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TRAN% 4ISSION ACROSS, RADIATION FROM, AND

REFLECTION BY RIBS ON A PANEL

ABSTRACT

A formalism of the response of an infinite, plane,

and uniform panel is derived in terms of the impulse
response function. The modification of the impulse
response function caused by attaching parallel line
mechanical constraints is considered. It is shown
that the impulse response function of the so con-
strained panel can be cast in the form of two terms.
The first is simply the impulse response of the uncon-
strained panel. The second is a functional of the
impulse response function of the unconstrained panel
and the impedances of the line mechanical constraints.
It is argued that the formalism so cast is particularly
suitable for ascertaining the modification to the
response introduced by line mechanical constraints (ribs).
The argument is exemplified by deriving the expressions
for the transmission coefficient across the ribs, the
radiation to the far field generated by the presence
of the ribs, and the change in the reflective prop-
erties of the panel introduced by the ribs.

ADMINISTRATIVE INFORMATION

This report was prepared as part of the IR/IED Program at the David W.

Taylor Naval Ship Research and Development Center under Task Area ZROII0801,

Work Unit 1-1902-005, and was previously published as Ship Acoustics

Department Technical Memorandum TM-1902-78-52. The report contains the

texts of three papers presented at the joint meeting of the Acoustical

Society of America and the Acoustical Society of Japan, held in Honolulu,

Hawaii, December 1978.
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TEXT

The dynamic system under consideration is composed of three basic

parts: a panel, ribs which provide localized mechanical constraints to the

motion of the panel, and a fluid medium which occupies the semi-infinite

space above the panel. This dynamic system is sketched on Slide 1. The

panel is characterized by a surface impedance operator which is designated

by z(x,t), the fluid is characterized by a characteristic impedance which

is designated by (Pc), and a rib [the (j)th rib] is characterized by a

line impedance which is designated by ztj(x2,t); the ribs are assumed to

lie along the x -direction. [The spatial vector x - {x ,x } lies the plane2 ~ 1 2

of the panel, t is the temporal variable, x is the spatial variable normal
3

to the panel, c is the speed of sound, and p is the density of the fluid

medium.] It is assumed that the composite surface impedance operator in

the plane of the panel is pure with respect to the spatial variable x and
2

the temporal variable t; {k ,d is the Fourier conjugate vector of the2

vector fx ,t}. The equation of motion of the panel in terms of the com-2

posite surface impedance operator iT(x,k ,w) and the external drive

Pe(xlk 2 0w) is depicted on Slide 2. In this paper the motion of the

dynamic system is limited to the {x ,x 3-plane so that k in the equation1 2

of motion is set equal to zero. Suppressing as obvious the dependence on

frequency, only the dependence on x need remain explicit. Equation (1)1

can then be rewritten in the form of equation (2). The dependence of the

composite surface impedance operator on the ribs can be termed out as

depicted in equation (3); the impedance operator i(x ) is that of the panel

in the absence of the ribs but in the presence of the fluid medium. The

surface impedance operator i(x ) is the composite surface impedance
1



operator of the fluid loaded panel; this operator is considered, by defini-

tion, to be pure also with respect to the spatial variable x In equa-

tion (4) the presence of the ribs is accounted for by adding a drive term

to the external drive; the influence of the ribs on the motion of the panel

can be described in terms of the applied drive -S (x ).
51

The equation of motion in terms of the composite surface impedance

operator can, on occasions, be conveniently inverted to derive the equa-

tion of motion in terms of the composite (surface) impulse response func-

tion. The equation of motion in terms of the composite impulse response

function is stated in equation (6) on Slide 3. Under the assumptions made

herein the composite impulse response function can be cast so that it

consists, as does the composite surface impedance operator, equation (3),

of two terms; the first term is the impulse response function of the fluid

loaded panel in the absence of ribs and the second term accounts for the

presence of the ribs; see equation (7) on Slide 3. On Slide 4 is exempli-

fied the situation for the case in which the panel is membranelike;

membranlike panels are those which can support only forces and not moments.

The expression for the second term in the composite surface impedance oper-

ator is stated in equation (8) and the corresponding expression for the

second term in the composite impulse response function is stated in equa-

tion (9). In equation (10) the elements of the matrix S

S -(S) rj

are given explicitly. It is observed that the term in the impulse

response function which accounts for the ribs is a function of the line

impedances of the ribs, and the line admittance and line transfer

| ...L

3
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admittance of the fluid loaded panel in the absence of the ribs. The

latter admittance is evaluated for the various separations between pairs

of ribs. Once these quantities are specified and computed it is a rela-

tively simple matter to estimate the vibrational and acoustic properties

of the fluid loaded ribbed panel. Of these quantities the transfer line

admittance, especially for relatively small separations, is the more dif-

ficult to compute. A considerable simplification is gained if first order

solutions suffice; this is indicated in equation (11) [1,2]. In first

order solutions the transfer line admittance need not be computed which is

a considerable relief.

