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CHAPTER I
INTRODUCTION

I
Among the various problems of electromagnetic scattering by arbi-

trary bodies, only a few simple shapes have led to exact solutions.
The diffraction of an electromagnetic plane wave by a conducting circu-
lar disk long remained unsolved. The presence of an edge led to much
greater complications than, for example, the sphere which was solved by
Mie[l] very early in this century.

First, some limiting cases were derived for the disk problem.
Approximate solutions were obtained by Kirchhoff diffraction theory
for disks of large electrical circumference kd where k is the wave
number and d the diameter of the disk and by Lord Rayleigh[2] for
disks of small electrical circumference. After the second world war,
extensive work was directed at the disk problem, and two complete gen-
eral solutions were developed. Meixner and Andrejewski[3] used Hertzian
vector potentials to compute the scattered field. They derived the form
of the potential from the appropriate boundary conditions, and the uni-
queness of the solution was insured by the edge condition developed by
Meixner[4]. He showed that the energy density of the total field in the
vicinity of an edge must be integrably. This insists that the compon-
ents of the fields vary at most as s-u12, where s is the distance to the
observation point from the edge. Bouwkamp[5] showed that the tangential
elgtric field is zero on the edge, that it approaches this value as
s" , and that the tangential magnetic field remains finite. Tangen-
tial, in this context, means parallel to the edge. This solution has
been checked by numerous computations made in recent years. Since the
development by Hodge[6] of an efficient method of computing the spher-
oidal eigenvalues, even more efficient computers have allowed extensive
comparison between experimental data and computational results with very
good agreement.

Shortly after Meixner, Flammer[7] derived another solution using
oblate spheroidal vector wave functions to expand the fields. As in the
Mie solution for the sphere, the fields of the incoming plane wave were
expanded in terms of the vector wave functions. The boundary conditions
on the surface of the disk determined the scattering components. In
order to insure that the tangential component of the electric field is
zero on the edge, two sets of vector wave functions were used and their
relative weights in the expansion of the incident plane wave were deter-

mined by the edge boundary condition. This led to a unique solution.
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The purpose of this work is to compare Meixner's and Flammer's
solutions. Apparently, no numerical results have ever been obtained
from Flammer's formal solution. Thus, it is necessary to establish that
the formal solution is, in fact, valid. If this validity is established,
the vector wave function formalism may be more convenient for examina-
tion of such characteristics as the surface current distributions and
the natural resonances. The reference work used for Meixner's solution
is Hodge's version. Hodge[8] used the notation and normalization of the
spheroidal functions introduced by Flammer. In order to match Hodge's
geometry, Flanmner's solution is rederived for the same configuration.
The bistatic normal incidence case is more deeply studied, and problems
encountered in the derivation of the solution are pointed out. Compu-
tations made in the normal incidence case, as studied by Flammer, are
compared to the results obtained by Hodge[9]. In addition, Meixner's I
fields are expressed in terms of spheroidal vector wave functions as
well as the vector potentials. Another prnof of Meixner's solution with
vector wave functions is given.

2
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CHAPTER II
SPECIFICATIONS OF THE PROBLEM

A. Geometry

The scattering objbct is an infinitely thin, perfectly conducting
circular disk of radius a. It lies in the x-y plane of a right-handed
Cartesian coordinate system and is centered at the origin.

The following study will be made in the oblate spheroidal coordi-
nate system , Figure 2.1, In which the disk is the surface repre-

sented by =O.

I 77 I

7 + I ^
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< 0

Figure 2.1. The oblate coordinate system.

The transformation from oblate spheroidal to Cartesian coordinates

are, as given by Flammer[lO],

31
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fx a[( . 2 )(l+s2)] I / 2 cos -i2a

y= a[(l-q2)(l+[2)] I/2 sin (1)

z =a n

In Appendix A, the transformations between the different coordi-
nate systems - Cartesian, cylindrical and spherical - and the oblate
spheroidal coordinate system are summarized. Their limiting forms are
listed for three cases: at large distances from the disk - large - on
the surface of the disk and in the vicinity of the edge.

B. Problem

Because of the rotational symmetry about the z-axis it is possible,
without loss of generality, to choose an arbitrary plane of incidence.
We will use the notation of Hodge's work[9]. The incident plane wave
direction lies in the x-z plane, coming from the x>O half plane, Figure
2.2. Flammer used the y-z plane as plane of incidence, instead. The
whole system is located in free-space.

Z1
kii

x

Figure 2.2. Geometry. I
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We will use the following symbols:

c=ka - electrical circumference

o - angle of incidence

- polarization angle

eiwt - time dependence

The incident wave vector k! is expressed by:

ki = k[-sino0 ex - cose° ez] (2)

The polarization of the incident electric field is measured bj
the angle cA between the plane of incidence and the incident electric
field, El, in such a way that at is the conventional azimuthal angle, ,
of a coordinate system defined by the unit vectors (cos 0o ex-sineo ez,
Cy, sineo ex+cosoo ez) as shown in Figure 2.3. Parallel polarization
is obtained for a=O and perpendicular polarization for a=7/2. The
incident electric field is given by

SEo(cosao COScL x + sina ey - sineo cosa ez)

e-iki.r eiwt (3)

where r is the usual position vector.

Note that Flammer[7] characterizes the incident wave by the angle
between the positive direction of the propagation vector and the posi-

tive z axis instead of the angle of incidence 60. Those angles are re-
lated as follows: =7-0 o -

In the spheroidal coordinate systems, the boundary conditions sat-
isfied by the electromagnetic field on the surface of the disk and at
the edge are on the disk, =O:

( ) en  0

(Ei+1).e = 0 (4)
0

where R-s, Ps is the scattered electromagnetic field.

I
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At the edge, C=O and n=O, the energy density of the total field
must be integ' le. The components of the fields may become infinite
at most as s-  , where s is the distance from the edge to the observa-
tion point. Bouwhamp[lO] showed the following more restrictive condi-
tions on the O-component of the fields:

I(i+fs) .e O(sI/2)

I (iT+-Hi) e, 0(1 (5)

Those orders of variation as function of s are valid only in the
vicinity of the edge, s<<a, for the curved edge of a disk.

In this work, we will refer to these behaviors of the components
of the total electromagnetic field in the vicinity of the edge as the
edge condition. The ,-components will also be refered to as tangential
to the edge, or parallel to the rim.

We will see that, in Flammer's solution, the condition on [Ei+fr]
is equivalent to the whole edge condition. This is due to the particullr
choice of the vector wave functions used. This will not be true for
Meixner's solution, where all the conditions on the components of the
field will be needed.

Before we present Flammer's and Meixner's solution we need to
introduce the functions that we are going to work with and some of their
properties. In Chapter III we will define the spheroidal functions, and
in Chapter IV we will derive various plane wave expansions. In the fol-
lowing work, the time dependence el~t will be omitted.

7
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CHAPTER III
THE SPHEROIDAL FUNCTIONS

In this chapter the scalar wave function solution of the scalar
wave equation will be introduced and some properties of the spheroidal
radial and angular functions will be summarized. The large radial argu-
ment, c,, approximation of the vector wave function solutions of the
vector wave equation will be listed.

A. Differential Equation and
Scalar Wave Function

In the oblate spheroidal coordinate system, the scalar wave equa-
tion can be solved by the method of separation of variables. In Appendix
B the different differential operators have been expanded in spheroidal
coordinates. The scalar wave equation is:

V2,p+k 2 ,;, = 0

L ,1 2n k + 1_n 2  2 + +I E 2a

a2 L 2 2 2+2 n2  2+n2 4 n2+t? a2

+ 1 '2 + k2= 0 (6)

(l 2)(ln 2 )  D-2]

The eigenfunctions associated with the eigenvalue Xnn are:

S '' = Smn(-ic,,) R)(-ic'i )C ?s m41  (7)
emn mnmn sin m J

where Smn()ic,qi is the angular function

Smn(-ic,r) = , dmn(_ic) pm(W (8)
r=O,l r mr

as defined by Flammer[10].

8
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Pm (,) is the Legendre associated function as used in spherical

coordindtes. The expansion coefficients dmn(-ic) are computed from a
recursion relationship as seen in Flammer's book[l0].

The prime over the summation is a notation that will be used
throughout the following work to denote that the summation must involve
only the even or odd indexes when n-m is even or odd, respectively.

-Ri)(-ic,id) is the radial function

From Flammer's book[lO],

R )(-ic,i =- (1+ 2)m ir+m-n mn ( ic )
n Cm X d mn(_ic) (2m+r) ! r=O,lr

r=O,., (2m+r)! Z( o(9

r! n+r (9)

The index (i) denotes the kind of ,herical Bessel ,ynction z i ) ,

used: i=l for in, i=2 for nn, i=3 for h ' and i=4 for hL). We wilt
refer to i as the index of the radial function in the rest of this work.
The normalization of the radial and angular spheroidal functions are
those used by Flammer.

In the following two sections, we will summarize some properties
of the angular and radial spheroidal functions.

B. The Angular Function Smn(-ic,n)

The equation satisfied by the angular functions is:

d m \)2
dn nn mn(-ic'n) + mn+c2ri2 2- (icn) 0- _r2) mn(-cn

(10)

The angular functions are orthogonal with weight function 1:

f Smn(-ic,n)Smp(-ic,n)dn = 6np Nmn (11)

where

9
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Nmn = 2 Z' (r+2m)! (dr (-ic)

r=O,l r! 2r+2m+l

1. Evaluation at n=O

From Formula (8), or more easily from the expansion of Smn(-ic))

in powers of (1-n2), - Formula (3-2-7) in Reference [10] -, we can see
that

for n-m even Smn(-icn) is an even function of n

for n-m odd Smn(-ic,n) is an odd function of n

From the differential equation and its derivatives, we can evalu-

ate the derivatives of Smn(-ic,n) for zero argument:

d-2  [Smn(_ic,O)] = -(Amn-m 2 ) Smn(-icO)

d3  (Smn(-icO)) = - (Amn-m2-2) Sn(icO )  (12)dn3i

3LI- (Smn(-ic,O)) = [(Xmn- m2)(Smn-m2-6) + 2m2-2c2 ] Smn(-ic,O)

dn

Thus, the evaluation of Smn(-ic,n) and its derivatives around n=O can
then be described by taking into account the odd and even properties:
rj SMALL n<<l

n- evenl

Smn(-ic,n) = Smn(-icO) [1 - a- (Xmn-_m2)] + O(,4 )

S 1n(_ic~n) =Smn(-ic,O) [- n(Xmn-m2)] + 0(n3) (13)

Smn(-ic,n) = Smn(-ic,O) [-(Xmn-m 2)+ n2 [(Xmn-m2 )(Xmn-m 2-6)

+ 2m2-2c2 ]] + 0(n4 )

10 -1



where the normalization has defined Smn(-ic,O) = Pmn(o).

n-rn odd

Smn(-ic,n) = S~n(-ic,0)[n] + 0 (n 3)

S~n(-ic'n) = S~n(-icll0) [1 2 _ (mn-m2 -2)] + 0(n4) (14)

Sol~i~W 2~~CQ -(m -2)] + 0(n 3)

where the normalization has defined S~n(-ic,0) - pfl(O)]drn "

2. Evaluation'at n=±l

The power series expansion is led by (1-n2)m/2 due to the Prn
functions. For m greater than zero,

{ M~ > I =(i , I 0 (15)

The evaluation for m=0 and 1 has been given by Flammer(10).

S~nr-i0 l rH-il) d~n(_iC)S (Cl)=2 r=0,l r 0(16)

liml~2)/ 2 4 S ("11)] =- T1 (r+l')(r+2) dln(r C

l 1 (-ic n) l n _ c in+l ,

I (r+l)(r+2)dl.n(_ic)
2 r0O,1



C. The Radial Function R,')(-ic,if,)

The equation satisfied by the radial functions is:

d [(,1 +,2) d R Mici. [ 2 c m21 2lRD )(-ic,i ) = 0

dT'd mn mn-2 1+c 2  O,

(17)

Unlike their spherical counterparts, Bessel, Neuman and Hankel i
functions - the oblate spheroidal radial functions and their derivatives
are well defined over the whole range of values of r. The normalization
coefficients of these functions have been defined by Flammer[l0] so that
they match convenient formulas for large values of the argument cc,

R I)(-ic - c cos [cc - I (n+l)7] j

(4) / (18)

(-icir) exp (%i -c- - (n+l)

With those definitions, we see that the suitable functiVQn for
the series expansion of an incoming plne wave will involve R),and
outward traveling waves will involve R.n

1. Wronskian

The Wronskian of the differential equation is, as computed by
Flammer[lO]:

dR(2)(-ic,i) dR_1 )( - ic i
_

)

(-ic ' i ) d - n (2ic,i))dRmn--

=+ 1 (19)

This can be written in terros nf theR #I andR n functinn. using

the pr.,perty 4)=R)-iR2), and the fact that the Wronskian of two

linearly dependent solutions is zero:

121
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(1(-ic, ) L E' - J (1 -ic,ic L [R (4)(-ic, d

c(l+ ) (20)

2. Evaluation at =O

In his book, Flammer lists the values of the radial functions and
their derivatives at £=0. Appendix C of this work contains some correc-
tions to those fQ(mulas. ,fter presenting some general properties, we

focus on R )and R41 separately.

From the differential equation and its derivatives we can evaluate
the derivatives of Ri)(-ic,iC) at E=0:

d2 [R(i)](-iciO)= (0)m 2 ) Rmn )(-ic,iO)

d3 1%n ](-ic,iO) = (Xmn-m2)

d- R ](-ic,iD) [(£mn-m2 )(-mnm 2 6) + 2m2 -2c2] R (-ic,iQ)

where c=ka (21)

a. Properties of R(1)

mn

Flammer[lO] develops a power series expansion of n)(-iC i )"
This function, if extended over the domain --< <-, would Tead t; an
even or odd function for n-m even or odd, respectively. We can also
conclude that, for k>O:

dk (n)](-iciO) = 0 (22)

f for k even or odd when n-m is odd or even respectively.

