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Block No. 20

ABSTRACT

This paper addresses the issue of load path discretization in in-
cremental tangent modulus finite element analysis. The view is taken
that discretization can best be accomplished during the course of the
numerical solution by employing a constraint condition which restricts
the level of structural stiffness approximation at each load step. By f

identifying a field variable which strongly influences the stiffness, a
suitable constraint condition can be selected in terms of the nodal vari-
ables. With such a constraint, design of a solution algorithm for deter-
mining the step size along with the nodal variables is straightforward,
as is demonstrated in the text. This variable load step solution approach
provides the analyst with a simple yet efficient method for logically
controlling step size, without having to resort to time consuming and
costly reanalysis procedures to insure that the numerical approximation
is within satisfactory tolerance.

Stepwise nonlinear tangent &otus formulations which employ average
stiffness matrices for a step are examined in detail. The iterative na-
ture of the solution method is discussed in general terms, while specific
consideration is given to the nonhardening Prandtl-Reuss elastic-plastic
problem. For this problem the deviatoric stress change which occurs dur-
ing plastic deformation is identified as the crucial stiffness-governing
incremental field variable. Test solutions are presented for a constraint
condition which restricts changes in this variable to a specified fraction
of the yield stress. The numerical results demonstrate the propriety of
this particular condition, and the viability of the variable load step
solution approach.
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INTRODUCTION

A common structural analysis problem is to determine the stress and strain
distribution throughout a structure at distinct stages of an applied load history.
For incremental problems, such as the following elastic-plastic flow theory ex-
amples, it is necessary to trace the solution history in discrete steps along the

k load path to the load states of interest. In this paper we are concerned with
accurate methods for discretizing the load path in finite element tangent modulus
analysis.

A characteristic of incremental finite element formulations is that the
structural stiffness continually changes along the load path, corresponding to
the changes which occur in those stress and deformation variables which enter the
stiffness definition. Hence, for nontrivial problems, finite load steps imply
that the stiffness matrix can never be exact over the duration of a step. The
solution at a particular load will always be dependent upon the prior load path
discretization, and the analyst must consider means to measure and control this
dependency. It is this specific form of numerical error that concerns us here.

Most established finite element computer codes require a priori specification
of the various load steps of an analysis based upon the best judgment of the ana-
lyst. Successive reanalysis is often undertaken with step size refinements accord-
ing to the observed solution discretization dependency. It is clear that this
error control strategy can be very costly and inefficient: it does not directly
address the source of the error, and thus in general an acceptable solution can
be obtained only in a haphazard fashion.

In the present work the view is taken that discretization error can be best
controlled by treating step size as a variable, and determining it numerically
along with the incremental nodal variables by employing an error-regulating con-
straint condition in conjunction with the usual stiffness equilibrium equations.
Since the approximate nature of the stiffness is the source of the error, the most
proper constraint condition is one which regulates the stiffness approximation
level. In the approach taken a particular form of constraint is used which ful-
fills this function by regulating changes in a field variable which is known to
strongly influence the stiffness definition. Although we have limited our devel-
opment efforts to the design and testing of a solution algorithm for stress anal-
ysis of Prandtl-Reuss elastic-plastic materials, the variable load step approach
is discussed in general terms since it appears to be applicable to other important
nonlinear problems which are routinely treated by the tangent modulus method, such
as large deflection analysis.

Since we employ a constraint involving an incremental field variable, regard-
less of the form that the constraint takes or the specific variable involved, in
the assumed displacement finite element method it is in essence always a condition
on the nodal displacement change vector AUi, for step number i, and it can be
represented in general form as

g () 0. (1)

The actual constraint condition chosen for the nonhardening Prandtl-Reuss elastic-
plastic examples limits the yield surface deviatoric stress change to a given
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fraction of the yield stress. For a large deflection problem it might be proper
to constrain a certain displac-ment gradient distribution. Regardless, with the
selection of the constraint condition (1), load path discretization can become an
integral part of the numerical procedure. A solution algorithm has been developed
for the class of tangent modulus formulations which employ average stiffnesses de-
fined in terms of the undetermined solution, and as a result are stepwise nonlinear.
The approach can be most readily appreciated by first considering an elementary
stepwise linear formulation which has the stiffness matrix K established on the
basis of the initial state alone.

