
-7AD-AOBO 418 AIR FORCE INST OF TECH WRIGHT-PATTERSON APRI ON SCHOO--ETC Pig 9/kADA.4 A SYSTEM DESIGN TOOL. Fiol AUTOMATICALLY GE tRATING FLOWCHARITS AN--EYC(U)

UNCLASSIFIED A~rIT/GCS/EE797 M

mliii ommmii

AFIT/GCS/EE/79-7

_4 SYSTE!4 RESIGN TOOL FOR #VTOMATICALLY

~ENERATING FLOWCHARTS AND PREPROCESSING J'ASCAL.

k7)fjrI~~~e~ THESIE ,

~,AFIT/GCS/EE/79-7 Jmes Ac 1 ler

Approved for public release; distribution unlimited

A

APIT/GCS/EE/79-7

A SYST DESIGN TOOL FOR AUTOMATICALLY

GENERATING FLOWCHARTS AND PREPROCESSING PASCAL

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of'

Master of Science

by .

James H. Keller, B.A.

Captain USAF

Graduate Computer Science

December 1979

Approved for public release; distribution unlimited

..

Acknovledgements

I would like first and foremost to express my thanks to the members

of the thesis committee, Professors Ross, Lamont, Rutledge, Borky, and

Black. Their criticisms and recommendations were helpful and

appreciated. Professor Hartrum, in addition to providing routines that

were used in in the graphics handler of chapter 4, was helpful in

guiding me to solutions of several specific problems with the PDP-11

system.

I received much assistance from three individuals associated with

the Air Force Avionics Laboratory: Captain Walter Seward and Mr.

Joseph McClendon, AFAL/AAF-2, and Mr. Neil Eastridge, DEC. Without

their help, little progress would have been made on the data structure

handler of chapter 3.

I am deeply indebted to the assistance offered me by two of my

associates at AFIT, Captains Brian Johnson and Brian Boesch. These two

gifted individuals gave unselfishly of their time to help me transport

source files among alternative demonstration devices and to tutor me in

the use of UCSD Pascal.

Lastly, I am indebted to Bernadine Lanzano, Professor R. Oldehoeft,

and Professor Leonard Weiner for taking time from their busy schedules

to answer my correspondences.

James H. Keller

iii

Table of Contents

1. Introduction 1

1.1 The Choice of an Implementation Language 2
1.2 The Use of Non-Standard Flowcharts 3
1.3 What this Research Demonstrates 3

1.3.1 Generating Source Code by Refining Flowcharts 4
1.3.2 Graphical Debugging 4
1.3.3 Facilitating Software Maintenance 5

1.4 Anticipated Benefits 6
1.4.1 Neat, Up-to-date Flowcharts 6
1.4.2 Debugging 7
1.4.3 Improved Software Structure 7
1.4.4 More Reliable Software 8

1.5 Limitations 8
1.5.1 Familiarization with Pascal 8
1.5.2 System Resources Dependency 9
1.5.3 Limited Pascal Capabilities 10

2. Discussion of Related literature 11

2.1 Available Products for Automating Program Documentation 11
2.2 The Relationship between Flowcharts and Code 12

2.2.1 Automating Flowcharts and Code 12
2.2.2 Conceptualization Relation between Flowcharts and Code 14

2.3 Discussion Concerning Software Maintenance and Reliability 15
2.3.1 Software Maintenance 15
2.3.2 Reliability 16

2.4 Some Fundamental Concepts in Flowcharting 16
2.4.1 Two-Dimensional Grammers 16
2.4.2 Limiting the Use of Constructs 17
2.4.3 A Structured Flowcharting Convention 18

3. The Automatic Generation of Flow Charts and Source Code 20

3.1 The PDP/Tektronix Graphics System 20
3.1.1 Documentation of the Graphics Handler Routines 20
3.1.2 Stored Flowchart Figures 21

3.2 The Data Structure Handler 21
3.2.1 Data Storage Representation 22
3.2.2 Explanation of the Handler's Commands 24

3.2.2.1 Creating a New System Description 25
3.2.2.2 Getting a System Description from Disk 26
3.2.2.3 Editing the System Description 26
3.2.2.4 Saving the Description on Disk 27
3.2.2.5 Producing Pascal Source Output 27
3.2.2.6 Producing Flowchart Drawings 27
3.2.2.7 Exiting the Handler Routine 27

4. The PDP-11/Tektronix Graph Drawing System 28

4.1 Introduction 28
4.2 Equipment 28
4.3 Running the graph system 28

tilt

ti
- .**

4.4 Functional description of the system 29
4.4.1 Draw a new figure 29

4.4.1.1 Vector Drawing Commands 29
4.4.1.2 Figure Handling Commands 30

4.4.2 Draw from disk file 30
4.4.3 Append from disk file 30
4.4.4 Store on disk file 31
4.4.5 Explain "DRAW" commands 32
4.4.6 Exit graph system 32

4.5 System design notes 32
4.6 File control 32
4.7 Acknowledgement 32
4.8 Critique. 33

5. Results and Recommendations 34

5.1 Overall accomplishment 34
5.2 The Graphic Handlers 34

5.2.1 Critique 34
5.2.2 Recommendations 35

5.3 The Data Structure System 35
5.3.1 Critique 36
5.3.2 Recommendations 37

5.4 Recommendations for Further Development 37
5.4.1 Combining the Graphics and Data Structure Handlers 37
5.4.2 Chosing a New Host System 38
5.4.3 Adding a Debug Capability 39

5.5 Recommended Evaluation 40
5.6 Summary of Results and Recommendations 40

Appendix A. Structured Design of the Data Structure Handler 42

Appendix B. Flowcharts of the Data Structure Handler 47

Appendix C. Listing of the DEC-10 Data Structure Handler Program 56

Appendix D. Structured Design of the Graph Drawing System 69

Appendix E. Flowcharts of the Graph Drawing System 73

Appendix F. Lsting of the Graph Drawing System Program 79

Appendix G. User Hints and Suggested Modifications for the Graph 102
Drawing System

G.1 User hints 102
G.2 Recommendations for Improvement 103

iv

List of Figures

Figure 1-1: The If-Then-Else Construct 4
Figure 1-2: Ambiguity of an If-then-if-then-else Construct 8
Figure 2-1: Jackson's Basic Control Structures 17
Figure 2-2: Sample Program Representations 17
Figure 3-1: The If-then-else Construct 21
Figure 3-2: The Do-while Construct 21
Figure 3-3: The Case Construct 21
Figure 3-4: A Data Record in the Data Structure 22
Figure 3-5: Organization of the Data Records 23

V

-- -. - -1 oil

List of Tables

Table 3-1: Storage and Output Representations of Entry Types 23
Table 4-1: Format of Data Table Description 30
Table 4-2: File Control List 32

vi

AFIT/GCS/EE/79-7

Abstract

The portion of overall system costs attributable to software

development and maintenance is presently near 50% and is continually

increasing. Programmers and analysts are diligently searching for tools

to assist them by automating the analysis, design, and documentation of

software systems.

Flowcharting has lost some of its support as a powerful design tool

due to the need for discipline, patience, and to some degree artistic

talent. Automatic flowcharting, designed for specific languages and

machines, provides automatic documentation only. No attempt has been

made to link the automatic flowcharting to the compiler-ready code.

This study begins the development of an automatic program design

tool to graphically display and update flowcharts and provide this link

between the flowchart and the system it represents. A method of

detailed, automatic design of programs, down to the elemental source

language level, is proposed which displays graphical flowchart

constructs and provids for iterative, stepwise refinements of the

flowcharts. The final system, described by selecting flowchart

constructs and completing the descriptions of the details of each

construct, is maintained in a data structure that allows for subsequent

refinement and for optionally producing a compiler-ready source listing.

vii

1. Introduction

Are flowcharts worth the effort in software design? Considerable
1 2

differences of opinion exist. Some programmers believe flowcharts

p only in documenting the final product and thus they use other

tools, such as structured English, to aid them in the design process.

Others believe flowcharts are indispensable in the development of

efficient and structured code. Perhaps a middle-of-the-road position is

reflected by Kernighan and Plauger who comment on program documentation

in general (10]:

"The best documentation for a computer program is a clean
structure. It also helps if the code is well formatted, with
good mnemonic identifiers, labels, and a smattering of
enlightening comments. Flowcharts and program descriptions are
of secondary importance; the only reliable documentation of a
computer program is the code itself. The reason is simple -
whenever there are multiple representations of a program, the
chance for discrepancy exists. If the code is in error,
artistic flowcharts and detailed comments are to no avail."

One of the main objections to developing accurate and detailed

flowcharts may be the frustrations experienced by programmers with

limited artistic talents. If a significant effort is used to create an

early edition of the flowcharts, reluctance rapidly builds up against

redrawing when changes are subsequently necessary. Automating the

process of flowcharting would be extremely beneficial to the programmer.

The initial design would be neat and subsequent redrawings, made

1

The use of term "programmer" in this report is intended to include
the tasks of the "analyst" or "designer"; the terms are considered
synonymous.

2
Although flowcharting is one of several graphical tools for the

design and analysis of systems, only flowcharts will be discussed in
this investigation.

L1-

necessary by the seemingly endless succession of modifications, would be

just as presentable as the first.

The iteration between changing the code and changing the flowchart

is extremely awkward and time consuming. Lanzano commented on the

considerable time wasted in program evolution by the flowchart-to-code-

to-analysis-to-flovchart process 111. She suggested a computer-aided

design approach to developing flowcharts to aid the programmer. The

objective of this investigation is to demonstrate an interactive system

which will aid the programmer in designing flowcharts &t. d will

simultaneously produce a source input file of the same program version.

The proposed system will display to the programmer a menu of flowchart

constructs that can be included in a series of successive, top-dovn

refinements of a flowchart. The refinement of the system thus being

designed will continue until the precise source language statements are

specified. The data structure which keeps track of construct or source

statements will also be used to generate the precise source code for the

program.

This study assumes the programmer will prefer flowcharts as a tool

in the process of designing and coding. Former flowcharters who have

become frustrated with managing the flowcharting effort should find the

automation of flowcharting proposed A considerable help in their work.

1.1 The Choice of an Implementation Language

Once a software system is adequately defined in terms of flowcharts,

the transition to precise language statements should be simple. By

proviaing the'programmr "with "a set of three structured flowchart

constructs, the data structure handler will help guide the programmer

2

--A#

toward the development of highly structured code. Because of this

structuring characteristic, Pascal will be the language used for

demonstration of source language preparation and output. The primary

consideration for this choice is the parallelism between basic

programming constructs (block structures, if-then-else, do-while, and

case constructs) and the Pascal language itsef. Secondarily, Pascal

was chosen because of its degree of acceptance in areas of computing

ranging from hobby computers to the base language for the programming

language Ada (7]. Although Pascal was chosen for the above reasons,

other languages could have been targeted for output with the same

results expected. Only slight modifications of the data structure

handler would be necessary.

1.2 The Use of Non-Standard Flowcharts

Throughout this report, the use of ANSI standard flow charts was

rejected in favor of the flowcharting standards designed and prescribed

for use at Arizona State University by Professors Roman and Oldehoeft

[13]. For use in this investigation, this standard is far superior to

the ANSI standard in two important areas:

1. It is a structured flowcharting system, with a structuro chat
is identical to three main programming constructs of Pascal
(see section 3.1.2), and

2. The flowchart diagrams require much less space on the printed
page - a characteristic that will be extremely helpful when
conceptualizing program composition from flowchart displays.

1.3 What this Research Demonstrates

This system will demonstrate three basic capabilities:

- The capability to generate a completely specified source
program by stepwise refinement of graphically displayed
flowcharts (section 1.3.1)

3

- The capability to provide a method for graphical debugging of
a system (section 1.3.2)

- The capability to provide a simpler and more reliable
end-product documentation that will facilitate software
maintenance (section 1.3.3).

1.3.1 Generating Source Code by Refining Flowcharts

To demonstrate the capability to generate a completely specified

source program by stepwise refinement of flowcharts, a data structure

handler will be constructed that will interact with the programmer,

record his/her menu selections, and display the flowchart as specified

up to that point. The programmer will continue to refine his/her system

of flowcharts until the elemental Pascal statements are all included

within the flowcharts. The data structure will then be comprised of

only two general types of entries - flowchart constructs and Pascal

source statements.

Along with the ability to display flowcharts, the data structure

handler will be designed to list the precise Pascal source statements

properly structured and formatted for subsequent compilation. Figure

1-1 illustrates the two output products of the data structure handler

for a representative flowchart construct. Section 3.2 discusses the

organization and functions of the data structure handler.

1.3.2 Graphical Debugging

With a system that can generate flowcharts and the equivalent Pascal

source instructions, a debug processor could be developed that would

provide valuable assistance to the programmer by displaying the portion

of the flowcharts currently being executed by the Pascal program.

4

*no
Is testl true? if testl true then

4yes begin
BlockI (Blockl);

end
else

begin

Block2
(Block2);

04end;

Flowchart representation Pascal representation

Figure 1-1: The If-Then-Else Construct

3

Highlighting techniques might be employed to follow the execution

through decision paths or through a series of procedure calls or

computations. The debug capability will be discussed in more detail in

section 5.4.3.

1.3.3 Facilitating Software Maintenance

Software maintenance is often the largest element of total computer

system life cycle costs [31. The associated expenditure could be

greatly reduced by employing the proposed software development method.

Because the Pascal source statements will be generated along with the

flowcharts, the final software product will always be accompanied by the

latest version of the flowcharts. The maintenance programmer would no

longer have to study the flowcharts (hoping what he/she sees represents

the latest version) to understand the code prior to making changes to

the code (and changes to the flowcharts?). Instead he/she would study

3
Such techniques would involve changing the graphical representation

of a vector to a different intensity or pattern, such as a diffused
vector or a dotted line.

5

and revise the unified representation of the flowcharts and source code.

This method of maintaining software should be especially valuable in

environments where personnel arrive with diversified backgrounds and

rotate rapidly to new positions.

As interesting and important as such advances in software

maintenance may be, this study will not be able to evaluate the impact

of the software development system on software maintenance. Such a

study would conceivably require years to analyze. Although an

evaluation of the usefulness of this system as a software system

developing tool is feasible as a part of this research (and will be

proposed in chapter 5), no extensive evaluation of software maintenance

will be included.

1.4 Anticipated Benefits

The aim of this study is to design a system that will demonstrate

the capabilities outlined previously and to implement as many of the

capabilities as time will permit. It is expected that the following

benefits could be realized if the system were expanded to include all

the capabilities suggested. A method of verifying these assumed results

is suggested in section 5.5.

1.4.1 Neat, Up-to-date Flowcharts

Every programmer can have at his/her disposal, with minimum effort

and artistic ability, neat and accurate flowcharts before the first line

of code is compiled. Furthermore, the iterative process of expanding

flowcharts in a top-down manner as the design elements become clear can

be accomplished automatically. We can thus eliminate the tedium of

redrawing what has already been established. Perhaps this feature alone

would rekindle interest in using flowcharts.