I.
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In the vicinity of the disk, the radial functions of the first kind
can be expanded as follows:

r Small c << 1

n-m even

Rr$)(-icli#) = R)(ic,iO)[l+(A mnm2) ] +02

R(1 ) '(-ic ,ir) = Rn)(-ic iO)[&Nn-m2)] + 0( 3) (23)mn

R(l)"(-ic'ir) = Rn)(-ic'iO) mn-m2 + [(Xmn-m2-6)+ 2m2-2c2)1

+ 0( 4 )

n-m odd

RMn)(-ici) = Rr1)'(-ic,iO)[] + 0( 3 )
R~n mn

RP()(-ici)= R(l)'(-iciO) r +(xn2-2I-+ 0( 4) (24)
fn ' inn L mrnnn-22

R')(_ic,i)) -2) + 0(3 )

b. Properties of (4 )

From Equation (19), the Wronskian of (1) and R 4  leads us to the
following identities

n-m even (4)'ic,iO) _ iP 6 ( i c ,' ) = C R ( 1 ) ( -i c , i O )

4 c P6 )(25)

n-m odd (4)(-ic,iO) n i
lullc R n (-ic,iO)

We then get the following expansions in the vicinity of the disk:

10
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For cSmall, c <<1

n-rn even

Rnin(-ic'i ) = Rmn (-i~(4 (4) cjO + 2 (mn _mn2]

E i +OE3

W R~(-ic,iO)+O()

R(4)'(_i~~ C1ic,icO) [ +L (An22

2) (4) 3+ (Am-m)Pn (-ic irj) + (

cmin = 6~ (-ic"iO) (26)

[(mn-m2) + L2 rmn-m 2)(x mn-m2-6) + 2m2-2c2)J

12

n R (ic,iO) AmnIIL f4

Note that the coefficients of (4)(-ic io) i hs qain r
equal to those of R4!)(-ic,iO) in the corresponding equations of Formula(23).n

n-rn odd

(4) 2Rmn (-ic i O) + 2 N mCRDn (-ic,jO)

+ n4'(i jo ((

R(4)' (-ic,i ) R~ 4) '(-Ic, O) + 2_ ( m22)l
mnmn + 2 rx n

++ m (27)
- (Xmn-m ) 0( 3

C ~n (i'C,iO)

~ (-i c c F~ ( -i c , i o ) IX n 2+ 1 ( A m ) X n m 2 6

+ 2m2-2c2]J + c R(4)'(_ic,iO)(x-mn 2_2 3 (0

15



Note that the coefficients of R )'(-ic,io) in these equations

are equal to those of R)'(-ic,iO) in the corresponding equations of
Formula (24).

3. Evaluation ofR for large arguments

Equation (18) gives the large argument approximations

(4)( i i ) in+l

c( exp(-icF)

ci [ 4 ]-icir) in-1  i 1 x(il

SN n c +(28)

d2 (n-l 2 - 2ic 2 exp(-ic)

In the far field expansions, only the terms with 1/, dependence
will be kept.

D. The Vector Wave Functions

Solenoidal solutions of the vector wave equation can be expanded
as summations of spheroidal vector wave functions. Those will be de- 1
fined, following Flammer's notation, by:

= v x (i)(t)e]
omn omn (29)

0mn 0 mn

where e is either a constant vector in Cartesian coordinates (a=x,y,z)
or the Oosition vector #:r 4r(a=r).

Extensive work has been done on these functions by Flammer, who
lists them all in his book[lO]. In contrast with the orthogonality of
the scalar wave functions, the spheroidal vector wave functions are not
orthogonal. They are not even independent as will be seen in Chapter
IV-C. We will list here the behavior of those functions on the surface
of the disk and for large radial arguments.

16
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I
1. Behavior of the vector wave

functions at 0,=O

We have seen Chapter Ill-C, Equation (21), that, on the surface
of the disk, all radial functions and their derivatives can be expressed

in terms of R(-ic,iO) and -P)'(-ic,iO). We can show that, on thein temso

Isurface of the disk, each component of any vector wave function defined
by Equation (29) is proportional to onl-y one of these values. We listthe different cases.

a. Tangential components at C=O [

-q(0" , [-M ,ee[mW ] , [M1 n

Mn]n emn emn emn ' emn - ) a00 0 0

[Nz(i)] are proportional to Rm'(-iciO). (30)e mn mn
0mn

e n ' e n e P ' emn n
0mn mn mn 0

[Mee(i)] are proportional to Wi(-ic,iO. (31)omn
0

b. Normal components at F=O

[x(i)] , [NY(i)] are proportional to Ri)'(-ic,iO) (32)emn ~ emn
0 0

[MX(i) , [Mey (i)] [N'ez (i)] are proportional to

omn )(-ic,iO) (33)

We notice that at the surface of the disk the tangential components
of any of these vector wave functions, and-the normal component of their
curl - that is, for example, [Na]., and [Ma]E or vice-versa - have the
same radial dependence. That ensures that both boundary conditions on
E-and H at the surface of the disk are matched by the same expansion.

17
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2. Behavior of the vector wave functions
of index i=4 for large arguments of
the radial part

In this section, we list the large radial argument approximations
of the vector wave functions, keeping only the l/< terms. From Equation
(29),

MeX(4) =2 in S (-ic,n){-sin en+n cos e n Cosm e-icc

e 7t m n n si e
omn

zm(4) . 2 1inn )s -c

j~j y(4 -. 2 Smn(-ic,n){cosG en+n singp eG  Cmsn - e-iC

M-emn S~mn - sin

~jz(4) ~ l-r Smn-ic,r) c~n comp c
mn(34)

~n-lco
eY(4) 'I'- S C(-ic,os){n s e e s e
omn d m sinme

*e() n-l .- CDs -icc

(4) _ i Smn(-ic,n) T i - cos me e -i c}

emn d sin n0

We now have enough tools to find the expansions of scalar and
vector plane waves in terms of the spheroidal functions.

18
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CHAPTER IV

PLANE WAVE EXPANSION

In order to expand the incident fields, we need the expansions
of vector plane waves in terms of the spheroidal vector wave functions.
First, we will derive the scalar plane wave expansion in terms of scalar
wave functions. Taking its curl associated with different basis vectors
will lead us to various vector plane wave expansions. The special cases
of normal incidence to the disk are reviewed.

A. Scalar Plane Wave

By scalar plane wave we denote the function exp[ik(x sineo +
z coso0 )] in our geometry. We do not know enough about the angular
spheroidal functions to directly obtain the coefficients of the expan-
sion of the scalar plane wave in terms of spheroidal functions by
applying orthogonality on the trigonometric and angular functions. We
will use another method as derived by Flamer[lO]. The plane wave is
considered to be due to a point source removed to infinity in the
direction of arrival of the incident wave. The scalar plane wave will
then be obtained from the asymptotic form of the free-space Green's
function.

Because of our choice of the time dependence, eiwt , the Green's
function used here will be the complex conjugate of that obtained by
Flammer[lO]:

exp(-ikli'-'l) = - ik i 2-
4i1r'-1r'I Z-m:O nL m Nmn Smn(-icsn)Smn(-icn')

(4)()
Rn (-ic, )i'n)n(-ic,ic) cosm( - ') when C> ,

(35)

where (n',K',') are the coordinates of the source point.

For a point source -it infinity, we can use the approximations:

[ g') ._,,exp(-ik(r'-r.v'rl)l (36)

4ri-r'I CE
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(4n) - ~ 1~t n+F eC' (7
(4 -i~n' exp -iwc' - 2 e 37

C L

f ~ kr' as seen in Appendix B (8

Finally

2(2-CSOm)ifl
exp(ikr-v'r') =2 m= ~ n S()ic'coso)Sl)(-icn)

and

rr' = T *[sino COW~ e~x + sineosin ' e + cose0 ez1

r-v'r' = x sinoocosp' + y sin6osin4' + z cose0  (40)

For a wave incident from the positive x half x-z plane, '=0
and we obtain the expansion

exp[ik(x sint'i+z coso0 )] = 2 2-10
0m0 n=0 Nn 1n Smn(i'clcosoo)

Smn(-ic,)i')(-ic i ) Cos m (41)

We define the coefficients, ymn~co), of the scalar wave functions,
as in Flammer[lO], Equation (7):

02~m)

fnin (o 0) 2 Nm - n S mn (ic,cosoo0) (42)

exp[ik(x sinoo + z coso0 )] = n Z ) (n k ,4 ) (43)
M=0 n=M mn

2Q



B. Vector Plane Wave Expansion

The vector plane wave can then be expressed in terms of the vectorwave functions by taking the curls of Formula (43) associated with ag constant vector (see Equation (29)).

We List the obtained formulas, with the notations of Equation
I (29).

ey exp[ik(x sine, + z coseo)]

ik cose o m n-r emn( 1n, (44)

(-ex coseo + ez sineo)exp[ik(x sine0o + z cos 0o)]
1 00o M ( ) n

ik Y Y,,,no ff6)f (45)

m=O n=m mn

ey exp[ik(x sine0 + z coseo)]

ik sineo  Ymn(eo) fe(l)(nC , ) (46)
=0 n=m mn

(-ex coseo + ez sineo)exp[ik(x sineo + z coseo)]
-o- mn(ao ) Te"(n, ,f) (47)

k c0os m=O n=m emn

ey exp[ik(x sineo + z coso)] = m Ymn(o) Y

: n=m emn

(48)
(-ex cose0 + ez sineo)exp[ik(x sineo + z coseo)]

Ymn(eo) NZ(1)(rc,@) (49)

k sineo m=O n=m emn
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C. Normal Incidence Case, 0o=0

In this section, we will study the behavior of Equations (44) to
(49) in the case of a plane wave normally incident on the top of the
disk. As we have seen in Formula (15), the angular functions of order
greater than zero are equal to zero for unity argument.

m>l Smn(-iccosoo) = 0 for o = 0.

From Equation (42), we deduce that yon(0) is the only non-zero

expansion coefficient. The expansions Equations (44), (45), (47) and
(48) can be readily seen to be single summations on n, O<n<- with m=O.
The expansions Equations (46) and (49), however, involve a I/sineo
factor that leads to indeterminacy of the limit when 

0o tends towards

zero.

As we can see from the definition of Smn(-ic,n), Equation (8),
the angular function is led by a (l-2)m/2 factor. Therefore, from

Equation (42), we can write:

Ymn(Oo) - (1coS20o)m/2  = sinmoo (50)

or

1 .nm-l
I Ymn(Oo) - sin o0

We can then conclude that the value of the limit when 00 goes

to zero for the different values of m.

Ymn (00) =For m>l lim sin(o-n 0

For m=l, we have seen in Equation (16) that:

Sln(-ic,cosoo) I 1nc
lim S-n 1 (r+l)(r+2) dr
0 sino0 0 r=0,l

Thus,

l Ymn(Oo) 2 in (r l)(rn2)d n (-ic )  
(51)lim sino0  - N1 n r=, r
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For m=O, ynn(Oo)/sino goes to infinity when e. approaches zero.
We will show thaf, despite he fact that each coefficient diverges, the
partial summations over n for m=O in Equations (46) and (49) are globally
equal to zero. This will lead to two dependence relationships for the
spheroidal vector wave functions. Consider first the case of Equ tion
(46). Because of an m coefficient, the n- and C-component of Me i1) are
equal to zero. We prove that the (-component of the partial summation
for m=O in Equation (46) is also equal to zero; this is expressed in the
following equation:

[q )  d SOn(-ic,n) Rn)(-ic,i)-E Son(-ic,n) (52)
nO d R(1)(-ic'i 1=0

dT On J
This must be valid for any pair (n,d). In order to prove this

identity, we must go back to the scalar plane wave, Equation (41), and
specialize to our normal incidence case.

exp[ikz] YOn() Sn(-ic,n) R(-ici (53)
= Nnn (-iSin) (On

n=O

From Appendix B, we know that z can be expressed very simply in
terms of n and 4:

z = an (54)

Taking the derivative of Equation (53) with respect to n and F
separately, we obtain two expansions as follows

[exp(ikz)] = ika exp(ikz) = YOn (O ) S6n-ic n) On(ic,i )--n n=O O

(55)

--[exp(ikz)] = ikan exp(ikz) = o(0) Son-ic,n)  RW )'

n=O Yn O(n(-ic,iE)

(56)

Multiplying Equation (55) by n and Equation (56) by -c and adding
them leads directly to Formula (52). We have shown that, for any Dair

Z on(0) jM z(1)(n, ,) = (57))(nO eon
n=O
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Taking the curl of this equation leads to:

YnO 0) z(76)( ) 0 (58)n=O eQn

To suppress the indeterminacy of the limit of the ratio of Equations
(57) and (58) to sino when eo goes to zero, we will apply L'Hospital's
rule to each component of those equations:

o O  sino n=O On

limo [n' ~2 in Son( ic coseo) (-sieo))0(9
o 0 [n NOn coseo 0 (59)

where [F] represents the s-component of either Men or z() z , and
On e n

Thus we conclude that, in the normal incidence case, the expansions
(46) and (49) can be expressed as single summations on n, l<n<- with m=l.Flammer[7] gives a vectorial proof of Equation (57) by taking the curl ofe. exp(ikz), Equation (53), which is zero as the curl of a z-directed
vector whose component is a function of z only.

For convenience in the study of the normal incidence case, we de-
fine, as Flammer[lO], the following coefficients:

aon =2 in-l NIn  ' dOn(-ic)

On r=O,l

2 in-I N_ I Sn(-ic,l)

1 n(0)  

(60)

b n 2 i -N (r+2)! n(_i C) (61)
n In r=O,l r! r

The vector wave expansions are then, for normal incidence:

e exp(ikz) = a e (62)

y k n=O On ReOn
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ex exp(ikz) = - n aOn (63)

ey exp(ikz) = n b n eZ(1) (64)

ex exp(ikz) = b (65)

e exp(kz) = a n 0  an (1 (66)xkn=O OneOn

ex exp(ika) = a bin N (67)k n1O emn

D. Dependence Relations

In the previous two sections, we have derived various relation-
ships between spheroidal scalar functions, and between spheroidal vector
wave functions. Some limiting cases will allow us to show some depend-
ence relationships, as follows.

Equations (55) for =O shows that the derivatives of S0n(-ic,nf)
are not independent and therefore not orthogonal as the original func-
tions were.

