equation:

Lo . fm=1n{vo) Sp-1n(-1c,0)
x| 1< oSty (4)

(Vi) (T+eq)

al~
3
o~

n=m Rm-1n{-ic,i0) 1
L Yot 10l o) S$+1n('1c 0)
n=m+2 © %% Rm+]n -ic,i0) ‘
A
o Yan(04) Smn(=ic,0) ’
popt vt ol TR Y om0 (121)
Z n;m C S]nGO Rmn (—iC,iO)

Note that the coefficients ﬁi and 5; have been taxen inside of the
summation of index m.

Because of the s-orthogonality, the coefficient of each factor

. 1.1 .
cosm¢ must be equal to zero. Because of the relation 2,+:3=1, we obtain '

for [; and ¢, the various following relationships that must be satisfied
simu]taneousﬁy

\
For m=0
« ¥0n(60) Son(-ic,0) J
0. (4
) Lo C sino, Ré )( ~ic.i0) (22,
iy = w Y]n(eo) Sln( ic,0) ) §| YOn(eo) Son(-ic,O)
" Ceing S8), . .\
nZZ c cosog Rr{4)"(-ic,i0) nZg € sine pld (-ic,i0)
1n On
1 1
4y = 1—ﬁx

s
¢ v
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for m=1
e P n{%] S%Zg-ic,O) ;0 Yon!%) Sgnl-ic.0)
-, C S1Ing . .
n=1 o Ry, (-ic,i0) n=1 € €088 {7 ic,in)
w Voo o~ i
: Y2n(eo) SZn( ic,0) ey zjnfeo) Syp(-ic,0)
ne3 € €050 R{8T (e G0) nE1 © sineg pl8)(ic o)
2n n
(123)

1
=] - By -

In the 1imit when 6, tends to zero, these coefficients Tead to
those of the normal incidence case.

For m>1
ot - E. Ymnfoo) San{~1¢,0) o Ymngeo) Sun(-1¢,0)
X n=m ¢ $1"% Rzzj(-ic,iO) n=m ¢ $1"% R(Z)(-ic,iO)
mn mn
+]2_ ‘i’, Ym ]n(eo) Sm_]g( ic,0)
n=m € €088 r(4) (-ic,i0)
m-1n
@y (e ) (~ic,0)
s3] mln o mZ}? (124)
n=m+2 € €95% Rm+1n( ic,i0)
I 1
B, = 1 - By

In order to satisfy thé [f]¢ condition at the edge, e: and 8;
must satisfy Equations (122), (123) and (124) for every value of m.
According to our definition in Equation (116), Bi and 3; are independ-
ent of m since they represent the relative weights of the two differ-
ent incident plane wave expansions. To see if a pair (e;,B;) can
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satisfy the [E]¢ condition at the edge, the different expressions of
ﬁi, for example, in Equations (122) to (124) should be computed for

various values of m. However, since the vector wave functions of index
i=1 are not independent, the fact that the coefficients should take
different values for each m is not a proof that the solution is invalid.
If this happens, another approach introduced by Flammer[7] can be used.
Instead of one pair (8;,6;), Flammer uses a whole set of pairs (S; ,E; )
m ‘Zm
where H; and R; satisfy the Equations (122) to (124) corresponding to

m m
the value of m. Note that while BL will then be the coefficient of

(1) . Z

m
in the incident field, H; is not the
ﬁ X(])

. = Z
the summation over n of Me

. . . m m .
weight ot the summation over n of but of other functions whose

n
s-dependence is due to one trinogometric function only per component,
instead of product of trigonometric functions in the case of ﬁégﬁ]).

This is due to the reordering necessary to obtain Equation (121). The
ions #.+(1) i

new functions Mem+1n

Their m-index, m+l and m-1 respectively, represent the order of their

yw-dependence. In order to write the incident field used by Flammer, we

introduce the relation

and ﬁé&f}g are defined in Flammer's book[10].

o o wx() Cg ) g -()
for m=1 M = Mep, + Me, 1

©mn +1n -
(125)
for m=0 ﬁésgl) =2 ﬁé;£1)
The incident field is then equal to the following formula:
Eil - 59- § (1-85) &% § Yan%) g - (1)
ik - Zo Om’ “xm-1 nem €Oty €m-1,n
1 ® Ymn(oo) — +('|)
* (]+6Om) me+] nem« €030 Mem+],n
Ymn(“o) o 2(1)
T by Z sino_ Memn (126)
m n=m 0

where Vl and u; satisfy the corresponding condition, Equations (122)
op I m
to (124)".
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A term by term matching technique Teads to a reflected field which
satisfies the boundary conditions on the surface of the disk and the
[E]¢ condition at the edge. But, when these coefficients are utilized

in tquation (126), it is not clear whether these expansions still repre-
l sent plane waves. This question remains to be answered.

By introducing different coefficients for each value of m, we have

modified the initial plane wave expansions. Since the vector wave func-

' tions of index 1 are not independent, the incident field of Equation
(126) may still be a plane wave. This needs to be checked for every
value of 85. Computations of Equation (126) on the surface of the disk

' should be made to verify whether or not Flammer's solution is valid for
arbitrary incidence. In his paper[7], Flammer does not mention the
problem. It is in no way proven and a computational verification,
though not a proof, should be made in future work.

C. Numerical Test of the Normal
Incidence Case

A computer program based on Equation (112) computes the scattered
electric far fieid in the normal incidence, perpendicular polarization,
bistatic case. We will successively introduce the variables computed
by the program, present the computed data, and discuss the results.

t 1. Computer program

The program, presented in Appendix D, computes the value of E,
where E is defined by:

E .
=s _ _o exp(-ikr) -
Bt T F (127)

The functions and subroutines presented in Reference[9] were used
for this purpose. The output data are, as in Hodge's program for
Meixner's solution[9]:

the magnitude and phase of the - and ¢- components of E,

the normalized cr%ss sections of the disk corresponding to the

8- and ¢-components of E as follows:
=51 2
1. 2 IELL 4 iriq 12
6 (6_,¢_) = —5 lim |4mr® —*> |= ——= [[E] |
a''s’’s mzﬁm E2 k%? a
()
_4 - 2
a(05005) = 77 I[E], (0554,)] (128)
where o = 68,¢.
<
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The normalization is obtained by dividing the scattering cross
section by the surface area of the disk. The magnitude of the cross
section in the scattering direction defined by (es,¢s) is equal to

2 2 1/2
Log(6g500)+0, (0,0 )10

2. Data

The results obtained from Equation (112) will be compared to
computations made with Meixner's solution. Meixner's far-field solu-
tion has been studied extensively by Hodge[9], who wrote a computer
program which calculates the electric far-field for arbitrary incidence ]
and polarization. The results of Hodge's program show very favorable
agreement with measurements, with calculations based on the small disk
approximation, and with Geometrical Theory of Diffraction (GTD) compu- f
tations. We will accept that program as a comparison source for the
results obtained from Flammer's solution.

Various plots of both solutions have been made and we will use
the following notation for the curves, except where otherwise stated:

continuous line for Flammer's solution
-------- dashed 1ine for Meixner's solution.

In the cases where ¢_=0°, H-plane, or ¢_=90°, E-plane, the nor-
malized cross section and the phase will be tRat of the non-zero com-
ponent of E, o, when ¢_=0° or oy when ¢ _=90°, respectively. For other

S . s~
values of ¢, ihe cross sections corresponding to the two components of
E will be plotted.

3. Results

From the plots drawn, we can see generally good agreement between
both theories. We notice the following tendencies:

The concordance between the two solutions is very good for small
disks - ka<2 -. In Figures 5.2 to 5.4, the low frequency ends of the
curves match very well. Figures 5.5, 5.8, 5.11 and 5.13 show a very
good agreement for both magnitude and phase in the case ka=2. For ka=4,
Figures 5.6 and 5.14 show a reasonably good_agreement for the E-plane
cross section and for the phase of E in the H-plane, but the values of
the H-plane cross sections differ greatly as oy approaches 90°, Figure
5.9. ka=2 seems a reasonable limit for the low frequency region where
the two solutions match well.

As can be seen from Figures 5.2, 5.3 and more from Figure 5.4,
the oscillations of the cross section as a function of ka do not match
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very well. Actually, the tendency is the same but the minima and maxima
are shifted as ka increases when compared with the GTD solution in the

| backscatter case, Meixner's solution gives a much better result for
large disks.

For a disk of given size, ka, the agreement of the E plane cross
section is rather good even for large values of ka as shown in Figure
5.5, 5.6 and 5.7. The greater difference between the two solutions in
this E plane appears to be the value of the minima.

On the other hand, the ¢-components do not match very well for
values of o_ greater than 20° for large values of ka. Figure 5.8, for
ka=2, shows”good agreement but, Figure 5.10, for ka=10, shows H-plane
values obtained from Flammer's solution much larger than those obtained
from Meixner's as o6_ approaches 90°. The difference almost reaches a
factor 2.5 (i.e., ~°4 dB) for es=90°.

We have seen that this difference appears also in the H-plane
cross section for ka=4 and in the ¢-part of Figure 5.12. The good
agreement for ka=2 makes less 1ikely an error in the programming of
Flammers solution, but nevertheless, that possibjlity cannot be rejected.
When ¢_=0° and 05=90°, [E], is proportional to gL. An error due to a
truncation or a precision problem may appear in %he computation of

gL for large values of ka. In our program we used the same criterion

to truncate the infinite summations as Hodge's[9], and, therefore, one
would not expect that this should lead to a difference.

The phases, Figures 5.13 to 5.18, seem in general on good agree-
ment for all values of 6y, except for an evident problem in Figures
5.13, 5.14 and 5.18. The phase of the g-component of the field obtained
from Meixner's solution is consistently 180° out of phase with that
obtained by Flammer. Thus there is apparently a sign problem in one of
the components of Hodge's since he does not obtain the same phase for
the backscatter case, 64°0°, for ¢4=0° and $5=90° as can be seen by
comparing Figures 5.13 and 5.15, for ka=2, and Figures 5.14 and 5.17
for ka=10. We verify that the scattered electric field must have the
same phase for ¢,=0° and ¢4=90° when 64=0°:

=()° :SA=Sh

o 0 E E¢ e¢ E¢ v (129
_O_S_ZA_SA

¢S—90 B> = E; e, = Ee ey

Flammer's solution, as calculated, satisfies this condition.

From the data, we see that we have an overall correspondence be-
tween Flammer's and Meixner's solutions for the bistatic normal
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incidence, parallel polarization case. However, except in the case of

small electric circumference, ka, the curves are never quite equal.

The weakest point of the solution is apparently the behavior of the ¢-

component of the scattered far-field in the H plane in the neighborhood
of the plane of the disk.

D Conclusion

In this part, we have rederived Flammer's solution for the normal
incidence, perpendicular polarization, bistatic case. We have shown
that, with an appropriate choice of the two expansions of the incident
plane wave, the condition on the ¢-component of the total electric field
at the edge is equivalent to the whole edge condition. This remarkable ‘
property will not appear in Meixner's solution as we will see in the
next section. It is a characteristic of Flammer's approach. No answer
".s been given to the question of the validity of the general solution
for arbitrary incidence and polarization. The computational checks
explained in Section B should allow a better understanding of Flammer's
approach. The numerical test of Flammer's electric scattered far-
field has led to mixed conclusions. Despite an overall agreement with
Meixner's solution, Flammer's fields, show some important deviations.
These might be due to computer proniems.

