AD=AOB0 406 NAVAL OCEAN SYSTEMS CENTER SAN DIESO CA F/0 %73
RECO;ERV OF BANDLIMH'ED SISNALS USING POISSON SAMPLES, (U)
ocT D M KLANE

UNCLASSIFIED NOSC/TR-463




—pw—— -

e §_
: ;
Techmcal Report 63
gECOVERY OF =§ANDLIMITED SIGNALS
— [ USING POISSON SAMPLES ‘
He v S R, ) /25 D. MKiamer]
L Fenal HquﬁMZ / @1 Qctm
4 _;/' [ | 75 Final Report: FY 1979
x —23
R ‘ DDC
| 0 |
- = hL FEB 8 1960
:.;1 CGLIU G
¥ — | B
y—
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152
| BGBLET
80 2 4 039

N W —



frosc)
<

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152
AN ACTIVITY OF THE NAVAL MATERIAL COMMAND
SL GUILLE, CAPT, USN HL BLOOD

Commander Technical Director

ADMINISTRATIVE INFORMATION

This report describes work which was completed at the Naval Ocean Systems Center
(NOSC), San Diego, California. This work was funded by the Independent Research (IR)
program of NOSC under the Signal Reconstruction program (ZR96719).

Reviewed by Under Authority of
D. A. Hanna, Head H. A. Schenck, Head
Signal Processing and Undersea Surveillance

Display Division Department




UNCLASSIFIED
SECUXITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
REPORT DOCUMENTATION PAGE o D T RUCTIONS
. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
NOSC Technical Report 463 (TR 463)
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
RECOVERY OF BANDLIMITED SIGNALS USING Final Report: FY 1979
POISSON SAMPLES €. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
D. M. Klamer
9. PERFORMING GRGANIZATION NAME ANO ADDRESS 10. ngs?goenc.xcgsr_rf"%z%tgzcr TASK
Naval Ocean Systems Center ZR9ET19 e
San Diego, CA 92152 g
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Ocean Systems Center ‘: c:i:t::::l:zzwes
San Diego, CA 92152 9
4. MONITORING AGENCY NAME & ADORESS(i{ different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
T5a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If dlllorﬁ ; on) . Z Jw

n

8. SUPPLEMENTARY NOTES W

AV} / - l:.\

19. KEY WORDS (| nue on revprae n/lﬁo " y and 1 ity by block number)

and the observed data
squared error converges to zero as the number of obdgrv rS:n increases to infinity for

~ all sampling-vates § > 37/2. The rate of convergence is exponential for § > 3n/2. \The above results hold for
center point interpolation (i.e., an equal number of samples on each side of e interpdlation point). For the case

DD ,’5%"5; 1473  zoimion oF 1 nov 68 18 OnsOLETE

of extrapolation, the sampling rate must be increased to 3{ S ) (Continued)
S/N 0102-LF-014-6601

UNCLASSIFIED

e — oy



—AYO S

—— >

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

(20. Continued)

this case the rate must be more than 1.5 (actually, m/2) times faster than the Nyquist rate of p
the sampling theorem and that the Poisson rate is mor= than 4.5 (37/2) faster than Nyquist.

The above results are compared to other sampling schemes which use Lagrange interpolation
polynomials. For equally spaced data and center point interpolation, the rate must be o > 7/2. We note that for

= | required by

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




SUMMARY

‘The problem of interpolation of bandlimited deterministic signals using Lagrange
}:>» nomals which are based upon observations taken at Poisson instants is considered.
Let the signal be bandlimited to the interval (-, 7) radians, and let the average sampling
rate of the Poisson process be 8 samples per second. When the Lagrange interpolation
polynomials are based upon the Poisson sampling instants {tk} and the observed data
{ s (tk)} , then the mean-squared error converges to zero as the number of observations
increases to infinity for all sampling rates 8 = 3w/2. The rate of convergence is exponential
for 8 > 3n/2. The above results hold for center point interpolation (i.e., an equal number of
samples on each side of the interpolation point). For the case of extrapolation, the sampling

rate must be increased to 37.

The above results are compared to other sampling schemes which use Lagrange
interpolation polynomials. For equally spaced data and center point interpolation, the rate
must be p = 7/2. We note that for this case the rate must be more than 1.5 (actually, 7/2)
times faster than the Nyquist rate of p = 1 required by the sampling theorem and that the

Poisson rate is more than 4.5 (3n/2) faster than Nyquis:.
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I. INTRODUCTION

In this paper we consider the interpolation and extrapolation of bandlimited signals
using Lagrange polynomials which are based upon a finite number of observations taken at
Poisson sampling instants of time. We derive an upper bound on the mean-squared error
based upon the bandwidth of the signal, the sampling rate of the Poisson process, and the
proportion of samples to the left and right of the interpolation time of interest. This bound
is then shown to go to zero as the number of observations tends toward infinity.

