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Notation

neutron growth rate

A(i,v) density of absorptions of neutrons at

position x and speed v

S(v'-v)dv number of neutrons that emerge in

velocity range dv when a neutron of

velocity v' undergoes a collision

P(x'-x,v) kernel representing the density of

abosrptions at x when one neutron

is released at ", with speed v

*n(x,v) the nth order scalar neutron flux

eigenfunction

k n(v) eigenvalue associated with 'n( ,v)

S(x -X) delta function

B buckling of diffusion theory solution

n (E) trial energy functions

k neutron multiplication factor

4(r,&I,E,t) neutron flux at position r , energy E

solid angle P , time t

E(rE) total macroscopic cross section at

position r and energy E
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P path length from r" to r equal

to I

f r(E'-E;n'-&) probability that a neutron entering a
collision with energy E' and direction

sl' will emerge with energy E and
direction i

c(r', E -)  average number of secondary neutrons
emitted per collision at (r',E-)

total macroscopic cross section with

time absorption a/v added
4n (r) nth order of one group spatial flux

distribution eigenfunction

An  eigenvalue associated with in(r)

n(E) neutron number density in units of
neutrons per unit volume per unit energy

aij expansion coefficients of trial function

*i and n

X1  result of operating on the trial solution
Inl with two-dimensional kernel

Amn transformation matrix from nj
basis to X basism

£ ratio of successive shell radii in a
self-similar mesh

angle between radius vector r and
path length p
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"k direction cosines for Gaussian
quadratures

wk weights associated with direction

cosines Uk

K number of integration rays

C interpolation coefficients used to

Lxpress the flux as a function f p

rather than a function of r

T transmission factor

n'k  cos o where e is the angle between
ri  and the kth integration ray
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4Abstract

The calculation of neutron flux distribution and growth

rate for small, spherically symmetric systems usually requires

extensive computing time on the largest machines. To minimize

computing time, a compromise between the simplicity of

diffusion theory and the accuracy of transport theory is

needed. The Serber-Wilson method, Feynman's method, and early

flux synthesis methods are used as the foundation for integral

integral equation synthesis (IES) which is an approximate,

numerical technique for obtaining the spatial and energy

neutron flux distributions in multiplying systems. In IES,

the integral form of the neutron transport equation is

specialized to spatial dependence only, and then solved

numerically for the two lowest order eignefunctions. Similar

specialization to energy dependence only yields a second set

of trial eigenfunctions. Using standard perturbation methods,

the two sets of trial eigenfunctions are synthesized into a

single, two-dimensional solution. The IES techniq::e was

used to calculate the flux and multiplication factor, k ,

of the critical plutonium sphere, Jezebel. Results for k

agreed to within 0.01% of published values, whereas the

spatial flux, when normalized at the center, agreed to within

8% at the outer assembly boundary. The Jezebel calculation

using IES required about 90 seconds CPU time on an IBM 360/75.

Highly sophisticated codes require approximately ten minutes

of CDC 7600 CPU time to compute the Jezebel flux and growth

rate. / \
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INTEGRAL EQUATION SPACE-ENERGY FLUX

SYNTHESIS FOR SPHERICAL SYSTEMS

I. Introduction

The calculations of neutron flux distributions and

neutron growth rate (a) for multiplying systems currently

require extensive computing time on the largest machines.

Because of the immense amount of detail in the dependence

of cross sections on neutron energy for fissile nuclei,

there is no possibility of obtaining exact solutions to the

energy-dependent neutron transport equation for general

problems (Ref 2:48). The usual approach is to obtain numer-

ical solutions to the Boltzmann transport equation. Even

for one-dimensional systems, this integro-differential

equation expresses the neutron flux as a function of four

independent variables: position, energy, direction, and

time. Accurate calculations of neutron transport are often

made by finite differencing the first three of these variables.

A typical neutron transport problem might involve tens

of spatial cells and perhaps ten energy groups and ten

directions. Differencing this problem then results in a

mesh composed of approximately a thousand "cells;" each

with a specified position, energy, and neutron direction.

The calculation, however, is entirely nonlocal in the sense

that neutrons in any cell can influence neutrons in any

other cell. Thus, to compute a neutron flux value in one

IN1



cell requires the calculation of interactions between that

cell and the other 999 cells. For a typical problem of a

thousand cells then, about a million interactions must be

calculated in order to specify the neutron flux for a given

time. In a time dependent problem, these calculations

must be repeated each time the clock is advanced one step.

Clearly, the usual approach to numerically solving the

Boltzmann transport equation requires extensive computing

time in addition to extensive computer storage capability.

If all spatial dimensions of the system under consider-

ation are large compared to the applicable neutron mean free

paths, it is possible to use diffusion theory to calculate

the neutron flux and growth rate for the system. Well known

because of its wide applicability, this method fails to

describe many interesting problems because diffusion theory

is completely local in the sense that each cell is influenced

only by its nearest neighbors. One consequence of this

local nature is that the shape of the spatial neutron flux

distribution is strongly influenced by the boundary conditions.

However, it is precisely at the boundary that this solution

technique is most inaccurate. For spherical systems with a

radius of a few mean free paths, all points in the system

are "close" to the boundary and thus diffusion theory is

not applicable.

Clearly, a compromise is needed between the simplicity

of diffusion theory and the accuracy of transport theory.

2
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An efficient solution technique that can be used on small or

medium sized computers would be of value in parametric

studies of small, fast, supercritical systems.

Purpose and Criteria

The purpose of the research reported here was to

develop a technique that can be used to efficiently calcu-

late the neutron flux and the neutron growth rate in small

spherically symmetric, multiplying systems. The technique

is to be a numerical one that maximizes the use of analytical

tools and approximations in order to minimize the numerical

effort and expense. Extreme accuracy is sacrificed in

favor of efficiency, but the strength and significance of

the technique will lie in its applicability to nonlocal

problems -- problems which diffusion theory cannot describe.

Overview

This report contains five sections and two appendices.

In Section II, the theoretical background of some semi-

analytical methods that influenced the development of

integral equation synthesis (IES) is discussed. The extension

of these methods and the derivation of integral equation

synthesis is presented in Section III. In Section IV,

benchmark calculations are described and the results are

analyzed. Finally, the conclusions and recommendations of

this study are presented in Section V. In Appendix A, the

numerical methods used in the IES calculations are described.

3
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A listing of pertinent data used in benchmark calcula-

tions is presented in Appendix B.
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II. Background

Early attempts to solve the neutron transport equation

were based on approximations that allowed analytical solutions.

As computing machinery evolved to larger and faster models,

numerical methods also evolved to brute force solutions with

fewer and fewer approximations. However, many of the early

techniques were surprisingly accurate and can be easily

extended to describe very complex problems today.

