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Summary

k-ull solution of plane wave diffraction by a surfa-
ce impedance discontinuity on a plane is presented. The
solution is given for both normal and oblique incidence,
the diffraction integral being evaluated asymptotically
in a closed form. This solution extends previous results
of Maliuzhinets, valid only for normal incidence, and
singular at reflection boundaries.

For practical application to radiowave propagation over
the Earth, the field close to the surface is of interest.
This is represented as incident,reflected,surface and
extra term field, this last characteristic of the surface
impedance discontinuity. In addition, a cylindrical wave,
scattered by the discontinuity is present.
The field produced by prescribed sources can be synthes-

ized using a plane wave expansion and then applying results
of the scattering analysis.

key words radiowave propagation, scattering

asymptotic evaluation, plane
wave expansion.
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1. Introduction

Groundwave propagation is one of the oldest studied topics
in applied electromagnetics.Several models of the propaga-
tion medium have been considered, e.g., flat or spherical
Earth,homogeneous, stratified or anisotropic ground, corrug-
ated surfaces,single or mixed path propagation. An excellent
summary of roblems and modern solutions to this subject is
given in 'lJ which contains also a large number of references.
A canonical problem in mixed-path propagation is that of

an abrupt discontinuity in ground parameters along a straight
line, as depicted in Fig.l : the ground exhibits different
properties, e.g., conductivity and/or permittivity, for

y > 0 and y < 0. The canonical problem is the follow-
ing : for a given incident plane wave, compute the field at
point P. If the plane wave solution is needed to synthesize
the field produced by localized sources, the angle 4o should
be allowed to be complex, and the incidence should not
be restricted to the normal case (two-dimensional problem).
A central role in the solution to this problem is-played

by the surface impedance concept, i.e., by definitien, the
ratio of the tangential components Et and H of the fields
at the; interface x - 0. For the problem of an incident
plane wave with a fixed angle * , the use of an impedance
type boundary condition is an exact approach. However, when
using plane wave expansions (as in the solution of he just
mentioned canonical problem) the use of an angle in4epend-
ent surface impedance implies an approximation to the exact
boundary conditions.
A discussion about the validity of the surface impedance

concept is given in [2] and, more recehtly, in [3]. 'We want
also to mention a fow hf. the excellent agreements b~tween
experimentaland theoretical results using impedance type
boundary conditions: see [4,51 for the case of scattering
by a half-plane with two face impedances, and [6-8] for the
case of laboratory models of groundwave propagation, Add
itional results are listed in [1]. Accordingly, the~use of
impedance type boundary conditions seems quite adequate to
the caste at hand.
The slution to the canonical problem depicted in Fig.1

is krnwr essentially for the case of normal incidence

J
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[9-lfl ; when oblique incidence is considered, only an
approximate matching of tangential components of fields

at the impedance discontinuity line is provided. We note

that the problem of scattering, under normal incidence,by
a wedge of arbitrary angle with two different face imped-

ances has been rigorously solved since 1958 by Maliuzhin-
ets [20] . When the wedge angle is made equal to 1 , the

problem of Fig.1 is recovered. Maliuzhinets solution has

beun recently extended to,the case of oblique incidence,

for the half-plane case [21J ; we are using essentially
the same technique to construct the solution to the problem

of Fig.l for the case of oblique incidence.

Before considering the extension of Mali-uzhinets' solu-

tion and its modifications, appropriate to groundwave pro-

pagation problems, it is worth remembering that an altern-
ative convenient way to study mixed-path propagation pro-

blems is obtained by using the compensation theorem [22].
This procedure has been originally exploited by Wait 3-

24A and then applied to oblique propagation of groundwaves

across a coastline [25-27]. Extensive theoretical and expe-
rimental work, using essentially this procedure is referred

to in []. Use of the compensation theokem is very attractive
since it afluWs you Lo consider not only the simple canonical

problem of Fig.1, but, in principle, any geometry of sur-

face discontinuity, therefore rendering the procedure very
powerful from the application viewpoint. However, the result-

ilig integral equation should be solved numerically,'even
when some simplifying approximations are made. AcCOtdingly
the rigorous solution of the cationical problem,e.g., the one
de.picted in Fig.l,is worth a physical description
of the refraction phenomena at the impedance discontinuity.

