" AD=A080 418 AIR FORCE INST OF YECH WRIGHY=PATTERSON AFB OH SCHOO-=ETC F/G 9/2
svsr:n DESIGN TOOL FOR AUTOMATICALLY SENERATING FLOWCHARTS An-:Tcw)
C 79 J H KELLER
UNCLASSIFIED AFIT/GCSIEE/79-1

o &

AFIT/GCS/EE/79-7

i;

o, -

% R -
:)’ A .,SYSTEH J)ESIGN TOOL FOR éUTOMATICALLY ’)
L GENERATING gLOWCHARTS AND ’PREPROCESSING ;ASCAL.
=L '

(\’7 } ",ﬂ/;yﬂ_,ﬂ.« Toe) -~ rmEsS /

—
“ Houja/r(.

AFIT/GCS/EE/7 / C Y James x/xener}
I ptain

/,__~-~ .

s Dac;;{z_/ 05y

Approved for public release; distribution unlimited

PR b e

: 1
' A¥IT/GCS/EE/79-7
A SYSTEM DESIGN TOOL FOR AUTOMATICALLY é
GENERATING FLOWCHARTS AND PREPROCESSING PASCAL E
THESIS
Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University .
‘ In Partial Fulfillment of the .
3 Requirements for the Degree of
i Master of Science
g . 4
|
; A ¢
‘ £
S
by ‘ {:
James H. Keller, B.A. %(\ i :
Captain USAF I T] i
i Graduate Computer Science L
3!
December 1979 30
‘ o, |
Approved for public release; distribution unlimited
i L}

Acknowvledgements
I would like first and foremost to express my thanks to the members
of the thesis committee, Professors Ross, Lamont, Rutledge, Borky, and
Black. Their criticisms and recommendations were helpful and
appreciated. Professor Hartrum, in addition to providing routines that
were used in in the graphics handler of chapter 4, was helpful in
guiding me to solutions of several specific problems with the PDP-ll

systan-

I received much assistance from three individuals associated with
the Air Force Avionics Laboratory: Captain Walter Seward and Mr.
Joseph McClendon, AFAL/AAF~2, and Mr. Neil Eastridge, DEC. Without
their help, little progress would have been made on the data structure

handler of chapter 3.

I am deeply indebted to the assistance offered me by two of my
assocliates at AFIT, Captains Brian Johnson and Brian Boesch. These two
gifted 1individuals gave unselfishly of their time to help me tramsport
source files among alternative demonstration devices and to tutor me in

the use of UCSD Pascal.

Lastly, I am indebted to Bernadine Lanzano, Professor R. Oldehoeft,
and Professor Leonard Weiner for taking time from their busy schedules

to answer my correspondences.

James H. Keller

Y

e

11

I R —

PURDEL A2 R A K, xR

———

(RIS O T,

;~
i :
Table of Contents %
N 1. Introduction 1
1.1 The Choice of an Implementation Language 2
1.2 The Use of Non-Standard Flowcharts 3
1.3 What this Research Demonstrates 3
l.3.1 Generating Source Code by Refining Flowcharts 4
1.3.2 Graphical Debugging , 4
1.3.3 Facilitating Software Maintenance S
l.4 Anticipated Benefits 6
1.4.1 Neat, Up-to-date Flowcharts 6
1.4.2 Debugging 7
1.4.3 Improved Software Structure 7
l.4.4 More Reliable Software 8
1.5 Limitations 8
1.5.1 Familiarization with Pascal 8
1.5.2 System Resources Dependency 9
1.5.3 Limited Pascal Capabilities 10
2. Discussion of Related literature 11 3
2.1 Available Products for Automating Program Documentation 11 3
2.2 The Relationship between Flowcharts and Code 12 ¢
2.2.1 Automating Flowcharts and Code 12 H
2.2.2 Conceptualization Relation between Flowcharts and Code 14 3
2.3 Discussion Concerning Software Maintenance and Reliability 15 5
2.3.1 Software Maintenance 15 B
2.4 Some Fundamental Concepts in Flowcharting 16
2.4.1 Two-Dimensional Grammers 16
2.4.2 Limiting the Use of Comstructs 17
2.4.3 A Structured Flowcharting Convention 18 ;
5
3. The Automatic Generation of Flow Charts and Source Code 20 ‘
R
3.1 The PDP/Tektronix Graphics System 20 .
3.1.1 Documentation of the Graphics Handler Routines 20
3.1.2 Stored Flowchart Figures 21 !
3.2 The Data Structure Handler 21 |
3.2.1 Data Storage Representation 22 i
; 3.2.2 Explanation of the Handler’s Commands 24 .}
) 3.2.2.1 Creating a New System Description 25 i
! 3.2.2.2 Getting a System Description from Disk 26 '
§ 3.2.2.3 Editing the System Description 26 t
: 3.2.2.4 Saving the Description on Disk 27 !
i 3.2.2.5 Producing Pascal Source Output 27 '
i 3.2.2.6 Producing Flowchart Drawings 27 o
; 3.2.2.7 Exiting the Handler Routine 27 -
& 4. The PDP-11/Tektronix Graph Drawing System 28 i
§
¢ 4.1 Introduction 28 4
4.2 Equipment : 28 4
4.3 Running the graph system 28 ;
E {1 ‘ﬂ
s !
{ i)

.
| S e b B

R A

e TUNT T L T TR T

4.4 Functional description of the system
4.4.]1 Draw a new figure
4.4.1.1 Vector Drawing Commands
4.4.1.2 Figure Handling Commands
«4.2 Draw from disk file
4.3 Append from disk file
«4.4 Store on disk file
+4.5 BExplain "DRAW" commands
«4.6 Exit graph system
System design notes
File control
Acknowledgement
Critique

4
4
4
4
4
y
i

5. Results and Recommendations

5.1 Overall accomplishment
5.2 The Graphic Handlers
5.2.1 Critique
5.2.2 Recommendations
5.3 The Data Structure System
5.3.1 Critique
5.3.2 Recommendations
5.4 Recommendations for Further Development
5.4.1 Combining the Graphics and Data Structure Handlers
5.4.2 Chosing a New Host System
S«4.3 Adding a Debug Capability
5.5 Recommended Evaluation
5.6 Summary of Results and Recommendations

Appendix A. Structured Design of the Data Structure Handler

Appendix B. Flowcharts of the Data Structure Handler

Appendix C. Listing of the DEC-10 Data Structure Handler Program

Appendix D. Structured Design of the Graph Drawing System
Appendix E. Flowcharts of the Graph Drawing System

Appendix F. Listing of the Graph Drawing System Program

47

56
69
73
79

Appendix G. User Hints and Suggested Modifications for the Graph 102

Drawing System

G.1 User hints
G.2 Recommendations for Improvement

jv

102
103

T o R S

e

Figure
Pigure
Figure
Pigure
PFigure
Pigure
Pigure
Figure
Figure

1-1:
1=2:
2=1:
2=2:
3-1:
3-2;
3-3:
3-4:
3-5:

List of Figures

The If-Then-Else Comnstruct

Ambiguity of an If-then-if-then-else Construct
Jackson’s Basic Control Structures

Sample Program Representations

The If-then-else Construct

The Do-while Construct

The Case Construct

A Data Record in the Data Structure
Organization of the Data Records

17
17
21
21

22
23

List of Tables

{ Table 3-1: Storage and Output Representations of Entry Types 23
Table 4-1: Format of Data Table Description 30
Table 4-2: File Control List 32

—

v

| vi

AFIT/GCS/EE/T79-T

Abstract
The portion of overall system costs attributable to software
development and maintenance is presently near 50 and is continually
increasing. Programmers and analysts are diligently searching for tools
to assist them by automating the analysis, design, and documentation of

software systems.

Flowcharting has lost some of its support as a powerful design tool

due to the need for discipline, patience, and to some degree artistic

talent. Automatic flowcharting, designed for specific languages and
machines, provides automatic documentation only. No attempt has been

made to link the automatic flowcharting to the compiler-ready code.

This study begins the development of an automatic program design
tool to graphically display and update flowcharts and provide thig link
between the flowchart and the system it represents. A method of
detailed, automatic design of programs, down to the elemental source
language level, 1is proposed which displays graphical flowchart

constructs and provids for iterative, stepwise refinements of the

flowcharts. The final system, described by selecting flowchart 1
constructs and completing the descriptions of the details of each

>
construct, is maintained in a data structure that allows for subsequent %

refinement and for optionally producing a compiler-ready source listing.

e

vii

+ Introduction

Are flowcharts worth the effort in software design? Considerable
1 2
differences of opinion exist. Some programmers believe flowcharts
p only 1in documenting the final product and thus they use cther
tools, such as structured English, to aid them in the design process.
Others believe flowcharts are 1indispensable in the development of
efficient and structured code. Perhaps a middle~of-the-road position is
reflected by Kernighan and Plauger who comment on program documentation
in general [10]:

"The best documentation for a computer program is a clean
structure. It also helps if the code is well formatted, with
good mnemonic identifiers, labels, and a smattering of
enlightening comments. Flowcharts and program descriptions are
of secondary importance; the only reliable documentation of a
computer program is the code itself. The reason 1s simple -
vhenever there are multiple representations of a program, the
chance for discrepancy exists. If the code 1is 1in error,
artistic flowcharts and detailed comments are to no avail."

One of the main objections to developing accurate and detailed
flowcharts may be the frustrations experienced by programmers with
limicted artistic talents. If a significant effort is used to create an
early edition of the.flowcharts, reluctance rapidly builds up against
redrawing when changes are subsequently necessary. Automating the

process of flowcharting would be extremely beneficial to the programmer.

The initial design would be neat and subsequent redrawings, made

1

The use of term "programmer” in this report is intended to include
the tasks of the "analyst" or "designer"; the terms are considered
synonymous.

2

Although flowcharting is one of several graphical tools for the
design and analysis of systems, only flowcharts will be discussed in
this investigation.

necessary by the seemingly endless succession of modifications, would be

just as presentable as the first.

The iteration between changing the code and changing the flowchart
is extremely awkward and time consuming. Lanzano commented on the
considerable time wasted in program evolution by the flowchart-to-code-
to-analysis~to-flowchart process [11). She suggested a computer-aided
design approach to developing flowcharts to aid the programmer. The
objective of this investigation is to demonstrate an interactive system
which will aid the programmer 1in designing flowcharts s.d will
simultaneously produce a source input file of the same program version.
The proposed system will display to the programmer a menu of flowchart
constructs that can be included in a series of successive, top-down
refinements of a flowchart. The refinement of the system thus being
designed will continue until the precise source language statements are
specified. The data structure which keeps track of construct or source
statements will also be used to generate the bfecise source code for the

program.

This study assumes the programmer will prefer flowcharts as a tool
in the process of designing and coding. Former flowcharters who have
become frustrated with managing the flowcharting effort should find the

automation of flowcharting proposed » considerable help in their work.

1.1 The Choice of an Implementation Language

Once a software system is adequately defined in terms of flowcharts,
the transition to precise language statements should be simple. By
' providing the programmeér ‘with' "a set of three structured flowchart

constructs, the data structure handler will help guide the programmer

1 e v S R g 00

toward the development of highly structured code. Because of this
structuring characteristic, Pascal will be the 1language used for
demonstration of source language preparation and output. The primary
consideration for this choice 1s the parallelism Dbetween Dbasic
programming constructs (block structurcs, if-then-else, do-while, and
case constructs) and the Pascal language itse.f. Secondarily, Pascal
was chosen because of 1its degree of acceptance in areas of computing
ranging from hobby computers to the base language for the programming
language Ada [7]). Although Pascal was chosen for the above reasons,
other languages could have been targeted for output with the same
results expected. Only slight modifications of the data structure

handler would be necessary.

1.2 The Use of Non-Standard Flowcharts
Throughout this report, the use of ANSI standard flow charts was
rejected in favor of the flowcharting standards designed and prescribed
for use at Arizona State University by Professors Roman and Oldehoeft
[13j. For use in this investigation, this standard is far superior to
the ANSI standard in two important areas:
l. It is a structured flowcharting system, with a structurc chat
is identical to three main programming constructs of Pascal
(see gsection 3.1.2), and
2. The flowchart diagrams require much less space on the printed
page = a characteristic that will be extremely helpful when
conceptualizing program composition from flowchart displays.
1.3 What this Research Demonstrates
This system will demonstrate three basic capabilities:

= The capability to generate a completely specified source
program by stepwise refinement of graphically displayed

flowcharts (section 1.3.1)

- The capability to provide a method for graphical debugging of
a system (section 1.3.2)

- The capability to provide a simpler and more reliable
end-product documentation that will facilitate software
maintenance (section 1.3.3).
1.3.1 Generating Source Code by Refining Flowcharts

To demonstrate the capability to generate a completely specified
source program by stepwise refinement of flowcharts, a data structure
handler will be constructed that will dinteract with the programmer,
record his/her menu selections, and display the flowchart as specified
up to that point. The programmer will continue to refine his/her system
of flowcharts until the elemental Pascal statements are all included
within the flowcharts. The data structure will then be comprised of
only two general types of entrigs = flowchart constructs and Pascal

source statements.

Along with the ability to display flowcharts, the data structure
handler will be designed to list the precise Pascal source statements
properly structured and formatted for subsequent compilation. Figure
1-1 1llustrates the two output products of the data structure handler
for a representative flowchart construct. Section 3.2 discusses the

organization and functions of the data structure handler.

1.3.2 Graphical Debugging

With a system that can generate flowcharts and the equivalent Pascal
source instructions, a debug processor could be developed that would
provide +valuable assistance to the programmer by displaying the portion

of the flowcharts currently being executed by the Pascal program.

i Liban e T Irmm e

T A s

] no
Is test]l true? — if testl true then
‘yes begin
Blockl (Blockl);
end
r——J else
¢ begin
Block2 (Block2);
end;
Flowchart representation Pascal representation

Figure 1l-1: The If-Then-Else Construct

3
Highlighting techniques might be employed to follow the execution

through decision paths or through a series of procedure calls or
computations. The debug capability will be discussed in more detail in

section 5.4.3.

1.3.3 Facilitating Software Maintenance

Software maintenance is often the largest element of total computer
system life cycle costs [3]. The associated expenditure could be
greatly reduced by employing the proposed software development method.
Because the Pascal. source statements will be generated along with the
flowcharts, the final software product will always be accompanied by the
latest version of the flowcharts. The maintenance programmer would no
longer have to study the flowcharts (hoping what he/she sees represents
the latest version) to understand the code prior to making changes to

the code (and changes to the flowcharts?). Instead he/she would study

3
Such techniques would involve changing the graphical representation
of a vector to a different intensity or pattern, such as a diffused
vector or a dotted line.

P

t
}
'
1
1
i
1
t
<

and revise the unified representation of the flowcharts and source code.
This method of maintaining software should be especially valuable in
enviromments where personnel arrive with diversified backgrounds and

rotate rapidly to new positioms.

As interesting and ' important as such advances 1in software
maintenance may be, this study will not be able to evaluate the impact
of the software development system on software maintenance. Such a
study would conceivably require years to analyze. Although an
evaluation of the wusefulness of this system as a software system
developing tool is feasible as a part of this research (and will be
proposed 1in chapter 5), no extensive evaluation of software maintenance

will be included.

1.4 Anticipated Benefits

The aim of this study is to design a system that will demonstrate
the capabilities outlined previously and to implement as many of the
capabilities as time will permit. It is gxpected that the following
benefits could be realized if the system were expanded to include all
the capabilities suggeste§. A method of verifying these assumed results

is suggested in section 5.5.

l.4.1 Neat, Up-to-date Flowcharts

Every programmer can have at his/her disposal, with minimum effort
and artistic ability, neat and accurate flowcharts before the first line
of code 1s compiled. Furthermore, the iterative process of expanding
flowcharts in a top-down manner as the design elements become clear can

be accomplished automatically. We can thus eliminate the tedium of

redrawing what has already been established. Perhaps this feature alone

e s sy

would rekindle interest in using flowcharts.

1.4.2 Debugging

Another characteristic that could significantly decrease the
occurrence of undetected errors is the capability to provide a graphical
debug processor that would operate on the data structure. Whereas most
debug processors operate on code in a linear manner, placing breakpoints
at various locations, then allowing execution to continue line-by-line
until the breakpoint is encountered, a graphical debugger could allow
breakpoints to be established after any flowchart construct or
assignment statement. As a result, programs could be debugged in much
the same manner in which they were developed - in a top-down, modular
fashion. The programmer could specify debugging at the highest levels
of flowcharting, to check interaction among top-level modules, or at the
lowest levels to confirm the smallest details of the system. This
capability will not be designed in this 1investigation due to time
limitations imposed, but section 5.4.3 will include a discussion of such

a system.

