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TRANSMISSION ACROSS, RADIATION FROM, AND

REFLECTION BY RIBS ON A PANEL

ABSTRACT

A formalism of the response of an infinite, plane,
and uniform panel is derived in terms of the impulse
response function. The modification of the impiulse
response function caused by attaching parallel line
mechanical constraints is considered. It is shown
that the impulse response function of the so con-
strained panel can be cast in the form of two terms.
The first is simply the impulse response of the uncon-
strained penel. The second is a functional of the
impulse response function of the unconstrained panel
and the impedances of the line mechanical constraints.
It is argued that the formalism so cast is particularly
suitable for ascertaining the modification to the
response introduced by line mechanical constraints (ribs).
The argument is exemplified by deriving the expressions
for the transmission coefficient across the ribs, the
radiation to the far field generated by the presence
of the ribs, and the change in the reflective prop-
erties of the panel introduced by the ribs.

ADMINISTRATIVE INFORMATION
This report was prepared as part of the IR/IED Program at the David W.
Taylor Naval Ship Research and Development Center under Task Area ZR0110801,
Work Unit 1-1902-005, and was previously published as Ship Acoustics
Department Technical Memorandum TM-1902—%8—52. The report contains the
texts of three papers presented ;t the joint meeting of the Acoustical

Society of America and the Acoustical Society of Japan, held in Honolulu,

Hawaii, December 1978.
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TEXT

The dynamic system under consideration is composed of three basic
parts: a panel, ribs which provide localized mechanical constraints to the
motion of the panel, and a fluid medium which occupies the semi-infinite
space above the panel. This dynamic system is sketched on Slide 1. The
panel 1s characterized by a surface impedance operator which is designated
by z(f,t), the fluid is characterized by a characteristic impedance which
is designated by (pc), and a rib [the (j)th rib] is characterized by a
(x ,t); the ribs are assumed to

2372
lie along the xz—direction. [The spatial vector x = {xl,xz} lies the plane

line impedance which is designated by z

of the panel, t is the temporal variable, x3 is the spatial variable normal
to the panel, ¢ is the speed of sound, and p is the density of the fluid
medium.] It is assumed that the composite surface impedance operator in
the plane of the panel is pure with respect to the spatial variable x2 and v
the temporal variable t; {kz,m} is the Fourier conjugate vector of the
vector {xz,t}. The equation of motion of the panel in terms of the com-
posite surface impedance operator ET(xx’kz’w) and the external drive
ﬁe(xl,kz,w) is depicted on Slide 2. In this paper the motion of the
dynamic system is limited to the {xl,xa}-plane so that k2 in the equation
of motion is set equal to zero. Suppressing as obvious the dependence on
frequency, only the dependence on xl need remain explicit. Equation (1)
can then be rewritten in the form of equation (2). The dependence of the
composite surface impedance operator on the ribs can be termed out as
depicted in equation (3); the impedance operator E(xl) is that of the panel

in the absence of the ribs but in the presence of the fluid medium. The .

surface impedance operator i(xl) is the composite surface impedance

A




operator of the fluid loaded panel; this operator is considered, by defini-
tion, to be pure also with respect to the spatial variable xl. In equa-
tion (4) the presence of the ribs is accounted for by adding a drive term
to the external drive; the influence of the ribs on the motion of the panel
can be described in terms of the applied drive —ﬁs(xl).