The discussion of methods and techniques of neutron

transport included in this section is certainly not intended

to be a comprehensive survey of such methods. Rather, the L

purpose here is to briefly review only those techniques that

provided a foundation for and influenced the development of

integral equation flux synthesis. Some of the basic ideas

of synthesis methods were detailed over three decades ago

by Serber and Wilson.

Serber-Wilson Method

The Serber-Wilson method (Ref 19) is an approximate

technique for finding critical masses and multiplication

rates for two-media, spherical systems. Developed inde-

pendently by Serber and Wilson in 1945, this method

approximates the neutron flux in each medium with asymp-

totic diffusion theory solutions. The integral form of

the neutron transport equation is required to be satisfied

---..Ow-



at the center of the system. This requirement provides

the constraint necessary to define a matching coefficient

for the two pieces of diffusion theory solutions.

If the system is divided into a core region and a

tamper or reflector region, then diffusion theory can be

used to approximate the neturon distribution in each region.

In the core region or active region, the neutron density

is taken to be of sinusoidal form; in the reflector region,

an exponential is used for the neutron density. The true

distribution shows a transition effect near the core-

reflector interface where the density drops rapidly in

passing from the core to the reflector. Serber represented

this by allowing a discontinuity in neutron density at the

interface. The magnitude of the discontinuity can be

determined from conservation of neutrons; in a critical

assembly the rate of neutron production in the core must

exactly equal the rate of neutron absorption in the reflector

(assumed infinitely thick). Once the neutron density is

fixed in this way, the critical radius can be determined

by requiring that the integral equation which governs the

diffusion of neutrons be satisfied at r = 0 .

The striking feature of the Serber-Wilson method is

that, in the resulting equation to be solved for the critical

radius, R , one side of the equation contains only core

constants and the other side of the equation only reflector

constants. This obviously leads to a very simple graphical

6
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solution. The extension of the method to non-critical

assemblies is straightforward since a multiplying system

is equivalent to a critical one with time absorption

(Ref 8:78).

Deficiencies in the Serber-Wilson approach are three-

fold: first, the method cannot handle systems so small that

the diffusion approximation introduces unacceptable error;

second, although the method can be extended to handle three

material systems, it is difficult to treat multi-material

systems with varying densities; third, the method cannot

easily describe the effect of the distribution of neutron

energies in finite systems (Ref 6:275).

In Feynman's method, which is described next, special

attention is paid to those problems arising from the fact

that neutrons of different velocities have different

properties.

Feynman's Method

Like the Serber-Wilson method, Feynman's method

(Ref 8) is an approximate technique for calculating critical

sizes and multiplication rates of spherical, active cores

surrounded by reflectors. The basis of Feynman's method

is the integral equation for A(x,v) ,the density of

absorptions of neutrons at position in the core, at

speed v , per unit range of v . Feynman also defines the

term S(v' v)dv as the number of neutrons (isotropic)

that emerge in velcoity range dv when a neutron of velocity

7



v' makes a collision in the core. He further defines a

kernel P(x -x,v) as the density of absorptions at x when

one neutron is released isotropically at X' with velocity

v . The variable v merely specifies the constants to be

used in calculating this kernel. Then A(x,v) satisfies

the following integral equation

A(",v) fdfdv P(xx,v)S(v -v)A( "',v') (2.1)

Now a form for the kernel P can be obtained by

considering a simple one-velocity problem. The scalar flux

eigenfunctions at velocity v , (Xp i,v) satisfy a one-

velocity integral equation

- x4j fd*n [P(iXv) (,v)] (2.2)

where kn (v) are the associated eigenvalues. Feynman

then expands the kernel of Eqn (2.2) as a bilinear series

of its eigenfunctions.

n *£v n (2.3)v
P( - .,v = k n(v) (,V)(2.3)n fdx * n xv

The crux of Feynman's method is to approximate the kernel P

in various ways that allow a simple solution to Eqn (2.1).

The first lower approximation (so named because it under-

estimates the critical radius) is to replace all the k (v)

8n
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in Eqn (2.3) by k0 (v) so that then

4."" Cv) 6( - ) (2.4)PC x,v) =k o m (,X

and after substitution, Eqn (2.1) simplifies to

A( ,v) = ko0VM fdv) S(v' v) A( ,v'3 (2.5)

Similarly the first upper approximation (it overestimates

the critical radius) is to set all kn (v) = 0 except

k0 (v) . Then Eqn (2.3) becomes

P= xv) k (v) 0 W (2.6)0 fd *2(x,v)

Substituting Eqn (2.6) into Eqn (2.1) gives

A(xv)= kM('v3 (2.7)
fdx

An implicit assumption of Feynman's approach is that

the one-group problem has been solved for every velocity

group. In practice, he used the diffusion theory solution

for the *n(x,v) , i.e., the eigenfunction *0 was always

approximated by sin Br (Ref 9:163). The method itselfr

does not require any particular approach for solving the

one-group problem. However, Feynman's method does require

9
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that the spherical system under consideration be divided

into a core and a reflector, each with homogeneous composi-

tion. If this is not the case, the method breaks down. If

the composition is nearly uniform, a clumsy perturbation

treatment can still be made, but the main advantages of the

method are lost (Ref 8).

Clearly, Feynman's method gives insight into an

efficient technique for determining neutron flux. Rather

than solving a two-dimensional problem (one spatial dimension

and one energy dimension), Feynman's approximation allows

one to solve two one-dimensional problems successively.

Although this is strictly possible only when the kernel

is actually separable, the idea of Feynman's method is

analogous to modern flux synthesis methods.

Flux Synthesis Methods

Modern flux synthesis methods are attempts to solve

multidimensional problems by first solving a sequence of

simpler, usually one dimensional problems. The reconstructed

multidimensional solution, although an approximation, often

contains detail which is impossible or economically imprac-

tical to achieve with a direct solution (Ref 20).

Early flux synthesis methods were directed toward

solving complex reactor problems and invariably used

diffusion equations and thermal energy spectra. Lancefield

(Ref 13) extended space-energy flux synthesis methods by

avoiding the diffusion approximation and retaining the

10
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governing transport equation. He also introduced several

refinements to the basic space-energy flux synthesis method.

These included: leaving both the space/angle and energy

dependence of the trial function to be determined by the

variational principle, incorporating discontinuous trial

functions, and the use of a new variational principle for

criticality problems that leads to estimates of homogeneous

functionals of the unknown flux.

Lancefield's approach, however, is still plagued with

the problem of choosing appropriate trial energy functions,

¢n(E) . One customarily chooses the Cn (E) to represent

infinite-media spectra characteristic of the sub-regions of

the system. But this choice is restricted to large systems

where such solutions dominate in some regions. For small,

highly enriched fuel systems, it seems likely that such a

choice would lead to considerable errors in both the computed

reaction rates and the calculated energy spectra (Ref 21).

