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Summary

Full solution of plane wave diffraction by a surfa-
ce impedance discontinuity on a plane is presented. The
solution is given for both normal and oblique incidence,
the diffraction integral being evaluated asymptotically
in a closed form. This solution extends previous results
of Maliuzhinets, valid only for normal incidence, and
singular at reflection boundaries.

For practical application to radiowave propagation over
the Earth, the field close to the surface is of interest.
This is represented as incident,reflected,surface and
extra term field, this last characteristic of the surface
impedance discontinuity. In addition, a cylindrical wave,
scattered by the discontinuity is present.

The field produced by prescribed sources can be synthes-
ized using a plane wave expansion and then applying results
of the scattering analysis.

key words : radiowave propagation, scattering ,
asymptotic evaluation, plane
wave expansion.
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1. Introduction

Groundwave propagation is one of the oldest studied topics
in applied electromagnetics.Several models of the propaga-
tion medium have been considered, e.g., flat or spherical
Earth,homogeneous , stratified or anisotropic ground, corrug-
L ated surfaces,single or mixed path propagation. An excellent
§ summary of problems and modern solutions to this subject is
: given in {[1], which contains also a large number of references.
A canonical problem in mixed-path propagation is that of
! an abrupt discontinuity in ground parameters along a straight
line, as depicted in Fig.l : the gruvund exhibits different
properties, e.g., conductivity and/or permittivity, for
y >0 and y < 0. The canonical problem is the follow-
ing : fer a given incident plane wave, compute the field at
point P. If the plane wave solution is needed to synthesize
the field produced by localized sources, the angle ¢ _ should
be allowed to be complex, and the incidence should not
be restricted to the normal case (two-dimensional problem).
A central role in the solution to this problem is:played
by the :surface impedance concept, i.e., by definitien, the
ratio of the tangential compoOnents Et and H_ of the fields
at the : interface x = O, For the problem of an incident
plane wave with a fixed angle ¢ _, the use of an impedance
type boundary condition is an exSct approach. However, when
using plane wave expansions (as in the solution of the just
mentioned canonical problem) the use of an angle independ-
ent surface impedance implies an approximation to the exact
boundary conditions. .
A discussion about the validity of the surface impedance !
concept is given in [2] and, more recently, in [3]. We want ¢
also to mentivn a few 0f:the excellent agreements between ;
experimentaland theoretical results using impedance type
boundary conditions: see [h,s] for the case of scattering
i by a half-plane with two face impedances, and [6-8] .for the

case of laboratory models of groundwave propagation, Add
itional, results are listed in [1]. Accordingly, the.use of
impedance type boundary conditions seems quite adequate to
the case at hand. :

P The solution to the canonical problem depicted in Fig.l
E is knrun essentially for the case of normal incidence

' {

1

- (.
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[9-17] ; when oblique incidence is considered, only an
approximate matching of tangential components of ficlds
at the impedance discontinuity line is provided. We note
that the problem of scattering, under normal incidence,by
a wedge of arbitrary angle with two different fuace imped-
ances has been rigorously solved since 1958 by Maliuzhin-
ets Pd]. When the wedge angle is made equal to n , the
problem of Fig.l is recovered. Maliuzhinets solution has
beun recently extended to,the case of oblique incidence,
tor the half{-plane case [2{] ; we are using essentially
the same technique to construct the solution to the problem
of Fig.l [for the case of oblique incidence.

Before considering the extension of Maliuzhinets' solu-
tion and its modifications, appropriate to groundwave pro-
pagation problems, it is worth remembering that an altern-
ative convenient way to study mixed-path propagation pro-
blems is obtained by using the compensation theorem [22].
This procedure has been originally exploited by Wait [23-

241 and then applied to obliquec propagation of groundwaves
across a coastline [25-27}. Extensive theoretical and expe-
rimental work, using essentially this procedure is referred
to in Ei]. Use of the compensation theoiem is very attractive
since it aliuws you co consider not only the simple canonical
problem of Fig.l, but, in principle, any geometry of sur-
face discontinuity, therefore rendering the procedure very
powerful from the application viewpoint. However, the result-
ifig integral equation should be solved numerically, even

when some simplifying apvroximations are made. Accordingly
the rigorous solution of the canonical problem,e.g., the one
depicted in Fig.l,is worth a physical description

of the refraction phenomena at the impedance discontinuity.