The usefulness of the formalism just presented is exemplified by

accounting for three related, but distinct, phenomena. The first accounts

for the transmission of free waves across ribs on a driven panel; the

formalism is depicted on Slide 5 [3]. The second accounts for the acous-

tic radiation to the far field which is generated by the presence of the

ribs on a driven panel; the formalism is depicted in Slide 6 [4]. The

third accounts for the nonspecular reflection of plane incident acoustic

pressure from the surface of a fluid loaded ribbed panel. The nonspecular

reflection is contributed solely by the presence of the ribs; in the

absence of ribs, nonspecular reflection cannot occur; a fluid loaded

panel reflects only plane incident acoustic pressure specularly. The

formalism of this phenomenon is depicted on Slide 7 [4]. Finally, on

Slide 8 are given the explicit forms of the transmission coefficient of

free waves across a single rib and across two ribs. Computations of the

transmission efficiency,

r = Itransmissions coefficient TI
2

4



in these two cases are presented in the next two papers. The influence of

fluid loading on the transmission efficiency is of particular interest.

REFERENCES

[1] G. Maidanik (1976) J. Sound Vib. 44, 255.

[21 G. Maidanik and A.J. Tucker (1976) J. Sound Vib. 44, 267.

[3] G. Maidanik, A.J. Tucker, and W.H. Vogel (1976) J. Sound

Vib. 49, 445.

[4] G. Maidanik and A.J. Tucker (1974) J. Sound Vib. 34, 510.
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Fluid Xi

Panel

Ribs

Composite Dynamic System Consisting of Panel-Fluid-Ribs

Panel: Surface Impedance Operator z(x,t)

Fluid: Characteristic Impedance Pc

Ribs: Line Impedance zj(x ,t) located at

x x ; jl, 2,...N

Slide 1

6



Formalism

Impedance Equation

(X ,k ,W) (xi ,k2,W) = i(x ,k ,W) (1)

T x) Z(x ) = j(x ) (2)T 1 1 1

T(x ): Composite Surface Impedance Operator

i(x): Response (Velocity) of Panel

e(x ): External Drive

zT(X) = i(x ) + i s (Xl) (3)

Impedance Equation Rewritten

i(x ) (x ) - ee(x ) - sX ) (4)1 1 e1

P(x ) (X (x) (x ) (5)5 1 5 1 1

Slide 2

lo 4:
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Impulse Response Equation (Inverse of the Impedance Equation)

(x )- f dx' gT(xix') e(x') (6)

In special situations in which the ribbed fluid loaded panel is

a valid example, the composite Impulse Response Function splits

in the manner of the Composite Surface Impedance Operator so that

g(x1 lx') = j(x lx:) - i (x lx') (7)

where

(x j') is the Impulse Response Function of the Fluid

Loaded Panel in the absence of ribs.

Slide 3

8



EXAMPLE: Membranelike Panel

zs (x1 - 9,j 6(x-xj) (8)

s(x Ix') I k(x Ix r ) S (x Ix) ) (9)

1 1 1 r r rj j I

This is a complete solution to the response of the ribbed

membranelike panel

I(x) dx' g (x I-x') pe( W)

Slide 4
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Fluid

Incident Free Waves 4. Transmitted Free Waves

Localized 
ObservationDrive Pane x = xRibs 1 0

pe I(x) 0 6 (x -x f)

T -[s~xolx f)/i(x]X f))

IrIj~ oi r rj i(x ji If /~ol f)

Assuming: i(x I x;) = g(-) exp[-ik six I-x'IJ

for Ik (x -x')I >> 1 Ik Ixf << kfIx << Ik ix then

1j 0 grjI
S = S rjexp[-ik C x J-xr

Slide 5

10



(Rw/c) >> 1(RO

Xf

Rizs
[Z(Rve)/ (R-,e)] =F(R,O)

F(R,O) = 1 - I exp~ik01 x -x f]S 1 j j(x x f
r j

where kf (ca/c) sin(e) Assuming: 1k six f <<k six r

F(R,O) = 1I ~c)/() [j(O) S rj
rji

S ri Srj exp [ik 0 1(x-xf) -iks(x -x f)

Slide 6



Incident !Reflected
Pressure Prssr

Fluid -
Panel

Ribs

Reflection Due to Ribs [Largely Nonspecular Reflection

Coefficient Rs (0 loe1 )]

Rs(o0 e) [Z a(k 01)/(O)] G(k ) G(k J) (O) Srj

1 ~ 0 a j 1 :. jr

k = (w/c) sin(eo ) k.i = (wfc) sin( i)

Z (k ) p pc/cos(0 ) ; G(k ) = C27) -  (dx j(x) exp(ik x )

Slide 7

12

.