Indeed, Lancefield's results for a two region (core and

reflector) fast reactor gave good results for multiplication

factor, k , but the errors in the reflector flux were

intolerably large. To reduce these errors, Lancefield used

different spectra and weight functions in different regions.

However, the spectra and weight functions were obtained from

the known solution. To avoid reliance on the known solution,

an iterative scheme was devised, but Lancefield himself

admits the whole procedure became so complicated and lengthy

that any practical applicability became questionable.

11
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Nearly simultaneous with Lancefield's work, Neuhold

and Ott (Ref 16) improved the space-energy synthesis approach

by employing reaction rate weighting, by using realistic

trial functions, and by deriving a more general analytical

solution for the synthesis equations which includes the

use of complex buckling. These improvements led to error

reductions (compared to previous space-energy synthesis

versions) of a factor of 100 in multiplication rate, k

and a factor of 20 in integral quantities sensitive to the

non-separability of space and energy. Unfortunately, the

applicability of these improvements is limited to systems

in which diffusion theory provides an adequate model.

Cockayne (Ref 4) extended the work of Neuhold and Ott

by examining the choice of trial spectra. He found that

"realized" spectra, i.e., spectra actually existing at some

point in the system, generally gave more accurate results

than a spectrum averaged over a region. Cockayne also

developed a procedure that allows calculation of a "realized"

spectrum in any transition region.

In summary, flux synthesis methods offer considerable

potential relative to reducing computational effort for

reactor analysis. However, the various approaches suffer

from lack of wide applicability. Most of these approaches

are based on diffusion theory and thus the applicability

is restricted to problems in which the system is large

compared to the operative mean free paths. Other forms of

12



flux synthesis require accurate knowledge of the energy

spectrum which can only be obtained through complex iterative

schemes. The concept of space-energy flux synthesis is

fundamental to the new method described in the next section.

13
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III. Development of Integral Equation Synthesis

In this section we develop the equations that comprise

the integral equation synthesis method. Basically, the

goal is to expand the two dimensional flux, i.e., radius

and energy, in terms of products of one dimensional, sepa-

rated, trial eigenfunctions. The one dimensional problems

are computationally easy and economical to solve, and the

accuracy of the final solution can be adjusted by using

more trial eigenfunctions.

First, the integral form of the transport equation is

specialized and simplified for a one dimensional, mono-

energetic, time independent problem. Analogous to thiz

spatial integral equation and based on neutron conservation,

we next develop the energy integral equation. Finally,

the synthesis procedure is described whereby the expansion

coefficients are determined and the final solution is

constructed.

Spatial Integral Equation

The basis of the integral equation synthesis method

is the integral form of the neutron transport equation

(Ref 6:27)
-

-f E(E,,p-)dp'0

Or n',E t) = fdV, e dE" _(+ -E,t)
4wi-ro2

S(r'-,E-)C~r-,E-) fr. (E-+E; i'-*n) (3.1)

14
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where

r t neutron flux at point r

energy B , solid angle s,

at time t

total macroscopic cross section

at r~,~

C(YOE') average number of secondary neutrons

emitted per collision at (r',E')

fr (E' ~E;nV ) probability that a neutron entering

a collision with energy E' and

direction Q' will emerge with

energy E and direction a

Several simplifications and assumptions are now made

in order to reduce the number of independent variables in

the flux that is to be computed. First, the angular varia-

tion of the flux is eliminated by assuming isotropic scatter

and integrating both sides of Eqn (3.1) over all solid angle.

From now on, the all angle or scalar flux is being computed.

It will become apparent in the development below that this

simplification is not essential to the method, but is a

significant convenience.

1s

t m



Secondly, the time dependent problem can be transformed

into a stationary problem (Ref 8:78). We assume the time

dependence of the flux in a multiplying system is given by

an exponential growth rate a . Thus,

S(-(r,E,t) = (ir,E) eat (3.2)

and

ap
,(',E-,t - - ) = (r',E-) eat  e- ( (3.3)

Substitution of Eqns (3.2) and (3.3) into (3.1) transforms

the integral equation into a time independent problem.

A further simplification is made by restricting

applications to one-dimensional, spherically symmetric

systems. The specialized integral equation is now

p
- E .(p-,E)dp "

0

*(r, E) fdV e fdE o(r',E')
4irp2

ctp

16 (r',E')C(r',E')fr (E')E)  (3.4)

16



Note that the time retardation term, exp [-ap/v(E)] , can

be incorporated into the exponential attenuation term by

defining a new cross section

z*CP,E) z(p,E) + vCE) (3.5)

We now write the integral equation for one energy group.

p
-f E*(p)dp

0

xp(r) fdV- e 4(r) (r)C(r) (3.6)

where

*(r) = one group spatial flux distribution

V

= eigenvalue

Equation (3.6) represents an auxiliary problem which is an

eigenvalue problem. It can be solved numerically, such as

by the power method (Ref 7:291), for the spatial flux

distribution *(r) . In addition, the lowest order eigen-

value of Eqn (3.6) can be made equal to unity (i.e., an

exactly critical system) by iterative adjustments to E*

as per Eqn (3.5). When the eigenvalue is made equal to one,

Eqn (3.5) can be solved for the one group multiplication

rate, .

17
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However, Eqn (3.6) has an infinite number of solutions

corresponding to higher order eigenvalues and associated

eigenfunctions. There will be a lowest A , called X1

for which the eigenfunction 4'I is everywhere positive.

The eigenfunctions corresponding to higher order values of

A (Xn being associated with n ) will have one or more

nodal points. In other words, the neutron density will be

positive in some regions and negative in others. Feynman

(Ref 8:8) interprets negative neutron densities as defi-

ciencies below some positive neutron density. He further

states that physical reasoning can be used in interpreting

the integral equation if negative neutrons are thought of

as actual particles whose presence in a region can cancel

the presence of an equal number of positive neutrons.

Clearly, increasing the number of nodal points in ' will

decrease the overall significance or contribution from

that * . This is so because leakage of neutrons of

opposite sign into one another will become more rapid as

the eigenfunction oscillates more rapidly.

It should be noted here that the eigenfunctions, 0n

are not mutually orthogonal since the kernel of Eqn (3.6)

is not symmetric. Furthermore, there is no guarantee that

the functions *n form a complete set, even though this is

certainly true for cases of physical interest (Ref 8).

But as Kaplan (Ref 12) argues, "completeness is academic and

orthogonality is only a minor convenience." This is

18



especially true for the case of an approximate, numerical

solution. Indeed, at most only a few of the set of trial

eigenfunctions will be used in the final solution. The only

criterion, then, for these eigenfunctions is the "goodness"

of the final approximation, i.e., the accuracy of the final

solution.