1.4.3 Improved Softwire Structure

Structured programming has been credited for large gains in program
correctness {16]. By using the flow-chart generator, the programmer
will be restricted to using the basic if-then-else, do-while, and case
constructs. Such restrictions will help assure a greater degree of
software structure in all versions of the design and code. In addition
to the construct restrictions, the process of refining flowcharts will
result in strict adherence to the method of stepwise refinement

advocated by Wirth [18].

i,‘
i
|

1l.4.4 More Reliable Software

Software system programmers should expect to produce more reliable
systems by utilizing this flowcharting/coding system. Wirth assesses
Pascal as a naturally reliable programming language [19]. Because the
process of developing floycharts is constrained in a manner that
parallels Pascal’s syntax, greater reliability can be initially
incorporated. Since the programmer selects constructs which will
simultaneously produce a flowchart picture and a block of code as in
figure 1-1, the resulting code should more accurately represent the
programmer’s intent. For example, consider the nesting of an if-then
construct within an if-then-else construct. Wirth pointed out that this
may be interpreted ambiguously as an if-then-if-then-else construct: to
which "if-then" does the final "else" belong [9]? The syntax of the
Pascal language requires that the word "then" be followed by a compound
statement instead of a statement. The ambiguity 1s demonstrated by
figure 1-2 which shows a structured representation of both
interpretations. The data structure handler would show the programmer
(via the flowchart display) which else-~segment was being filled in at
that time. Referring back to figure 1-1 (page 4), if "Block 2" were an
if-then construct, the pfogrammer would have to explicitly end the void

"else" segment before continuing with the outer else-segment.

1.5 Limitations
The flowcharting and coding system herein proposed is designed in a
manner that includes some limitations that should be evaluated by the

prospective user.

1.5.1 Familiarization with Pascal

This system will be most useful only to those programmers familiar

if A=B then if A=B then

1if C=D then I := 4§ if C=D then I := 4
else J := 5 elgse J := 5
J=Sif A=Band C#D §=51f A ¥ B

Figure 1-2: Ambiguity of an If-then-if-then-else Construct

with Pascal or other ALGOL-like computer languages. The data structure
handler calls for specific entries that correspond directly to the
syntax of Pascal or ALGOL, such as completing the Boolean condition to
be tested in an 1if-then-else statement. Although the interactive
development of flowcharts would be helpful to a FORTRAN programmer, the
source code output would be interspersed with invalid statements. It
should be noted, however, that the data system structure handler could

be easily modified to provide FORTRAN or other source language output.

1.5.2 System Resources Dependency

This system, as implemented, requires access to a Tektronix graphics
termin514 to develop flowcharts. Although 'the same abstractions in
flow-chart development and in source file translation could be

accompliched wusing standard 1line printer devices (11], =no such

development is attempted in this study.

Single-user access to a small computer with floppy-disk storage and

with at least 16K bytes of central storage is required by this system as

4

The Data Structure Handler, except for certain Pascal cite
implementation peculiarities, is device independent, but the graphics
handlers of chapter 4 relate only to the Tektronix terminal

i e e _ S _

POrarI

T

e+ ——

currently implemented. No discussion of generality or modifiability of

this demonstration system for other computer configurations is offered.

1.5.3 Limited Pascal Capabilities

Due to the complexity of the project, no attempt will be made to
develop a system that will allow all aspects of Pascal to be charted and
translated to source code. Several permissible Pascal constructs, such
as "repeat until", "with", and "goto", are not implemented because (1)
any system can be described without these additions and (2) their

inclusion would not materially contribute to the intent of this study.

10

0
o
B

- RO RIRTITYE b A AU SN 2%

e g

“RLTR s e E g

EIer=—yrarrren

Py e At s s o

2. Discussion of Related literature

The amount of literature relating to automation of flowcharts and
code is remarkably scarce. Although Lanzano proposed a system to
automate this process in 1970, no follow up development had been noticed
by 1974 when Dr Thomas E. Bell penned the forward to Lanzano’s paper
{11]. The same seems to be true for the remainder of the decade. The
automation of flowcharts by themselves 18 a frequent subject, but the
bridge between flowcharts and code seems to be relegated to the

programmer alone without automated assistance.

The following areas of discussion in the 1literature will be

presented in the following four sections:

a discussion of automated program documentation (section 2.1)

a discussion of automating the relationship between flowcharts
and code (section 2.2),

a discussion of the relationships of maintenance and
reliability of software systems to the total computer system
life cycle (section 2.3)

some specific background information concerning fundamentals
of flowchart representations of programs (section 2.4).
2.1 Available Products for Automating Program Documentation

The amount of material describing various support programs that
document code by producing flowcharts is impressive. Chapin has
compiled a description of the historical development of over 40 such
processors [4]. Most of these processors were developed for a specific

machine or computer language during the 1960°s.

Reifer and Trattner catalogued 70 different automated programmer
aids, one of uhich is "“Flowcharter’, a program used to show in detail

the logical structure of a computer program” [l14]. The authors describe

11

Cp Y chalge e SRR

BT Y S

T i

B .
L e ¥’

g i

IR e A S e o e S A

the use of such an aid as a product which represents program flow logic
and vhich can be compared against the original flowcharts designed to
represent the system. As examples of flowcharters, they offer AUTOFLOW
and FLOWGEN, which are relatively current commercial aids also

catalogued in Chapin.

2.2 The Relationship between Flowcharts and Code
Two main considerations of the relationship between flowcharts and
code are relevent to this thesis:

- Section 2.2.1 discusses the proposals by two senior
programmers/managers, Lanzano of TRW Systems and Davis of
Austin Development Center, to provide a tool that will
antomatically produce source code either from the flowchart or
from some other representation of the flow chart.

- Section 2.2.2 discusses tools that programmers employ to
synthesize their code into blocks or constructs.

2.2.1 Automating Flowcharts and Code

Lanzano, in her article referenced in chapter 1, proposed the
question which this research attempts to answer. In her discussion of
computer aided program development, she discusses a proposal to develop
"a system wherein the code and the final flow chart no longer appear as
[separate, iterative] steps in program development” ([11]. Utilizing
computer aided design techniques, a translator would interpret the
geometries of the flow chart into source language, i.e. rectangles into
arithmetic statements, hexagons into calls, diamonds into "if"
statements, etc. Her proposed system required many specific geometries
which were strongly coupled to FORTRAN, including specific symbols for
loops, format statements, declarative statements, subroutine calls,

comments and exits. Graphical output would be to either a graphics

terminal, utilizing line-drawing techniques, or to typewriter terminals,

12

-tilizing square brackets to enclose rectangles, "<" and ">" to enclose

diamonds, etc. Updating of the previous edition of the program be;ng
developed would be accomplished by optical scanning devices, or some
"alternative form of input would be made available". A capability would
be included to produce a source language output for a compiler, such as

punching a source deck.

Lanzano continued 1in this article to point out some projected
benefits of such a proposal. Diagnostics would alert the programmer
that some flowchart symbols remain unfilled. Type checking could be
performed on data as output statements are being prepared (a format
could appear as "TIME ####.###"). Program reliability would increase
because "pictorial representations are considerably less error prone
than word 1images". While analysts are normally required to "document
the program", a tedious and laborious task, the proposed system would
produce the desired documentation at any point in the development stage.
An 1{important result would be increased readability and reliability of

the program.

Another opinion ;bout automating flowcharts and code was presented
by Davis in his discussion about ANS Standard X3. 5-1970 flowcharting.
While the major emphasis of his letter concerns specific aspects of the
Standard, he discusses a flowchart he prepared on an incremental plotter
using the IRAFLO system he previously developed ([6]:

"That system allows creation and storage of flowchart
spacifications in symbolic form, so that they may be modified,

plotted, or even (in some hoped-for future) automatically
translated to source language.”

Davis further comments that "flowcharting is not dead ~- though it 1sa

certainly sleeping soundly"”, and he expresses delight in observing

renewed interest in using flowcharts.

2.2.2 Conceptualization Relation between Flowcharts and Code

This author has long held to a technique of conceptualization with
code that was assumed to be his own private practice. It involved
drawing lines around his code to reflect control flow. Loops could then
be easily identified by the scribbled-in 1lines, and goto’s and
subroutine returns were easier to identify. Although this practice was
followed most frequently with assembly language code 1in the debugging
stage, it was also common for this author to draw boxes around blocks in
ALGOL or Pascal to 1solate disjointed block structures. Such a practice
of drawing control flow may be rather common among programmers, as
ppinted out by Woodward, Hennell and Hedley [20].

"At some stage most Fortran programmers will probably have

laid out their program text in front of them and then proceeded

to draw arrowed lines on one side of the text indicating where a

Jump occurs from one line of text to another.... Such a time

honored procedure sowxetimes aids the programmer in following the

flow of control through the program."”
Although the intent of the authors was to develop a measure of control
flow complexity, their approach does point out a crutch that programmers
frequently reach for, namely, some means of collecting portions of code

into a synthesized module and sketching in control flow relations with

other modules.

Weiner [17]) has developed a method of documenting assembly language
code which further supports this contention. He proposes structuring the
comments field in a wmanner that follows the rules of structured

programming. The result 18 a column of assembly language code 1in

14

<,<-_.__. —.?_.___“____A
3 A) .

pavallel with a column of comments which resemble ALGOL’s structured
programming. This documentation method, similar to the method quoted
above, further implies that programmers are seeking a method of grouping
and relating their 1linear code. Although structured programming
accomplishes this grouping and relating to some extent, some programmers

apparently want more such help. direction.
2.3 Discussion Concerning Software Maintenance and Reliability

2.3.1 Software Maintenance

Boehm [3] presented an excellent discussion of software maintenance
in 1976. He pointed out that software maintenance, which contributed
less than 10% of the total hardware-software costs in the early 1950°'s,
increased to over 407 in the 1970°s - and he predicts it will exceed 602
by 1985. It is not clear exactly how one might explain this change in
proportionality: 1is it solely the gigantic decrease in the cost of
hardware components or is it the complexity of the software systems that
are being designed for extended use? Obviously, a blend of both is
responsible, but the overwhelming conclusion should be that software
maintenance should commanq a great deal of our attention in hardware and

software design.

The amount of money being spent on software in the Department of
Defense is staggering: $3 billion per year im 1975 [7]. If roughly
half of this outlay is for saftware maintenance, then much effort should
be directed toward providing tools for the software maintenance effort.
Such a tool might be the new programming language Ada which has been
developed to confront the currently defined problems in software

maintenance (and reliability) (1].

15

-

2.3.2 Reliability

Considerations of reliability are important in the development of
software systems. This investigation will demonstrate a system that
should significantly improve software reliability as a byproduct of the
graphical flowchart approach to program development. Wirth contends
that the programming language Pascal aids the programmer significantly
in the area of software reliability. Certain characteristics of the
language increase clarity, contribute ¢to transparent programming,
distinguish between "types" and "variables", and facilitate file usage.
He carefully distinguishes between "correctness" and "reliability". One
of the requirements for a programming language to be reliable is that it
"must rest on a foundation of simple, flexible, and neatly axiomatized
features, comprising the basic structuring techniques of data and

program" [19].

The claim for increased reliability of the proposed system is not
attributable to Pascal alone. Rather, the process of generating
flowcharts and refining them to the language statement level should
increase reliability because of the requirement to employ top-down
structured programming and stepwise refinement at every step of the

develbpment process.
2.4 Some Fundamental Concepts in Flowcharting

2.4.1 Two-Dimensional Grammers

Jackson has proposed a structured programming language utilizing
two~dimensional grammers [8]. The graphical portion of this language
has been used for several years at Oakland University. He points out

that despite the appearance of two-dimensionality in structured

16

sl

approaches to current languages, the code is still one-~dimensional: the
indentation provides only a superficial added dimension. Jackson
proposes a language comprised of the three constructs 1llustrated in
figure 2-1 and a pattern recognition process that scans the figures for

syntactical evaluation.

a. Sequence Block

Logical Expression

b. If-then-else Block

Logical Expression

cs While-do Block

i ‘E.- i

Figure 2-1: Jackson’s Basic Control Structures

Figure 2-2 shows a sample of Jackson’s two-dimensional language and an

ALGOL~11ke equivalent of the same program.

2.,4.2 Limiting the Use of Constructs
In Jackson’s proposal, only three constructs are used - sequence,

17

S S oA T TR

i

READ A BEGIN

J=0 READ A;

L H

a < 65 IF A < 65 THEN
ELSE

.a > 27 WHILE A>27 DO
BEGIN
A=A-4 A= A -4
J=J4+1 J = J 41
END;

WRITE A, J WRITE A,J:

END.

Two-Dimension Sample Program ALGOL-1like Equivalent

Figure 2-2: Sample Program Reprasentations

if-then-else, and while-do (figure 2-1). In the proposal of this
iavestigation, fouf will be used: Jackson’s three, plus a case
construct. Although programmers accustomed to the variety and power of
current higher-order languages may rely on other constructs, this set is
sufficient to represent an alogrithm or any degree of complexity.
Actually, fewer than these are needed in a minimum sufficient set of
constructs. A proof has been offered by Ashcroft and Manna that
establishes that any algorithm can be restructured to an equivalent
algorithm utilizing two constructs: an assignment statement and a while

statement [2].

2.4.3 A Structured Flowcharting Convention

A very simple and useful flowcharting convention was developed by
Professors Oldehoeft and Roman at Arizona State University [13}. The
convention provides a technique of structufing the flowchart in a manner

that parallels the recommended programming structure. The structuring

18

of the flowchart is accomplished by disallowing any goto facility and by
providing three basic flowchart comstructs, shown in figures 3-1, 3-2,
and 3-3. This convention was required for use 1in all programming
courses as an aid in teaching program structure prior to developing code
in any language. As a student, this author experienced enormous gains
in program correctness and debugging ease at the expense of a few days

of frustrations with the flowcharting restrictions.

The next chapter discusses the approach used to generate these
structured flowchart constructs, group them into a meaningful program
representation according to the programmer’s selections, and control the

output of flowcharts and source code.

19

e

3. The Automatic Generation of Flow Charts and Source Code

Chapters 1 and 2 discussed the motivation for this study and
summarized some of the observations and proposals presented 1in the
literature. Having noted the lack of automated tools for flowcharting
and producing the related code, an effort is made 1in this study to
create such a software system. This chapter includes a discussion of
the accomplishments toward the overall objective, along with the

accomplishments that were intended but due to time limitations can now

only be proposed for further study.

3.1 The PDP/Tektronix Graphics System

In order to demonstrate interactive flowchart development as a
system design tool, an 1initial selection of computer and peripheral
systems had to be made. For reasons of accessibility, the PDP-11/10,
along with the Tektronix 4014, was chosen.5 Both devices were readily
available in the Digital FEngineering Laboratory of AFIT, although
software support (such as handler programs for the graphics terminal)

was limited. 1In order to facilitate development work involving the

graphics terminal, a series of handler programs had to be written.

3.1.1 Documentation of the Graphics Handler Routines

The handler routines were developed to provide simple line drawing
and figure management modules that could be easily accessed by the
data-structure handler described 1in section 3.2 below. Chapter 4

includes a separate report on the graphics system development which

5
In retrospect, this was a poor choice, predicated on an assumption

that UDSC Pascal would be operational on the PDP-11. See section 5.4.2
for recommended device choices for further studies.

20

began as a separate introductory course and was then expanded for this

investigation.