For proportional loading to final load vector P the stepwise linear problem
at step i takes the form

K LUi = XiP (2)

where AiP represents the load step, with Xi being the scalar defining the step
size. We wish to select Xi so that AIJi satisfies both (1) and (2). This can be
readily accomplished by taking an arbitrary value for i, solving (2) for AU-,
and then scaling A and Ai by that factor needed to satisfy (1). This advances
the solution to the next step and the process is repeated until the final load is
reached. In fact, some of the early elastic-plastic tangent modulus formulations

,2

took exactly this form. Their constraint condition in effect restricted stress in-
creases to control the change of the elastic-plastic boundary. We will discuss the
inadequacies of linear formulations along with corrective techniques which lead to
stiffness averaging over a step.

We examine then those formulations which employ a stiffness which is depen-
dent upon the yet to be determined vector AU1 . The equilibrium equation (2) now
becomes nonlinear and takes the form

K (Ati) AU1 = AiP. (3)

Most of the established methods use some iterative scheme for solving (3) while
holding Xi fixed. The AUi is obtained by successively solving for trials ALI

using a stiffness matrix based upon some previous estimate, K (Auj 1) . The vari-
able load step algorithm suggested here scales the solution and Ai after each it-
eration until ALj is found which satisfies both (1) and (3).

Elastic-plastic test problems were solved using the stepwise nonlinear vari-
able load step algorithm. The convergence properties of the iterative process
were found to be essentially the same as the fixed load algorithm. Whereas it is
always true that convergence rate slows as stiffness approximation level increases,
an important benefit of the variable load step approach is that convergence rate
can be regulated a ,riorl by adjusting the severity of the constraint condition.
The success of the approach depends entirely on the identification of that variable
which governs the stiffness approximation. The numerical results show that a
proper variable and constraint condition has been chosen for the nonhardening
Prandtl-Reuss problem.

I. I)PI". (. (;. r r.| l.td n of the" .Ilatri. l)t.plaz'cmn,,t t&'thd in Noae Flax t si,iasri, /' hnn ' in Prew. Conf. Kiffix Methods
in Structural Mechanics, Wright-Patterson Air Force Base, AH:DL-TR-66-80, 1965, p. 635-654.

2. YAMAIDA, ..YOS|IMURA, N., anti SAKURAI, i. a.tu Srss-Strai, Mar." and its Applcation for the Solution of','astic-
flastic Probhens br the Finite Hement %fehod. Int. 1. Mech. Sci.. v. 10, 1968. p. 343-354.
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VARIABLE LOAD STEP SOLUTION ALGORITHM

As we have discussed, once we have decided on a constraint condition (1), a
procedure can be developed whereby the given load path is discretized as part of
the numerical solution. In this section we describe the algorithm that was de-
veloped for stepwise nonlinear tangent modulus formulations having an equilibrium
equation of the form (3). We concentrated on the discretization of a particular
proportional load segment P of the entire load path. The solution history cor-
responding to any previous loading is assumed known. The algorithm is an exten-
sion of the iteration solution process that was used by Marcal and King 3 for fixed
load steps.

The Marcal and King procedure involves at each cycle of iteration the forma-
tion of a trial structural stiffness matrix followed by the solution of the re-
sulting linear matrix equation. The stiffness trial at the j-th iteration cycle
is formed, consistent with the averaging techniques of the formulation, according
to an estimated departure AUj'l from the current structural state, where AUJ-1 is
the solution of the previous cycle. Hence, at cycle j the governing equilibrium
equation takes the form

K (AUJ-1) Au = X.P. (4)-i 1-

The first cycle requires a guess AU? for definition of the stiffness matrix.
Strictly speaking, cycling must continue until successive trial solutions are
found to be identical, so that

K ( 3l) AU = X.P (5)=:i-i i-

and therefore AUl is then the solution AUi for the step.