We now turn our attention to the energy dependence of

the neutron transport equation. The next goal is to develop

an energy integral equation that is analogous to the spatial

integral equation.

Energy Integral Equation

An analogous energy integral equation can also be

derived from Eqn (3.4). The procedure is to assume spatially

invariant material properties and a system of infinite

extent. These assumptions allow the spatial integrations

of Eqn (3.4) to be performed analytically resulting in

Eqn (3.11). However, the development of the energy integral

equation presented below is based on conversation of neutrons

and serves to give a better physical interpretation of the

energy equation.

Let n(E) be the energy dependent neutron number

density in units of neutrons per unit volume per unit energy.

Then the time rate of change of the neutron number density

is just equal to the gains minus the losses. That is,

19
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an(E) = gains - losses (3.7)
at

We assume a system of infinite extent with a spatially

constant flux. The contribution of n(E) , summed for each

energy bin dE" , is given by

gains = fdEI n(E')v(E')Z(E')C(E')f(E'E) (3.8)

where

n(E') = neutron number density at energy E'

v(E') = neutron speed at energy E'

CE) I = macroscopic total cross section at

energy E'

C(E') average number of secondary neutrons

emitted when a neutron of energy E'

undergoes a collision

f(E'4E) probability that a neutron entering a

collision with energy E' will emerge

with energy E

Equation (3.8) is nearly self-explanatory. The number

density times the speed is just neutron flux. The product

20

.4



of flux and cross section is the reaction rate. For each

reaction there are C(E') neutrons emitted with energy

distribution given by f(E'-E) . In order to obtain the

entire gain to n(E) , we simply sum or integrate over all

energies E' .

The losses term in Eqn (3.7) is even more straight-

forward than the gains. Since we have assumed an infinite

system, there is no leakage. The only loss is due to reactions

or collisions that occur at energy E . This is simply the

product of flux and total cross section.

losses = n(E) v(E) (E) (3.9)

Equation (3.7) can now be written as

anCE) _ JdE- n(E) v(E ) E(E') C(E) f(E'-E)

at

- n(E) v(E) (E) (3.10)

But again, as in Eqn (3.2), we claim to know the time

dependence of our system. In this case, the exponential

growth rate is given by a. since we have assumed an

infinite system. Taking the partial derivative in Eqn (3.10)

and rearranging, we have the energy integral equation.
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[ci + v(E)I:(E)] n(E)

fdE' n(E)v(E )E(E')C(E')f (E-'E) (3.11)

Note that Eqn (3.11) is another eignevalue problem. The

lowest order solution nl(E) , corresponds to the energy

distribution in a homogeneous, infinite medium. Just as in

the spatial case, there are an infinite number of solutions

corresponding to higher order eigenvalues and associated

eigenfunctions. The lowest order solution, nl(E) , will

be everywhere positive and higher order eigenfunctions will

have one or more nodal points. The energy eigenfunctions

are also not mutually orthogonal, although the adjoint or

left eigenfunctions are orthogonal to the right eigen-

functions. Completeness of the energy set of functions

is again academic since at most only a few eigenfunctions

will be used to approximate the final solution.

We now have methods for determining the spatial flux

independent of energy, and also for determining the energy

distribution independent of spatial location. The next

step is to combine or synthesize the solutions to the

separated problem. The final solution, a judicious combina-

tion of the separate solutions, Will be the integral

equation synthesis approximation to the two dimensional,

i.e., space and energy, non-separable problem.
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Synthesis of Spatial and Energy Solutions

Assuming the spatial and energy eigenfunctions form a

complete set, the neutron flux can be expanded in terms of

these trial eigenfunctions:

*(r,E) = aij *i(r) ni(E) (3.12)j i

Since the sets of spatial and energy trial functions

are known, a good approximation to the flux should be

available once a few of the expansion coefficienct, aii ,

are obtained.

In order to simplify the bookkeeping notations, we

arrange the trial solutions in an arbitrary but consistent

order so that trial solution number one is i(r) nl(E) ,

trial solution number two is p2(r) nl(E) , trial solution

number three is i(r) n2(E) , trial solution four is

02 (r) n2 (E) , etc.

The standard methods of perturbation theory (Ref 14:413)

are used to obtain the expansion coefficients. That is,

we first operate on the trial solution with the exact, two-

dimensional kernel of Eqn (3.4). In other words, replace

*(r',E-) on the right hand side of Eqn (3.4) with the

known *1(r') ni(E') . It is important to note that

Eqn (3.4) is no longer an eigenvalue problem; it simply

represents an integration that must be performed to obtain

the flux o(r,E) . This integration can be performed
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numerically quite quickly since no iteration or simultaneous

solutions to equations are required.

Let the result of the integration be X1 (r1E) , the

subscript denoting that the first trial solution was used

on the right hand side of Eqn (3.4). We can then use adjoint

weighting to expand X1 (rIE) in terms of all the trial

eigenfunctions 4i n. and let the expansion coefficients

by Aln . The first subscript on A denotes that X1

is being expanded and the second subscript identifies the

coefficient as belonging to the nth  trial solution.

That is,

Nmax
X1 (rlE) = Aln i n. ij = 12... (3.13)

n=l

and clearly

f;X 1 (r 1 E)4€(r)nt(E)drdE
Aln -, 1 (3.14)

ff 4i n! n. drdE

where the dagger terms are the left or adjoint eigen-

functions found from Eqn (3.6) for spatial functions and

from Eqn (3.11) for energy functions. The denominator

in Eqn (3.14) can easily be made unity with proper normali-

zation of the separate eigenfunctions.
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Similarly, the integration indicated in Eqn (3.4) is

performed after substituting i2n1  , i1n2  , q,2n2  , etc.

for o(r',E') on the right hand side of Eqn (3.4). The

results of these integrations are labelled X2  , X 3

X4  , respectively, and these in turn are expanded in terms

of the *in. basis set. The expansion coefficients,

defined by Eqn (3.14), form a transformation matrix [Amn]

This matrix transforms from the 1i (r) n.(E) basis to the

X(rIE) basis.

Note that, if the trial eigenfunctions *i n. were

exact eigenfunctions of the kernel of Eqn (3.4), i.e., of

the fully two-dimensional, non-separated kernel, then the

matrix [A mn] would be the identity matrix. Thus, the mag-

nitude of the off-diagonal elements of [Amn ] give a measure

of the validity of the separability assumptions used to obtain

Eqns (3.6) and (3.11). In addition, if the choice of trial

eigenfunctions is reasonably accurate, then the magnitude

of the off-diagonal elements should decrease the further one

goes away from the main diagonal.