The equation of motion in terms of the composite surface impedance
operator can, on occasions, be conveniently inverted to derive the equa-
tion of motion in terms of the composite (surface) impulse response func-
tion., The equation of motion in terms of the composite impulse response
function is stated in equation (6) on Slide 3. Under the assumptions made
herein the composite impulse response function can be cast so that it
consists, as does the composite surface impedance operator, equation (3),
of two terms; the first term is the impulse response function of the fluid
loaded panel in the absence of ribs and the second term accounts for the
presence of the ribs; see equation (7) on Slide 3. On Slide 4 1is exempli-
fied the situation for the case in which the panel is membranelike;
membranlike panéls are those which can support only forces and not moments.
The expression for the second term in the composite surface impedance oper-
ator is stated in equation (8) and the corresponding expression for the
second term in the composite impulse response function is stated in equa-

tion (9). In equation (10) the elements of the matrix S

-~

=5y

are given explicitly. It is observed that the term in the impulse
response function which accounts for the ribs is a function of the line

impedances of the ribs, and the line admittance and line transfer




admittance of the fluid loaded panel in the absence of the ribs. The
latter admittance is evaluated for the various separations between pairs
of ribs. Once these quantities are specified and computed it is a rela-
tively simple matter to estimate the vibrational and acoustic properties
of the fluid loaded ribbed panel. Of these quantities the transfer line
admittance, especially for relatively small separations, is the more dif-
ficult to compute. A considerable simplification is gained if first order
solutions suffice; this is indicated in equation (11) [1,2}. In first
order solutions the transfer line admittance need not be computed which is
a considerable relief.

The usefulness of the formalism just presented is exemplified by
accounting for three related, but distinct, phenomena. The first accounts
for the transmission of free waves across ribs on a driven panel; the
formalism is depicted on Slide 5 [3]. The second accounts for the acous-
tic radiation to the far field which is generated by the presence of the
ribs on a driven panel; the formalism is depicted in Slide 6 [4]. The
third accounts for the nonspecular reflection of plane incident acoustic
pressure from the surface of a fluid loaded ribbed panel. The nonspecular
reflection is contributed solely by the presence of the ribs; in the
absence of ribs, nonspecular reflection cannot occur; a fluid loaded
panel reflects only plane incident acoustic pressure specularly. The
formalism of this phenomenon 1is depicted on Slide 7 [4]. Finally, on
Slide 8 are given the explicit forms of the transmission coefficient of
free waves across a single rib and across two ribs. Computations of the

transmission efficiency,

I' = |transmissions coefficient T|? ,
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in these two cases are presented in the next two papers. The influence of

fluid loading on the transmission efficiency is of particular interest.

REFERENCES
[1] G. Maidanik (1976) J. Sound Vib. 44, 255,
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Panel

Fluid

Ribs

Composite Dynamic System Consisting of Panel~Fluid-Ribs
Panel: Surface Impedance Operator z(x,t)
Fluid: Characteristic Impedance pc

Ribs: Line Impedance zlj(xz,t) located at

1 ]

j=1,2,...N

Slide 1
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A

Formalism
Impedance Equation

ET(xl 9k2 sw) G(XI ’kz ,(D) = E(xl ’kz ,(.0) o))
zT(xl) v(xl) = p(xl) (2)
ET(xl): Composite Surface Impedance Operator
G(xl): Response (Velocity) of Panel f
\

p.(x ): External Drive

. (x ) = 2(x ) +z_(x) 3)
1 1 s 1

Impedance Equation Rewritten
~ ~ I _ = 4
Z(xl)V(xl) pe(xl) ps(xl) (4)

-~

ps(xl) = is(xl) V(xl) (5)

Slide 2 4
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A

Impulse Response Equation (Inverse of the Impedance Equation)
-~ = d 1 5 L = L . 6
Y = [ ax) Epx [x]) B (x)) 6)

In special situations in which the ribbed fluid loaded panel is
a valid example, the composite Impulse Response Function splits
; in the manner of the Composite Surface Impedance Operator so that
s "y = 3 " o3 '
BpCe (%) = BGx 1x) - 3 G 12Dy, (N

where

§(x‘h;) is the Impulse Response Function of the Fluid

Loaded Panel in the absence of ribs.