In our variable load step approach we adjust Xi during the course of solution
to find that U which satisfies both the equilibrium equation (3) and the condi-
tion (1). This iterative process starts with an estimate of the load step, ,X, as
well as with the guess AU9. For the first cycle the matrix equation for AU i takes
the form

K (AU?) AUI = XP. (6)

In general A will not satisfy the constraint condition, although there al-
ways is a scalar multiple of this vector which will. The operations required to
determine the appropriate scale factor depends upon the nature of the constraint.
Regardless, the scale factor is found and the correspondingly scaled displacement
solution is used as the trial vector for the next cycle of iteration. Th e next
step size trial follows from interpreting the scale factor as equal to XA/A, as
suggested by the linear nature of (6). In general terms, the problem after (6) is
solved is to determine A! which satisfies

g(UXIX = 0.(7

3. MARCAL, P. V., and KING, 1. P. Elastic-lastic Analysis of Two-Dimensional Stress Systems by the Fnite Element Method.
Int. J. Mech. Sci., v. 9, 1967, p. 143-155.
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The above operations for the first cycle of iteration sets the pattern for subse-
quent cycles. At cycle j a stiffness matrix is formed according to the estimated
displacement AUj /X12, &, and a new displacement AU is determined from

K AU 1 X3 2  ~ (8)

Once AUj is obtained, X! follows from
=Z1 1

g (AU3 .X3 /XJ ) = 0. (9)ii

We are of course seeking in this iterative process the step size Xi and the
associated vector Ai. Our definition of absolute convergence must be expanded to
include the step size parameter. Fortunately we are able to argue the concurrent
convergence of both A i and Xi. Thus the rate of convergence of the iteration
scheme can be conveniently monitored by a test on the cycle-to-cycle change in X).
The convergence test implemented in this work states that iteration terminates
when the relative change in X) in two successive cycles falls below a given
tolerance 5.

We have observed that the stress solution in our elastic-plastic problems is
sensitive to the choice of 5. While this is not surprising, it forcefully demon-
strates that the level of convergence can govern the viability of the numerical
formulation. Again, the issue is most conveniently discussed in terms of the
fixed load step solution algorithm. We consider the ramifications of prematurely
terminating iteration at a cycle j, taking AU i as the solution for the step. Re-
ferring to (4), AUI can be interpreted as the equilibrium solution for a structure
with stiffness K (AU' ) under load XiP. For our elastic-plastic problems we must
choose one of two options for the calculation of the resulting stress changes for
the step. The determination of stress involves the use of average constitutive
relations based either on AUiI or AU1. Using the first alternative for the cal-
culation will result in a violation of the yield criterion and hardening law when
strain hardening occurs. The discussion in the next section provides the back-
ground for this statement. The second option will provide a stress solution which
satisfies these basic theoretical constraints but is not in equilibrium with the
tractions represented by XiP. We are unable to provide a quantitative relation-
ship between overall load imbalance and our convergence tolerance parameter 6.
However, this is an area which deserves careful consideration for both the vari-
able and fixed load step methods.

To complete our discussion of the variable load step procedure we consider
some additional restrictions that should be placed on the allowable magnitude of
Ai. When a definite total load vector P is specified there is, of course, the
need to restrict Xi < 1. Furthermore, FXi over all steps must equal unity. The
final step to reach the total load P will usually be smaller than that allowed by
our constraint condition. For this case the algorithm reverts to the standard
fixed load procedure. When the load vector P is indefinite in the sense that the
final magnitude of its components are not specified, then there is no basis for
restricting the values of Xi. This latter case applies to the test problems con-
sidered below. There the vector P serves merely to specify load direction and the
magnitude increases step by step without restriction until limit load is detected.