In the following we will present this solution for both
normal and oblique incidence, using an uniform asymptotic

evaluation of the diffraction integral in order to obtain
a field description bounded everywhere. This is not a tri-
vial problem when the observation point is close to the

surface, and the incident wave is at grazing angle, since
as many as three poles cluster around the "saddle point".

The difficulty has been overcome using an "ad hoc" modified

version of Bleistein 's procedure L31], thus obtai1hing
pble type contributions in addition to the usual saddle-

point contributions (cylindrical wave emanating fro4i the
surface impedance discontinuity). The pole-type contributioll
consists of the incident, reflected, surface and anextra-



-

term field, this last characteristic of the surface imped-
ance discontinuity.

The field produced by prescribed sources can be synthesyzed
using a plane wave expansion and then applying results of

the scattering analysis. Evaluation of the resulting integral
is made difficult by the existence of a rapidly varying Fre-
snel integral in the integrand

2. Scattering under normal incidence. Application of
Maliuzhinets'theory

Let us consider the geometry depicted in Fig.l, wherein a
plane wave is normally incident at a (possibly complex)
angle on a two region half-space. No z-variation of
the fiela is assumed (two-dimensional problem). Accordingly,
we can consider two (decoupled) types of field polarization-
the E-type, wherein the only'component of the electric field
is E (p,p), and the 11-type, wherein the only component of

zzthe magnetic field is if z p, ). In order to simplyfy the no-

tation we will use the symbol F for the field assuming F

and F = H and using the suscripts only whenever
necessary.

We will assume the boundary conditions at O= *ir/2 to be
of impedance type, e.g.,

1 ra ik sin8 F = 0 at = ± r/2 (2.1)

where:

sin e  , sin h =/Z (2.2)
e h

k - wc and is the free-space propagation constant,

47 is the free space intrinsic impedance;
Z are the surface impedances at p=t/2 respectively,
and a time dependance exp (-iwt) is understood and sup-
pressed.

Let us now express the field as a superposition of plane
waves, hence : 1

F(PO¢ = FP+ )exp(-ikpcosa) da 2)
2 Tr i

r
wherein r is the two-branch Sommerfeld contour of inte-
gration, as depicted ifi Pig 2. Foreing boundary conditions
(2.1) in (2.3) gives, upon integration by parts,
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(sirtl ± in t )F(c ± n/2)exp(-ikPcosa)du 0 (2.4)
r

A necessary and sufficient condition for the integral
(2.4) to vanish is the integrand to be an even function of
a, hence

* *

(sin a sin6 )F(_+ r/2) = (-sina-sin 6 )F(- ± /12)

due to the symmetry of the integration contour r . Eq. (2.5
can be solved by means of the method of logarithmic deriva-
tive and Fourier transform. Only the general solution is
quoted hereafter, under the assumption that a single pole
at a=$ °  does exist in the strip - n/2< a' < n/2:

r(a) + Bns a (a)
sin a -sin n _=0 (2.1'

wherein A and B are arbitrary constants and the functionn
qi(a) is introduced and discussed in Appendix A.
As discussed in [29], the value of the field F for p -- 0

is related to the asymptotic behaviour of (2.6) asll"I ---a
In particular , F(p,o) is regular for p - 0 if F(a) is
bounded for a" I . Since from results of Appendix A

(a) ' ' ( exp Cla"I)) (2.7)

as ict"I - a it follows that B 0, thus [20]
Cos $o (a)

i F i  (2.8)
0 sine - sin o C($)

0 0
wherein F is a constant (corresponding to the intensity
of the incident field at p-0 , see (2.10)). +

The integral (2.3) shows two saddle-points at -)L - ii.
For an asymptotic evaluation of the integral for kp --- oa
is therefore convenient to deform the original integration
contour r into the two-branch steepest-descent path y
(see Fig.2)

a' = i g -sg(t")cos- 1 1 (2.9)

cosh "
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t hen •

00

---o  exOS-o (OS+O I

S" sinta+¢)-n o 0 (o

( (Residues of F(c+i) in l- (2. >)

kq. (2.1lU pio ides the (Malitizhinets) solution to the pro-

blem ot the plane wave normal incidence of the scattering
geometry depicted in Fig.l. Discussion about the location

of poles, and evaluation of corresponding residues, is de-

ferred to Appendix B. Hereafter only conclusions are sum-
marized, with reference to radiowave propagation over the
Larth, so that 11 polarized waves are of interest, and