Slide 3
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EXAMPLE: Membranelike Panel

zs(xl) = g Elj 5(x1-xj) (8)
gs(xllx;) = Z g §(x1|xr) Sty é(lex;) (9)

~

-1 ~ ~
T LR S CWC R THER) B
B (x [x!) =g(x |x!) - Z jz Bx %) 8 Bx|x)) (11)

This is a complete solution to the response of the ribbed

membranelike panel

G(xl) = J dx; gT(xllx;) Pe(x;)

Slide 4
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Fluid

Incident Free Waves \\\\\ Transmitted Free Waves

N\ g N Prcsd

+ \/ A T T3 4! ~— +
Localized ) //// Observation
Drive Panel X =x

Ribs 1 [¢]

Ee(xl) B 5o 6(x1_xf)
T=1- [Bg (x,Ixe) /B (x %))

"1 DT EGIx) sy Bxlx) /e |xp)

rj
Assuming: §(xl|x;) = g(x=) exp[-iks!xl-x;,]
for Iks(xl-x;)l > 1 lksle << lkslxr << lks|x°, then
T=1-[3/E0] ] ] (50 5_,]
_ rj 3
Srj = Srj exp[—iks(xj—xr)]

Slide 5




(Rw/c) >> 1 B(R,0)

- ? Tt _'l
x =X \\ééﬁii//
‘ Ribs
(5, (R0 /3, (R,0)] = F(R,0)
F(R,0) =1-] ) exp[ik“(xr—xf)] Srj E(lexf)

rj
where k= (w/c) sin(8) Assuming: lksle << lkslxr

F(R,8) = 1 - [g(=)/g(0)] ] ] [§(0) ?rjl

¢ r ]
= Srj exp[ikoﬁxr~xf) - iks(xj-xf)]

srj

Slide 6




Incident Reflected
Pressure Pressure
/v )
,90
Fluid
Panel

Ribs .
Reflection Due to Ribs [Largely Nonspecular Reflection
Coefficient Rs(eolei)]

el

is(eolei) = [Za(km)/g(O)] G(k“) G(kil) z § 2(0) y

grj = Srj exp(i(k“xr'l'kilxj)]

k01= (w/e) sin(eo) kil = (w/c) sin(ei)

Z (k) =opc/cos(®8) ; G(k) = (Zn)—% f dx B(x ) exp(ik x )
a o o 1 1 1 11

Slide 7




EXAMPLE: Computing the Transmission Coefficient

T=1-AB A=]JEO s . i B=g®/z0
r

]
Single Rib; rib a

- ~ -~ ~ -1
A, =%, g(0)[1 + Zo g(0)]

Two Ribs; rib o and rib B

Apg = {Aa + A - 24, AB[g(xelxa)/g(on cos[ks(xB
~ 211
{1 - A, AB[g(xelxa)/g(O)] }
First Order Value of AaB; namely AOlBo
AaBo=Aa+A8—AaABB
TaBo = (1 - AaB) a - ABB) = Ta TB

13

- xa)]}

Slide 8
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EFFECTS OF FLUID LCADING ON THE TRANSMISSION

OF FREE WAVES ACROSS A RIB

ABSTRACT

The line drive admittance and the transfer admittance have been
evaluated in closed form for a plate or membrane. The evaluation takes.
into account the influence of fluid loading. Both admittances are
necessary for the evaluation of the transmission of free waves across
a rib. In this calculation the rib is characterized by an impedance,
and the influence of fluid loading can thus be ascertained. Computations
illustrating this effect in a number of cases of interest are presented
and discussed. 1In the case of the membrane the phenomenon associated
with the critical frequency is introduced by assuming the tension to be

frequency dependent.

j‘mcmmc PAGE NOT FILMED
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l TEXT ;
| In previous papers [1,2] exact expressions have been given for the
drive admittances (for both point and line force and line moment excita-
r tion) of thin elastic plates under fluid loading. Analytical approxima-
tions were also given for those admittances at very low frequencies, these
revealing the surprising result that the fluid acts as a stiffness for the
point admittance, but as a mass for the line admittance. The present paper
aims to take these analytical studies very much further, exemplifying the
results by application to the problem of free surface wave transmission
across a rib of arbitrary impedance on a panel though there are many other
problems to which analytical expressions for the admittances could be
applied.