We will now consider Meixner's considerably different approach
to the probiem of the scattering by a disk.
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CHAPTER VI *
MEIXNER'S SOLUTION

The validity of Meixner's solution has been gstablished. Theo-

retical and numerical checks have been conducted in recent years, and l

they have shown very good agreement between computations and experi-

mental data. In this Chapter, we will not repeat Meixner's solution, 1
since the derivation is available in the literature. The reference A
work used for Meixner's solution is Hodge's version[8]. Here we will '

derive the expansions of the fields in terms of spheroidal vector wave
functions and show a proof of the solution using only vector wave func-
tions without refering to vector potentials.

A. The Vector Potentials

Meixner used Hertz vector potentials to solve the scattering pro-
blem. In this section we will give the expressions of the components
of those potentials in terms of the scalar wave functions, Equation (7).
This formulation is much more convenient than Meixner's for the compu-
tation of the fields. Meixner's solution computes the potential of the ‘
scattered field for arbitrary incidence and polarization. We will use 1
here the notation defined in Chapter V-B, Equation (114), for the in-
cident field.

=i

£ = g {cosa ' sina T4 (130)

The definitions of E'", Equation (114), in this work and in
Hodge's work[8] have opposite signs. Our definition was chosen to
avoid a supplementary minus sign in the expansion of E'' in vector
wave functions in Flammer's solution. This will lead us to introduce
a minus sign in front of the scattered vector potentials corresponding
to parallel polarization. As in Flamwer's solution, we can obtain the

scattered field in any arbitrary case if we Epow " and ESl, scattered
fields corresponding to the incident fields E'" and B4, respectively.
We will define the vector potentials in order to obtain ESt directly.
Meixner's solution involves three difgfrent potentials. T s -y
the potential of fhe incident plane wave, =~ is the "reflected" {

.., '
NP
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- cttiting [ ™Y [ . ——

potential defined so that n]+uS] has its components tangential to the
disk equal to zero. Because of the shape of =1, the com?onents of the
electric field corresponding tangential to the disk to ='+r> are then

equal to zero. wS2 is a second scattered potential defined so that
w=m +7814752 satisfies the edge condition derived by Meixner:

3 = 0= ==
-az(np)—o-an (np) at n=¢=0 (131)
Ty and Ty finite at the edge.

where L M cos¢ + my Sing

732 also leads to an electric field whose components tangential

to the disk are equal to zero. We 1list here the vector potentials for
—
E

I
1 as defined above, using Hodge's notation

- _ =51, =52
b m + 7

= (132)
s 2, E ( ) : (133)
1 e —— 2-8 )V COS m¢ 133
" k2c0560 m=0 o "
"3] -0 (134)
y
=0 (135)
2¢ ®
sl 0
= - (2-6. V. cos m¢ (136)
T'Ly ;2“m§0 Om”"m
" il
- Lo i
s2 _ ‘o .-m [Um+1 (]+5m1)um-1]
w2 i cos9 cos e
by k- m=0 0
'1 s
+ [xm+1'(]'6m,1)xm-1 sin mo{ ¢p (137)
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s2 _ 0 ¢ .-m
"y T2 ko | [+ 060 1)K ] cos mo

[t} 1]
" )
[Um+]+(]+6m,1)u$-1j sin mg § 4, (138)

€0S9
The different functions used in those potentials are:

(1, . .
o -Nn R (‘1(:’10)
_ 1 mn
Vm(f.,n, C,OO) - n?—im Nmn—(—ic) Réﬁ)(_jc,io)

4y, . . ;

. Smn(-ic,coseo)smn(—ic,n) (139)

. n Rél)(-ic,io)

> . 4) )
o (£,n,C50 ) = ) — R (-ic,it) 1
m 0" " nin N 1Cj’Ré:‘])(-ic,iO) mn i
. Smn(—ic,O)Smn(-ic,h) (14r) '
( 1
M- W o o+W
2 m-1""m+]
u = , UL=0 , m>0
P 09000t m ) |
141 j
(Ul=0, m<0
f W -W
1 Mm-1 "m-1_ "mt] H :
Xt MLy =0, m> 0 |
" Ym-1"¥me "
4 (142)
u
\Xm =0 , m=<0




! _oEmogn Smn(-ic,coseo)smn(-ic,o)

wm(c’eo) =1 N (4) » M2 0
l n=m 'mn Rmn (-ic,i0)

(143)
' W (c.0.) =0, m<0O
. 2

' ( \ E. i [Smn('1c’0)] -

w C;O = N i -

L n=m  Nmn Réﬁ)( c,i0)
’ (144)

[
[
3
A
o

Wm(C,OO) -

As previously mentioned, the sign of nﬁl, Equation (133), is the

opposite of Hodge's result in order to match the different definitions

of El. However, the signs of the coefficients of u" and X; have not

been modified in Equations (137) and (138) in order to keep the parallel-
jsm between the parallel and perpendicular cases. The sign difference

* will appear inside U" and X" instead. We, however, have the same U;

and X; as in Hodge's results This is due to a sign error in the deri-

vation of U" in Hodge's solution and to the fact that the X; are all

zero. In order to simplify U" and X; their coefficients in 7> 752 differ

by the factors (e o/k3coseo) and (e o/k ) respectively from Hodge's ex-

pression. le now can express these potentials in terms of the scalar
spheroidal wave functions.

From Equations (7), (42) and (139) we can express Vm €cos m¢ as a
summation of wemﬁ functions:

1 ..
0 ) R;n)( -ic,i0) (4

v cos me = —]er;—j' Z Ymn (g —1-72-:;-72;- wemn)(n, »¢)  (145)

In the same way, from Equations (7) and (140), we have for O
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w (])( -ic,i0)
P s (CieLo) 'TET_“"_“'“ 0 l4) o
s1n n=m Nmn mn ic,i0) emn
(146)

By using these expansions in the expressions of the scattered
potentials, Equations (133) to (138), we obtain the following scattered
vector potentials.

1. Perpendicular polarization

R SR (¢ (AP
i )1
X k2 m=0 m+1 1
(v)y, . .
= .N R (-'IC,'IO) (4)
« 7 x— S (-ic,0) M v (147)
nZm Nmn N R(4) (ic,i0) Omn
mn
o (M i
nsl . :g Zl y (6 ) Rmn ( 1C,10) we(4)
Y k¢ m=0 n=m ™ O R(45(—ic,10) mn
mn
Eo ©
+ 7 z ]'—m [ (] é ) ]] x
k m=0
1), . .
@, .N R( (-ic,i0)
< § g Synl=1c,0) 17 weéﬁ) (148)
n=m mn R''(-ic,i0)
mn
2. Parallel polarization
(n, ..
si ‘o - Ymn(ao) Ron (=i¢,10) (4)
" T T2 L % @) . emn
k cos6, m= =0 n=m Rmn (~ic,i0)
+ ‘ - ? i"m [UI (1+¢ )U" ]
K2cos . m=0 m+1 M “m-1
(1) .
@, N R 7{-ic,i0) (
. ’ 4)
x § &—5 (-ic,0) —%57-———~———— v (149)
nzm Npp T Rmﬁ (-ic,i0) Emn
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sit _ E) Or( m n m
ﬂy o kzcose méo [Um+] . 6 )U ]] )
0
. (1)
c Pl s e m T ) (150)
n=m ‘mn " RY 7(-ic,i10) n

mn

Those formulas will allow us to compute the fields simply by
taking their curls. This formulation is very convenient for this pur-
pose since to each scalar wave function in a given component, x or y,
of the potential corresponds a vector wave function of vector ey or e_,
respectively, when the curl of the vector potential is taken. The Y
expressions for the electric and magnetic field will then be obtained
in a very straight forward manner.

B. Meixner's Fields

. ]
In this section, we will derive the expressions of E> and B4
as summations of vector wave function. The fields are computed from
the Hertz vector potential using the following general relations:

HF = 3 ) VX;
.1 (151),
E = ‘F— VxVxq
Using Maxwell's equations, w2 3lso have the relation:
= _:L_ —
H = kzo vxE (152)

where Z0 is the free space wave impedance.

tquation (152) will allow us to compute the magnetic fields from the
«lectriy fields. The scattered magnetic fields will not be listed
~evgune of the simplicity of the transformatior. In order to compute
tre faeid, we will use the following identity:

L v prd)' where (= x or y . {153)
ar e UL




The final form of the expansion of the fields will be obtained by re-
. . X - Y . .
placing the vector wave functions NSmn and Ngmn by their expressions

in terms of N and Ne ~ This way the electric field will be

Cm+ln m-1n"
expanded in t&rms of functions whose :-dependence is indicated by theijr
m index. These transformations are given by Flammer[10]:

)R g L) m-0
omn oM+1n 0
Nex(‘) - 2Ne+(‘) ) g

Oon In On

M y(i) _ [N'+(i) A '(i)]

, m>0
gmn 8m+]n m-1n
cy() o, e r) cy(i)
Negn = = * Moy~ 5 Nopy ' = 0 (154)

We will now list ES* and ES", obtained by applying Equations (151)

and (153) to the corresponding vector potential, respectively, Equations
(147) and (148) and Equations (149) and (150).

1. Perpendicular polarization

.. () (1.1
=S 1 ¢ ! Rmn (-ic,i0) y(4)
E "k L L Ypn! o) (@) Nemn
m=0 n=m RY"/(-ic,i0)
mn
1 - m L 1
) =16 g )
m=0 ()
< EI iﬂ-$ (-ic,0) Rmz e 10) ex(4)
LN mn ’ @y, mn
n=m mn Rmn (-ic,i0)
(1) ;
®, .n R 7(-ic,i0)
i 1 i mn y(4)
+ (X0 (-8 )X o) Y &— S (-ic,0) - e
m+1 mitm-1 o N, Tmn R&ﬁ)(-1c,10) mn
(155)
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We notice that the first summation is a "reflected" field as defined
in Chapter V.

Using Equation (154) in the above formula and rearranging in
terms of Xé, we obtain:

vy, ..
© o, R 7(-ic,i0)
=51 _ 1 mn T +(4)
B = T T (o)) T [(14s )N
k m=0 n=m ™ © Rmi (-ic,i0) Om 0m+]n
-(4
i} (]'GOm)NOm-gn)]
(1), .
® w, R* "(-ic,10)
2 -m 1n mn ’
+= 7 i ) §— S (-ic,0) T4y
k m=0 n=m Nmn mn Rmﬁ (-ic,i0)
y t4) _ 1 5 -(4)
(Xt W FA) Cye o =(4)y (156)
m+1 °m+1n m-1 "Om-~1

with X! = 0 for m < 0.

2. Parallel polarization

o 1, . .
TSIl 1 ' R( (-ic,i0)
ESH - _ 1T v (6.) “mn T x(4)
kcosg Lt L ¥mp'Y —_——
0 m=0 n=m R (Cic,10) e

. ~m i I
t—— 7 i (o, =(1+s, U 7 x
kcosO0 m=0 m+] m“m=-1

-

1), . .
©,  .n R(n (-1C,10) _N_ X(4)

< 1 Sppl-ic,0) T2
=m Ny 0 Rmﬁ (-ic,i0)  emn

m

1), . .
®, .n R( (~ic,i0) (
' . ’ — 4)
[u" . +(1+5, Ju" I &S (-ic,0) -mn Ny
m+1 m m-]J Nmn mn R;ﬁj(~ic,10) Omn

n=m

(157)
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In the same way, using Equation (154) in the above formula and
rearranging in terms of U&, we obtain:

Ron (~ic,10)
s _ _ 1 ) ( mn > = +(4)
C Y 0 ) [(]+d ) N
keos0y =g nzm ™ © Rmi (-ic,i0) Om m+1In
o -(a)
* (]'éOm) Nem-ln]
4 [ (]) i i
+ kc020 poitmly il Sy (~1¢50) _(__5_____Rm2 (e 10) ‘
5% m=0 n=m mn R '/ (-ic,i0)
mn .
o ow +(4) H -(4)
e Nepurn = *01m) Unor Nep 2y

w'ih U; =0 form«< 0.