3.1.2 Stored Flowchart Figures

The graphics system that evolved from the Tektronix handler programs
allows creating, storing and retrieving graphical figures using the
floppy disk for auxiliary storage. The three flowchart construct types
il1lustrated in figures 3-1, 3-2, and 3-3 were generated and stored on
floppy disk for use by the data structure handler described in section
3.2, For a discussion of why these three constructs were chosen, see

section 2.4.2.

v no
Is testl true? if testl true then
‘yes begin
(Blockl);
Blockl end
T_—‘ else
begin
Block2 (Block2);
__* end;
Flowchart representation Pascal representation

Figure 3-1: The If-then~else Construct

3.2 The Data Structure Handler

The function of the data structure handler is to monitor the system
development with the aim of collecting all of the programmer’s
selections into flowcharts or Pascal source code. The data structure
handler controls the process of presenting menus to the designer,
regulates the flowchart symbols, maintains a linked 1list of the
designer’s choices (see figure 3-5), and manages transfers of 1linked

21

.

oy gz endn & o ke s am

2 e g e e e

U VU S

- - o

no
Is test2 true? —

‘?es

procedurel
_—3

—

Flowchart representation

While test2 do
begin

procedurel
end;

Pascal representation

I

Figure 3-2: The Do-while Construct

RN

|=a
procl

~—PIf b
proc2

— e
procl

Flowchart representation

case char of
a: procl;
b: proc2;
¢: proc3;
end; |

Pascal representation

e s T

Figure 3-3: The Case Construct

lists to and from disk storage. The data storage representation will be
2
discussed next, with a functional explanation in section 3.2.2 of the \

options available to the system user. §

3.2.1 Data Storage Representation
In the data storage representation, a "record" is a unit made up of
the four elements shown in figure 3-4. These elements correspond to the

description of the components of "logrec" defined in appendix C.

Bach of these records

e =~y

is 1linked together with the previous and

22

Code e “\\ Link to next
e W Y f ' g record
\ o -~ “\‘\‘_4"
(?rogram Fo;‘\
\ [

— ”
- - - -

Link to 7 \ Text
{
previous (S K‘(__—-

record w —L

Figure 3-4: A Data Record in the Data Structure

following record as illustrated in figure 3-5. This figure also shows a

sample program described by representative codes and statements.

READ | H B[v e E [eHd

_.| Program Begin A>B End

Foo " aeae
_ I

Figure 3-5: Organization of the Data Records

Figure 3-5 shows several records containing links, codes and texts.
The codes are precisely tﬁe options that may be selected during the
development process discussed in section 3.2.2. "Text" fields are those
entries solicited from the wuser or those entries which can be
automatically provided by the system. Table 3-0 1ists, for each
possible type of entry, the code associated with the entry, the text
field (either the programmer’s input or the system’s automatic entries),

and the formatting done prior to providing source output.

23

BRI R, Tt i o

|)

Table 3-1: Storage and Output Representations of Entry Types

TYPE OF ENTRY CODE | TEXT FIELD OUTPUT (note 1)
Heading H <input> <input>
Statement S <input> <input>
Constant c <input> <input>
Type T <input> <input>
Variable v <input> <input>
Block B "Begin" "Begin"
If-then-else I <input> <input>

(note 2) L "Else" "Else"
While-Do W <input> "While <input> do"
Case c <input> "Case <input> of"
Case list element | : <input> " <input>’:"
End E "End" "End"

1. Trailing semicolon added when appropriate.

2., If-then-else results in two separate data records.
3.2.2 Explanation of the Handler’s Commands

The data structure handler was designed to be totally self

documenting. Therefore, ag any time the designer is prompted for input,
the data structure handler provides a menu of the options that are
allowed at that point. The menu is displayed by typing "?". At the
highest level (the executive or entry level) the following options are

displayed.

1. Create a new system description.

2., Get a system description from disk storage.
3. Edit old system description.

4. Save the current description on disk storage.
5. Produce Pascal source output.

6. Produce flowchart drawing.

7. Exit - return to monitor.

24

Each of these choices will be expanded in the following paragraphs.
Expansions beyond this next level are not included in this report due to
the extent of laborious detail. Interested readers can find a
representation of calling priorities and module relationships in the
structured design offered in appendix A or in the flowcharts included in

appendix B. Additionally, the code is included in appendix C.

3.2.2.1 Creating a New System Description

This option allows the programmer to begin designing his system
"from scratch". It assumes nothing is pre-established -~ similar to the
programmer looking at a blank coding form. The options allowed at this

point (again, available to the programmer by typing "?") include:

- Heading

- Block

Constant definition

Type definition

Variable declaration

= Statement

The "block" option has its own menu and includes options to select any
of the three flowchart constructs (if-then-else, do-while, and case)
depicted in figures 3-1 through 3-3. In turn, each of the three
constructs allows for termination of the construct or recursively
selecting either another "block” or any of the other three constructs.
For a more complete illustration of the options and a representation of

.

their relative calling hierarchy, see appendix A.

With the capabilities thus far described, a designer could generate
a Pascal program of any degree of sophistication. Although certain

25

TRy

ia A I Qo LA . A L

Pascal features were not implemented into specific constructs (see
section 1.5.3), all others can be directly implemented with these
options along with the "statement" option which allows straight
(unmodified) insertion of text. More specifically, comment lines,
labels, and even goto’s can be introduced into the system. However, by
inserting goto’s or other structures by using the "statement" option,
the code wi]ll appear without 1its associated control flow in the

flowchart representation.

3.2.2.2 Getting a System Description from Disk

The‘second option listed in the preliminary menu 1is to recall a
system that was previously developed and then stored on disk. By
selecting this option, the designer will recall the file defined during
the system load process for the DEC-~10 system (the user defines INPUT
and OUTPUT prior to executicn) or the file defined by the RESET command
for the LSI-11 system. The content of the file would include the second
and third columns of table 3-0 for each entry previously selected and
each selection (record) would be linked to the previous and next record
as they are read in. See figure 3-5 for a representation of the data

and linkages.

3.2.2.3 Editing the System Description

Once a previous system description is recalled from disk, or at some
time during the initial creation stage, editing may be performed on the
current data structure. Several editing options have been included to
allow altering specific records in the data structure. The following

record-oriented editing commands are available.

- Insert

26

et ——————

Pl 1o 2l

8

BT I ICINS AeP s

e

= Delete

Append

Replace

Backup

3.2.2.4 Saving the Descripéion on Disk

When the deéigner has completed creating and editing a system
description, he/she can select the option to save the data structure on
disk. As was the case with getting a description from disk, the only
file option for saving must be the file defined in response to the
system’s "OUTPUT" query at load time (DEC-10), or the file defined by

the REWRITE command (LSI-11).

3.2.2.5 Producing Pascal Source Output

This option allows the system to produce compiler-ready source code
from the system described in the data structure. For the demonstration
purposes of this study, the output is directed to the terminal rather
than another disk file. When this option is chosen, indenting is
automatically provided and punctuation (semicolons and periods) are
properly inserted. The proper Pascal reserved words are inserted in

their places within each of the three constructs.

3.2.2.6 Producing Flowchart Drawings
This option was not developed, but was included as a stub for later

expansion.

3.2.2.7 Exiting the Handler Routine
By selecting this option, return to the system monitor is provided.
No checking is done for saving files, thus "save" needs to be considered

prior to exiting.

27

™

PN

4. The PDP-11/Tektronix Graph Drawing System

This chapter discusses the basic graphics handler routines and
figure wmanagement modules that were developed to provide easier
utilization of the graphics terminal for this investigation and other
laboratory uses. The data structure handler, discussed in section 3.2,
can be augmented to utilize these modules for displaying the flowchart
figures. The remainder of this chapter was originally written and

submitted as a separate laboratory study.

4.1 Introduction

The objective of this software project was to develop a set of
software modules that would facilitate creating graphical figures in the
AFIT Microprocessor Laboratory. The driving commands required by the
graphic terminal had to be interfaced with an understandable set of user
instructions; manipulating tools had to be made available so that the
user could alter the configuration of his graphical creation; and a
capability had to be added that would allow the user to store his newly
created figure on floppy disk and to recall the figure from the disk for

display or alteration.

4.2 Equipment
The minicomputer used for this project was the PDP-11 model 10, with

a Tektronix model 4014 graphics display terminal.

4.3 Running the graph system
The system is initiated by 1loading the floppy disk (laboratory
control #65-22) in disk drive #0 and typing "RUN GRAPH". The terminal

will immediately list the options itemized in 4.4 below.

28

4.4 Tunctional description of the system

The graphic system is mostly self-documenting, i.e. help is provided
via either an executive command menu or a draw command menu. The
executive menu describes which functions of the graph system may be
activated; the draw command menu explains each draw command allowed in
the "draw”" mode. Upon entering the system six options, each of which

will be expanded in the following paragraphs, are displayed.

l. Draw

2. Retrieve from disk and initialize
3. Retrieve from disk and append

4. Store present figure on disk

5. Help with draw command options

6. Exit nicely

4.4.1 Draw a new figure

Upon choosing option 1, the computer forces the terminal into an
initialization sequence which erases the screen, rings a bell, and
readies the terminal for graphical imput. Two cross-hairs appear. The
intersection defines an xy-pair to which a vector is drawn after typing
in the appropriate character. The valid characters that may be used to
draw pictures, or to alter them (itemized by selecting option 5) are the

follo"ing .

4.4.1.1 Vector Drawing Commands

29

Insert alpha string (terminate string with
"Esc")

Move curser to new cross-ha;r position (XHP)
Draw a point at new XHP

Draw a solid line to new XHP

Draw a dotted line to new XHP

Draw a dashed line to new XHP

Back up to previous vector

Quit drawing - mark end of picture table in
core

4.4.1.2 Figure Handling Commands

Q

Back up to previous vector

Redraw picture from present core table pointer
to quit entry

Step one vector (redraw, but draw one vector at
a time)

Translate geometrically to new XHP (all
remaining vectors) - requires striking a second
character after cross-hairs are positioned as
desired.

Quit - mark end of table - exit draw mode

4.4.2 Draw from disk file

By selecting option 2, the computer will search for a file with the

device, name, and extension provided by the user.

and line types (see table 4-1) will then be copied from disk into

at the address of "TBLE" in the main program, overwriting any previous

information stored there.

4.4.3 Append from disk file

Option 3 performs the same function as option 2, but the new figure

30

Cad, PO TR T |

The table of xy-pairs

Table 4-1: Format of Data Table Description

Location in "TBLE" Contents

WORD X(0) VALUE

WORD Y(0) VALUE

WORD MODE (0)

X(1) VALUE

Y(1) VALUE

MODE (1)

X(n) VALUE

Y(n) VALUE

MODE (n)

X(n+l) VALUE

Y(n+l) VALUE

4 (quit)

from disk is appended onto t*~ one already in core. The previous "quit”

mark is overwritten with the first move or draw of the disk figure.

4.4.4 Store on disk file

By selecting option 4, the table of xy-pairs and the line types
corresponding to the figure which has been created thus far will be .
stored on the specified disk according to the file name specified by the

user. Previous information in that table will be destroyed.

4.4.5 Explain "DRAW" commands

If option 5 is selected, a menu of all available draw commands is
displayed with a terse explanation of what they accomplish. The user is
then asked if he/she wants more information. If the reply is yes, the

program asks which command is to be clarified. The system then

elaborates on this command.

4.4.6 Exit graph system

Option 6 allows for the orderly termination of the program and for

returning control to the system monitor.

4.5 System design notes

The detailed assembly language code is included as appendix F. Some
user hints and recomiendations for use of the system - and for system
enhancements for the enterprising reader - are included in appendix G.

The structure diagram of the graph system is included in appendix D.

The flowcharts are in appendix E.

- 446 File control

Figure 4-2 contains a summary of the location of source, relocatable
(object), and executable files relevant to the development of this
system. For the DECIO system, files may be found under

programmer/project number [6664,146].

4.7 Acknowledgement

Most of the modules to control graphic terminal states and vector .

drawing were contributed by Professor Ross. Professor Hartrum provided
the subroutine to pack file names {in radix-~50 format and to handle

information exchange between the disks and core.

|
|

Table 4-2: File Control List

FILE CONTENT NAME DISK
Source Program . GRAPH.MAC 65-24

MSGS .MAC 65~24

TOMLIB.MAC 65-24
Source backup, version n GRn .MAC 65-22
Compiled Object Code GRAPH.0BJ 65-24
Executable Code GRAPH. SAV 65-22
Available Pictures filnam.PIX 65-23
Documentation for Upgrading HINTS.MSS DEC10
Text for this lab report LABDOC .MSS DEC10

4.8 Critique

Several not-so-difficult modifications would greatly enhance the
capability of this system. These changes are outlined 1in appendix G.
With these changes the system would very nicely‘handle such jobs as

electronic circuit design or flowcharting.

This system is severely limited by not having the capability to

- produce hard coples of the graphic drawings. Priority should be given

to acquiring a hard copy device to print coples of the graphic display’s

output.

The shared printer is difficult to use. The procedure of unplugging
the cable connected to the other lab devices and plugging in the correct
one is time consuming and the cable is difficult to reach. The cable’s
plug 1s subject to damage when it is pulled from the printer because it
is so difficult to access. Recommend a box be constructed that will

allow dial-type switching among computers connected to the line printer.

R, 298

Se Results and Recommendations

In the previous two chapters, the software systems were described
that managed the data structure (chapter 3) and provided an interface to
the graphics terminal (chapter 4). This chapter will present a critique
of some of the detailed accomplishments and recommendations for further

development of the overall system.

5.1 Overall accomplishment

The systems discussed in chapter 4 demonstrate that a system design
tool could be developed that would allow creating Pascal programs by
successively refining flowcharts. Although the proposed system was not
developed enough to perform an actual demonstration, sufficient progress
was made to point to the structure and content of such a system and to

encourage continued development of the system in a follow-on study.

5.2 The Graphic Handlers

The handler routines for the PDP-11/Tektronix 4014 system were
described in chapter 4 and are included as appendix F. These routines
provide a good facility for drawing flowcharts and for storing,
recalling and modifying these flowcharts.6)
5.2.1 Critique

A detailed critique of the graphic handlers is presented in sectiom

4.8 and appendix G.

6

Although the handlers were designed primarily to produce flowcharts,
they also perform the same operations for any graphical figure, manually
or automatically drawn (drawn with the output of a separate computing
routine.

34

|
|
I
!
|
i
i

5.2.2 Recommendations

The structure of the handler programs, as can be verified by
7
studying the structure charts in appendix D, is awkward. Three people
contributed to the final product, each with slightly different
intentions. The handler routines should be revised 1if any of the
following applies:

- Pascal is implemented on the PDP-11 (the redesign to implement
graphic control using handlers written in Pascal would be
extremely simple and flexible)

- The graphic handlers are transported to another device, such
as the DEC 10 (the modifications needed for the new system
might approach the -effort required to redesign and rewrite)

- Considerably more modifications of the graphic handlers are
anticipated.

Additional recommendations pertaining to the graphics handlers are

included in appendix G.

5.3 The Data Structure System

The data structure handlers (chapter 3 and appendix C) provide a
simple interface between the programmer/designer and the design system.
The interface provides a medium in {its data structure to describe the
system created by the programmer/designer; stores, retrieves, and
manages modification of this description; and produces from the data

structure description a compiler-ready source code listing.

7

These structure charts were constructed according to the guide lines
of Constantine and Yourdan who also explain methods of analysing
structure to detect poor design [5].

35

-y —

o

5.3.1 Critique

The data structure handler was designed much more carefully than the
graphics handlers and should be simple to increase capabilities or alter

present features.

The system provides ; chain of prompt messages that gives the
programmer a history of where he has been in his design process. For
instance, 1f a programmer selects the options "create", "block", and
"while-do", the next prompt will be "CreBlkWdo>", thus confirming that
the programmer is building the "while-do" construct. If one of the

choices in the while~do -construct is an if-then-else statement, the next

prompt will be "CreBlkWdoIte". Although this capability was originally

added as an aid in designing the data structure handler, it has proved
to be a valuable tool for reminding the programmer where he is in the

design procéss.

Each statement that 1s to be entered within a construct must be
called for by selecting the "s" option. This action is easy to forget.
When the system expects an option entry, it has frequently read the text
of the entry instead, thus errors or inconveniences are frequently
introduced. The option is not absolutely essential in the design of the
system, but the only alternative would be a complex parsing system to
identify each construct. The choice was therefore made to use option
characters and suffer the trade~off requirements of patience and extra

editing .

The editor provides only 1limited capabilities to change the data
file. Changes can only be made one line at a time. Since programmers

frequently delete or add entire blocks or constructs, the capabilities

36

-

of the editor do not closely match the needs of the user.

5.3.2 Recommendations

The moét immediate - and simple - alteration would be to allow for
mass addition or deletion of blocks or constructs of code within the
editor. This might be accomplished by differentiating between upper and

lower case options for construct vs. line changes.