In the following we will present this solution for both
normal and oblique incidence, using an uniform asymptotic
evaluation of the diffraction integral in order to obtain
a field description bounded everywhere. This is not a tri-
vial problem when the observation point is close to the
surface, and the incident wave is at grazing angle, since
as many as three poles cluster around the '"saddle point".
The difficulty has been overcome using an "ad hoc" modified
version of Bleistein 's proceﬂure [31], thus obtaifiing
pole type contributions in addition to the usual saddle-
point contributions (cylindrical wave emanating frof the
surface impedance discontinuity). The pole-type contributiun
consists of the incident, reflected, surface and an extra-
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term field, this last characteristic of the surface imped-
ance discontinuity,

The field produced by prescribed sources can be synthesyzed
using a plane wave expansion and then applying results of
the scattering analysis. Evaluation of the resulting integral
is made difficult by the existence of a rapidly varying Fre-~
snel integral in the integrand

2. Scattering under normal incidence. Application of
Maliuzhinets'theory

Let us consider the geometry depicted in Fig.l, wherein a
plane wave is normally incident at a (possibly complex)
angle ¢ on a two region half-space. No z~-variation of
the field is assumed (two-dimensional problem). Accordingly,
we can consider two (decoupled) types of field polarization-
the E-type, wherein the only component of the electric field
is Ez(p,¢), and the H-type, wherein the only component of
the magnetic field is H_(p,¢). In order to simplyfy the no-
tation we will use the symbol F for the field assuming F_=

. - e
=Ez , and Fh= Hz and using the suscripts only whenever
necessary.

We will assume the boundary conditions at ¢ = #r/2 to be
of impedance type, e.g.,

+

1l 9oF _ . . -

5 3¢ Fiksine F=0 at ¢ = ¥ /2 (2.1)
where:

ot + * +

sing, = ¢/z° . sineh = r/Z (2.2)

k = w/ep and is the free-space propagation constant,
t =+v/i/e is the free space intrinsic impedance;
7zt are the surface impedances at ¢=xm/2 respectively,
and a time dependance exp (-iwt) is understood and sup-
pressed.

Let us now express the field as a superposition of plane
waves, hence 1 :

F(p,¢) = ;‘::; F(p+d)exp(-ikpcosa) da (2.3)

r
wherein I is the two<branch Sommerfeld contour of inte-
gration, as depicted ifi Fig 2. Foreing boundary conditions
(2.1) in (2.3) gives, upon integration by parts,
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+
) (sina * sing )F(a ¥ n/2) exp (-ikpcosa) da = © (2.4)
r

A necessary and sufficient condition for the integral
(2.4) to vanish is the integrand to be an even function of
a, hence

Y +
(sinat sin® (ot n/2) = (-sina¥sin 6 ) (-a ¥ 1/2) 77.5)

due to the symmetry of the integration contour I . Eq. (2.5
can be solved by means of the method of logarithmic deriva-
tive and Fourier transform. Only the general solution is
quoted hereafter, under the assumption that a single pole

at a=¢o does exist in the strip - n/2< a'< n/2

2 @
Fla) = | —————— +j§: aninna yla)
sina-sin¢o n=0 (2.

wherein A and B are arbitrary constants and the function
Y(a) is introduced and discussed in Appendix A.

As discussed in [29], the value of the field F for p — 0
is related to the asymptotic behaviour of (2.6) as|a"| — o
In particular , F(p,¢) is regular for p —> O if F(a) is
bounded for ' | ~> ® ., Since from results of Appendix A

CvCa) v e Cexp (Ja"]) ) (2.7

as |a"|{ —> o® it follows that B_ = 0, thus [}Q] :
R . cos &, y(a)
F@) = (2.8)
© sina - sin ¢o w(¢o)
wherein F' is a constant (corresponding to the intensity
of the ingident field at p=0 , see (2.10)). R
The integral (2.3) shows two saddle-points at «_ = = m.
For an asymptotic evaluation of the integral for kp ——m
is therefore convenient to deform the original integration
contour T into the two-branch steepest-descent path vy
(see Fig.2) :

a' = &n -sgla™) cos

.9
1 1 ) (2.9)

cosh & "




then

by COsb, Y(ote)
Feowgt =0 - e ————— cxp(-ikicosalda
i sin(a*¢)=sine_ w(¢ )
y
+ :Z (Residues of F(a+¢) in =y ) (2.:0)

kq. (2.10, provides the (Maliuzhinets) solution to the pro-
blem of the planc wave normal incidence of the scattering
geometry depicted in Fig.l. Discussion about the location
of poles, and evaluation of corresponding residues, is de-
ferred to Appendix B, Hereafter only conclusions are sum-
marized, with reference to radiowave propagation over the
Larth, so thut Il polarized waves are of interest, and

. 1
s1nb = e ¢ e

h e i/, (2.11)
wherein ¢_ and o ure the appropriate relative permitti-
vity and conductivity (different for y > 0 and y < 0)
of the Larth.