Let s(t) be a bandlimited signal with the representation
w
s(t) = [ exp (itA) S(A) d\/2m, (1)
-W

where W is the bandwidth (in radians) of the signal and S(A)eL is its Fourier transform.
Then the signal can be recovered using the well known sampling theorem [1-5]

- sin p w (t-k/p)
t)= k/p) ————— 2
s(t) kio stlp) =" )

where p > W/ with the samples evenly spaced in the time domain. Several authors [1-5]
have examined truncation type error bounds for the cardinal series (2) as a function of the
number of points used in the estimate. Others have investigated the effect and necessary
modifications of the cardinal series when the observations are perturbed (in a non-random
manner) [6, 7]. Also, investigations using other estimation schemes, such as Lagrange
polynomials [8, 9], and other polynomials (10, 11], have been reported. Finally, others
have investigated estimation schemes under the premise that the observation times are
random with the rate of sampling approaching infinity [12, 13] or that error-free
interpolation and extrapolation schemes do exist [ 14, 15, 16].

The sampling instants { th,—o<n<oo } are assumed to be generated by a Poisson
stationary point process on the real line, i.e., forn=2o

0= %

tn+l=tn+an+l
and for negative indices

ty =0y

tm+ D)= tn~%mn+1)

where the {an } are independent, identically-distributed. positive random variables with the
common exponential distribution F(x) = 1 - exp (-x). Note that  is the average sampling

rate.




II. THE ESTIMATE AND ITS BOUND

The estimation scheme is based upon the classical Lagrange polynomial interpolator.
Using the N observations {s(tk) Ng<ks< Nu} and the sampling instants {tk} we form the
estimate at time t as the Lagrange polynomial interpolator

Ny

s(t) = E s(t) H "tk
J=NQ k=Ng
k#j

We assume that the N = m + n sample times are ordered such that m sample times occur
before the time at which the estimate is desired and that n sample times occur after the
time of interest. That is. for some appropriate k

where the estimate is done for time t. The estimate will be designated s m/n (1) for
interpolation or simply as s n (V) in the case of extrapolation when r = 0 Note that in the
case of extrapolation the mequalities

kem<t<tk+m+]

continue to hold so that the extrapolation does not take place in the “too distant future.”

Writing the sampling times in terms of the recurrence times (Figure 1)
tk+i=t—L—(m+]—i)(t)’ 1<i<m,
tk+m+i=ttLi 1<i<n,

the Lagrange interpolation polynomial estimate becomes

m

m n
L_o(t) Lo(t)
A _ - g
S0 = 2 s (1-Ly0) T1 L m-L0 I1 L@+ LM
j=1 g! Y=
J

m n
_La® Lo(t)
s (1+Ly0) {_I] GO+ LD o 11 L=

Q#j

M=

St
"

and the extrapolation polynomial estimate is

R m m L_g()
Sy(t) = 2 s (t-— L_j(t)) H oL 2O - LD
=1 =1 ~ K
2]

where Lj( t) is the jth forward recurrence time and L_j(t) is the jth backward recurrence time.
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Figure 1. The first backward recurrence time L-l(t) at time t is defined as the distance
between t and the first previous sampling time. The second backward recurrence time
L_z(t) is the distance between t and the second previous sampling instant. Likewise, for
the forward recurrence times, L:(t) is the distance between t and the jt sampling point
after t.

The standard Lagrange polynomial interpolation error for a function f which is at
least N times differentiable is given by [ 16, page 36]

(t—tl)(t-tz)...(t-tN) N
N f( )(x)

where min (t, t}) < x <max (t, ty). The point x depends upon { ty } ,t,and f. Since

s(t) has a Fourier transform which is bandlimited, s(t) is an entire function and thus possesses
derivatives of all orders. The above Lagrange interpolation error formula therefore applies
for any N and gives the error as

m n
em/n(®= 5™ Moo IT Lo JT Liwim +n)!
1 1

for some x. The mean-squared error is given by
€2/n(0 = E leg n(0]2. 3)

By applying Bernsteins inequality [ 17, page 138], equation (1) gives
Is(m+n)y) | gwm+n)p

4)
where B is the maximum value of s(t), i.e.,
B =sup Is(t) |
t




That B exists and is finite is guaranteed by the fact that S(A) e L.