More comrlex changes could be made to develop a useful Pascal
preprocessing capability. The system could detgct unmatched "begin" and
"end" statements (although it would be nearly impossible for such a
situation to result when using the data structure handler).
Additionally, the system could perform scanning to determine wundeclared

variables prior to submitting the code to the compiler.

5.4 Recommendations for Further Development
While the previous paragraphs discuss relatively simple changes to
the data structure handler only, the following recommendations pertain

to further development of the flowchart generating system as a whole.

S5.4.1 Combining the Graphics and Data Structure Handlers

Ip order to adequately demonstrate a design tool that could generate
flowcharts and source code, the Data Structure Handler must be able to
manage the graphics system. This capability was included in the design
via modules that would allow external programs to call the graphic
handlers and perform drawing of an externally stored data structure
(modules FRDAW AND MDRAW). This was not completed in this investigation
due to the limitation of time and several erroneous assumptions. Some

of these assumptions were

37

—_— ¥4 G b e

e pyay

e

= Pascal would be available on the PDP=11 system during the
development of this investigation

= The investigator’s method of dual backups of critical files
would be sufficient to withstand any reasonable attack by the
operating system
= If the PDP-11 would not suffice for the project, the software
could be transported to the LSI-11 or the DEC-10 with relative
ease. .
Because of these errors, the two handler systems were never implemented

on the same computer. The graphics handlers were completed on the

PDP-11 while the data structure handler was completed on the DEC-10.

Thus, to further study the usefulness of the proposed system, both
handlers must be implemented on one system. Appropriate calls from with
fhe data structure handler should perform the drawing of the selected
constructs. With a terminal with S large display, the interactive
exchanges between the program and the programmer can be shown on one
side of the screen, while the flowchart can be constructed automatically
on the other. For smaller display devices, the flowchart may be

postponed until the user opts to draw.

The nesting of flowcharts might best be managed by using a naming
convention similar to the Structured Analysis and Design Technique [15].
When space limitation on the screen would prevent displaying the current
construct, this construct would be represented in the embedding
flowchart as a block reference. Block reference names, such as Al-S5,
would identify flowchart-5 (a block or construct) as a subunit or

descendant of Al.

S.4.2 Chosing a New Host System

Among the systems that were available for this investigation, the

38

following substantiated choices are recommended in the order listed.

= DEC~-10 (AF Avionics Laboratory) with DECGRAPHIC1l or other
graphic system

* All software included in this investigation is catalogued
on this system

* Pagscal 18 well documented and supported
* A cross-assembler, MACYll, 1s available for RT=-l1
modules.]

- LSI-11 with Tektronix 4014 terminal

* Although this system may be reserved for projects
requiring embedded systems, this would be the next best 1
choice E

* UCSD Pascal is not as well implemented as on the DEC-10

* A Separate version of the data structure handler was
developed for the LSI-11 and is available on floppy disk
number 34-64

* Line ©printer capabilities on this system are very
limited.

= PDP-11 with Tektronix 4014 terminal
* This is not a reasonable alternative 1if Pascal 1is not
implemented on the PDP-11

* Neither <version of the data structure handler 1is
available for this system.

P I

S.4.3 Adding a Debug Capability

This investigator believes that a great potential may exist in the
form of a debug processor built around the flowcharting system. If a
programmer designs his system using successively refined flowcharts and
compiles the output code of the same system, it would be extremely

helpful for him to be able to follow the execution of his program

39

j
E

directly on the flow charts. A similar capability exists today on many
computer systems, utilizing control facilities of a "trace" processor.
The trace processor maintains a list of which variables the programmer
wants dumped or which modules traced and allows execution of the program
to continue to a recognizable place in the code (i.e. a specific 1line
number). In a similar manner, execution of the program could be allowed
up to a certain block or construct, and the programmer could follow
highlighting traces of the program’s progress. If an incorrect branch
is taken, the programmer could immediately spot where it occurred and
what logic error caused it. Control variables or Boolean operators
could be changed to test the correction. An option within the debug
processor could call for all test changes to be applied to the 1input
data structure, thus updating the flowcharts and the source input code

to match the debug-tested version.

5.5 Recommended Evaluation

The proof of any claim of usefulness of this software design tool
lies in a thorough evaluation. A separate investigation, when the above
enhancements are complete, should be made with an organization which
produces a large volume of Pascal (or ALGOL). Such a study should be
aimed at the general features of software engineering referred to in

this investigation, 1i.e., structure, reliability, and software

maintenance.

5.6 Summary of Results and Recommendations

The concept of developing detailed software by stepwise refinement
of flowcharts is feasible and attainable even though the results of the
work put 4into this investigation does not clearly demonstrate it. A
follow=on thesis should advance the development of this investigation as

40

P

e

i

et

a

IR A0S % 2 I T A

EIEr =y

ey e

F outlined above. At the completion of this development, the system

should be thoroughly evaluated to assess 1its effect on software

i structure, reliability, and maintainability.

R e o o Mo e e

*a

RPRIPRIAING y 46 4 0 8. . vk

J—

RTINS PRI

£ A e ey

41

i .

AN 5, HED AT DI DD ol Mo 161 LKAt (i o i L

ch

NIWILVEYD @ @

QUM VHT

ATIJHAVS
€00 LaH

NN OTXH

/4

\ o~

omxd

JeTpurq 21n32nI3§ wIVQ 94yl jo uBysIq peanidnilg °y xjpuaddy

R - T ettt e g . e e e —— A P Ko WY A = -y AL e A~ WA B g e e N Y e ~ _ e

WILILSIT

e

JO-IXL-ES VD

0Q-1XL-UITHM

NEHL-LXL-dT

PLAR]

LXLLOJ

SANTTXIA

1]

WALILSTTLIED

ASYOLED

HTIHMLED

N\

NNIWAD0TE

J0HESVD

i

LXLLED

s

/o

JSTANTHILI I

INEWILVLS

NEHLX 3 T 19x3
L THN gvLu0Ed gVLIUONI SLTHN
m
|
I
1,,34X%,, d03x3dSYD OTIX3ITTIHM X3 X3 :
CARE] CARRT) ALIYM INAANT HLIUM @ :
H aNI tON .
L
: D 1 I [} | q AA‘LH'S
<\ %
HA0DLNA

€400

1 kb i

17

N Jd0 HIN

dMiDvH

oddz

OMLIOLSYIA ENOJOLSYTIA LVLYISNI TVWHONLUISN T

4

OHYLEASNT

OREOVIITY Eﬂﬁ Eﬁmwa

HOVIdAY

aNEdd Y ALETIA LUISN T NNIWLIGH

LaH

Appendix B. Flowcharts of the Data Structure Handler

Stgrt
: n
tz QuitExec=0?
i ExecMenu
1 =C
CreateNew
t =G
GetFile
.-S
SaveFile
S
=F
Edit01d
ap
PutCode
=D
DrawFC
X
— — =
QuitEﬁec =]
elit
PutTxt

p~.code = opt
p~.txt = txtin

return

47

CreatNew

QuitCre = 0

n

Y
QuitCre = 0?
y

tracer(’Cre")

AN

—

CreateMenu

Statement

=?

| =S,C,V,H,K

48

R R T

i~

EditOld

QuitEdit = 0

n

y

tracer(’Edt’)

EditMenu
——
t I

Delete

Insert

"

Append

FindP

| Replace

—
Replace

QuitEdit = 1

r—

QuitEdit = 0? —]

..P

=B

T W Ty

return

Delete
FindP

n
p < nil?—

Depart
eLs

49

% Gy e v
' L4

i

Ingert

Print "insert before"
FindpP
GetTxt
Insert

¢

return

Append

P = head

L.

p~.next <> nil ?

Iy

P = p~.next

oldp=p~.prev
CreateNew

return

Enter

oldp = p
new(p)
p~.code = opt
p_.text = txt
p~.next = nil
p~.prev = oldp

Lo

oldp = nil ? —
1y

head = p

oldp~.next = p

oldp = p

return

50

Depart

n
(p~.prev = nil) AND (p~.next = nil) ? —n

Oldp s (0
head = nil
p = nil

¢ 1
(p”.prev = nil) AND (p~.next <> nil) ? ——

oldp = nil
p .next”.prev = nil
head = p~.next
p = p~.next

J

u

p~.next <> nil ?
y

oldp~.next = p~.next
p .next”.prev = oldp
P = o%dp‘.next

oldp‘.ﬂéxt = nil
p = oldp
oldp = p~.prev

\ g

return

Replace
n

p <> nil 72—

GetTxt
PutTxt

Return

51

Ty

Insert

QR e -

new(p)
n

5 oldp <> nil 72—

| p~enext = oldp~.next
' p~e.prev = oldp E
oldp~.next = p ;

p~.next".prev = p

head” .'prev = p

p " .next = head

p~.prev = nil E
head = p

" PutTxt

&l g

Return

T e RS,

If-Then-Else

tracer(’Ite’)
write " 1f’ test:"
read txtin
enter
opt = ‘b’
write "“then’ block"
block
opt = ‘b’
write "‘else’ block"
block

T P e—"

return

WhileDo

= tracer(°Wdo)
\ write "‘while’ text:"
{ read txtin
= enter
- Opt - lw'
‘ write "while-do block:"
| opt = ‘b’
block

N T ML AW S 5 T TP T TR BTN T, O PPN

return

52

CListBlock

Write "Case label 1list"
read txtin:i (*count chars%*)

Vo

1i>07?

J

LA 4

opt = ¢
enter

CreateNew

ClistBlock

ke

return

CaseOf

Tracer(’Cas’)
write "case expresseion:"
read txtin
enter
CListBlock

return

53

i A

Ty

Bt B P, VL L

-

.

PutCode

tab = 0
p = head

d

n
p <> nil ?

y

r
tab = tab + 1
indent
write(p~.txt)

f
indent

write("while ",p~.txt," do")

I
indent
write ("if ",p.“.txt," then")

=i

1ndg;t
write (txt)

indLnt
write("case ",txt," of")

indLnt
write("'"’.txt,"' : ll)

indLnt
n

p“.next‘.%de <1 ?——]

write(pa.txt"l;")

write(g“.txt)

=C

=g,h,t,v,k

n

p~.next [nil ?

write(txt,";")

—
writeitxt,".")

tab = tab - 1
"

\
return

s

PN

Appendix C. Listing of the DEC-10 Data Structure Handler Program

Program DataStructureHandler(Input,Output);

const linelength = 40;
type link = “logrec;
str = packed array (l..linelength] of char;
prompt = packed array [l..3] of char;
logrec = record
code : char;
txt str;
prev : link;
next ¢ link
end;
head, p, oldp : link;
txtin strs
opt char;
1,k,quitExec integer;
tracer : array [l..15] of
nextpr : prompt;
Exc,Cre,Blk,
Ite,Wdo,Cas,
Edt,Rpl,Sav,Get : prompt;

procedure intro;
begin

writeln(tty,’ <<« DSH >>>‘);
writeln(tty,’ Data Structure Handler’);
writeln(tty,’’);
wvriteln(tty,’For a menu, type "?" after the prompt '">"’);
writeln(tty,’’);
' (*%)
(* Set up prompt equates *)
(**)
t= “Exc’ Cre Blk Ite
t= ‘Wdo’ Cas Edt Rpl
s= “Sav’ Get

procedure CreateMenu;

begin
writeln(tty,’ [H) Heading (K] Constant definition’);
writeln(tty,’ [B] Block [T] Type definition’);
writeln(tty,’[S] Statement (V] Variable declaration’);
writeln(tty,’ [X] exit to Exec’);
end;
procedure ExecMenu;]
begin F

writeln(tty,’ [C] Create new system description.’);
writeln(tty,’ [G]) Get a system description from device.’);
writeln(tty,” [E] Edit old system description.’);
writeln(tty,’ [S] Save the current description on device.’); E
writeln(tty,’ [P] Produce Pascal source output.’);
writeln(tty,’ [F] Produce flowchart drawing.’);
writeln(tty,’[X] Exit - return to monitor.”);

end; ¥
:
procedure EditMenu;

begin :

writeln(tty,’ [D] Delete a record [A] Append to list’);

writeln(tty,’[I] Insert a record [R] Replace a record’);

writeln(tty,’ [E] Erase previous record [X] Exit Edit0ld’);

end;

procedure BlockMenu;

begin

writeln(tty,’ (1] If-then-else construct [S] Statement’);

writeln(tty,’ [W] While~Do construct [C] Case construct’);

writeln(tty,’ [B] Back up one record (E] End of Block’);
i end; ﬁ
! {
: procedure TypeMenu; H
: begin 3
! writeln(tty,’ [V] Variable Declaration [C] Constant’); ;
1 writeln(tty,’ [T] Type definition [S] Statement’); '

writeln(tty,” [E] End Type block’);

end; 3

57

LTRSS LT ERy

procedure
begin

(**)

(* Solicit and read text ¥*)
(*%)

GetTxt;

writeln(tty, text:’);
readln(tty);
read(tty,txtin:i)

end;

(* Load

procedure
begin
p_.code
p .txt
end;

(%%)

opt and txtin into their pointer file positions %)
(**)

PutTxt;

= opt;
t= txting

ey

e oot

ST RO TR St ST

v SRR E

(*%)

(* Read one char - assign it to “opt’ *)

(**)
function GetOpt: char;
begin I 4
' readln(tty);
read(tty,opt);
{ getopt :=opt
end;
]
' (**) :
: (* walk through the list until the desired record is found*)

(* return p=nil 1f end of list*)

(*%)
procedure FindP;
var ans : char;
begin

ans := ‘n’; .
p := head; 'y
vhile (p<> nil) and ((ans = ‘n’) or (ans = * ’)) do !
begin
writeln(tty,p~.code,’ ‘,p~.txt,’ ...is this 1it? (y/n]’);
readln(tty);
read(tty,ans);
_ if ans <> ‘y’
: end;
if p <> nil then
oldp := p~.prev
else writeln(tty,’end of list found’);
‘ end;

then p := p~.next

(**)
(* Appends incoming text string (a prompt) to prompt vector *)
(* and puts prompt vector into I/O Buffer *)
_ (*%)
Procedure PutTracer(nextpr : prompt);
var j : integer;
begin
k =k +1;
tracer{k] := nextpr;
J =1
vhile § <= k do
begin
write(tty,tracer(j]);
Ji=J 4+ 1
' end;
writeln(tty,’>");
end;

39

(*Calls

procedure

begin
oldp
new(p);
PutTxt;
p~.next
p~.prev
if oldp

(%)
PutTxt, gets new pointer, fixes prev & next linkages *)
(**)

enter;

= p;

(*point to new record*)

:= nil;

s= oldp;

= nil then
head := p

else oldp~.next := p;

end;

ptocedute

begin

(**%)
(* Strikes a linked record from the file %)
(**)
depart;

if (p~.prevenil) and (p~.next=nil) then

begin (* case only one record exists ¥)
oldp := nil;
head := nil;

p := nil
end
else if (p~.prev=nil) and (p~.next<>nil) then
begin (* two records exist; delete lst #)
oldp := nil;
p~e.next”.prev := nil;
head := p~.next;
p := p~e.next
end
else 1f p~.next <> nil then (*implied p~.prev<>nil*)
begin (* comfortably in the middle ¥%)
oldp~.next := p~.next;
p~.next~.prev := oldp;
p := oldp~.next
end
else
begin (* last record in list%*)
oldp”.next := nil;
p ¢= oldp; ‘
oldp := p~.prev
end
end;
procedure Insert;
begin
new(p);
1f oldp <> nil then
begin (* normal insert in list *)

!

p~.next := oldp“.next;
p eprev := oldp;

60

-

!
£
é

i

PutTxt;
end;

procedure

begin
if p <

oldp~.next := p;
p_.next”.prev t= p
end

begin
head™.prev
p~.next :=
p .prev :=
head := p
end;

replace;

nil then

begin
PutTracer(Rpl);
p~.code := getopt;
GetTxt;

PutTxt;

k = k-1;

end;

(* p points to first list elt

revise option entry*)

procedure Statement;

begin
i GetTxt;
: enter;
f end;
i
: procedure CreateNew; forward;
procedure Block; forward;
' procedure If ThenElse;
’ begin ’
i PutTracer(Ite);
write(tty, "if" *);
GetTxt;
enter;

writeln(tty,”"then" block:’);
opt := ‘b’;