With reference to Fig.3 (wherein the angle ¢ is assumed
real, for simplicity ), residues of ﬁ(a+¢ ) correspond
to the incident wave °

B (s06) = B exp(-ikpcos(-6,)) (2.12)
the reflected wave for y > 0

~ ~ > +
r €CO0sd ~sing
Folo,p) = —-0

i
& F, exp(ikpcos s
cost +siny’ © p( peos (¢4 1) 2.13)

existing only tor > @O; the reflected wave tor y >0

Cos¢g = sin 8~

r
Fo(e,9d) = —— I} exp(ikecos(e+e)) (2.14)
OS¢ *sin 9 o

existing only lor 4 <-4 .The integrand, however, posses-
ses other poles, which reside outside the closed contour

r-y but can approach the saddle points at tn so to in-
{luence the asymptotic evaluation of the integral in (2.10).
This evaluation is deferred to in Sect. 4, after the solu-
tion (2.10) is extended to the oblique incidence case.
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3. Scattering under oblique incidence. Extension of
Maliuzhinets'theory.

Let us now extend the two-dimensional solution discussed !
under Sect.2 to the three dimensional problem of oblique
incidence, wherein the incident wave is a plane wave of
components of the type:

F(py$.2) = F. exp(ikzcosg) exp(-ikpcos(¢-4,)) (3.1)

depicted in Fig.4. Without loss of geénerality we will as-
sume: O<Re(B) <mw/2 , 0< Re(¢o) < n/2 and will drop the
z-dependence for the field components.
Boundary conditions are now expressed as
E-xxsll = 2%Xxil at ¢=:m/2 (3.2)

or, equivalently,

v L

H-%RH = (1/2%)ExR at ¢=tm/2 (3.3)

By taking the divergence of (3.2 and 3) and using Maxwell's
equations, we get

1 3k
-'-f'—-’—‘?iksinetﬁx =0 at ¢=tn/2
P 99 h
aH
—l—5;5¥iksinq§Hx =0 at ¢=1m/2
p

(3.4)

respectively., Eq.s (3.4 and 5) are symilar to (2.1) and sug-
gest that results of Sect. 2 could possibly be extended to
the oblique incidence case by operating upon the x-components
of the field. It will be shown in the following that this
extension is not straightforward,

Let:

=L
E (0,0) = —

‘x(a+¢)exp(-ikosin8cosu)da
2m

-

(3.5)

g g
P
Hy(0,0) = ;lI j’ ﬁx(a+¢)exp(-ikosinecosa)da
]

T
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Then, forcing boundary conditions

(3.4) we get as in Sect.2

oA T o :
(sina =sin 6; )Ex(at m/2) = (-sinaisineh )bx(-atﬂ/Z) ( 3.6a)

+ . r .
(sina %sin & )Hx(ai n/2) = (-sino*sing ) g (-on/2) ( 3.6b )

wherein, at variance of (2.2),
+ Zi + £
sin (')h — - sin ee = R
£sin B Z= sinB
The general solution of (3.63 or blunder the condition
that a single pole exists at a = ¢ in the strip -p/2 <
< a < /2 1is the same as (2.6). However, E_ and H are
no more necessarily regular for p — 0, so we cannot ap- :
ply the arguments of Sect.2 . It is therefore convenient E
to express EZ , 1 in terms of EX , H (for details,
see Appendix C) , hence: :

( 3.7)

APPNPRIAT A T AT PO T

- cosBcosab ‘o) - sina gﬁ (a) )

E.(y) = X X Sing
2o

1 - cos2asin?p

vosBcosoH, (o) + sina Ey(a)

dlz(a)

sinf
1 - cosasin2g

*Now , (Ez,ﬁz) should approach a constant value, asla"|

é

—_— o , Acgordlngly. from (2.6): :
i - :

A Eox cos ¢ ¥, (@) i

E (o) = | ———2 + B | B ;
sina-sing, J w6 r3.9) t

i . - ;

- BHox €02, ¥ (a) ]
Hy(a) = | ——————- + B ;
sino-sing 5

. . ° - We(¢o) .

wherein L' s H' , B, and B are constants, and ¥ (a)= f

W(a,0,) 5 % b, 2 wiu,0) (s€e Appendix A). (£i, B are

3
the values of the x-componentgof the incident f1e1d°¥t p= O, §
and are easily computed forcing the residues of the spectral
represefitation for (L ,H ) atp =0 to c01nc1de with the
values of the inc1dent components (E ) at p =0, hence:

oz’Hoz



N U i .
hoz LObBLOS¢° + 7H sing,

Fi - 0z
ox sinB
(3.10)
i . _ gl .
rni _ dloz LOSBLOS¢O hoz s1n¢0
" ox sinB

For evaluating the remaining constants (B ,B,) we note that
. . . . e h
the denominator of (3.8) vanishes for

cos’a = (sin®g)”} (3.11)
For B8 real eq.(3.11)is verified for
3
+ 1 1

a=a = nt = i cosh
sinf

Solutions of(3.11) for complex B8 are provided in Appendix D,
but they are not relevant to the discussion which follows.