1.4.2 Debugging

Another characteristic that could significantly decrease the

occurrence of undetected errors is the capability to provide a graphical

debug processor that would operate on the data structure. Whereas most

debug processors operate on code in a linear manner, placing breakpoints

at various locations, then allowing execution to continue line-by-line

until the breakpoint is encountered, a graphical debugger could allow

breakpoints to be established after any flowchart construct or

assignment statement. As a result, programs could be debugged in much

the same manner in which they were developed - in a top-down, modular

fashion. The programmer could specify debugging at the highest levels

of flowcharting, to check interaction among top-level modules, or at the

lowest levels to confirm the smallest details of the system. This

capability will not be designed in this investigation due to time

limitations imposed, but section 5.4.3 will include a discussion of such

a system.

1.4.3 Improved Software Structure

Structured programming has been credited for large gains in program

correctness (16]. By using the flow-chart generator, the programmer

will be restricted to using the basic if-then-else, do-while, and case

constructs. Such restrictions will help assure a greater degree of

software structure in all versions of the design and code. In addition

to the construct restrictions, the process of refining flowcharts will

result in strict adherence to the method of stepwise refinement

advocated by Wirth [18].

7L

1.4.4 More Reliable Software

Software system programmers should expect to produce more reliable

systems by utilizing this flowcharting/coding system. Wirth assesses

Pascal as a naturally reliable programming language [19]. Because the

process of developing flowcharts is constrained in a manner that

parallels Pascal's syntax, greater reliability can be initially

incorporated. Since the programmer selects constructs which will

simultaneously produce a flowchart picture and a block of code as in

figure 1-1, the resulting code should more accurately represent the

programmer's intent. For example, consider the nesting of an if-then

construct within an if-then-else construct. Wirth pointed out that this

may be interpreted ambiguously as an if-then-if-then-else construct: to

which "if-then" does the final "else" belong [91? The syntax of the

Pascal language requires that the word "then" be followed by a compound

statement instead of a statement. The ambiguity is demonstrated by

figure 1-2 which shows a structured representation of both

interpretations. The data structure handler would show the programmer

(via the flowchart display) which else-segment was being filled in at

that time. Referring back to figure 1-1 (page 4), if "Block 2" were an

if-then construct, the programmer would have to explicitly end the void

"else" segment before continuing with the outer else-segment.

1.5 Limitations

The flowcharting and coding system herein proposed is designed in a

manner that includes some limitations that should be evaluated by the

prospective user.

1.5.1 Familiarization with Pascal

This system will be most useful only to those programmers familiar

S

if A-B then if A-B then
if C-D then : 4 if C-D then :- 4
else J :- 5 else J :- 5

J -5 if A- B and C D J - 5 if A B

Figure 1-2: Ambiguity of an If-then-if-then-else Construct

with Pascal or other ALGOL-like computer languages. The data structure

handler calls for specific entries that correspond directly to the

syntax of Pascal or ALGOL, such as completing the Boolean condition to

be tested in an if-then-else statement. Although the interactive

development of flowcharts would be helpful to a FORTRAN programmer, the

source code output would be interspersed with invalid statements. It

should be noted, however, that the data system structure handler could

be easily modified to provide FORTRAN or other source language output.

1.5.2 System Resources Dependency

This system, as implemented, requires access to a Tektronix graphics
4

terminal to develop flowcharts. Although the same abstractions in

flow-chart development and in source file translation could be

accoupliched using standard line printer devices (11], no such

development is attempted in this study.

Single-user access to a small computer with floppy-disk storage and

with at least 16K bytes of central storage is required by this system as

4
The Data Structure Randler, except for certain Pascal cite

implementation peculiarities, is device independent, but the graphics
handlers of chapter 4 relate only to the Tektronix terminal

currently implemented. No discussion of generality or modifiability of

this demonstration system for other computer configurations is offered.

1.5.3 Limited Pascal Capabilities

Due to the complexity of the project, no attempt will be made to

develop a system that will allow all aspects of Pascal to be charted and

translated to source code. Several permissible Pascal constructs, such

as "repeat until", "with", and "goto", are not implemented because (1)

any system can be described without these additions and (2) their

inclusion would not materially contribute to the intent of this study.

10

2. Discussion of Related literature

The mount of literature relating to automation of flowcharts and

code is remarkably scarce. Although Lanzano proposed a system to

automate this process in 1970, no follow up development had been noticed

by 1974 when Dr Thomas E. Bell penned the forward to Lanzano's paper

(1.1. The same seems to be true for the remainder of the decade. The

automation of flowcharts by themselves is a frequent subject, but the

bridge between flowcharts and code seems to be relegated to the

programmer alone without automated assistance.

The following areas of discussion in the literature will be

presented in the following four sections:

- a discussion of automated program documentation (section 2.1)

- a discussion of automating the relationship between flowcharts
and code (section 2.2),

- a discussion of the relationships of maintenance and
reliability of software systems to the total computer system

life cycle (section 2.3)

- some specific background information concerning fundamentals
of flowchart representations of programs (section 2.4).

2.1 Available Products for Automating Program Documentation

The amount of material describing various support programs that

document code by producing flowcharts is impressive. Chapin has

compiled a description of the historical development of over 40 such

processors [4]. Most of these processors were developed for a specific

machine or computer language during the 1960's.

Reifer and Trattner catalogued 70 different automated programmer

aids, one of which is "'Flovcharter', a program used to show in detail

the logical structure of a computer program" (14]. The authors describe

the use of such an aid as a product which represents program flow logic

and which can be compared against the original flowcharts designed to

represent the system. As examples of flowcharters, they offer AUTOFLOW

and FLOWGEN, which are relatively current commercial aids also

catalogued in Chapin.

2.2 The Relationship between Flowcharts and Code

Two main considerations of the relationship between flowcharts and

code are relevent to this thesis:

- Section 2.2.1 discusses the proposals by two senior
programmers/managers, Lanzano of TRW Systems and Davis of
Austin Development Center, to provide a tool that will
automatically produce source code either from the flowchart or
from some other representation of the flow chart.

- Section 2.2.2 discusses tools that programmers employ to
synthesize their code into blocks or constructs.

2.2.1 Automating Flowcharts and Code

Lanzano, in her article referenced in chapter 1, proposed the

question which this research attempts to answer. In her discussion of

computer aided program development, she discusses a proposal to develop

"a system wherein the code and the final flow chart no longer appear as

(separate, iterative] steps in program development" 1I]. Utilizing

computer aided design techniques, a translator would interpret the

geometries of the flow chart into source language, i.e. rectangles into

arithmetic statements, hexagons into calls, diamonds into "if"

statements, etc. Her proposed system required many specific geometries

which were strongly coupled to FORTRAN, including specific symbols for

loops, format statements, declarative statements, subroutine calls,

comments and exits. Graphical output would be to either a graphics

terminal, utilizing line-drawing techniques, or to typewriter terminals,

12

_tilizing square brackets to enclose rectangles, "<" and ">" to enclose

diamonds, etc. Updating of the previous edition of the program being

developed would be accomplished by optical scanning devices, or some

"alternative form of input would be made available". A capability would

be included to produce a source language output for a compiler, such as

punching a source deck.

Lanzano continued in this article to point out some projected

benefits of such a proposal. Diagnostics would alert the programmer

that some flowchart symbols remain unfilled. Type checking could be

performed on data as output statenents are being prepared (a format

could appear as "TIME ####.#I#"). Program reliability would increase

because "pictorial representations are considerably less error prone

than word images". While analysts are normally required to "document

the program", a tedious and laborious task, the proposed system would

produce the desired documentation at any point in the development stage.

An important result would be increased readability and reliability of

the program.

Another opinion about automating flowcharts and code was presented

by Davis in his discussion about ANS Standard X3. 5-1970 flowcharting.

While the major emphasis of his letter concerns specific aspects of the

Standard, he discusses a flowchart he prepared on an incremental plotter

using the IRAFLO system he previously developed (6):

"That system allows creation and storage of flowchart
specifications in symbolic form, so that they may be modified,
plotted, or even (in some hoped-for future) automatically
translated to source language."

Davis further comments that "flowcharting is not dead -- though it is

13

certainly sleeping soundly", and he expresses delight in observing

renewed interest in using flowcharts.

2.2.2 Conceptualization Relation between Flowcharts and Code

This author has long held to a technique of conceptualization with

code that was assumed to be his own private practice. It involved

drawing lines around his code to reflect control flow. Loops could then

be easily identified by the scribbled-in lines, and goto's and

subroutine returns were easier to identify. Although this practice was

followed most frequently with assembly language code in the debugging

stage, it was also common for this author to draw boxes around blocks in

ALGOL or Pascal to isolate disjointed block structures. Such a practice

of drawing control flow may be rather common among programmers, as

ppinted out by Woodward, Hennell and Hedley [20].

"At some stage most Fortran programmers will probably have
laid out their program text in front of them and then proceeded
to draw arrowed lines on one side of the text indicating where a
jump occurs from one line of text to another.... Such a time
honored procedure so-etimes aids the programmer in following the
flow of control through the program."

Although the intent of the authors was to develop a measure of control

flow complexity, their approach does point out a crutch that programmers

frequently reach for, namely, some means of collecting portions of code

into a synthesized module and sketching in control flow relations with

other modules.

Weiner [17] has developed a method of documenting assembly language

code which further supports this contention. He proposes structuring the

comments field in a manner that follows the rules of structured

programming. The result is a column of assembly language code in

14

parallel with a column of comments which resemble ALGOL's structured

programming. This documentation method, similar to the method quoted

above, further implies that programmers are seeking a method of grouping

and relating their linear code. Although structured programming

accomplishes this grouping and relating to some extent, some programmers

apparently want more such help. direction.

2.3 Discussion Concerning Software Maintenance and Reliability

2.3.1 Software Maintenance

Boehm [3] presented an excellent discussion of software maintenance

in 1976. He pointed out that software maintenance, which contributed

less than 10% of the total hardware-software costs in the early 1950's,

increased to over 40% in the 1970's - and he predicts it will exceed 60%

by 1985. It is not clear exactly how one might explain this change in

proportionality: is it solely the gigantic decrease in the cost of

hardware components or is it the complexity of the software systems that

are being designed for extended use? Obviously, a blend of both is

responsible, but the overwhelming conclusion should be that software

maintenance should command a great deal of our attention in hardware and

software design.

The amount of money being spent on software in the Department of

Defense is staggering: $3 billion per year in 1975 [71. If roughly

half of this outlay is for software maintenance, then much effort should

be directed toward providing tools for the software maintenance effort.

Such a tool might be the new programming language Ada which has been

developed to confront the currently defined problems in software

aintenance (and reliability) (1].

15

2.3.2 Reliability

Considerations of reliability are important in the development of

software systems. This investigation will demonstrate a system that

should significantly improve software reliability as a byproduct of the

graphical flowchart approach to program development. Wirth contends

that the programming language Pascal aids the programmer significantly

in the area of software reliability. Certain characteristics of the

language increase clarity, contribute to transparent programming,

distinguish between "types" and "variables", and facilitate file usage.

He carefully distinguishes between "correctness" and "reliability". One

of the requirements for a programming language to be reliable is that it

"must rest on a foundation of simple, flexible, and neatly axiomatized

features, comprising the basic structuring techniques of data and

program" [19].

The claim for increased reliability of the proposed system is not

attributable to Pascal alone. Rather, the process of generating

flowcharts and refining them to the language statement level should

increase reliability because of the requirement to employ top-down

structured programming and stepwise refinement at every step of the

development process.

2.4 Some Fundamental Concepts in Flowcharting

2.4.1 Two-Dimensional Grammers

Jackson has proposed a structured programming language utilizing

two-dimensional grammers [81. The graphical portion of this language

has been used for several years at Oakland University. He points out

that despite the appearance of two-dimensionality in structured

16

I

approaches to current languages, the code is still one-dimensional: the

indentation provides only a superficial added dimension. Jackson

proposes a language comprised of the three constructs illustrated in

figure 2-1 and a pattern recognition process that scans the figures for

syntactical evaluation.

A

a. Sequence Block

Logical Expression

B C

b. If-then-else Block

Logical Expression

D

c. While-do BIock

Figure 2-1: Jackson's Basic Control Structures

Figure 2-2 shows a sample of Jackson's two-dimensional language and an

ALGOL-like equivalent of the same program.

2.4.2 Limiting the Use of Constructs

In Jackson's proposal, only three constructs are used - sequence,

17

READ A BEGIN
J-O READ A;

J :- 0;
a < 65 IF A < 65 THEN

ELSE

-a > 27 WHILE A>27 DO
BEGIN

A -A -4 A:- A - 4;

J-J + 1 J:- J + 1;
END;

WRITE A, J WRITE A,J;
END.

Two-Dimension Sample Program ALGOL-like Equivalent

Figure 2-2: Sample Program Representations

if-then-else, and while-do (figure 2-1). In the proposal of this

investigation, four will be used; Jackson's three, plus a case

construct. Although programmers accustomed to the variety and power of

current higher-order languages may rely on other constructs, this set is

sufficient to represent an alogrithm or any degree of complexity.

Actually, fewer than these are needed in a minimum sufficient set of

constructs. A proof has been offered by Ashcroft and Manna that

establishes that any algorithm can be restructured to an equivalent

algorithm utilizing two constructs: an assignment statement and a while

statement [2).

2.4.3 A Structured Flowcharting Convention

A very simple and useful flowcharting convention was developed by

Professors Oldehoeft and Roman at Arizona State University 113). The

convention provides a technique of structuring the flowchart in a manner

that parallels the recommended programming structure. The structuring

18

of the flowchart is accomplished by disallowing any goto facility and by

providing three basic flowchart constructs, shown in figures 3-1, 3-2,

and 3-3. This convention was required for use in all programming

courses as an aid in teaching program structure prior to developing code

in any language. As a student, this author experienced enormous gains

in program correctness and debugging ease at the expense of a few days

of frustrations with the flowcharting restrictions.

The next chapter discusses the approach used to generate these

structured flowchart constructs, group them into a meaningful program

representation according to the programmer's selections, and control the

output of flowcharts and source code.

1
19

1A

3. The Automatic Generation of Flow Charts and Source Code

Chapters 1 and 2 discussed the motivation for this study and

summarized some of the observations and proposals presented in the

literature. Having noted the lack of automated tools for flowcharting

and producing the related code, an effort is made in this study to

create such a software system. This chapter includes a discussion of

the accomplishments toward the overall objective, along with the

accomplishments that were intended but due to time limitations can now

only be proposed for further study.

3.1 The PDP/Tektronix Graphics System

In order to demonstrate interactive flowchart development as a

system design tool, an initial selection of computer and peripheral

systems had to be made. For reasons of accessibility, the PDP-11/10,
5

along with the Tektronix 4014, was chosen. Both devices were readily

available in the Digital Engineering Laboratory of AFIT, although

software support (such as handler programs for the graphics terminal)

was limited. In order to facilitate development work involving the

graphics terminal, a series of handler programs had to be written.

3.1.1 Documentation of the Graphics Handler Routines

The handler routines were developed to provide simple line drawing

and figure management modules that could be easily accessed by the

data-structure handler described in section 3.2 below. Chapter 4

includes a separate report on the graphics system development which

5
In retrospect, this was a poor choice, predicated on an assumption

that UDSC Pascal would be operational on the PDP-11. See section 5.4.2
for recommended device choices for further studies.

20

began as a separate introductory course and was then expanded for this

investigation.