Equ tsOnuz,, (57) and (58) show the lack of independence of the func-
tions Mê "lJ and , respectively. Equations (44) and (47), mu "-

tion Re -ad Rz"),respctiely.Equaion () and em
plied by coseo, leadoto dependence relationships for Mex( ), and -efxm emn

respectively, when e. approaches n/2. That kind of relationship can be
derived for each family of vector wave functions of index i=l. We do
not deal with independent sets as in the spherical case. In the next
two parts, we will derive two different solutions for the scattering
problem. In both cases, the fields will be expanded in spheroidal vec-
tor wave functions. For the incident fields, we will use the expansions
derived in the previous two sections. We will not be able to consider
individual terms in the summation expressing the incident field to be
modes as we do in simpler problems, where orthogonality properties exist.
To each vector wave function of the expansion of the incident field will
correspond not only one vector wave function in the scattered field but
a summation of the scattered counterparts of all the vector wave func-
tions appearing in the dependence relationship satisfied by the initial
wave function. This will be shown in part VI-C. We have not, hownver,
proved that the spheroidal vector wave function of index i=4 are
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dependent since the relationships obtained for index 1 are not appli-
cable to functions of index i=4.

In the following chapter, we will rederive Hammer's solution.

I
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CHAPTER V
FLAMMER'S SOLUTION

Unlike Meixner, Flammer[7] deals directly with the electric and
magnetic fields in order to find a solution to the scattering problem.
This approach allows simpler, more physically interpretable boundary
conditions, but at the expense of more complicated expansions. The
major problem encountered in the scattering by a disk is that satis-
fying the boundary conditions on the surface of the disk leads to solu-
tions that do not necessarily satisfy the edge condition. The edge con-
dition puts restrictions on the behavior of the components of the total
electromagnetic field in the vicinity of the edge as explained in Chap-
ter II of this work. For the electromagnetic energy density to be inte-
grable in j) vicinity of the edge all components of the fields vary at
most as s where s is the distance from the edge, while the q-compon-
ent of the total magnetic field remains fiyi e and the p-coiponent of
the total electric field goes to zero a s . A very remarkable point
in Flammer's solution is that the satisfaction of the condition on the
@-component of the electric field directly ensures the satisfaction of
the edge condition.

Whatever the expansion of the electric field of the incident plane
wave in spheroidal vector wave functions of index 1, the summation of
spheroidal vector wave functions of index 4 which satisfies the E-field
boundary conditions on the surface of the disk has a singularity of
order s- I/2 in its p-component. Flammer chose to express the incident
plane wave as sum of two different expansions. The relative weights of
each expansion are then chosen in such a way that the coefficients of
the singularity in the @-component of the corresponding E-field expan-
sions of index 4 cancel each other. With the proper choice of the two
plane wave expansions, the above procedure also leads to the satisfac-
tion of the whole edge condition.

First we will study the normal incidence, perpendicular polariza-
tion bistatic case because of its greater simplicity. Perpendicular
polarization is here understood as defined in Chapter II, considering
the x-z plane as plane of incidence. The problems encountered in ex-
tending the method to the arbitrary incidence, arbitrary polarization
bistatic case will be noted, and the results of a numerical test of the
far-field for the normal incidence case will be presented.
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A. Normal Incidence, Perpendicular
Polarization Bistatic Case

This corresponds to the case a=n/2, Eille, and Wi ,le. The

incident E-field can be expanded according to Equations 62 , (64) or

(66) and the corresponding H-field according to Equations (65), (67)
or (63), respectively. To represent the outgoing scattered waves, we

use vector wave functions of index 4 which match spherical waves when

F becomes large.

We will successively consider the boundary conditions on the sur-

face of the disk, an expansion of the 0-component of the electric field

in the vicinity of the edge, the [f] condition, and the final solution

where we will check the satisfaction of the edge condition.

1. Field boundary conditions A

on the surface of the disk

We will successively consider the three possible expansions and

the scattered fields they lead to. Despite the lack of orthogonality

of the spheroidal vector wave functions of index 1, we will use a term
by term, function by function, matching technique to obtain the expan-
sion of spheroidal vector wave functions of order 4 which satisfies
the boundary condition on the surface of the disk for given incident
wave expansion. These expansions will be called "reflected" fields Er

and Hr. The reflected fields are not equal to the scattered fields
unless the edge condition is satisfied by E+E

r and i+iY, but they

satisfy the boundary conditions on the surface of the disk. The bound-

ary condition is given in Equation (4):

= = = 0

The term by term matching technique does not lead directly to the scat-

tered field since the spheroidal vector wave functions of index 1 are

not independent. We now express the reflected fields for the three

possible expansions of the incident fields.

x(1) expansion_eon

From Equations (62) and (65),

E0 -x(Lo n -x (1) 

a "' Me H i a0n n68)'
n=O On kn

where Ho=E 0/Zo and Zo is the free space impedance.
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From Equations (30) to 33), and Equation (22), we see that, for
n even, the components of x( 1) tangential to the disk and the normal
component of -ex(l) are equa zero. Therefore, in Equation (68),
the vector wave functions for n even do not lead to any reflect Y field.
For n odd, the above three components are all proportional to R6n (-ic,
iO), and the same components of the functions of index 4 are propor-o
tional to R 4 )(-ic,iO). Since the only difference between a spheroidal
vector wave ?unction of index 1 and its counterpart of index 4 is their
radial dependence, it is possible to cancel a component of one by that
of the other on the surface of the disk with appropriate coefficients
in order to satisfy the boundary condition.

R(1)'(-ic,iO)

F1)(n,O,f) On -F(4)(nO,) = 0 for O<InI<O (69)R(4)'(-ic,iO)

On

where

F(i)(,,) : [Re x(i) 4 [efi x(i) 1
On On .eOn

The term by term cancellation method leads to the following
reflected fields which satisfy the boundary conditions on the surface
of the disk

E R(1)'(-ic,iO) x(4)0 anOn Rx(70)

n= on R (4)'(-ic,iO) eOn
On

MR(1)'(-ic,iO)iHf0  aon  On N x(4) (71)

k n=1 R(4)On (ic,iO) eOn

On

where the prime over the summation means that the index of the summation

varies by increments of 2 from its initial value. This notation will be
used throughout the rest of this work. In the same way, for the other
two expansions, we obtain the following formulations.

e(l) expansion

From Equations (64) and (67),
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- E b Me H -- bi N (72)n l bin e1 i = 0n eln

From Equations (30) to (33 ) and Equation (22), we see that for n-I

odd, the components of Mel n 
) tangential to the disk and the normal

component of N z(l) are equal to zero. For n-I even, the same com-
en

ponents are proportional to R(l)(-ic,iO) and the corresponding compon-
ln

ents of the functions of index 4 to R(4)(-ic,iO).Inl

Using the same term by term matching technique, we obtain the
following reflected fields:

Eo- " bi (in ~ O z(4) (73)n- R n (-ic,iO) i4
Y b "In (

iHo -° Rjl)(-icjiO) _z(4)
r=_ 'bn _4) N (74)

k n=l R (-ic,iO) eln

In !
ey ) expansion

On

From Equations (66) and (63),

E-i Eoi N M (1) H -(1k aon eon k k 0

n=O n=O On

From Equations (30) and (33), and Equation (22), we can see that for

n odd, the components of Ry (1 ) tangential to the disk and the normal
of ~ On

component of R ) are equal to zero. For n even, the same compon-

ents are proportional to R3 ])(-iciO and the corrsnonding components

of the functions of index 4 a-e proportional to Ron4 (-ic,iO).

Using the term by term matching technique, we obtain:

.E R(')(_ic,iO) -y(4

E -Q ' a On N (76)nr = _ -_n O n  R 4)(-ic,iO) eOn
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RflR0 (-icliQ) j()7)
Lo ' acj O y4 (7no  R )(-ic,i0) eOnOn

All three pairs of incident and reflected fields satisfy the
boundary condition on the disk, excluding the edge. We will study the
behavior of [P+E-]¢ at the edge in the following section for each case.

i 2. [E] condition at the edge

We will first give the expansion of ['-i+r], in the vicinity of
the edge, and then present Flammer's method.

a. Behavior of [-i+U]
at the edge

The edge is located at the coordinates n=O and c=O. We will use
the small argument expansions for the angular and radial functions to
obtain a power series expansion of [Ei+Er] In each summation, we
will only retain the diverging and constant terms, when they exist, and
the converging term of smallest order at the edge. We will use the
following expansions:

(I-n2 )1/2  = 1 n2 + O(n 4) for n and 6 small
2

(l-n2) "I/2 = 1 + 1 n2 + 0(n4) nI<< 1
2 (78)

(IJl2)l/2 = 1 + 1_ 2 + 0( 4) E <<
2

(l+ 2) - I/ 2 = 1 - 1 2 + 0(E4)
2

We will now consider the three cases.

Case of the Mex(1) expansioneOn

For this case only we will give the whole procedure:
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k n d 2+2 L (1- )I(-AOn) + AOn2-

n+ -+ r.

1~ , 2 1 FF(lr2)( _ (n2+ k n=l On d 22

+ n(l 2 )q + (-2 ) -ic,O)cos21nIn On l)(iic~iO) 1

+ a 2 On (- 2-) 2- fn

2 On- )n >On c (-ic,i0)

- +[O2) n-2), +l+2) n + (On-2)

R 4 )'-ici)O x Sin(-ic,0)}cos) (79)

On(i~On On2

We can see directly that the n=odd terms of the incident wave are
cancelled by part of the terms of the 'reflected" field in this expan-
sion. Finally Equation (79) reduces to:

2 2 On (1)

[P+']~ 11~ n=0  a~n>J'n 2 ROn

2 I c 24) (-iciO) 2 "2 '

S n Onn

2 cosp (80)

The singularity at the edge comes from the second term,
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f +6' Son(-icO)
n2+ 2  c= caon R(4) (-i IO

rl n= ROn (i~O

9 which does not converge when E- O and n O.

Case of the Mez(1) expansioneIn

The same procedure, taking into account the use of the approxima-
tions of Equation (78) leads to the following result.

I [ -i+-r] - 2 M Xn- 3  ' '(-icO)R )-ic'iO)kd n2 bln 2 Sln( ' nn=2

+b__ i ln X (2+ 2 ) 'Sn(icO)
+ 2 - 2 o(4) cos

n 22n= RIn (-ic,iO)

We notice that the singularities in Equations (63) and (81) are
of the same order c/(n 2+ 2). This is the reason why Flammer is able to
cancel the singularity by taking the incident field as a linear combi-
nation of Equations (68) and (72) with proper relative weights of the
two expansions.

Case of the -y(l) expansion

eOn

The [NeY(1 )] component involves second order derivatives of the

angular and raial functions and are, therefore, more complicated to
compute. We will use the following expression for that component:

[%YM][ do (SOn) R~i)

eOn kd2 q2 +2 I n

+(-n 2 , d1- (Son) O + d (i)

2(l+ On 2 R(i) (82)
d& On I

Using Equations (13), (14), (23), (24), (26) and (27), we finally
obtain for the tangential electric field at the rim:
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I , 3( On-2

_ 4 cos. +i 3' -2)
k2d2  n=I On 2 Sn(ic'O)

Ro (-ic,iO) + ;' 2i+ _ 2 (.0n+C 2 ) -3On+£2 n 2
,l+7 n=O

(" On-2 aOn Son(-icO) (
c R(4)(_ic,iO) (83)

On j
These three expansions of the h-component of -i+- for different

incident plane wave expansions behave in the same way in the vicinity
of the edge. They each have a singularity which comes from the ill-de- I
fined spheroidal vector wave functions at edge. We have seen by
compdring the power series expansions of RM(-ic,i) and its derivativesn I Ifor small argument :, Equations (23) and (24), to those of R(4)(-ic,i ),
Equations (26) and (27), that part of the expansions of the TOnctions of
index 4 is identical to the whole expansion of the function of index 1
except for the change of index, The term by term matching technique
exdctly cancels these terms between the incident and reflected fields.
Therefore, in Equations (80), (81) and (83), the second summation con-
taining the singularity comes from the terms in the expansions of the I
radial functions of index 4 that do not disappear in the term by term
matching. Their coefficient %/(n2+r2) shows that, as expected, Ei+-Er is
equal to zero on the surface of the disk. Furthermore, the first sum-
mation in Equations (80), (81) and (83) corresponds to the part of the
incident plane wave expansion that does not lead to a reflected field
since it is equal to zero on the surface of the disk. This summation is
also equal to zero at the rim as the factor n; shows.

b. Flammer's method

In order to satisfy the [El condition, Flammer[7] simply chose
to express the incident wave as the sum of two different expansions
whose weights would be adjusted so that the singularity in the .-compon-
ent of the electric field at the edge would disappear. In order to
satisfy the whole edge condition by the procedure, it is necessary to
choose the two expansions so that the other components of the fields
hay 4 he right behavior near the edge. Tae ',- and r-com o ents of
Re4  have higher order singularities than those of i ) and fez(l),

while the latter have the same singularities, and so do their magnetic
field counterparts N x(l) and Nke z(l) We will show that the choice of

eOn In
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the two expansions in terms of Me(1, Equation (68), and ez(l)
OnIe

Equation (72), leads to a satisfactory solution.

~-E k XnO aOn eon z bin Rez(1 (84)
n n=l Inf

with ox+3z=l in order to have I-i l=E0 .

The scattered field will be:Eo [ , R In)'(-ic,iO) x4

= nl ~nOn -x(4)

s = x  aon (-ici) eOn
k bin Rln (-ic,iO) _z(4)(

nW Ri (1(-ic,iO) e
' + YZ ' bl n z(4) n el (85)

zn = I  
n 4-_i,io,, l

From Equations (80) and (81), we see that the coefficient of the

singularity of the expansion of [Ei+-Es] is:

2 i Son(-ic'O) xn b SIn(-ic,O) I
2 an c bin cosk x n= c- aOn R( )'iic o n=l (-Ki c k iO')

ROn (-ic,iO) Rin (86)

In order to set this coefficient equal to zero, we must choose
x and z as follows:

SIn(-ic,O)
:' bin (4)

n=l Rin (-iciO)

- S6n(-ic,O) SIn(-ic,O)
X' an -- 11b~n(4)(87)

n=I R4)' (-ic,iO) n=l Rin (-ic,iO)

z = -x

With x and defined as above, 0i+0 satisfies the [E] condi-
tion at the edge. fquation (85) gives, then, the bistatic scattered
field of.the disk with normal incidence and perpendicular polarization
(i.e., VI ey). In the next section, we will verify that Es satisfies
the whole edge condition, underlining the convenience of Flammer's met-
hod which satisfies the edge condition by dealing only with the condi-
tion on the 0-component of the electric field.
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3. The bistatic scattered field

The total scattered electromagnetic field obtained with Flammer's

solution is, in the normal incidence case:

E On (-ic,iO) x(4)
f'sn~ 0 IR O

SOn= aOn (-ic,iO) Meon

4 ' R I) (-iciO) 1
+ z bln ) z(4)n~l Rln (-ic'iO) el ](8

I(J (88)

iH Rna )(-ic,iO) (4)-k- a n .(4)' n-k 0 1 n-1 ROn (-ic,iO) Ne x

n ~ I b R(1)(-iciO) Nz(l)+ ,bl In z(
Z n-I n R(4)(ic,iO) elnIn j

where F and z are defined by Equation (87).