3. Conclusion

For an incident field of arbitrary incidence and polarization,
the total scattered E-field can be expressed in terms of E! and B3"
as shown in Equation (115): ]
ES = E_(cosa B2V + sina E°Y)
=S ° e =su (159)
H> = Eo(c05u H> + sina H>")

] oW
where, from Equation (152), H°L = (i/kZO) IxE>L,

In this section we have found the expression for the scattered
electromagnetic field in terms of the spheroidal vector wave functions.
This allows us to deal with the fields directly instead of the vector
potentials, and it therefore offers the same possibilities as Flammer's .-
solution for studying the near-field problem in a much simpler manner. ;
In the normal incidence case, we now have two different formulas,
Flammer's and Meixner's formal selutions, giving the bistatic scattered
field. A term by term comparison of the two solutions should be carried ;
out to see how it is possible to match the resulits. A first step how-
ever would be to compare the scattered electric fields in the far-field :
region. This would be much easier since the remaining components of jl H
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E° are, in each solution, equal to single summations of scaiar spher-
oidal functions over n. The task of reordering those far-field com-
ponents as summations of the Legendre associated functions has not yet
been completed. The Legendre associated functions are the natural
functions since they are orthogonal in the far-field region and since
the spheroidal coordinate system approaches the spherical coordinate
system in this limit. This orthogonality will lead to an infinite
number of relations between the expancion coefficients dfi"(-ic) and
values of the radial functions at £=0. The validity of these relations
could easily be checked on the computer since the different functions
are readily available in Hodge's program[9] and in the one used in
Chapter V of this work. A study of those relations as function of the
variable c=(kd/2) might explain the discrepancy obtained in Figure 5.1
for the backscattering cross-section. It would determine whether the
differences are due to some inaccuracy in the computations of the coef-
ficients or to improper truncations of the infinite summations in one
of the solutions. The far-field of Meixner's solution can esasily be
computed by inserting the large argument approximations of the spher-
oidal wave functions, Equation (34), in the formulas for these fields.
This showed a sign error in the e-component of the scattered field in
the perpendicular polarization case as computed by Hodge[9]. A sign
error also appears in the 6-component of the scattered field in the
parallel polarization case in Hodge's work.

In the next section, we will derive Meixner's solution with
another method using vector wave functions exclusively. The edge
condition will involve all the components of the electric field unlike
Flammer's solution where the ¢-component only was needed.

C. Another Proof of Meixner's Solution

As can be seen from the previous section, Meixner develops a
solution to the scattering problem by using only one expansion for
the incident plane wave in each polarization case - parallel or per-
pendicular. His method is equivalent to adding to the incident and
reflected field a summation of vector wave functions whose tangential
components are zero on the surface of the disk but which has a sin-
gularity at the edge. The variable coefficients of that summation
are then adjusted to cancel the singularities in the ¢-component of
the total electric and magnetic fields, and to insure a proper be-
havior of their other components near the edge. This is exactly the
method that we are going to use to prove Meixner's solution.

In this section we will first derive some useful vector wave
functions expansions which are equal to zero on the surface of the
disk. We will summarize the power series approximations of their
components in terms of n and & in the vicinity of the edge. We will
then be able to prove Meixner's solution, using the above expansions
to match the edge condition.




1. Vector wave expansion

This section is mainly based on the properties of the N¥ ex-
pansion of a p&ane wave, Equation (47), for an angle of inci#8Ace
A equal to 90°.

a. Derivation of the vectorial relations

We will first establish some dependence relations for the N;(])
mn

vector wave function and use the ¢-orthogonality to obtain relations
for each value of m. We will then show that those relations apply
2qually to the odd vector wave functions. We can then find vector
wave expansions whose tangential components are equal to zero on the
surface of the disk and that behave like outward travelling waves
in the far-field region by using a term by term matching technique ‘
identical to that used for the calculation of the reflected field
in Flammer's solution.

For g = 900, Equation (47) multiplied by cos6, can be written

as
o ey R =B (160
woomee M BLE
’ From Tquation ‘42) and Equation {14), we have, for n-m odd, l
'mn(“/z):o and, therefore, in the previous summation only the terms
for n-m even will remain. J
A %
Lo 2y B (n e ey < G (161)
m=0 n=m mn i

We will introduce here the functions N (4) and N;£4) which have
a convenient ¢-dependence, Equation (154).

5t

Equation (161) can be rewritten as follows

Z; Y]n(ﬂ/z) ﬁ;(l)

n on
e )
Fy Y es v o (72) W
m=1 ln=m-1 Im” ‘m-1,n €mn -
v i
X ] — 'I) -> .
) Y (n72) W2 =0 (162) o
1=mt] N € { ‘ 513
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where corresponding components of N;(]) and ﬁ'(t) have the same ¢-
dependence. mn €mn

A difficulty encountered with the use of this notation is the
difference in the parity of n-m between Equation {16)) and (162).

Equation (161) is a summation of WZ(]) for n-m even, while Equation

m

(162) is a summation of W+(]) and N'?l) for n-m odd. In order to

avoid a passible confusionT”the 1nde9”p will be used instead of n

in © (M and N;(]) during the rest of this section. With that notation,
§mn mn

the ¢-orthogonality applied to Equation (162) leads for every value
of m to the relation:

p=m-1
(w2 = § (163)

Equation (163) means that the coefficient of cos m¢ in the r-
and t-components of the above summation and the coefficient of sin
m¢, except for m=0, in its ¢-component are equal to zero.

We can then substitute, for m greater than zero, sin me for cos
my and cos my for -sin m¢ without changing the value of the summation.
This transformation leads to the following equation for the odd func-
tions:

fe )

' — ]
i (]+6]m)(}-60m)ym_]p(n/2)No;p) +

o — -‘)
+ oo (W = 6 (164)
p=%+1 m+1p Omp
for every value of m>1 and (n,£,0). Note that Equations (163) and
(164) are also valid for Méé’? This is proved by simply taking
p
the curl of these equations. In order to match the behavior of out-

wave travelling waves at infinity and still keep the behavior of the
tangential components at £=0, we will make a term by term transformation.
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Trom Tquation (154) and Fquation [30) to /33, we can see that, on
the surface of the disk, the r- and <-components of N*(lz or ﬁ°(]2

) X m m
are proportional to R(1)(-ic,io), or R i) -ic,io) resgegtivelys pwe

(
. W-] . @+l( . . . .
will therefore make the following substitution in Equation (164):

RV (Zic.io)

g1, Imdp' 7 7w (8)
§mp  R'*! (-ic,io0)  &mp

(1) m+1 -ic, =-(4)

-(1) |, map 7 N (165)
§mp ETZTB(-ic io)  &mp

We will denote by F_ (n,¢,¢) the value of the transformed sum-
m3ation.  From Equations .T64) and (165), we have for every value nf

(1)

'y R {-ic,i0)

Fo (o) = T (o) (1= o (v72) TPl
Sm p=m-1 m om’ ‘m-1p Rmé]p(-ic,io)
..
@, R (-ic,i0)
‘ —+(42 m+1 ==(8)
x N n,€,¢) + E Y (”/2) -———- N (Tl,i,ﬁ)
§mp p=m+1 ™ 1P R;ﬁ%p(-ic,io) §mp
(166)
Fsm satisfies for |n| - O:
[re ](’l(nyos‘b) = O
)
where o = n,b ., (167)
[FSm]“(n’0’¢) =0 form> 1.

In contrast to Equation (161) and {163) these Fgm functions

are not zero everywhere. Note that F_ is the reflected field cor-
m

cesponding to the zero incident field of £quation (164). Since the

flected field iy not zero, we immediately realize that the reflected
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field is not equal to the scattered field in that case. We will need
the expansion of the components of F_ in terms of » and £ near the

m
edge. In the following subsection, we 1ist the expansion of the nec-
essary vector wave functions.

b. N+(])and (1) near the edge
§mn -In

We do not need very complete expansions of the vector wave func-
tions in the neighborhood of the edge since we are only looking for the
terms that do not have the behavior required by the edge condition
for each component. The other terms will not lead to any problem
in satisfying the edge condition. We will first consider the case

of N —g;11 , component by component. ﬁ%(])has no singularity. Since
mn
Equation (161) involves the functions ﬁ:(])for n-m even only, we will
. . mn
need N*(1) and ) for n-m even only for the computation of
- +1n §m-1n

FSm'
For the n- component, we only need the terms of s1ngu1ar1ty greater

fhan s~ %, where s is the distance from the edge as defined in Equation
89)

n-m even, |n| << 1 and cg << 1
S, (-ic,0)

(4 1 4 Omn n cos [
[ em+1n]n ckd? R;A)(-ic,io) (n2+£2)5[?‘{51n(m+])¢ e

(168)

For the £-componept of N w(4) , we only need the terms of singu-
larity greater than s 2 m+1n

n-n even |n| << 1 and c§ << 1

('I) . 2i Smn('icso) 2 2 (C 1 ‘t) 0 -3
r:m-f-]n £ de2 ng;?-ic,io) (n +£2)5]? 1S1n(m+ ) J+ ( (]) )
69

For the ¢-component, we need the terms up to the order of s15
to test the edge condition on the ¢-component.
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for t-m even, -

ﬂq+(4) ] = 2 Smn(-]€:21 Sin(m+])t)
8m+],n b kd2 12,62 -cos(m+1) «

[ 2

X 1(r]+52)[-(m+]))mn+m(m+1)-c2] Rézz-ic,io)

+[Hmﬂ?k2+-%ﬂ(m4)-%(mﬂ)hﬁﬂ]
#2205 (m-3)(n -n?) -2me3 J— il ]
? mn ]E?( RN ARSI

We will need the expansion of [V:(]) 1. for n-m ndd,
5rn+1,n "

For n-m odd

(1) 2
N = —=n
frelne

Naal
roj o
———

>

4-N  +m .
o opm D st
(
X S&n(-ic,o)R(;gl(-ic,io)+0(s3/2)
(a7

It is well behaved at the edge since it goes to zero as s does. The

-(4) can easily be derived from that of N N (4) N'(])
gm-1n §mtin~  §m-1n

has no singularity. The n- and &-components of Né(41
m-1n

from Equations (168) and (169) by replacing m+1 by m-1 in the -de-

case of N

can be obtained

pendence. The expansions of the ¢-component of Wé . are obtained
m-1n

from Equation (170) and (171) by replacing m by -m except in the in-

dexes, sin(m+1)¢ by -sin(m-1)¢ and ~cos{m+1)% by cos(m-1)¢.