3.1.2 Stored Flowchart Figures

The graphics system that evolved from the Tektronix handler programs

allows creating, storing and retrieving graphical figures using the

floppy disk for auxiliary storage. The three flowchart construct types

illustrated in figures 3-1, 3-2, and 3-3 were generated and stored on

floppy disk for use by the data structure handler described in section

3.2. For a discussion of why these three constructs were chosen, see

section 2.4.2.

no
Is testl true?- if test1 true then

yes begin
(Block1);

Blockl end
else

I begin
Block2 (Block2);

end;

Flowchart representation Pascal representation

Figure 3-1: The If-then-else Construct

3.2 The Data Structure Handler

The function of the data structure handler is to monitor the system

development with the aim of collecting all of the programmer's

selections into flowcharts or Pascal source code. The data structure

handler controls the process of presenting menus to the designer,

regulates the flowchart symbols, maintains a linked list of the

designer's choices (see figure 3-5), and manages transfers of linked

21
A --

no
is test2 true? While test2 do

begin

procedurel procedurel
L end;

Flowchart representation Pascal representation

Figure 3-2: The Do-while Construct

cha~r
case char of

=a a: procl;
prci b: proc2;

-b c: proc3;
proc2 end;

proc-

Flowchart representation Pascal representation

Figure 3-3: The Case Construct

lists to and from disk storage. The data storage representation will be

discussed next, with a functional explanation in section 3.2.2 of the

options available to the system user.

3.2.1 Data Storage Representation

In the data storage representation, a "record" is a unit made up of

the four elements shown in figure 3-4. These elements correspond to the

description of the components of "logrec" defined in appendix C.

Each of these records is linked together with the previous and

22

Code Link to next
Op record

',Program Foo "%

%
Link to / - Text

previous

record

Figure 3-4: A Data Record in the Data Structure

following record as illustrated in figure 3-5. This figure also shows a

sample program described by representative codes and statements.

Figure 3-5: Organization of the Data Records

Figure 3-5 shows several records containing links, codes and texts.

The codes are precisely the options that may be selected during the

development process discussed in section 3.2.2. "Text" fields are those

entries solicited from the user or those entries which can be

automatically provided by the system. Table 3-0 lists, for each

possible type of entry, the code associated with the entry, the text

field (either the programmer's input or the system's automatic entries),

and the formatting done prior to providing source output.

23

L . ~ ~ ~~L "

Table 3-1: Storage and Output Representations of Entry Types

TYPE OF ENTRY CODE TEXT FIELD OUTPUT (note 1)

Heading H <input> <input>
Statement S <input> <input>
Constant C <input> <input>
Type T <input> <input>
Variable V <input> <input>
Block B "Begin" "Begin"
If-then-else I <input> <input>

(note 2) L "Else" "Else"

While-Do W <input> "While <input> do"
Case C <input> "Case <input> of"
Case list element <input> "'<input>':"
End E "End" "End"

1. Trailing semicolon added when appropriate.
2. If-then-else results in two separate data records.

3.2.2 Explanation of the Handler's Commands

The data structure handler was designed to be totally self

documenting. Therefore, at any time the designer is prompted for input,

the data structure handler provides a menu of the options that are

allowed at that point. The menu is displayed by typing "?". At the

highest level (the executive or entry level) the following options are

displayed.

1. Create a new system description.

2. Get a system description from disk storage.

3. Edit old system description.

4. Save the current description on disk storage.

5. Produce Pascal source output.

6. Produce flowchart drawing.

7. Exit - return to monitor.

24

Each of these choices will be expanded in the following paragraphs.

Expansions beyond this next level are not included in this report due to

the extent of laborious detail. Interested readers can find a

representation of calling priorities and module relationships in the

structured design offered in appendix A or in the flowcharts included in

appendix B. Additionally, the code is included in appendix C.

3.2.2.1 Creating a New System Description

This option allows the programmer to begin designing his system

"from scratch". It assumes nothing is pre-established - similar to the

programmer looking at a blank coding form. The options allowed at this

point (again, available to the programmer by typing "?") include:

- Heading

- Block

- Constant definition

- Type definition

- Variable declaration

- Statement

The "block" option has its own menu and includes options to select any

of the three flowchart constructs (if-then-else, do-while, and case)

depicted in figures 3-1 through 3-3. In turn, each of the three

constructs allows for termination of the construct or recursively

selecting either another "block" or any of the other three constructs.

For a more complete illustration of the options and a representation of

their relative calling hierarchy, see appendix A.

With the capabilities thus far described, a designer could generate

a Pascal program of any degree of sophistication. Although certain

25

....... ------

Pascal features were not implemented into specific constructs (see

section 1.5.3), all others can be directly implemented with these

options along with the "statement" option which allows straight

(unmodified) insertion of text. More specifically, comment lines,

labels, and even goto's can be introduced into the system. Rowever, by

inserting goto's or other structures by using the "statement" option,

the code will appear without its associated control flow in the

flowchart representation.

3.2.2.2 Getting a System Description from Disk

The second option listed in the preliminary menu is to recall a

system that was previously developed and then stored on disk. By

selecting this option, the designer will recall the file defined during

the system load process for the DEC-10 system (the user defines INPUT

and OUTPUT prior to execution) or the file defined by the RESET command

for the LSI-11 system. The content of the file would include the second

and third columns of table 3-0 for each entry previously selected and

each selection (record) would be linked to the previous and next record

as they are read in. See figure 3-5 for a representation of the data

and linkages.

3.2.2.3 Editing the System Description

Once a previous system description is recalled from disk, or at some

time during the initial creation stage, editing may be performed on the

current data structure. Several editing options have been included to

allow altering specific records in the data structure. The following

record-oriented editing commands are available.

- Insert

26

- Delete

- Append

- Replace

- Backup

3.2.2.4 Saving the Description on Disk

When the designer has completed creating and editing a system

description, he/she can select the option to save the data structure on

disk. As was the case with getting a description from disk, the only

file option for saving must be the file defined in response to the

system's "OUTPUT" query at load time (DEC-10), or the file defined by

the REWRITE command (LSI-11).

3.2.2.5 Producing Pascal Source Output

This option allows the system to produce compiler-ready source code

from the system described in the data structure. For the demonstration

purposes of this study, the output is directed to the terminal rather

than another disk file. When this option is chosen, indenting is

automatically provided and punctuation (semicolons and periods) are

properly inserted. The proper Pascal reserved words are inserted in

their places within each of the three constructs.

3.2.2.6 Producing Flowchart Drawings

This option was not developed, but was included as a stub for later

expansion.

3.2.2.7 Exiting the Handler Routine

By selecting this option, return to the system monitor is provided.

No checking is done for saving files, thus "save" needs to be considered

prior to exiting.

27

4. The PDP-11/Tektronix Graph Drawing System

This chapter discusses the basic graphics handler routines and

figure management modules that were developed to provide easier

utilization of the graphics terminal for this investigation and other

laboratory uses. The data structure handler, discussed in section 3.2,

can be augmented to utilize these modules for displaying the flowchart

figures. The remainder of this chapter was originally written and

submitted as a separate laboratory study.

4.1 Introduction

The objective of this software project was to develop a set of

software modules that would facilitate creating graphical figures in the

AFIT Microprocessor Laboratory. The driving commands required by the

graphic terminal had to be interfaced with an understandable set of user

instructions; manipulating tools had to be made available so that the

user could alter the configuration of his graphical creation; and a

capability had to be added that would allow the user to store his newly

created figure on floppy disk and to recall the figure from the disk for

display or alteration4

4.2 Equ:pment

The minicomputer used for this project was the PDP-11 model 10, with

a Tektronix model 4014 graphics display terminal.

4.3 Running the graph system

The system is initiated by loading the floppy disk (laboratory

control #65-22) in disk drive #0 and typing "RUN GRAPH". The terminal

will immediately list the options itemized in 4.4 below.

28

4.4 Functional description of the system

The graphic system is mostly self-documenting, i.e. help is provided

via either an executive command menu or a draw command menu. The

executive menu describes which functions of the graph system may be

activated; the draw command menu explains each draw command allowed in

the "draw" mode. Upon entering the system six options, each of which

will be expanded in the following paragraphs, are displayed.

1. Draw

2. Retrieve from disk and initialize

3. Retrieve from disk and append

4. Store present figure on disk

5. Help with draw command options

6. Exit nicely

4.4.1 Draw a new figure

Upon choosing option 1, the computer forces the terminal into an

initialization sequence which erases the screen, rings a bell, and

readies the terminal for graphical input. Two cross-hairs appear. The

intersection defines an xy-pair to which a vector is drawn after typing

in the appropriate character. The valid characters that may be used to

draw pictures, or to alter them (itemized by selecting option 5) are the

following.

4.4o1.1 Vector Drawing Commands

29

A Insert alpha string (terminate string with

"ESC")

M Move curser to new cross-hair position (XHP)

P Draw a point at new XHP

D Draw a solid line to new XHP

Draw a dotted line to new XHP

Draw a dashed line to new XHP

B Back up to previous vector

Q Quit drawing - mark end of picture table in
core

4.4.1.2 Figure Handling Commands

B Back up to previous vector

R Redraw picture from present core table pointer

to quit entry

S Step one vector (redraw, but draw one vector at
a time)

T Translate geometrically to new XHP (all
remaining vectors) - requires striking a second
character after cross-hairs are positioned as
desired.

Q Quit - mark end of table - exit draw mode

4.4.2 Draw from disk file

By selecting option 2, the computer will search for a file with the

device, name, and extension provided by the user. The table of xy-pairs

and line types (see table 4-1) will then be copied from disk into core

at the address of "TBLE" in the main program, overwriting any previous

information stored there.

4.4.3 Append from disk file

Option 3 performs the same function as option 2, but the new figure

30

Table 4-1: Format of Data Table Description

Location in "TBLE" Contents

WORD 0 X(O) VALUE

WORD 1 Y(O) VALUE

WORD 2 MODE(O)

WORD 3 X(1) VALUE

WORD 4 Y(1) VALUE

WORD 5 MODE(1)

WORD 3n-3 X(n) VALUE

WORD 3n-2 Y(n) VALUE

WORD 3n-1 MODE (n)

WORD 3n X(n+l) VALUE

WORD 3n+1 Y(n+l) VALUE

WORD 3n+2 4 (quit)

from disk is appended onto tl- one already in core. The previous "quit"

mark is overwritten with the first move or draw of the disk figure.

4.4.4 Store on disk file

By selecting option 4, the table of xy-pairs and the line types

corresponding to the figure which has been created thus far will be

stored on the specified disk according to the file name specified by the

user. Previous information in that table will be destroyed.

31

IJ

4.4.5 Explain "DRAW" commands

If option 5 Is selected, a menu of all available draw commands is

displayed with a terse explanation of what they accomplish. The user is

then asked if he/she wants more information. If the reply is yes, the

program asks which command is to be clarified. The system then

elaborates on this command.

4.4.6 Exit graph system

Option 6 allows for the orderly termination of the program and for

returning control to the system monitor.

4.5 System design notes

The detailed assembly language code is included as appendix F. Some

user hints and recommendations for use of the system - and for system

enhancements for the enterprising reader - are included in appendix G.

The structure diagram of the graph system is included in appendix D.

The flowcharts are in appendix E.

4.6 File control

Figure 4-2 contains a summary of the location of source, relocatable

(object), and executable files relevant to the development of this

system. For the DEC10 system, files may be found under

programmer/project number [6664,146].

4.7 Acknowledgement

Most of the modules to control graphic terminal states and vector

drawing were contributed by Professor Ross. Professor Hartrum provided

the subroutine to pack file names in radix-50 format and to handle

information exchange between the disks and core.

32

Table 4-2: File Control List

FILE CONTENT NAME DISK

Source Program GRAPH.MAC 65-24
MSGS.MAC 65-24
TOMLIB.MAC 65-24

Source backup, version n GRn.MAC 65-22
Compiled Object Code GRAPH.OBJ 65-24
Executable Code GRAPH.SAV 65-22
Available Pictures filnam.PIX 65-23
Documentation for Upgrading HINTS.MSS DEC10
Text for this lab report LABDOC.MSS DEC10

4.8 Critique

Several not-so-difficult modifications would greatly enhance the

capability of this system. These changes are outlined in appendix G.

With these changes the system would very nicely handle such jobs as

electronic circuit design or flowcharting.

This system is severely limited by not having the capability to

produce hard copies of the graphic drawings. Priority should be given

to acquiring a hard copy device to print copies of the graphic display's

output.

The shared printer is difficult to use. The procedure of unplugging

the cable connected to the other lab devices and plugging in the correct

one is time consuming and the cable is difficult to reach. The cable's

plug is subject to damage when it is pulled from the printer because it

is so difficult to access. Recommend a box be constructed that will

allow dial-type switching among computers connected to the line printer.

33

I ',

5. Results and Recommendations

In the previous two chapters, the software systems were described

that managed the data structure (chapter 3) and provided an interface to

the graphics terminal (chapter 4). This chapter will present a critique

of some of the detailed accomplishments and recommendations for further

development of the overall system.

5.1 Overall accomplishment

The systems discussed in chapter 4 demonstrate that a system design

tool could be developed that would allow creating Pascal programs by

successively refining flowcharts. Although the proposed system was not

developed enough to perform an actual demonstration, sufficient progress

was made to point to the structure and content of such a system and to

encourage continued development of the system in a follow-on study.

5.2 The Graphic Handlers

The handler routines for the PDP-11/Tektronix 4014 system were

described in chapter 4 and are included as appendix F. These routines

provide a good facility for drawing flowcharts and for storing,
6

recalling and modifying these flowcharts.)

5.2.1 Critique

A detailed critique of the graphic handlers is presented in section

4.8 and appendix G.

6
Although the handlers were designed primarily to produce flowcharts,

they also perform the same operations for any graphical figure, manually
or automatically drawn (drawn with the output of a separate computing
routine.

34

5.2.2 Recommendations

The structure of the handler programs, as can be verified by
7

studying the structure charts in appendix D, is awkward. Three people

contributed to the final product, each with slightly different

intentions. The handler routines should be revised if any of the

following applies:

- Pascal is implemented on the PDP-11 (the redesign to implement
graphic control using handlers written in Pascal would be
extremely simple and flexible)

- The graphic handlers are transported to another device, such
as the DEC 10 (the modifications needed for the new system
might approach the effort required to redesign and rewrite)

- Considerably more modifications of the graphic handlers are
anticipated.

Additional recommendations pertaining to the graphics handlers are

included in appendix G.

5.3 The Data Structure System

The data structure handlers (chapter 3 and appendix C) provide a

simple interface between the programmer/designer and the design system.

The interface provides a medium in its data structure to describe the

system created by the programmer/designer; stores, retrieves, and

manages modification of this description; and produces from the data

structure description a compiler-ready source code listing.

7
These structure charts were constructed according to the guide lines

of Constantine and Yourdan who also explain methods of analysing
structure to detect poor design (5].

35

5.3.1 Critique

The data structure handler was designed much more carefully than the

graphics handlers and should be simple to increase capabilities or alter

present features.