The next step in the synthesis of the spatial and

energy solutions is to use the power method (Ref 7:291)

to obtain the largest eigenvalue and associated eigenvector

of the transformation matrix [Amn] . The elements of the

lowest order eigenvector are just the expansion coefficients

aij that we seek for Eqn (3.12).
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Now that a new and much more accurate approximation

to the flux is available through Eqn (3.12), we can use

this flux one more time in Eqn (3.4) to perform the right

hand side integration. This final integration will yield

a more accurate eigenvalue which can then be used to compute

the final growth rate, a . We then have solved for the

flux as a function of radius and of energy, and have also

determined the growth rate for the system.

As pointed out in Section I, the objective of this

research was to develop an efficient numerical technique

for computing neutron flux and growth rate in specialized

systems. However, the entire development in this section

has been in terms of continuous functions and continuous

variables which are obviously not suitable for direct

transfer to digital computers. The computer encoding,

numerical techniques and approximations are certainly not

a trivial portion of any solution algorithm. Indeed, in

the case of integral equation synthesis, a large part of

the numerical efficiency can be attributed to a new and

unique method of volume integration on a sphere CRef 17).

However, the particular numerical methods remain secondary

to the essential ideas of integral equation synthesis.

The development and description of numerical techniques used

ii integral equation synthesis can be found in Appendix A.
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In the next section, integral equation synthesis is

used to obtain neutron flux and growth rate for small,

spherical systems. These results are compared to those

obtainable with more conventional (and expensive)

calculational schemes.

27



IV. Results and Discussion

The integral equation synthesis (IES) approach was

converted into a Fortran computer program by the author

and used to compute the neutron flux and growth rate in

some simple systems. In this section the sample problems

are described, as well as the results obtainable with this

method.

Jezebel Calculations

Jezebel is a bare plutonium sphere, measured to be

just critical with a mass of 16.6 kg at a density of

15.8 g/cm 3 , corresponding to a radius of 6.4 cm. The

isotropic composition of the plutonium is 94.1 wt % Pu-239,

4.8 wt % Pu-240, and 1.0 wt % gallium (Ref 5).

The benchmark for IES calculations is the experimental

data reported in LA-3529 (Ref 5). In addition, flux and

energy distributions were obtained with the 1977 version

of the Los Alamos DTK code using their standard 13 energy

group cross section set. The results from the DTK code

differ insignificantly from those quoted in LA-3529, and

so these sources are used interchangeably as a benchmark

and are herein referred to as LASL results.

Cross Sections Used in Calculations

The cross sections used in the IES calculations were

a 16 group set collapsed from the 175 group set reported
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in UCRL-50400 Vol. 16 (Ref 18). The collapsing was done by

Dr. Walt Webster of Lawrence Livermore Laboratory (LLL)

who used a group structure and weighting spectrum commonly

used at LLL for small, fast, critical assemblies. The

group structure and associated group velocities are described

in Appendix B.

It is important to note here that the cross sections

used in the IES calculation are not identical to those

used in the benchmark calculation. This selection was

made for two reasons. First, the LLL cross sections were

readily available and in a form easily incorporated into the

IES methodology. Secondly, and more importantly, it was

decided early in this project that the level of accuracy

desired with the IES method was inconsistent with highly

refined, normalized cross section sets that give good

results in only one specific application. Indeed, the

authors of the benchmark calculation point out that cross

section users often find that normalization is essential

to achieve the accuracy required of their calculations

(Ref 11). The results reported for the IES calculations

are typical of those obtainable with any reasonable cross

section set.

Numerical Details

To perform the integrations needed in the integral

equation synthesis method, Gaussian quadratures are used

for the angular integrations. The Gaussian weights and

abscissas are given in Appendix B.
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The spatial mesh used in the IES Jezebel calculation

consists of a center ball and 17 shells of increasing

thickness. For ease of calculation and numerical integration,

a self-similar mesh is chosen such that the outside radius

of any shell is given by

ri = cri_ (4.1)

where

ri  outside radius of an arbitrary shell

ri-1 outside radius of next inner shell

= 1.1571

Growth Rate Results

Integral equation synthesis computed the Jezebel

alpha to be + 0.39 generations per microsecond, compared

to the benchmark value of - 0.65 generations per micro-

second. A better appreciation of the accuracy of the IES

result can be obtained by converting the alpha values

(which should be exactly zero for a critical assembly) to

multiplication factor, k (which is exactly one for a

critical assembly). The LASL value corresponds to a k

of 0.99992 whereas the IS alpha corresponds to a k

of 1.00005. This deviation of less than 0.01% is
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Figure 1. Self-Similar Mesh Used for Jezebel Calculation
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indeed negligible in view of uncertainties associated with

cross sections and other material properties such as

isotopic composition and density.

Computed Flux Results

The spatial flux distributions computed by the IES

method and by the LASL code are shown in Fig. 2. The two

curves are normalized to each other at 0.71 cm since the

different meshes in each calculation had a common value at

this radius. This normalization is convenient and yet,

for practical purposes, it is equivalent to normalization

at the center of the assembly; i.e., at zero radius.

Normalization at the center is preferred to an integral

normalization because, in a highly supercritical assembly,

the central region drives the entire system so that errors

near the center are much more significant than differences

near the outer edge.

As is typical of IES results, the method underestimates

the magnitude of the flux in the outer regions. Note that

the maximum discrepancy in the flux at the outer edgz of

the assembly is only about 8%. This is most likely due to

an approximation used in performing the volume integrations

required by the integral equation approach. This approxi-

mation is not essential to the method, but does significantly

reduce the calculational effort. See Appendix A for a

detailed description of the geodesic coefficients used in

volume integrations.
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The IES results shown in Pig. 2 were obtained with

only two trial eigenfunctions. That is, the final spatial

flux distribution is a combination of * 1 (r) and *2 (r)

only. Plotted in Fig. 3 are the LASL result, the IES

result, and the *1 only result. Note that, in the

Jezebel case, the addition of another trial eigenfunction

(IES curve compared to ti curve) improves the result, but

not dramatically. Just as one would expect, the lowest

order trial eigenfunction carries most of the information

and additional trial eigenfunctions represent fine tuning

of the basically accurate first approximation. In many

practical applications, it may be determined that the

improvement in accuracy obtained by introducing more trial

eigenfunctions is not necessary or not worth the computa-

tional effort. The integral equation synthesis method is

inherently flexible and easily adapted to various accuracy

requirements.

The computed energy distribution of the Jezebel

flux at the outer surface is shown in Fig. 4. Also plotted

in Fig. 4 is the LASL leakage spectrum for the Jezebel

device. The two histograms are normalized to the same

value at the peak energy groups respectively which occur

near .5 MeV. Although the group structures are different,

not the general agreement between the IES results and the

LASL results. Just as in the spatial case, the final IES

energy distribution was obtained with only two trial

eigenfunctions, nl(E) and n2(E) . But contrary to the
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spatial case, the addition of the second energy eigenfunction

made only negligible changes in the computed spectrum.