4
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CONSTRAINT CONDITION FOR ELASTIC-PLASTIC PROBLEMS

The variable load step solution method was implemented for stress analysis
of Prandtl-Reuss materials. With this material model yielding is governed by the
Mises yield criterion and plastic flow occurs according to the yield surface nor-
mality rule. The incremental tangent modulus formulation that was employed has
been described by Rice and Tracey. It is useful to begin the discussion by con-
sidering the general elastic-plastic problem in the context of various alternate
tangent modulus formulations. With this as background, the motivation for our
choice of constraint condition can be straightforwardly explained.

In the elastic-plastic problem the structural stiffness changes as the
elastic-plastic boundary moves, and as the direction of plastic flow changes at
points within the plastic zone. We have mentioned earlier stepwise linear formu-
lations by Pope1 and Yamada et al. 2 which employ a stiffness based upon the struc-
tural solution at the beginning of the step, and restrict load changes so that the
evolution of the elastic-plastic boundary is properly traced. In these formula-
tions there is no account taken of the changing constitutive relationships within
the plastic zone during the step. Marcal and King 3 devised an average stiffness
formulation which alleviates the need to regulate load according to elastic-plastic
boundary movement. It was designed to allow an arbitrary step size. Yielding
within the step is accommodated by an element stiffness generated from an average
constitutive matrix having weighted elastic and elastic-plastic factors. As in
the other formulations no account is taken of changing constitutive relationships
within the plastic zone and, as a result, the solution may violate the yield cri-
terion and the strain-hardening law.

Rice and Tracey' considered the restrictions imposed by the yield criterion
on stress changes for a load step. They concentrated on the nonhardening model
and proposed an average flow rule, corresponding to a secant approximation to the
,lises yield surface, which should be used in defining the stiffness so that the
solution will not violate the yield criterion. In the context of the Marcal and
King formulation, implementation requires the use of an average matrix for the
elastic-plastic portion of the stiffness matrix. For isotropic strain-hardening
materials, Tracey 5 extended these considerations further by employing step average
hardening rates for satisfaction of a given hardening law.

In each of these latter formulations 3-5 the stiffness is defined in terms of
quantities which depend upon the nodal solution. In the notation of the refer-
ences, the scalar m for weighting the elastic and elastic-plastic factors of the
stiffness matrix depends upon Ai.; the same is true for the average flow vector
n, and the average hardening rate Y'. Hence these formulations are stepwise
nonlinear and have an equilibrium equation which takes the form of (3). Although
tho averaging methods provide a solution consistent with basic constitutive re-
quirements, the solution nonetheless is approximate. In fact, only if the actual
stiffness is constant for the step would the solution be exact. We next consider
the issues involved in regulating the level of approximation for the nonhardening

4. RICE. J. R., and TRACEY, D. M. Computational Fracnre Mechanics in Numerical and Computer Methods in Structural
Mechanics. S. J. Fenves et al., ed., Academic Press, New York, 1973, p. 585-623.

5. TRACEY. D. M. On the Fracture Mechanics Aned'sis ofl Elastic-Plastic Materials Using the Finite hiernent .Method. Ph.D. Thesis,
Brown University, Providence, Rhode Island, 1973.

5
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formulation which employs both the Marcal and King 3 arbitrary load change stiff-
ness averaging, and the averae flow rule for yielded points: the formulation At
discussed by Rice and Tracey.

When discussing the stiffness approximations, it appears that the most impor-
tant issue to consider is the changing elastic-plastic boundary during an arbitrary
load interval. Of course, since the structural stiffness is formed from local
stiffnesses, this issue is treated relative to the behavior of distinct material
points. In general, a point can experience a number of different stages of de-
formation during an arbitrary load interval, corresponding to elastic response
to yield, followed by various phases of plastic deformation, elastic unloading,
and rey'elding. The simplest interval history would consist of solely elastic
behavior with the stress state always below yield. In this case the local stiff-
ness remains constant. A more involved history is depicted in igure 1. The de-
viatoric stress space plot illustrates the important states for 1 point which
begins a load interval below yield at stress So, deforms elastically until the
incipient yield state Sj, and then undergoes continuous elastic-plastic deforma-
tion, reaching a final yield surface stress state Sj. For this case the local
stiffness changes abruptly when SI is reached, and thereafter it changes gradually
as the stress state follows the yield surface to F. A complex history entailing
more than a single stage of plastic deforination with elastic unloadings would be
represented in the plot by distinct stress excursions along and inside the yield
surface from SI to S_.