The system provides a chain of prompt messages that gives the

programmer a history of where he has been in his design process. For

instance, if a programmer selects the options "create", "block", and

"while-do", the next prompt will be "CreBlkWdo>", thus confirming that

the programmer is building the "while-do" construct. If one of the

choices in the while-do construct is an if-then-else statement, the next

prompt will be "CreBlkWdolte". Although this capability was originally

added as an aid in designing the data structure handler, it has proved

to be a valuable tool for reminding the programmer where he is in the

design process.

Each statement that is to be entered within a construct must be

called for by selecting the "s" option. This action is easy to forget.

When the system expects an option entry, it has frequently read the text

of the entry instead, thus errors or inconveniences are frequently

introduced. The option is not absolutely essential in the design of the

system, but the only alternative would be a complex parsing system to

identify each construct. The choice was therefore made to use option

characters and suffer the trade-off requirements of patience and extra

editing.

The editor provides only limited capabilities to change the data

file. Changes can only be made one line at a time. Since programmers

frequently delete or add entire blocks or constructs, the capabilities

36

10

of the edito- do not closely match the needs of the user.

5.3.2 Recommendations

The most immediate - and simple - alteration would be to allow for

mass addition or deletion of blocks or constructs of code within the

editor. This might be accomplished by differentiating between upper and

lower case options for construct vs. line changes.

More comrlex changes could be made to develop a useful Pascal

preprocessing capability. The system could detect unmatched "begin" and

"end" statements (although it would be nearly impossible for such a

situation to result when using the data structure handler).

Additionally, the system could perform scanning to determine undeclared

variables prior to submitting the code to the compiler.

5.4 Recommendations for Further Development

While the previous paragraphs discuss relatively simple changes to

the data structure handler only, the following recommendations pertain

to further development of the flowchart generating system as a whole.

5.4.1 Combining the Graphics and Data Structure Handlers

In order to adequately demonstrate a design tool that could generate

flowcharts and source code, the Data Structure Handler must be able to

manage the graphics system. This capability was included in the design

via modules that would allow external programs to call the graphic

handlers and perform drawing of an externally stored data structure

(modules FRDAW AND MDRAW). This was not completed in this investigation

due to the limitation of time and several erroneous assumptions. Some

of these assumptions were

37

- Pascal would be available on the PDP-11 system during the
development of this investigation

- The investigator's method of dual backups of critical files
would be sufficient to withstand any reasonable attack by the
operating system

- If the PDP-11 would not suffice for the project, the software
could be transported to the LSI-11 or the DEC-10 with relative
ease*

Because of these errors, the two handler systems were never implemented

on the same computer. The graphics handlers were completed on the

PDP-11 while the data structure handler was completed on the DEC-10.

Thus, to further study the usefulness of the proposed system, both

handlers must be implemented on one system. Appropriate calls from with

the data structure handler should perform the drawing of the selected

constructs. With a terminal with a large display, the interactive

exchanges between the program and the programmer can be shown on one

side of the screen, while the flowchart can be constructed automatically

on the other. For smaller display devices, the flowchart may be

postponed until the user opts to draw.

The nesting of flowcharts might best be managed by using a naming

convention similar to the Structured Analysis and Design Technique (15].

When space limitation on the screen would prevent displaying the current

construct, this construct would be represented in the embedding

flowchart as a block reference. Block reference names, such as AI-5,

would identify flowchart-5 (a block or construct) as a subunit or

descendant of Al.

5.4.2 Chosing a New Host System

Among the systems that were available for this investigation, the

38

following substantiated choices are recommended in the order listed.

- DEC-10 (AF Avionics Laboratory) with DECGRAPHIC11 or other
graphic system

* All software included in this investigation is catalogued

on this system

* Pascal is well documented and supported

* A cross-assembler, MACY11, is available for RT-11

modules.

- LSI-11 with Tektronix 4014 terminal

* Although this system may be reserved for projects

requiring embedded systems, this would be the next best
choice

* UCSD Pascal is not as well implemented as on the DEC-10

* A Separate version of the data structure handler was
developed for the LSI-11 and is available on floppy disk
number 34-64

* Line printer capabilities on this system are very
limited.

- PDP-11 with Tektronix 4014 terminal

* This is not a reasonable alternative if Pascal is not
implemented on the PDP-11

* Neither version of the data structure handler is
available for this system.

5.4.3 Adding a Debug Capability

This investigator believes that a great potential may exist in the

form of a debug processor built around the flowcharting system. If a

programmer designs his system using successively refined flowcharts and

compiles the output code of the same system, it would be extremely

helpful for him to be able to follow the execution of his program

39

directly on the flow charts. A similar capability exists today on many

computer systems, utilizing control facilities of a "trace" processor.

The trace processor maintains a list of which variables the programmer

wants dumped or which modules traced and allows execution of the program

to continue to a recognizable place in the code (i.e. a specific line

number). In a similar manner, execution of the program could be allowed

up to a certain block or construct, and the programmer could follow

highlighting traces of the program's progress. If an incorrect branch

is taken, the programmer could immediately spot where it occurred and

what logic error caused it. Control variables or Boolean operators

could be changed to test the correction. An option within the debug

processor could call for all test changes to be applied to the input

data structure, thus updating the flowcharts and the source input code

to match the debug-tested version.

5.5 Recommended Evaluation

The proof of any claim of usefulness of this software design tool

lies in a thorough evaluation. A separate investigation, when the above

enhancements are complete, should be made with an organization which

produces a large volume of Pascal (or ALGOL). Such a study should be K
aimed at the general features of software engineering referred to in

this investigation, i.e., structure, reliability, and software

maintenance.

5.6 Summary of Results and Recommendations

The concept of developing detailed software by stepwise refinement

of flowcharts is feasible and attainable even though the results of the

work put into this investigation does not clearly demonstrate it. A

follow-on thesis should advance the development of this investigation as

40

1I

outlined above. At the completion of this development, the system

should be thoroughly evaluated to assess its effect on software

structure, reliability, and maintainability.

41

.....I

"E-

IA

's-d.

o 4.

41>

93

pq

E-4
z

E--4
pq E-4

E-4

4

E-4
rW

X
E-4

E

rx4 r
pq

w
to

cnd
E-4

ca

E-41

L --- - - -- -- -- --

PCI

ba

E-
UF 4-1

C) Ef)
.1 0
W

ca
iz
rl

ril

rl
t

E-

E-
z c)

z
ba

z
H

E-1
E-4 F5

z0

WwL4wmwm&wmAm I JONAM&.

Appendix B. Flowcharts of the Data Structure Handler

St rt

-Hn
QuitExec-O?

Exe Mnu

CreateNew

-G
GetFile

SaveFile

-E
Edi tOld

r-,-P
PutCode

-D
DrawFC

1-X
QuitE ec I

e~i t

PutTxt

p .code opt
p .txt -txtin

return

47

ai hm Addiiimli

CreatNew

QuitCre -0

11 n
QuitCre -0?

tracer('Cre")

e et 0 pt

CreateMenu

r - -S ,C, V.H, K
Statement

-B
Block

WX
QuitC e-0

exit

48

EditOld

'4
QuitEdit -0

QuitEdit - 0?

tracer('Edt')

AGetODt

EditMenu

-D
Delete

Insert

-A
Append

-P
FindP

Replace
r

Rep lace

-Q
QuitEdit 1

return

Delete

4
FindP

p <> nil?

49

Insert

Print "insert before"
FindP
GetTxt

Insert

return

Append

p 4-head

4n
p-.next <> nil ?

pyp next

oldp-p-.prev

CreateNew

4
re turn

Enter

alit p
new(p)

p .Code -opt
P .text -txt
p .next - nil
p-.prev -oldp

I n

oldp -nil ?

Eild- next p
oldp - p

return

0

Depart

I n1

(p-.prev -nil) AND (p-.next -nil) ?

oldp U,
head -nil
p-nil

(p-.prev -nil) AND (p-.next <> nil)?

oldp - nil
p .next-.prev - nil

head - p-.next
p -p .next

p .next ~> nil ?

oldp-.next = p-.next
p .next-.prev - oldp

p -oldp-.next

oldp-.next = nil
p -oldp

oldp = p-.prev

return

Replace

*n
p <> nil ?

Ge tTxt
PutTxt

Retr

Insert

new(p)

4n
oldp <> nil ?

p-.next -oldp-.next
p- .prev - oldp
oldp-.next -p

p .next-.prev p

head-.prev -p
p .next -head
p- .prev - nil

head - p

Putaxt

Re turn

If-Then-Else

tracer('Ite')
write "'if' test:"'

read txtin
enter

opt - I
write "'then' block"

block
opt - Ib'

write "'else' block"
block

return

Wh ileDo

tracer(C'Wdo)
write "'while' text:"

read txtin
enter

opt m V

write "while-do block:"
opt W I

block

return

52

CLi stBlock

Write "Case label list"
read txtin:i (*count chars*)

n

opt
enter

CreateNew
Clistilock

return

CaseOf

Tracer('Cas')
write "case expresseion:"

read txtin
enter

CLi stBlock

return

53

$

PutCode

tab'- 0
p head

p <> nil ?

y

.c ode

tab = tab + 1
indent

write(p-.txt)

indent
write("while '",p-.txt," do")

I =i

indent
write ("if ",p-.txt," then")

-=I

indent
write jtxt)

indent
write("case :',txt," of")

indent

write ("",,txt,"' :")
In -s,h,t,v,k

indent
n

p .next .code <> 1 ?

write (p-. txt," ;"1)
FI

L write(-.txt0

-e

p-.next nil ?

wite(qxt,")

F-rite txt,".")

tab = tab - 1

return

54

Appendix C. Listing of the DEC-10 Data Structure Handler Program

Program DataStructureHandler(Input,Output);

conat linelength - 40;
type link - -logrec;

str - packed array (1..linelength] of char;
prompt - packed array (1..31 of char;
logrec - record

code : char;
txt : str;

prey : link;
next : link

end;
var head, p, oldp : link;

txtin : str;
opt : char;

i,kquitExec : integer;
tracer : array [1..15] of prompt;
nextpr : prompt;

ExcCre,Blk,
Ite,Wdo.Cas,
Edt,Rpl,Sav,Get : prompt;

procedure Intro;
begin

writeln(tty,' <<< DSH >W);

writeln(tty,' Data Structure Handler');
writeln(tty,");
writeln(tty,'For a menu, type "?" after the prompt "")
vriteln(tty,");

(Set up prompt equates C

Exc :-'Exc'; dre :-'Cre'; Blk :-'Elk*; Ite :-'Ite';
Udo :-'Wdo'; Cas :-'Cas'; Edt :-'Edt'; Rpl :-'Rpl';
5ev :-'Say'; Get :-'Get';
end;

56

procedure CreateMenu;
begin
writeln(tty,'[H] Reading (K] Constant definition');
writeln(tty,'(B] Block [T] Type definition');
vriteln(tty,'[S] Statement [V] Variable declaration');
vriteln(tty,' [XI exit to Exec');
end;

procedure ExecMenu;
begin

vriteln(tty,'[C] Create new system description.');
writeln(tty,'[G] Get a system description from device.');
vriteln(tty,'[E] Edit old system description.');
vriteln(tty,'[S] Save the current description on device.');
writeln(tty,'[P] Produce Pascal source output.');
vriteln(tty,'[F] Produce flowchart drawing.');
writeln(tty,'[X] Exit - return to monitor.');

end;

procedure EditMenu;
begin
writeln(tty,'[D] Delete a record [A] Append to list');
writeln(tty,'[I] Insert a record [R] Replace a record');
writeln(tty,'[E] Erase previous record [X] Exit EditOld');
end;

procedure BlockMenu;
begin
writeln(tty,'[I] If-then-else construct [S] Statement');
vriteln(tty,'[W While-Do construct [C] Case construct');
writeln(tty,'[B Back up one record [E] End of Block');
end;

procedure TypeMenu;
begin
vriteln(tty,'[V] Variable Declaration CC] Constant');
vriteln(tty,'[T] Type definition [S] Statement');
vriteln(tty,' [El End Type block');
end;

57

(Solicit and read text *

procedure GetTxt;
begin
writeln(tty,'text:');
readln(tty);
read(tty,txtini)
end;

(Load opt and txtin into their pointer file positions *

procedure PutTit;
begin
p-.code :opt;

end;

(Read one char -assign it to 'opt' *

function bgn GetOpt: char;

read ln(tty);
read (tty,opt);
getopt:-opt
end;

(walk through the list until the desired record is found*)
(return p-nil if end of list*)

procedure FindP;

var ans : char;V
begin
ans :- 'n';
p :- head;
while (p<> nil) and ((ans -'n') or Cans -'))do r

begin
writeln(tty,p .code,' ',p .txt,' ...is this it? (y/n]');
readln(tty);
read(tty,ans);
if ans <> 'y' then p :- p-*next

~ I end;
if p <> nil then

oldp :- p-.pre-v
else vriteln(tty,'end of list found');
end;

(Appends incoming text string (a prompt) to prompt vector *
(and puts prompt vector into 1/0 Buffer *

Procedure PutTracer(nextpr : prompt);
var j :integer;

begin
k :- k + 1;
tracer(kI :- nextpr;
j :- 1;

begin

vrite(tty,tracer(J I);
j :- J + 1;
end;

writeln(tty,'>');
end;

59

(*Calls PutTxt, gets new pointer, fixes prev next linkages *

procedure enter;
beg in
oldp :P;

new(p); (*point to new record*)
PutTit;
p .next :nil;
p .prev :oldp;
if oldp -nil then

head :- p
else 'oldp-.next :- p;
end;

(Strikes a linked record from the file *

procedure depart;
begin
if (p^.prev-nil) and (p-.next-nil) then

begin (*case only one record exists *
oldp :-nil;
head :-nil;
p :- nil
end

else if (p-.prev-nil) and (p-.next<>nil) then
begin (* two records exist; delete 1st *
oldp :-nil;
p-.next-.prev :- nil;
head :- p-.next;
p :- p-.next
end

else if p-.next <> nil then (*implied p-.prev<>nil*)
begin (*comfortably in the middle *
oldp-.next :- p-.next;
p .next-.prev :- oldp;
p :- oldp-.next
end

else
begin (Clast record in list*)
oldp-.next :- nil;
p :- oldp;
oldp :- p-.prev
end

end;

procedure Insert;
begin
nev(p);
if oldp <> nil then

begin (Cnormal Insert in list *
p .next :oldp^.next;
p .prev :-oldp;

60

oldp-.next :-p;
p-.fext-.prev :- p
end

else
begin (*p points to first list elt *
head-.prev :- p;
p-.next :-head;
p-.prev :-nil;
head :- p
end;

PutTxt;
end;

procedure replace;

begin
if p <> nil then

begin
PutTracer(Rpl);
p .code :- getopt; (*revise option entry*)
GetTxt;

j PutTxt;
k :- k-i;
end;

end;

61

procedure Statement;
K begin

GetTxt;
enter;
end;

procedure CreateNew; forward;
procedure Block; forward;

procedure If ThenElse;
begin
PutTracer CIte) ;
vrite(tty,"'if"';
GetTxt;

enter; 1
vriteln(tty,"'then" block:');

opt :- 'b';
Block; (*put a whole subprogram here, maybe*)
opt :- '1'; (*option to flag the solo "else" in output*)
txtin :- 'else
enter;
writeln(tty,"'else" block:>');
opt :- ''

Block; again

end;

procedure WhileDo;
begin
PutTracer(Wdo);
write(tty,"'While"')
GetTxt;
enter;
writeln~tty,"'While-do" block:');
Block;
k :- k-i;
end;

procedure Case~f;

procedure CList~lock;
var i :integer;

begin
vriteln(tty,'case label list:');
readln(tty);;
read(tty,txtin:i);
if i > 0 then

begin
opt :': (*flag each case label list*)
enter;
Block;
CListBlock;
end;

and; (*Exit if a blank line is typed C

62

I
begin
PutTracer(Cas);
writeln(tty,'>');
write(tty,'"Case" <expression> ");
GetTxt;
enter;
CListBlock;
k :- k-1;
end;

procedure EndBlock;
begin
txtin :- *end
enter;
end;

procedure Block;
var QuitBlock : integer;

begin
opt :- 'b'; (* force new option to 'b' *)
txtin :-'begin ";
enter;
QuitBlock :- 0;
While QuitBlock 0 do

begin
PutTracer(Blk);
case getopt of

's : statement;
"w" : WhileDo;
dip: IfThenElse;

'c': CaseOf;
'e': QuitBlock :- 1;
"?": BlockMenu;
end; (* Note UCSD and Dec 10 non-standard *)

(* handling of undefined options
k :- k-i;
end;

EndBlock;
end;

63

procedure CreateNev;
var quitCre :integer;

begin
quitCre :-0;
wehile quitCre - 0 do

begin
PutTracer(Cre);
case getopt of

v?' : CreateMenu;
"b": Block;
't * .sp,pkv,'vp,vhv: Statement;
': quitCre I-

end;
k :- k-i;
end

end;

Procedure GetFile;
begin
p :- nil;
While not eof(input) do

begin
readln(input,opt,txtin);
enter;
end;

end;

procedure EditOld;I
var quitEdit :integer;

begin
quitEdit :-0;
While quitEdit - 0 do

begin
PutTracer(Edt);
case. getopt of

'?": EditMenu;
dp: begin

FindP;
if p<>nil then Depart;
end;

'i: begin
writeln(tty,'Insert before ..)