( ) (3.12)

When the integration path I' of the integrals (3.5) is de-
formed onto the steepest descent path y, the two poles at
o » a_ - ¢ are crossed. The corresponding residues will describe

(inhomggeneous) plane waves of the type
oxp(-ikpeosy)exp(tkpsingcosg) {(3.13)

It is evident that such two waves are diverging in ¢°Z 0

and therefore should be cancelled if the solution is required

to be bounded everywhere in space. This can be accomplished by
forcing the numerators of (3.8) to vanish for @ -a; , hence:

& ot D (ol (3.14)
b 3 ™
E (o)) * itH (a ) =0
In deriving (3.14) note that
t .
sina_ = $icotg B (3.15)

as it tollows (3.11)
Eqs (3.14) are a system of two equations in the two unknowns
( Be Bh) and the solution is:

k
i
K

wr




. Cos¢, sing i _
) - B (sing_sinB~ iQcosB)- H' S cos
h 1 - sin26c052 % 0x % Q T

(3.15)

8 Cos¢o sinB i .
® 1 - sin’geos” o Alox (sindgsingr 1Qeosh) ¢ EoySycost
wherein:
. bolan )ty (00) = ¥ (as)yy (o) (.17)
- + - - +
belu iy lag) + we(uo)wh(ao)
2y (e (o))
S 2 0 (3.18)
b (a )by (al) + b la) iy (o))
+ -
2
Sh = - wh(aO)wh(ao) (3.19)

Ve o)y (0g) + V(g (o)

4, Asymptotic evaluation of the field.

With reference to the two-dimensional case considered in
Sect. 2, the explicit evaluation of the field requires com-
putation of the integral which appears in (2.10). When kf is
large, asymptotic techniquescan be applied.

In order to have a uniform asymptotic evaluation of the
integral, care should be taken concerning the possible loca-
tion of poles of the integrand nearby the two saddle points

o = %
s m

Poles of the integrand . do appear at (see Appendix B):

ap = = o+(=D%, +or . n=0;i15%25...,

%
a, =-¢* (3n/2 +9)

It is evident that o.+ T and a .= ~7m when ¢+¢ + O .
1 -1 0

Furthermore, when the incidence is at grazing angle, i.e.,
$ovn/2, dnd the observation point is close to the sur face
yO. ie., ¢ " m/2, then ag*m , az-=*> =T .

Under these circunstancés, and g™+ 0, 810 g. +-7+ .

Accordingly, the conclusion is drawn that, fop H: - polatized

waves and radiowave propagation over the Earth surface, the




poles a >0 approach the saddle point ay=n , while the
poles o_) ,u_y ,a_ cluster around the saluale point ag =7 . 1
On the other hand, this is a very important situaticn
for practical application, when both the source and the
observation points arc¢ close to the Earth surface, for y»0
and y<O respectively.
Accordingly, we will present in this section an dsymptotlc
¢valuation of the integral which appears in (2.40) for an H-
polarized incident ficld and ¢0%~n/2,¢0%-w/2, 0" << 1.
Let us first consider the integral

j cos ¢ Y(at+d) o (4.1) H
: ) i . S
1

-~ exp(-ikocosa)da
sin(u*@)—sin¢o w(¢o)

Y
whose integrationcontour ¥y , iS the branch of y passing
through the saddle point o = a, =T, with nearby singularities
ata =ug and a = o) ) ‘

A simple procedure for the asymptotic evaluation of the in-
tegral (4.1) will now be presented; a more complete one, 4 mo-
dified version of Bleistein method Lsﬂ ( which allows the
crror estimite)is given in Appendix F.

Let us expand

o8 -1 sin ) si
¢ i ls ag . } sino bl (4.2)

o ki
51n(a+¢)-sin¢o cos” ja-cos” la cos"iu-cos“;al

0
Wherein B (@) is regular in the neighbourhocod of a=7 |,

When (4.2) 1is substituted in (4.4) the main contribution to
the integral is provided by the first factor, when¢ ~- m/2,

%0 v /2 ; therefore, we can neglect the contribution arising
from the B(u ) term. Then we are reduced to consider the ca-
nonical integral

! sin « vlotd) | ~ X
St - exp(-ikpcosalda ; '
j:; c05~5u-cosz;a b(e,) ‘ (4.3)

whose solution is given in Appendix E.

The total field H( P ,¢ ) is then represented as a sum of five
terms, which will be discussed hereafter,

The first term i$ the sum of the direct field (2.12) and
the contribution of the integral (4.11) at « = -d*d

F(-/ftg cos§(¢0-¢\)

Hl(p.¢) = Hé exp(-ikpcos(¢o-¢))

2F(0)
i F(-/2Kp sen}(8 +8))
= My exp(ikpcos(60+6)) - (4.4)

2F(0)
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where the two convenient (positive) angles © 0, :

¢, = M/2=8 3 ¢ =on/ied (4.5)
have been introduced.The field constituent (4.4) is the in-
cident wave (2.42) "corrected" by the (normalizgd) Fr?snel
integral, and is symbolically sketched in the first line of
tfig. 5. .