Block; (*put a whole subprogram here, maybe*)

opt = ‘1°; (*option to flag the solo "else" in output¥*)
txtin := ‘else ‘s

enter;

writein(tty, "else" block:>’);
opt := ‘b’;

Block; (* again *)
k := k-1
end;
4 procedure WhileDo;
begin

PutTracer(Wdo);
write(tty, "While" °);
GetTxt;
enter;
writeln(tty,’"While-do" block:");
Block;
t= k~l;
end;

procedure CaseOf ;

procedure CListBlock;
var 1

integer;

begin

writeln(tty,’case label 1list:”);
readln(tty);;

read(tty,txtin:i);
1if 1 > 0 then
begin
opt = “:’; (*flag each case label 1list*)
enter;
Block;
CListBlock; .
end;
end; (* Exit if a blank line is typed *)

62

begin

PutTracer(Cas);

writeln(tty,’>");
write(tty,”"Case" <expression> °);
GetTxt;

enter;

CListBlock;

k := k-1

end;

procedure EndBlock;
begin
txtin := ‘end ’
enter;
end;

procedure Block;

var QuitBlock : integer;
begin
opt := ‘b’ (* force new option to ‘b’ *)
txtin :="begin ’
enter;
QuitBlock := 03
While QuitBlock = 0 do

» 2R

begin }
PutTracer(Blk); ¢
case getopt of §
‘s’ statement;
‘W WhileDo; §
1%s IfThenElse;
‘e’ CaseOf;] x
‘e’ QuitBlock := 1; 1
‘2% BlockMenu; ']
end; (* Note UCSD and Dec 10 non-standard %) !
(* handling of undefined options *) i
k := k-1; |
end;
EndBlock;
end;
63

!"-......‘...".!ﬂ'ﬂﬂ"ﬂﬂ..ﬂ’ﬂﬂﬂ Mo e NEa e i .

procedure CreateNew;
var quitCre : integer;
begin

quitCre := 0;
while quitCre = 0 do

begin
PutTracer(Cre);
case getopt of
‘7 CreateMenu;
‘b Block;
lto’lsl’lk"'vl"hl:
‘x’: quitCre := 1
end;
k = k-1
end
end;
Procedure GetFile;
begin
p := nil;
While not eof(input) do
begin
readln(input,opt,txtin);
enter;
end;
end;
procedure Edit01d;
var quitEdit : integer;
begin

quitEdit := O;
While quitEdit = 0 do

begin
PutTracer(Edt);
\ case- getopt of
‘?’: EditMenu;
‘d’s begin
FindP;

Statement;

if p<>nil then Depart;

end;
‘1% begin

writeln(tty, Insert before «..");

FindP;

writeln(tty,’new option:’);

opt := getopt;

GetTxt;
Insert;
end;

a’: begin
P := head;

while p~.next<>nil do p:=p~.next;

oldp := p~.prev;

CreateNew;
end;

64

e

‘r’: begin
FindP;
replace;
end;
‘b’ replace; (*no new(p) *)
‘x’: quitEdit := 1;
end;
k = k-1;

65

1 (%)
(* Save this data structure on floppy disk *)
(%)

] procedure SaveFile;

begin

PutTracer(Sav);

p := head;

while p <> nil do
begin
writeln(p~.code,p™.txt);
p = p~.next;

end;
: p := head; (*reset it for next*)
i k = k-1
end; ?
(*%) ‘
(* Put ASCII card images out to TTY *) é
(**) :
procedure PutCode;
const tabval = 8;
var tab : integer;
procedure Indent;
var j : integer;
begin
§ := tab;
while j>0 do
begin
write(tty,’ °:8);
Je=3-1;
end;
end;
begin
tab := 0;
p := head;
while p<> nil do -
" begin
case p~.code of i
‘s’ ,’h","t’,"’k’," v’ begin s
Indent; 3%
If p~onext™.code <> “1’ then
writeln(p™.txt,’;’)
else writeln(p™.txt);

end;

‘b’ begin
tab := tab + 1;
Indent;
writeln(tty,p~.txt);
end;

e’: begin
Indent;
If p“.next = nil then

66

e ——— e

lwl .
‘1%
1°%:
‘e’
end;
p &= p~.next;
end;
end;
procedure DrawFC;
begin
write(tty, Exec-DrawFC-");
writeln(tty);
end;

writeln(tty,p~.txt,”.")
else if (p~.next™.code = ‘1") or
(p~.next".code = “e’) then
writeln(tty,p .txt)
else writeln(tty,p~.txt,”;°);
tab := tab - 1;
end;
begin
Indent;
writeln(tty,’while °,p~.txt,” do’);
end;
begin
Indent;
writeln(tty,”1f *,p~.txt,’ then’);
end;
begin
Indent;
writeln(tty,p”.txt);
end;
begin
Indent;
writeln(tty,’case ‘,p~.txt,’ of’);
end;

67

(Rehhhhhhhink

S tart ——— ARARKRRRAARR)

begin

intro;

quitExec := 0;

while quitExec = 0 do

begin
k := 0;
PutTracer (Exc); i
case getopt of ‘
‘?’: ExecMenu;
‘e’: begin
p ¢= nil;
CreateNew;
end;
‘g’ GetFile;
‘e’ Edit01d;
‘g’ SaveFile;
‘p’: PutCode;
i 3 DrawFC;
‘x’: quitExec := 1
end
end

end.

68

69

TLILID

WYNAVd

NIENTT

dTHHYHD

NALID

TIALNL

LINI

LIXHHD

AN VHD

HLAHYD

JAVSHD

MAVHAH

AVyad

AVHaED

woisig Bupmeaq ydeas ay3 o uSysag paanjoniag °q xjpuaddy

SId0HD)

dmiovd

OTdNEL

10'1d

VHL'IV

TELX 1d

iInd

T

- I OS5 iy o o vty Bt sy

DA -

This page left intentionally blank

T2

Appendix E. Flowcharts of the Graph Drawing System

GrExec

n

ropts

[=]
GRDfaw

GRREE |

MDraw
Draw

GRApnd
MDraw

GRSave

GRHelp

GRExit

e T e

Exit = true ? —m—m———

exit

GRDraw
)

Init

¥

Tekplo
4
R4 = #TBLE
Draw

¢

return

3
p

POCUIN

Plot
FixThl
Tﬁrplo
Return

S T

it 2 e I VAN 0 5 i i AR iger: s 4

s sewm e e e

|
|
|
§

Init
Tekera
Tekgra
DrwVec

Return

return

75

| =0

=]

| =2

=3

=5

=6

| =others

P W N T S Gl QT

. e eadaliild

- Draw
Tekgin
read CHAR,XF,YF b

g

|

r2

|

1

rg¥: 2

l"—‘_—"-P

r2 =3

f—'—_‘-'

r2 =5

I | 3
——

r2 = L

lot
P ? !

transl

|

REDR = 1

—
stjp
—

¢
rh = rh4 - 6 H
i
i

r———————
Set tty echo mode
! r2 = 4

£ixtbl '

v

return

._..4.___-_.‘,._,_

.

Step

XF,YF,MODE = table values

d l 47 :
mode]? -T

r4é = r4-6
bell
REDR = 0
\
return
tekplo

REDR J’o ? 2
b]

return

g -

FixTbl

mode '= r2
table values = XF,YF,mode

return

Transl

save T4
get XF,YF
XT = XF - XP
YT = YF - YP
n

mode <> 4 ?
*y
XP = XP + XT

YP = jP + YT

restore r4

return

77

This page left intentionally blank

78

< et -

-

Appendix F. Listing of the Graph Drawing System Program

«TITLE GRAPH GENERATING SYSTEM
GREXEC - GRAPH EXECUTIVE MODULE

9060505600000 000000000000¢9083 0060006006000 00800
9999929999939 999925259999999999399993595%2999%9%)

z
[

we
e
we
we
we
we
we
s o
-e
we
we
we
we
we
we
we
we
we
we
we

THIS IS THE EXECUTIVE PROGRAM WHICH GOVERNS THE MO
GRAPHICS SYSTEM. THE USER IS QUERRIED BY THE OPTI
(GROPTS) TO CHOOSE ONE OF THE FOLLOWING OPTIONS:

1 - DRAW A NEW PICTURE 4 - SAVE ON DISC
2 - RETRIEVE (& INITIALIZE) 5 = EXPLAIN DRAW COMMANDS
3 - RETRIEVE (APPEND TO PIX) 6 - EXIT TO RT-11 MONITOR

THIS MODULE, AS THE EXEC FOR THE GRAPHICS SYSTEM, SIMPLY
DIRECTS TRAFFIC TO ITS SUBORDINATES ACCORDING TO THE ABOVE
OPTION. THE OPTION IS RETURNED TO EXEC AS A BINARY INTEGER
AVAILABLE IN THE RO REGISTER.

e

b MpRay i 4 NP O~ S

WO VO WE VI Ve Ve WS WO WO We WE WE Ve W We Ve W we
. we
we
we
we
we
we
we
we
we
e
we
we
ws

we
we
we
we
-e
e
we
ws
we
we
we
e
-e
we
we

we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
we
e
we
we
we
we
e
we
we
we
we
we
we
we
we

«MCALL ..V2..,.REGDEF, .,EXIT, .TTYIN, .TTYOUT, . PRINT
+MCALL .TTINR
«GLOBL GROPTS,GRDRAW,GRRETR,GRSAVE,GRHELP,GREXIT
+REGDEF .
H
H
GREXEC:
MOV #0,RO $SAFETY FIRST
1$: JSR PC,GROPTS sGET USER’S OPTION
CMP RO, #1 $IS OPT = 1 (DRAW) ?
BNE 28 : - NO
JSR PC,GRDRAW 3 - YES
BR 18
9
28: CMP RO, #2 sIS OPT = 2 (RETRIEVE) ?
BNE 3$ s - NO
JSR PC,GRRETR : - YES
JSR PC,MDRAW $QUICKLY REDRAW IT
JSR PC,DRAW $GET INTO INPUT/PLOT LOOP
BR 18
»
38: CMP RO, #3 sIS OPT = 3 (APPEND) ?
BNE 48 s = NO
SUB #6,R4 sREPLACE QUIT COMMAND WITH
MOV #0, (R4)+ : HOME-CURSER
MOV #0, (R4)+ : (DARK MOVE)
MOV #2,(R4)+
MOV R4,R3
JSR PC,GRAPND
JSR PC,MDRAW
JSR PC,DRAW
BR 18
79

v -

TIPSy

Ve Ws we We we We we we

RRRRRRRARARAARRRARkARRRAARR GRDRAW RARAARRRRARAAARAARAA AR AR ARk k L

* ¥ % ¥ %

RRRRARARARRRAARAAkARhhhkhhhhhhhhhhhhhhhihhhhhiiddhiikiikihidikddikiikk

CMP RO, #4 ;IS OPT = &4 (SAVE) ?
BNE 5$;i = NO

JSR PC,GRSAVE ; = YES

BR 1%

GREXIT RETURNS WITH RO = ZERO IF WE ARE INDEED READY TO EXIT

CMP RO, #5 3IS IT 5 (HELP)?
BNE 6$;s - NO
JSR PC,GRHELP
BR 18
CMP RO, #6 ;IS OPT = 6 (QUIT) ?
BNE 18 $SUSPECT KEYSTROKE ERROR
JSR PC,GREXIT
CMP RO, #0
BNE 18 H - NOT READY TO EXIT
+EXIT
+PAGE

«SBTTL GRDRAW - CONTROL THE GRAPH DRAW PROCESS

THIS MODULE, CALLED BY GREXEC, CONTROLS THE DRAWING OF ALL

GRAPHICAL FIGURES. IT DOES NOT RECALL PREVIOUSLY DRAWN
FIGURES (SEE GRRTRV MODULE FOR THAT CAPABILITY).

.GLOBL FDRAW,MDRAW
.GLOBL TEKERA,TEKGRA,TEKPLO, TERALP, BELL , REDRAW
.GLOBL TEKGIN, XF,YF,MODE, LOX,GRDRAW, TBLE, INIT

14

.WORD 0

.WORD 0

.WORD 0 ; STORAGE FOR X AND Y DESTINATIONS

.WORD 0

;

3

;

9

ADD #6 , TBLEND ;BUMP END POINTER BY 3 WORDS
CMP MODE, #1 sMODE 1 INDICATES A NORMAL DRAW
BEQ NOR

CMP MODE, #2 ;MODE 2 INDICATES A MOVE

BEQ MVE

CMP MODE, #3 ;MODE 3 INDICATES PLOT A POINT
BEQ PNT

CMP MODE, #5 ;MODE 5 INDICATES DOTTED LINES
BEQ DOT

cMP MODE, #6 ;MODE 6 INDICATES DASRED LINES
BEQ DASH

ANY OTHER MUST BE ALPHA CHARS
JSR PC, TERALP ;GO0 ALPHA MODE
MoV MODE, RO ; = WITH CURSOR AT XHAIR

80

- -

i

Y 3 ”

+TTYOUT
RTS PC :
~TTYOUT GO ALPHA MODE, CURSOR TO XHAIR .
3 :
H :
3 ¥
: INITIALIZATION ROUTINE-——
; .
INIT: BIS #010000, 44
;
MOV #0,XF $INITIALIZE X VALUE ;
MOV #0,YF $INIT Y VALUE ¢
MOV #0,MODE ; MODE 0 IS INITIALIZE f
MOV #TBLE,TBLEND ;SET END POINTER TO HEAD ;
JSR PC,TEKERA SERASE THE SCREEN \
JSR PC, TEKGRA ;SET TO GRAPHICS MODE
BR DRWVEC ;MOVE TO (IX,IY)
5 :
: a=vvee-END OF INITIALIZATION-—-
3 ;
: ==—==-POINT PLOT ——
;
PNT: MOV #34,R0
+TTYOUT
BR DRWVEC
; .
: ===ee=DOTTED LINES==—=-
3
DOT: MOV #33,R0
+TTYOUT
MOV #141,R0
+TTYOUT
BR DRW
3 i
; DASHED LINES——-=—e :
3 : ;_
DASH: MOV #33,R0
+TTYOUT i
MOV #144,R0 ~
.TTYOUT
BR DRW
H
3 NORMAL LINES——=——
:
NOR: MOV #33,R0
+TTYOUT
MOV #140,R0
«TTYOUT
BR DRW
H
3
E |
i 1}
DRW: JSR PC, TEKGRA ;TO DRAW, GO TO GRAPHICS

MOV LOX,RO
81

weg e

we

28:

«TTYOUT
BR

?
JSR

DRWVEC

PC, TEKGRA

3AND SENT LO X TO GET OUT OF DARK

-SET UP FOR A DARK VECTOR (MOVE)==-=-

s SET TO GRAPHICS MODE

——w=e=NOW COMMON FOR ANY VECTOR=w==———=w-

MOV
MOV
ROR
DEC
BNE
BIC
BIS
L] mOUT

MOV
BIC
BIS
«TTYOUT

MOV
MOV
ROR
DEC
BNE
BIC
BIS
«TTYOUT

MOV
BIC
BIS
MOV
-TTYOUT

RTS

«TTYOUT
RTS

+PRINT
MOV
MOV

DEC

YF,RO
#5,R1

RO

R1

1$
#177740,R0
#40,R0

YF,RO
#177740,R0
#140,R0

XF,RO
#5,R1

RO

Rl

28
#177740,R0
#40,R0

XF,RO
#177740,R0
#100,RO
RO, LOX

PC

$sSET UP FOR HIY

sMASK EXTRA BITS
sAFFIX HIY PREAMBLE
sOUTPUT HIY

sGET LOY

; PREAMBLE
;OUTPUT LOY

$sGET HIX

sOUTPUT HIX

sGET LOX

sOUTPUT LOX

sROUTINE TO GO TO GRAPHICS MODE

#35,R0

PC

#38

#6,R1
#77777,R2
R2

s CONTROL CHARACTER FOR GRAPHICS

$SUBROUTINE TO CLEAR THE SCREEN
sOUTPUT CONTROL CHARS

$WAIT LOOP FOR SCREEN TO CLEAR

82

B Xy g T -

BNE 28

DEC Rl |
BNE 1$]
RTS PC

38: JASCIT <33><14><7>
«BYTE 200
+EVEN

sROUTINE TO GO TO ALPHA MODE

MOV #37,R0 sPUT CONTROL CHAR IN RO
: «TTYOUT
| ! RTS PC ;
- 3
H :
:
1) .
g BELL: ; ROUTINE TO RING THE BELL X
f MoV #7,R0 ¥
B «TTYOUT g
1 RTS PC :
; i
3 :
TEKGIN: MOV #33,R0 +
+TTYOUT :
MOV #32,R0 : ,
«TTYOUT)
RTS PC :
;
» S
CURADR: .TTYIN ;GET CURSER ADDRESS AND 5
MOV RO,R1 $MASSAGE IT ’
BIC #177740,R1 ;FIRST COMPONENT IS HIGH BYTE i
MoV #5,R2 |
108: ROL R1 s
DEC R2 }
BNE 10$ l
+TTYIN I
BIC #177740,R0 ;LOW BYTE
BIS RO,R1 E
RTS PC]
] i
INPVEC:]
JSR PC, TEKGIN : TO GIN MODE }
CMP CHAR, #124 ;T ~ PROMPT ANOTHER CHAR TO TRANSLATE
BEQ 10$
+TTYIN ; INPUT KEYSTROKE f
58 MOV RO, CHAR ; AND STORE IN CHAR
JSR PC, CURADR sGET CURSOR ADDRESS :
MOV R1,XF '
BIS #100,R0 E
i JSR PC,CURADR 4
MOV R1,YF ' :
RTS PC ‘

SRTITIRNRI L L

0 e Il B LS s b1

108

208:

GRDRAVW:

DRAW:

18:

38:

48:

58:

BIS
<TTINR
BCS

BR
TTINR
BCC
MOV
«TTYOUT
MV
- TTYOUT
MOV

- TTYOUT
MOV
-TTYOUT
BR

JSR
MOV

JSR

BIC
MOV
JSR
RTS

#100, 44

208
58

5%
#33,R0

#160,R0
#124,R0
#131,R0
208

PC, INIT
#TBLE,R4

we we

PC, INPVEC

CHAR, #104
23

#1,R2
PC,PLOT
DRAW

CHAR, #115
3$

#2,R2
PC,PLOT
DRAW

CHAR, #120
4$

#3,R2
PC,PLOT
DRAW

CHAR, #121
58 H

#010000, 44

#4,R2
PC,FIXTBL
PC

CHAR, #56
6$

#5,R2
PC,PLOT
DRAW

CHAR, #55
78

sNO-WAITE IO

$sPOINT R4 TO START OF TBLE

sINPUT A VECTOR VIA TEKTRONIX

3WAS IT A "D"?