FindP;
writeln(tty,'new option:');
opt :- getopt;
GetTxt;
Insert;
end;

'a': begin
p :- head;
while p-.next<>nil do p:-p-.next;
oldp :- p-.prev;
CreateNew;
end;

64.

'r: begin
FindP;
replace;
end;

vbv: replace; (*no nev(p)*)
0 x': quitEdit -1

end;
k :-k-i;
end

end;A

65

(Save this data structure on floppy disk *

procedure SaveFile;
begin
PutTracer(Sav);
p :- head;
while p <> nil do

begin

p :- p- .next;
end;

p :-head; (*reset it for next*)
k :-k-1;
end;

(Put ASCII card images out to TTY *

procedure PutCode;
const tabval -8;

var tab : integer;

procedure Indent;
var j : integer;

begin
j :- tab;
while J>O do

begin
write(tty,' ':8);
j :- j -1
end;

end;.

begin
tab :- 0;
p :- head;
while p<> nil do

begin
case p-.code of

sv,fhff,#tf,vk#,'v': begin
Indent;
If p-.next^.code <> '1' then

else writeln(p-.txt);
end;

#bv: begin
tab :- tab + 1;
Indent;
writeln(tty,p-.txt);
end;

'e': begin
Indent;
If p-.next -nil then

66

else if (P-.next-.code - '1') or
(p'-.next-.code - 'e') then

else vriteln(tty,p-.txt,';');
tab :tab - 1;
end;

OV': begin
Indent;
vriteln(tty,'while ',p'.txt,' do');

end;
'i'l: begin

Indent;
vriteln(tty,'if ',p-.txt,' then');
end;

'1: begin
Indent;

end;
'c,: begin

Indent;
writeln(tty,'case ',p-.txt,' of');
end-,

end;
p - .next;
end;

end;

procedure DravFC;
begin
vrite(tty,*Exec-.DrawFC-');
writeln(tty);
end;

67

- t a r t -

begin
intro;
quitExec :- 0;
while quitExec - 0 do

begin
k :- 0;
PutTracer(Exc);
case getopt of

'?:Exec~enu;

': begin
p :- nil;
CreateNew;
end;

'g' Get~ile;
'e: EditOld;
48': SaveFile;
op..: PutCode;
Of*: DrawFC;
'X': quitExec
end

end
end.

68

C2

4E-

7 717

P64

C,)

-~ -10

1-44

This page left intentionally blank

72

Appendix E. Flowcharts of the Graph Drawing System

GrExec

Exit -true?

GRDraw

GRRt2
Mraw
Draw

GRApnd
MDraw

.-4
GRSave

} -5

GRHelp
- - =6

GRExit

exit

GRDraw

Init

Tekplo

R4 - #TBLE

Daw

return

73

V!

Plot

FixThl
Tekpl 0

Return

74

Init

Tekera .

Tekgra
DrwVec

4
Re turn

Tekplo

Init

Nor
Drw

Move
-3

t
-5

D ot
Drw

1 -6
Dash
Dry .
Tekai'Mothers

DrwVec

reitur

75

Draw

Tekgin

/read CHARXF,YF

-D
r2 1

f -M
r2 -2

-P

r2 '3

r2 -5

r2 r 6

plot
I r' - -T

trans 1
-R

REDRM 1

St p -

r4 - r% - 6
-Q

Set tty escho mode
r2 -4

f ixtb 1

return

Step

XF,YF,MODE - table values

mode -4 ? -

r4 -r4-6
bell

REDR - 0
4

return
tekpl j

FixThl

mode - r2
table values -XFYF,mode

return

Tranal

save r4
get XF,YP

XT - XF - XP'
YT - YF - YP

I U

mode <> 4 ?

XP' a XP + IT

IF-a F+YT

rest ;re r4

77

This page left intentionally blank

78

Appendix F. Listing of the Graph Drawing System Program

.TITLE GRAPH GENERATING SYSTEM
SBTTL GREXEC - GRAPH EXECUTIVE MODULE

THIS IS THE EXECUTIVE PROGRAM WHICH GOVERNS THE MODULES OF THE
; GRAPHICS SYSTEM. THE USER IS QUERRIED BY THE OPTIONS MODULE

(GROPTS) TO CHOOSE ONE OF THE FOLLOWING OPTIONS:

I - DRAW A NEW PICTURE 4 - SAVE ON DISC
2 - RETRIEVE (& INITIALIZE) 5 - EXPLAIN DRAW COMMANDS
3 - RETRIEVE (APPEND TO PIX) 6 - EXIT TO RT-11 MONITOR

; THIS MODULE, AS THE EXEC FOR THE GRAPHICS SYSTEM, SIMPLY
; DIRECTS TRAFFIC TO ITS SUBORDINATES ACCORDING TO THE ABOVE
; OPTION. THE OPTION IS RETURNED TO EXEC AS A BINARY INTEGER
AVAILABLE IN THE RO REGISTER.

V

.MCALL * .V2. ., .REGDEF, .EXIT, .TTYIN, .TTYOUT, .PRINT

.MCALL .TTINR

.GLOBL GROPTS, GRDRAW, GRRETR, GRSAVE, GRHELP ,GREXIT

.REGDEF

GREXEC:
MOV #O,RO ;SAFETY FIRST

1$: JSR PC,GROPTS ;GET USER'S OPTION
CMP RO,#1 ;IS OPT - I (DRAW) ?
BNE 2$; - NO
JSR PC,GRDRAW - YES

BR 1$

2$: CMP RO,#2 ;IS OPT - 2 (RETRIEVE) ?
BNE 3$; - NO
JSR PC,GRRETR - YES
JSR PC,MDRAW ;QUICKLY REDRAW IT
JSR PC,DRAW ;GET INTO INPUT/PLOT LOOP
BR 1$

3$: CMP RO,#3 ;IS OPT - 3 (APPEND) ?
BNE 4$; -NO

SUB #6,R4 ;REPLACE QUIT COMMAND WITH
NOV #0,(R4)+ HOME-CURSER
MOV #0,(R4)+ (DARK MOVE)
NOV #2,(R4)+
MDV R4,R3
JSR PC,GRAPND
JSR PC,MDRAW
JSR PC,DRAW
BR 1$

79

4$: CMP RO,#4 ;IS OPT - 4 (SAVE) ?
BNE 5$; - NO

JSR PC,GRSAVE - YES
BR 1$

;; GREXIT RETURNS WITH RO - ZERO IF WE ARE INDEED READY TO EXIT

5$: CMP RO,#5 ;IS IT 5 (HELP)?
BNE 6$; -NO
JSR PC,GRHELP
BR 1$

6$: CMP RO,#6 ;IS OPT - 6 (QUIT) ?
BNE 1$;SUSPECT KEYSTROKE ERROR
JSR PC,GREXIT
CMP RO,#O
BNE 1$; -NOT READY TO EXIT
P EXIT

* PAGE

.SBTTL GRDRAW - CONTROL THE GRAPH DRAW PROCESS

************************** GRDRAW *****************************

THIS MODULE, CALLED BY GREXEC, CONTROLS THE DRAWING OF ALL
GRAPHICAL FIGURES. IT DOES NOT RECALL PREVIOUSLY DRAWN
FIGURES (SEE GRRTRV MODULE FOR THAT CAPABILITY).

.GLOBL FDRAW, MDRAW

.GLOBL TEKERATEKGRA,TEKPLO, TEKALP, BELL,REDRAW

.GLOBL TEKGIN,XF,YF,I)DE,LOX,GRDRAW,TBLE,INIT

LOX: .WORD 0
XF: .WORD 0
YF: .WORD 0 ; STORAGE FOR X AND Y DESTINATIONS
MODE: .WORD 0

TEKPLO:
ADD #6,TBLEND ;BUMP END POINTER BY 3 WORDS
CNP MODE,#1 ;MODE 1 INDICATES A NORMAL DRAW
BEQ NOR
CMP MODE,#2 ;MODE 2 INDICATES A MOVE
BEQ MVE
CMP MODE,#3 ;MODE 3 INDICATES PLOT A POINT
BEQ PNT
CHP MODE,#5 ;MODE 5 INDICATES DOTTED LINES
BEQ DOT
CMP MODE,#6 ;MODE 6 INDICATES DASHED LINES
BEQ DASH

ANY OTHER MUST BE ALPHA CHARS
JSR PC,TEKALP ;GO ALPHA MODE
MOV MODERO - WITH CURSOR AT XHAIR

8o

.TTYOUT
RTS PC

TRYOUT ;GO ALPHA MODE, CURSOR TO XHAIR

;-INITIALIZATION ROUTINE--

INIT: BIS #010000, 44

MOV #O,XF ;INITIALIZE X VALUE
MOV #0,YF ;INIT Y VALUE
MOV #O,MODE ; MODE 0 IS INITIALIZE
MOV #TBLE,TBLEND ;SET END POINTER TO HEAD
JSR PC,TEKERA ;ERASE THE SCREEN
JSR PC,TEKGRA ;SET TO GRAPHICS MODE
BR DRWVEC ;MOVE TO (IX,IY)

- END OF INITIALIZATION--

- -POINT PLOT -----

PNT: MOV #34,RO
* TTYOUT
BR DRWVEC

-- DOTTED LINES--

DOT: MNV #33,RO
.TTYOUT
NOV #141,RO
.TTYOUT
BR DRW

- DASHED LINES--

DASH: MOV #33,RO
.TTYOUT
NOV #144,RO
.TTYOUT
BR DRW

-NORMAL LINES--

NOR: NOV #33,RO
O TRYOUT
NOV #140,RO
* TTYOUT
BR DRW

S

S

DRW: JSR PC,TEKGRA ;TO DRAW, GO TO GRAPHICS
NOV LOXRO

81

.TTYOUT ;AND SENT LO X TO GET OUT OF DARK
BR DRWVEC

--- SET UP FOR A DARK VECTOR (MOVE)----

MVE: JSR PC,TEKGRA ; SET TO GRAPHICS MODE

--- NOW COMMON FOR ANY VECTOR

DRWVEC: MOV YF,RO ;SET UP FOR HIY
MOV #5,Rl

1$: ROR RO
DEC RI
BNE 1$
BIC #177740,RO ;MASK EXTRA BITS
BIS #40,RO ;AFFIX HIY PREAMBLE
.TTYOUT ;OUTPUT HIY

MOV YFRO ;GET LOY
BIC #177740,RO
BIS #140,RO ;PREAMBLE
.TTYOUT ;OUTPUT LOY

MOV XF,RO ;GET RIX
MOV #5,RI

2$: ROR RO
DEC Ri
BNE 2$
BIC #177740,RO
BIS #40,RO
•TTYOUT ;OUTPUT HIX

MOV XF,RO ;GET LOX
BIC #177740,RO
BIS #I00,RO

MOV ROLOX
.TTYOUT ;OUTPUT LOX

RTS PC

TEKGRA: ;ROUTINE TO GO TO GRAPHICS MODE
NOV #35,R0 ;CONTROL CHARACTER FOR GRAPHICS
.TTYoUT
RTS PC

TUKERA: ;SUBROUTINE TO CLEAR THE SCREEN
.PRINT #3$;OUTPUT CONTROL CHARS

NOV #6,R1
1$: NOV #77777,R2 ;WAIT LOOP FOR SCREEN TO CLEAR

2$: DEC R2

82

BNE 2$
DEC Ri
BNE 1$
RTS PC

3$: -ASCII <33><14><7>
.BYTE 200
-EVEN

TEKALP: ;ROUTINE TO GO TO ALPHA MODE
NOV #37,RO ;PUT CONTROL CHAR IN RO
* TTYOUT
RTS PC

BELL: ; ROUTINE TO RING THE BELL
NOV #7,RO
.TTYOUT
RTS PC

TEKGIN: MOV #33,RO
*TTYOUT
MOV #32,RO
• TTYOUT
RTS PC

CURADR: TTYIN ;GET CURSER ADDRESS AND
MOV R0,Rl ;MASSAGE IT

BIC #177740,R1 ;FIRST COMPONENT IS HIGH BYTENOV #5,R2
105: ROL Rl

DEC R2

.TTYIN
BIC #177740,R0 ;LOW BYTE I

BIS R0,R-
RTS PC

INPVEC:
JSR PC,TEKGIN ; GO TO GIN MODE
CMP CHAR,1124 ;T - PROMPT ANOTHER CHAR TO TRANSLATE
BEQ 10$
*TTYIN ; INPUT KEYSTROKE

5$: NOV RO,CHAR ; AND STORE IN CHAR
JSR PC,CURADR ;GET CURSOR ADDRESS
NOV R1,XF
BIS #100,RO
JSR PC,CURADR
OV RI,YF
RTS PC

83

-.-. men

10$:
BIS #100, 44 ;NO-WAITE 10
.TTINR
BCS 20$
BR' 5$

20$: .TTINR
BCC 5$
mOV #33,RO
.TTYOUT
MNV 1160,RO
.TTYOUT
Mov #124,RO
.TTYOUT
MOV #131,RO
.TTYOUT
BR 20$

GRDRAW: JSR PC,INIT
MOV fTBLE,R4 ;POINT R4 TO START OF TBLE

DRAW: JSR PC,INPVEC ;INPUT A VECTOR VIA TEKTRONIX

1$: CMP CHAR,#104 ;WAS IT A "D"?
BNE 2$
MOV #1,R2
JSR PCPLOT
JMP DRAW

2$: CMP CHAR,115 ;MOVE WITH A "W'?
BNE 3$
MOV #2,R2
JSR PCPLOT
JMP DRAW

3$: CMP CHARJ120 ;PLOT A POINT WITH A 'P'?
BNE 4$
MOV #3,R2
JSR PC,PLOT
34P DRAW

4$: CHP CHAR,0121 ;QUIT WITH A 'Q'?
BNE 5$
BIC #010000, 44 ;