First we will verify that the above fields satisfy the whole edge
condition in the vicinity of the edge. The behavior of each component
of the fields will be expressed in terms of local coordinates that have
been defined in Appendix A. Second, the bistatic scattered far field
will be computed in spherical coordinates.

a. Total field in the vicinity of the edge

The edge condition is expressed in terms of the distance from the
edge to the observation point. We will introduce the local coordinate
system, valid for n and r small, shown in Figure 5-1. We use the follow-
ing notation:

s = distance from the edge, s<<a

t angle between the top surface of the disk, n>O,
and the direction from the edge to the observation -,

point, O<t<2,.

same as in spheroidal coordinates.
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Figure 5-1. (s,t,f) coordinate system.

The correspondance between spheroidal coordinates and these co-
ordinates is derived in Appendix A.

d (n2+ 2)s = n+:
4

cost = n2  (89)

sint = 29C

or, conversely,

n = 2 I cos(t/2)

(90)

= 2 Ja. sin(t/2)

The disk is characterized by t=O.

In order to obtain the components of the fields in the new coordi-
nate system, we first expand the radial and angular functions using
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their small argument approximations and then transform the terms of lower
order with the above formulas.

For the ri-component of fE=0+Er, the singularity in Efe()nand

In~ i n2 r)-/, r~l2 and [-E). has a satisfactory behavior
near the edge. More precisely, we have

xk n=O O

/ Ar F On 1(i c,iO)1L
±1 ~~'' as- sint S' (-ic,O) On n~dq n 0  ~ci~

On

+ E ~ ~ b1~ S~(-i , Rbk)(-ic,iO)
0 ZE ~l~ sint S R-ic,(-I~ O

"R(4)'(-icJiO)sin, (91)

The first summation is equal to zero on the surface of the disk
but apparently only there. However, if we differentiate Equation (56)
again by , we obtain

n=O

(92)

At the edge, where F,=O and rj=O, Equation (92) becomes:

Y (0) S -cORW (i~0 0 .(93)

n=O
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The terms of this summation for n odd disappear since, for n odd,
S~n(-ic,O) is equal to zero, Equation (14). Equation (93) is the coef-
ficient of sint/2 in the first summation of Equation (91), recalling
that by definition aon=-ixOn(O). Finally we see that Equation (91)

contains no term larger than sl/2 and therefore, we have at the edge:

I [E]n = o(sl/ 2) sinp sint (94)

For the c-component of E, we see that the singularity of Ffx(4)]
F o t h - o p o e t o e O n E

and [gx(4)] is due to a factor (I/(n2+C2)l/2), or s-1I2, isee the
defini Bn oi the functions in Flammer[l0]) and therefore [Ej, satisfy
the edge condition for this component.

[E E' aon cost/2 Son(-ic,O) ROn (-ic,iO)sin

aOn SOn(-ic O )

Eok - c v Rn (-ic,iO) /
n /dROn Sln(-icO/)

+ E Z sin (95)
0 k n=l c n  d3 / 2  R (4n (-ic,iO)II

The second term varies as (s)-1/ 2 and is therefore predominant.
I Thus

[E]C O(s-!/ ) sin@ (96)

[E] has been computed to match the corresponding condition. We
obtain fr9m Equations (80) and (81):

[E]E s t E iaOn S6n(-icO)

2 -- n l c- X n R ) (-ic,iO)

i ibln Sin(-ic,O)
+ R (ln 2 (4)(_ cos (97)

n=l Rl n (-ic,iO)
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Thus, as expected,

[E = 0(sl /2 ) cos sint/2 (98)

The total electric field obtained from Equations (84) and (85)
satisfies the edge condition. We now need to check the components of
the total magnetic field, which are expressed in terms of the functions
N (i) and N z(i) Because of the greater complexity of these functions,Neon eln•
we will only determine their order of variation. Since the order of the
singularities of each component is not apparent directly from the defini-
tion of the functions, we will write out the diverging terms for each
component as function of n and , and then we can write the components
of the total magnetic field H. Since we will only be looking at singu-
larities, we will not include in the following expressions, the summa-
tions corresponding to the incident waves since they are well defined
at the edge, that is to say, of order 1 or smaller.

For the ri-component of H, we have the following singularities at
the edge:

For n odd,

[x(4)1 ~,~~ 4i 56nic,0) cos[Neon ( - 2 2 5/2Ockd Rn (-ic,iO) (n2+2

[n2-r2+0(n4,n2 2,C4)]

(99)
S (-ic,0) cos

ckd 2 R~)-c,iO) (2+ 2 5/

In

[ 2-nT12+O(n4,n2t2, 4)3]

From Equations (89) and (90) we find that:

2 2 cost rr2- 2  (4s) - 3/2 cost (100)

and

4 22 4 1/2
21o(s -
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From the definition of the scattered magnetic field, Equation (88)

and from Equations (99) to (100), we obtain the following expansion:

HO I H, S6n(-ic'O) s3/2 cost
21/2 -74)aFncost

2ck d n=l a Rn (ic,iO)

Sln(-ico) s-3/2 cos+0(s-I 2)
+z  bin -

4 ),
n= RIn (-ic,iO) (101)

By gefinition of 4 and 61, Equations (86) and (87), the coeffici-
ent ofs in [H]n is equal to zero. Thus,

[H]n = Q(s-1/2) cos (102)

For the C-component of H, we have in the same way, for n odd:

4i Sn(-ic,O) _os__.2___

e~~~n C 2 2 5/2 0xn+k)
ckd R n (-ic,iO) (r) +C )

k 4 )1 _ 4i SIn (-icO) cos p [-2n _-nE3+0(5)] (103)

In  ckd 2 Rk't-ic 'iC)(r02+ 2)5/2

where 0(5) - 0(QSQ545 ,n3C2,q2C3,n4C, 5).

From Equations (89) and (90), we find:

2n L) 31 sint(2+j2)35/2

nO _ - = d- sint sin 2 t/2 (104)
(q2+ 2)5/2 2V'

and 0(5)

(n2+2 )5/2 - 0(0)

We have then the following expansion of the c-component of the

total magnetic field, recalling that the terms coming from the incident

field are of the order of I or smaller:
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HO i , S6n(-icO)

2c n 4)
2ck2 d1 / 2  x nl~ a On (-ic,iO)

(s-3/2+4 S 1/2 (l-x n sin2 t/2 sint

i Sln(-ic,0)
+ z nl bln -R(4)

n=~ I Rn (-ic,i0)

I
x~ 3/+4 ,12 sin 2t/2 sint cos +0(1)

Again by definition of x and z, the coefficient of the improper

singularity in [R, normal to the disk, disappears. Thus,

[H] = O(s-1 /2) cos~t, sint (106)

For the -component of H. the singularities of the vector wave
function involved are of order s-1/2. They are, however, cancelled
by the coefficients introduced to satisfy the edge condition on [E].

For n odd,

4i S6n(-ic,0) sin + 0)On ckd 2  R n(1)'(-ic,i0) n2+E2

ROn (i~O
(107)

[N-ez(4)] _ 4 Sln(-ic'0) -Ssin( + 0(I)
ckd2 R (-ic,i) 2+ 2

"In

where n - I cost/2
F12+"2 24S

From the definition of the scattered magnetic field and from -)

Equation (107), we obtain for the total field:
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2H ' S6n('-ic 0) S- 12  cost/2
[H ck2d 3 /2 (4 co

ck d n Ron (-ic,io)

i ' Sln(-ic'0) -1

II + Zb1  in s- cost/2} si+(I)

In (-C"O)(108)

By definition of x and z, the coefficient of s-1 /2 disappears
and finally

[H] = 0(1) sinp (109)

Therefore, the total magnetic field H satisfies the edge condition.
We have thus verified that the scattered field obtained by Flammer by
matching the @-component of the electric field at the rim satisfies the
whole edge condition.

We summarize the different results:
I

[E]n = 0(s/ 12)' [E] = 0(s-1/2)' [Eln =  (s/112)
(110)

[EH], = 0(sI/12 ), [If = 0(s-1/2), [HR]3 = 0(1)

The formal solution for the bistatic, normal incidence, perpendi-
cular polarization case satisfies the boundary conditions on the disk
including the edge and is therefore proved. In the next section we
will compute the scattered far-field for the above case.

b. Bistatic scattered far-field
in normal incidence

The bistatic scattered electric far-field for normal incidence
and perpendicular polarization can be obtained from Equation (88) by
replacing the vector wave functions by their large radial argument
approximations, listed in Equation (34). From Appendix A, we will use
the approximation of the coordinate system for large 4.
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When c;,.1,

6e -e0

er

kr

21
r. d r

Thus the scattered field becomes:

E R(1)'(i~O
- a xROn -ciO in s (-ccssnp

-Es 0 1 a anOn (n (-nicc coso in

n' bin i n (-ic,iO) Sn(ccOsone

Z n~iRin (-ic,iO)j

e 1~ I S(-icecosseosii 0 (4)'n O (-ic, C) n-
k [0L nI On (-ic,iO)On

4 ~ bn in) ini S O (-ic ,cose'sine]cs

n=i in (1 77c,iOY

-~ ~~ ~ -ic o) 1n- Sxn(i)o()i (12

nH iRo ( 'c~On r-ciC

In



I
We can easily check that ESxis is parallel to 'r since we are inIthe far field region.
The electric field given by Equation (112) has been programmed,

and the results are compared with those obtained from the program de-
rived by Hodge[9] with Meixner's solution in a later section. We will
now study Flammer's approach to the arbitrary incidence, arbitrary polar-
ization bistatic case.

B. Arbitrary Incidence

In the previous section the disk scattering for a normally inci-
dent plane wave with perpendicular polarization has been solved. The
general solution for arbitrary incidence can be attempted following the
same approach.

The general formula for the incident field, Equation (3), can be
separated into two components

10 = E (cos _E" + sina 0i)
0

where

1l = (cos6o ax - sineo az)e -i i'r(

Eii = jy e-ii. (114)

Let us de ine P1 as the scattered field corresponding to the in-
cident field E . The general scattered field will be obtained from
k~s  and E-." as follows:

= Eo(cosa [" + sina fsl) (115)

In.order tQ follow the method of the previous sections, we will
expand El and f!I as sums of.,two different expansions. We will use
Equations (44) and (46) for _.L, and Equations (47) and (49) for 1i,.
The H-fields can be expressed with the corresponding spheroidal wave
functions.
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- 'x Z / mn( o) M x(K
ikcoso m=e nm emn

Siksin o m0 n=m 1)

-i, : __ _ Y [ ¥mn(Oo) NZe()

kcose X m=O n (

(117)

0~ v mn(O ) N
ksinu 'O n=m

II
where x + +

x z i3 =1

Unlike the case of normal incidence these expansions involve all
the values of m and, therefore, all the different -dependences. The
reflected fields are calculated using the same term by term matching
technique as in the normal incidence case. From Equations (30) to (33),
we obtain the following expansions.

X Ymn(°) R(l'(-iciOmn x(4)

i m O n=m+l coso R(4)'(-ic,iO) emn

mn

+ 'z .mn( o) mn z(4) (118)
sk i in(i ei 0 n=m 0-i R- ic,i0) emn

mn

I R r R(1)(-ic,iO)r i! - x .mn o mn N- x(4)
-k- m 0 OO nI ="cso T , _ emnm=O n-m cs (-ic,iO)

, .. ."L Ymn(O 0) ,n(-ic'iO) - z(4)(1 9
k ~ ~~sinro (4) 'i~O)en"m=O n~m+l 0 0) (n
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For arbitrary values of txl and (i, the edge conditions is not sat-
isfied. As in the normal incidence case, we will try to satisfy the
edge condition by simply satisfying the [E J, condition at the edge. We
will study the perpendicular polarization case in more detail. The
method can be exactly paralleled for the parallel polarization case.
We will now expand the 6-component of the total electric field in the
vicinity of the edge for the perpendicular polarization case. We need

the expansion of the summations on Memi) and ,ez(i) in terms of n andm"emn

In the same way that we derived the expansions of [D+DE]r in the

vicinity of the edge for the normal incidence, perpendicular poLariza-

I tion case for plane wave expansions in terms of Meon I , Equation (80),

and AeZ(l), Equation (81), we obtain here in the arbitrary incidence
case: ln '

= 1 iy~(%)Amn 2-2iYmn(°) mni 2  mn-m2-[ i+ = d Bx m =  n ~mZ'cose o  (mn-m2

x RM(-ic,iO)S(n)(-,O

C , Ymn(o)o) 2 -m2

2 n=m+l c cose 0  + 2 (n2+E

S 'n(-ic,iO) × [(l+60m)COS(m+l)c+(1-60m)COS(m-f)l] +

R (4) C-ic, iO)
mn 

I

2 Y -n (60) Xmnm 2 2
m0z i sine °  2

Smn(- ) %n (-ic,iO)

+ Ymn() Amn 2 Smn(-ic,O)
2+ 2 c sine ) ( + 2 (4)

n n=M 0 Rmn (-iciO)

X cosm (120)

where 6mn is the standard Kronecker symbol.
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The condition on [EilFJ]  is Uldt it be zero on the rim. and
must then cancel the coeffitient of the singularity /(,2+:2)in

Equation (120). If we reorder the coefficient of the singularity and
equate it to zero, we obtain the following equation:

1 ... mi-ln(';o) S 1_n(i-ic,O) (*_iOM)(l+im)
kd X ['' c cosjo0m=O M Rm.ln(-ic,iO )

+ ~ i ¥m+ln( o) Sm+ln(-ic'O) 1n=m+2 c c ose 0 6 (4)'
,0+ i n -icn i O ) _

n (()o) Smn(-icO)
+24 cosm =0 (121)

z c sino O~]
n=m  0 Rsn (-ic,iO)

Note that the coefficients x and z have been taken inside of the
summation of index m.

Because of the -orthogonality, the coefficient of each factor

cost€p must be eqil to zero. Because of the relation x +';z= ' , we obtain
for Jx and ,z the various following relationships that must be satisfied
simultaneously.

