
AD-AO80 385 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/G 9/1
A T = O(2N/2). S = 0(2/4) ALGORITHM FOR CERTAIN NP-COMPLEIE PRO--ETC(U)
JAN 80 R SCHROEPPEL, A SHAMIR N0001-76-C-0366

UNCLASSIFIED MIT/LCS/TM-IA? NL, NmEEIIIIIIII
IIIIIIIIIIIIIIflfflf

3-NO

3 8O

LABORATORY FOR MASSACHUSETTS
INSIT TEOF

COMPUTER SCIENCE , ,TECHNOLOGY

€~ i-
00

I TRBU1'JAN 25

Approved for public re1euq> " Distiuicm Vulimited

January 1980
LLJ.-__ This research was supported by the Office
L.' of Naval Research under Contract No. N00014-76-C-0366

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

80 1 2

SECUMOITOINL AGENFCYTINAOE THI AGES(WodiffecEntrmed) lnjOfc) I. EUIYCAS.(ft

IS.RDISTTIDUTIONNSTATEMENTACE1REAin Report

17. DISTRIBTONM STTEEN G(VT ACESIO NbO.ac eS.re REIPEN' CATALO 20Ifdfeet r eo

IS. SUPEETR NOTESv1""r I/X .TPEF19PR&E

NP-vCzpl.ete probes *- -f4

20. ABTAT (Continue on revereeN Mi.II~eer n ietf ybokn I

..- ar aI this paper, we dvel a eeaj upsagrtmta a
a9ume PROf ORAIINPcmlt prolem inD timeES T=0.~ andRA saELEET P(R,
Theagorithmy can begenerlie oafmiyo lgrtm woet
and spae colexitiuaes are reae b S=0'2C4TepolesI

DD I. COTOLN 1473C ETINOMEANOV AD5RISSSET

SECURITY ~ a CLSSP CA OP1145 AGE 1

20.
handle are characterized by a few decomposition axioms, and they include

knapsack problems, exact satisfiability problems, set covering problems,

etc. The new algorithm has a considerable cryptanalytic significance.

since it can break knapsack-based cryptosystems with up to n - 100

generators.

f

Ac c o sonior

iNT I G., xI

DJJ

OCuCURT, CL AS ICAIO OF THOS PAS*V. .. D..--

1 .1

A T = (2n/2) S =02 n /4 Algorithm

for Certain NP-Complete Problems

by

Richard Schroeppel

Information International

Culver City, California

and

Adi Shamir

Department of Mathematics

Massachusetts Institute of Technology

t*

This research was partially supported by the Office of
Naval Research under contract No. N00014-76-C-0366.

Abstract

In this paper we develop a general purpose algorithm that can solve

a number of NP-complete problems in time T=O0(2n/2) and space S=Q0(2 n/4)

e

The algorithm can be generalized to a family of algorithms whose time

and space complexities are related by T-S2= OR2n) . The priblems it can

handle are characterized by a few decomposition axionis, and they include

knapsack problems, exact satisfiability problems, set covering problems,

etc. The new algorithm has a considerable cryptanalytic significance,

since it can break knapsack-based cryptosystems with up to n - 100

generators.

Key words and phrases: NP-complete problems, time/space tradeoffs,

knapsack problems, Merkle-Hellman cryptosystems.

-1-

1.Introduction

Every NP-complete problem can besolved in 0(2 n time by exhaustive

search, but this complexity becomes prohibitive when n exceeds 40 or 50.

Assuming that NP # P, we cannot hope to find algorithms whose worst-case

complexity is polynomial, but it is both theoretically interesting and

practically important to determine whether substantially faster algorithms

exist. Researchers have so far discovered a few special-purpose

algorithms (most notably a T = S = 0 (2n/2) algorithm for knapsacks by

Horowitz and Sahni [1974] and a T = 0 (2n/3 S = O(n) algorithm for cliques

by Tarjan and Trojanowski [1977]), but no comprehensive theory of such

subexponential algorithms has been developed. In this paper we describe

a general-purpose algorithm which can solve a fair number of NP-complete

problems (including knapsack, partition, exact satisfiability, set

covering, hitting set, disjoint domination in graphs, etc.) in time and

space complexities which are related by the tradeoff curve T-S2 = 0(2 n)

for 0(2n/2) < T < 0 (2 n). The novel properties of this algorithm are:

(i) The time/space complexities of the algorithm are considerably better

than those of all the algorithms published so far for these

problems. Furthermore, the algorithm is completely practical in

the sense that it is easy to program and its overhead is small,

and thus it can handle problems which are almost twice as big as

those handled by previous algorithms.