EXAMPLE: Computing the Transmission Coefficient

= - AB ; A = Y j g(O) S ; B = g(oo)/j(O)
rj

Single Rib; rib ot

A = 2a (0)[i + Za j (0)1-1

Two Ribs; rib ot and rib B

Ab = {A + A - 2A1 A [j(x axa)/j(0)] cosk s(x - xa)]

{1 - A As [g(xIxa)/g(o)])2}-

First Order Value of A 8; namely A tso

A a6=A a+A -Aa A BB
T 8o (1 A8 a ( A B)

Ta~ = (i -A)-AB B)=TT

Slide 8

13
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EFFECTS OF FLUID LOADING ON THE TRANSMISSION

OF FREE WAVES ACROSS A RIB

ABSTRACT

The line drive admittance and the transfer admittance have been

evaluated in closed form for a plate or membrane. The evaluation takes

into account the influence of fluid loading. Both admittances are

necessary for the evaluation of the transmission of free waves across

a rib. In this calculation the rib is characterized by an impedance,

and the influence of fluid loading can thus be ascertained. Computations

illustrating this effect in a number of cases of interest are presented

and discussed. In the case of the membrane the phenomenon associated

with the critical frequency is introduced by assuming the tension to be

frequency dependent.

'?ECFING PAGE rO UllE
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TEXT

In previous papers [1,2] exact expressions have been given for the

drive admittances (for both point and line force and line moment excita-

tion) of thin elastic plates under fluid loading. Analytical approxima-

tions were also given for those admittances at very low frequencies, these

revealing the surprising result that the fluid acts as a stiffness for the

point admittance, but as a mass for the line admittance. The present paper

aims to take these analytical studies very much further, exemplifying the

results by application to the problem of free surface wave transmission

across a rib of arbitrary impedance on a panel though there are many other

problems to which analytical expressions for the admittances could be

applied.

We present results here only for a surface formed by a membrane for

which the admittances are scalar quantities. The dispersive effects

characteristic of plate dynamics are simulated by making the membrane

tension vary appropriately with frequency. Now the dimensionless admit-

tances are functions only of a frequency ratio

0= W/W

and of a fluid loading parameter

E = Pc/ g ,

the surface specific mass m and the coincidence frequency w being assign-g

able quantities. In almost all situations, the typical value of 6 is

small, while values of S1 of interest range from close to zero to unity and

beyond. We take advantage of the assumed smallness of C to approximate the

16

. . . ... . .....



admittances, but find that a singular perturbation problem results. No

single approximation is valid over the whole frequency range of interest,

and we have, in fact, to devise six different approximations to cover the

whole range. To ensure that all frequencies are actually covered, we

check that the various approximations overlap with each other, and that

where they overlap they match one another in accordance with the asymptotic

matching principle [3]. This insistence on matching serves as an essential

check, not only on the consistency of our approximation procedure, but as

an invaluable check on the algebraic detail of our working.

Slide 1 gives a definition sketch of the configuration envisaged, and

defines the line drive admittance and line transfer admittance, and the

transmission coefficient for normally incident surface waves on a rib of

arbitrary impedance z Z. Slide 2 gives the exact expressions for the line

and transfer admittances, and gives their dimensionless forms in terms of

O,e. We note that what is involved is simply the evaluation of the zeros

a , a , of the cubic in (C2), P(a) - 0, which lie in the upper half plane.

It is then merely a matter of (excessesively lengthy and tedious) algebra to

find expansions for the admittances as e - 0.

We start in Slide 3 by looking at fixed values of Q, 0 < 0 < 1. The

principal result quoted is that for the transmission coefficient across a

rib of infinite mechanical impedance.. This result is good if 0 is not

close to 0 or 1, and agrees with previous numerical studies. Note that

T O(e), i.e., the transmission is small unless is small, or close to

unity.

Slide 4 shows the corresponding result for fixed values of 0 > 1.

The result is not valid if Q is very close to 1, but appears to hold up to

17
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indefinitely large values of Q. It indicates that transmission is essen-

tially perfect at all frequencies above coincidence.