For m=O

,"On(o )  SOn(-ic,O)i2 n= s  (4)-iiO

2 n Ron (-iciO) (122)
x_ Y ° I -n -' 2 ' Son(-icO)

X ~ ln 00o) S,- T-iFc,) On 0

n=2 c coso o R4) '(-iciO)nO c sine Ron(_ic,iO)
In O
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for m=1

I - c(4) iccose (4)_ O

sino Rin (-ic,iO) \ n=l o ROn (-iciO)

+" Y2n0(o) S2n(-ic,O) + 2 Yn(o) Sin(-icO)

n=3 c coso o R(
4 )'(-ic,iO) c sineO

2n ~in

zn (123)

Oz

In the limit when 0o tends to zero, these coefficients lead to
those of the normal incidence case.

I For m>i

I , Ymn(Oo) Smn(-ic'O) ( mn(6o) Smn(-ic'O)6x = M nm c sin o Rm -(41 )i i ))/ o R(41)
(n i (-iciO) n=m mn (-jciO)

/ ')/(r

+1 ,ym-n(o) S'1 (-ic,O)+ I m-In0) m-In

n=m 0oo R(4)'(-iciO)m-ln

I- ' Ym-e-n (eo) Sm+in.-i c,O)

n+m+2 c c C s
0  R -I n

(- ic 'iO )  (124)

0z x

In order to satisfy the [E] condition at the edge, a x and 6z

must satisfy Equations (122), (123) and (124) for every value of m.I. I

According to our definition in Equation (116), ax and a are independ-

ent of m since they represent the relative weights of the two differ-

ent incident plane wave expansions. To see if a pair (ax al) can
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satisfy the [E] condition at the edge, the different expressions of

1.x , for example, in Equations (122) to (124) should be computed for

various values of m. However, since the vector wave functions of index
i=l are not independent, the fact that the coefficients should take
different values for each m is not a proof that the solution is invalid.
If this happens, another approach introduced by Flammer[7] can be used.

Instead of one pair ( xZ,), Flammer uses a whole set of pairs ( 9EZ)

where f mand f m satisfy the Equations (122) to (124) corresponding to

the value of m. Note that while will then be the coefficient of

in the incident field, l L is not thethensu)nbationfovernrofunctionsx w)ose
weight of the summation over n of M but of other functions whose

emn.-dependence is due to one trinogometric function only per component, a
instead of product of trigonometric functions in the case of M x(l)

ern
This is due to the reordering necessary to obtain Equation (121). The

new functions Re+(') and are defined in Flammer's book[lO].

Their m-index, m+l and m-I respectively, represent the order of their
,-dependence. In order to write the incident field used by Flammer, we

introduce the relation
for m>l - x(i) = +(i) + fe-(i)

- emn em+ln m-ln

(125)

for m=O Rex(') = 2 Re+(i)

eOn I en

The incident field is then equal to the following formula:

E()
E _=0 40m) I 0mn (o )
ik mx-0l n=m coso0  m-l,n

(1+6) Y mn(Oo) - +(I)

Om xm+ 1 n~m. coso ° 0 e+l ,n

z sno M-z(fl (126) 1
m n=m 0 J

where and ,' satisfy the corresponding condition, Equations (122)

to (124) . Z
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A term by term matching technique leads to a reflected field which
satisfies the boundary conditions on the surface of the disk and the
[El condition at the edge. But, when these coefficients are utilized

in Equation (126), it is not clear whether these expansions still repre-
sent plane waves. This question remains to be answered.

By introducing different coefficients for each value of m, we have
modified the initial plane wave expansions. Since the vector wave func-
tions of index 1 are not independent, the incident field of Equation
(126) may still be a plane wave. This needs to be checked for every
value of oo . Computations of Equation (126) on the surface of the disk
should be made to verify whether or not Flammer's solution is valid for
arbitrary incidence. In his paper[7], Flammer does not mention the
problem. It is in no way proven and a computational verification,
though not a proof, should be made in future work.

C. Numerical Test of the Normal
Incidence Case

A computer program based on Equation (112) computes the scattered
electric far field in the normal incidence, perpendicular polarization,
bistatic case. We will successively introduce the variables computed
by the program, present the computed data, and discuss the results.

1. Computer program

The program, presented in Appendix D, computes the value of E,
where E is defined by:

I Eo exp(-ikr) (127)k kr

The functions and subroutines presented in Reference[9] were used
for this purpose. The output data are, as in Hodge's program for
Meixner's solution[9]:

the magnitude and phase of the e- and *- components of E,

the normalized cr ss sections of the disk corresponding to the
6- and *-components of E as follows:

(0 s ) = I lim [4rr2 1[ ]J 21 2
S s a2 r- Eo2  k2 [ I

(oY O ) = 4 I[i] (0S,0 s ) 12 (128)

c
where c = o,€.
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The normalization is obtained by dividing the scattering cross
section by the surface area of the disk. The magnitude of the cross
section in the scattering direction defined by (Oss s) is equal to

2 2 1/2
) S s

2. Data

The results obtained from Equation (112) will be compared to
computations made with Meixner's solution. Meixner's far-field solu-
tion has been studied extensively by Hodge[9], who wrote a computer
program which calculates the electric far-field for arbitrary incidence
end polarization. The results of Hodge's program show very favorable
agreement with measurements, with calculations based on the small disk
approximation, and with Geometrical Theory of Diffraction (GTD) compu-
tations. We will accept that program as a comparison source for the
results obtained from Flammer's solution.

Various plots of both solutions have been made and we will use
the following notation for the curves, except where otherwise stated:

continuous line for Flammer's solution

dashed line for Meixner's solution.

In the cases where q =00, H-plane, or 4 =90', E-plane, the nor-
malized cross section and the phase will be tiat of the non-zero com-
ponent of E, " when s=0' or uo when 4s=9T0, respectively. For other
values of s, the cross sections corresponding to the two components of

E will be plotted.

3. Results

From the plots drawn, we can see generally good agreement between
both theories. We notice the following tendencies:

The concordance between the two solutions is very good for small
disks - ka<2 -. In Figures 5.2 to 5.4, the low frequency ends of the
curves match very well. Figures 5.5, 5.8, 5.11 and 5.13 show a very
good agreement for both magnitude and phase in the case ka=2. For ka=4,
Figures 5.6 and 5.14 show a reasonably good agreement for the E-plane
cross section and for the phase of E in the H-plane, but the values of
the H-plane cross sections differ greatly as o approaches 900, Figure
5.9. ka=2 seems a reasonable limit for the low frequency region where
the two solutions match well.

As can be seen from Figures 5.2, 5.3 and more from Figure 5.4,
the oscillations of the cross section as a function of ka do not match I
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very well. Actually, the tendency is the same but the minima and maxima
are shifted as ka increases when compared with the GTD solution in the
backscatter case, Meixner's solution gives a much better result for
large disks.

j For a disk of given size, ka, the agreement of the f plane cross
section is rather good even for large values of ka as shown in Figure
5.5, 5.6 and 5.7. The greater difference between the two solutions in
this E plane appears to be the value of the minima.

On the other hand, the O-components do not match very well for
values of os greater than 200 for large values of ka. Figure 5.8, for
ka=2, shows good agreement but, Figure 5.10, for ka=10, shows H-plane
values obtained from Flammer's solution much larger than those obtained
from Meixner's as o approaches 900. The difference almost reaches a
factor 2.5 (i.e., % 4 dB) for e =900.

S

We have seen that this difference appears also in the H-plane
cross section for ka=4 and in the -part of Figure 5.12. The good
agreement for ka=2 makes less likely an error in the programming of
Flammers solution, but npvertheless, that possibility cannot be rejected.
When = 0' and os=90, [E] is proportional to 1. An error due to a
truncation or a precision problem may appear in fhe computation of

7 for large values of ka. In our program we used the same criterion

to truncate the infinite summations as Hodge's[9], and, therefore, one
would not expect that this should lead to a difference.

The phases, Figures 5.13 to 5.18, seem in general on good agree-
ment for all values of os , except for an evident problem in Figures
5.13, 5.14 and 5.18. The phase of the 0-component of the field obtained
from Meixner's solution is consistently 1800 out of phase with that
obtained by Flammer. Thus there is apparently a sign problem in one of
the components of Hodge's since he does not obtain the same phase for
the backscatter case, es=0 ° , for ps=00 and s=90 ° as can be seen by
comparing Figures 5.13 and 5.15, for ka=2, and Figures 5.14 and 5.17
for ka=10. We verify that the scattered electric field must have the
same phase for ps=00 and ps=90 ° when es=O0 :

s = sA

s0 o  s = E € E

Y 
(129)

0 =2 e s^
s90 - = E = E0

Flammer's solution, as calculated, satisfies this condition.

From the data, we see that we have an overall correspondence be-
tween Flammer's and Meixner's solutions for the bistatic normal
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incidence, parallel polarization case. However, except in the case of
small electric circumference, ka, the curves are never quite equal.
The weakest point of the solution is apparently the behavior of the -

component of the scattered far-field in the H plane in the neighborhood
of the plane of the disk.

D Conclusion

In this part, we have rederived Flammer's solution for the normal
incidence, perpendicular polarization, bistatic case. We have shown
that, with an appropriate choice of the two expansions of the incident
plane wave, the condition on the c-component of the total electric field
at the edge is equivalent to the whole edge condition. This remarkable i
property will not appear in Meixner's solution as we will see in the

next section. It is a characteristic of Flammer's approach. No answer
' s been given to the question of the validity of the general solution
for arbitrary incidence and polarization. The computational checks
explained in Section B should allow a better understanding of Flammer's
approach. The numerical test of Flammer's electric scattered far-
field has led to mixed conclusions. Despite an overall agreement with
Meixner's solution, Flammer's fields, show some important deviations.
These might be due to computer proolems.

We will now consider Meixner's considerably different approach
to the problem of the scattering by a disk.

I
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CHAPTER VI
MEIXNER'S SOLUTION

The validity of Meixner'$ solution has been established. Theo-
retical and numerical checks have been conducted in recent years, and
they have shown very good agreement between computations and experi-
mental data. In this Chapter, we will not repeat Meixner's solution,
since the derivation is available in the literatijre. The reference
work used for Meixner's solution is Hodge's version[8]. Here we will
derive the expansions of the fields in terms of spheroidal vector wave
functions and show a proof of the solution using only vector wave func-
tions without refering to vector potentials.

A. The Vector Potentials

Meixner used Hertz vector potentials to solve the scattering pro-
blem. In this section we will give the expressions of the components
of those potentials in terms of the scalar wave functions, Equation (7).
This formulation is much more convenient than Meixner's for the compu-
tation of the fields. Meixner's solution computes the potential of the
scattered field for arbitrary incidence and polarization. We will use
here the notation defined in Chapter V-B, Equation (114), for the in-
cident field.

S E(cosca Ei+ sina E) (130)

The definitions of fi , Equation (114), in this work and in
Hodge's work[8] have opposite signs. O,,r definition was chosen to
avoid a supplementary minus sign in the expansion of P" in vector
wave functions in Flammer's solution. This will lead us to introduce
a minus sign in front of the scattered vector potentials corresponding
to parallel polarization. As in Flammper's solution, we can obtain the

scattered field in any arbitrary case if we know E5" 4nd Es , scattered
fields corresponding to the incident fields 0 1 and E'', respectively.

We will define the vector potentials in order to obtain ESi directly.

-i
Meixner's solution involves three di _frent potentials. w is -

the potential of he incident plane wave, 7T is the "reflected"
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potential defined so that i+ sl has its components tangential to the
disk equal to zero. Because of the shape of 0, the components of the
electric field corresponding tangential to the disk to T --+-s are then

equal to zero. Ws2 is a second scattered potential defined so that
-=Tr+Tsl+js2 satisfies the edge condition derived by Meixner:I

- ( r) 0 =- (np) at n= =O (131)g
Tx and 7r y finite at the edge.I

where np = Itx cos + ff y sino

T-s2 also leads to an electric field whose components tangential

to the disk are equal to zero. We list here the vector potentials for
I1

Esi as defined above, using Hodge's notation

-s -sl -s2
iT -71 + 7r (132)

si 2- 0 (2- 0m)V m cos mp (133)

x k2cose m=O

sl =0 (134)
ifY
sl

IT = 0 (135)

sl 2Eo
7 = -. k2 mX (2-6 m)Vm cos mo (136)

y k =.

s2 o [- Eu.+ _(l+6Sm 1 )Um~l1]
7T s2 co mym ,+l OULJ CsM

Ix k m=O S

+ [XA+l-(1-6m,)x 1 ] sin me (137)
nim mm
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si y m' -m 11+ )x 11
i k - L~+ m 1 1. co 1m

I= -. 1 [ +(1611)U I sin mnP} (138)

The different functions used in those potentials are:

n N~ ()i mn C~O

m 0 n-1m mn(-c R (4)(-ic,iO) mn

Smn (-ic ,coso 0)S mn C-ic r) (139)

.n R((ic,iO)
Pm(~nsclo 1 -mn R ()(-icJi0n Nn (-ic) J 4 (icio) nn

mn m

1 W1 +m+iI in <(141)

( . 0. m <___0
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r, in S (-ic,coso )Smn (-ic ,0)
W(co) = 0 0 (4)(_ m > 0

0 n=m mn R (-iciO)
4 mn (143)

IWm(C,0o) 0 , M < 0

I (co. [Smn(-ic ,0 )]2 M 0

M 0 n=m Nmn R(4)(-ic,iO)

mn 
(144)

I m(c,Oo) 0 , m < 0

As previously mentioned, the sign of sl Equation (133), is the

opposite of Hodge's result in order to match the different definitions

of 011. However, the signs of the coefficients of U" and X0 have not
been modified in Equations (137) and (138) in order to keep the parallel-
ism between the parallel and perpendicular cases. The sign difference
will appear inside U11 and X11 instead. We, however, have the same U11
and X1 as in Hodge's results. This is due to a sign error in the deri-m
vation of U11 in Hodge's solution and to the fact that the X1i are all
zero. In order to simplify U1 and X- their coefficients in-71 differ

by the factors (co/k 3cosoo) and (E0/k) respectively from Hodge's ex-
pression. lie now can express these potentials in terms of the scalar
spheroidal wave functions.

From Equations (7), (42) and (139) we can express Vm cos mo as a
summation Of e (4) functions:mn

n=m R(I (-ic,iO)
1 YmnOo)  n mn 4) , , )  15

In the same way, from Equations (7) and (140), we have for om:
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[ - S (-ic, ) (4)iO
- ~emn (4),,~

I- '' m m inn i) (146)

By using these expansions in the expressions of the scattered
potentials, Equations (133) to (138), we obtain the following scattered
vector potentials.