1(2.11)

r
wherein and are the appropriate relative permitti-
vity and conductivity (different for y > 0 and y < 0)

of the Larth.
With reference to Fig.3 (wherein the angle °  is assumed

realj for simplicity J, residues of F(a+o ) correspond
to the incident wave

F (;,) = Fi exp(-ikpcos( - o)- ) (2.12)
0 0

the reflected wave for y > 0

r cosp -sine+

F +,) + Fi exp(ikpcos( +,o (2.13)
cOSco+sin 00

existing only tor +.> 'P; the reflected wave tor y >0

Fr(, J = cos4o - sine 1i exp(ikpcos( +¢o)3 (2.14)
cOS3+sin 0 o

00existing only for 41 < - , .The integrand, however, posses-

ses other poles, which re'side outside the closed contour
F-y but can approach the saddle points at * T so to in-
iluence the asymptotic evaluation of the integral in (2.10).
This evaluation is deferred to in Sect. 4, after the solu-

tion (2.10) is extended to the oblique incidence case.
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3. Scattering under oblique incidence. Extension of

Maliuzhinets 'theory.

Let us now extend the two-dimensional solution discussed
under Sect.2 to the three dimensional problem of oblique
incidence, wherein the incident wave is a plane wave of
components of the type:

F(p,O.z) - F1 exp(ikzcosB) exp(-ikpcos(O- 0 )) (3.1)
00

depicted in Fig.4. Without loss of generality we will as-
sume: O< Re(O) < 7r/2 , O< Re( o ) < T'/ 2 and will drop the

z-dependence for the field components.
Boundary conditions are now expressed as

E-.X.t1 - Z±iX1I at 0=±in/2 (3.2)

or, equivalently,

*[- LI - (1/Z-+)Lx at -tff/2 (3.3)

By taking the divergence of (3.2 and 3) and using Maxwell's
equations, we get :

1 oEx;iksin±Ex - 0 at O-tn/2

P ho (3.4)
1 x1;x iksinagHx - 0 at 0-±7T/2
p a

respectively. Eq.s (3.4 and 5) are symilar to (2.1) and sug-
gest that results of Sect. 2 could possibly be extended to
the oblique incidence case by operating upon the x-components
of the field. It will be shown in the following that this
extension is not straightforward.

Let:

E(O,) Ex(a+O)exp(_ikosinacosax)da
2ri

r (3.5)

rrf HX(a+O)exp(-ikosincosa)da



~-11-

Then, forcing boundary conditions (3.4) we get as in Sect.2

+

(sina sin Oh x(at- r/2) = (-sinasinoh )x (-/2) ( 3.a

(sia -.in 8h  ) + X t/2) = (-sina ±sinoh  j,(-a±-i/2) ( 3.6b

wherein, at variance of (2.2)
±

+ + ( 37 )
sin Oh + sin 6 + 3.

[sin fle sn sin

The general solution of (3.6a or b)under the condition
that a single pole exists at a 00 in the strip -i/2 <
< a < n/2 is the same as (2.6). However, E and ii arex x
no more necessarily regular for p aO, so we cannot ap-
ply the arguments of Sect.2 . It is therefore convenient
to express J z  in terms of Px I IfX (for details,z
see Appendix C) , hence: X:

,1 ,,coscosiEx(a) - sina lIx(a)Ezc- = sin8
Ez(a) I - cos2asin28 (3.8)

*1=A

:oscosaH X(a) * sina Ex(a)
(a) =1 - cos2asin28 -

Now, (Lz ,fz) should approach a constant value, asla"I
OD- oAccordingly) from (2.6):i

l- Eox Cos o 'h_(a)
E (a) . + Bh

sina'sin o . (0) .

ox 0o + i e(a)dtx ( a) s in as in o 0 + Be _ e ( o)

wherein E i, H , B and B are constants, and (a)=
ox ox h eh

p(a'0h1) o~~' e = (t,,O) (see Appendix A). (Ei ,Ei ) ard
the values of the x-componentsof the incident field &t p. 0
and ai-e easily computed forcing the residues of the spectral
represefltation for (13 i 1-) at p =0 to coincide with the
values of the incident components (i, Hi ) at p eO, hence:

Oz oz
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Ei cosacos ° + iHoz sineI i oz 0 oz 0

ox sina

(3.10)

0 1iy cos8cos ° - E i sine °zi =0 oz
OX sin8

For evaluating the remaining constants (B eB ) we note that
tnv denominator of (3.8) vanishes for

cos = (sin2a)-1 (3.11)

For 8 real eq.(3.11)is verified for
I I

1 a = nn icosh- ( (3.12)
sina

Solutions of(3.11)for complex 8 are provided in Appendix D,

but they are not relevant to the discussion which follows.