Slide 5 shows how the previous results for Q < 1 and 0 > 1 are

smoothly joined by an expansion in the region [1-Q] 0( 2/ ). The

formula for T increases smoothly from values 0(e) when S < 1 towards the

value 1 as Q increases through 1. Note that T has the value 1/3 at 9 = 1.

To deal with low frequencies we need several expansions. We desig-

nate frequencies S 1 0(E) as "intermediate," and give in Slide 6 the

transmission coefficient for such frequencies. Thus TA matches the pre-

viously obtained T in an appropriate way. Note that TA is clearly

invalid at the still lower frequencies (where it predicts TA - 0) and

this points to the need for a further expansion for very low frequencies.

Note also that for 9 - O(e), TA . O(E1/2) so that the transmission coeffi-

cient is increasing as the frequency decreases.

The low frequency region is characterized by Q 0(_2); here the

transmission is 0(1), and in fact is equal to 1/2 at zero frequency. There

is again perfect matching of the low frequency T to the intermediate fre-

quency TA. Slide 7 gives some brief indication of the results, though the

details are complicated.

One final nonuniformity remains to be corrected. That occurs around

= (27/4) E2
, where we find that our low frequency approximations all

break down. A separate analysis of the region is necessary, and the out-

come is that the drive admittance becomes very large here, while the trans-

fer admittance remains finite. Consequently, the free wave transmission

coefficient rises essentially to the value 1 in a narrow region around

this particular frequency. Numerical studies have so far not shown this

18
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feature. We believe that is because of the presence of logarithmic terms

(lnc) which only become dominant (and thus lead to T 1 1) when C is quite

extraordinarily small; E = 1010 might perhaps be small enough, whereas the

typical value e = 10-1 used in numerical studies is certainly not small

enough. Some confirmation of our predictions is, however, to be found in

a low frequency bump in Figure 2 of reference [4]; the center of the bump

is precisely at q1/2 = 0.26, which indeed corresponds to Q - (27/4) E2 when

= 10-1, as in [4].

Slide 8 sums up the results of these analytical predictions in a

graphical plot of T vs 0 for a typical small value of E, while Slide 9

attempts to pin down the various physical processes that are eominant in

each of the different frequency ranges.

These analytical results are significantly different from published

numerical results [4] when 0 > 1, and they are also of interest'in dis-

playing the remarkably intricate mathematical structure of coupled acous-

tic waves-surface wave problems. It is only on the basis of results such

as those given here that one can hope to build up a physical appreciation

of such problems.

REFERENCES

[1] D.G. Crighton (1972) J. Sound Vib. 20, 209.

[2] D.G. Crighton (1972) J. Sound Vib. 54, 389.

[3] M.D. Van Dyke (1975) "Perturbation Methods in Fluid Mechanics,"

Parabolic Press, Stanford, Calif.

[4] G. Maidanik, A.J. Tucker, and W.H. Vogel (1976) J. Sound Vib. 49,

445.
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EFFECTS OF FLUID LOADING ON THE TRANSMISSION OF

FREE WAVES ACROSS TWO RIBS

ABSTRACT

The effects of fluid loading on the transmission of free waves

across a single rib have been considered in the preceding paper. In this

paper the transmission of free waves across two parallel ribs is con-

sidered. If the interaction between the two ribs is, or can be ignored,

the evaluation of the transmission can be readily deduced from that of

the single rib. However, of particular interest in this paper are the

conditions concerning the characteristics of the ribs, the panel, and

the fluid loading under which the interaction between the ribs is sig-

nificant. Some computations illustrating this significance are pre-

sented.

29
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TEXT

In the preceding paper the transmission across a single rib was con-

sidered as an example of the response of a locally constrained fluid loaded

panel to mechanical excitation. In this paper the consideration is briefly

extended to a situation in which two parallel ribs are placed on an infi-

nite panel. The analysis is limited to panels which are in the form of

membranes, and tensions are limited to those below the critical tension;

the equivalent thin plate frequency range is then limited to that below

the critical frequency. This limitation is imposed to avoid discussing

issues which arise from the conversion of one form of wave into another;

the discussion of such issues is to be given in subsequent presentations.

The dynamic system under consideration is depicted on Slide 1. Also

shown on this slide is the general expression for the transmission

coefficient across parallel ribs on a fluid loaded membrane. On Slide 2

is shown the transmission coefficient across a sinL.e rib and two ribs.