Throughout this paper, we ignore polynomial multiplicative factors in

the 0-notation of exponential functions. These factors are usually of

degree 0 or 1, and their practical effect is very small.

-2-)

(ii) The algoritho demonstrates an interesting tradeoff between time

and space - in order to decrease time by a factor c, it is enough

to increase space by a factor ol sqrt(c). Since space is much

more expensive than time, this tradeoff has a very favorable

economics.

(iii) The problems to which the algorithm can be applied are characterized

axiomatically by their behavior under composition. This approach

introduces a natural subclassification of NP-complete problems and

indicates how a problem-independent theory of subexponential

algorithms may be constructed.

One of the most important applications of the new algorithm is in

cryptanalysis, since many of the newer public-key cryptosystems are based

on large NP-complete problems (Diffie and Hellman [1976]). With current

technology, the practical limit on the number of operations a cryptanalyst

can perform is between 250 and 260 (a parallel computer with 1000 processors

whose cycle time is one microsecond performs 250 operations in about two

weeks), and the practical limit on the number of memory cells he can use

is between 225 and 230. By choosing the point T =: 0 (2n/2) and S - O(2n/4)

on the time/space tradeoff curve, instances with up to n 100 are within

reach, and thus the new algorithm can break all the knapsack-based

cryptosystems recommended so far in the literature (e.g., Merkle and

Hellman (1978]). This cryptanalytic attack can be foiled by increasing the

minimum recommended size from n- 100 to n= 200 (at the expense of tripling

the key size and the encryption time), but it is a clear warning against

overconfidence and narrow safety margins in public-key cryptosystems.

L I -

-3-

The problems our algorithm can handle are described in Section 2.

A T= 0 (2n/
2) S =Ot2n/

4) algorithm is presented in Section 3. In

Section 4 we generalize this algorithm to a family of algorithms

whose time and space complexities are related by the TS 2 =0(2

tradeoff curve.

2. A Calculus of Problems

To make our basic algorithm as versatile as possible and to expose

the minimum conditions that guarantee its correctness, we define the notion

of a problem in a fairly abstract way:

Definition: A problem of size n is a predicate P over n-bit binary strings.

A string x is a solution (or a witness) of the problem if P(x) is true.

The goal is to find one such x, if it exists.

Example: The predicate of the knapsack problem "is there a bit string

xIx 2x3X4X5 such that x1'7+x2-3+x3.9+x4*6+x 5-2 = 11?" is oi size 5, and

its solutions are 01011 and 00101. /-

Remark: The size IPI of a problem P is defined as the number of bits in

its solution rather than the number of bits in its description, since the

0(2n) complexity of exhaustive search 'upon which we want to improve) is

determined primarily by the size of the solution space. However, to make

our results strictly correct we have to assume that these two measures are

polynomially related, i.e., that we are not given huge descriptions of

problems with very few bits of unknowns.

-4-

One of the most useful algorithmic techniques for solving problems

is divide-and-conquer. Given a problem P, we decompose it into a number

of subproblems (usually two of half size each), solve them separately,

and then combine their solutions. To simplify the mathematical analysis

of this process, we introduce the following operator:

Definition: A binary operator 0 on problems is a composition operator if

(i) it is additive: for all P' and P", IP'sP"I = IP'I+IP'i;

(ii) it is sound: for any two solutions x' of P' and x" of P", the string

concatenation* x'x" is a solution of P'OP";

(iii) it is complete: for any solution x of P and for any representation

of x as x=x'x", there are problems P' and P" such that x' solves

P', x" solves P", and P= P'*P";

(iv) it is polynomial: the problem P'SP" can be calculated in time which

is polynomial in the sizes of P' and P".