When the integration path r of the integrals (3.5) is de-
formed onto the steepest descent path -y, the two poles at

a a - 0 are crossed. The corresponding residues will describe

(inhom 8geneous) plane waves of the type

exp(-ikpcosp)cxp(tkpsincosB) (3.13)

It is evident that such two waves are diverging in o 0

and therefore should be cancelled if the solution is required
to be bounded everywhere in space. This can be accomplished by
forcing the numerators of (3.8) to vanish for a -a* , hence:

0 0
,, -±(3.14)

Ex(a ) t irj-I (a 0  
(

In deriving (3.i4) note that

+

sin a 0 i cotg$ (3.15)

as it Collows (3.11)

Eqs (3.14) are a system of two equations in the two unknowns

Ba h) and the solution is:



-13-

cospo sinB
Bh 1 O Ex (sino sinB- iQcosB)- SI - s in oos 2  o o

cos o sinho
e= - s2o o ox (sin4osinB+ iQcosB) F LShcos

1I sin'3cos O
wherein:

((+

Seh0eoho - o)h(o )  (.7)

e= (i ) h(o) + Ie( o)L(O )

e oh 0) + 'e()%h(ao+

S2 ph(a o) h(ao) (3.19)

h  o _ +

(I (ao) h(o) e(ao (ao

4_. Asymptotic evaluation of the field.

With reference to the two-dimensional case considered in

Sect. 2, the explicit evaluation of the field requires com-

putation of the integral which appears in (2.10). When kr is

large, asymptotic techniquescan be applied.

In order to have a uniform asymptotic evaluation of the

integral, care should. be taken concerning the possible loca-

tion of poles of the intogrand nearby the two saddle points

s

Poles of the integrand. do appear at (see Appendix B):

= n  - ()+(n + ni n = 0;2; ....

a - ± (3/2 + )

It is evident that a1
-7r and a -i7 when 0+'op 0 •

Furthermore, when the incidence is at 
grazing angle, i.e.,

dnd the observation point is close to the surface
y c o. je. , 0 '1 IT/2, then cio- 7 , a 2 - ', - '

Under these circunstancdg, and 8-- 0, also a- %-?.

Accordingly, the conclusion is drawn that. cpo 1 '- polatized

waves and radiowave propagation over the Earth surface, the

i
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poles ao ,c a1 approach the saddle point a. = 7 , while the
poles a-) , a-, , a_ cluster around the salule point a s =7.

On the other hand, this is a very important situation
for practical application, when both the source and the
observation points are close to the Earth surface, for y O
and y<O respectively.
Accordingly, we will present in this section an asymptotic
evaluation of the integral which appears in (2.10) for an H-
polarized incident -field and o -7/2,o',0 -Tr/2, 0<< 1.

Let us first consider the integral
S Cos ¢o k(a+¢ (4.1)

exp(- ikcoscx)da (l I = s in((i )_sin 0 0(¢o )

whose integration contour " 1 , is the branch of y passing
through the saddle point a = a = ir, with nearby singularities
at (A = OLo and a = CaI  .
A simple procedure for the asymptotic evaluation of the in-
tegral (4.4) will now be presented; a more complete one, a mo-
dified version of Bleistein method I34j ( which allows the
error estimate) is given in Appendix F.

Let us expand
Cos4 -- sina sina10 0 + + B(a) (4.2)

sin(a+f)-sin 0 cos' s 10O  cos-lt-cos'la 1

Wherein B ( a) is regular in the neighbourhood of .a=n
When (4.2) is substituted in (4.1) the main contribution to
the integral is provided by the first factor, when o "- r/2,
.0 'U 7r/2 ; therefore, we can neglect the contribution arising
from the B(a ) term. Then we are reduced to consider the ca-
nonical integral

s I in a ip'a+'p)
I€ sn [ exp(-ikpcosa)da321- ~(4.3

fi 1os'2a-cos 2a IP(o 0

whose solution is given in Appendix E.
The total field I1( P ,0 ) is then represented as a sum of five

terms, which will be discussed hereafter.
The first term iS the suni of the direct field (2.12) and

the contribution of the integral (4.11) at a-+o 0
iF (-2 cos! C0o ))

tlio,,) H'II exp(-ikpcoS(¢o-0))
0 2F(O)