1. Perpendicular polarization

M=O Ml m -

I _ (-ic, 0) n D)Omn4 (147)
N Rn (4)-ic,io) fn

TT S.L ~mn O 4

y K2 m=0 n'm R mn(ciO

0 [xj-+ +(l -65ml )x'-1]

, n R~l)(-ic,i0) 4
7 W- S(-ic,O) ne(4(18
n=m in n R (4)(-ic,iO) mien 18

2. Parallel polarization

cos~ i=0 n~mRinn(-ic,iO)

kO c 0  in=O0 [U 1
1 16m) (4

(-ic R0 ~TT (4) (149)

nm inn (-ic ,iO) (4
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ir

+1 11

Y ~ om=Oml m)mI U.+1+1 I

I ... . ~n R(1)(-ic,iO)mnn,() 10

, n(-icO) m1 i c O) () (150)
n=m Nmn Rm (-iciO)

Those formulas will allow us to compute the fields simply by
taking their curls. This formulation is very convenient for this pur-
pose since to each scalar wave function in a given component, x or y,
of the potential corresponds a vector wave function of vector eY or &y,
rrspectively, when the curl of the vector potential is taken. fhe
expressions for the electric and magnetic field will then be obtained
in a very straight forward manner.

B. Meixner's Fields

In this section, we will derive the expressions of 0s and jsi
as summations of vector wave function. The fields are computed from
the Hertz vector potential using the following general relations:

V = i T1

(151).

Using Maxwell's equations, i.' also have the relation:

4 iT (152)
kZ

where Z is the free space wave impedance.0

Equdtion (152) will allow us to compute the magnetic fields from the
,-.,.tri, fields. The scattered magnetic fields will not be listed
..j.j, of the simplicity of the transformatior. In order to compute

wp will use the following identity:

N S4) where x or y . (153)



The final form of the expansion of the fields will be obtained by re-
placing the vector wave functions fien and N Y's by their expressions

intrm f e+ and SeTi a mn
item ofem+ln adNm-In'Tiwa the electric field will be

expanded in t rms of functions whose :-dependence is indicated by their
m index. These transformations are given by Flammer[lO]:

0mn gm+in 0 ~~l ~

rf x(i) = 2N -+0i N_ x(i) =5
e On e In00

fv~) =, -+(i) -0
mj~i - e l1 n N 1  ,-I m>O

Ny(i) = + 4+(i) koy(i) 6 (154)eOn + n On1

We will now list 0-L and fs" obtained by applying Equations (151)
and (153) to the corresponding vector potential, respectively, Equations
(147) and (148) and Equations (149) and (150).

1. Perpendicular polarization

E (o~ mn Ney4
km=O n=m Rn 0 n R _~ic'iO) mn

k m0 +1 MI m-1

I S (-ic,O) mn 1- x(4)
n~mNn mn R (4 )(-ic'i0) emnmn

+ +1-6 )X) i _ S(-icO) inmn ____ (4
+(X 111+1 MI__) inn T4Tiio emnm ~ ~nl ml- _ N R (i~O

inn

(155)
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We notice that the first summation is a "reflected" field as definedin Chapter V.

Using Equation (154) in the above formula and rearranging interms of X m we obtain:

D(~e I )(-ic,iO)

mO n0 n Rmn (-iciO) mI

0m-l

in R(l )(-ic,iO)
Y mn cO) ,m=O fn~m mR mn(-ic,iO)

mm

2. Parallel polarization

Tci 0 - S 1n 0 n,4)_ciO x (4)
0 M-0 n=m mn Rn (-ic,i0) emn

+cs I i-m ([U1 -(1+6 )U11]

[ n R~ 1n R- c(-cii0

-[m11 +(l+S )U11 j I- S (-ic ,0) -m fYM4m+ mm n=m N mn mn R (-(ic,iQ) 0mnmnJ

(157)
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In the same way, using Equation (154) in the above formula and
rearranging in terms of Um, we obtain:

E s, _1 = - m ( o ) R m n (- ic ,iO ) [ (l + 60 ) N l n( 4k c o % m =O n = m R ( 4 (- ic i O ) e m n
mn-l a m I -(4

urN'emln]

_ _ R 1 ( - i c i O)
+ 2cs0  Z i-m ' in Sm(-ic') mn)

k c s ° m = O l n = m N m n m n4

S90 ~ ~ ~ ~ m (=-ic m (iiO) ml

[U"+ 1  +(4) - (l+ im) U"g 
4)i

2n~ erml 1n rn- e l (i~O

mm

w-"h U1 = 0 for mn < 0.

3. Conclusion

For an incident field of arbitrary incidence and polarization,
the total scattered E-field can be expressed in terms of 1ES and ts,
as shown in Equation (115):

fs = E C(cos , s " + s in , fS ) (159)

S . E 0(cos, , -Ts"I + sin -, )
II 

'

where, from Equation (152), Vs' = (i/kZ ) vxEf.

In this section we have found the expression for the scattered
electromagnetic field in terms of the spheroidal vector wave functions.
This allows us to deal with the fields directly instead of the vector
potentials, and it therefore offers the same possibilities as Flammer's
solution for studying the near-field problem in a much simpler manner.
In the normal incidence case, we now have two different formulas,
Flammer's and Meixner's formal solutions, giving the. bistatic scattered
field. A term by term comparison of the two solutions should be carried
out to see how it is possible to match the results. A first step how-
ever would be to compare the scattered electric fields in the far-field
region. This would be much easier since the remaining components of
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Es are, in each solution, equal to single simmations of scalar spher-
oidal functions over n. The task of reordering those far-field com-jponents as summations of the Legendre associated functions has not yet
been completed. The Legendre associated functions are the natural
functions since they are orthogonal in the far-field region and since
the spheroidal coordinate system approaches the spherical coordinate
system in this limit. This orthogonality will lead to an infinite
number of relations between the expansion coefficients dln(-ic) and
values of the radial functions at =O. The validity of these relations
could easily be checked on the computer since the different functions
are readily available in Hodge's program[9] and in the one used in
Chapter V of this work. A study of those relations as function of the
variable c=(kd/2) might explain the discrepancy obtained in Figure 5.1
for the backscattering cross-section. It would determine whether the
differences are due to some inaccuracy in the computations of the coef-
ficients or to improper truncations of the infinite summation in one
of the solutions. The far-field of Meixner's solution can easily be
computed by inserting the large argument approximations of the spher-
oidal wave functions, Equation (34), in the formulas for these fields.
This showed a sign error in the 6-component of the scattered field in
the perpendicular polarization case as computed by Hodge[9]. A sign
error also appears in the e-component of the scattered field in the
parallel polarization case in Hodge's work.

In the next section, we will derive Meixner's solution with
another method using vector wave functions exclusively. The edge
condition will involve all the components of the electric field unlike
Flammer's solution where the @-component only was needed.

C. Another Proof of Meixner's Solution

As can be seen from the previous section, Meixner develops a
solution to the scattering problem by using only one expansion for
the incident plane wave in each polarization case - parallel or per-
pendicular. His method is equivalent to adding to the incident and
reflected field a summation of vector wave functions whose tangential
components are zero on the surface of the disk but which has a sin-
gularity at the edge. The variable coefficients of that summation
are then adjusted to cancel the singularities in the 4-component of
the total electric and magnetic fields, and to insure a proper be-
havior of their other components near the edge. This is exactly the
method that we are going to use to prove Meixner's solution.

In this section we will first derive some useful vector wave
functions expansions which are equal to zero on the surface of the
disk. We will summarize the power series approximations of their
components in terms of n and & in the vicinity of the edge. We will
then be able to prove Meixner's solution, using the above expansions
to match the edge condition.
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1. Vector wave expansion

This section is mainly based on the properties of the Nx ex-
pansion of a p ane wave, Equation (47), for an angle of inciSRce

0 equal to 90

a. Derivation of the vectorial relations

We will first establish some dependence relations for the fx(l)
emn

vector wave function and use the -orthogonality to obtain relations
for each value of m. We will then show that those relations apply
equally to the odd vector wave functions. We can then find vector
wave expansions whose tangential components are equal to zero on the
surface of the disk and that behave like outward travelling waves
in the far-field region by using a term by term matching technique
identical to that used for the calculation of the reflected field
in Flammer's solution.

For o = 900, Equation (47) multiplied by cose0 can be written
as

'1 ' ,, " - ri

From Fquation '4?) and Equation (14), we have, for n-,9 odd,

m ,/2)=O and, therefore, in the previous surnfation only the termsfor n-m even will remain.

S' mn(/2) Ne , : 0 (161)
m=0 n=m mn

We will introduce here the functions N+(4) and N(4) which have
a convenient P-dependence, Equation (154). mn mn

Equation (161) can be rewritten as follows

Yln(,1/2) on en=l on

(l+6 l )ym 7T( 12) )

m=l n=-l ,n e mn

+ m Yr+l n(u/2) N ( 0 (162)
q ~mnl n e,nn,
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where corresponding components ofN+(1) and 9-(1) have the same €-
dependence. emn emn

A difficulty encountered with the use of this notation is the
difference in the parity of n-m between Equation (16)) and (162).

Equation (161) is a summation of We(1 ) for n-m even, while Equation

(162) is a summation of q-_(I) and - l) for n-m odd. In order toem e
avoid a possible confusion, the inde np will be used instead of n

in 1 )and _(1) during the rest of this section. With that notation,
n mn emn

the -orthogonality applied to Equation (162) leads for every value
of m to the relation:

• ( I+ I) (1 . o) _Ip( d12 )

p=m-l P emp

+ I Ym+lp(,2)N (e )  6 (163)
p=m+l mp

Equation (163) means that the coefficient of cos m in the
and &-components of the above summation and the coefficient of sin
m , except for m=O, in its Q-component are equal to zero.

We can then substitute, for m greater than zero, sin mo for cos
mp and cos m for -sin me without changing the value of the summation.
This transformation leads to the following equation for the odd func-
tions:

=- (l+6m)(l-°m)ym-lp(Tr/2)Nmp) +

+ X m+  p(712)T_( I) = d (164)p =m l mmp

for every value of m>l and (n, ,.). Note that Equations (163) and

(164) are also valid for ±(l) This is proved by simply taking
Bmp

the curl of these equations. In order to match the behavior of out-
wave travelling waves at infinity and still keep the behavior of the
tangential components at =O, we will make a term by term transformation.
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Frm -(Iijat ion ( 5 4) and Fquation (30j) to ' 33) , we can soo that, on
the surface of the disk, the ri- and k-components of V~)or N(I
are proportional to R(1 (-ic, io), or R + (-ic,io) res~ecti vely. We
will therefore make tw following subs'~ilution in Equation (164):

SMP R -i- c,io) 8MP

rn() -i p i

1-c4o M8mp (165)

gmp -m+ I p o gm

We will denote by F (n, ,Q) the value of the transformed sum-
-n3tiin. From Eq~iations K914) and (165), we have for every V31Ue Of
fn:

(- c~io)

Rm Yp(~lC (O) 4)

(166)

F S satisfies for n 0:

where =(167)

[F ] a(r,0,1 ) =0 for m _ 1.

In contrast to Equation (161) and (163) these Tg functions

are not zero everywhere. Note that TFS is the reflected field cor-

-'sponding toj the zero incident field of Equation (164). Since the
'fie(tod field i-I not ztero, we imm~lediately realize that the reflected
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field is not equal to the scattered field in that case. We will need
the expansion of the components of Sm in terms of r and near the

edge. In the following subsection, we list the expansion of the nec-
essary vector wave functions.

b. N+(')and T(i) near the edgeSSmn Sm-in

We do not need very complete expansions of the vector wave func-
tions in the neighborhood of the edge since we are only looking for the
terms that do not have the behavior required by the edge condition
for each component. The other terms will not lead to any problem
in satisfying the edge condition. We will first consider the case

of N9() component by component. N()has no singularity. Sincen'mn6inguvovarity.fuSinces
Sm+ln 1m

Equation (161) involves the functions Ne( 1)for n-m even only, we will

n -f+ (' ande mn
need + and N-(i) for n-m even only for the computation of
- Sm+ln Sm-in

For the n-component, we only need the terms of singularity greater
than s-2, where s is the distance from the edge as defined in Equation
(89).

n-m even,inj << 1 and c& << 1

[N(4)] 4i Smn(-ico) 2 2 cos
e225n sinm +O(s-

om+ln ckd 2  R(1)(_ic'io) (n +C2)5/ i )mn

(168)

For the C-componept of (4) we only need the terms of singu-
larity greater than S- 2 em+ln'

n-n even,inI < 1 and cC - 1

CN[-oein]) 2i S mn (ic'°) C2_ n2  rcos
o ckd 2  R io (n225/2 i(m+l) O(s

eml c 2 o) (n2+ 2,5 bin
(169)

For the -component, we need the terms up to the order of s
to test the edge condition on the O-component.
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or -,-m evo.n r C: 1

~4) ]1=2_ Smn(-ic, a) f sin (-,+ 1)
em+,n d2 72 [-cos (m+1) ,x
om I' kd ~*

S2+2)[-( m+ l ) n+m( m+ 1 )-c I R(41-ic ' io)

?c n (m+l) - m (m+l)(m+2)]+m 2 1 +- -

(m-3)(x m2) -2m+31- 1O (s) (170)

cRmn if
We will eed the expansion of[ f

For n-rn odd

2 4 X mn +m2  sin(m+l) i
]m 1 - kd. 1 (X m _m 2) +M 2l cos(m+l )"T5 m+i lo kd o

x S" (-ic,o)R(l)'(-ic,io)+O(s 3/ 2

fnf mn
(171)

It is well behaved at the edge since it goes to zero as s does. The

case of (4) can easily be derived from that of N4)

Sm-ln m+ln" Sm-ln

has no singularity. The n- and i-components of g- (4 ) can be obtained
Sm-ln

from Equations (168) and (169) by replacing m+l by m-l in the -de-

pendence. The expansions of the *-component of IV are obtained
8m-1n

from Equation (170) and (171) by replacing m by -m except in the in-
dexes, sin(m+l)P by -sin(m-l)0 and -cos(m+l) by cos(m-l)P.