;MOVE WITH A ‘M’?

3PLOT A POINT WITH A ‘P°?

$QUIT WITH A ‘Q‘?

3 EXIT POINT FOR "DRAW"

;DOTTED WITH A ‘PERIOD’?

sDASHED WITH A *~"?

84

LW A

pe

JSR
JSR

BNE
JSR
CMP
BEQ
MOV
JSR

JSR

JSR
JSR
RTS

MOV
MOV
MOV
MOV
RTS

SUB
RTS

+WORD
MOV
JSR
SUB

ADD

#6,R2
PC,PLOT
DRAW

CHAR, #123
8%
PC,STEP
DRAW

CHAR, #122
98
PC,REDRAW
DRAW
CHAR, #102
10$

PC, BACKUP
DRAW

CHAR, #124
11%

PC, TRANSL
P, REDRAW
DRAW
CHAR, #101
12$

PC, INPVEC
CHAR, #33
12$
CHAR,R2
PC,PLOT
111$
PC,BELL
DRAW

’
PC,FIXTBL
PC, TEKPLO
PC

R2,MODE
XF, (R4)+
YF, (R4)+
R2, (R&)+
PC

#6,R4
#6 , TBLEND
PC

0
R4,=(SP)
PC, INPVEC
(R&),XF
+2 (R4),YF
XF, (R&)+

we
v
]

STEP THRU OLD PIX TBLE

;R - REDRAW FROM TABLE VALUES
;B - BACK UP (DELETE) A COMMAND
;T - TRANSLATE REMAINDER OF TBLE
;A - DO ALPHAS

sGET NEW XF,YF,CHAR
;IS IT "ESC"?
s YES - END OF CHAR STRNG

$sSTUFF TBLE AND DO TEKPLO
sLOOP FOR MORE CHARS

;ANY OTHER - RING BELL

3 AND TRY AGAIN

3GO BACK 6 BYTES

$BACK UP END POINTER 6 BYTES
$sBACK TO MODES

sFLAG FOR REDRAW STATE

$GIVES TRANSLATION VECTOR IN XF,YF
;DO TRANSLATION ON EACH X,Y ENTRY

85

ADD YF, (R4)+ :
CMP #4, (R4)+ sQUIT MODE? ,]
BNE 1$!
MOV (SP)+,R4 sRESTORE PREVIOUS TBLE POINTER ,
RTS - PC .
REDRAW: MOV #1 ,REDR ;SET FLAG TO LOOP ON STEP UNTIL QUIT g
H i
STEP: MOV (R4)+, XF ;GET XF FROM TBLE ;
MOV (R4)+, YF
MOV (R4) ,MODE
CMP (R&G)+, #4 sQUIT MODE?
BNE 108
SUB_ #6,R4 ;BACK UP ONE COMMAND
JSR' PC,BELL
MOV #0,REDR 1
RTS PC ;GET SOME OTHER COMMAND
10$: JSR PC, TEKPLO
JSR PC, TEKALP sASSURE WE’RE OUT OF DARK MODE
CMP #1,REDR
BEQ STEP ;STAY IN REDRAW LOOP
RTS PC
CHAR: .WORD
+PAGE

«SBTTL FDRAW, MDRAW - EXTERNAL GEN CALLS

we
we
we
we
we
we
we

$3333333333353555 5 35 353 33333333535
THIS MODULE CALLS TWO MODULES, INIT AND REDRAW, AFTER BEING
CALLED FROM ANOTHER PROGRAM. THE CALLER MUST PASS TO THIS
MODULE THE ADDRESS OF HIS BUFFER WHICH CONTAINS XF, YF,

AND MODE FOR EACH SUCCESSIVE POINT TO BE DRAWN. THE LAST
POINT MUST BE FOLLOWED WITH XF, YF, AND "4" TO FLAG THE

END OF THE DRAW LIST.

IF CALLED FROM A FORTRAN ROUTINE, THE CALL IS:

CALL FDRAW(TABLE).

56 WO WE Ve WE Ve Ve WE We VS Ve Ve Ve we

IF CALLED FROM A MACRO PROGRAM:

MOV #TABLE,R4

JSR - PC,MDRAW.
P3R53 3535353535353335553533533333333353335553333533355333
’
FDRAW: MOV +2(RS),R4 sGET VALUE OF ARG-1 FM CALL LIST
MDRAW: JSR PC, INIT
JSR PC,REDRAW
RTS PC
«PAGE

+SBTTL GETFN - GET FILE NAME

sHERE WE SOLICIT THE USER TO PROVIDE THE DEVICE,
sFILE NAME, AND EXTENSION OF THE FLOPPY DISK

$DATE BLOCK.

$THE ASCII STRING IS CONVERTED TO RADIX-50 FORMAT BY
s PAKNAM.

86

sON EXIT, R2 CONTAINS THE ADDRESS OF THE RAD-50 FILE NAME

s BUFFER.
ARGL1: +«WORD 3
BUFADR: .WORD ASCBUF $sASCII BUFFER
«WORD CHCNT
+«WORD FILNAM sPOINT TO FILNAM LOCATION

ASCBUF: .BLKW 7
CHCNT: .WORD 16
FILNAM: .BLKW 4

NLIST BEX
GFNMSG: .ASCIZ /ENTER DEVICE, FILE NAME, EXT (DDD:FFFFFF.EEE).../
» «EVEN
-LIST BEX
GETFN: ’
Mov R3,~(SP)
+PRINT #GFNMSG
MoV #ARGL1,R5 sSET UP FOR FORTRAN-LIKE SUBR CALL
BIC #010000, 44 H
MOV #16,CHCNT sRESTORE MAX CHAR COUNT
JSR PC,LINEIN sGET ASCII NAME FM CONSOLE
MOV #ARGL1,RS $sSET UP FOR FORTRAN-LIKE SUBR CALL
JSR PC, PAKNAM sPACK TO RADIX-50
MoV (SP)+,R3
RTS PC
«PAGE
«SBTTL GRRETR,GRAPND - RETRIEVE GRAPH FROM DISK
+GLOBL LINEIN, PAKNAM,PAK6,GETFIL,PUTFIL
GRRETR:
MOV #TBLE,R3 sINITIALIZE TABLE POINTER
GRAPND: sEP HERE IF R3 IS ALREADY SET TO THE OLD
H VALUE OF R4 (APPEND A FILE)
JSR PC,GETFN sGET FILE NAME (ABOVE)
CcMP FILNAM,#177777 ;IF (FILNAM = -1)
BNE 108
+PRINT #EM1 THEN PRINT EMI1

H
RIS PC H TAKE ERROR RETURN
108: MOV FARGL2,RS H ELSE CALL GETFIL

MOV R3,TBLPTR

JSR PC,GETFIL
CMP R5,#0 ;IF (R5 = 0)
BNE 208
«PRINT #EM2 s THEN PRINT EM2
RTS PC H TAKE ERROR RETURN
208: MOV #TBLE,R4 H ELSE FIX POINTER FOR REDRAW
RTS PC

1]

ARCL2: WORD 3
+WORD FILRAM

TBLPTR: .WORD 0
+WORD WDCNT

WDCNT: .WORD 1000

+PAGE
«SBTTL GRSAVE - GRAPH SAVE ON DISK

87

RPN

Y

] e i B £+ < A e

GRSAVE:

10$:

GREXIT:

?
TBLEND:
TBLE:

JSR
cMP
BNE
«PRINT
RTS
MOV
MoV
ASR
MOV
MOV
JSR
cMP
BNE
+PRINT
RTS
MOV
RTS
NLIST
.ASCIZ
.ASCIZ
.ASCIZ
.LIST

+PAGE

PC,GETFN
FILNAM, #177777
108

#EM1

PC

#TBLE, TBLPTR
TBLEND-TBLPTR, RS
RS

RS, WDCNT
#ARGL2,RS5
PC,PUTFIL

RS, #0

20$

#EM3

PC

#TBLE, R4

PC

BEX

3IF (FILNAM = -1)

; THEN PRINT EMI

; TAKE ERROR RETURN

; ELSE CALL PUTFIL

;WDCNT <~ (END PTR - HEAD)
/2

;IF (R5 = 0)

THEN PRING EM3
TAKE ERROR RETURN
ELSE FIX POINTER FOR REDRAW

/ERROR IN PAKNAM/<15><12>

/ERROR IN GETFIL
/ERROR IN PUTFIL
BEX

/<15><12>
/<15><12>

+«SBTTL GREXIT - GRAPH EXIT MODULE

MOV
MOV
RTS

«WORD
«BLKW
«END

#0,R0
#4,R1
PC

2000
GREXEC

sRETURN A ZERO IN RO

il Ak

MSGPTR:
18:
28:
38:
4S:
58:
6$:
78:
8$:

10$:
116:
CRLF:

GREELP:

10$:

208

1$:

HLPD:

+SBTTL
«MCALL
+GLOBL
« REGDEF

«WORD
«WORD
-WORD
«WORD
«WORD
«WORD
+WORD
«WORD
«WORD
«WORD
«WORD
«BYTE
«BYTE
«BYTE
+EVEN

«PRINT
BIS
+ITYIN
CMPB
BNE
+PRINT
+TTYIN
JSR
ASL
ADD
+PRINT
+« PRINT

RTS

+NLIST
+ASCII
+BYTE

+EVEN

«ASCII
+ASCII
«ASCII
+ASCII
+ASCII
+ASCII
+ASCII
«ASCII
+ASCII
«BYTE

+EVEN

+ASCII
-ASCII

+TITLE MSGS - "GRAPH" ASCII MESSAGES

GRHELP - EXPLAIN DRAW COMMANDS
+eV2..,.PRINT, .TTYIN, .REGDEF

GRHELP, GROPTS , LOOKUP

HLPD

HLPM

HLPP

HLPQ

HLPDOT

HLPDSH

HLPA

HLPB

HLPR

HLPS

HLPT

<15>

<12>

<200>

18

#10000, 44 ;MAKE SURE NO-ECHO INPUT MODE
sGET YEA OR NAY

RO, #°Y

108 3 WAS NAY - EXIT HELP MODULE

#208 $SOLICIT WHICH CMND TO EXPAND
sGET COMMAND FOR EXPANSION

PC, LOOKUP

R2 ; *2

#MSGPTR,R2

#CRLF sCAR’G RETN

(R2) ;INDIRECT THRU R2

PC

BEX

/TYPE THE COMMAND YOU WANT HELP WITH:/<15><12>

<200>

<15><12>/DRAW MODULE COMMANDS:/<15><12>

/ A - ALPHA CHARACTERS/<15><12>

/ D - DRAW LINE M - MOVE CURSER/<15><12>

/ P = DRAW POINT . - DRAW DOTTED LINE/<15><12>

/ =~ - DRAW DASHES R - REDRAW PREVIOUS FICTURE/<15><12>

/ M - MOVE CURSER B - BACK UP ONE VECTOR/<15><12>

/ T <« TRANSLATE GEOMETRICALLY/<15><12>

/ Q - QUIT DRAWING/<15><12>
JWANT MORE HELP? (Y/N):/

<200>

/L D] THE D COMMAND IS USED TO DRAW A SOLID/<15><12>
/ LINE FROM THE PREVIOUS CROSS-HAIR POSI~/<15><12>

89

MRV 7o

AD=A080 418 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OM SCHOO-=£TC F/§

A :Y;;EHJDESI:ELT:OL FOR AUTOMATICALLY BENERATING FLOWCHARTS AN“ETC(U)
H K El

UNCLASSIFIED AF!T/OCS/EE/79-7

2w 2
“Eosnan
END
oare
fiito
3-80

N

o

P ——g— ittt

HLPM:

HLPP:

HLPQ:

HLPDOT:

HLPDSH:

HLPA:

HLPB:

HLPR:

HLPS:

HLPT:

«ASCII
«ASCII
+ASCII
+ASCII
«ASCII
«BYTE
«EVEN
+ASCII
«ASCII
+ASCII
«ASCII
«BYTE
«EVEN
«ASCII
«ASCII
«BYTE
+EVEN
«ASCII
+ASCII
«ASCII
»ASCII
+ASCII
«ASCII
«BYTE
+EVEN
+ASCII
«BYTE
-EVEN
«ASCI1
«BYTE
-EVEN
«ASCII
+ASCII
«ASCII
«BYTE
L] EvEN
«ASCII
+ASCII
«ASCII
«ASCII
«BYTE
-EVEN
«ASCII
-ASCII
+ASCII
«BYTE
+EVEN
«ASCII
+ASCII
«BYTE
+EVEN
-ASCII
«ASCII
<ASCII
«ASCII

S e e

TION TO THE ONE SHOWN ON THE SCREEN AT/<15><12>
THE TIME YOU TYPED THE CHARACTER "D"./<15><12>
IF NO VECTOR WAS PREVIOUSLY DRAWN, THE/<15><12>
ORIGIN IS THE INITIAL POINT OF THE/<15><12>
VECTOR TO BE DRAWN./<15><12>

THIS COMMAND DRAWS A DARK VECTOR TO THE/<15><12>
PRESENT CROSS~HAIR POSITION. NO CHANGE/<15><12>
IS NOTICED ON THE SCRENE. RECOMMEND AN/<15><12>
"M" BE THE FIRST ENTRY IN ALL DRAWINGS./<15><12>

DRAWS A POINT AT THE PRESENT CROSS-/<15><12>
HAIR POSITION./<15><12>

THE Q COMMAND TERMINATES THE DRAW MODE./<15><12>
CONTROL IS RETURNED TO THE GRAPH EXEC/<15><12>
WHICH WILL LIST OPTIONS FOR DRAWING OR /<15><12>
FOR FILE HANDLING./<15><12><15><12>

THIS COMMAND FORCES A "4" TO BE ENTERED/<15><12>
IN "TBLE" TO SIGNIFY END OF TABLE/<15><12>

SAME AS "D" BUT USE DOTTED VECTOR./<15><12>
SAME AS "D" BUT USE DASHED VECTOR./<15><12>

PLOT THE FOLLOWING ALPHAMERIC CHARACTER/<15><12>
STRING - END WITH "ESC". "REDRAW"/<15><12>
COMMAND CORRECTLY SPACES TRE LETTERS./<15><12>

BACK UP ONE VECTOR IN CORE TABLE AND/<15><12>
CONTINUE THE DRAWING./<15><12><15><12>

HINT: ALWAYS BACK UP TWO VECTORS, THEN/<15><12>
SKIP ONE WITH THE "S" COMMAND./<15><12>

REDRAW THE ENTIRE TABLE FROM THE PRES-/<15><12>
ENT TABLE POINTER TO THE QUIT ENTRY./<15><12>
ALLOW MORE DRAWS AT END OF TABLE./<15><12>

SAME AS "R" BUT REDRAW ONLY ONE/<15><12>
VECTOR AT A TIME./<15><12>

TRANSLATE GEOMETRICALLY THE REMAINING /<15><12>
FIGURE. THE VECTOR AT THE CURRENT/<15><12>
TABLE POINTER IS STREATCHED TO THE /<15><12>
CROSS-HAIR POSITION. REMAINING VECTORS/<15><12>

90

e

e oA T e

T T L WU P T
e

v r—_

Rt

] +ASCIT / ARE SHIFTED BY THE DIFFERENCE BETWEEN/<15><12>
«ASCII / THE OLD AND NEW VECTOR. THE NEW/<15><12>

4 «ASCII / CROSS-HAIR POSITION MUST BE SENT TO/<15><12>
«ASCII / THE COMPUTER BY ANY KEYSTROKE AFTER THE/<15><12>
«ASCIT / CROSS-HAIR IS AT THE DESIRED POSITION./<15><12>
«BYTE <200>
«EVEN
.LIST BEX

3
+PAGE

«SBTTL GROPTS - GRAPH OPTIONS MODULE

’
;s THIS MODULE LISTS ALL OPTIONS AVAILABLE TO THE USER
;s FOR THIS SYSTEM, AND PROMPTS THE TTY OPERATOR TO i
3+ SELECT ONE OF THE OPTIONS. THE RESULT IS RETURNED

;s 1IN RO.