The Marcal and King average stiffness procedure cannot accurately accomodate
a complex interval history. In fact, the procedure is strictly correct (m and 1
are exact) only when the displacement rate of change is constant throughout the
load interval. The solution history from S to f is being approximated by AU.
whenever the displacement rate is nonun~form. Hence for complex histories it is
clear that totally unsatisfactory approximations can result through the implicit
neglect of elastic-plastic phases of the load interval.

Mises Yield Surface

S.-.

Figure 1. Illustration of deviatoric stress states in example load interval.

6



From the above it is clear that in incremental elastic-plastic analysis, load
steps should be restricted to encompass portions of the strtctural solution history
which involve mildly varying displacement rates in plastically deforming regions.
Bevond this there is the further need to restrict load so that the average flow
rule reasonably represents the plastic deformation history. This can be accom-
pli shed by restricting the stress change Sf-S1 which occurs during plastic defor-
mat ion. Yet, perhaps more significant is the fact that by restricting this stress
change, displacement rate nonuniformities present within the load step are also
regulated. Hence, we have identified a single field variable which directly
governs the level of stiffness approximation for our problems.

Our constraint condition follows from the above considerations, and it in-
volves the modulus of S-S-, denoted as ASsec below. At each load step we seek
that solution which has a maximum ASsec value equal to a specified fraction of
the yield stress Y. If t represents the specified fraction then (1) takes the
form

g = Sme Y = O. (10)g (-ga)  = sec -

We have not attempted to establish the relationship between structural stiffness
approximation level and the constraint parameter a. For the general problem this
does not appear to be possible. Krieg and Kriegc' have considered a related oues-
tion. They discuss yield surface stress error for homogeneous, constant displace-
ment rate deformation using several constitutive approximations including the
average normal. We can conclude only that convergence to the exact solution can
be achieved with decreasing L values. The test examples of the next section
demonstrate the approach.

NUMERICAL RESULTS

Here we discuss two elastic-plastic problems which were solved using the
variable load step approach. The pertinent geometric and loading features of the
problems are shown in Figure 2. Following the previous development the nonharden-
ing Prandtl-Reuss constitutive idealization was used, as was tie solution con-
straint condition (10) in con~unction with the tangent modulu :ormulation
described by Rice and Tracey. In the discussion below, Y represents the yield
stress in simple tension and E represents the elastic Young's modulus. Solutions
were obtained using a Poisson's ratio equal to 0.3.

First we consider a plate in plane strain which is under imposed uniaxial
extension. Hill 7 has given the exact solution to this biaxial stress problem.
An interesting aspect of the solution is the load-extension relationship from

a incipient yield to limit load. Whereas only a slight increase in applied tension
is possible after yielding and before uncontrolled plastic deformation occurs,
the displacement necessary to reach this limit load state is unbounded. ience

6. KRIEG, R. D.. and KRIEG, D. B. Accurackes of'.%umerical Solution .e'thods .r the Flastic-Pertecrv Ilas ic Model. Trans.
ASME, J. Pressure Vessel Tech., November 1977, p. 510-515.

7. HILL. R. The Mathematical Theory of PlasricitY. Claredon Press. Oxford, Fngland. 1950, p. 77-.9

.7I!



P/H

PlaneT
P/TU Strain P/T,U H/2 H

2L

a. Plane strain uniaxial extension elastic-plastic test problem.

P/H

b. Plane stress uniaxial tension of elastic-plastic
square sheet with circular cutout test problem.