MOV #4,R2
JSR PC, FIXTBL
RTS PC ; EXIT POINT FOR "DRAW"

5$: C14P CHAR,#56 ;DOTTED WITH A 'PERIOD'?
BNE 6$
MOV #5,R2
JSR PC,PLOT
JMP DRAW

6$: CMP CHARJ55 ;DASHED WITH A '-'?
BNE 7$

84

OV #6,R2
JSR PC,PLOT
JMP DRAW

7$: CMP CHAR,#123 ;S -STEP THRU OLD PIX TLE
BNE 8$
JSR PC,STEP
JMP DRAW

8$: CMP CHAR,#122 ;R - REDRAW FROM TABLE VALUES
BNE 9$
JSR PC, REDRAW
JMP DRAW

9$: CMP CHAR,#102 ;B - BACK UP (DELETE) A COMMAND
BNE 11$
JSR PC,BACKUP
JMP DRAW

10$:

CMP CHAR,#124 ;T - TRANSLATE R INDER OF TLE
BNE 12$

JSR PC,TRANSL
JSR PC, REDRAW
JMP DRA&W

115: CMP CHAR,#101 ;A - DO ALPHAS
BNE 12$

11: JSR PC,INPVEC ;GET NEW XF,YF,CHAR

CMP CHAR,#33 ;IS IT "ESC"?
BEQ 12$; YES - END OF CHAR STRNG
NOV CHAR,R2
JSR PC,PLOT ;ST"FF TBLE AND DO TEKPLO
JMP 111$;LOOP FOR MORE CHARS

12$: JSR PC,BELL ;ANY OTHER - RING BELL
JMP DRAW ; AND TRY AGAIN

PLOT: JSR PC,FIXTBL
JSR PCTEKPLO
RTS PC

FIXTBL: NOV R2,MODE
NOV XF, (R4)+
NOV YF,(R4)+
NOV R2, (R4)+
RTS PC

BACKUP: SUB #6,R4 ;GO BACK 6 BYTES
SUB #6,TBLEND ;BACK UP END POINTER 6 BYTES
RTS PC ;BACK TO MODE8

RlDR .fWORD 0 ;FLAG FOR REDRAW STATE

TRANSL: NOV R4,-(SP)
JSR PC, INPVEC
SUB (R4),XF

SUB +2(R4),YF ;GIVES TRANSLATION VECTOR IN XF,YF
1$: ADD XF,(R4)+ ;DO TRANSLATION ON EACH XY ENTRY

85

ADD YF,(R4)+
CMP #4,(R4)+ ;QUIT MODE?
BNE 1$
MOV (SP)+,R4 ;RESTORE PREVIOUS TBLE POINTER
RTS ' PC

REDRAW-- MOV #1,REDR ;SET FLAG TO LOOP ON STEP UNTIL QUIT

STEP: MOV (R4)+,XF ;GET XF FROM TBLE
MOV (R4)+,YF
MOV (R4),MODE
CMP (R4)+,#4 ;QUIT MODE?
BNE 10$

SUB #6,R4 ;BACK UP ONE COMMAND
JSR PCBELL
MOV #O,REDR
RTS PC ;GET SOME OTHER COMMAND

10$: JSR PC,TEKPLO
JSR PC,TEKALP ;ASSURE WE'RE OUT OF DARK MODE
CMP #1,REDR
BEQ STEP ;STAY IN REDRAW LOOP
RTS PC

CHAR: .WORD
. PAGE
.SBTTL FDRAW, MDRAW - EXTERNAL GEN CALLS

; THIS MODULE CALLS TWO MODULES, INIT AND REDRAW, AFTER BEING
; CALLED FROM ANOTHER PROGRAM. THE CALLER MUST PASS TO THIS
; MODULE THE ADDRESS OF HIS BUFFER WHICH CONTAINS XF, YF,
; AND MODE FOR EACH SUCCESSIVE POINT TO BE DRAWN. THE LAST
; POINT MUST BE FOLLOWED WITH XF, YF, AND "4" TO FLAG THE
; END OF THE DRAW LIST.

IF CALLED FROM A FORTRAN ROUTINE, THE CALL IS:

CALL FDRAW(TABLE).

IF CALLED FROM A MACRO PROGRAM:

MOV #TABLE,R4
JSR PC,MDRAW.

FDRAW: MOV +2(R5),R4 ;GET VALUE OF ARG-1 FM CALL LIST
1DRAW: JSR PCINIT

JSR PC,REDRAW
RTS PC
.PAGE
.SBTTL GETFN - GET FILE NAME
;RERE WE SOLICIT THE USER TO PROVIDE THE DEVICE,
;FILE NAME, AND EXTENSION OF THE FLOPPY DISK
;DATE BLOCK.
;THE ASCII STRING IS CONVERTED TO RADIX-50 FORMAT BY
;PAKNAM.

86

;ON EXIT, R2 CONTAINS THE ADDRESS OF THE RAD-50 FILE NAME
;BUFFER.

ARGLI: .WORD 3
BUFADR: ORD ASCBUF ;ASCII BUFFER

.WORD CHCNT

.WORD FILNAM ;POINT TO FILNAM LOCATION
ASCBUF: • BLKW 7
CHCNT: .WORD 16
FILNAM: *BLKW 4

.NLIST BEX
GFNMSG: .ASCIZ /ENTER DEVICE, FILE NAME, EXT (DDD:FFFFFF.EEE)...f

-EVEN
-LIST BEX

GETFN:
MOV R3,-(SP)
-PRINT #GFNMSG

MOV #ARGLI,R5 ;SET UP FOR FORTRAN-LIKE SUBR CALL
BIC #010000, 44
MOV #16,CHCNT ;RESTORE MAX CHAR COUNT
JSR PC,LINEIN ;GET ASCII NAME FM CONSOLE
MOV #ARGL1,R5 ;SET UP FOR FORTRAN-LIKE SUBR CALL
JSR PC,PAKNAM ;PACK TO RADIX-50
MOV (SP)+,R3
RTS PC

-PAGE
.SBTTL GRRETR,GRAPND - RETRIEVE GRAPH FROM DISK
*GLOBL LINEIN, PAKNAM, PAK6, GETFIL, PUTFIL

GRRETR:
NOV #TBLE,R3 ;INITIALIZE TABLE POINTER

GRAPND: ;EP HERE IF R3 IS ALREADY SET TO THE OLD
VALUE OF R4 (APPEND A FILE)

JSR PC,GETFN ;GET FILE NAME (ABOVE)
CMP FTLNAM,#177777 ;IF (FILNAM - -1)
BNE 20$.
.PRINT #E1 ; THEN PRINT EM1
RTS PC TAKE ERROR RETURN

10$: MOV #ARGL2,R5 ; ELSE CALL GETFIL
MV R3,TBLPTR
JSR PC,GETFIL
CHP R5,#O ;IF (R5 - 0)
BNE 20$
.PRINT #DE2 ; THEN PRINT EM2
RTS PC TAKE ERROR RETURN

20$: NOV #TBLE,R4 ; ELSE FIX POINTER FOR REDRAW
RTS PC

ARGL2: *WORD 3
olWORD FILNAM

TBLPTR: *TORD 0
WORD WDCNT

WDCNT: *WORD 1000

*PAGE
*STTL ORSAVE -GRAPH SAVE ON DISK

87

" S ,= '

GRSAVE:
JSR PC,GETFN
CMP FILNAM,#177777 ;IF (FILNAM - -1)
BNE 10$
-PR'INT #EM1 ; THEN PRINT EK1
RTS PC TAKE ERROR RETURN

10$: NOV #TBLE,TBLPTR ; ELSE CALL PUTFIL
NOV T2BLEND-TBLPTR,R5 ;WDCNT <- (END PTR - HEAD)
ASR R5 /2
NOV R5,WDCNT
NOV #ARGL2,R5
JSR PC,PUTFIL
CMP -R5,#O ;IF (R5 - 0)
BNE 20$
-PRINT #EM3 ; THEN PRING EM3
RTS PC TAKE ERROR RETURN

20$: NOV #TBLE,R4 ; ELSE FIX POINTER FOR REDRAWV

.NLIST BEX
EMi: .ASCIZ /ERROR IN PAKNAM/<15><12>
EN2: .ASCIZ /ERROR IN GETFIL/<15><12>
EN3: .ASCIZ /ERROR IN PUTFIL/<15><12>

.LIST BEX

.PAGE
.SBTTL GREXIT - GRAPH EXIT MODULE

GREXIT:
NOV #O,RO ;RETURN A ZERO IN RO
NOV #4,Rl
RTS PC

TULEND: .WORD 0
TILE: BILKW 2000

.END GREXEC

.TITLE MSGS - "GRAPH" ASCII MESSAGES
.SBTTL GRHELP - EXPLAIN DRAW COMMANDS
.MCALL ..V2.., .PRINT, .TTYIN, .REGDEF
*GLOBL GRHELP, GROPTS, LOOKUP
.REGDEF

MSGPTR:
1$: .WORD HLPD
2$: -WORD HLPM
3$: -WORD HLPP
4$: .WORD HLPQ
5$: .WORD HLPDOT
6$: .WORD HLPDSH
7$: .WORD HLPA
8$: .WORD HLPB
9$: .WORD HLPR
10$: .WORD HLPS
11$: .WORD HLPT
CRLF: .BYTE <15>

.BYTE <12>

.BYTE <200>
*EVEN

GRHELP:
.PRINT #1$
BIS #10000, 44 ;MAKE SURE NO-ECHO INPUT MODE
•TTYIN ;GET YEA OR NAY
CMPB RO,#'Y
BNE 10$; WAS AY - EXIT HELP MODULE
*PRINT #20$;SOLICIT WHICH CMND TO EXPAND
.TTYIN ;GET COMMAND FOR EXPANSION
JSR PC,LOOKUP
ASL R2 ; *2
ADD #MSGPTR,R2
.PRINT #CRLF ;CAR'G RETN
-PRINT (R2) ;INDIRECT THRU R2

10$:
RTS PC

.NLIST BEX
20$ *ASCII /TYPE THE COMMAND YOU WANT HELP WITH:/<15><12>

.BYTE <200>

.EVEN
1$: *ASCII <15><12>/DRAW MODULE COMMANDS:/<15><12>

*ASCII I A - ALPHA CHARACTERS/<15><12>
-ASCII I D - DRAW LINE M - MOVE CURSER/<15><12>
,.ASCII / P - DRAW POINT . - DRAW DOTTED LINE/<15><12>
.ASCII / - - DRAW DASHES R - REDRAW PREVIOUS FICTURE/<15><12>
*ASCII / M - MOVE CURSER B - BACK UP ONE VECTOR/<15><12>
*ASCII / T - TRANSLATE GEOKETRICALLY/<15><12>
*ASCII I Q - QUIT DRAWING/<15><12>
.ASCII /WANT MORE HELP? (Y/N):/
.BYTE <200>
.KVEN

RLPD: .ASCII /(D J THE D COMMAND IS USED TO DRAW A SOLID/<15><12>
.ASCII / LINE FROM THE PREVIOUS CROSS-HAIR POSI-/<15><12>

89

. . . . =l '-. -- .-" J-,= il V

7AD-AOO 418 AIR FORE INST OF TECH WRIGT-PATTERSON AFB OH SCHOO- [YC FIG 919

'7 SYSTEM DESIGN TOOL FOR AUTOMATICALLY GENERATING FLOVCNAkTS AN-EYIU)

UNCLASSIFIED AFIT/GCS/EE/79-7 M

22fllffllffllffllf

,ASCII / TION TO THE ONE SHOWN ON THE SCREEN AT/<15><12>
.ASCII / THE TIME YOU TYPED THE CHARACTER "D"./<15><12>
*ASCII / IF NO VECTOR WAS PREVIOUSLY DRAWN, TRE/<15><12>
.ASCII / ORIGIN IS THE INITIAL POINT OF THE/<15><12>
.ASCII I VECTOR TO BE DRAWN./<15><12>
•BYTE <200>
.EVEN

HLPM: .ASCII IA M I THIS COMMAND DRAWS A DARK VECTOR TO THE/<15><12>
.ASCII I PRESENT CROSS-HAIR POSITION. NO CHANGE/<15><12>
.ASCII / IS NOTICED ON THE SCRENE. RECOMMEND AN/<15><12>
-ASCII / "H" BE THE FIRST ENTRY IN ALL DRAWINGS./<15><12>
-BYTE <200>
-EVEN

HLPP: .ASCII I[P I DRAWS A POINT AT THE PRESENT CROSS-/<15><12>
*ASCII I HAIR POSITION./<15><12>
-BYTE <200>
.EVEN

HLPQ: .ASCII /I Q I THE Q COMMAND TERMINATES THE DRAW MODE./<15><12>
.ASCII I CONTROL IS RETURNED TO THE GRAPH EXEC/<15><12>
.ASCII / WHICH WILL LIST OPTIONS FOR DRAWING OR /<15><12>
.ASCII / FOR FILE HANDLING./<15><12><15><12>
.ASCII / THIS COMMAND FORCES A "4" TO BE ENTERED/<15><12>
.ASCII I IN "TBLE" TO SIGNIFY END OF TABLE/<15><12>
.BYTE <200>
.EVEN

HLPDOT: .ASCII /I .] SAME AS "D" BUT USE DOTTED VECTOR./<15><12>
.BYTE <200>
.EVEN

HLPDSH: .ASCII /[-] SAME AS "D" BUT USE DASHED VECTOR./<15><12>
.BYTE <200>
.EVEN

HLPA: *ASCII /C A I PLOT THE FOLLOWING ALPHAMERIC CHARACTER/<15><12>
.ASCII I STRING - END WITH "ESC". "REDRAW"/<15><12>
*ASCII / COMMAND CORRECTLY SPACES THE LETTERS./<15><12>
.BYTE <200>
.EVEN

HLPB: .ASCII / B I BACK UP ONE VECTOR IN CORE TABLE AND/<15><12>
.ASCII / CONTINUE THE DRAWING./<15><12><15><12>
.ASCII / HINT: ALWAYS BACK UP TWO VECTORS, THEN/<15><12>
.ASCII / SKIP ONE WITH THE "S" COMMAND./<15><12>
.BYTE <200>
.EVEN

HLPR: ,ASCII I[R I REDRAW THE ENTIRE TABLE FROM THE PRES-/<15><12>
*ASCII / ENT TABLE POINTER TO THE QUIT ENTRY./<15><12>
.ASCII I ALLOW MORE DRAWS AT END OF TABLE./<15><12>
.BYTE <200> 4
*EVEN

HLPS: .ASCII I[S I SAME AS "R" BUT REDRAW ONLY ONE/<15><12>
•ASCII I VECTOR AT A TIME./<15><12>
.BYTE <200>
*EVEN

HLPT: ASCII/ T TRANSLATE GEOMETRICALLY THE REMAINING /<15><12>
*ASCII / FIGURE. THE VECTOR AT THE CURRENT/<15><12>
.ASCII / TABLE POINTER IS STREATCHED TO THE /<15><12>
.ASCII I CROSS-HAIR POSITION. REMAINING VECTORS/<15><12>

90

*ASCII / ARE SHIFTED BY THE DIFFERENCE BETWEEN/<15><12>
-ASCII / THE OLD AND NEW VECTOR. THE NEW/<15><12>
GASCII / CROSF-HAIR POSITION MUST BE SENT TO/<15><12>
&ASCII / THE COMPUTER BY ANY KEYSTROKE AFTER THE/<15><12>
*ASCII / CROSS-HAIR IS AT THE DESIRED POSITION./<15><12>
-BITE <200>
.EVEN
.LIST BEX

. PAGE

.SBTTL GROPTS - GRAPH OPTIONS MODULE

; THIS MODULE LISTS ALL OPTIONS AVAILABLE TO THE USER
FOR THIS SYSTEM, AND PROMPTS THE TTY OPERATOR TO

; SELECT ONE OF THE OPTIONS. THE RESULT IS RETURNED
; IN RO.