I 0i exp(ikpcos(60 +6)) 2 (O(4.4)
2F(0) 4.4)
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where the two convenient (positive) angles ' ,: :

'= 1/2-o ; x =-u/2+( (4.5)

have been introduced.The field constituent (4.4) is the in-

cident wave (2.A2) "corrected" by the (normalized) Fr~snel

integral, and is symbolically sketched in the first line of

fig. 5.
The second term is the sum of the reflected field (2.13)

at y >0 and the contribution of the integral (4."L) at a 1
+7+

0 0

+ - in4S 0-sin-0 pik~o( 2) o(~si6-) (4.6)
ff .4 = 0l_ exp(ik(,cos( o 0 W

sin6 +sin 6 0 2F(O)
0

Where 0+ is a shorthand notation for 6+

The field constituent (4.6) is the reflected wave (2.13) with
the appropriate (normalized) Fr6snel transition Eunction which
renders this field continous for- 1 /2< <m/2 and is symbolically
sketched in the second line of Fig. 5.

The third term is the sum of the reflector field (2.14) ot
y < 0 and the contribution of the integral (4,1) at 1

+ o ) :
sin6 -sin 0 F(2'o sin(-co) (4.7)

U,= 0 - H exp(ikpc°S(5o-())
sino +sin 0 0 2F(O)

The field constituent (4.7) J.s the reflected wave (2.14) with
the apnropriate (normalized) Fr~snel transition function
which renders this field continous for -/2< T /2
and is symbolically sketched in the third line of Fig. S.

The fourth term is the contribution of the integral (4.1)
at a - - 0-37r/2 -6:

2 sin6 tg e m(p/2+6 ) -
H (S,6 = oe H1- exp(ikpcos(6+8 h))

cos -cos- z(/2_6o) 0 2F(O)

(4.8)

The field constituent (4,8) is the surface wave excited on the
half-plane y< 0 " corrected" by the ( normalized) Frcsnel in-
tegral and symbolically sketched in the fourth line of Fig. S.

The fifth term is the contribution of the integral (4.1) at
a-2 = - +o - 2r
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sin6 0- sin+ sin6 + sin e

H e(p,) +_ H exp(ikp cos(66o ))
sin6o+sin e sin6o- sin e0 0
F(wvp sinj(6o+61) 49

2F(O)
The field constituent (4.9)shows the same symbolic repre-

sentation as the field constituent (4.4), i.e., the first line
of Fig. S. In order to understand its physical ftaning, let
us sum and substract the incident field (2.12) to the total
field. Then.

H(p,¢) - Hi exp(ikpcos(60+6)) + R H io exp(ikpcos(6 o '6))
2F(O)

2 sin6~,tgB J~n/2F ( _____sn___(_-_o_+ ReHx exp(ikcos(6-6o), sinj(6 +- 0 02F(O)
2 sin6otge-. *(n12+e'.. F (Ar" s in|(6+O6)

0 lil exp(ikp cos(6+0-) +

cOS60-cose *(i/2- o) 0 2F(O)

2 sin6o(SinO-Sine+) H i *xp(ikp os(6 -6)) F( 5F' Sin|(do+6)) (4.10)

(sin60o sine)(Sn6o e-sn) 2F(O)

Accordingly, the total field for €"-n/2 , o 0%i/2 is the sum
of the incident, the two refiecte&,( with appropriate transi-
tion function) the surface field and an extra (pole-type) field
due to the discontinuity of the surface impedance at y-O .
In general,also the diffracted wave (saddle-point type) due to
the discontinuity should be considered (see Appendix F).

S. Field produced by a line source over a mixed-poth plane Earth.

Let us nOW consider an uniform magnetic line source parallel
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to the surface impedance discontinuity, as depicted in Fig.6
and located %t the point VXo, y).
'he free-space magnetic field radiated by the source in

P(x,y) would be given by

kI w
1i(x,y) - Hi ( 0 , 0)  H ( k d )  C I) (kd) (5.1)

4C 0

wherein li is the magnetic current.
By using the integral representation for the Ilankel func t ion

we have

i (p,S) = / exp(ikd cos(6 -n)ld6
80 0

- exp(ikp coS(6o-no))exp(ikp cos(6o+6))d6 (5.2)
expik 0 cs60TO 0 0

S
0

wherein 10 is the Sommerfeld integration contour as depicted
in Fig. 7°and we have assumed, for convenience, yo > y.