Intuitively, * is sound if any two solutions of the subproblems P'
and P" can be easily conbined in order to get a solution for the original

problem P. and complete if any solution of P can be obtained in such a

way:

fxlP(x)) - U {x'x"jP'(x') and P"(x")}
P1SP"1=P

A pair of problems P',P" is said to be a decomposition of P if POP'= P,

and in general a problem can have many possible decompositions. To solve

P, we can try out all its possible P',P" decompositions until we find a

*The string concatenation can be replaced by any other simple operation

which is length-additive.

-5-

pair of solvable subproblems. If P is solvable and 0 is complete, these

subproblems must exist, while if P is unsolvable and S is sound, these

subproblems cannot exist (otherwise their concatenated solutions would

have solved P). There are many NP-complete problems for which composition

operators exist, and the following examples are typical:

Example: Let (b,al ,...,an) be the knapsack problem in which the target

value b is to be represented as a sum of a subset of the generators a,.

For any two problems P' = (b',a(,...,aj) and P" = (b",a',...,am) we define

P'P" (b'+b",a ,...,a' a"l,..,am) (i.e., we add the b's and concatenate

the ai s). We claim that this 4 is a composition operator:

(i) 0 is additive since the number of generators in P'OP" is by definition

the sum of the corresponding numbers in P' and P".
m X+m

(ii) 0 is sound since x a i = b' and E x~a'.' = b" imply that E xia.

b'+b" (where the xi are the bits of x'x" and the ai are the generators

in P'OP").

(iii) 0 is complete since for each x = x'x" such that Ix' = Ix"i = M,
o+in

and E xia. = b, there are b' and b" such that x' satisfies
i=l 11

J= xai= = b', x" satisfies E xla. = b", and the sum of these two
il11 i=2.+l 1 I

subproblems is the original problem (b,al,.. a +M).

(iv) 0 is polynomial since the only operations involved are numeric additior

and list concatenation. /-/

Example: Let F be a formula in CNF (i.e., a conjunction of clauses which

are disjunctions of literals which are variables x. or their negations xi).

The satisfiability problem is to find a truth-value assignment to the

-6-

variables which makes at least one literal in each clause true. To

decompose this problem, we can partition the list of variables into two

complementary sublists, and try to satisfy by the two partial assignments

two sets of clauses whose union contains all the clauses. In this

generalized formulation, each subproblem corresponds to a sublist of

variables and a subset of clauses in F, and the 0 operator concatenates

the sublists (if they are consecutive) and unions the subsets in P' and

P". This operator is clearly additive and polynomial. It is sound sinc4

by definition P'*P" is satisfied by the concatenation of any pair of

assignments that satisfy P' and P", and it is complete since for any x

that solves P we can use the clauses which are actually satisfied by the

prefix and suffix of x in order to define the appropriate P',P"

decomposition. /-

The relationship between problems (especially NP-complete problems)

and their solutions is often asynmetric, since it may be much harder to

find a solution for a given problem than to find a problem which is solved

by a given solution. This motivates the following definition:

Definition: A set of problems is polynomially enumerable if there is a

polynomial time algorithm which finds for each bit string x the subset

of problems which are solved by x.

Example: (i) The set of all the knapsack problems is not polynomially

enumerable since for each x there are infinitely many knapsack

problems which are solved by x.

(ii) The set of knapsack prlblems with a fixed set of ai generators (but

irllllnllW~ l, ik r'rll 14 -- i -' +

-7-

varying target values b) is polynomially enumerable, since for each
n

x there is exactly one b such that b = E xia,, and this b can be
i=1

easily calculated.

(iii) The set of (generalized) satisfiability problems with a fixed formula

F is polynomially enumerable, since the subset of clauses which are

satisfied by the truth-value assignment x is uniquely defined and

can be found by simple evaluation. /_

If a set of problems is polynomially enumerable, then all its solvable

instances of size n can be tabulated (as problem/solution pairs) in 0(2n

time and space. Again, there are many NP-complete problems whose sets of

subproblems are polynomially enumerable, and they have the curious property

that it is almost as difficult to solve a single instance of size n as it

is to solve all the instances of size n - in both cases we have to

enumerate all the possible n-bit solutions.