We present results here only for a surface formed by a membrane for
which the admittances are scalar quantities. The dispersive effects
characteristic of plate dynamics are simulated by making the membrane
tension vary appropriately with frequency. Now the dimensionless admit-

tances are functions only of a frequency ratio
Q= ww
g
and of a fluid loading parameter
€ = pc/mmg s

the surface specific mass m and the coincidence frequency wg being assign-
able quantities, In almost all situations, the typical value of € is
small, while values of {1 of interest range from close to zero to unity and

beyond. We take advantage of the assumed smallness of € to approximate the

16 }
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admittances, but find that a singular perturbation problem results. No
single approximation is valid over the whole frequency range of interest,
and we have, in fact, to devise six different approximations to cover the
whole range. To ensure that all frequencies are.actudlly covered, we
check that the various approximations overlap with each other, and that
where they overlap they match one another in accordance with the asymptotic
matching principle [3]. This insistence on matching serves as an essential
check, not only on the consistency of our approximation procedure, but as
an invaluable check on the algebraic detail of our working.

Slide 1 gives a definition sketch of the configuration envisaged, and
defines the line drive admittance and line transfer admittance, and the
transmission coefficient for normally incident surface waves on a rib of
arbitrary impedance zg. Slide 2 gives the exact expressions for the line
and transfer admittances, and gives their dimensionless forms in terms of
2,e. We note that what is involved is simply the evaluation of the zeros
01,02,03 of the cubic in (0?), P(0) = 0, which lie in the upper half plane.
It is then merely a matter of (excessesively lengthy and tedious) algebra to
find expansions for the admittances as € »> 0.

We start in Slide 3 by looking at fixed values of , 0 < Q < 1. The
principal result quoted is that for the transmission coefficient across a
rib of infinite mechanical impedance.. This result is good if § is not
close to 0 or 1, and agrees with previous numerical studies. Note that
TQ = 0(e), i.e., the transmission is small unless ! is small, or close to
unity.

Slide 4 shows the corresponding result for fixed values of > 1.

The result 1is not valid if ! is very close to 1, but appears to hold up to

17
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indefinitely large values of Q. It indicates that transmission 1is essen- '
tially perfect at all frequencies above coincidence.
Slide 5 shows how the previous results for < 1 and £ > 1 are

/3). The 1

smoothly joined by an expansion in the region [1-{1] = O(e2
formula for T increases smoothly from values 0(e) when @ < 1 towards the ‘
value 1 as Q increases through 1. Note that T has the value 1/3 at = 1.
To deal with low frequencies we need several expansions. We desig-

nate frequencies = 0(c) as "intermediate," and give in Slide 6 the J
transmission coefficient for such frequencies. Thus TA matches the pre-
viously obtained Th in an appropriate way. Note that TA is clearly
invalid at the still lower frequencies (where it predicts TA -+ ®) and
this points to the need for a further expansion for very low frequencies.

Note also that for = 0(e), T, = 0(81/2) so that the transmission coeffi-

A

cient is increasing as the frequency decreases.

The low frequency region is characterized by & = 0(e?); here the
transmission is 0(1), and in fact is equal to 1/2 at zero frequency. There
is again perfect matching of the low frequency T& to the intermediate fre-
quency TA' Slide 7 gives some brief indication of the results, though the
details are complicated.