Figure 2.

this provides a valuable test case for our solution approach. There are no spa-
tial variations to contend with in the problem so that a single low-order element
adequately models the plate. A four-node isoparametric element was used in the
analysis.

In Figure 3 four numerical solutions are given along with the exact solution.
The solutions correspond to a values of 0.2, 0.1, 0.05, and 0.025, where a is the
freely specified constraint parameter in (10). The results are presented in plots
depicting imposed stress/yield stress versus imposed strain/yield strain, (P/T)/Y
versus (U/L)/(Y/E). These solutions result regardless of whether P or U is taken
as the independent loading parameter. The numerical data, labeled with their
associated step numbers, are connected to form piecewise linear approximations to
the exact solution which is given by the dashed curve on each plot. As would be
expected, the approximations improve, the step sizes decrease, and the number of
steps to final load increases as a is reduced. All solutions were generated by
specifying a convergence tolerance value 6 equal to 10- 5  Three cycles were re-
quired to meet this convergence test at each step of each solution.

A limit load detection test was employed after each iteration cycle in the
load step solution algorithm. If a material point was found which had an equiva-
lent plastic strain increase more than one thousand times greater than its devia-
toric elastic strain modulus change, execution was terminated. Such a situation

8



3" t I a l 1 'S _5

bi~~~~k- 
Pbb.,- i bb4

1 C-UP3, 3

A 0A

:i~~: .. a

; - I 'A 0 .
E, - _30 1 u I C .

oat0C 2 Ll z

g~I zO . o -'

-0 rJU p-S u Uo Lo

-'2 I.w -0 too54 . LU.

0 4 o wlI 2.c

I- -3 - -S HM 73 4-- - -a

4, U u 4, U

.... . 0 .2LO 0 C 04,2

Oc I.- CZL a .4 .-%_ X, C.L0

U ~ 0 0 1L.O E 0 a $$ a 0 .U

C.- as- o U2c Lw

a.-u ;:0 4-W CI-

-JCW 'A 0

b.~~~~~~ 4, C'k$, I.U ~

12U w -" U 0. .. JU "o U L Z
r'0 UU ! i U,-, * Oc

Iu~. It 8 I It I

Zq~K $ ZI.0 . & v ?IC-

4, 0 CL ,;, SoI

- UIU - 00 CLJ0:

SW * 4,4,~Ui

H0"1LU ~ i
- -a aa



F'l Is1 E. I I I

• s 0 ij
4, U Z i 3

zii-UU i I. Ui 4i.Jii i

43 ..- . LU... . LUl.. i -- '" ° " I
a . ra. .o EZI "

:- zc F-

.41 -u

"4 S .L i ! 2liI

8:4! 10 gul, 13. - -- c~ .

II

li4+i~ I- o o t sm "0 .4 .W -- :2 1
a. , U LUP. -611 1Ua, I" -cm -

. i ! o1%. U,,,III S(ol ,,=.-.o UU L

zlz. . 1 I- I-N ":I, & GujW4~UU V r, 4~
1.51 4,4 3.% 6 ,va . , 0 a! .. o- .4 UL41 1

Cc 4 'a
LIihh+ = -er I -L -. i 3 .=4 Z)C L I"E

II - vl iII.- W4. a U_ ~ o S , ,€ c€ ,. s

0 .Ii c 4U 0i90 I U I ' 2 4, I UA 0I . .. .. .. .
Ii . ="'"++"~a a s -++c+ -I ++-=+ "+ '+I ++ : :" I

I-- -~: - ----- v -1'

L . c. .b S.l Jb

-, U 
5F 

.
4 ,3iA" 

.

u- .

"= s

UII. U 2- . . 2.