In order to compute the complete e]ectromagnet1c field, we will

also need the functions ﬁ+(1) and M- -(1) as defined below:
gm+1n gm-1n

(1 ()

K] . >
gmsin X gm+In
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As seen from their expressions in Flammer's boqk[10], the n-
and ¢-components of these functions have a singularity of order at
most s~ 2 and therefore satisfy the edge condition. The expansion
(4)

m+1n

of ¢-component of M is listed below for n-m even.

n-m even s ( ic o) ( ]
(4) _ 1 mn' " ? cos
[ng”n% W T 22 1sin(m+])¢jx
A n-m2-2

ne (2+e)(m-r ) M REE)(ic, 40)
2 2
2 n™" 2 mn™ ] (-i )
cR(

| We will also need O7*(1) 1 for n-m odd:
: gm+1n

n-m odd
(D 1 21 o foie o) Rt (ote s )
} ; Uﬁ;n+1n]¢ T Smn(-1c,o) Rmn(-1c,1o) g?ﬁ(m+1)¢ = 0(s) (174)

The corresponding expansions for are obtained by replacing

T
gm-1n
m+1 by m-1 in the trigonometric functions. We note that the components
of the functions of index 4 listed in Equations (168) to (170) and
f (173) have singularities that do not satisfy the edge condition, but
that all the components of the vector wave functions of index 1 do
satisfy it.

+
F' is expanded in terms of NN instead of N (4) or W2 (4)

om gmp Gm+in gm-1n
From N*(1) , N-m even or odd, we can derive the expression of N+(1)
gm+1n 6mp

for p-m odd or even, respecth$1y, by replacing m by m-1 even in the

! indexes and n by p. From Ng > n-m even or odd, we can derive the
M-

expansion of ﬁ'(1)for p-m odd or even, respectively, by replacing
m by m+1 and n bg p.

—
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c. F_ at the edge
&m

Here we will compute the coefficients of the improper singularities

of the components of F8 and 1/kv x F_ . The coefficient of

, m m
Tim

[ —_
=75 in [F_ ] is, from Equation (168) and (166):
(02+€2)5/2 8m :

) o S (-ic,0)
44 ! m-1 ?
) (T4, Y(1-6 )y 4. (/2) - -
ckd? ]p=m-1 Im”*" “om” 'm-Tp R (Lic,i0)
\ m-1
o Ss1n(~1€50) } ( 1
! +1 ’ €os
5y (1/2) —(—YE‘“ ------- %5 s (175)
R R'4 <-1c,io)ﬁ=‘” (
m+1p N
29
(e N P I < DR £ tion 7175).
The coefficient of (n2+€2)5/2 in LFesz is hal® of equation ’175)

Those two components will, therefore, enforce the same condition.

The coefficient of —?Qz? in [?e 1 s, from Equation (166) and (170):
n + om’

o S ("1C,O)) . \I
21 ( o (T+e, )(1=5_ ) (~/2) m-1 m{;1n me
2l ¢ ““om’ 'm-1p* " &) .. -cos
ckd2 [p=é-] 1m om” 'm-1p Rmf]p(-1c,1o)f . J
?‘ (+/2) Sme1p( "1€50) (-m) [_sin mt]{ﬂl
¥ Yme1plT T ™M 176
p=m+1 TP Rmi]p(-1c,o) l cos (176)
It can be rewritten as follows:
2im ( f Sp_1p(-1€50)
ckd? ]p=m-1 (]+51m)(1+éom)Ym—1p(“/2) RZ45 (:ic i0)
\ m-1p ’
- Se1ol=160) Jicin |
T A €7 B SN ') (177)
Siney ™MD Rmf]p(_ic,o) (ZCOS !
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This coefficient has a different s-dependence than the other two.
The coefficient of 2” 5 in L F ] is obtained from Equation
1 +F, k em M

0
(166), (172) and (173). It is equal to Equation (175) multiplied
by - Equation (175) and (177) differ only by their ¢-dependence
and a factor m in Equation (177).

Nia

Equation (175) and (177) give the coefficients of the terms in
the components of Fe and 1/k v x Fe that do not behave as required
om om
by the edge condition in the vicinity of the edge. Note that for
m=0, the coefficient in Equation (177) is always equal to zero while
only the odd case of Equation (175) disappears. Thus F; and 1/k
v.x foo behave as required by the edge condition and, tngrefore, the
missing relation in Equation (167) will not be needed since the func-

. 4 —
tions N;( and Mo are well behaved at the edge.
op op

We now have the necessary tools to solve the scattering problem,.
2. Solution
The solution will be derived for the general case of arbitrary

incidence and polarization. We will use the same notation as in part
V for the electric and magnetic field.

—Ei = EO(COSa ?1“ + Sing fh) (178)
We expand fi" and fi from Equations (47) and (48)
. =02 =x(1)
=i" 1 (6 ) NX(
£ o= k cose,, mZO an Ymn'*o €nn
(179)
Eh 2 (f E v (8) 'N‘.Y(])
K m=0 n=m ™ O €an

From Equations (30) to (33), we see that, for n-m odd, the in-
cident vector wave functions have null taggential components on the
disk. Therefore the reflected fields are:

1) ..

" o o R( z-1c,1o) _
£ o= - k c;sa‘ - Ymn(eo) Tgi N;(a)
o m=0 n3m Rmn (-ic,i0) "mn

NI, (180)
. w© o -ic, 10 _
e g 10 vpaleg) T wy(4)
m=0 n=m Rmn (-ic,i0) mn
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Once again the “reflected" fields as defined here dare not equs.
to the scattered fields since they do not satisfy the edge condition,
We can now add to the reflected field any summation of functions F
and still have a reflected field. The coefficients of that sum- gm

mation will be adjusted so that the fields satisfy the edge condition.

From Equation (154), we see that VX(T) involves only even func-

tions N+(i) and W"(l) while Ng(i\ involles only odd functions
m+1n m-1n mn

yr(i) and W'(]) . Therefore to match the edge condition, we need
m+1n m+1n _ .
only add a summation of Fe to B and rom to E

Y 1 :
m » Since FS satisfies
m

the boundary condition an the surface of the disk.

&

The s-attered

Filall 4710 e
—gn —r" 1 "
E = E + — Y —_
L
k €059, m=0 Umv Fem
(181)
TS1 =ra 1 <
B2 =+ - F
h k m=1 va Fo
m
where Umv and va are adjusted to satisfy the edge condition. .
v
The summation over m in E°* begins with m=1 since Fo s well {

0
behaved at the edge and does not correct the behavior of T We will

successively consider the perpendicular polarization and parallel
polarization cases.

a. Perpendicular polarization

Cauations £173) and (180) can he rewritten as follows, from fqu .-
tion "154):
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boaaey

w1 T4 ‘ —+(1)
T - X md 1p=Lm_] [(na]m)(]-aom)ym_]p(eo) NompJ

o0 —-])
- T vo(e,) B
p=m+1 m+lp*o 0mp

@y (]) TP

) [m )(1-6 (6 ) m-] (ie o) T(’”J
1 s s

=, Ré+ip(—1c,1o) ﬂ‘(4ﬂ

Do (6}
p=m+1 MIP O R&i%p(-ic,io) Omp

(182)

L)
E Tk m=0 {p

1!

We must adjust the coefficient X so that the coefficients of
the i11-behaved terms in each componeW¥ disappear at the edge.

Taking advantage of the ¢-orthogonality, we can write a specific
condition for each value of m:

for every m >0, atn =¢= 0:

r

LI =+(1)
k pZm—T (181 (1= ) V-1 (8) Nomp
1y §- (1)
- L (e,) N
k p=m+] Ym+]p 0 omp (]83)
(1), <o s
® R (-ic,i0)
1 ' m-1p =(4)
- 148 1-8 6 ) N
) F p=£-] ( + 1m)( Om)Ym-]p( 0 R;ﬁ%p(-iC,iO) Omp

oo

(1) ; «n s

R (-ic,io0)

1 ' [ o m+1p WM)]
tx p=m§] Ym+]p( o) Rgﬁ?b(‘ic"°) °mp

: - i dition.
* 1 Xav Fom (1- &p) must satisfy the edge con
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We have seen that the functions of index 1 and WéA\ behave as
op

required by the edge condition. The absence of coefficient X is
therefore not a problem. For any other value m, m>1, the con@Ytions
mn Xﬁ\ from the three components »,7,% of {quation (183) are identical
since’tie coefficients of the improper singularities in Equation (168)
to (i™) are proportional apart from ‘heir ¢-dependence. From Equation
1173), we see that this also applies for the 9-component of the curl

of Equation (183) which corresponds to the m-part of the expansion
of the magnetic field,

X satisfies, for m>]}:
mv

o . S (-ic,0)
Wt ] _] ’
SN L O TAEE AR PR T8 B L= SR
p=ri-1 Tm om’ 'm-1p* 0o’ ¢ R 4 (-ic,io)
m-1p
v i S (-ic,o0)
D pip(0) ¢ Jmelpt 7100
* pemel m+ipto” ¢ r(4 (-ic,io)
[ m+1p > (184)
v S (-ic,o0)
+ X ] Lo (148, Y(1-6_ )y 5 (n/2) 1 Omoy ’
mv | . Im om’ 'm-1p c —T—YR_,._.____
p=m- Rmf] (-ic,io)
’ S 4 (-ic,0) )
' ¢ merpl/2) mZ] """"" ;=0 ;
9=+ ¢ p R (-ic,io® X
We notice tnat, from Equation {42), we have, m _.0: ‘
4iP .
= - - -6
(1—60m)(1+6]m)ym_]p(eo) Nm-]p Sm-]p( 1c,coseo)(1 om)

(185)

(o0.) = 4P S (-ic,cos6 )
Ym+1p* ®o Nm+]p m+1p * 0

Introducing the functions wm and uw as in Meixner's solution,
Equations (143) and (144), we have for v’

——-—=- form> 1 (186)
wWooime1 T Y

LT

With those coefficients we can compute the scattered field of

fae perpendicalar polacization case.  We obtain from Lquations (180),
(1ry and {136):
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(V) _;
O Rmn (-ic,io) —y(4)
B o=l 1 a8 -~ N
m=0 n=m Rin (-ic,io) €mn
o (1) .
4 [ L in Rmn (-ic,i0) (4)
I R v Sp.(-ic,0) N
k m=0 m+1v n=m Nmn mn Rmﬁ (-ic,i0) Om+1n
N, . .
@, .n R( (-ic,i0)
+ (-6 (=o)X 0y T = Sp(-16,0) gy—m w4
Tm om“m-1v 2o Ny, “mn Rmﬁ (-ic,i0) m-1n
(187)

We can check this solution by comparing it with Equation (156).

We compare the coefficients of W+(4) and N'(4) in both solutions.
m+in m-1n
2 myt 20 a1l MM g
form>0 #1i7X = 21 —_— = X
k m+1 k Ut Va2 k “m+lv
y (188)
. ~m W .-
forms>2 2i Myt 22 pmel-l w2 m 4 X
-7k m-1 k VY-tV k “m-lv

The scattered field obtained by this method is identical to the
one obtained by Meixner, as expected.

b. Parallel polarization

Equations (179) and (180) can be rewritten as follows, from E-
quation (154):

£ a0 ST e ) (s )y (e WD
k cose, mzo'lp;m—1 m om’ Ym-1p‘ % e

o]

—(1
) . Yme1p(80) Ne;pi}

pem (189)
it _ ] @ ( 0, 4
£ = feom, mgﬂlmg_] (1461) (1=6 o ¥ 1p(8) Mer )

0

+ z.' ym+-|p(eo) ﬁ;(4)}

p=m+1 mp
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We must adjust the coefficients U in Eguation [181) so that
tne coefficients of the improper singuT!rities in each component of
the fields disappear at the edge.