The second term is the sum of the reflected flgld (2.13{
at y >0 and the contribution of the integral (4.1} at o , =
==(d %9 ) +m:

+ ~ .2 1 -

sind -sin 8 i ) I‘(V—Ep 51“;(60 6) (4.6)

° H0 exp(lkpcos(do~6))

+
H (¢,.) = =
r sin60+sin 8 2F(0)

Where 6% is a shorthand notation for 6;.

The field constituent (4.6) is the reflected wave (2.13) with
the appropriate (normalized) Frésnel transition function which
renders this field continous for -7/2<¢<n/2 and is symbolically
sketched in the second line of Fig. 5.

The third term is the sum of the reflector field (2.14) =t
y < Oand the contribution of the integral (4.1) at a_y =
=-m-(0 + ¢,)
_ siné_-sin 8~ F{v7Ko sin}(8-6 .
Hr(c.¢) = 0 = Hé exp(ikpcos(éo-é)) o 0) (4-7)
sin60+sin 0 2F(0)
The field constituent (4.7) is the reflected wave (2.144) with
the aporopriate (normalized) Fr2snel transition function
which renders this field continous for ~m/2<0< /2 ,
and is symbolically sketched in the third line uf Fig. §,
The fourth term is the contribution of the integral (4.1)
at a_ = - 3p=-31m/2 -Oh :
2 sins tge y(m/2+6 ) . - /%% sin} (6+6, )
Ho exp(ikpcos(6+eh)]

H-(D»¢) =

cos ~cosd  y(m/2-6_) 2F(0)

(4.8)

The field constituent (#4.8) is the surface wave excited on the

half-plane y< o " corrected" by the ( normalized) Frésnel in-

tegral and symbolically sketched in the fourth line of Fig., §.
The fifth term is the contribution of the integral (4.1) at

A2 = -¢ +¢O -~ 2n

e R R R L e e o

e
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.t ind_ + sj
sinGo- sind sin (o} Sin6

Ho(p,9) = =

. HY exp(ikp cos(8+5 )
. . . . (6] o
s1n60+51n 0 51n6°- sin 6 :

F(/Zkp sin}(8,+6,))

2F(0)

The field constituent (4.9)shows the same symbolic repre-
sentation as the field constituent (4.4), i.e., the first line
of Fig. 5. In order to understand its physical HWeéaning, Jet
us sum and substract the incident field (2.12) to the total
field. Then.

(4.9)

F(/Zko sin}(§,-6))
2F(0)

H(p,¢) = H; exp(ikpcos (8 +8)) + R+H; exp(ikpcos (8 -6))

F(v2kp sin}(6-6 o))
+
2F(0)

+ RH2 exp(ikpcos(§-5,))

2 siné_tge~ w(n/2+6 )

i - F(/Zkp sin}(6+6))
= Hb exp(ikp cos(8+8 )) +
cosGo-cose w(ﬂlz—éo) 2F(0)

2 sinGo(sine‘-sine+)

F(vZko sin}(8_+4)) (4.10)
(sinso+sine‘) (sin -sine")

2F(0)

Hg exp(ikp cos(6°-6))

Accordingly, the total field for ¢v-n/2, ¢,vm/2 is the sum
of the incident, the two reflected,( with appropriate transi-
tion function) the surface field and an extra (pole-type) field
due to the discontinuity of the surface impedance at y=9 ,
In general,also the diffracted wave (saddle-point type) due to
the discontinuity should be considered (see Appendix F).

S. Field groduced bz a line source over a mixed-ggth plane Earth.

Let us now consider an uniform magnetic line source parallel

——————
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to the surface impedance discontinuity, as depicted in Fig.6 ,

and locuted at the point §4xo, yo).

The tree-space magnetic field radiated by the source in
P(x,y) would be given by

kl_w

— {4y - cu(o” (kd) (5.1)
ac 0

wherein ly is the magnetic current.

i (x,y) = Hi(p,0) = -

By using the integral representation for the Hankel function

we have
. 1
H'(p,8) = C —-/( exp(ikd cos(§_-n))ds
n /g o o
o
C
= — [ exp(ikp_ cos(§ _-n ))exp(ikp cos(8_+8))ds (5.2)
- o] o0 o Y
S
)

wherein i is the Sommerfeld integration contour as depicted
in Fig. 7 and we have assumed, for convenience, Yo > V-

Eq. (5.2 represents the field radiated by the line source
4s a4 superposition of plane waves with spectral distribution
exp(ikp_cos(§_ =-pn_)) .Accordingly,the field H® radiated by

o) co .o X .
the source in the presence of the mixed path configuration
of Bg.6 is given,by superposition,as

.