Eq. (S. ,) represents the field radiated by the line source
Ls a superposItion of plane waves with spectral distribution
exp(ikp COS(6 0 -no )).Accordingly,the field i s radiated by
the source in the presence of the mixed path configuration
of hi.6 is given,by superposition,as

IS (p,6) " H(166 o)exp(ikpo cos(6 -n ))d6 (5.3)
0 0 0 0 0so

wherein 1I(p ,6,6 )is given by (4.10) plus the possible con-
tribution from tR~e field scattered by the discontinuity at
V00.t

The perturbation in the field excitation due to the impe-
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dance discontinuity is of interest.The change in the spec-
trum can easily be obtained by assuming 0 =0 (the surface
impedance is now costant and equal to Z-everywhere)'in (4.10);
and then subtracting resulting expression from (4.10),hence:

sin0 -sin0e ijexp(ikpcos(6o-6)) F(/2Tp sinl(6 0-6))Al 2 sinW . Hi

sin60 +sine ° 1sin60+sinO 2F(O)

+ exp(ikpcos(6 +6)) F(V2' sinl(6 +6)) (5.4)

sin6 -sine 2F(O)
0

For 6 =0 (observation point upon the Earth's surface),
expression (5.4) further simplifies as

4sin 260(sinO-sin) F(./Zpsin(6o ..6))

in 0 +) n 0-sin ~ Hi exp(ikpcos6o) 0

(sin6oSin 2 )(sin.6-sin20-) 0 2F(O) (".5)

Since p cos(6 -n o+pcos6o=dcos(6, -n) ,we have the integral
representation for MI

4C(sin8 -sin0 ) sin2 6 0

S.; sin6o+Sin+) (sin260osin e)

F(V2' sin6 o)
0 exp(ikd cos(ao-n))d6 (5.6)

2F(O)0 0

i.e. for the perturbationof the magnetic field on the Earth
surface due to a discontinuity in the surface impedance and
excited by a magnetic line source.

Analytical evaluation of the integral (5. )is_not an ea-
sy task.The integrand presents poles at 6 =-O ;-0 clustering
around the saddle point 6 =i (when fl<l)T~is complication can
be overcome using the eva~uation techniques presented in Sect.
4.However,the integrand is also rapidly varying due to the pre-
sence of the Fresnel integral,when kp ->1.This point requires
further study to be overcome.
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6. Conclusions and recommendations

The problem of plane-wave scattering by a surface impe-

dance discontinuity over a plane has been rigorously solved.

The solution is attractive inasmuch it provides a physical

description of the plane-wave scattered constituents. These

consist of the pole-type contributions, essentially plane wa-

ves with attached Fr~snel transition functions; and saddle-

point type contribution, essentially a cylindrical wave scat-

tered by the discontinuity. For an observation point close to

the surface and an incident wave at a grazing angle, a novel

result is the appearance of a new type of ( pole-type ) con-

tribution, in addition to the conventional incident, reflected
and surface fields. Ihe role of the ( cylindrical ) wave scat-

tered by the discontinuity should be better analysed, and graphs

pertinents to a pratical situation computed.

The field excited by prescribed sources can be computed,

in principle, from the plane-wave expansion of the incident field

and then application of results of the scattering analysis. How-

ever, the resulting integral representation contains a rapidly
varyng term ( Fr'snel integral ) in the neighbourhood of the sad-

dle point, and also as many as three poles. This is a point which

needs further attention and the use of appropriate ( if available )

mathematical techniques of asymptotic evaluation of integrals.

! " I L 1'I.Jil
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Appendix A : The function i(a)

The function * (a) is defined as follows 20 ):

ip () = N(oL+-n=O )N(ax+D )N(a-r+O-)N(a-(1- ) IA 1

.r equivalently:

2 N(a+ O )N(c-0 ) c-0 =O Q+0
N = C!2 )2os Co _

N(a- 9+)N(c+e " )
(A. 2)

The function N (C ) is given by

1 2t-rrsin t
= exp ( dt 1 (?.3)

4r J cos t
0

and is a particular determination of a most general class
of function introduced by Malitzhinets [20] with reference

to the problem of impedance wedge scattering. The function
N ( ) is easy to compute numerically and, in any case, it
is simply related to a tabulated function (21,281. Its main
properties are hereafter summarized:

N(a) = N(-cx) (A.4

N(ci+rr/2) N(c%-in/ = N )COsa.',2 (A.5)

lim
(111 DCN(a) O exp C" ,:4) (A.()

The location of poles of *(a) within the strip

-3n/2 <a' < 3n/2

is of interest. From (A.3) it is noted that
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Ia
S 2t - sin t '

dt (A.7)
0 Cos t

is finite for r = /2 , diverges toward negative values
for a = 3ff/2 anki toward positive values for a - Sn/2
Since the divergence of (A.7) is of logarithmic type,
tI function N(a) has a simple pole at a " 5r/2. Accord-
ingly, the poles of t(a) in the strip of interest are,
from (A.i) :

a+ =±(3n/2+-) (A4 R)

Appendix B. Poles of the spectrum of the field and re-

sidues of the integral representation.

Poles of the trigonometric factor in (2.8) do oc-
cour at

= n= 0 ; -I ; ti (B.1)

For n=O, the residue

F (p.0) - F0  exp(-ikpcosC¢-.o ))U(n +&o)U(ff+ -&)

(B.2)
describes the incident field, wherein:

&o + gd(o') ,o + iol"_ > (i.3)

L(t) is the Heaviside unit step function and gd (x) is
the Gudermanian function

gd(x) = sn(x) cos-l 1 = sin-l(tgh x)
cosh x

For n- t 1, the residues (B.4)

r i *(t-f o
F± (p,) = - F' exp(ikpcos( +*0o).

"u(27rTC&o+W)u(±(&o+0))00
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desc ribe te riflected fields upon the two hal f-plaines
SC ,c2 ,e:;pec tively . USe of (2.5 hews that:

±T,±r¢o  cOSoSsi nO e
0 0 R (

TO '0 cOso0+sinO

Accordingly, tile exc itat ion factor for tile reflected
waves is identified with the lr&'inel reflection coeffi-
cient R * appropr iate to tile two surfaces ( =t I/', as ,

it should be expected . For an inc i dent 11-pola r i zLd sur -
face wave at the Brewster angle i e. , 0o= r/2- 0 +

there is no reflected wave at (p =- / 2 ; the reflection

coefficient at P= -i/2 takes the simple form

sineh - sinOh 7

sine h + sine h

Poles of the other factor in (2.8) do occour at

at - + ) (B.8)

as follows from (A.7). The corresponding residues

± 2cos 0 tge + 1(( " + n/2I]F-(p,(p) F0 -F
i

sin o ±co s 0 J(¢o )
o0

exp [T ikp sin(OT et)] U(± ¢- " /2)

= 0' + gd(O") , e= 0' + i 0" , 0'> 0- ('. 13
correspond to surface waves, one (upper sign) with phase
velocity in the direction 7t/2+0 + ; and the other (lower
sign) with phase veibcity in the direction- r/2 -0"
In computing (B.9) tise has been made of (2.5). These
surface waves do exist in the angular range

> n/2+ ± (1.11;±€ > 7r/V



-23-

Then, a necessary condition for sUch waves to exist is that

1= 0 + gd(e") 0
Letting sla6 = r , ix, tndious algebra shows that this is
is eqti,'ie.:t to thle condition

r
X . . (B.i2)

For radiowave propagation ovpr the Earth, 1i - polarized

waves are of interest and i

sin e6 (B.13)
r 0

wherein c and a are the relative permitivity and conducti-
vity of the Larth. Then x < o and (B.12) transforms as fol-
lows:

-r > 4 [ 1 + (

The conclusion is drawn that surface waves (B.9) are not excited,
since the poles (B.8) are not crossed upon deformation of the
intergration contour from F to y

Appendix C: Spectral relations between longitudinal and

transverse field components.

exp(ikz coss) E"..