The most restrictive and least intuitive condition we impose on

problems is:

Definition: A composition operator 0 is monotonic if the problems of each

size can be totally ordered in such a way that a behaves monotonicall :

IP'I = P"I and P'< P" imply that P'eP < P"OP and POP'< POP" .I

Using this notion, we can state the main result of this paper (which

is proved in the next section):

Theorem 1: If a set of problems is polynomially enumerable and has a

monotonic composition operator, then its instances of size n can be solved

in time T=O(2n/
2) and space S.0(2n/

4).

-8-

Example: The 0 operator on knapsack problems is monotonic if we order

them lexicographically, since (b',a,...,ad< (b",aI,...,a) implies that

(b'+b,ai ,...,, 1 , ...am)< (b"+b,a',.,aalam) and

(b+b',a 1 ... ,am,a ,....aj)< (b+b",a 1 ,... ,aall,... ,a). (Note that this

S operator is not monotonic if P' and P are allowed to be of different

sizes). Consequently, our algorithm can solve knapsack problems. /-

Composition operators based on set unions are usually non-monotonic,

but they become monotonic if we replace the set unions by multiset unions:

Lemma 2: (i) If ISI > 3, then the subsets of S cannot be totally ordered

in a way that makes the set union operator monotonic.

(ii) If S is denumerable, then the multisubsets of S with finite multipli-

cities can be totally ordered in a way that makes the multiset union

operator monotonic.

Proof: (i) Suppose that such an order exists. Without loss of generality,

we can assume that for a,b,ce S, {a} < {b} < {c}. By taking the set

unions of these singletons with {a,c} and by using the monotonicity

of U, we get

{a} U {a,c} < {b} U {a,c} < {c}U {a,c}

this evaluates to

{a,c} < {a,b,c}< {a,c}

which is a contradiction.

(ii) Let S be {al,a2,...}. The multisubsets of S with finite multiplicities

can be represented by semi-infinite vectors of multiplicities (nl,n 2,...)

in which each ni represents the number of occurrences of aI . In this

,A.

-9-

representation, multiset union is simply a componentwise addition

of multiplicity vectors, and it is clearly a monotonic operator if

we order the vectors lextcographically. Q.E.D.

Exaqqjpe: By part (1) of the leimna, the (generalized) satisfiability

problems cannot be totally ordered in a way that makes the * operator

monotonic, and thus our algorithm cannot be used in order to solve them. / /

Exampile: The exact satisfiabili typrobl e is similar to the satisfiability

problem, except that we want to satisfy exactly one literal in each Clause.

Its subproblems consist of sublists of variables and tmultisets of clauses,

and the multiplicity of each clause indicates how many literals are

satisfied in it (e.g., the original problem corresponds to the multiset

(l,1 ,,0,...)). By part (ii) of the letma, the * composition operator

that concatenates the sublists and adds the multiplicities is monotonic, and

thus we can apply our algorithm to this variant of the satisfiability

problem. /7/

We leave it as an exercise for the reader to verify that all the NP-

complete problems listed in the introduction have monotonic composition

operators. This list is not exhaustive, and it is easy to come up with

add ;t ionaI examples.

3.- The -AlwpIthi

The algorithm uses the soundness and completeness of S in order to

reduce the general problem to the following combinatorial search problem:

Defi-n.it-io.n: Given k problem/solution tables T1 with 0(2n
/k) solvable

problems each, a nmonotonic composition operator i, avid ai problem I', he

k-table problem is to determine whether there are k representatives

PfE Ti such that P = P,1P2e... * k (under a given parenthesization).

Example: To reduce a given knapsack problem P with n -3m generators ai

to the 3-table problem, we

(1) divide the generators into three sublists (a,...,am). (am+ ...,a 2m)
and (a2m+l,..,a 3m);

(ii) tabulate in Ti (i=1,2,3) all the 0(2n/3) target values bi which can

be generated by summing a subset of the n/3 generators in the i-th

third of the problem;

(iii) check whether the original target value b can be represented as

b = b1 +b 2 +b3 for somc bIcT 1 , b2 cT 2, b3 c T3 ;