Taking advantage of the ¢-orthogonality, we can write a specific
condition for each value of m:

fFor m >~ 0 at £ = n =0, the following quantity,

o ])
1 . )y (s) W
—— \ < - ‘
k cosy p=$-] (]+“1m)(] Som 'm-1p © Cmp
] v 7
(e ) N (190)
k cose p=%+] m+lp' “o emp
(1), .
> R'": (-ic,io0)
1 m-1 ’ =+(4)
Lo (80018 vy 0 (8) TqyRsm—— - W
k cosé P 1 om’ 'm-1p* "0 Rmf]p(-1C,io) ©mp

+ —_—
k cose Umv Fem

mast o satisfy the 2432 zandition,

The functions 2f index 1 behave as required by the edge ccndi-
tion and will, therefore, not contribute to the computation of U_ .
For m greater than zero, the conditions on U__ from the three ol
ponents of Equation (190) and from those of T¥s curl are equivalent
since the coefficients of thq improper singularities in Equations (168)
to (170) are proportional apart from their ¢-dependence. For m equal
to zero, the n- and &-components of Equation (190) and the ¢-component
of its curl lead to equivalent conditions on U. . The ¢-component
of Equation (190), however, contains no improp8¥ singularity since

the transformation of the coefficient of the singularity of[N:(d) ]¢’
m-1,n

Equation (170), into that of [N;(4)]¢1eads to a m factor in the latter.

mp
It can be seen in [Fe ]w, Equation (177), for example. For m equal
mp

to zero, the 4 -component of Equation (190) does not impose any con-

dition on U v in order to satisfy the edge condition. The satisfaction

of the thre8'other conditions will then be sufficient at the edge

tn nbtain the scattered field. For any value of m, the condition

on i
My
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; Sm ) (-ic,0)
- ; 1+ 1- — Y A
, p=m%l (1*895) °om)Ym-1p(°o) c R(‘) (-ic,1i0)
i m-1p i
! S (-ic,0)
o3 1- m+'| - 1]
- T va(®y) ¢ —T“TE-*T——T‘—— (191)
. p=m+] m+1p® o’ ¢ Rmﬁ]p(-1c,1o)
w .S (-ic,0)
1 _] ’
I ) Ty Y (1=8m) (n/2) = 'J?—YE-—--—-
+U ) (o om’ Ym-1p c 4 .
mvlp=m_] Rm_]p(-1c,1o)
‘ S (-ic,0)
' j m+] ’ ]
+ 2 Y, («/2) —~-—¢ =0
] p=m+1 C ™D Rmﬁ]p(-ic,io) A

Introducing the functions wm and Uy @S in Meixner's solution,
Equation (143) and (144), and using the properties of ymn(eo), Equa-

tion (185), we have for Umv:

W,
ov ET
W W |
_ om-1 +]
U =_M™' ™1 form> ] (192)
P ™ Va1t Ve ~

With those coefficients we can compute the scattered field of
the parallel polarization case. We obtain from Equations (180), (181)

and (192):
(V) . s
4 o1 E 'Y (o) Rmn2 ic,10) ﬁx(4)
k €osey ply pip MM O Rmﬁ -ic,i0)  Smn
4 E El in ( ) Rélz-ic,iO) (] )
+ — +— S (-ic,0 X 93
K COSO, 1m0 n=m Mmn ™ R;;z-ic,io)
() =(4)
| x [U N( + (1-6_ U N ]
| mly en+in om’ “m-1v €n-1n

We can check this solution by comparing it with Equation (158).

We compare the coefficients of N+(4) and N'(4) in both solutions.
€+ 1n €m-1n
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AL ) =2 U
0
k cos o o k cose0 w] k cose0 ov

for m - O inl--A n = ﬂ]‘,rit].-_]_z_ __.wm+_wm+2 = A——- U

- k cost m+1 k coso wm+w6;5 Tk cosn m+ 1y
form » 2 gij?__- yr . o= gi:TZiTtl:l_ Em:gjﬂm =3 ___y

=~ k cose  "m-1 k cose Ym_otipn k coss , “m-1v

(194)
We see that the coefficients match exactly. The scattered field ‘
obtained by this method is exactly that of Meixner's solution.

We have given a proof of Meixner's solution by dealing with electro- !

magnetic fields only. The scattered field has been determined so

that it satisfies the boundary conditions on the surface of the disk
and the edge condition. This proof gives more insight in the behavior
of the fields in the vicinity of the edge than Meixner's. 1It, however,
requires the calculation of the expansions of the spheroidal vector
wave functions in the vicinity of the edge, and its edge condition
consists of six conditions whose compatibility must be checked. It

is algebraically more complicated than Meixner's, whose edge condition
consists in one equation only since Meixner mostly deals with scalar
Functions. In the next section, we will calculate the scattered field
for an incident field agual ta a single vector wave function,

3. Scattered field of a single vector wave function

From the solution derived in the previous section, we can easily
calculate the scattered field for an incident electric field equal
to a single wave function. The purpose of this section is to show
that this scattered field contains all the vector wave functions of
index 4 which have the same index m in their o¢-dependences as the
incident one. Let us, for example, consider an incident field equal

to % NZ(]) . Adjusting Equations (179), (180) and (181) to our case,
m+in
we have:
=i _ 1 (1)
F=¢ N !
k €m-1n ;
()_;
R' (-ic,io) U
Ere - b e w8 ml g (195) -
R z-ic,io) m+1n m+1

mn

Following the same derivation as in the parallel polarization
case, we obtain, from Equation (190), the following condition on U "
gt the odge condizion, m
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i Smn('ic’o) i
- — __(z_)__..__ ..... +U —_ =O
¢ Ry, (-ic,i0) w1z Cag) 198
Thus,
S_ (~ic,0)
Upyq = R(4)Tn"—7 . (197)
mn (1610 Lupton,o]

From Equation (195) and the definition of Fe , Equation (166), we
se?4§hat the ogtained scattered field invo1v@§]all the functions
N and W—( ) for the given value of m. If we choose an in-

§m+1In gm+1In

: . 1 =x(1 .
cident field equal to X Ne( ), instead, the scattered field contains
all the functions N*(4) zn v (4) i i

el and N 1 for m given, from Equations (154)
and (]95). Whatever the vector wave function of vector é or é ,
or deryved from these, Equation (154), the corresponding Scatteted
field is not equal to the reflected field and contains the other vec-
tor wave functions with the same ¢-dependence.

D. Conclusion

In this part, we have shown that the fields of Meixner's solu-
tion can be expressed in terms of spheroidal vector wave functions.
We can therefore calculate the fields everywhere directly. In par-
ticular, this will allow us to compute the near-fields and the cur-
rent distribution on the surface of the disk. Meixner's solution
is formally as convenient as Flammer's in this region. However, for
computational purposes, Meixner's solution should be retained since
it only requires the values of the angular and radial spheroidal func-
tions and their derivatives for n-m even. On the surface of the disk,
we can see from Equations (23) and (24) that we only need the values
of the radial functions at £=0, since the derivatives can be expressed
from them. We have also shown how the scattered field of a single
incident vector wave function involves all the vector wave functions
of the same ¢-dependence. This is a consequence of the fact that
the vector wave functions cannot be considered to be modes because
of the dependence relationships.
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CHAPTER VII
CONCLUSION

Considerable knowledge has been obtained about scattering by
a metallic disk in the last three decades. However, most of this
work was done in the far-field region.

Meixner's solution can be directly applied in this case because
of its vector potential formulation. The purpose of this work was
to establish a valid solution everywhere in space.

Flammer's solution was considered first since it leads directly
to formulations of the scattered electric and magnetic fields. The
validity of this solution, however, still needed to be established.
We rederived it for the normal incidence, perpendicular polarization
bistatic case and compared numerical results to data obtained from
Meixner's solution. The general agreement of both solutions showed
that Flammer's solution i. acceptable in this case. We, however,
encountered problems in the derivation of Flammer's solution in the
arbitrary incidence case and its validity is still questionable.
Thus, Flammer's solution did not provide us the expressions that we
were looking for.

Meixner's approach to the problem leads to a solution that has
heen, in turn, expanded in spheroidal vector wave functions. Another
proof has been given directly using dependence properties of the sphe-
roidal vector wave functions. This formulation of the fields is ade-
quate even for near field computations. For example, the computation
of the surface currents on the disk should be made with Meixner's
solution.

In parallel to the solution of the scattering by a disk, we have
shown some dependence properties of the spheroidal functions. The
derivatives of the spheroidal angular functions are not independent
as the original functions are. Some dependence relations of the sphe-
roidal vector wave functions of index 1 have been derived, and it
is therefore impossible to consider a single vector wave function
as a mode in these cases.

Some questions remain after this work. The formal agreement
of the scattered far-field of Flammer's and Meixner's solution in
the normal incidence, perpendicular polarization bistatic case should
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be numerically checked as explained in Section VIB. The validity

of Flammer's arbitrary incidence solution should be tested as explained
in Section VB. If the validity of Flammer's solution can be established
it should be interesting to compute the surface current distribution

on the disk from Flammer's and Meixner's solution. This could be

a good test since the general formal solutions are too complicated

to be matched term by term.
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APPENDIX A
THE OBLATE SPHEROIDAL COORDINATE SYSTEM

AZ —|S‘r]$|
N=+l A OS€<(D
& #°¢ 0O<¢p<2n
§>0
\ n>0
£=0
n=0 =0
7<0
-
L

Figure A-1. The oblate coordinate system.

The oblate spheroidal co--dinate system has the components (n,
£,9 ) whose characteristics are:

- the &-constant surfaces are ellipsoids of revolution {around
the z axis, in our case). The intersection of those surfaces with
a plane containing the z-axis are ellipses whose foci are the edge
points of the circular disk in this plane.
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- the '-constant surfaces are hyperboloids of re.olution around
the z axis. In the same way, the foci of the intersections with a
radial plane are the edge points of the circular disk.

- » is the usual azimuthal coordinate as in the cylindrical case.
~=0 represents the surface of the disk of radius d/2, c=% kc.
varies from 0 to infinity whereas ' varies from -1 to 1.

The following formulas have been rederived from the general or-
thogonal coordinates systems transformations as explained, for example,
hy Stratton[11].

We first establish the relations between the usual coordinates
systems and the spheroidal coordinate system.. We then consider the
Timiting cases of large radial argument, cg,of the surface of the
disk, £=0, and of the neighborhood of the edge, %=0 and n=0.

1. Coordinate Transformations

a. Components

from Cartesian:

. 2 L
[ = 5 10-2)(14:%) 1% coso
2 1
vy = 2 i0-2) (142" siae (A1)
a4
;\ - 2 e,
from cylindrical:
1
- g (1-2)(1+2)]’% (A2)
from spherical:
( — ——
| r = _!}02-’-22 = ..g_ j]-ﬂ2+€2
~\' Cosi = g %ﬁ';f* (A3)
/]—r|2+ﬂ? L
2 2 2
s“lnu = {.(k.lﬂ["‘_'_‘)_}
. 1—n2+22

The metric-coefficients are computed from the following formula:
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2 N e, V2 .
h; i/(ééT +<91;) '+<93; ) where v'=n £ ¢ (A8)
oV vV

av’

i

From Equation (A1), we obtain

l 2 .2 ;5 2 2 L
R J h£=g{n+aa r |
l n 2 .]_HZ 2 '|+E;2
(AS)

he =3 [(1-n?)(142)]

A

b. Unit basis vectors A

We give in Table A6 the dot products between the basis vectors
of the spheroidal coordinate system and those of the common coordinate
systems. The different formulas can be obtained using the general
relationship in a basis (?%): '

7= ] (3.8))8, (A7)
1

The dot products are computed using the relation

oA da 1
oty - (%) & o
where « and ¢ can be x, y, 2; o, I, 6, n, &, ¢.