CROPTS:
.PRINT #I$;PRINT THE ASCII STRING
BIS #010000, 44 ;NO-ECHO INPUT
.TTYIN ;NOW READ THE CHOICE
SUB #'O,RO ;ONLY NEED LAST 3 BITS
RTS PC

.NLIST BEX
1$: .ASCII /SELECT .../<15><12><15><12>

.ASCII 1 1 - DRAW A NEW PICTURE/<15><12>

.ASCII / 2 - RETRIEVE PICTURE FROM DISK AND INITIALIZE/<15><12
.ASCII I 3 - RETRIEVE PICTURE FROM DISK AND APPEND/<15><12>
.ASCII / 4 - STORE THIS PICTURE ON DISK/<15><12>
.ASCII / 5 - HELP! EXPLAIN DRAW COMMANDS/<15><12>
.ASCII / 6 - ALL DONE - EXIT NICELY/<15><12>
.BYTE <200>
. EVEN
.LIST BEX

.PAGE
,SBTTL LOOKUP - CHARACTER TABLE LOOK-UP ROUTINE

; ENTER WITH A CHARACTER IN RO.

; ROUTINE SEARCHES "CHARS", A TABLE ON ANTICIPATED
; CHARACTERS, AND INCREMENTS R2 BY ONE UNTIL THE
; MATCH IS POUND.

..........

CHARS: .WORD iDM
.WORD "PQ
.WORD "._
.WORD "Al
.WORD "RS

91

t

.WORD "T
LOOKUP:

NOV #000377,R2 ;MINUS ONE IV BYTE NOTATION
1$: INCB R2

CHPD CHARS(R2),RO ;RO-BYTE IN (CRAR+R2)?
BNE 1$
RTS PC
.END

92

-TITLE GCSLIB - LIBRARY OF USEFUL ROUTINES.

GCS LIBRARY
VERSION OF 13 JULY 79

CURRENT CALLABLE ROUTINES ARE:

PAK6 - PACKS 6 CHARS TO RAD50
LINEIN - GETS LINE FROM TELETYPE
GETFIL - COPIES FILE FROM DISK TO MEMORY
PUTFIL - COPIES FILE FROM MEMORY TO DISK
PAKNAM - PACKS DEV:FILENAME.EXT TO RAD50

SUBROUTINE CALL FORMAT IS FORTRAN COMPATIBLE
ALL CALLED BY "JSR PC,XXX"'

R5 MUST CONTAIN POINTER TO ARGUMENT LIST
ARGUMENT LIST FORMAT IS:

* UNDEFINED * # OF ARGUMENTS *
A OF ARGUMENT # I

* ADDRESS OF ARGUMENT N 1 *

; * * *

• * *
* * *********** **

• }CALL • .V2.•, •REGDEP, .ENTER, .LOOKUP, .READW
• MCALL oWRITW,.°SAVESTATUS,.,REOPEN, .CLOSE,.°PRINT
• MCALL oTTYIN
• CLOBL PAK6, LINEIN, GETFIL, PUTFI L, PAKNAM
SAREGDEF

COMMON STORAGE FOR ROUTINES
STO0. 0ST01: o0[
ST02: 0
ST03: 0 i
ST04: 0

ST06: 0
ST07: 0
STO8: 0
ST09: 0
STO10: 0
STOI 1: 0

"i 93

.PAGE
S SBTTL PAK6 - RADIX50 PACKING ROUTINE

;ROUTINE PAK6 /HARTRUN/ 2 JULY 79
;PACKS 6 CHARACTERS INTO RADIX 50
;FIRST ARGUMENT IS POINTER TO 5 WORD BLOCK:
; FIRST 3 WORDS CONTAIN ASCII CHARS
; LAST 2 WORDS WILL RETURN PACKED RAD50
; IF ANY CHARACTERS ARE ILLEGAL,
; LAST 2 WORDS WILL RETURN 177777

PAK6: NOV RO,-(SP) ;SAVE REGISTERS
MOV R1,-(SP)
mNV R2,-(SP)
MOV R3,-(SP)
MOV R4,-(SP)
MOV R5,-(SP)
ADD #2,R5 ;R5-> ADDRESS OF WORD BLOCK
mOV (R5),RO ;RO-> WORD BLOCK
NOV RO,STOO ;SAVE POINTER
MOV STOO,STO1 ;STO1 POINTS
ADD #6,STOI ; TO END OF CHARS

1$: mOVB (RO),RI ;GET NEXT BYTE
BIC #177600,Rl ;7-BIT ASCII
CMPB #40,RI ;IS IT SPACE ?
BNE 2$;IF YES,
CLR RI ; RAD50-O
MOVE R1,(RO)+ ;STORE IT
BR 6$

2$: BIT #100,R1 ;IS IT A-Z ?
BEQ 3$;IF YES,
BIC #177700,R1 ; GET SIX BITS
CNP #32,Rl ;IS IT LEGAL ?
BLT 7$;IF YES,
MOVE RI,(RO)+ ; STORE IT
BR 6$

3$: CMP #44,R1 ;IS IT $?
BE 4$;IF YES,
MOVE #33,(RO)+ ; STORE 33
ER 6$

4$: CMP #56,R1 ;IS IT . ?
BNE 5$;IF YES,
MOVE #34, (RO)+ ; STORE 34
BR 6$

5$: CMP #60,R1 ;IS IT LEGAL ?
BDT 7$
CMP 071,RI
BLT 7$
SUB #60,RI ;GET DIGIT
ADD #36,R1 ;CONVERT TO RAD50

94

MOVE R1,(RO)+ ;STORE IT

6$: CMP RO,STO1 ;ARE WE DONE ?
BLT 1$;DO IT AGAIN
BR PACK ;ELSE PACK IT

;IF ILLEGAL CHAR,
7$: MOV STOI,RI ;POINT TO PACKED

MOV #177777,(R1)+ ;SET PACKED WORDS
NOV #177777,(RI) ; TO 177777
BR REST ; AND RETURN

;NOW FIRST 3 WORDS CONTAIN RAD50 CODES
;NEXT PACK REF. ECKHOUSE P. 149

PACK: MOV STOO,STO2 ;ST02 POINTS TO
ADD 02,ST02 THIRD CHAR
MOV STOO,ST03 ;ST03 POINTS TO
ADD #5,ST03 SIXTH CHAR
NOV STOO,RO ;RO-> FIRST CHAR
MOV ST02,R3 ;R3-> THIRD CHAR
MOV STOI,R4 ;R4-> PACKED WORDS

1$: CLR Ri ;SUM -0
2$: CLR R2 ;R2-O

MOVB (RO)+,R2 ;GET CHAR
ADD R2,R1 ;SUM-SUM+CHAR
CMP RO,R3 ;DONE 3 CHARS YET ?
BGT 3$;IF NOT,
ASL Ri ; 1ULTIPLY
ASL Ri BY 8
ASL RI DECIMAL
NOV R1,-(SP) ;SAVE PARTIAL RESULT
ASL RI ;MULTIPLY BY
ASL RI ; 32 DECIMAL TOTAL
ADD (SP)+,RI ;32+8 DEC - 50 OCTAL
BR 2$;PROCESS NEXT CHAR

3$: MOV RI,(R4)+ ;STORE PACKED WORD
MOV ST03,R3 ;R3-> SIXTH CHAR
CMP RO,STOI ;DONE ?
BLT 1$;DO NEXT THREE

REST: MOV (SP)+,R5 ;RESTORE REGISTERS
MOV (SP)+,R4
MOV (SP)+,R3
NOV (SP)+,R2
MOV (SP)+,R1
Mov (SP)+,RO
RTS PC ;RETURN TO MAIN PROGRAM

*PAGE
* SBTTL LINEIN - READ LINE FROM TELETYPE

;ROUTINE LINEIN/HARTRUM/ 21 JUNE 79
;GETS A LINE FROM THE TELETYPE
;LESS THAN 80 CHARACTERS
;FIRST ARGUMENT IS BUFFER ADDRESS
;SECOND ARGUMENT IS CHARACTER COUNT
; ON CALL,CONTAINS DESIRED NUMBER

95

; ON RETURN,CONTAINS ACTUAL NUMBER
;NOTE - <CR> AND <LF> ARE NOT STORED

LINEIN: MOV RO,-(SP) ;SAVE REGISTERS
MOV R1,-(SP)
MOV R2,-(SP)
ADD #2,R5 ;GET IST ARG
NOV (R5)+,R1 ;BUFFER ADDR
MOV R5)+,STOO ;BYTE CNT DESIRED
CLR R2 ;COUNT BYTES DONE

1$: .TTYIN ;GET CHAR
CMPB #15,RO ;WAS IT <CR> ?
BEQ 1$;GET THE <LF>
CMPB #12,RO ;WAS IT <LF> ?
BEQ 2$;ALL DONE
CMP STOO,R2 ;BUFFER FULL ?
BEQ 1$;IGNORE THE CHAR
MOVB RO,(Rl)+ ;STORE IT
INC R2 ; COUNT THEM BYTES!
BR 1$;DO IT AGAIN

2$: MOV R2, ;RETURN ACTUAL COUNT
R5

MOV (SP)+,R2 ;RESTORE REGISTERS
MOV (SP)+,Rl
MOV (SP)+,RO
RTS PC ;GO HOME

.PAGE

.SBTTL GETFIL AND PUTFIL ROUTINES
;ROUTINES GETFIL AND PUTFIL/HARTRUM/22 JUN 79
;GETFIL COPIES A FILE FROM DISK TO MEMORY

;PUTFIL COPIES A FILE FROM MEMORY TO DISK

;FIRST ARGUMENT IS DBLK ADDRESS, 0 TO DEFAULT
* DBLK: DEVICE CODE IN RAD50

FILENAME,FIRST 3, IN RAD50
; FILENAME, LAST 3, IN RAD50 !
; EXTENSION, IN RAD50

DEFAULT IS FDO:DRAW.PIX
;SECOND ARGUEMENT IS IST WORD OF FILE BUFFER
; *

*NOTE - GETFIL WILL RETURN AN INTEGER NUMBER OF
* 256-WORD BLOCKS. THEREFORE, THE FILE BUFFER
* MUST CONTAIN AN APPROPRIATE NUMBER OF
* 256-WORD (512-BYTE) BLOCKS TO HOLD THE FILE.

; *

;THIRD ARGUMENT IS # OF WORDS TO TRANSFER
MUST BE SUPPLIED FOR PUTFIL ONLY
GETFIL RETURNS ACTUAL # OF WORDS

;R5 WILL RETURN 0 IF ERROR OCCURS

GETFIL: NOV RI,-(SP) ;SAVE REGISTERS
MOV R2,-(SP)
NOV R3,-(SP)

96

• . . . I- " II [.. Il ll
-

"i l 'Ii 1 I l ni.

NOV R4, -(SP)
ADD #2,R5 ;GET DBLK ADDRESS
NOV (R5)+,R2
BEE 1$;SKIP IF USER DEFINED

Nov #FILKAM,R2 ;DEFAULT FILENAME
1$: .LOOKUP #STOO,#O,R2 ;OPEN FILE @~R2 ON CHANNEL 0IBCS ERROR STOO IS 3 WORD COMMO BLOCK

.SAVESTATUS #STO1O,#OISTATUS ;GET DIRECTORY
BCS ERROR
CLR RI
MVB STATUS+5,R1 ;IS BLOCK COUNT
BNE ERROR > ONE BYTE?
MOVE STATUS+4,Rl ;GET BLOCK COUNT
SWAB RI ;WORDCOUNT-256XRI
.REOPEN #STOlO,#O,#STATUS ;REOPEN FILE
BCS ERROR
NOV (R5)+,R3 ;GET BUFFER ADDRESS
NOV R1,R5)+ ;SAVE WORD COUNT
.READW #STOO,#O,R3,R1,#O ;READ FILE
BCS ERROR
*CLOSE #0 ;CLOSE FILE
BCS ERROR
BR DONE ;GET OUT

PUTFIL: NOV Rl,-(SP) ;SAVE REGISTERS
NOV R2,-(SP)
NOV R3,-(SP)
NOV R4,-(SP)
ADD #2,R5 ;GET DBLK ADDRESS
NOV (R5)+,R2
NOV (R5)+,R3 ;GET BUFFER ADDRESS
NOV R5)+,R1 ;GET WORD COUNT
TST R2 ;USER DEFINED FILENAME?
BNE 1$;IF YES,SKIP
NOV #FILKAM,R2 ;DEFAULT FILENAME

1$: NOV R1,R4 ;TO GET BLOCK #
CLRB R4 ;DIVIDE BY 256
SWAB R4 ; THEN ADD I
INC R4 TO GET IT ALL
ZENTE #STOO,#OR2,R4 ;OPEN FILE ON CHANNEL 0

ECS ERROR
.WRITJ #STOO,#O,R3,R1,#O ;WRITE FILE
ECS ERROR
-CLOSE #0 ;CLOSE FILE
BCS ERROR

DONE: NOV (SP)+,R4 ;RESTORE REGISTERS
NOV (SP)+,R3
NOV (SP)+,R2
NOV (SP)+,Rl
RTS, PC ;GO HROME

ERROR: CLR R5 ;SET ERROR RETURN
-PRINT #EMSG
BDR DONE ;AND QUIT

FILMAN: .RAD5O /FDO/ ;DEFAUJLT DILK
ORAD50 IDRA/

97

.RAD.O /W
.RAD5o /PIX/

STATUS: .WORD 0 ;CHANNEL STATUS WORD
•wORD 0 ;STARTING BLOCK #
.WORD 0 ;FILE LENGTH IN 256-WORD BLOCKS
.WORD 0 ;UNUS El)
.WORD 0 ;UNIT 0 OF DEVICE // I/O COUNT

EHSG: .ASCIZ /ERROR........./
.EVEN

.PAGE

.SBTTL PAKNAM - PACK DEV:FILENAME.EXT TO RAD5O
;ROUTINE PAKRAM/RARTRUM/13 JULY 79
;PACKS PDP-11 FILENAMES INTO
; FOUR RADIX-50 WORDS.
;USES ROUTINE PAK6.
;FIRST ARGUMENT IS ASCII BUFFER.
;SECOND ARGUMENT IS ASCII COUNT.
;THIRD ARGUMENT IS 4-WORD BUFFER.
; 177777 RETURNED IF ANY ERRORS.