One final nonuniformity remains to be corrected. That occurs around
Q= (27/4) 82, where we find that our low frequency approximations all
break down. A separate analysis of the region 18 necessary, and the out~
come is that the drive admittance becomes very large here, while the trans-
fer admittance remains finite. Consequently, the free wave transmission
coefficient rises essentially to the value 1 in a narrow region around

this particular frequency. Numerical studies have so far not shown this

18 ‘




feature. We believe that is because of the presence of logarithmic terms
(1ne) which only become dominant (and thus lead to T =~ 1) when € is quite
extraordinarily small; € = lo-lomight perhaps be small enough, whereas the
typical value € = 10_1 used in numerical studies is certainly not small
enough. Some confirmation of our predictions is, however, to be found in
a low frequency bump in Figure 2 of reference [4]; the center of the bump
is precisely at 91/2 = 0.26, which indeed corresponds to § = (27/4) €2 when {
£ = 10", as in [4]. A
Slide 8 sums up the results of these analytical predictions in a
graphical plot of T vs § for a typical small value of €, while Slide 9
attempts to pin down the various physical processes that are dominant in
each of the different frequency ranges.
These analytical results are significantly different from published
numerical results [4] when > 1, and they are also of interest in dis-
playing the remarkably intricate mathematic&l structure of coupled acous- ‘
tic waves-surface wave problems. It is only on the basis of results such

as those given here that one can hope to build up a physical appreciation

of such problems.
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EFFECTS OF FLUID.LOADING ON THE TRANSMISSION OF

FREE WAVES ACROSS TWO RIBS

ABSTRACT

The effects of fluid loading on the transmission of free waves
across a single rib have been considered in the preceding paper. In this
paper the transmission of free waves across two parallel ribs is con-
sidered. If the interaction between the two ribs is, or can be ignored,
the evaluation of the transmission can be readily deduced from that of
the single rib. However, of particular interest in this paper are the
conditions concerning the characteristics of the ribs, the panel, and
the fluid loading under which the interaction between the ribs is sig-

nificant. Some computations illustrating this significance are pre-

sented.




TEXT
In the preceding paper the transmission across a single rib was con-

sidered as an example of the response of a locally constrained fluid loaded
panel to mechanical excitation. In this paper the consideration is briefly
extended to a situation in which two parallel ribs are placed on an infi-
nite p;nel. The analysis is limited to panels which are in the form of
membranes, and tensions are limited to those below the critical tension;
the equivalent thin plate frequency range is then limited to that below

the critical frequency. This limitation is imposed to avoid discussing
issues which arise from the conversion of one form of wave into another;
~the discussion of such issues is to be given in subsequent presentations.

The dynamic system under consideration is depicted on Slide 1. Also

shown on this slide is the general expression for the transmission
coefficient across parallel ribs on a fluid loaded membrane. On Slide 2

is shown the transmission coefficient across a sing‘e rib and two ribs.
[See Slide 8 of the first paper.] In the preceding paper g(~) and g(0)
were evaluated. It is seen from Slide 2 that in the case of a single rib
these evaluations are sufficient for the evaluation of the transmission
coefficient, either ia or iB' However, it is seen from Slide 2 that in

the case of two (or more) ribs the transfer admittances between ribs on

the membrane must also be evaluated. There are, nonetheless, two limiting
situations in which the need to evaluate these transfer admittances can be
dispensed with., On Slide 3 the first of these two situations is considered.
It is assumed that the two ribs do not interact with each other so that
first order solution is sought [1,2]. The conditions for the noninterac-

tion are stated on top of Slide 3. Under these conditions the transmission '
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coefficient is simply related to the product of the transmission coeffi-
cient of each of the ribs separately, as could be anticipated. On Slide 4
the second of the two situations is considered. It is assumed that the
two ribs are substantially coalescing. The conditions for the coalescence
are stated on top of Slide 4. The ;ransmission coefficient for this situa-
tion is stated on Slide 4. Conditions which are less restrictive than
those just considered are stated on Slide 5. In this situation, inter-
action between the ribs is allowed; however, the ribs are assumed to be
well separated, lks(xB-xa)| >> 1. If then, the transmission coefficient
of each rib alone is small compared with unity, conditions may be pre-
scribed for resonances and antiresonances in the transmission coefficient
of the the two ribs system. These conditions are stated on Slide 5. The
peaks correspond to the resonances in the transmission coefficient and

the valleys correspond to the antiresonances in the transmission coeffi-
cient; the standard for the transmission coefficient in this consideration
is the first order solution for this quantity. See Slide 5. From the

preceding paper it can be deduced that for reasonable fluid loading
€ = pc/mwg < 0.2,

and ribs of high line impedances

|Z,, 8O@] »> 1,

the conditions for resonances and antiresonances are ripe. In the range
of tension (or equivalently, frequency) under considerationm,

0(e) <O m (w/wg) < 1, the transmission coefficients can be approximated
in accordance with the preceding paper in the manner indicated on Slide 6.