2. Large ¢ Approximations

a. Components

Since £ is always positive Equations (A1) to (A3) reduce to:

x =-g- &jl—-? cos
y=% 13 ]-nz sin ¢
. o =4 e 12 (A9)
‘ /r =g—€
g n = cosop__- ‘
| sine = [1-i?  for c€ > 1

\
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Table A6 |

eAn éé é¢>
1 L I A
2 2 2 2 :
A 1+¢ } [1-n ' :
e -n coSs¢ £ CcoS¢ ! -sing
X n2+52 . n2+€2 "z
2 1% 2 1 i
1+¢ 1-n .
é -n ] sing £ sing CcoS¢
y né4 €2 néy gl
L
. -2 |* (1462 |
& | T "7 0
n +¢ n +g
e -n 1+¢ \ £ —-—T—]-n 0
P n2+€2 ~ L N +€2 .
L
2 1° L
. n 1-1 } 2 ]2
e 3 1+€
r 2. .24} 2,2 -+ { 0
(1-n"+£%)% In"+g (1-n2+£2)% | n24e2
, % -
é) £ 1+¢ ] n T[]—n“ ] 0
( - I = 1
(]_“2+€2)2 n2+£2 (]_n2+g2)2 n2+€?_
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This leads us back to the spherical coordinate system. The two
main relationships are:

n = cosd and ¢ = %ﬁ (A10)

b. Basis vectors

For cg >> 1

~ ~ 2 ~ ~
[e * -ne +(1-n")e. » -e
" P z © (Al1)
eg > er.
3 On the Surface of the Disk

The disk is represented by &€ = 0. We have the relationships:
-p-d 2
pEr=s5 f]—n

~

. _ .
e T ép (A12)

0o
e” Tal %2

4., Edge Coordinate System

>

To determine how a component of the field behaves in the vicinity
of the edge of the disk, the significant quantity of interest is the
distance from the edge to the observation point. Let us call this
quantity s in the coordinate system shown in Figure A-2.

z
A

n*!

n=-l

Figure A-2. (s,t,¢) coordinate system.
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We will use the following notation:
s distance from the edge to the observation point.

t angle between the positive side (n>0) of the disk to the
observation point.

We restrict our domain to small distances from the edge: s << d. We
notice that, in this system, with s <<d:

t =0 1is the disk itself

t = v 1is the plane of the disk outside the disk.

We will derive the relations between the spheroidal coordinate
of small argument and this edge system.

In the following, we have & << 1, |n] << 1,

By definition, we have

o - (o— g )2 s 2 (A13)

R e e EER  EEe

In spheroidal coordinates, this equation can be written

2 f ) Y 3
S Ii(l-r?)’?(ncz)’z ) "zf’zj (A14) ]
For n and ¢ small, we may write: i
2 2.8 2 g 4 4 2 2
[(1-0%)(1465) ] = 1 = 2=+ 5=+ 0(n*, €%, €) (A15)

which leads to ]
2 2
2 _d {1 (2P on 22) = £ (Eaid)?

S 7 \3 T6 (T*8
Finally t .
s = § (P+d) (R16) )
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In order to compute n and & as functions of s and t, we use

j p-a =~scost = g (Ez—nz)
d (A17)
Z =5 sint =5 ng
' 2
. 2 g2
' (cost = nz'iz
| 1 ”* (A18)
: Z2nk '
’ sint = ==
‘ n2+€2
Since cost = cos2 t/2 - sinzt/Z
sint = 2 cost/2 sint/2
(n = [+ costsz = 2 [$ costs2 o)
A9

2 % sint/2

IE

“The equations (A16), (A18) and (A19) summarize the transformation
between the edge coordinate system and the spheroidal coordinate sys-
tem.
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APPENDIX B
DIFFERENTIAL OPERATORS IN THE OBLATE SPHEROIDAL
COORDINATE SYSTEM

2 .
i I GERULCO SR LS UL

52+02 on
2.2 oF
PR .. R #} (B2)
112 12
Al o g 1 3
gl - e S
024 J1-n2y(1462)
| B ) LIS PYY S
+{ o 2 () — (/10 Fd))]eg
(1+£7)(1-1") n
1 2 3 ,12,.2 25 2..2 n
+ *12+n2 [\/]'ﬂ n (,}n +E Fg) - ./1+g 55 {n +¢ Fn)] e¢}
(B3)
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Laplacian of a scalar function

2. _ 4 3 2, 9¢ 2, 3¢
v 4’—;2[3—”((141)3—” 2 () &8
€2+n2 32 ]
th et 7|7 (4)
(1-n®)(1+£%) 99 N+

Ceew
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APPENDIX C
ERRATA IN FLAMMER'S WORKS

The errata contained in this appendix have been collected by
Dr. Hodge, Dr. Garbacz of the ElectroScience Laboratory and myself.
The following corrections should be made.

A. Errata in Flammer's Book [10 ]

Page 42 - Equation (4-6-14) should be replaced by the following, for
n-m odd:

i-m=1 My el gnn (-ic)

R(])‘( ]

o’ (~ic,io) = - (c1)

[ 1

(2m+3) T d™(-ic) ﬁ3$1£l;

pey T r!
and Equation (4-6.15b) by, for n-m odd: e
1.n-m+1(2m+3) Z dT"(-ic) §2m:r§!
(2), ._ . ] r=1 )
R}/ f-ic,i0) = ————— = -
™ CR;LS(-ic,io) 2 mt ™2 @M (ic)

(C2)

Page 43 - (1tg11 )! should be replaced by

(Itg:l_)! in R{2)"(_ic,i0) for n-m odd, Equation (4.6.16b)
Page 47 - The ¢-dependence term cos m( ¢-¢') should be introduced in
the expansions of the Green's functions in Equation (5-2-11) and
(5-2-12).
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B. Errata in Flammer's Paper[ 7]

Part I

r+m-n

Page 1219 - Read i""™ " instead of (-1) in the definition of

(1))« .
Ron (-ic,i&), Equation (14).

Page 1221 - In the definition of A5n» Equation (36), the right-hand
side of the equation should be:

.m -1 on
2i" N r=% ] f, (C3)
Part 11

Page 1225 - The last inner bracket of Equation (11) should involve
the derivation of the radial function and be written as follows:

(1) Rglz-ic,io) 3

Rjp (<ic,is) - J3—— R )(-ic,ig)J (ca)
Ry, (-ic,i0) n

Page 1226 - R{1)"(-ic,i0) should be replaced by s{!)"(-ic,0) as noted

by Flammer in the errata to his original report of this work.

C. Errata in Flammer's Original Report [12]

Page 12 - Replace sint by cos;z in Equations (49).
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APPENDIX D
COMPUTER PROGRAM

This appendix presents the Fortran program used in Section VC
of this work. This program has been written to compare Flammer's
and Meixner's scattered bistatic far-field in the normal incidence
perpendicular polarization case. It is based on Hodge's program[9]
for Meixner's solution, which provides the structure and most of the
subroutines used. The reader is referred to reference [ 9 for more
complete details concerning the input and output, and for structural
questions. First, the use of the program will be described. Some
remarks will then be made on the programming, and a listing of the
program will be provided.

1. Use of the Program

The program uses the same input procedures as Hodge's program
except that the two following data, angle of incidence and polari-
zation, have been suppressed since only the normal incidence perpen-
dicular polarization case is considered. The inputs are made free-
format on a teletype as follows:

1. KA = ¢, electrical circumference of the disk.
2. THETA SCATTERED = 6 [degrees].
3.  PHI SCATTERED - b [ degrees].

As in Hodge's program, any of these variables can be incremented.
The corresponding inputs and the output formats are identical to Hodge's.
The command "ESC" has been maintained. It interrupts the current
calculation and requests a new set of data. No negative size of the
disk should be entered and a disk of size 0 will terminate the program,

Unlike the general case treated by Hodge, this expresison of
the far-scattered field in the normal incidence case is here a double
infinite summation over n and r, the index m taking only the values
0 or 1. The summations are truncated in the same way as in Hodge's
work. The function invelved in eacgoterm of the summation are compared
to a limit fixegain the program, 10° in this case, near the overflow
level, i.e., 10°° for the computer of the ElectroScience Laboratory.
To prevent any overflow, the summation is truncated when one of the
tested functions passes this limit. This procedure allows a full
use of the capacity of the computer and suppresses the need for a
manual search for the optimum truncation. Flammer's solution involves
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the spheroidal functions for n-m even and odd and their derivatives.
The subroutines computing the eigenvalue of the spherolﬂgl scalar
wave equation ) n(-ic) and the expansion coefficients (-ic) have
been extended t8 the n-m odd case from a previous work 6¢ or. Hodge.
The subroutines computing the functions for n odd have been added.

2. Remarks

The following remarks refer to the program listed in Section
3 of this Appendix. As in Hodge's work we will refer to a line of
the program by LN. First, the different parts of the program are out-
lined. The structure is similar to that of Hodge's program.

LN 10-53 Input
LN 54-75 Computations of the needed functions

LN 76-101 Computations of the components of the E-field:
- cross-section
- phase

LN 102-104 Output
LN 105-108 Incrementation of the chosen variable.

The needed subroutines are Tisted in LN 113-564. The notations
of the spheroidal functions for n-m even as defined in Hodge's program
[9] have been preserved. The derivatives of the functions are char-
acterized by a letter "P' at the end of the name of the function while
a suffix 0D refers to the function for n-m odd. The following notations
must be introduced:

A ang B areLthe two summations involved in the computation
of B: and Bg_.
X z
+ L
ALPHA and BETA in the main program are equal to 8  and 8_, re
spectively. Those names come from Flammer's defiffiition ¥71.

EA and E1 are the summations in Equation (112) apart from the
¢-dependence and some trigonometric functions of 6, The coef-
ficients necessary for the computation of E@, and E1, are com-

puted in the Rgi). and Rg;)(-ic,io) subroutines, respectively,
under the name®CoF.

3. Listing

In this section is given the listing of the program described
above.
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rE L N

-
N N

o

P
g <

-
a o~

-
o

'~
=

4

T

22

24

37

h e ]

2l

CHPTI0LS dek
FAL FLlbyl. SCATTERING BY ao CIPCuUy AR METALLIC nIgK
FOReap L TRNCTORNCE
et ey 1t AR Bl ARTISATIUN

INFLOE FESSE GSTEY

L L Tol LIvpLEB) o VAR (D) ‘
CUPLE L FuobdpefUst LoTXea B eCOF oFTHF JEPRT JALDHALBETA

COMOY BAGEI0n) el 230 ¢00 ) uNFG(RA) 5L (EN) FUPIRD)JCOF(50) ‘
LedNEU) g SUE RO Y e (50) ypOELU) JSETA(DN) ASETABR(S0)

DATA LABEL z2tk Ki ThE s PHT S /

IA=(Nsele) :

YRTTEIH o/6) '
FUPCAT(YAes//7 P LTYRE nESen TO KESTAPT PRUGGRAMY 14/, 1
1'(TYPe, izt TC STUP PROGRAM)?) J
CALL EaClorune) '

1oc=1

ILti=11

TrEx=1

VRTITE (2427)

FOvmyTOIXes//7e1X0%1y KAV glUuYet o ¥)

kpan(te=) yAR(L)

TE(VAREL) LF404¢0 TU B

YRITL (2 ecdt)

FunmAT(Lret2, THETA SCATTEKRFD = )
REAG(uv=) vak(2)

PRITF (R 429)

FOumAT(1X402, PHI SCATTErED = ?)