PAKNAM: MOV RO,-(SP) ;SAVE REGISTERS
MOV Rl,-(SP)
MOV R2,-(SP)
MOV R3,-(SP)
MOV R4,-(SP)
ADD #2,R5 ;R5 -> ADDR OF ASCII BUFFER
MOV (R5)+,BUFLOC ;BUFLOC->ASCII BUFFER
MOV R5)+,PAKCNT ;# OF CHARS
MOV (R5),R2 ;R2->4-WORD ANSWER
mOV (R5),ANSWPT ; AND SAVE IT.
mOV #NAMPAK,R1 ;R1-> 5-WORD AREA

SCAN: CLR COLON ;SEARCH ASCII STRING
CLR PERIOD ; FOR COLON AND PERIOD
CLR ALL
mOV BUFLOC,RO ;START OF STRING
CLR R3 ;CHAR COUNT

1 $: INC R3
CMPB #72,(RO) ;IS IT ":" ?
ENE 2$
INC COLON ;YES,SET FLAG

2$: CMPB #56,(RO)+ ;IS IT "." ?
WE 3$
INC PERIOD ;YES,SET FLAG

3$: CMP R3,PAKCNT ;ALL DONE?
BLT 1$
mOV BUFLOCRO ;END OF STRING SEARCH
CLR PASS ;SET PASS 1
CLR R3 ;ASCII BUFFER COUNT
CLR R4 ;FIELD CHAR COUNT

PAKIT: TST COLON ;DEVICE CODE?
BNE 1$;YES,IT EXISTS
MOVE #106,(R1)+ ;NO COLON,

98

_ _

MOVB #104, (R)+ ; USE DEFAULT
HOVB #60,(RI)+ ; OF FDO:
BR 3$

; THIS SECTION PACKS DEV CODE

1$: INC R3
INC R4
CMPB #72,(RO) ;IS IT ":" ?
BEQ 2$
CMP #4,R4
BEQ PAKERI ;DEV CODE > 3 CHARS
MOVB (RO)+,(Rl)+ ;STORE IT
BR 1$;GET NEXT

2$: TSTBt (RO)+ ;SKIP ":"
22$: CMP #4,R4 ;WERE THERE 3 CHARS?

BEQ 3$
MOVB #40, (Rl)+ ;TRAILING BLANKS
INC R4
BR 22$; TO FILL IT UP

THIS SECTION STORES
; 3 CHARACTERS OF FILENAME

3$: CLR R4
CMP R3,PAKCNT ;DEVICE NAME ONLY?
BGE 5$

4$: TST ALL ;ARE WE DONE?
BNE 6$;(USED ON PASS 2)

44$: CHPB #56,(RO) ;IS IT "." ?
BEQ 6$;END OF FILENAME
INC R3
INC R4
CMP #4,R4
BEQ PAKER2 ;FILENAME>6 CHARS
MOVB (RO)+,(Rl)+ ;STORE IT
CMP Ri,#NAMPAK+6 ;END OF PAK AREA?
BEQ 7$
CMP R3, PAKCNT
BGE 5$
BR 44$

5$: INC ALL ;FLAG FOR BUFFER END
6$: INC R4

CM4P R4,#4 ;WERE THERE THREE CHARS ?
BEQ 7$
MOVB #40,(R1)+ ;TRAILING BLANKS
BR 6$

; THIS SECTION PACKS 6 CHARACTERS
; BY CALLING PAK6

7$: CMP PASS,#I
BZQ 8$;SKIP ON PASS 2
mOV #4REA,R5 ;SET UP
NOV INAMPAK,AREA+2 ; PARAMETERS

99

JSR PC, PAK6 ;PACK 6 CHARS
CMP NAMPAK+6,#177777;DID IT WORK?
8EQ PAKER3 ;WHOOPS1
NOV NAMPAK+6,(R2)+ ;LOAD FOR
mOV NAMPAK+10,(R2)+ ; RETURN

TST PASS ;WHICH PASS ?
BNE DONE2 ;IF 2, DONE
INC PASS ;PREPARE PASS 2
MOV #NAMPAK,R 1
CLR R4
BR 4$

; THIS SECTION STORES EXTENSION

8$: CLR R4 ;NOW PAK EXTENSION
TST PERIOD ;WAS THERE ONE ?
BEQ 9$;FORGET IT I
TSTB (RO)+ ;SKIP "."

INC R3
9$: TST ALL

BNE 99$;NO MORE
INC R3
INC R4
CMP R3,PAKCNT ;END OF ASCII ?
BGT 10$
CMP R4,#4 ;MORE THAN 3 CHARS?
BGE 7$;YES,TRUNCATE
MOVB (RO)+,(Rl)+ ;STORE CHAR
BR 9$

99$: INC R4
10$: CMP R4,#3 ;3 CHARS ?

BLE 11$

INC PASS
BR 7$;PAK IT I

11$: MVB #40,(RI)+ ;TRAILING BLANKS
INC R4
BR 10$

;ROUTINES

PAKERI: .PRINT #EMSG2 ;ERROR ROUTINES
BR ALLERR

PAKER2: .PRINT #EMSG3
BR ALLERR

PAKER3: .PRINT #EMSG4
BR ALLERR

ALLERR: NOV ANSWPT,R2 ;R2->ANSWER AREA
NOV #177777, (R2)+ ;SET ALL

mOV #177777,(R2)+ ; TO 177777
NOV #177777, (R2)+
NOV #177777, (R2)
BR DONE2

DONE2: NOV (SP)+,R4 ;RESTORE REGISTERS
NOV (SP)+,R3

100

NOV (SP)+,R2
MOV (SP)+,RI
NOV (SP)+,ROI
RTS PC

;SORG

NAMPAK: .BLKW 6

PAKCNT: 0
ANSWPT: 0
BUPLOC: 0
PASS: 0
COLON: 0
PERIOD: 0
ALL: 0
AREA: .BLKW 2

;MESSAGES

EMSG2: .ASCIZ /DEVICE CODE > 3 CHARS/
EMSG3: .ASCIZ /FILENAME > 6 CHARS!
EMSG4: .ASCIZ /ERROR IN PAK6 ROUTINE/

.END

101

so 9

Appendix G. User Hints and Suggested Modifications for the Graph Drawing

System

G.1 User hints

The following hints should make it easier for you to use the graph

system the way you think it should work.

Runaway redraws: Always assure that you have included a quit

command at the end of your figure. The quit command places a "4" at the

end of the data base. Redraw looks for the number 4 as the tail

indicator of the table.

How to call for a redraw: Once you have entered a picture that

looks fairly good, you may want to redraw it to clear erroneous vectors

(see below about correcting erroneous vectors). To redraw, quit, then

select option 1 (draw), then type redraw. That's a lot of work, but the

initialization and file handling is easier than allowing the redraw

options without leaving and then reentering the draw module.

How to back up nicely: Suppose you draw a vector that you want to

change. Simply back up with the B command once for each vector until

you arrive at the correct place to make the change. Suggest here that

you back up one more command than necessary, then use the step command

("S"). This will correctly reset the graphics terminal's origin

pointer. Now type in the replacement vector. The erroneous vector will

still appear, but the replacement vector will be drawn correctly. If

redrawn, the erroneous vector will not appear.

Calling GRAPH from other programs: Graph can be called by FORTRAN

or Macro programs in order to plot a graph of calculations or drawings

102

F

made within those programs. The table must be prepared in the proper

format (see figure 4-1. Call formats are:

FORTRAN MACRO

CALL FDRAW(TABLE) MOV #TABLE,R4
JSR PC,MDRAW

G.2 Recommendations for Improvement

As I see it, the following are the most obvious areas for

improvement for the interested programmer.

Table Insertions: The data base would be easier to manage - and

complicated changes to the graphical figure would be simpler - if a

figure could be inserted in a particular place in the data base. This

way when translations occur, any changes included at the end of the

drawing session can be excluded from translation if so desired.

Generally speaking, a more logical arrangement of the data base would

result.

Figure Streatching (Scaling): A capability should be built in that

allows for expanding the values of all x or y coordinates relative to a

center or focal point (i.e. add a scale or zoom capability per [121,

chapter 4).

Figure Translation: The translation capability, although it works

correctly, should be changed to conform to the 3X3 transformation matrix

technique in (121, chapter 4.

Alpha mode storage economy: There is no reason to require 6 bytes

of storage for a string of alpha-numerics. One byte is sufficient with

a non-printable character like escape to terminate the string. Another

103

option would be to include a byte counter to indicate the length of the

string. Only the first character in each string must have an associated

xy-pair.

Suppression of menu: After a few tries with the system, the

printing of the menu becomes a bother. Recommend changing the system so

that the user is told that a menu will be available at any time by

typing "?". Only at this time should the system display the lengthy

menus or the additional "help" cues.

104

BIBLIOGRAPHY

. ---. Preliminary Ada Reference Manual. ,1979. ACM SIGPLAN
Notices, Vol 14, Number 6, Part A, Jun 1979

2. , IFIP Congress 1971. "The Translation of GO-TO Programs to While
Programs", 1972.

3. Boehm, Barry W. "Software Engineering". IEEE C-25 (December 1976),
1226-1241.

4. Chapin, Ned. Flowcharts. Princeton, Auerbach, 1971.

5. Constantine, Larry L., and Yourdon, Edward. Structured Design,
Second Edition. Yourdon Press, 1978.

6. Davis, Thomas M. Letter to the Editor, SIGPLAN Notices. Reference
to the March, 1979 article entitled 'Full Report of the Flowchart
Committee on ANS Standard X3. 5-1970'

7. Glass, Robert L. "From Pascal to Pebbleman...and Beyond".
Datamation 25, 8 (July 1979), 146-150.

8. Jackson, Glenn A. "Two-Dimensional Grammars and Structured
Programming Languages". SIGPLAN Notices (February 1979), .

9. Jensen, Kathleen and Wirth, Niklaus. Pascal User Manual and Report,
Second Edition. Springer-Verlag, 1974.

10. Kernighan, Brian W. and Plauger, P.J. The Elements of Programming
Style. McGraw-Hill, 1974.

11. Lanzano, Bernadine C. Program Automated Documentation Methods.
TRW-SS-70-04, TRW Software Series, November, 1970.

12. Newman, William M. and Sproull, Robert F. Principles of Interactive
Computer Graphics, Second Edition. McGraw-Hill, 1979.

13. Oldehoeft, R° R. Personal Letter. A discussion of structured
flowchart standards prescribed for use at Arizona State University, Sep
21, 1979.

14. Reifer, D. J. "A Glossary of Software Tools and Techniques".
Computer 10, 7 (July 1977), 55-58.

15. - -... Structured Analysis and Design Technique. SOFTEC, Inc.,
1975.

16. Van Tassel, Dennie. Program Style, Design, Efficiency, Debugging,
and Testing. Prentice-Hall, 1974.

17. Weiner, Leonard H. Personal Letter. Explanation of the content of
Professor Weiner's presentation to the ACM Computer Science Conference,
February 1979, Dayton, Ohio.

105

18. Wirth, Niklaus. "Program Development by Stepwise Refinement".
Comm. ACM 14, 4 (April 1971), 221-227.

19. Wirth, Niklaus. "An Assessment of the Programming Language
Pascal". IEEE SE-i, 2 (June 1975), 192-198.

20. Woodward, Martin R., Hennell, Michael A. and Hadley, David. "A
Measure of Control Flow Complexity in Program Text". IEEE SE-5, 1
(January 1979), 45-46.

106

VITA

James Hovard Keller was born on 16 July 1942 in White Plains, New

York. Re graduated from high school in White Plains, New York in 1960.

He attended Purdue University and Hunter College until he enlisted in

the US Air Force in August 1963. His enlisted tours included

Bremerhaven, Germany, and Hurlburt Field, Florida. The latter included

an academic assignment to the University of West Florida where he was

awarded the Bachelor of Arts degree in Mathematics in April 1971.

Following commissioning at Officer Training School, he was assigned

administrative management positions at'Williams AFB, Arizona and Osan

AB, Korea until September, 1975. He then returned to Williams AFB as a

computer systems programmer/analyst with the Air Force Human Resources

Laboratory (Air Force Systems Command). In June, 1978 he entered the

School of Engineering, Air Force Institute of Technology.

Permanent address: 2094 Auburn Avenue

Dayton, Ohio 45406

/-

SECURITY CLASSIFINCATPION OF THIS PAGE (nhen DateEntered)!
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

REPORTBEFORE COMPLETING FORM
1. REPORT NUMBER 2, GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/EE/79-7 __

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A SYSTEM DESIGN TOOL FOR AUTOMATICALLY MS Thesis
G E N E R A T I N G F L O W C H A R T S A N D P R E P R O C E S S I N G P A S C A L _ ._ P E R F R M I N G _0 G . _R E P O T _N U M B E

| 6. PERFORMING O G. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(a)

James H. Keller
Captain

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Air Force Institute of Technology (AFIT-EN) 62204F
Wright-Patterson AFB, Ohio 45433 20030332

Ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Avionics Laboratory (AFAL/AAF-2) Dec, 1979

Wright Patterson AFB, Ohio 45433 13 UMBER OFPAGESi16
14. MONITORING AGENCY NAME A ADDRESS(if different Irom Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

Ia. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. it different from Report)

lIs. SUr-WL.PMt.N i It NJ~m p! rb

Approved for public release; IAW AFR 190-17 - "
JOSEPH P. HIPPS, Maj, U AF
Director of Public Affa rs

19. KEY WORDS (Continue on reverse side it neceeary and identify by block number)

Flowcharts
Stepwise Refinement
Automatic Programming
Computer aided design
Documentation

20. ABSTRACT (Continue on revere aide If nececary and identify by block number)

The portion of overall system costs attributable to software

development and maintenance is presently near 50% and is continually

increasing. Programmers and analysts are diligently searching for tools

00 1 -, 1473 zEOM Or I MOV $$ IS OBSOLE TE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (WWO. DOtaer

UNCLASSIFIED
SECuRITY CLASSIFICATION OF THIS PAGE(Cfa Date Entered)

to assist them by automating the analysis, design, and documentation of

software systems.

Flovcharting has lost some of its support as a powerful design tool

due to the need for discipline, patience, and to some degree artistic

talent. Automatic flowcharting, designed for specific languages and

machines, provides automatic documentation only. No attempt has been

made to link the automatic flowcharting to the compiler-ready code.

This study begins the development of an automatic program design

tool to graphically display and update flowcharts and provide this link

between the flowchart and the system it represents. A method of f.
detailed, automatic design of programs, down to the elemental source

language level, is proposed which displays graphical flowchart

constructs and provids for iterative, stepwise refinements of the

flowcharts. The final system, ,described by selecting flowchart

constructs and completing the descriptions of the details of each

construct, 4-Asmaintained in a data structure that allows for subsequent

refinement and for optionally producing a compiler-ready source listing.

UNCLASSIFI ED
SECURITY CLASSIFICATION OF VY- PAGEMOPU DOW Entered)