Obviously, the infinite medium spectrum is very close to

the Jezebel spectrum. In other words, essentially all the

spectral information is carried in the lowest order trial

eigenfunction. We would not expect such a fortuitous

computation of energy eigenfunctions in systems of variable

density or non-homogeneous composition. In any event,

when additional energy eigenfunctions do not significantly

alter the final spectrum, it is clearly uneconomical

and unnecessary to include more than one trial function.

Shown below in Table I is the transformation matrix

computed for the Jezebel system. Note that the terms of

maximum magnitude occur on the main diagonal.

Table I

Transformation Matrix from Jezebel Calculation

1_nl 1 *2n, *i1n2  _ 2_n_ 2

X1  1.0358 -0.0062 0.0019 -0.0004

X2  -0.0035 0.5728 -0.0003 -0.0015

X3  0.1891 -0.0011 -0.6621 -0.0218

X4  -0.0006 0.1059 -0.0156 -0.5149
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In Table II below are the expansion coefficients

computed from the transformation matrix shown in Table I.

Clearly, the maximum information is "contained" in the

lowest approximation; i.e., in 01 n1  . It is also clear

from the relative magnitude of the coefficients shown in

Table II that n2 carries little information. In

comparison the second spatial trial function, '2

contributes about 10% to the final solution.

Table II

Mixing Coefficients for Jezebel Flux Synthesis

Function Coefficient

Oinl 0.9938

2 2n, 0.1107

ln 2 -0.0076

2 n 2 -0.0020

Computation Times

A Fortran program using the IES method has been

executed on an IBM 360/75 digital computer. As with all

calculations of this type, central processing unit (CPU)

times are very problem dependent. The Jezebel calculation
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with 17 spatial shells, 16 energy groups, and 4 trial

eigenfunctions (2 spatial and 2 energy) requires about

90 seconds CPU time. The same problem with 17 spatial

shells, 4 energy groups, and only the lowest order spatial

and energy eigenfunctions requires about 10 seconds CPU

time.

In comparison, ANISN (an anisotropic, discrete

ordinates transport code designed for reactor analysis)

requires about five minutes of CPU time on a CDC 7600

computer (Ref 22). Other very sophisticated codes used

at LLL to treat small systems require about ten minutes

of CDC 7600 CPU time to compute the Jezebel flux and

growth rate (Ref 22).

Supercritical and Non-Homogeneous Systems

Integral equation synthesis has been used to calculate

various supercritical systems including single-material,

variable-density assemblies and also several-material,

variable-density systems. Unfortunately, it is difficult

if not impossible to find benchmark calculations of this

type in the open literature. Yet it is just these more

sophisticated systems that integral equation synthesis is

designed to calculate.

A validation of a portion of the IES method has been

made by solving a one group, supercritical system by

several methods. A hypothetical assembly consisting of a

S cm, double density, bare, plutonium sphere was analyzed
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using diffusion theory, a P-I model, discrete ordinates,

the end-point method, and the spatial part of the integral

equation synthesis method. Table III shows the computed

values for the growth rate a , and the corresponding

multiplication factor, k (Ref 3).

Table III

Comparison of Calculated Alpha Values

Model Alpha (Sec " ) k

Diffusion 2.424 x 108 1.67

P-I 2.727 x 108 1.82

Discrete Ordinates 2.973 x 108 1.96

End-Point 2.965 x 108 1.96

Integral Equation Synthesis 2.987 x 108 1.97

For this problem the end-point method can be considered

as nearly exact (Ref 2:96) and hence serves as the bench-

mark. Notice that diffusion theory predicts an a that

differs by 18% from the end-point method. Integral equation

synthesis, on the other hand, predicts an a within 0.07%

of the end-point value.

Integral equation synthesis has also been applied to

multi-material, variable density, supercritical systems.

Benchmark results are not available for these assemblies;
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however, it is anticipated that the accuracy of the IES

results would be consistent with the accuracies 
indicated

above.
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V. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Integral equation synthesis has been shown to be an

accurate and efficient technique for calculating neutron

flux and growth rate in spherical systems. Because an

integral approach is used, the numerical technique does

not suffer from convergence problems so common with finite

difference schemes. Because the trial functions are com-

puted for each problem, the method does not suffer from

the occasional anomalous results of usual synthesis methods

(Ref 15) where the trial functiom; are chosen a priori.

And, because the method uses an integral approach, the

boundary conditions are automatically and rigorously

satisfied (Ref 10).

The computational efficiency of the integral synthesis

method arises not only from the method itself, but also

from the coarser mesh that can be used in most applications.

The use of a self-similar mesh not only simplifies the

calculations, but also serves to give maximum spatial

resolution of the flux near the center of the system. It

is precisely this region that drives the entire assembly

so that the fine resolution is well-placed. On the other

hand, the regions near the outside edge of a highly super-

critical assembly contribute little to the center flux

and overall growth rate. The self-similar mesh is
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justifiably very coarse near the outer edge of the system.

The mixing coefficients or the actual synthesis of

the separate space and energy solutions has been shown to

be unnecessary for acceptable accuracy in Jezebel calcula-

tions. Clearly, the synthesis procedure is not necessary

in problems that are nearly separable in terms of space and

energy. Fortunately, the method itself gives an indication

of the accuracy of the separability assumption. The trans-

formation matrix, whose lowest order eigenvector produces

the mixing coefficients, provides a measure of the separa-

bility through the magnitude of the off-diagonal elements.

If these elements are large, say within an order of magnitude

of the diagonal elements, then the synthesis procedure is

probably required because of non-separability. However, if

the synthesis procedure is not necessary, the integral

method is an even more efficient technique for computing

neutron flux in small, supercritical systems. A unique

feature of integral equation synthesis is that an interim

calculational produce gives an indication of the accuracy

of the final product.

The wide applicability of this transport technique

cannot be overemphasized. The method is only slightly

more complicated than diffusion theory, yet it handles a

much broader range of systems. There are no "size compared

to mean free path" restrictions as with diffusion theory.

The method is applicable to multi-material systems with
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varying densities and/or systems with center voids. Yet

the method accounts for the nonlocal nature of neutron

interactions in a multiplying system. The applicability

of integral equation synthesis is further enhanced because

of its modest computing cost in terms of storage and

CPU time.

Recommendations

Two extensions of this research and integral equation

synthesis are recommended. First, the method should be

extended to allow anisotropic scatter and to obtain the

angular distribution of the neutrons. As it is well known,

the angular distribution of the neutrons can be reproduced

from the knowledge of the flux by a simple quadrature

(Ref 10). This technique is especially straightforward

the the numerical form of the IES method since Gaussian

quadrature is already used to perform the angular portion

of the volume integrations. Instead of summing the contri-

butions of all angular rays, one has to simply retain and

store the contribution of each angular ray. In other

words, the angular dependence of the neutron flux is

already being computed and all that is required is to

retain and extract this information.