In order to compute the complete electromagnetic field, we will

also need the functions -9+(i) and Mi) as defined below:
Sm+In Sm-ln

(i) 1 +(i),"
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As seen from their expressions in Flammer's book[lO], the rj-
and C-cpmponents of these functions have a singularity of order at
most s- ' and therefore satisfy the edge condition. The expansion

of O-component of M(4) is listed below for n-m even.

I n-m even Smln i

[EK(4) 1 S mn (-ic'°) C'SC~ l 0 sx

Sn kd _ 2+ 2 sin ( +1) x
Smn 2 C Xmn-Im2_-2 (4)(-cf o

S(n 2 +C )(m2 - ' nn -2 R (4 (-icio)

+ '2 ' mn- m 2  + 2 'mn- m2 ] (-i) +O(s)
mn rn

x l ~ cRr~] (-ic'i)

(173)

We will also need +  ] for n-m odd:• Sm+ ln

n-m odd

]-kd Smn( - ico) Rn (ic,io) c(m+l)41: O(s) (174)

The corresponding expansions for - are obtained by replacing
8m-ln

m+l by m-i in the trigonometric functions. We note that the components
of the functions of index 4 listed in Equations (168) to (170) and
(173) have singularities that do not satisfy the edge condition, but
that all the components of the vector wave functions of index 1 do
satisfy it.

T +is expanded in terms of NF 4 )instead of N or -(4)

8n Smp Sm+ln 8m-ln"

From N mn , n-m even or odd, we can derive the expression of -M

for p-m odd or even, respecti yly, by replacing m by in-i even in the

indexes and n by p. From -', n-m even or odd, we can derive theSM1
expansion of N-(i)for p-m odd or even, respectively, by replacing

8Mnp
m by m+l and n by p.
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c. T at the edge

8it]

Here we will compute the coefficients of the improper singularities
of the components of F and 1/kv x F The coefficient of

m 8m
2+2)5/2 in [Fm is, from Equation (168) and (166):

ckd 2  p=I (l+1m)(l-°mm-lp (T2) i/2p_ ic,io)

Sm+ S(ico) c I 1 (C
+'m+ Ip(,/2) )l sin (175)

p=m+l R (-icio)

S9

The coefficient of in ILF J. is hal1 of equation '175).
(n2+ 2)5 gm

Those two components will, therefore, enforce the same condition.

The coefficient of 2+ in e is, from Equation (166) and (170):

2i f=' 2Sm1 (-ic,o)I msin m l

ckd2  (l+lmIom m-lp (4 R '  m -cosf

Spm+ m ip /2-, o ) s-sin rii- L

+ Rmp+Ip(_4ic 0 o (M) cos (176)
p~m+l m+ lp -co

It can be rewritten as follows:

2im I l (-ic,o)

ckd2 jP= m i-l (l+61m)(l+,Om)Ym'lp(Tr/2)R (-icio)

, +1 Sm+l (-ic,o) sin
+r"nl-I R 4 ,mos me f  (177)Ym+Ip(q/2) ;F4 Cos
p: + I 1 R
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This coefficient has a different ,-dependence than the other two.

The coefficient of in [k vx e ] is obtained from Equation
+" 0m(166), (172) and (173). It is equal to Equation (175) multiplied

by - d . Equation (175) and (177) differ only by their p-dependence

and a factor m in Equation (177).

Equation (175) and (177) give the coefficients of the terms in
the components of F and 1/k v x T that do not behave as required

by the edge condition in the vicinity of the edge. Note that for
m=O, the coefficient in Equation (177) is always equal to zero while
only the odd case of Equation (175) disappears. Thus F0  and 1/k
V x F_0 behave as required by the edge condition and, tnerefore, the
missing relation in Equation (167) will not be needed since the func-
tions W 4 ) and --(4) are well behaved at the edge.

op °op

We now have the necessary tools to solve the scattering problem.

2. Solution

The solution will be derived for the general case of arbitrary
incidence and polarization. We will use the same notation as in part
V for the electric and magnetic field.

Ti E (cosjE + sina r ) (178)

We expand Y and from Equations (47) and (48)

1i _Z Ymn(eo) e(1)

k cose o  m=O n-m emn (179)

Fi. 1 "Z Z mn (eo) ey1
= m=0 n m emn

From Equations (30) to (33), we see that, for n-m odd, the in-
cident vector wave functions have null taggential components on the
disk. Therefore the reflected fields are:

1 ,R i-icio)
E -k coso0  m: ( 4)(ic io emn

M=On=m in o mn

R(l)(-ic,io) y (180)

k m=0 n=m no mn ( R()(ic,io) emn
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Once again the "reflected" f ields as (Jet ined htrf are not tequ;.
to the scattered fields since they do not satisfy the edge condition.
We can now add to the reflected field any summation of functions F
and still have a reflected field. The coefficients of that sum- m

mation will be adjusted so that the fields satisfy the edge condition.

From Equation (154), we see that x 'i) involves only even func-i) e

tions -e(') and N(i) while iy(i invo~ges only odd functions
em+ln em-In emn

+ni) and N .
)  Therefore to match the edge condition, we need

0°m+ ln m+ln"
only add a summation of Fe to and o to lr , since F m satisfies

OW bNIry condition on the surface of the Jisk. Toe s-3ttertd
f e Ue"

k cose °  U v Fe
o m=Q my emm

(181)
gS r.+ I -

m=l mv
m

where Umv and Xmv are adjusted to satisfy the edge condition.

The summation over m in Is, begins with m~l since O is well
00=r-

behaved at the edge and does not correct the behavior of r . We will
successively consider the perpendicular polarization and parallel
polarization cases.

a. Perpendicular polarization

Equaitins '17q) ind (180) can he rewritten as follows, from Equ -
I ion 5z -
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FiL L mupm 1+Lm -6 ~i(0o

Y l (e 0()

p=rn+1 r-p mp}

R~l (-ic,io) (4
1 = m lp=rn-1 l m M-lp o T4T2

k -Q1  l m oRm~ po(-iC~i0) omp

Y +1(-ic"io) N(4)1
~M+ 1 R *~TT2 (-ic,io) Omp~

(182)

We must adjust the coefficient X so that the coefficients of
the ill-behaved terms in each componeYR disappear at the edge.

Taking advantage of the p-orthogonality, we can write a specific
condition for each value of m:

for every m > 0, atn =C= 0:

P=M-i (1+Si&(lon)Ym..1p 0 om

kpm+1 l p o mp (183)

P=-l Im o16m m-lP 0 Rm (4)(ic~iO) 0

[Ymmiplo R~~(i~o
pmm+1 ( R ()D4) (_ ic, io0) mp J

+ 1 X T (1- 6 )must satisfy the edge condition.
V~ my om om
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Ne have seen that the functions of index 1 and R(41 behave as
°op

required by the edge condition. The absence of coefficient X is
therefore not a problem. For any other value m, m~l, the conRYtions
)n X. rrn thp three components n,,': of Equation (183) are identical
OTnc, tie coefficients of the improper singul3rities in Equation (168)
to (1',,) are proportional apart from 'heir -dependence. From Equation
'173), we see that this also applies for the O-component of the curl
of Equation (183) which corresponds to the m-part of the expansion
of the magnetic field.

Xmv satisfies, for mj:
( l + i m ( l o m Y m I p ( o S m 1 ( -i t , o )

- pm-1  lmoi m-lp o 0c ~i-ci
P='- im~ Smip-icoo

+ Ym+p(°o) S IPic~o)
p=m+l R(4 ) (-icio)

m+lp (184)
Xm v  'i Sm I (-ic,o)

+ XM ~I p=A.. (l+6lm)(l-6om)Ym-lp 1 2) m
Sp=m-I R () ic,iol

, Sm+ 1  (-ic,o)

J:n+ c R ( -i-' m + l p ' ,- o ,

We notice that, from Equation (42), we have, m --0:

4ipn~
( -om)( l m)YMlp(Oo) -M- N l p -p(-ic'c°Soo)(1-6om)

(185)
Y m ~ l p ( O o ) - i p

Nm)--Sm+lp(-iccosoo)
Ym~lPm0 p

Introducing the functions W and 4 as in Meixner's solution,
Equations (143) and (144), we have for Xmv:

Wm1  - W m l -
m- m+l for m > 1 (186)

mv 4'm-l + 4m+l

Witn those coefficients we can compute the scattered field of
r ;,,p,I ,rjlr polkiciation cise. Wr, oht3in from Equtions (180), I

4
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I l'R(1)( i i°

ES~ Ce)Rmt(-ic' io)
mn y(4)

asm0 _Ymn ) 0 -(4)(_ic,io) eS0 = Rmn

4 [ 'in Rmn (-ic,io)
+vm__ (-ic,o) "niI +k m O [Xm+Iv n~ Nmn Smn(-ic'°)mn (4)

=0 r n m N m S R(4)(-ic,io) °m+Inmn

inS () (-ic,io)
(1' 

n
1- )X 0 _i R)mn (f (4)

n=m mn Rm)(-ic,io) nj

I (187)

We can check this solution by comparing it with Equation (156).

We compare the coefficients ofN (4 ) andN (4)  in both solutions.0°m+In °m-ln

2 form 0 2 im +m+l- Wm-Wm+2

k m+1 k -nm+Pm+2 - k m+lv

| (188)

2 -m I 2 2 im -1 -1 W m -2 
W m  4 (m -

for m 2 v-i k -m-2+"m k r-lv

The scattered field obtained by this method is identical to the

f one obtained by Meixner, as expected.

b. Parallel polarization

I Equations (179) and (180) can be rewritten as follows, from E-
quation (154):

S1 (1+6Im)(1-60m)m (e0 ) )

k cose 0 n0'pir-l rnlp0 p

I p r+ mI(e°)Tf-(l)

p=m+l p o emp (189)

kw cose 0 m! p -  (1+61m)(1_6om)Ymlp(eo) (4)e

I+ Ym+lp( °) 4 N

pm+l rnp
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L
We must adjust the coefficients U in Equation (181) so that

the coefficients of the improper singu arities in each component of
the fields disappear at the edge.

Taking advantage of the 4-orthogonality, we can write a specific
condition for each value of m:

for m > 0 at C = n 0, the following quantity,

. p] I (m)(l)om)m ( Ne

k coso p=L -Ip mp0 m '

+ k cos(o p)m+Ip(°) T( (190)c 0  p=il mp

1 R 1 (-ic, io)
R(~1!

k cose (+6lm)(6m Ym (a Rm (-icNi) emp
k c p=m-I0 R4)p

R(') (-ic 'io)1 ~m+l R

0 caseo  p m+p'e°) Rm+) (-ic,io) emp

+ k cose n Umv Fem

i, ; ,t 'isYfy thie .2 j1j onditio .

The functions of index 1 behave as required by the edge c(di- t
tion and will, therefore, not contribute to the computation of Umv.
For m greater than zero, the conditions on U from the three coii-
ponents of Equation (190) and from those of Tis curl are equivalent
since the coefficients of thq improper singularities in Equations (168)
to (170) are proportional apart from their 4-dependence. For m equal
to zero, the n- and C-components of Equation (190) and the 4-component
of its curl lead to equivalent conditions on U . The 4-component
of Equation (190), however, contains no impropP singularity since

the transformation of the coefficient of the singularity of[Te (
4)

T(4)]em-l,nEquation (170), into that of I e4)] leads to a m factor in the latter.emp

It can be seen in [Temp] , Equation (177), for example. For m equal

to zern, the,:p-component of Equation (190) does not impose any con-
dition on U in order to satisfy the edge condition. The satisfaction
of the thre8vother conditions will then be sufficient at the edge
ti obtiin tho scaftered field. For any value of m, the condition
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-~ ( l+ 6 1m ) (l 'o m ) Ym 'u ) j (- i (, )

p=m-l pRmIiP( ciC )

(e i Sm+1 (-ic,o) (191)

- pm+l Ym+Ip(e°) R -ic,io)

4 U "i (1+61m)(1_6om)Ym 1/2) i  m1(-ic,o)
+ Umv n~m_ 1 m -lp (

Spm-p (-ic,o)

+ ' i T/ S m+ p (- ic ° )  0

P=m+l c Ym+Ip Rj4)mpici = 0

Introducing the functions Wm and m as in Meixner's solution,
Equation (143) and (144), and using the properties of y mn( ) , Equa-
tion (185), we have for Umv

W l m

U m rn- Wm+l for m > 1 (192)mv m-I +  m+l

With those coefficients we can compute the scattered field of
the parallel polarization case. We obtain from Equations (180), (181)
and (192):

k R('-ic io)
s' 1 Y n(, 0 mn -  fx x(4)

COS o m=O n=m R (4 R -ic,io) emn

4n R( -iciio)+ mO 1__ Smn(_ico) mn i- ic iO ) x (193)
k o o nm mn R(4 .= ~~mn\-c o

x -(4) + (16r)Url W(4 )i
Ur+lv ve elne n

We can check this solution by comparing it with Equation (158).

We compare the coefficients of N+(4) and W (4 )  in both solutions.
ea+ln em-ln
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2i I U" - 4ii -  W1 4 U
k coso0  o k cO OSOo ov

-m 2-mm+l-1 W +W
for in 0 Ul - i 2 m m+2 U

_ coso 0 m+l k cos o  , m+,nm+2 k cosn o  m+lv

i-m 2i-m 2 im-l
-  Wm-2+Wm 4

for in _2 ZfM-- Ul-i = k coF kCi co Ufo >2k cos o Um-1 k cose o  , +<---Um-lv
0 0 m-2 "im 0O~

(194)

We see that the coefficients match exactly. The scattered field
obtained by this method is exactly that of Meixner's solution.

We have given a proof of Meixner's solution by dealing with electro-
magnetic fields only. The scattered field has been determined so
that it satisfies the boundary conditions on the surface of the disk
and the edge condition. This proof gives more insight in the behavior
of thp fields in the vicinity of the edge than Meixner's. It, however,
requires the calculation of the expansions of the spheroidal vector
wave functions in the vicinity of the edge, and its edge condition
consists of six conditions whose compatibility must be checked. It
is algebraically more complicated than Meixner's, whose edge condition
consists in one equation only since Meixner mostly deals with scalir
f'jnctiornr. In the next section, we will calculate the scattered fild
for vi in: idint field! equal to a single vector wavw. fjnct oin.