(iv) concatenate the three solutions xi tabulated for these b I target

values (if they exist) in order to get a solution x a x x2x3 for the

original problem. /_

Example: To reduce an exact satisfiability problem to the 4-table problem,

we divide the variable list into four quarters, enumerate for each quarter

all the 0 (2n/4) possible truth-value assignments, tabulate for each

assignment the multiset of satisfied clauses, and determine whether there

are four multiplicity vectors in the four tables whose sum is

This general technique is a mixture of divide-and-conquer and dynam, iC

programming - we repeatedly divide problems into pairs of subproblems

until we get k problems of size n/k each, and then finish by searching k

problem/solution tables. Since we do not assume that * is associative, we

have to fully parenthesize the PIP2O?...OPk sum to make it meaningful, but

the completeness of l implies that the solvability of this k-table problem

does not depend on the parenthesis structure (i.e., we can choose the

order that makes the search most efficient).

The obvious algorithm for the k-table problem is to try out all the

0(2 n) combinations of representatives from the k tables, and it is clearly

optimal for k = 1. However, for k > 2, better algorithms exist:

Theorem 3: The 2-table problem can be solved in 0 (2n/2) time and space.

Proof: Consider the following algorithm:

(1) Sort T into increasing problem order;

sort T2 into decreasing problem order.

(2) Repeat until either TI or T2 become empty (in which case print

"unsolvable" and halt):

S * first (T,) * first (T2);

if S = P print "solvable" and halt;

if S < P delete first (T) from To

if S > P delete first (T2) from T2.

To prove the correctness of this algorithm, we have to show that

whenever a problem is deleted from T1 or T2, it cannot possibly participate

in any sum which equals P (and thus the deletion cannot affect the correct-

ness of the rest of the algorithm). Since T2 is decreasing and * is monotonic,

first (Tl) * P2 - first (T,) * first (T2) for any Pt T2 . Consequently,

the left-hand side cannot be equal to P if the right hand side is smaller

than P, and the deletion of first (T1) from T, is justified. Similarly,

-12-

P first (T first (T) 0 tirt (1) S P justifies the deletion u

first (T2) from T2 ,

The time complexity of the sorting step is o(2n/2(n/2))
- 0(2n/2)

and the time complexity of the search step is O(IT 11 + IT2I) = 0 (2n/2)

since we delete at least one element at each iteration. Q.E.D.

Remark: This 2-table problem has been posed and solved in a number of

papers under various disguises (e.g., Knuth [1973, page 9], Horowitz and

Sahni [1974]). In the rest of this paper we refer to this algorithm as

the basic algorithm.

The basic algorithm can be easily extended to other values of k:

Lenina 4: The 3-table problem can be solved in 0 (22n/3) time and 0(2n/3)

space.

Proof: For each one of the 0(2n/3) problems P1 e Ti, use the basic algorithm

on the T2,T3 tables in order to find a solution for P-PI®(P2 P3) in time

O(jTij) - 0(2n/3). Q.E.D.

Lemma 5: The 4-table problem with a non-balanced parenthesis structure

P= P e(P2@(P 3SP4)) can be solved in 0 (23n/4) time and 0 (2n/4) space.

Proof: For each one of the 0 (2n/4) problems P1 TI, solve the remaining

3-table problem in O(ITi1 2) - 0(2n/2) time, Q.E.D.

All the time and space complexities considered so far satisfy the

invariant relation T*S - 0 (2n), and thus improvements in the space complexity

-13-

make the time complexity worse by a similar factor. This trend is broken

by the unexpected behavior of the following case:

Theorem 6: The 4-table problem with balanced parenthesis structure

P = (PIOP2)O(P3OP4) can be solved in 0(2 n/2
) time and n/4) space.

A direct application of the basic algorithm to the two 0(2
n/2)

supertables generated by the (PIOP2) and (P30P4) combinations leads to a

T = S = 0 (2n
/2) algorithm. However, the basic algorithm accesses the

elements of the sorted supertables sequentially, an] thus there is no need

to store all the possible combinations simultaneously in memory - all we

need is the ability to generate them quickly (on-line, upon request) in

sorted order. To implement this key idea, we use two priority queues:

(i) Q' stores pairs of problems from T1 and T2, enables arbitrary

insertions and deletions to be done in logarithmic time, and makes

the pair with the smallest PIOP2 sum accessible in constant time.