H

H

yaonTRrouors SN

GROPTS:
+PRINT #1$ sPRINT THE ASCII STRING
BIS #010000, 44 sNO-ECHO INPUT
+TTYIN $NOW READ THE CHOICE
SUB #°0,R0 sONLY NEED LAST 3 BITS
RTS . PC
+NLIST BEX

18: ¢ASCIT /SELECT o../<155<12><15><12>

«ASCIT / 1 - DRAW A NEW PICTURE/<15><12>

«ASCITI / 2 - RETRIEVE PICTURE FROM DISK AND INITIALIZE/<15><12
«ASCIT / 3 - RETRIEVE PICTURE FROM DISK AND APPEND/<15><12>
+ASCIT / 4 - STORE THIS PICTURE ON DISK/<15><12>

«ASCII / 5 - HELP! EXPLAIN DRAW COMMANDS/<15><12>

+ASCII / 6 - ALL DONE - EXIT NICELY/<15><12>

«BYTE <200>

-EVEN

.LIST BEX

«PAGE

«SBTTL LOOKUP - CHARACTER TABLE LOOK-UP ROUTINE

ROUTINE SEARCHES "CHARS", A TABLE ON ANTICIPATED
CHARACTERS, AND INCREMENTS R2 BY ONE UNTIL THE
MATCH IS FOUND.

9 000008000000 0000000000000 0000080000 so000int 0000000000 OCRSILSETSREE
9995995959595 9999995999995599359599999999999999999399999395399999993%9)

WS WS WO We W We WO e We Wy e
-e
we
we
e
-e

CHARS: .WORD 'DM
«WORD "PQ
L) WORD " [Tl
+WORD "AB
«WORD "RS

91

= did nasdi e T e

LOOKUP:

1$:

MOV
INCB
CMPD
BNE
RTS
+END

"T

#000377,R2
R2
CHARS(R2),R0
18

PC

sMINUS ONE IN BYTE NOTATION

;RO=BYTE IN (CHAR+R2)?

92

T,

R

Vo W WO VO US Vi Yo W Y W WE W W WO W Ve We WS YO Ve WO Yo We WS Y Ve Be We B Ve We we

:
STO00:
STO1:
STO2:
STO3:
STO4:
STO0S5:
STO06:
STO7:
STO8:
ST09:
STO10:
STO11:

+TITLE GCSLIB - LIBRARY OF USEFUL ROUTINES.

GCS. LIBRARY
VERSION OF 13 JULY 79

CURRENT CALLABLE ROUTINES ARE:

PAR6 - PACKS 6 CHARS TO RADS0

LINEIN - GETS LINE FROM TELETYPE

GETFIL - COPIES FILE FROM DISK TO MFMORY
PUTFIL - COPIES FILE FROM MEMORY TO DISK
PARNAM - PACKS DEV:FILENAME.EXT TO RADS0

SUBROUTINE CALL FORMAT IS FORTRAN COMPATIBLE
ALL CALLED BY "JSR PC,XXX""

R5 MUST CONTAIN POINTER TO ARGUMENT LIST
ARGUMENT LIST FORMAT 1S:

Tkhhkhhkhhhkhhhkhhhhhhhhkikihkih
* UNDEFINED * # OF ARGUMENTS *
RekhhRhhhhhihdkhhihhdhihkkkkhikkk

* ADDRESS OF ARGUMENT # 1 *
Redd AR A kg Ik g AR R AR Kk e de Kk ek ok

* . *
* . *
* . %

RRhdedk fo ik e kdk & Jede gk J g g d ke de gk dede e

* ADDRESS OF ARGUMENT # N *
RddhhhdeRhihih s hd ki kkk Rk kkd

«MCALL ..V2..,.REGDEF, .ENTER, .LOOKUP, .READW
«MCALL .WRITW, .SAVESTATUS, .REOPEN, .CLOSE, .PRINT
oMCALL .TTYIN

+GLOBL PAK6,LINEIN,GETFIL,PUTFIL,PAKNAM
+REGDEF

COMMON STORAGE FOR ROUTINES

(= NN N N- NN NN N NN

93

Py <05 4 g < R e

P e e

«PAGE

+SBTTL PAK6
sROUTINE PAK6 /HARTRUM/ 2 JULY 79
sPACKS 6 CHARACTERS INTO RADIX 50
s FIRST ARGUMENT IS POINTER TO 5 WORD BLOCK:

PAKG6:

48:

MOV
MOV
MOV
MoV
MOV
MOV
ADD

MOV

MOV
MOV
ADD
MOVB
BIC
CMPB
BNE
CLR
MOVB
BR

BIT
BEQ
BIC
cMp
BLT
MOVB
BR

cMP
BNE
MOVB
BR

CMP
BNE
MOVB
BR

CMP
BGT
CMP
BLT
SUB
ADD

RO, -(SP)
R1,-(SP)
R2,-(SP)
R3,-(SP)
R4,-(SP)
RS,-(SP)
#2,R5
(RS),RO
RO, STOO
ST00,STO1
#6,STO1
(RO),R1
#177600,R1
#40,R1

2$

Rl

R1, (RO)+
6$

#100,R1

3
#177700,R1
#32,R1

78

R1l, (RO)+
6$

#44,R1

48
#33,(RO)+
6$

#56,R1

5%

#34, (RO)+
6$

#60,R1
78
#71,R1
78
#60,R1
#36,R1

A

~ RADIX50 PACKING ROUTINE

FIRST 3 WORDS CONTAIN ASCII CHARS
LAST 2 WORDS WILL RETURN PACKED RADS0
IF ANY CHARACTERS ARE ILLEGAL,

LAST 2 WORDS WILL RETURN 177777

;SAVE REGISTERS

sR5=> ADDRESS OF WORD BLOCK
;RO-> WORD BLOCK
;SAVE POINTER
;STO1l POINTS
; TO END OF CHARS
;GET NEXT BYTE
$7-BIT ASCII
;IS IT SPACE ?
;IF YES,

RAD50=0
STORE IT

H

H

;

H

3IS IT A-Z ?
s1IF YES,

3 GET SIX BITS
3IS IT LEGAL ?
sIF YES,

3 STORE IT

;

;IS IT § ?
s1F YES,

s STORE 33

’

IS IT . ?
sIF YES,

3 STORE 34

H
+IS IT LEGAL ?

$GET DIGIT
s CONVERT TO RADS0

94

bk s 1 S mepmtm et a

R it il SR

< B PR s,

TS AT S (UKD RO T 10 Lo

R A WA 0 Kk P

ST Yo g

. &®
.

MOVB R1,(RO)+ ;STORE IT
; 4
6$: CMP RO, STOL ARE WE DONE ?
BLT 1$;DO IT AGAIN
BR PACK ;ELSE PACK IT
;IF ILLEGAL CHAR,
78: MOV STO1,R1 ;POINT TO PACKED
MOV #177777,(R1)+ ;SET PACKED WORDS
MOV #177777, (R1) s TO 177777
BR REST ; AND RETURN

’
sNOW FIRST 3 WORDS CONTAIN RAD50 CODES
sNEXT PACK REF. ECKHOUSE P. 149

14

PACK: MOV ST00, STO2 ;STO2 POINTS TO
ADD #2,5T02 : THIRD CHAR
MOV ST00,STO3 ;STO3 POINTS TO
ADD #5,ST03 : SIXTH CHAR !
MOV STO0,RO ;RO-> FIRST CHAR]
MOV STO2,R3 ;R3-> THIRD CHAR !
MOV STO1,R4 ;R4=> PACKED WORDS 11

18: CLR R1 +SUM = (

28: CLR R2 sR2=0 ,
MOVB (RO)+,R2 ;GET CHAR h
ADD R2,R1 ; SUM=SUM+CHAR ,
CMP RO,R3 ;DONE 3 CHARS YET ? ¢
BGT 3$;IF NOT,
ASL Rl 3 MULTIPLY :
ASL Rl ; BY 8 i
ASL Rl : DECIMAL i
MOV R1,-(SP) ;SAVE PARTIAL RESULT k
ASL Rl sMULTIPLY BY]
ASL R1 ; 32 DECIMAL TOTAL :
ADD (SP)+,R1 33248 DEC = 50 OCTAL
BR 2% ;sPROCESS NEXT CHAR g

38: MOV R1, (R&)+ $STORE PACKED WORD ‘!
MOV STO3,R3 ;R3-> SIXTH CHAR i
CMP RO, STO1 sDONE ? I
BLT 1$;DO NEXT THREE

REST: MOV (SP)+,R5 $RESTORE REGISTERS
MOV (SP)+,R4
MOV (SP)+,R3
MOV (SP)+,R2
MOV (SP)+,R1
MOV (SP)+,R0
RTS PC ;RETURN TO MAIN PROGRAM

1]

+PAGE

+SBTTL LINEIN - READ LINE FROM TELETYPE
sROUTINE LINEIN/HARTRUM/ 21 JUNE 79
$GETS A LINE FROM THE TELETYPE
sLESS THAN 80 CHARACTERS
$FIRST ARGUMENT IS BUFFER ADDRESS
$SECOND ARGUMENT IS CHARACTER COUNT
3 ON CALL,CONTAINS DESIRED NUMBER

95

i—._,'.....\,‘.

ON RETURN,CONTAINS ACTUAL NUMBER
NOTE -~ <CR> AND <1L¥> ARE NOT STORED

LINEIN:

5
<

RO, -(SP) $SAVE REGISTERS
MOV R1,-(SP)
MOV R2,-(SP)

ADD #2,RS $GET 1ST ARG
MOV (RS)+,R1 s BUFFER ADDR
MOV R5)+, ST00 $BYTE CNT DESIRED
CLR R2 sCOUNT BYTES DONE
18: <TTYIN ${GET CHAR
CMPB #15,R0 $WAS IT <CR> ?
BEQ 1% 3GET THE <LF>
CMPB ° #12,RO sWAS IT <LF> ?
BEQ 23 sALL DONE
CMP STO0,R2 sBUFFER FULL ? .
BEQ 18 R sIGNORE THE CHAR
MOVE RO, (R1)+ $STORE IT
INC R2 sCOUNT THEM BYTES!
BR 1$;DO IT AGAIN
28: MOV R2, sRETURN ACTUAL COUNT
RS
MOV (SP)+,R2 sRESTORE REGISTERS
MOV (SP)+,R1
MOV (SP)+,R0
RTS PC $GO HOME

«PAGE

+SBTTL GETFIL AND PUTFIL ROUTINES
sROUTINES GETFIL AND PUTFIL/HARTRUM/22 JUN 79
sGETFIL COPIES A FILE FROM DISK TO MEMORY
sPUTFIL COPIES A FILE FROM MEMORY TO DISK

FIRST ARGUMENT IS DBLK ADDRESS, O TO DEFAULT
DBLK: DEVICE CODE IN RADSO
FILENAME,FIRST 3, IN RADS0
FILENAME, LAST 3, IN RADSO0
EXTENSION, IN RAD50
DEFAULT 1S FDO:DRAW.PIX
SECOND ARGUEMENT IS 1ST WORD OF FILE BUFFER
*

*NOTE - GETFIL WILL RETURN AN INTEGER NUMBER OF

* 256-WORD BLOCKS. THEREFORE, THE FILE BUFFER
* MUST CONTAIN AN APPROPRIATE NUMBER OF

* 256-WORD (512-BYTE) BLOCKS TO HOLD THE FILE.
*

THIRD ARGUMENT IS # OF WORDS TO TRANSFER
MUST BE SUPPLIED FOR PUTFIL ONLY
GETFIL RETURNS ACTUAL # OF WORDS

sR3 WILL RETURN O IF ERROR OCCURS

]

GETFIL: MOV R1,=~(SP) $SAVE REGISTERS
MOV R2,=(SP)
MV R3,=(SP)

96

e emr——

ot NS

N

AN, PR - N

e

PUTFIL:

DONE:

ERROR:

FILNAM:

MOV R4,=(SP)

ADD #2,R5 $GET DBLK ADDRESS
MOV (R5)+,R2

BNE 1$;SKIP IF USER DEFINED
MOV #FILNAM,R2 :DEFAULT FILENAME
-LOOKUP #STO0, #0,R2 sOPEN FILE @R2 ON CHANNEL 0
BCS ERROR : STO0 IS 3 WORD COMMO BLOCK
+SAVESTATUS #ST010,#0,#STATUS ;GET DIRECTORY
BCS ERROR

CLR R1

MOVB STATUS+5,R1 s1S BLOCK COUNT

BNE ERROR ; >ONE BYTE?

MOVB STATUS+4,R1 $GET BLOCK COUNT

SWAB °~ Rl s WORDCOUNT=256XR 1
+REOPEN #STO10,#0,#STATUS ;REOPEN FILE

BCS ERROR

MOV (R5)+,R3 sGET BUFFER ADDRESS
MOV R1,R5)+ $SAVE WORD COUNT
«READW #STO0O0, #0,R3,R1,#0 ;READ FILE

BCS ERROR

.CLOSE #0 :CLOSE FILE

BCS ERROR

BR DONE ;GET OUT

MOV R1,-(SP) :SAVE REGISTERS

MOV R2,-(SP)

MOV R3,-(SP)

MOV R4,-(SP)

ADD #2,RS $GET DBLK ADDRESS

MOV (R5)+,R2

MOV (R5)+,R3 sGET BUFFER ADDRESS
MOV R5)+,R1 ;GET WORD COUNT
TST R2 sUSER DEFINED FILENAME?
BNE 1$ sIF YES,SKIP

MOV #FILNAM,R2 sDEFAULT FILENAME

MOV R1,R4 ;TO GET BLOCK #

CLRB R4 s+ DIVIDE BY 256

SWAB R4 3 THEN ADD 1

INC R4 3 TO GET IT ALL
+.ENTER #STO00,#0,R2,R4 ;OPEN FILE ON CHANNEL 0
BCS ERROR)

WRITW #ST00,#0,R3,R1,#0 ;WRITE FILE

BCS ERROR

.CLOSE #0 sCLOSE FILE

BCS ERROR

MOV (SP)+,R4 sRESTORE REGISTERS
MOV (SP)+,R3

MOV (SP)+,R2

MOV (SP)+,R1

RTS PC $GO HOME

CLR RS $SET ERROR RETURN
+PRINT #EMSG

BR DONE sAND QUIT

1

+«RADSO /FDO/ $sDEFAULT DBLK

+RAD50 /DRA/

P
.