[See Slide 8 of the first paper.] In the preceding paper g(-) and g(O)

were evaluated. It is seen from Slide 2 that in the case of a single rib

these evaluations are sufficient for the evaluation of the transmission

coefficient, either T or T a However, it is seen from Slide 2 that in

the case of two (or more) ribs the transfer admittances between ribs on

the membrane must also be evaluated. There are, nonetheless, two limiting

situations in which the need to evaluate these transfer admittances can be

dispensed with. On Slide 3 the first of these two situations is considered.

It is assumed that the two ribs do not interact with each other so that

first order solution is sought [1,21. The conditions for the noninterac-

tion are stated on top of Slide 3. Under these conditions the transmission

30



coefficient is simply related to the product of the transmission coeffi-

cient of each of the ribs separately, as could be anticipated. On Slide 4

the second of the two situations is considered. It is assumed that the

two ribs are substantially coalescing. The conditions for the coalescence

are stated on top of Slide 4. The transmission coefficient for this situa-

tion is stated on Slide 4. Conditions which are less restrictive than

those Just considered are stated on Slide 5. In this situation, inter-

action between the ribs is allowed; however, the ribs are assumed to be

well separated, Jks(xO-XO) >> 1. If then, the transmission coefficient

of each rib alone is small compared with unity, conditions may be pre-

scribed for resonances and antiresonances in the transmission coefficient

of the the two ribs system. These conditions are stated on Slide 5. The

peaks correspond to the resonances in the transmission coefficient and

the valleys correspond to the antiresonances in the transmission coeffi-

cient; the standard for the transmission coefficient in this consideration

is the first order solution for this quantity. See Slide 5. From the

preceding paper it can be deduced that for reasonable fluid loading

E - pc/uW < 0.2g

and ribs of high line impedances

the conditions for resonances and antiresonances are ripe. In the range

of tension (or equivalently, frequency) under consideration,

0(e) < Q - (w/w ) < 1, the transmission coefficients can be approximated
g

in accordance with the preceding paper in the manner indicated on Slide 6.

In the specified range the transmission coefficients at'the peaks and
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valleys can be readily approximated; the approximate values are stated on

Slide 6. Of particular interest is the fact that at the peaks the trans-

mission coefficient is half that of the transmission coefficient of a

single rib and at the valleys the transmission coefficient is half that

of the first order solution of the two ribs system. The transmission

coefficient oscillates between these two extreme values as tension (or

equivalently, frequency) is monotonically changed.
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[1] G. Haidanik (1976) J. Sound Vib. 44, 255.

[21 G. Maidanik and A.J. Tucker (1976) J. Sound Vib. 44, 267.
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Membrane

Incident Free Waves Transmitted Free Waves

Localized Drive Observation
Rib aRib

S rj S rjexp[-ik (x -x)r

S i H H H-E-
rj Zr rj Z

i ft '(xklxi)) Sl d
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Rib a only

a ima ~ t( m

Rib 0only

T0 = 1 -A 0 B ;A~ i(O) [+ (

Rib a and Rib 0

TL -=1 -A toB

A ao-{A t+A 0-2Aaj( Bx/i Cos k s(x -xa

A1 -a A [i(x IXa )/j(O)]21-1

Slide 2
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Noninteracting Ribs

with ixO-xC1 7> c and Imaginary (k ) 0

Under these conditions

Aaao ->Aa + 8-Aa

A, -t j (0) [1+i~a j(O)]-

A a j ai(0) [-1-

B - g(ao)j(0)

TaBO.1-A ao a a A8

- (i-A IB) (1-A B) a

Slide 3
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Coalescing Ribs

i(x0 1x) /j (0) => 1L

Under these conditions

A =ac (A,+A-2A.AO)(1-,AA )

OL c it im ci8j i

T CLO -A B

Slide 4
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i(x 5 x a )(a)/(O) -[() it01exp{-ik I xa-x a 1}

Under these conditions

Aot= {A aa-A aA aB exp[-21k six 5-x IV

{1-A aA B2 exp[-21k IxxcaI1 -1

T Tc lo{ALA B 2exp[-21k Ixxa III' T; T T

Peaks occur

A aA 5B 2 -+ 1 ; exp[-2ik sIx -x a 1

Valleys occur

A XABB 2~ 1 ; exp[-21k Ix 5-x I~-

Slide 5
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In the frequency range

0(s) < = (w/W ) < 1

where C is the fluid loading parameter at the critical frequency

e = Pc/mg. Assume that C< 0.2 and A CL 1,A 1. Under

these conditions

( o(E) ; = 0() ; =ao [°(s)2

S [o()]2 {-(l[1-20(¢)] exp[2ik lIx-x ]}-

Ta s a

At peaks

0(E)/2

At Valleys

T [0()12/2

Slide 6
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