-s=.54 LIS 951j

J1 4 U.- a " l

8 l l3 C... U .4

Ii ,- I S , -5.42:.. .
0 -Iil I v 1 q

iI -

LV :E11 
1 a U u

v Ji A H LP~I4,5 W_ 14 l y I

0 1- 'i .
i  

U U a

I.- a "_"_4 j I - ."" ="
4

C"'" 
4

0"'_
vilr~ I J 2- J 0

I a c .

ga - ---



* 1.16 1.16

1.15 1.15

1.14 Exact 1.14
-- Numerical

1.13 t1.13

1 (Incipient Yield) (U/L)/(Y/E) 1-Yinieyilla111(U/L511111U1/11/I 1/E51S1.12 , , , , , i , , , I 1.12 ' " I ' ' ' ' ' ' I

1 2 3 4 5 1 2 3 4 5
a =0.2 a =0.1

1.16- 1.16.,: 4 6 7

41.15 1.15 45

1.14 - 1.14

1.13 1.13

1 (incipient Yield) (U/L)/(Y/E) 1 (incipient Yield) (U/L)/(yIE)~1.12 ,, , , , l , , , , I 1.12 ' " " ' ' ' ' "
1 2 3 4 5 1 2 3 4 5

a = 0.05 a = 0.025

Rgure 3. Load-extension results from incipient yield to limit load for
plane strain example for a values from 0.2 to 0.025.

would approximate the deformation at limit load which is purely plastic and di-
rected normal to the yield surface at the limiting stress state. As indicated in
Figure 3, this test was met at load steps 3, 4, 6, and 9 for the decreasing a
values. Furthermore, the test was met in each case at an applied tension very
close to the exact limiting value of 1.155Y.

The actual number of steps required for each a choice is predictable for this I
problem. The constraint parameter restricts deviatoric stress change during plas-

tic deformation to a value equal to aY and for this case the actual change is
known to equal 0.185Y. This corresponds to a biaxial stress change from (1.125Y,
0.338Y) at incipient yield to (1.155Y, 0.577Y) at limit load.

This problem served to elucidate an important aspect of numerical solutions
near limit load which are obtained using the tangent modulus approach. By virtue
of the chosen constraint parameter a (or load step in the fixed load approach) a

9



solution can be sought and found which places the stress state beyond its exact
limiting state. For the present problem this was observed at step 2 of the

= 0.2 solution. The resulting biaxial stress state (1.1545Y, 0.5959Y) satisfies
the yield criterion, but it represents a point on the yield surface beyond the
limit state. This type of solution is achievable because an approximate stiff-
ness is being employed. Nonetheless, there is no insurmountable difficulty with
this behavior since the error can be reduced by decreasing a (or step size).

The plot which dramatically illustrates the worth of the variable load step
approach is given in Figure 4. The plot gives the a = 0.025 discretization re-
sults, in the form of step size versus step number, for both the force P and the
displacement U loading conditions. Unless one has a detailed knowledge of the
exact solution, the discretizations have an unexpected character, suggesting that
this problem would entail involved trial and error reanalysis with the standard
fixed load approach. The results are displayed relative to P1 and U1 , the applied
force and displacement at incipient yield. The force boundary condition AP/P1
data (marked with triangles) is plotted using the left axis scale. The right axis
applies to the displacement boundary condition AU/U1 data (marked with X's). The
AP/P1 values vary from 0.0066 for step 2, the first step after incipient yield is
reached, to 0.0009 at limit load. The corresponding AU/U1 values range from
0.136 to 0.940.

0.008- 1.00

0.006 a 0.0250.75

o -. oC

u0.004 0.50-2
a.a

0.002- 0.25 <

0 I I I 0

o 2 4 6 8 10

Step Number

Figure 4. Load discretization results for plane strain problem with
constraint parameter a equal to 0.025.
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The second problem involves the plane stress uniaxial tension of a square
sheet with a centered circular cutout. This problem is more typical of those en-
countered in practical analysis in the sensc that there are undoubtedly complicated
spatial variations in the structure which significantly change character as the
yielding progresses. However, a comprehensive spatial convergence study was not
undertaken, for as throughout this paper the emphasis was placed on load discretiza-
tion and how it affects the solution for an arbitrary finite element model. Two
models consisting of four-node isoparametric elements were employed: one had a
3x6 element arrangement (28 nodes), while the other had a 5x8 (54 node) arrangement.