STATUS:

EMSG:
+-EVEN

»
+PAGE

«WORD ;CHANNEL STATUS WORD
AWORD O :STARTING BLOCK #

JMORD O ;FILE LENGTH IN 256-WORD BLOCKS
«WORD O sUNUSED

.WORD 0 sUNIT # OF DEVICE // 1/0 COUNT
OASCIZ /ERROR...---.../

+«SBTTL PAKNAM - PACK DEV:FILENAME.EXT TO RAD50

;ROUTINE PAKNAM/HARTRUM/13 JULY 79
sPACKS PDP-1! FILENAMES INTO

H FOUR RADIX-50 WORDS.

sUSES ROUTINE PAKG6.

sFIRST ARGUMENT IS ASCII BUFFER.
$SECOND ARGUMENT IS ASCII COUNT.
sTHIRD ARGUMENT IS 4-WORD BUFFER.
3 177777 RETURNED IF ANY ERRORS.

?
PAKNAM: MOV RO,=(SP) $SAVE REGISTERS
MOV R1,-(SP)
MOV R2,=-(SP)
MOV R3,~(SP)
MOV R4,-(SP)
ADD #2,R5 sR5 => ADDR OF ASCII BUFFER
MOV (R5)+,BUFLOC sBUFLOC=->ASCII BUFFER
MOV R5)+, PAKCNT s# OF CHARS
MOV (R5),R2 $R2=>4-WORD ANSWER
MOV (R5) ,ANSWPT $ AND SAVE IT.
MOV #NAMPAK,R1 tR1=> S5=WORD AREA
»
SCAN: CLR COLON $SEARCH ASCII STRING
CLR PERIOD H FOR COLON AND PERIOD
CLR ALL
MOV BUFLOC, RO ;START OF STRING
CLR R3 sCHAR COUNT
1$: INC R3
CMPB #72,(RO) $IS IT ":" 2
BNE 25
INC COLON sYES,SET FLAG
28: CMPB #56, (RO)+ ;IS IT "." ?
BNE 33
INC PERIOD sYES,SET FLAG
38: CMP R3,PAKCNT sALL DONE?
BLT 18
MOV BUFLOC,RO sEND OF STRING SEARCH
CLR PASS $SET PASS 1
CLR R3 $ASCI1 BUFFER COUNT
CIR R4 sFIELD CHAR COUNT
PAKIT: TST COLON sDEVICE CODE?
BNE 18 sYES,IT EXISTS
MOVB #106, (R1)+ sNO COLON,
98
|
illl-nu-Jh--n-nnuL- - - o L L

2%:
22$

48:

44$

58:
68:

78:

MOVB
MOVB
BR

s THIS SECTION PACKS DEV CODE

:]
INC
INC
CMPB
BEQ
CMP
BEQ
MOVB
BR
TSTR
CMP
BEQ
MOVB
INC
BR

e we we We

CLR
CcMP
BGE
TST
BNE
CMPB
BEQ
INC
INC
CMP
BEQ
MOVB
CMP
BEQ
cMP
BGE
BR
INC
INC
CMP
BEQ
MOVB
BR

3

BEQ
MoV
MOV

e R Y THAS L s o e e o n L

#104, (R1)+
#60, (R1)+
3$

R3

R4
#72,(RO)
2%

#4 R4
PAKER1
(RO)+, (R1)+
18

(RO)+
#4,R4

3$

#40, (R1)+
R4

22%

THIS SECTION STORES
3 CHARACTERS OF FILENAME

R4

R3, PAKCNT
5$

ALL

6$

#56, (RO)
6$

R3

R4

#4,R4
PAKER2
(RO)+, (R1)+
R1, #NAMPAK+6
7$ '
R3, PAKCNT
58

448

ALL

R4

R4, #4

78

#40, (R1)+
6$

THIS SECTION PACKS 6 CHARACTERS
BY CALLING PAK6

PASS, #1
8%
#AREA,RS

#NAMPAK , AREA+2

3 USE DEFAULT
3 OF FDO:

$sIS IT ":" ?

;DEV CODE > 3 CHARS l
STORE IT

$GET NEXT :
;SKIP " 1
WERE THERE 3 CHARS? :

sTRAILING BLANKS

s TO FILL IT UP

;DEVICE NAME ONLY?

3$ARE WE DONE?
s (USED ON PASS 2)
sIS IT "." ?
;sEND OF FILENAME

;FILENAME>6 CHARS
;STORE IT
;END OF PAK AREA?

sFLAG FOR BUFFER END
sWERE THERE THREE CHARS ?

sTRAILING BLANKS

;SKIP ON PASS 2
;SET UP
; PARAMETERS

99

JSR PC,PAK6 3sPACK 6 CHARS
CMP NAMPAK+6,#177777;DID IT WORK?

BEQ PAKER3 s WHOOPS |
: MOV NAMPAK+6, (R2)+ ;LOAD FOR
‘ MOV NAMPAK+10, (R2)+ ; RETURN
‘. TST PASS sWHICH PASS ?
: BNE DONE2 ;IF 2, DONE
INC PASS ;PREPARE PASS 2
MOV #NAMPAK,R1
CLR R4
E BR 4$

3 THIS SECTION STORES EXTENSION

b
i 8$: CLR R4 sNOW PAK EXTENSION
TST PERIOD ;WAS THERE ONE ?
BEQ 98 ;FORGET IT !
TSTB (RO)+ sSKIP "." ¥
INC R3 ;
9$: TST ALL ;
BNE 99% ;NO MORE E
INC R3 :
! INC R4 !
CMP R3, PAKCNT sEND OF ASCII ?
BGT 10$ 4
CMP R4, #4 $MORE THAN 3 CHARS? X
BGE 78 ; YES, TRUNCATE ¥
MOVB (RO)+, (R1)+ $STORE CHAR
BR 9$?
99$: INC R4 A
10$: CMP R4, #3 33 CHARS ? ;
BLE 118 }
INC PASS V]
BR 7% ;PAR IT ! - 4
11$: MOVB #40, (R1)+ ;TRAILING BLANKS ‘ .
INC R4 2
BR 10$ s
’ '
sROUTINES |4
» |
PAKER1: .PRINT #EMSG2 ;ERROR ROUTINES '
BR ALLFRR
PAKER2: .PRINT #EMSG3
BR ALLERR
PAKER3: .PRINT #EMSG4
BR ALLERR !
ALLERR: MOV ANSWPT,R2 $R2->ANSWER AREA
u MOV #177777,(R2)+ ;SET ALL
B MOV #177777,(R2)+ ; TO 177777 .

MOV #177777, (R2)+ . |
MoV #177777,(R2) !
BR DONE2

1]
: DONE2: MOV (SP)+,R4 sRESTORE REGISTERS
X MOV (SP)+,R3

100

PERIOD:
ALL:
AREA:

EMSG2:
EMSG3:
EMSG4:

(SP)+,R2
MOV (SP)+,R1
MOV (SP)+,R0
RTS PC
?
s STORAGE
»
«BLKW 6
0
0
0
0
0
0
0
«BLKW 2
]
sMESSAGES

>

.ASCIZ /DEVICE CODE > 3 CHARS/
+.ASCIZ /FILENAME > 6 CHARS/
+.ASCIZ /ERROR IN PAK6 ROUTINE/
+END

101

Appendix G. User Hints and Suggested Modifications for the Graph Drawing

System

G.1 User hints
The following hints should make it easier for you to use the graph

system the way you think it should work.

Runaway redraws: Always assure that you have 1included a quit
command at the end of your figure. The quit command places a "4" at the
end of the data base. Redraw looks for the number 4 as the tail

indicator of the table.

Row to call for a redraw: Once you have entered a picture that
looks fairly good, you may want to redraw it to clear erroneous vectors
(see below about correcting erroneous vectors). To'redraw, quit, then
select option 1 (draw), then type redraw. That’s a lot of work, but the
initialization and file handling 1is easier than allowing the redraw

options without leaving and then reentering the draw module.

How to back up nicely: Suppose you draw a vector that you want to
change. Simply back up with the B command once for each vector until
you arrive at the correct place to make the change. Suggest here that
you back up one more command than necessary, then use the step command
("S"). This will correctly reset the graphics terminal’s origin
pointer. Now type in the replacement vector. The erroneous vector will
still appear, but the replacement vector will be drawn correctly. 1If

redrawm, the erroneous vector will not appear.

Calling GRAPH from other programs: Graph can be called by FORTRAN

or Macro programs in order to plot a graph of calculations or drawings

102

PO I

I S

LA

made within those programs. The table must be prepared in the proper

format (see figure 4-1. Call formats are:

FORTRAN MACRO
CALL FDRAW(TABLE) MOV #TABLE,RS
JSR PC,MDRAW
G.2 Recommendations for Improvement
As I see it, the following are the most obvious areas for

improvement for the interested programmer.

Table Insertions: The data base would be easier to manage - and
complicated changes to the graphical figure would be simpler. - 1if a
figure could be inserted in a particular place in the data base. This
way when translations occur, any changes included at the end of the
drawing session can be excluded from translation if so desired.
Generally speaking, a more logical arrangement of the data base would

result.

Figure Streatching (Scaling): A capability should be built in that
allows for expanding the values of all x or y coordinates relative to a
center or focal point (i.e. add a scale or zoom capability per [12],

chapéer 4).

Figure Translation: The translation capability, although it works
correctly, should be changed to conform to the 3X3 transformation matrix

technique in {12}, chapter 4.

Alpha mode storage economy: There is no reason to require 6 bytes
of storage for a string of alpha-numerics. One byte is sufficlent with

8 non=printable character like escape to terminate the string. Another

103

T

option would be to include a byte counter to indicate the length of the

string. Ounly the first character in each string must have an associated

xy-pair.

Suppression of menu: After a few tries with the system, the
printing of the menu become; a bother. Recommend changing the system so
that the user 1is told that 3 menu will be available at any time by
typing "?". Only at this time should the system display the lengthy

menus or the additional "help" cues.

104

RTINS > PN VI

BIBLIOGRAPHY

le =——=<==, Preliminary Ada Reference Manual. ,1979. ACM SIGPLAN
Notices, Vol 14, Number 6, Part A, Jun 1979

2. , IFIP Congress 1971. "The Translation of GO-TO Programs to While
Programs", 1972.

3. Boehm, Barry W. "Software Engineering”. IEEE C-25 (December 1976),
1226-1241.

4. Chapin, Ned. Flowcharts. Princeton, Auerbach, 1971.

5. Constantine, Larry L., and Yourdon, Edward. Structured Design,
Second Edition. Yourdon Press, 1978.

6. Davis, Thomas M. Letter to the Editor, SIGPLAN Notices. Reference
to the March, 1979 article entitled ‘Full Report of the Flowchart
Committee on ANS Standard X3. 5-1970°

7. Glass, Robert L. "From Pascal to Pebbleman...and Beyond".
Datamation 25, 8 (July 1979), 146-150.

8. Jackson, Glenn A. "Two-Dimensional Grammars and Structured
Programming Languages'. SIGPLAN Notices (February 1979), .

9. Jensen, Kathleen and Wirth, Niklaus. Pascal User Manual and Report,
Second Edition. Springer-Verlag, 1974.

10. Kernighan, Brian W. and Plauger, P.J. The Elements of Programming
Style. McGraw-Hill, 1974.

11. Lanzano, Bernadine C. Program Automated Documentation Methods.
TRW-S§S-70-04, TRW Software Series, November, 1970.

12. Newman, William M. and Sproull, Robert F. Principles of Interactive
Computer Graphics, Second Edition. McGraw-Hill, 1979.

13. Oldehoeft, R. R. Personal Letter. A discussion of structured
flowchart standards prescribed for use at Arizona State University, Sep
21, 1979.

14. Reifer, D. J. "A Glossary of Software Tools and Techniques”.
Computer 10, 7 (July 1977), 55-58. .

15, ======., Structured Analysis and Design Technique. SOFTEC, Inc.,
1975.

16. Van Tassel, Dennie. Program Style, Design, Efficiency, Debugging,
and Testing. Prentice-Hall, 1974,

17. Weiner, Leonard H. Personal Letter. Explanation of the content of
Professor Weiner’s presentation to the ACM Computer Science Conference,
February 1979, Dayton, Ohio.

105

18. Wirth, Niklaus. '"Program Development by Stepwise Refinement".
Comm. ACM 14, 4 (April 1971), 221-227.

19. Wirth, Niklaus. "An Assessment of the Programming Language
Pascal™. IEEE SE-1, 2 (June 1975), 192-198.

20. Woodward, Martin R., Hennell, Michael A. and Hedley, David. A
Measure of Control Flow Complexity in Program Text". IEEE SE-5, 1
(January 1979), 45-46.

106

Tr—

R R A AT IR T N

P

Py T R

¥
s
1
§
i
i
|
t

VITA

James Howard Keller was born on 16 July 1942 in White Plains, New
York. He graduated from high school in White Plains, New York in 1960.
He attended Purdue University and Hunter College until he enlisted in
the US Air Force im August 1963. His enlisted tours included
Bremerhaven, Germany, and Hurlburt Field, Florida. The latter included
an academic assignment to the University of West Florida where he was
awarded the Bachelor of Arts degree in Mathematics in April 1971.
Following commissioning at Officer Training School, he was assigned
administrative management positions at Williams AFB, Arizona and Osan
AB, Korea until September, 1975. He then returned to Williams AFB as a
computer systems programmer/analyst with éhe Air Force Human Resources
Laboratory (Air Force Systems Command). In June, 1§78 he entered the

School of Engineering, Air Force Institute of Technology.
Permanent address: 2094 Auburn Avenue

Dayton, Ohio 45406

e

—UNCEASSTEIRD—
SECURITY CLAsswucrrl:;N OF THIS PAGE (When Dets Enteced)
READ INSTRUCTIONS
[T, REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
L AFIT/GCS/EE/79-T
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
A SYSTEM DESIGN TOOL FOR AUTOMATICALLY MS Thesis

GENERATING FLOWCHARTS AND PREPROCESSING PASCAL

6. PERFORMING OG. REPORT NUMBER

7. AUTHORC(s) 8. CONTRACT OR GRANT NUMBER(s)
James H. Keller
Captain
L 9. PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT. PROJECT, TASK ;
AREA & WORK UNIT NUMBERS ;1
h Air Force Institute of Technology (AFIT-EN) 62204F
' Wright-Patterson AFB, Ohio 45433 20030332
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
. Dec, 1979
Air Force Avionics Laboratory (AFAL/AAF-2)
Wright Patterson AFB, Ohio L5433 - “jﬁ;f"°”‘°‘s

14. MONITORING AGENCY NAME & AODRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
18. SurrLEMEN I ANY NUIED .
Approved for public release; IAW AFR 190-17 N\ . .
JOSEPH P. HIPPS, Maj, UY4AF
Director of Public Affairs
19. KEY WORDS (Continue on reverse side if necessary and identity by block numbert)
Flowcharts
Stepwise Refinement
Automatic Programming
y Computer aided design
Documentation
20. A_!STRACT (Continue on reveras slde if necessary and identify by block number)
i ﬂ The portion of overall system costs attributable to software
. development and maintenance is presently near 50% and 1is continually
- ' .
5_ " increasing. Programmers and analysts are diligently searching for tools S~ S
DD 5" 1473 oiTion oF 1 nov 68 (s omsoLETE . UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

' P _
N e e

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) N

‘.:=) to assist them by automating the analysis, design, and documentation of

software systems.

Flowcharting has lost some of its support as a powerful design tool
due to the need for discipline, patience, and to some degree artistic
talent. Automatic flowcharting, designed for specific 1languages and
machines, provides automatic documentation only. DNo attempt has been

made to link the automatic flowcharting to the compiler-ready code.

This study begins the development of an automatic program design
tool to graphically display and update flowcharts and provide this link
between the flowchart and the system 1t represents. A method of
detailed, automatic design of programs, down to the elemental source
language 1level, 1s proposed which displays graphical flowchart
constructs and provids for iterative, stepwise refinements of the
flowcharts. The final system, ~described by selecting flowchart
constructs and\'coméleting the descriptions of the details of each
construct,{is maintained in a data structure that allows for subsequent

refinement and for optionally producing a compiler~ready source listing.

17\\

UNCLASSIFIED
SECURITY CLASSIFICATION OF Tu'® PAGE(When Data Entered)