REAR(Se=) VAR(3)

WRTITE(G400)

FORMAT (1Y /701Xy " WHICH VARIAPLE IS TO BF INCREMEMTED?)
READ(Hne=)MVAR

IF(INVAReLEeG) e Ol e INVAP LT eh) o0 TO 23

WRTTE (3951)

FURaaT(1X4*TYPF MUMAFR OfF CAcES:?Y)

MEAC(ue=) OC

HRTITEAA32)

FOUMAT (LA ¢ "% HAT IS THE IncREMENTRY)

ReA(Le= ) VINCRE

MNYAR S IVAR

Iht 1z +MMVAR=y

JLLz=TLL 4+

WRITE LS ecu)rRFLITL LYY olaptb¢ILLD)
FUMPTUIX g /7 ¢ 2UVEP2 VL X e "CRUSS SFCTION' 121Xe%c NORMY 4/,
LY10Y ('S Thtin/(PT#ART )0 e i " THE LAY e1SX e L il 4 /013X
LT R e X e "FHI T oo X s Y HAGY SN e "PHASE ot Xe *MAGY ¢S Xy
L'PANE Y o /)

C=vak(l)

vMumaAX=hy

ML £X =0

IRPMAX=RY .
THe S=y . l2)73,14259/140 : P
FlrpzCut(ims) !
PHISSVAR (D)2 1%1d29/14a0
v 10 MI=]1,2¢

VMampied
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[

Y
97
St
“W9
6
61

64
bu
[538]
b€
67
(£33
ey
Tv
YAl
Te
73
u
)
76
77
78
79
Bu

b2
o2
Ak
84

87
ae
63
()’\
91
92
9n
914
o=
9y
97
9
9¢
a0
101
192
1L
106
109
10é
107
10
1oy
11

16

17

18

19

29
a7

HA

57
11

I@=0

CALL OBELGIMIC oMol AY)

CALL OPCCRI(C  MeM ™AL s IINva Xy TRIMAX )

TFim) 85955040

CALL SUubP (M aNMAX)

CALL ORRLOE (C oMo AT MM ¥aX RMMAX  IRRMAX,
CALL FPULYN G TasMeTickmpX)

CAp L OV ANGLLGHIMAX e LB RMAX)

CALL FIFLLYINMNAX e g)

GO 1o ~7

CAtL L SPRU(F e inMAX)

Cal L UMEGN(C MyNMMA )

Catt UCKRED (L1 o Balt MMMpy WKNMAX  TRRMAX)

Cat L POLT (ST a0 IPRFAX)

CALL UBAPNGI NMAX e IRRPAX)

Caty Flellsg (NMMAX,Eg)

COrTINUE

COnTIMNUE

ALODHASHZ(BR)

PCeThz=N/(lial)

fTHeE=ALPASE UxSTKEPHIS)
EPLTzbLrHALEL*F T2 COS(PHTIG) =RETAYELXSINITHES Y ¢r 08 {PHTS)
EFAGTRCAUS(ETHE)

EMAGPESCABS(ERHT)

SIGTHLS(Er2GT#2/70) w2

Sieprlzlerat Px2/Cledg

ER=REAL(ETHE)

FlzAIMAGIETHF)

IF(vREF0LG,) 6O TO 16

ARa=v L/ER

FPHAT=Z1AU/3,14159*2TAN(ARG)

IFCEER LT, J AV G ET T 5, )V EPLATEEPHAT+18g
IFO(RelLToba) oAV o (i Lol T, 0e)VEPHATSEPHATL180
FryaT=3g

IF(L_'K ol Tene )t,pNA,:.QQ"

ER=REAL (8P 1)

ElaAIMAG(ERHT)

IF(ER (KR 6,) 60 TO 318

ARGE=FI/ZCK

ERPLAPSIAU/Z2,10199 %A TAN (ARD)

IFPIER LT Y AU GHTL 6T 4, ) YEFHAPSFPHAP+180
TFEUFR el Tolta) e Ao (Chal T U ) YEPHAPSEPHAPLBN
Y 19 13 )

FPLAP=9)

IFCeTalTolia e PHAPZ-90

TR (VAL JLG 0 INNVARZ]

WRITE(R oS I VARINNVZR) ¢ SIGTHE ¢ SIGEHI o MAGTeEPHAT
IEMAGP o FPHAK

FUCAAT (IX0F 70242t AY ) EL0,2) 0210 ELUZ01YFTe2))
IFUINUL X eELeWOFILU TO &

Ttk xzlnusy+y

VAR {MwWVAR ) ZVARINNVAR ) $VINCRE

0D TYO &

Char EYId

CUNTINUE
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e B e e B

-

e I T WY

(e B

o

GO 10 4
ENn

CHUATE SEREFCTPAL paoulpre FUMCTIAN, Sy OF AFARLMENT 01t
OROER gy “LTH Ner EVENg UF Ty CRUFR fezmp2arnwAX=2,
(EeogaL TO p*rnqa))

SUCQQUT Ty SHpa (i, uMp X )
CUspL e Fygb LpeCOF

CUaun, Elu(1ﬁﬂ)vb(190-50)uUPrG(hG)oF“(Sh)‘F“P(RO)'COF(SO)
leo0¢a0)

Sur1) =1

TF (e, )60 TO 1

Ny ¢ MMz1 M

SUL)IS(2% ) 1 )%S0 (1)

FU 2 fwiizd ¢ NEMAX

MO % (el ) 4o

SU(NH+1):—(u+m+1)*50(uﬂ)/(m-m+g)

CurTINVE

Pe.TuRn

Ewn

UEPIVATIVE (F N3LATE SPHEROIPAL pMGULAR
FUSCT IO & UF ARGULERNT 0: ORPER trelNe
WETh WeM QU0

SULLQUTIIE SpnOP (e R MAX )

€O~ m0y E12(00) el (200450 yUMEG (S0 ) oFU (50 ) yFup 80),COF (50)
Ledr(90) 4501 (50)
CUPLLY FusFupeCUF
NUNBRES!

LEVERES |

(g 2 ¥z M
SUr(l)=tespre1)*S0 (1)
CO- Ti0UF

Py 5 NNz NAMAYX
NEUaflh+ia=~)

SUE IR 1) ze AN+ e v SCR NN/ IN=meY )
€O~ TINLUF

He TRy

ENP

-

OB ATE SPHESOIDAL EIGENMVALLES UF ARGUFENT C, ORDER M,N

SV pOUTILE Uy EIGY"NC'M'NNM.\X)
COr gl KAGCLLO)

Ulvpaslon IP‘bn)oP(ic).AlPhA(Su)'bLTA(SO)
COnrINUE

L 2-JF 2%

CezC2C

PLrz1l0Ee05

[N 2 AK 4

Nl =ikl

Ptry=1

1Pe1)=1
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a8

194
19¢%
19¢
137
19¢
199
200
201
ane
203
2CH
20%
206
207
204
209
21¢
211
21z
213
21w
21"
21
217
21n
219
22y

13

21

s0

Ll
Lé

ul
<

1

I1S=a
CUrTINIE |
[0 ¢ 130=1MN2
V=2 {uu+is=]
IWZ U242 LLGHLS

Ixzrosdsl,  +2uTg=1 {
ALERA (T T (CRx (Men (2aIVai)42%lve (IVal)et) )/ (1Xx(IXey) ‘
imlraqy=1ta(;yeml {
BErACIva+v 1)z /IxqGrT i Tys(Ivri)vIns(li=1)/(TX¥IX=":0)})

HEYA(WMa+j)y=0, !
BV RS CALPHALLI)Y I FAESIRET 4 (2))

00 % Tay=ie:n2
AU=BRS(HBLTA(IOA))+2BS(ALRRA(TAG) )+ARS(BF TA(INALL))
PETA(LS ) =it TALIWOY ®SRETALIWGE)

IF(AD.GT4bL) BO=AU

cUMYTLLUE

AN=e30

Bo1=81

CUNTINUE

PY=AUIL

U0 2y Tguszl W MNMAX

L2yl auaisIS

Nz +M=1

A=An i
B=rp !
ItiRz=e}

1{c=¢

Cu=(A+H)/2

IF(co)90e22 %0

ERPz(3en) /A08¢CO)

TEOR=HRM 4y

IF (Tt RE=uh) G 1ol

WRTTE (Nl

FUPMATI(LX, *1ITFRATIONS EXrEERFD FGR EIGEMVALLF ¢,13)

<0 19 700

TF (FRr=ACC)EH 244122

P{o)=ALPHA(1)aCO

fY S f=2wnd

FAY ) (AL PHA(T=1)=COo=BF TA(LI=1) ¥ (P(I=2)1/F (T=1)11%P(I~1)

FAAR=p3S(R(T))

1IF(PMAL TS sOF*3S)IG0 TO 7

COHTINUE

COMTINVE

L0 6 [=2n]

IF(PEINIdu,eCe9

TE(P(L=1))1%49,1%

Iregy==1

60 10 10

1IP{1)=}

TF P I)=1H{f«1))belleE

Tls=Tisel

COMTINUE

IF1IIS=10L6Y1eedBods

LESof !

GV TO 21

— e e
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o4
JU
Y]

o e s B |

n

i

nll

Yhe

1ur

k=co

“U 10 21
Pu=Co
Cli(t)==C0
Cun TIMUE
TF{1S8) BUC,¢00es8UL
IS=1

GO 10 1
CUITTIHNYE
ReTURW
ANACAYS (=
HlanNNMAX+3
-0 70O %

t Ny

031 aTE SPRESOTINAL EIGENFUNCTTON FXAANSION COrrFICIENTS
CF ARLGUPERT C3 URDER MoN,k,

SUOLOUT Tt OHCOFN(C'N,NMMAX.NNHAx.IRPHAX)
CO a0y F_I(-(l()(;)o{‘(IUO.SO)

fivpnsIon pFer09)

Ce-(xC

Mz 4L

MR AX 2= S RAMAY

U 1 Nzl NMMAXZ

Nzrmahit=1

Jos(=1)*3nyy

TF(1S.,LEsU) 18=0

$=18

CPUTRRYAX$3) =0

CPUIRRSAXS)IZ] VE=20

Derne1)=0

ClrNee)=l

Jdz (L= 18) /41

MU 3107 LL=1sIRRMAX

LSt L=l .

IF (Lo GFeud) t =IRRYAX G yULL

IRe2w +15 ’

In;=vi+lR
AN:‘M*IVMOZ)*‘M’IRM*I)*Cp/(‘,t*Rp¢5)'(2*'RMQ&),
PRo(2FTPper (jrusl)eln enaq)¢cd/ ((2x]pn=1l)s
A 201 arpMR (IR +)
CN:]HQ(IM-])Qr?/((ZAIFM—})*(?‘IRM-,,)
TriLL=Julinsy10belne

DBl +2) = (CRFDINS s L+ )4 (BR+ELG(NL)I*U vl 420 ) ZAK
CHMAG=AES (g L +3))

IF (ORAG  CT L, 0F*2V1G0 TO 3

GV TO An7

FPL$II== (e yPPIL*2)+ (PLar IGINN) ) DP(L+2) ) /Cp
PMpGzndS Lk (Le1))

XF(' !“:.‘.(".-:1.1.0?.‘5")(:") TO 6

COnTIrny

CL=a38 (0 (nioeggel))

Cl=pLut-ru(('L)

DLPzASS (NP (IJe1))
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27¢
77
I &)
279
29n
e 1
28
el
2eh
20%
285
287
2y
269
29
251
ey
293
296
29%
29+
FA N

- 298

299
300
Jnl
302
303
3oy
3n%
30
any
3G
3¢y
3in
311
312
315
314
315
310
317
3¢
319
32¢
3z1
d20
323
324
325
32
827
32y
32y
330

11f

199

197
114

11

A an

OLP =ALOGLL (DLF)

TRy Y | niL.)