In the specified range the transmission coefficlents at the peaks and

)




valleys can be readily approximated; the approximate values are stated on
Slide 6. Of particular interest is the fact that at the peaks the trans-
mission coefficient is half that of the transmission coefficient of a
single rib and at the valleys the transmission coefficient is half that
of the first order solution of the two ribs system. The transmission
coefficient oscillates between these two extreme values as tension (or

equivalently, frequency) is monotonically changed.

REFERENCES
(1) G. Maidanik (1976) J. Sound Vib. 44, 255.

[2] G. Maidanik and A.J. Tucker (1976) J. Sound Vib. 44, 267.
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Fluid
Membrane
Incident Free Waves Transmitted Free Waves
2N . >
‘f N ~_— 'f
x1 = xf x‘ =X
Localized Drive Observation
Rib a Rib B '

T=1-[g=/E©] ] ] (&0 5]
T

srj = Srj exp[-iks(xj-xr)]

1
S

we

ri ~ Car Hfi ; g N E

E = (6k1+29'1 g("kl"i))

Slide 1
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Rib a only

To=1-AB ; B=g(=)/3(0)
Ay = Ty, BO) (14, §(0)]
Rib B only

Tg=1- AR Ay = 528 £(0) [1+E28 £(0)]

Rib a and Rib B

1

TaB =1- AaB B
Ayg = {Aa+AB-2AaAB[§(xB|xa)/§(0)] cos ks(xB-—xa)}
1 - aaglE(xy]x ) /5(0)12) 7

ye Slide 2
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Noninteracting Ribs
Bxglx ) /8(0) S [B(=)/5(0) 1 exp{-ti | xp-x | 1]
with IxB-xal = ® and Imaginary (ks) #0
Under these conditions j
i
BB
Ay = Epo 80) [14E, §(O)]7

Ao > A+ AB -AA

~ -~ ~ -~ -1
B = g(=)z(0) |

T = - = - - 2
Tapo = 1 =~ AygB =1 =~ AB - AgB + A AgB

= (l-AaB)(I-ABB) = Ta TB

Slide 3
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Coalescing Ribs
§(x8|xa) /8(0) = 1
Under these conditions

AdBc = (Ad+AB_2AﬁAB)(1_AaA

g)

-1

= Gty 800) (4G 43, 0) §(0))7

= AtB)

X

=1

afc - A(es+8) B

Slide 4
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B(xglx ) /E(0) > [B(=)/&(0)1[exp{-1k |xz=x |}]

Under these conditions

A

ag = {AaBo_AaABB exp[—Ziksle-xall}

) -1
{l—AaA B exp[—21k8|x8—xal]}

B

T

af - Tcho{l-AaA

B

Peaks occur

AaABBz +1

Valleys occur

exp[—21kS|xB—xa|] +1

AaABBz -1 exp[-21k8|x8-xa|] > -1
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In the frequency range
0(e) < Q= (w/wg) <1
where € is the fluid loading parameter at the critical frequency

€ = pc/mmg. Assume that € < 0.2 and A, > 1,4, > 1. Under

B

these conditions

T, =0@) ; TB =0() ; T 8o = [0(©)]?

a
T,g = [0()]1? {1-[1-20(e)] exp(2ik |xp-x |1}

At peaks
TaB = 0(e)/2
At Valleys
I 2
T.g = [0(e)1%/2

Slide 6
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