(ii) Q" stores pairs of problems from T3 and T4, enables arbitrary

insertions and deletions to be done in logarithmic time, and makes

the pairs with the lares P 3P4 sum accessible in constant time.

Efficient heap implementations of priority queues are described in Aho,

Hopcroft, Ullman [1974].

The balanced 4-table algorithm

(1) Sort T2 into increasing problem order;

sort T4 into decreasing problem order;

insert into Q' all the pairs (P,, first (T2)) for PicTI;

insert int(o Q" dal the pairs (|P. , first (T4)) tor P 3 T3I.

-14-

(2) Repeat until either Q' or Q" become empty (in which case print

"unsolvable" and halt):

(P1 ,P2) - pair with smallest PIOP2 sum in Q';

(P3,P4) - pair with largest P3 P4 sum in Q";

S 4 (PlOP2)e(P 3 eP4)

if S = P print "solvable" and stop;

if S , P do

delete (P1,P2) from O;

if the successor P of P2 in T2 is defined,

insert (P1,Pj) into Q';

if S > P do

delete (P3,P4) from Q";

if the successor P of P4 in T is defined,

insert (P3,P4) into Q".

Lemma 7: The space complexity of this algorithm is 0(2n14).

Proof: It is easy to show by induction that at each stage a P1 T, can

participate in at most one pair in Q', and a P3 T3 can participate in at

most one pair in Q" (the number of occurrences of P2 c T2 and P4 c:T4 in Q'

and Q" can be higher). The space complexity of the priority queues is

thus bounded by O(ITi]) = 0(2n/4). Q.E.D.

Lemma 8: The time complexity of this algorithm is 0(2n/2

Proof: Each (P1,P2) pair can be deleted from Q' at most once, since it is

never reinserted into Q'. Similarly, each (P3,P4) pair can be deleted39 4)

-15-

from Q" at most once. At each iteration of step 2, one pair is deleted

from Q' or Q", and thus the number of iterations cannot exceed the number

of possible pairs, which is 0(2n/2) Q.E.D.

Le i ia 9: Q' can become empty only after we consider all the possible (P1 'P2)

pairs of problems from T1,T2 (similarly for Q" and T3,T4).

Proof: Initially P1 shares a pair in Q' with the first element of T2. After

each deletion of a (PlP 2) pair we reinsert P1 together with the next larger

element of T2, and thus the only way Q' can become empty is if each P1

runs out of companions after a complete first-to-last scan of T2. Q.E.D.

Lemma 10: The sums of the pairs extracted from Q' are in non-decreasing

sorted order, and the sums of the pairs extracted from Q" are in non-

increasing sorted order.

Proof: The smallest (PI,P 2) pair in Q' is replaced by a (PI,P2) pair whose
i2

sum is larger (since T2 is sorted and 0 is monotonic), and thus the sum

of the next pair extracted from Q' cannot be smaller than P1OP2 . The

proof for Q" is similar. Q.E.D.

Proof of Theorem 6: Lemmas 7, 8, 9 and 10 reduce the 4-table algorithm

to the 2-table algorithm whose correctness was proved in Theorem 3.

Q.E.D.

-16-

4. Time/Space Tradeoffs

Lemna I1: If a set of problems has a monotonic composition operator, then

for any P and P' there is at most one P" such that P -POP".

Proof: If Pi< P2 are two different solutions, we get P°SP = P' P2 which

contradicts the monotonicity of & (note that ,PI" IPI" JPI- IP'I).

Q.E.D.

Definition: The complementation operator e is the partial binary operator

defined by:

P" =PP' 1ff P - P'P"

The problem P" is the complement of P' with respect to P.

Example: Given two knapsack problems P- (b,aI,...,an) and P'- (b,a,...,a,),

POP' is defined (as (b-b',a +,...,an)) iff t n and for all l<i< 1, ai = a .

Given two exact satisfiability problems P and P', P-P' is defined iff

they have the same CNF formula, the list of variables in P' is a prefix

of the list of variables in P, and the componentwise difference between

their multiplicity vectors is non-negative. /.