3. Scattered field of a single vector wave function

From the solution derived in the previous section, we can easily
calculate the scattered field for an incident electric field equal
to a single wave function. The purpose of this section is to show
that this scattered field contains all the vector wave functions of
index 4 which have the same index m in their C-dependences as the
incident one. Let us, for example, consider an incident field equal

to 1 Nl) Adjusting Equations (179), (180) and (181) to our case,k e m+ln"

we have:
_i 1 .- (l)
T NeraIn

R (-_icio) U
r n -- N_ -( 4 ) +-~I r ~ 15

R eo (195) I'k mn

Following the same derivation as in the parallel polarization
.,o, we obtain, from Equation (190), the following condition on Um+l

e' , , J )11 i ion.
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Smn (-ico)

I c R -(m+l C M ( n+2) = 0 (196)

SRmn (-ic,io)

Thn Um+ R ( ic,o) (197)

mn ( -CiO)[mp+ 2]

From Equation (195) and the definition of Fe , Equation (166), we

see that the obtained scattered field involv
1lall the functions

-W+(4) and F-(4) for the given value of m. If we choose an in-
m+ln Sm+In

cident field equal to em (1), instead, the scattered field contains
-mn

all the functions e and (4) form given, from Equations (154)
em±In em±ln

and (195). Whatever the vector wave function of vector 6 or e ,
or derived from these, Equation (154), the corresponding catte~ed
field is not equal to the reflected field and contains the other vec-
tor wave functions with the same C-dependence.

D. Conclusion

In this part, we have shown that the fields of Meixner's solu-

tion can be expressed in terms of spheroidal vector wave functions.

We can therefore calculate the fields everywhere directly. In par-

ticular, this will allow us to compute the near-fields and the cur-

rent distribution on the surface of the disk. Meixner's solution

is formally as convenient as Flammer's in this region. However, for

computational purposes, Meixner's solution should be retained 
since

it only requires the values of the angular and radial spheroidal func-

tions and their derivatives for n-m even. On the surface-of the disk,

we can see from Equations (23) and (24) that we only need the values

of the radial functions at C=O, since the derivatives can be expressed

from them. We have also shown how the scattered field of a single

incident vector wave function involves all the vector wave functions

of the same 4-dependence. This is a consequence of the fact that

the vector wave functions cannot be considered to be modes because

of the dependence relationships.
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CHAPTER VII
CONCLUSION

Considerable knowledge has been obtained about scattering by
a metallic disk in the last three decades. However, most of this
work was done in the far-field region.

Meixner's solution can be directly applied in this case because
of its vector potential formulation. The purpose of this work was
to establish a valid solution everywhere in space.

Flammer's solution was considered first since it leads directly
to formulations of the scattered electric and magnetic fields. The
validity of this solution, however, still needed to be established.
We rederived it for the normal incidence, perpendicular polarization
bistatic case and compared numerical results to data obtained from
Meixner's solution. The general agreement of both solutions showed
that Flammer's solution i.. acceptable in this case. We, however,
encountered problems in the derivation of Flammer's solution in the
arbitrary incidence case and its validity is still questionable.
Thus, Flammer's solution did not provide us the expressions that we
were looking for.

Meixner's approach to the problem leads to a solution that has
been, in turn, expanded in spheroidal vector wave functions. Another
proof has heen given directly using dependence properties of the sphe-
roidal vector wave functions. This formulation of the fields is ade-
quate even for near field computations. For example, the computation
of the surface currents on the disk should be made with Meixner's
solution.

In parallel to the solution of the scattering by a disk, we have
shown some dependence properties of the spheroidal functions. The
derivatives of the spheroidal angular functions are not independent
as the original functions are. Some dependence relations of the sphe-
roidal vector wave functions of index 1 have been derived, and it
is therefore impossible to consider a single vector wave function
as a mode in these cases.

Some questions remain after this work. The formal agreement
of the scattered far-field of Fammer's and Meixner's solution in
the normal incidence, perpendicular polarization bistatic case should

9P
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I be numerically checked as explained in Section VIB. The validity
of Flammer's arbitrary incidence solution should be tested as explained
in Section VB. If the validity of Flammer's solution can be established,
it should be interesting to compute the surface current distribution
on the disk from Flammer's and Meixner's solution. This could be
a good test since the general formal solutions are too complicated

I to be matched term by term.

I
I
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I APPENDIX A
THE OBLATE SPHEROIDAL COORDINATE SYSTEM

I

1z- ^77 1

<

Figure A-1. The oblate coordinate system.

The oblate spheroidal cc -dinate system has the components (n,
K,4 ) whose characteristics are:

- the n-constant surfaces are ellipsoids of revolution (around
the z axis, in our case). The intersection of those surfaces with
a plane containing the z-axis are ellipses whose foci are the edge

Ipoints of the circular disk in this plane.
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- the '-constant surfaces are hyperboloids of re,,olution aroun:

the z axis. In the same way, the foci of the intersections with a
radial plane are the edge points of the circular disk.

- is the usual azimuthal coordinate as in the cylindrical case.

o represents the surface of the disk of radius d/2, c= kd.

varies from 0 to infinity whereas ', varies from -1 to 1.

The following formulas have been rederived from the general or-
thogonal coordinates systems transformations as explained, for example,
by Stratton[ll].

We first establish the relations between the usual coordinates
systems and the spheroidal coordinate system.. We then consider the
limiting cases of large radial argument, c&,of the surface of the
disk, =O, and of the neighborhood of the edge, T=O and n=O.

1. Coordinate Transformations

a. Components

from Cartesian:

d (I 2) _2

2'
y =I+l_"]2 sinO (Al)

d

from cylindrical:

= d - - [I-r,)(I+-  )](A2)

from spherical:

r !,2+z2 d Jl_n2+ 2

cos = . (A3)

/l-r 2+ 
2

2 2 -
sin, = I2

The metric-coefficients are computed from the following formula:



x Lz
h J( v+ 1 -) v where vi,, (A4)

From Equation (Al), we obtain

f h___q n2& h d [1- 2 1
In 2  2 l+ 2(A5)

b. Unit basis vectors

We give in Table A6 the dot products between the basis vectors
of the spheroidal coordinate system and those of the common coordinate
systems. The different formulas can be obtained using the general
relationship in a basis (-i):

a a ej i (A7)

The dot products are computed using the relation

where a and P can be x, y, z; p, r, 0, n, , 4.

2. Large c Approximations

a. Components

Since is always positive Equations (Al) to (A3) reduce to:

x = g coso

- d - 1II-n2 sin
2
-d J 1 2 (A9)

d

I sine: Jln fr c{>>



Table A6

2iK l2n 12

6 -n +C2J 1 -2 I-2 12 o os

C[ 1~2 220

e1- z 2.,,2+2

_______ r1 2 L_ _ 2 120

n 1 22 2 2 2 [.,,2? 1-2
(- +~ )~ + * (l-r2+E2)-12 IT+ J

104

X= snow-* -- - -- - - -



This leads us back to the spherical coordinate system. The two
main relationships are:2r

n = cose and C =d (AIO)

b. Basis vectors

For cC >> I
le ^ + (1-n 2 )e e

n P )e -e0  (All)

3 On the Surface of the Disk

The disk is represented by C = 0. We have the relationships:

P r = g n2
e - -F P (AI2)n

4. Edge Coordinate System

To determine how a component of the field behaves in the vicinity
of the edge of the disk, the significant quantity of interest is the
distance from the edge to the observation point. Let us call this
quantity s in the coordinate system shown in Figure A-2.

z

71 z

O C_,, O

Figure A-2. (s,t, ) coordinate system.
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We will use the following notation:

s distance from the edge to the observation point.

t angle between the positive side (n>O) of the disk to the
observation point.

We restrict our domain to small distances from the edge: s < d. We
notice that, in this system, with s -<d:

t = 0 is the disk itself

t = R is the plane of the disk outside the disk.

We will derive the relations between the spheroidal coordinate
of small argument and this edge system. 1

In the following, we have C - 1, Inj - 1.

By definition, we have

s2 ) + + Z2 (A13)

In spheroidal coordinates, this equation can be writtenI

? d2 21 -  2 ' '2 292

flr2 )l+ 2 ] 121+ 4 4,2,22 -C +2 + 0(n , 4,n2 ,r2 ) (A15)

which leads to-
2 d2  j 1 2 2 2 d 2  2 2 24 2_ 2)2+n C T n2+C

Finally

S (r2 +t 2) (A16)
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In order to compute n and as functions of s and t, we use

- -scost d R 2n2
4 (AU)

z = s sint d n(
n2- 2

cost 2+2 (A18)'}sint 2n

n 2+2

Since cost = Cos t/2 - sin t/2
sint = 2 cost/2 sint/2

n=JiC cost/2 = 2 Scost!? 19
Jd (A19)E = 2jjs sint/2

The equations (A16), (Al8) and (A19) summarize the transformation
between the edge coordinate system and the spheroidal coordinate sys-
tem.
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APPENDIX B

DIFFERENTIAL OPERATORS IN THE OBLATE SPHEROIDAL
COORDINATE SYSTEM

Gradient

2 1 r

2 1e,@

Divergence

v.F=2 1 2 2 2 2)22 -
v.F = - I a ([(l~n2)(n2+ 2)] Fn) + ([(I+c 2+ 2)] F)

2 2 n a

+ 2 4n 2 
__ (B2)

Curl

vxr j 2 +i <  (j - _(1n 2 2 d(i

_2 1 _, 2, 1Fo) L ( 6T

1
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Laplacian of a scalar function

2p 4 ~-(12) @ (P). 2  P3~

I + (1-n 2 +~ 2~ 2 (B4)

I2
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APPENDIX C
ERRATA IN FLAMMER'S WORKS

The errata contained in this appendix have been collected by
Dr. Hodge, Dr. Garbacz of the ElectroScience Laboratory and myself.
The following corrections should be made.

A. Errata in Flammer's Book[10]

Page 42 - Equation (4-6-14) should be replaced by the following, for
n-m odd:

in-m-l M +l mn1)(ic,io) 2m dI (-ic)
Rmn --- , (Cl)(2m+3) d mn -ic) (2m+r)!

r=l r r!

and Equation (4-6.15b) by, for n-m odd:
i n-m+l(2m+3) ' d n(-ic) (2m+r)!

R 2)(_ic,io) I_ = r=l rr

cRml(-ic,io) 2m m! c dn(-ic)

(C2)

Page 43- (n-! ) should be replaced by\2 !

(n-m-1)! in R (2)(-icio) for n-m odd, Equation (4.6.16b)

Page 47 - The -dependence term cos m(L-P') should be introduced in
the expansions of the Green's functions in Equation (5-2-11) and
(5-2-12).

1
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I B. Errata in Flammer's Paper[ 7]

Part I

Page 1219 - Read instead of (-l) r+m -n in the definition of

R (i)(-ic,iC), Equation (14).
mn

Page 1221 - In the definition of aon, Equation (36), the right-hand
side of the equation should be:

-Io r ' 1onf (C3)2i m Non frn(3

on r=O,l

Part II

Page 1225 - The last inner bracket of Equation (11) should involve
the derivation of the radial function and be written as follows:

R (Ill-ic,io)]
),(-ic,i ) in R(3)(-ic,iC) (C4)

RIn RT3i (-ic,io)
In

Page 1226 - R(1)'(-ic,io) should be replaced by Son (-ic,o) as noted
on on

by Flammer in the errata to his original report of this work.

C. Errata in Flammer's Original Report [12]

Page 12 - Replace sinr by cos in Equations (49).
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APPENDIX D
COMPUTER PROGRAM

This appendix presents the Fortran program used in Section VC
of this work. This program has been written to compare Flammer's
and Meixner's scattered bistatic far-field in the normal incidence
perpendicular polarization case. It is based on Hodge's program[9] I
for Meixner's solution, which provides the structure and most of the
subroutines used. The reader is referred to reference[1 for more
complete details concerning the input and output, and for structural
questions. First, the use of the program will be described. Some
remarks will then be made on the programming, and a listing of the
program will be provided.

1. Use of the Program

The program uses the same input procedures as Hodge's program
except that the two following data, angle of incidence and polari-
zation, have been suppressed since only the normal incidence perpen-
dicular polarization case is considered. The inputs are made free-
format on a teletype as follows:

1. KA = c, electrical circumference of the disk.

2. THETA SCATTERED = es [degrees].

3. PHI SCATTERED - s [degrees].

As in Hodge's program, any of these variables can be incremented.
The corresponding inputs and the output formats are identical to Hodge's.
The command "ESC" has been maintained. It interrupts the current
calculation and requests a new set of data. No negative size of the
disk should be entered and a disk of size 0 will terminate the program.

Unlike the general case treated by Hodge, this expresison of
the far-scattered field in the normal incidence case is here a double
infinite summation over n and r, the index m taking only the values
0 or 1. The summations are truncated in the same way as in Hodge's
work. The function involved in each0term of the summation are compared
to a limit fixe18 in the program, 10 in this case, near the overflow
level, i.e., 10 for the computer of the ElectroScience Laboratory.
To prevent any overflow, the summation is truncated when one of the
tested functions passes this limit. This procedure allows a full "I
use of the capacity of the computer and suppresses the need for a
manual search for the optimum truncation. Flammer's solution involves
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the spheroidal functions for n-m even and odd and their derivatives.
The subroutines computing the eigenvalue of the spheroiPl scalar
wave equation X n(-ic) and the expansion coefficients d" (-ic) have
been extended t the n-m odd case from a previous work bf Dr. Hodge.
The subroutines computing the functions for n odd have been added.

9 2. Remarks

The following remarks refer to the program listed in Section
3 of this Appendix. As in Hodge's work we will refer to a line of
the program by LN. First, the different parts of the program are out-
lined. The structure is similar to that of Hodge's program.

LN 10-53 Input

LN 54-75 Computations of the needed functions

LN 76-101 Computations of the components of the E-field:
- cross-section
- phase

LN 102-104 Output

LN 105-108 Incrementation of the chosen variable.

The needed subroutines are listed in LN 113-564. The notations
of the spheroidal functions for n-m even as defined in Hodge's program
[9] have been preserved. The derivatives of the functions are char-
acterized by a letter "PI at the end of the name of the function while
a suffix OD refers to the function for n-m odd. The following notations
must be introduced:

A and B are the two summations involved in the computation
of R1 and L.

x z
L

ALPHA and BETA in the main program are equal to and 8 , re-
spectively. Those names come from Flammer's definition 17].

EO and El are the summations in Equation (112) apart from the
0-dependence and some trigonometric functions of e. The coef-
ficients necessary for the computation of EO, and El, are com-

puted in the R(i) and R ()(-ic,io) subroutines, respectively,
under the name O0F. ln

3. Listing

In this section is given the listing of the program described
above.
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