Second, integral equation synthesis should be extended

to geometries other than spherical. Of course, as it is

formulated, the method is independent of geometry. However,

the transformation of the theoretical formulation into a
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numerical technique has been accomplished only for spherical

geometry. Potential applications of this efficient technique

will be greatly enhanced when rectangular and cylindrical

systems can also be treated.
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Appendix A

Numerical Methods Used in the IES Calculations

The integral form of the neutron transport equation

for one energy group can be written

p

0 __p

*(r) = dV e zC(r)C(-)q(r) e v (A.1)
4wp

2

where

) = scalar neutron flux in neut/cm 2-sec

(r) = space point to be calculated

(W') = other space points over which we integrate
= I+ - -'1
pr r

Er) = total macroscopic cross section at r"

C(r') = average number of neutrons everging from

a collision at r'

v neutron velocity

S= neutron growth rate

The basic problem is to solve Eqn (A.1) numerically

and efficiently for a spherical system. There are many

ways in which this can be done; however, the following

method is quite efficient.
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The first decision involves the geometry of the

integration. So far, we have just indicated an integration

over dV . The usual procedure is to define the vectors

r and r- from the center of spherical geometry. By

appropriate transformations of the variables, it is possible

to arrive at an integral equation whose kernel is symmetric

in r and r . There are several advantages to this

approach, particularly in that the solutions to the equation

then form an orthogonal set. Also, many matrix manipulation

schemes are simpler when the matrix is symmetric. The

difficulty, however, is that a discontinuity arises when

r This can be avoided by sacrificing symmetry and

using p as the variable of integration. We then have

dV = 2n sinedo p2 dp (A.2)

where e is the angle between r and p ,and the

discontinuity is eliminated.

The integral over dV- now involves only two dimensions

since the problem is symmetric in azimuthal angle. The

integration over O can be quickly transformed into one

over p = cose since

~1
f sinede f(e) = f du f(u) (A.3)
o -4
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Integrals of this type are most accurately approximated

by Gaussian quadratures:

1 K
f dv f(p) Z I wk f(vk )  (A.4)

-1 k=l

For each value of K , tables (Ref 1) give the corresponding

values of the weights wk and the direction cosines Vk

Using Gaussian quadratures, the entire volume integral now

reduces to a weighted sum of K one-dimensional integrals

over p. Integral equation synthesis solutions using

K = 10 have been shown to give acceptable convergence

of the e- integration.

P

-P z*(p)dp"

(r)= IP k f "'adp e 0 ~r)C(r)i(r) (A.5)
k=l o

where

£* = cx ..-

v

The final integration over p requires some care. We must

first define the manner in which known properties (total

cross section and average number of neutrons emerging from

a collision) and unknown quantities (fluxes) vary as functions

of radius. We must then establish a correspondence between

s
soi
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this radial dependence and the dependence on the coordinate

p . Because each integration ray is oblique to the radius

vector, this latter correspondence can become geometrically

and numerically quite complicated.

Before describing the radial dependence of the variables,

the following indices are introduced:

k = the label of the angular ray along which we

are integrating over p .

i = the label of the spherical shells. These are

labelled such that i increases as we go out

to larger radii.

j = the label of the crossing points; i.e., the

jth shell intersected as we proceed outward

along the kth ray. The point from which we

start is j = 0 .

£ = an "offset" index that is a function of k

and j . After crossing j shells as we

go outward on the kth ray, we intersect

the (i + Z) shell.

I' = another "offset" index which is either the same

as t (if the kth ray is going inward or is

just "glancing" across a shell) or equal to

(I + 1) if the kth ray is going outward. This

index specifies the cross sections to be used

in the integration.

An example of these indices and relationships are indicated

in Fig. A-i.
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K=l

Figure A-i. Several Integration Rays and
the Associated Indices.
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The radial dependence of the various properties and

quantities is approximated as follows:

1. Given parameters (cross section and neutrons per

collision) are assumed to be uniform between the shell

boundaries. They are labelled with the index of the outer

shell boundary.

2. Fluxes are defined on the shell boundaries (that

is, at specific radii) and vary linearly with r between

shell boundaries. We see that the actual problem is repre-

sented by an approximate configuration in which the neutronic

parametels are uniform in concentric annuli, whereas the

fluxes vary linearly with r within a given shell. We

would expect this approximation to be valid insofar as the

mean free path is long compared to the thickness of the

shell. Thus, the larger the mean free path relative to the

scale of the geometry, the more accurate is this representation.

The integration along each ray requires that the flux

be expressed as a function of p rather than r . It is

convenient to represent *(o) by means of interpolation

coefficients, Cikj (Ref 17). The upper indices indicatemn

the position in the mesh: we started at radius i and

have progressed outward on ray k ; this interpolation will

apply between boundary crossings j and j + 1 . The

lower indices relate to a polynomial fit involving the

values of flux at radii (i + £ + m) ,the powers of (p-)
r j

being given by n . These terms are illustrated in Fig. A-2.
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Figure A-2. Relationship of Flux Indices and pIndices.
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For P between Pikj and Pikj+l the flux is

given by

'(P) = Ci _i 9-l r - ,2 2i-l (j

-0,0 *i+ + c0,1 i+..) + C0,2 1i+R r

0,0 i+R+i + CI ii (r1,2 i++i 2 (A.6)
1 1

or

1 2
i(p) = I C ()n (A.7)

m=l n=0 m,n i+Z+m ri

where the upper indices have been suppressed for the sake

of clarity.

The calculation of these interpolation coefficients

is a somewhat tedious algebra problem, but once computed

they can be stored and re-used for a given radial mesh.

A considerable simplification is possible if the radial

mesh is made self-similar wherein each radius ri  is a

constant factor (e > 1) times the preceding radius ri_ 1

In this case, the coefficients C are no longer dependent

on i , the label of the initial radius.

The interpolation coefficients are calculated from

Eqn (A.7) with the following boundary conditions:
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= ; P = P( (A.8)

@_ - i qI (A.9)
= p Pj r - P

@ P = Pj+1 ; (o) = i+L+1 (A.10)

Note that, depending on the angle of the integration ray k

will be on a shell whose radius is larger than (outward

case), the same as (glancing case), or smaller than (inward

case) the shell denoted by pj . For this reason, the

interpolation coefficients are also divided into outward.

glancing, and inward cases. A listing of the interpolation

coefficients for a self-similar radial mesh is provided

in Table A-1.