Let: z= 2(a+) exp(-ikpsincosa)da

exp(ikz cosa)

z- (a+ exp(-ikpsin~cosa)da

it is known (30) that the total field, (L ii )1, can be
expressed in terms of ( HZ):

~1
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I., = k 2Sin (VxVxE z+ iwji xl z)
Z Z z

(C.2)(-. 23I
If = k 2 sin-2 a (VXVxxI -z - iWo xE zL z

Substitutin6 (C,l) in (3.2) , projecting on the
x - axis and equating the corresponding spectral com-
ponents, we get

Cosa cosa L (a)+ sine H (a)
E (a) = z zi x sine

cosgcosB C Iza (a) - sina El(a) (C.3)

C x(a) = sine
sine

The system (C.3) can now be solved for (f , H ),
hence Z

Cosa cosa E - sina sin
- 1 - cos a sin 2 B

cosecosa Of tx + sina E (C4

H~~ ~ - Cos 2a sin 2 sn

Appendix D - Spurious poles in the case of oblique

incidence

Poles of (3.11) aro given by

Cos a - (sin$ )- (D.1)

Letting
-1(D)

(sin B) = a + ib (D.2)

Eq. (D.1) becomes

Cos a cosh a" = a

Isin a' sinh a" = b (

.. ...... ...
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After squaring, substitution and solution, we get

2 2 22
cosh 2  ab+l + a2 a

2 2

22  (D.4)

a = +b 1 a-b2-1

+ _ 2 2-a
2 2

Appendix E Solution for the canonical integral

I1 sins (o
- J 2 exp(-ikpcosa)da2 fCos21a-cos L2 (o

0 0

1 I' sine °  8

- 2 exp(-ikpcoso) do2 sin I-sin 2 o '(4o)
Y 0 (E.1)

where B - - , t o and the integration contour
yo runs parallel to Y through the saddle point s = 0.
With the new transformation of variables

r2 exp (iir/4) sin I a= t (.2)
( ,z,

The contour yo is transformed into the real axis and we get
for the integral :

ex J (7r+0+0) sin$0 exp(-kpt 2)

Ix = -- itkp-T/4)] -r2 /- (0o) cosI8 t -2i sin i80

Sexp(.kpt2()

ti exp (kp-/4)]JI sin 2 dt

t2, Zisin 2 i o

= ilep (ikpcoS~o) F(n1- sin0o)

nP(O) (L 3)I
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Where F (u) is the Fr~snel integral

F(u) = fexp(it2)dt 
(iE .4)

U

n= 1 according to 80 + ga(8 o ) . 0 (11.5)

and the property

F(u) + F(-U) = 2F(o) =V; exp im/4 (L.6)

has been used. Note thatf exp(-Qt 2) 
2 T

f iz2 dt exp(-is,2z ) - F(rSz) (L.7)

The other integrals can be computed similarly.

Appendix F : Modified Bleistein's method for the asymptotic

evaluation of the integral.

Let us consider the function B(* ) defined in(4.2)

cos o 0 sin a o  sin a,
B(a) +

sin~~+~ -~~~' cos2 1m-COS 2 1a cos2 loc-cos 2jct1
sin(a+O)-sina 0 0~2acs1o cs|'~2a

(F.1)

and let us expand it as follows

B(a) * a + cos ItaB 1 (a) (F.2)

wherein B(a) is not only regular around a * a s - v, as B (a),

but also attains a zero value for a - a = n.
Accordingly in the asymptotic evaluatian of the integral
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12 f (€o) B(a) exp (-ikpcos) da (F.3)

the dominant contribution. will be provided by the first
factor at the right hand side of (F.2).
Letting a = ii , we can easily compute a; hence:

a = -cos o I sin (¢o-0) 1 sin

sine + sin o cos 2 (Cos21(o+0)

3 cosqo

sin J (do+€)cos J ( (F.4)

then,

12 a f-- exp(-ikp cos a) da

a f €(+€B exp(ikp cosa) dB

Y 00
0

+O

a
- exp[i(kp-/4) *(O+W+0) exp(kpt 2)

jdt

0 2

/" -exP Li (kp.../4)j * ( 9+ 7 exp(.kpt2)d

a ;7 exp [i€ 4 (+3(F. 5)
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This corresponds to a cylindrical wave, scattered by thediscontinuity at Y-O, which decays with distance as

-3 Cos €0 (F.6)
/-'sinj (0+0 o)CoO (0 ¢)

Accordingly, its contribution to the total field cannot in
general be neglected.

-0-
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Fig.3. Geometry of incident and reflected rays.

%~

Fig.4. Geometry of the scattering problem under consideration.

Oblique incidence.



1is.Symbolic ;ketch of several constituents ()f the magnetic

fieldI close to the surface.
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I:ig.15. Cooniet ry oft an un iformIl Ihi.glict ic line source Over

ai ni xed-path Earth.
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1:jg. 7 . Sommrfeld contour of integration for the expanlsionP of

tIw HeIankel funct ion i (d)n)