Load-extension results are given in Figure 5 for a choices of 0.05 and 0.15.
The data are plotted in the normalized form (P/H)/Y versus (V/H)/(Y/E), where P/Il
is the uniform tension across the ends of the plate, and V is the displacement of
the center of the loaded edge. The step data are numbered for the a = 0.15 solu-
tion and the spread of the plastic zone is illustrated by the shaded elements in

0.5-
4 5 6

0.4-

>0.3-

0.-
a.a

X0.15

/6 0.05

0 1 2 3 4 5 6
(V/H)/(Y/E)

Figure 5. Load-extension results from load free state to limit load for
plane stress example for a values of 0.15 and 0.05.
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the sketches of the model. As can be seen, the significant differences in the
two solutions begin at the knee of the curve when yielding loses its localized
character.

Limit load was not detected numerically by the above-mentioned strain test,
hence loading was continued until step size was reduced to very small fractions
of the incipient yield load Pi. The discretization results are plotted in
Figure 6. As in the previous problem it is unlikely that a priori judgment would
suggest the form of the results, with AP/P1 starting at values of 0.447 and 0.188
and ending at values in the neighborhood of 0.009 and 0.001 for a equal to 0.15
and 0.05, respectively.

A limit analysis of this problem has been presented in the literature.8 It
places the exact limit value of (P/H)/Y between 0.31 and 0.40, whereas our limit
load result for a = 0.15 predicts a value of 0.46. A solution using the 5x8 mesh
with a = 0.15 was obtained, and it predicts a limit load value of 0.44. This in-
dicates that spatial discretization is the source of the observed differences.

0.6-

t P

0.4- a = 0.15

Cc' 0.

0.2- a =0.05

0 5 10 15 20
Step Number

Figure 6. Load discretization results for plane stress problem.

8. GAYDON, F. A., and McCRUM, A. W. A Theoretcal Inveigadon of the Yield Point Loading of a Square Plate with a Central
Carlar Hole. J. Mech. Phys. Solids, v. 2, 1954, p. 156-169.
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This problem provided useful data concerning the convergence properties ofthe solution algorithm at a load step. As would be expected, it was found thatthe typical number of cycles to meet the 6 test increases with a value, and fur-thermore the required number increases at steps near limit load. A 6 value of10- 3 was used for this problem. Cycle counts averaged close to S for a = 0.05,anu in the neighborhood of 10 for a = 0.15.

As mentioned earlier, the solutions were obtained using a formulation whichemploys an average yield surface normal4 to define the plastic flow rule foryielded points. Special considerations were necessary in adapting this averagingtechnique to the plane stress problem. In plane stress there is the need toestablish the average normal in terms of the out-of-plane direct strain increment,but this strain component depends upon the flow rule for its definition. A methodwas devised for defining these quantities in a way which insures that both theplanar stress condition and the yield condition are satisfied. The details of themethod will be described in a forthcoming report.

CONCLUSIONS

The numerical results, which now include the load path discretization andcorresponding field solution, demonstrate the viability of our variable load stepsolution algorithm in elastic-plastic analysis. We expect that the algorithm willapply equally well to other nonlinear problems treated by stepwise nonlinear tan-gent modulus formulations. It is clear that the success of the approach is pred-icated upon identifying a field variable which controls the level of stiffnessapproximation, and suitably constraining the variable at each step of the solution.In view of the unpredictable character of the results obtained, the customary fixedload step approach now appears tenuous. The variable step approach not only elim-inates the requirement for a priori discretization but also provides a series ofconsistent incremental solutions according to the desired level of approximation.The analyst need only specify the proportional loading segments of the load pathand supply values for the constraint parameter (a in our elastic-plastic problems)and the convergence tolerance parameter 6 for the iterative solution at each step.With these parameters the analyst can efficiently examine and control solutionaccuracy both as regards stiffness approximation level and overall satisfaction of
equilibrium.
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