We now consider the joint second moments of the backward and forward recurrence
times. Since the Poisson point process is stationary, the joint density of the recurrence
times L_j(t), ..., L_p,(t), L{ (1), ..., L,(t)is independent of t | 18] and the joint density for
the interpolation case is

fL—] - L—m’ Ll’ " Ln (X] y vees Xm+n) = ﬁm"'n e—ﬁ(xm +Xm+n)

and for the extrapolation case

g PX
fL_l.....L_m(xl""' Xm)=Be m
We have
I T2
2 2
EJIT L3 o [T (t)‘
I 1 1
%0 Xm X3 X2 5 m
— x “
= gm+n f dx f dxp ... / dx, / dxje ™M n $
o o 0 o i=1
o0 Xm+n Xm+2 P m+n
i FXm+ 2
/ dXm+n / dXm4n-1 - f dxpep e H X
0 o o i=m+l
(5)
Since both integrals have the same form we need only to evaluate one of them: now
oo —ﬁ Xm X3 X2
X 3
gm fdxm x%e m / dXpp_} mel / dxy x% f dx| x{
o o o o :
o Xm X3
x .
=gm [dxm e_‘3 m x% f dx . xm?_l f dxz%xg ¢
o "0 o
A
= gm Xm, 2 (1,1 _1_ 3m-1
o7 [ et mxl (305 ) X om
o
= [(3m)/3™~! r(m) g2m, (6

Combining (4), (5) and (6) into (3) we have that the mean squared error is bounded by

B




2(m+n) 2
W) 9B+ I'(3m) I'(3n) N

o
“m/n (t)<(§ 3™ [Mm+n+1)]2Tm) T (n) |
A similar expression holds for Grzn (t).
Using Sterling’s approximation
N2)=2""e?Tx

we have that
['(3m) I'(3n)
I2(m+n+ 1) ['(m) O(n)

e 33(m+n) m 2m n 2n
r(m+n+PDim+n+1 m+n+1 :

Hence. the mean-squared interpolation error is asymptotically bounded by

2(m + 2 2
2 K _f3w\2m+n) m m n n
em/n(t)<m+n+l<-_{3> <m+n+l) <m+n+1> : (8)

We note that for extrapolation the mean-squared error is asymptotically bounded by

2m
5 K [3W
em(t)<m+l(7> ) 9

From (8) we evaluate the mean-squared error for the case when m = an and obtain

a_ 2m 1 2m/a
2 ek (T i ¥ .
m/n - m(l +1/a) g g

/n (1) to converge to zero is that

9

R oy - 7
A sufficient condition for .5

m
3aW ‘ 3w
RETIT R and GG <

or
3W/B<min { (1 +a)/a, 1 +a}.

Then the mean-squared error goes to zero as the number of samples goes to infinity. We
note that fora 2 1, (1 + a)/a is the minimum and foro<a< 1, | +ais the minimum. In
either case, the maximum occurs at a = 1, which allows for the minimum sampling rate of

8 under which e,%/n (t) goes to zero. This case has an equal number of samples on either
side of the point of interpolation and corresponds to the general behavior of classical
Lagrange polynomial interpolation of functions. Also note that for this case (a= 1) the
average sampling rate of the Poisson process must equal or exceed 3W/2 (i.e., 1.5 7 above
the Nyquist rate) for asymptotic error free recovery by the above analysis. For the
extrapolation case, if the Poisson sampling rate exceeds 3W (see (9)) then asymptotic

error free recovery of the signal takes place.

3!
!
|
I
)




II1. DISCUSSION

In [14] Beutler established the existence of error free recovery schemes for a
bandlimited signal process when the Poisson point process has a rate § that exceeds the
Nvquist rate of the signal process. i.e., > W/x. However, no reconstruction scheme was
given  only its existence was proved. As pointed out above, when Poisson sample instants
are used in the Lagrange interpolation polynomial with an equal number of observations to
the Teft and right of the interpolation point. then error free reconstruction is possible for a
deterministic signal if the Poisson sampling rate is § = 3W/2, or in the case of extrapolation.
g = 3W. We also point out that for the case of a random signal process no results are
known. The problem centers around finding a bound for the conditional expectation
Eﬁslx) | {tn}} . since the point x is not only a function of the sampling times %tn} but also
depends upon'the signal process s(t) itself.

For the case of observations spaced at equal intervals, say h. with an equal number J
of samples on each side of the interpolation point, Radzyner and Bason [8] showed that the
Lagrange interpolation error will asymptotically go to zero if p = W/2 where p is the
sampling rate and h = 1/p is the spacing between samples. As pointed out above, the
Poisson average sampling rate for the analogous case is required to be § = 3W/2, or three
times faster than the rate for equally spaced samples.

Finally, we mention the results of Leneman-Lewis [12] and Beutler [13]} in which
various estimation schemes employing randomly sampled observations are investigated.
The performance bound, for a fixed interpolation scheme, was expressed in terms of the
sampling rate as it asymptotically approaches infinity (with a fixed number of observations).
whereas the results above are obtained for a fixed sampling rate as the number of
observations tend toward infinity.
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