PP =AS{ILP)
rLznLAvLP

IF (Lot Teld04)60 TU O
(U“:J(Vﬁqdubl)/np(dd+1)
Lepy=ab’siCorn)

1k (ACOH b 1, 0F+32)60 TO 2
TV 11¢ JsJdue IPRMAX
Flapo g+ 2)SCONNP I+ 2)
Fz=qy

I[Sr=[S5+M
IF(r5:1119249198¢199
FED,0%%(>15)

DU 114y 1=y ,lsw
Fere{ISr+l)

Su =g

MMy =TRRMAY 41

[V 115 I=1etmx
IRZO%[+TS
SumzSutleb s (NN T+
TF(IwJd)) 11742974223
FINMzF
Fo(aFa(Th+2+MeIS=1))/(IRLIS)
ALR=FNM S UM

00 114 1=14ikiMY

Claga LYSALE*DIMNYIHR)
COMTINIE

CORTINJE

FETURWY

IRy A=ty

GV TO 4
IRRMAXSTKRMAX =]

VU Y0 4
MNvAX={(MNLY ) /2
RETURM

AT

MEGRATIVE L CUFFFICTENT SURROUT N
ted. EVENe

SULKOUTINE GNEGNIC MeMMMaAX)
TOMMO™ blotign) tUIU0IE0Y s UNFG{S)
CU & oid=lyehiimaX

C2=Cx(

Muz2eiiliald

Ir (MoGEoe1) b0 TO 2

DU % Nzl NivmaX

A= pxnri=]

ENFGINYYED (MK Y )

0 TO 3

Pa=1,4

Pe=n,0

FlebElo(fink)

PV § IRR=1 M




331
35
32
3%
3at
330
557
354
a3y
S0
341

344
duy
Sbt.
Ui
3ny
344
549
340

.
~

35
355
35H4
3355
aHe
27
a5
35
Suad
361
365
362
364
364
36k
567
360
b')()
370
37.
37
374
374
375
37¢
A17
370
379
20
301
S0

383
Snb
38hH

13

O

1

9

Iz ¥ JRE=24M=2

AR (2% +hr+2)20€XNET1P 41 a2/ ((Lap+2FTR+H)
AT LT AT

PRo(PA (RSP +) ) e 1w (Po (P éyP)e(mbiR*I )20 ,imel)
LECOo /({2 ¥ ded | p=l) ¥ (2% 42911 43) )

CR= (1K) (k= )*C/ ((ExP4281R=I)u(e?M42¥TIR=1))
Ro=p2

Eez=i1

Bi=(BRoyBe-(1an3)/7AR

SNk l) /21

NNrGrity=p

FUv=AuS(LRDLE (WMD)

TR el TelelF=992)160 Tn ¢

COBTIUE

Re TLRM

MH) AXSINM]

RETURN

[ T

Ot ATE SPHF-0T0AL cADILAL FUNMCTION g(8) OF ApcumEMT C3
OROAFR ey WITH Meb EVENMg LP TO ORUFR NevegxrinnviYa2,
ALSOD LUHMALLZATIUN FURNCTyore Mo

PLsn COFHEICIEMT COF FOR cOMDUTATION OF g

SUSRGUTT e NERADIC oMeBe I IMMAX o1 .hMaX v IPRM XY
COavmuny ELIGELOO) 2D CIUGISC) s UMFB(RN) sFLISH)sFuE(R0)COF(50)
|bﬁ(50)oscp(50)

COMPLEY L1XoFUeFHe=1COURFUP
Ix=(0s0,1,0)

FFaC=1

FAC=1

FAC¢=1

G =1

Th(m,etu,0) (-0 TO 20
MAYMSGY

L0 19 M= ,MAxM

) L FTILE RN
GRO=(Z* 11 (2% #) *(RO
FFac= 12+~ al)nFFAC
FAr2z(selMail)yn (M) 2 ACH
FACzIM*FAC
IF(FFAT 2 ,1,0F+17)G0 v0 ¢
TR(FACT b L 1,0F+3V)GO TO o
1S(0.04000)

1°0 17 “iz=g NamMAX

PRz wlire]

N a(isht=dl)em

LUz

GR=GRY

FnORrM=z0,

0L 15 r k=1 TRRMAX

JR=2e ("'R=1)
SUNPGE I (ko NR )

Sur =Su+SUMp
PMAG=ASIUIRMK G NR) )

[
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38u
337
53
349
39¢
391
39
334
29
395
3945
397
395
39
4t
4Gl

bas
Y04
L IR
Yoo
407
b
409
%10
811

e
%13
L3 K
41%
“]h
W17
41¢
419
42
421
422

18

]

(o e Bas Yo i Tu |

7

[

16

TE (0Nl Tl o 0F=20) 0 TO 3
ENGCOMLZ2RGp e (NIRK Y hi) )92/ ( 201 <4294 )
FINRMSFHUR N s N ORMP

GRYAG=ARS (1)

TF (Ot Gal7,1,0t+80) GO yo ¢
CK:(]h+Jtr+l.)/‘lp;l.)"fka‘M+2.,/‘1H+p.)‘ng
CONTY NUE
klz(-l)t*(r“-n)*?-*M'FnC*Lttv*u(hkoi)/((?tn+1)wsUw)
Remim,  Ja%ar vay Y El2v e ) oD CXC®e(Ma)) ) (2tFAC2I R 5159
IV (FREALY®2/SLr ) *E¥ %0700k Gonn)
FRozhuS (R

IF(KRZeGl o1 0F+3U)00 TO 4

FELCS (et ) wpFAC/ (=42

TR (FFAC L (1, 0F #1 7 )NKMAX 2NN
Fazxl=IX*k,

A= ARSIFLOKRMY

AlzALUBY N (A%)

A%piStike)

Alzat.ubLluU(AY)

Nozal+ehr2

IF(, 3¢6Teldn, )10 TO 3

AO=ateS(121)

Bl=tLunsin(Aan)

Ro=AiS ALy 4 AR (AZ)
IFir2esTedtiad,0 TO 3

FO i) =1/ (FLORMERYS)

(420 # ¥ FiAI S

FEra2e (al)yaxtitdFY (M) 20 (NN ) wSUM
CUs ¢ty z2a1 > #R1LEF 4 (NN ) *SUN,
COMTINUE

Re TURN

ENaRMP =

L0 TO ¢

F“(””,=(0000-)

tV 70 16

GK=n

SV 70 13

MMM A X

Tu=1

hE TURN

EiNp

P IVATIVeS OF THE 4ApIAL FUMCTTIONS 81 AND Ru
CF ORDER MzaeNe M (O3 0F ARRUMENT o,

AL WORMALIZATLION FURCTYIGMe N

AL CubFFICIFNT COF FUR COMPUTATION COF €0,

SULRNAUTINE (HBRAOP (CotivAsIGeMMMAX e NNMAX o TRRMAYX )

COrmon FILEI0uN) 2001004 R0) s LMFRIRO) sFU(5N) FUp (&) +COF(50)
1S (50) oS0 (20D

CUPLEX 1IXoHUFYIRUPIEUP,pocOF

IXz(0eVyl,0)

FFac=1

AS(06s04000)

00 17 NNz=g ,NumMAX
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LYY
"ql)
Y
By
hye
Y,y
467
hy .
by
4
447
LSy
453
Y4
45
45§,
457
LTH

[
e

L YR
LI
46,

boh
Yeo
L1
wh7
ol
U5
470
47
47,
475
47n
47y
%76
477
473
W
850
4:1
432
L 2L
461,
B
LYY
L 64
4
LI5)
49,
491
“;)t‘
LR
4GSy
495

it 2ia Na e Ne

fMR=0#RN

M=o aNh=-1

SUv =1

FNCRMz

DU 18 Me=] o IRRMAX

Thodxn el

Sur Zuubney (K G MR)
PMAGRASS L (LK NH) )
IF(0aht el fote0E=3U) G TO 1
FNGbTes (uligk oM ) yeez/(0a TR )
PN TERCRp PR RORMP

CUOity IrIE

Fhra(et)aa( el )xCaN('Ke1)/(3¢Sul) .
Pena(wl)d* (1 al)#323,341597(CHCe0{NK L) *SUN*2 ) 2eFAC
FRoZALS (K P)

JF(RI2et ,1eUF+3UYCO TO ¢
Fr/Co(i 4o )b EpACZ(N+D)

TR eEF Ol (G 1,0 +1T)NNMAY=NN

F4p k1Pl xoeitpp

A= pnSZ{FRCRM)

PLALUGLUEAS)

AY=AS(PZP)

fc- ALDGLYAL)

PS=pysh2

TPt A4, Teaya)GN TO &

A= ARSIRLP)

Alzpluel(ad)
FAzARS (AL ) LALC (AZ)

IF (a3, Toaa )0 TO 3

FROL VYA Z 1 0RMYRYP)

COr T INUE

Bra ot (e )rr (M=) RGP hn)*SaP (NN ) *SUY.
CUk (Ppydzer(=1) ol ®ole*f 4 ([ M)¥Sym
CUnTINYUE

KETURN

FiNonpMp=n

G0 Y0 2 .

FRO(MI)I=(0,00,)

GV TO 16

MMM A XM

Juz1

RETURN

[ ST

AS<OCIaTEL LEGENURE FPOULYNOMIALS OF ARGUYENT FTAOS
URDER rertd agTH N= EyENS Py UP TOU ORVE S y=pa2vNlimAYX=21
HET NeM 008 POy UP TU ORLEP Namel2axbvMAXal,

SVLLOUT e POLYNLET AU oMeptiMiaX)

0L gNsTON B2 (3)

COvwOry LLGE100) L0100 S0 ) s LFG(S0) ek L (50) 4 FUL(50)+COF (350)
Ledr (D0 et U5 (SBYP(E0) 4yPO(D0)

CUMBELE G FyFupeCOF

SwzSIRT(lee TAQRETAN)

PP¢vLY=0

+ ————




426
897
4y
49,
590
Y
S5¢2
503
Sos
Ha%
90k
So7
906
Su9
L1{
L1
9512
915
314
515
516
517
3o
519
L2y
521
52¢&
523
524
525
526
527
Szu
529
S350
531
530
533
H5Zu
Lob
Y36
537
5358
949
544
Sn
5S4,
543
544
bSyo
54
547
bugp
5u9
950

O OHnNnHNn

(2 NaRal

AN

Pre2)=1

IR (M4, 0)60 70 1

Y ¢ L=1eM ’

PRi2)=l2o =1)sS5Q%Pp(2)
FAY)SER(€)

N A =NivMAy 41

CO » IAN=£'N|"P!AY1
fan e 2 WNN=)

DU g L=142
PRPIIZ((edph=1)YETLO®PP (2)e (N+May ) %PP (1) )/ (N=v)
IF (Nt el aX3) 6O TO B
MN=wed

PP{1)=2I'P(2)
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