H (0, 6) = —-—/m.c, 8,)exp(iks, cos(8,-n,))ds, (5.3)
m
S
(o]

wherein H(p,8,6_)is given by (4.10) plus the possible con-

tribution from tRe field scattered by the discontinuity at

Y=0.

The perturbation in the field excitation due to the impe-

i = e i

T e i S e

=

7
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dance discontinuity is of interest.The change in the spec-
trum can easily be obtained by assuming 6 =0 (the surface
impedance is now costant and equal to Z  everywherejin (4.10);
and then subtracting resulting expression from (4.10) ,hence:

sine-—sin6+ i exp(ikpcos(éo—d)) F(/2kp sing(do-o))
M =2 sind, —————— H

Rt ddanhe o o

sin60+sine+ sin60+sin6- 2F(0)
ikpcos(8§ +6& F(v/2kpsi S +6
& . exp(ikopcos(8_+6)) F(/2kpsin}(6,+6)) (5.4)
| siné_-sin¢” 2F(0) |
3 For § =0 (observation point upon the Earth's surface),
expression (5.4) further simplifies as
- + —
4Sin260(sine -sind ) ) F(./?,kpsini(do'--é))
M = 5= H; ekp(ikpcoséo)

(sins +sin8”) (sinzao-sin 6 ) 2F(0)

(5.5)
Since poccs(do—n°)+qcoséo=dcos(60—n),we have the integral
representation for AHS |

TS 2
4C(sin6 -siné . i
s - 2 ) i / sin 8,
0

" 4 (sindo+sine*)(sinzso-sinzé')
F(/ZKpsin}s ) (5.6)
exp(ikd cos(6_-n))ds 5.6
2F(0) ® 0%

i.e. for the perturbationof the magnetic field on the Earth
surface due to a discontinuity in the surface impedance and
excited by a magnetic line source.

Analytical evaluation of the integral (5.§)is_not an ea-
sy task.The integrand presents poles at § =-6 ;-8 ;clustering
around the saddle point § =n (when,n<<1)Tﬁis complication can
be overcome using the eva?uation techniques presented in Sect.
4 .However ,the integrand is also rapidly varying due to the pre-
sence of the Fresnel integral ,when kp=>1.This point requires
further study to be overcome,
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6. Conclusions and recommendations

The problem of plane-wave scattering by a surface impe-
dance discontinuity over a plane has been rigorously solved.
The solution is attractive inasmuch it provides a physical
description of the plane-wave scattered constituents. These
consist of the pole-type contributions, essentially plane wa-
ves with attached Frésnel transition functions; and saddle-

point type contribution, essentially a cylindrical wave scat-
tered by the discontinuity. For an observation point close to
the surface and an incident wave at a grazing angle, a novel
result is the appearance of a new type of ( pole-type ) con-
tribution, in addition to the conventional incident, reflected
and surface fields. 1he role of the ( cylindrical ) wave scat-
tered by the discontinuity should be better analysed, and graphs
pertinents to a pratical situation computed.

The field excited by prescribed sources can be computed,
in principle, from the plane-wave expansion of the incident field
and then application of results of the scattering analysis. How-
ever, the resulting integral representation contains a rapidly
varyng term ( Frésnel integral ) in the neighbourhood of the sad-
dle point, and also as many as three poles. This is a point which
needs further attention and the use of appropriate ( if available )
mathematical techniques of asymptotic evaluation of integrals.

e e o e

wo
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Appendix A : The tunction y(u).

The function ¢ (o) is defined as follows (20 ):

v a) = N(u*n-e*)N(a+6+)N(a-n*e-)N(a-e-)

(A.1,
ar equivalently:
[ , + - +
2 , N(a+o IN(a-0 ) a=-6 +n/?2 a+e - nr/o
.‘;‘(“ ) = N l(l/ : ) e e——— — — CON — e e COs --- ~ 4*_
N(a- 8" )N(a+6") 2 2
(AL 2)
The function N (& ) is piven by
a
1 f Jt-msin t
Na) = exp ( J dt ) (.3
dn cos t
0

and is a particular determination of a most general class

of function introduced by Maliuzhinets [20] with reference
to the problem of iupedance wedye scattering. The function

N (o) is eusy to compute numerically and, in any case, it

is simply related to a tabulated function [21,28). Its main

properties arc hereafter summarized:

N(a) = N(-a) (A.4)
)
N(a#‘n/:) N(ﬁ‘ﬂ/l) = N‘-(TT/':)CUS\X,’/J (1\.5)
lim .
o coeN(@) ~ 0 ( expla"| 4) (A.0)

The location ot poles of Y(a) within the strip
=3n/2 <a'< 3n/2

is of interest. From (A.3) it is notod that




5
{
;
I
{
¢

a

f 2t - wsint
dt (A.7)
0 cos t

is finite for o = w/2 , diverges toward negative values
for o = 37/2 anua toward positive values for a = 5m/2
Since the divergence of (A.7) is of logarithmic type,

the function N(a) has a simple pole at a=1% 57/2, Accord-
ingly, the poles of y(a) in the strip of interest are,
from (A.1):

+
a, =¥(3n/2+87) (A.8)

Appendix Bi Poles of the spectrum of the field and re-

sidues of the integral representation.