At this point, making use of Gaussian quadrature and

the interpolation coefficients, we can rewrite Eqn (A.1) as

K max 1 2

k=l j=O m=-1 n=O

f 0j +1 Pp. 1

PjP

S6
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The terms above in the brackets are simplified in

the following way. Approximate e- a p/v as (1
V

Define a new variable of integration as

p - P.

y = Pj+I P

Define a transmission factor T. 'k  such thatJ

TiIk Tik e 'zj+l (Pj+I

j+i j

and

Ti,k 1
0

Then the bracketed term in Eqn (A.11) can be written as

{ Tik f dy n [1 2 (Apy p.)] e i+y (A.12)S 0 v J

where

AP S Pj + -Pj
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Table A-1

Interpolation Coefficients for A Self-Similar Radial Mesh

M Case N=O N=l N=2

OUTWARD 0 0 0

-l GLANCING (l-gmin1 XXj+l 2n K(l-gmin) (1 gmin )

n ,_ , . n 2. 1K j j+l K j j+l K j j+l

x X x. 2  (xj+x.j) 2x. 1 1

INWARD g ... 2 + -  -" - Jg +
AX AX2  Ax AX2  AX AX2

OUTWARD l+g .X j+l _-j .g X +j+l)+2xJ g 1 1

Ax Ax2  Ax AX2  Ax AX2

0 GLANCING K 2gminXj,,+1 'rCK l1gmin) g min

nK_2- X jx j+l nK2- x j j+1 nK 2-Xj Xj+l

x.x. X(x.+x j+l) 2x.
INWARD 1 -g , i j +1 _xJ- g, +.) -g1

AX AX 2  Ax AX 2  Ax AX 2

.x x.+ x. (+xj.+ )  2x. .

OUTWARD -g i J + + J... gX + 1 - 2x. - _g 1

AX AX 2  Ax AX 2  Ax Ax 2

+1 GLANCING 0 0 0

INWARD 0 0 0
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Table A-i (Cont'd)

qK cose where e is the angle between

riand the kth ray

x.j p./r.i

9' xj + n K

r.
-I- (r. r)r1  j+3. j

Then the Table entries are Cj~
m ,n
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A second change of variables such that

Z = i. -p y

allows us to write the bracketed term as

11i+1 fb z n 1zn+2
fZn eZ dZ -p) ( )

b zn+l e-z dZ (A.13)

0

where

b E zi+, Ap

But these integrals are just the partial gamma function

such that

b e- z dZ = ea -(ab)

f e e (Zb
a

and

b zn e -z dZ = -bn e b + ne -Z dZ (A.14)

a a
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or

Gn (a,b) -f e-Z dz -b eb + n Gn.(ab)

a

Making these substitutions and rearranging, we have the

final numerical form of Eqn (A.l):

K max 1 2 i,k cJ,k
Yi I I 1" k~i+.t'Ci+z £"j m,n

k =1 j=O m=-l n=O

{ Cob) ",P r * n~
bn~l - vbn+ G+(o~b) - 'iijn+ o)] i+Lvm (A.l15)

Before this equation can be solved numerically, the

boundary conditions need to be incorporated. Incorporating

the external boundary condition is a trivial matter; the

summing over j (the number of shell crossings) continues

until the outermost boundary is reached. A simple test of

(i + i + m) denotes when the outer boundary is reached.

The interior boundary condition is a little more complicated.

Because of spherical symmetry, the internal boundary condition

is

= 0 (A.16)
rff0
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Obviously, a linear variation of flux with radius inside

the smallest shell (r < ro) cannot satisfy the interior

boundary condition. For this reason, a quadratic variation

of flux with radius is assumed inside r . For r less

than ro

*(r) = A + Br + Cr 2  (A.17)

Denoting the flux at the center *(r = 0) as C and

applying Eqn (A.16), we have

*C) -0 2
*(r < r0 ) = C - r 2  (A.18)

where o = *(ro) 0 The center flux *C is computed

implicitly as a function of all the i That is,

Imax
XC =  [ a. *i (A.19)

where the ai are obtained from a solution of Eqn (A.1)

at r = 0 . Even though Eqn (A.1) is greatly simplified

when r = 0 ,the resulting expansion coefficients ai

are algebraically complicated. They are presented here

without derivation.
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Co G2(1or-l'oro) + 1 C1
a0 =[rG r~rl)T1

2  (rl-ro) lo,0

C. T.
ai __ - 1 [G1 ICr. 1 ,Eiri) r iG(E r r

(r i- r i-l "1- ( r -'-I o 0 r r - ' i i

+ Ti+C i+l [r G (ED(ri+l-ri) i+i 0(i+i

- (E Ci+ri, i+lri+1) (A. 20)

where

1 1 r  l  C
D = [ o G°(Errr°) + - 2 (E r_,Eorl)]C

Ti  = exp[ri 1 (Ei - ri. 1 )]Ti.1

To =

Gn = partial gamma function as defined in Eqn (A.14)

Having incorporated the boundary conditions, the

transformation of Eqn (A.1) to a discretized form is now

complete. Clearly, Eqn (A.15) is an eigenvalue problem of

the form
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4i= Mii" i (A. 21)

It can be solved numerically by techniques such as the

power method (Ref 7:291). The procedure is to solve Eqn

(A.15) and then adjust a and resolve the equation until

the eigenvalue is made equal to unity. The a that makes

the system just critical is the one group growth rate that

we seek.
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Appendix B

Data Listing for Jezebel Calculations

Jezebel calculations were performed with the IES

method using a 17 shell self-similar mesh with ro = 0.5354

and c = 1.157129 . The Gaussian quadrature abscissas and

weights are listed in Table B-I.

Table B-I

Gaussian Quadrature Abscissas and Weightsa

Abscissas 0.97391 0.86506 0.67941 0.43340 0.14887

Weights 0.06667 0.14945 0.21908 0.26927 0.29552

Abscissas -.14887 -.43340 -.67941 -.86506 -.97391

Weights .29552 0.26927 0.21908 0.14945 0.06667

a Data from Ref 1:916.

The sixteen energy groups and their associated average

group velocity and cross section used in Jezebel calculations

are provided in Table B-II.
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Table B-II

Group Structure, Velocities and Cross Sections

For Jezebel Calculation a

Group Energy Group Velocity Transport Cross
Group Lower Bound (MeV) (cm/shake) Section (Barns)

1 13 .62 b 51.60 3.8553

2 12.57 50.24 3.8490

3 11.57 48.19 3.6706

4 9.68 45.24 3.5983

5 7.97 41.00 3.8157

6 6.42 37.01 4,0943

7 4.73 32.48 4.2653

8 2.55 25.68 4.7049

9 i.18 18.26 5.0878

10 0.638 12.91 5.8035

11 0.296 9.263 6.8698

12 0.222 6.988 8.4536

13 0.107 5.373 9.7588

14 0.0273 3.229 11.4430

15 0.00875 1.739 13.9460

16 0.00100 0.7801 16.5620

aFrom Ref 22.
b Upper Energy bound on group 1 is 14.60 MeV.
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