Poles of the trigonometric factor in (2.8) do oc -
cour at

a = -9 +(-1)"¢0 +nm +

’ n= O i -1 M o--.(B'l)
For n=0, the residue

Pl(p,0) = F} exp(-ikpcos(e-6,))U(n-0 +£,)U(T+o-5,)

(B.2)
describes the incident field, wherein:

€ = 95 * gd(e) , % = o * 0], 000 (B.3)

W(t) is the Heayiside unit step function and gd (x) is
the Gudermanian function

- 1
gd(x) = sn(x) cos 1( —
cosh x
For n=% 1, the residues (B.4)

i v(Em-e.)
Fy (py¢) = - Fg ———=— exp(ikpcos(4+¢)) -
(o)

U213 (£ +0)IUCH(E +4))

) = sin'l(tgh x)

(R.5)
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describe the retlected fields upon the two halt-plancs

O= a; 2 respectively. Use of (2.57 shows that:

b
v in-¢ ) ) cos¢ -sine *
N ry = R (H,ﬁ)

W(:d)

cosoo*sino

Accordingly, the excitation factor for the reflected
wWaves ii identified with the Frosnel reflection coeffi-
cient R appropriate to the two surfaces ¢ =t q/2, 43
it should be cxpected. For an incident H-polarized sur-
face wave at the Brewster angle, i.e., $o= /2~ Oﬁ
there is no reflected wave at ¢ =n /2 ; the reflection
cocfficient at = =-1/2 takes the simple form

+ -

sing, - sind
h h (i5.7)

e -
- + : e
sxneh sin h
lPoles of the other factor in (2.8) do occour at

t :
a” = -9 (3n/2 + 07 ) (B.8)

as follows from (A.7). The corresponding residues

+ +

+ . 2cos¢ _tgh w[:(9'+ ﬂ/Zﬂ
. i 0
& (po¢) = FO

sin¢oicos 8 Vi)

b 4 by .
- exp [3 ikp sin(¢¥® @ )] Ut ¢- &7 - n/2
(D43
£ =0' + gd(8") , 8= 0" + i 0" 8'> 0
gl (87) YT I (810
correspond to surtace waves, one (upper sign) with phase
velocity in the directionm/2+8" ; and the other (lower
sign) with phase velbcity in the direction-w/2 -6~

In computing (B.9) use has been made of (2.5). These
surfuce waves do exist in the angular range

¢ > n/2+ g3 (B.11)

e e s e
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I'hen, a necessary condition for SUCh waves to exist is that

€= 0' 4+ gd(e") . 0
Letting sin6 = r + ix, tedious algebra shows that this is
1s cquivileat to the condition

- . r
X v (B.i2)

VI + rz
For radiowuve propagation over the Earth, H - polarized

waves are of interest and 1

. p. =
s1in h '/‘:r*

1o (8.13)

We ¢

wherein . and 0 are the relative permitivity and conducti-~
vity of the Lurth. Then x < o and (B.I12) transforms as fol-
lows: ’

2
we € .
fr—l - [ 1+ ( —2F 1 (B.14)

o -

The conclusion is drawn that surface waves (B.9) are not excited,
since the poles (B.8) are not crossed upon deformation of the
intergration contour from T ¢o Y

Appendix C: Spectrual relations between longitudinal and

transverse field components.

exp(ikz cosB) "
Let : E (pso,2) = - Ez(a+¢) exp(-ikpsinBcosa)da
i
r
(C.1)
} exp(ikz cosg)
' H,(p,0,2) = - \/P ﬂz(a+¢) exp(-ikpsingcosa)da
r
It is known (30) that the total field, (&, H ), can be

expressed in terms of ( EZ s Hpl:
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. -2_. =2 - -
E = k "sin “8 (VxVxEZ Z+ iwp xH, z )

(€.2) Y
H = k-zsin-ze (Vx¥xH_ z- iwe xB_ 2
L - z 22)

Substituting (C,1) 1in (3.2) , projecting on the
X - axls and equating the corresponding spectral com-
ponents, we get

r - cosf cosa Ez(a)+ sina cﬁz(a)

i E (o) =

{ sinB l

- - . !
. cosBcosa cHz(a) - sina E_(a) (€.3) :
gHyla) = -

L : sing

The system (C.3) can now be solved for (E_, ﬁz),
hence -

( - t
. cosa cosB Ex - L sina Hx ¢
E_= > > sinpg

{ - 1 - cos™a sin“B

I cosBcosa cﬁx + sina Ex (€.4) ;

t A= sing ‘

2 .2 +
1 - cos"a sin“B s

. Appendix D -~ Spurious poles in the case of oblique
incidence ¢

Poles of (3.11) are given by

- .1 3

Cos q = * (sing )1 (D.1) i

5 Letting %

i (sin 831 =a+ib (D.2) !

| |

i Eq. (D.1) becomes f

i cos a' cosh a" = ¢ a ;

| . ' . " Iy (D'S) i
| sin a' sinh a" = + b




After squaring, substitution and solution, we get

T
. ) aZ+bZ+1 a2+b2+1
cosh® o" = \/ ( )2_ al
! 2 2
(D.4)
sin2 a' = b?
{ 32+b2-1 az+b2_1 Y
—_—— 2 2
( )" - a
2 2
Appendix E : Solution for the canonical integral
1 sinao v(at+e)
[ = -« ~ exp(-ikpcosa)da
2 2
2 cos“ja-cos }ao w(¢o)

v

1 Jp sinB0 Y(n+p+B8)
= - exp(~ikpcosg) dg
2 ¥ sin’fe-sin’is v(o,) P )

Y (E.1)

where B = o=-T y Bp ™ ¢°~¢-n and the integration contour
Yo runs parallel to Y through the saddle point B = B, ~ Q,
With the new transformation of variables

/2 exp (in/4) sinig= t (E.2)

The contour Yo 1is transformed into the real axis and we get
for the integral :

+
i _ Y(m+¢+@) sinB_ exp(-hot?
I = —— exp [1(kp-ﬂ/4)]/{ ° 5 3 ) dt
v 4 v(¢,) cosip t —Zisin“}s0
= +o
) - 2
o i exp[ﬂkp-n/ﬂ]ﬁ sin §8 -?fm dt

2. 5.,
e t *21s1nzgeo
. F(nY 3
irexp (ikocosao) (n ZkP 51“!80)

ooy A3 1

e

R———
TR AR
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Where F (&) is the Frésnel integral

o

(E.4)
F(u) = fexp(itz)dt
u
n = I 1 according to 8} *+ ga(By) 7 O (E.5)
and the property
F(u) + F(-u) = 2F(0) =/7 exp in/4 (E.6)
has been used. Note that
+x
2
f exp(-at) , 2/ .
—g——3—— dt = exp(-iuz — F(/Q :
2 - 152 p )VFE (VQz) (1.7)
The other integrals can be computed similarly.
Appendix F : Modified Bleistein's method for the asymptotic
evaluation of the integral.
Let us consider the function B(a ) defined in(4.2) :
co sina sina
Bla) = s ¢, R i o i i 1
sin(a+¢)-sina g cosZja-cos?ja_ cos2}a-cos}a
(F.1)
and let us expand it as follows
B(a) = a + cos jaB,(a) (F.2)

wherein B(a) is not only regular around a = a , = T, as B (a ),
but also attains a zero value for a = a_= ™.
Accordingly in the asymptotic evaluatidn of the integral

T
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V(d+a)
1. = ————— B(a) exp (-ikpcosa) da (F.3)

: V(o)

Yi

the dominant contribution. will be provided by the first

factor at the right hand side of (F.2).
Letting a« = m , we can easily compute a; hence:

.. -cos ¢ ) } sin (¢,-¢) 3 sin (¢-9)
: - 2 B
sin¢ + sin ¢o cos }(¢o-¢) coszi(¢o+¢)
- - 3 coséo
sin i (¢,+¢)cos § (¢,-6) (F.4)
then,
I N Y(a+¢)
2 exp(-ikp c d
¥ (o) Peosa) da
Yl
f Y(m+o+B)
= a exp(ikp cosg) dB
¢(¢0)
YO
+x®
_ ia
&= 7 exp[i(kp-n/«t)_lf‘l’(ﬂ*ﬂ*ﬂ eXp(-kptz)
et v(e,) cos % at
) + o
ia , 4 V(d+m)
~ 7 exp(i(kp-n/4)] —_ exp(-kpt?)dt
W(¢°)
= i 2 | s
13v-;§3— exp b(¢-n/4j fﬁi:il (F.5)
V(o)

" o R - ; oy
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Accordingly, its contribution to
seneral be neglected.
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sponds to a cylindrical wave, scattered by the
at ¥=0, which decays with distance as

- 3 cos ¢0

(F.6)
ko sinf(¢+e )cosi(o+¢ )

the total field cannot in

-0=-
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