In all examples of monotonic S operators considered so far, the 0

operator is easy to compute in polynomial time (either directly or by a

quick binary search on candidate problems).

Theorem 12: Let Q be a polynomially enumerable set of problems with a mono-

tonic composition operator and a polynomial complementation operator, and

let A be an algorithm that solves these problems in 0 (2en) time and 0 (2on)

•A

..- 7-

space (for some 0< ,o< 1). Then the problems in Q can be solved in any

time/space combination along the tradeoff curve T-S(l'a)' = 0 (2 n),

0(2 n) , t < 0(2n).

Proof: For each O<y.l, let A. be the following algorithm:

(1) Enumerate all the bit strings x' of size (I -y).n.

(2) For each x' enumerate all the problems P' which are solved by x'.

(3) For each P', find its complement P" with respect to P; if it exists,

use algorithm A to solve it; if it is solvable, concatenate x' with

its solution x", print it out and halt.

Note that for y = O, A0 reduces to a simple exhaustive search, while

for y= 1, Al reduces to A. A slight technical difficulty is that for each

n the set of usable values of y is discrete. However, for large values of

n this set becomes essentially continuous.

The correctness of each A follows from the soundness and completeness

of 0 in the usual way. The only new element is the unbalanced decomposition

of P into problems of sizes (1 -y).n and y.n, but our definition of complete-

ness is general enough to handle this case.

Algorithm A is applied at step 3 to a problem of size y.n and thus

its time complexity is 0(2
°ryn) and its space complexity is 0(2 Yn). Step 2

multiplies the time complexity by a polynomial factor, and step I multiplies

it further by 0 (2(lY)n). The overall time complexity of Ay is thus

T = 0 (2 (
aYY+l)n) and its space complexity is S. = 0 (2 Yn).

To find the invariant relation satisfied by the time/space complexities

of all the A algorithms, we use linear algebra in order to eliminate y:'1

-18-

T.S(l-a)/$ = 0(2(aY-Y+l)n).0 (2 yn(-a)/O)

= 0(2 (aY-Y+l)n.2(Y-Ya)n)

= 0(2
n) Q.E.D.

Theorem 13: If a polynomially enumerable set of problems has a monotonic

composition operator and a polynomial complementation operator, then its

instances of size n can be solved in any time/space combination along the

tradeoff curve T.S2 = 0(2n), 0(2n/2)'.T<O(2n).

Proof: By Theorem 6, there exists an algorithm A with time complexity T =

0(2n/2) and space complexity S = 0(2n/4). By substituting a= 1/2 and = 1/4

into the general formula, we get the tradeoff curve T OS2 = 0(2n). Q.E.D.

While we conjecture that T= 0(2 n/2) is optimal for all the k-table

problems, we do not have any reason to believe that S= 0(2n/4) is optimal.

If S can be reduced to S= 0(2n/6) or S= 0(2 n/8) without worsening T, we can

get even better tradeoff curves such as T-S3 =0(2n) or T.S4 = o(2n).

5. Open Problems for Further Research

(i) Are there other axiomatically characterizable subsets of NP-complete

problems which can be solved in less than 0(2n) time?

(1) Can we use other properties of S (besides monotonicity) in order to

reduce the complexity of the k-table problem?

(Iii) What are the best search strategies for k>4 tables?

(Iv) Is T- OR a lower bound for all k?

(v) Is there an algorithm with T = 0(2n /2) but S o

-19-

(vi) Are there easy ways to determine whether a set of problems has a

monotonic composition operator?

Acknowledgements: We would like to thank Martin Hellman and Ron Rivest

for many fruitful discussions.

I I

-20-

Bibl iography

1. A. Aho, J. Hopcroft and J. Ullman, "The Design and Analysis of

Computer Algorithms", Addison-Wesley, 1974.

2. W. Diffie and M. Hellman, "New Directions in Cryptography", IEEE

Trans. Information Theory, November 1976.

3. E. Horowitz and S. Sahni, "Computing Partitions With Applications to

the Knapsack Problem", JACM, April 1974.

4. D. Knuth, "The Art of Computer Programming", Vol. 3, Addison-Wesley,

1973.

5. R. Merkle and M. Hellman, "Hiding Information and Receipts in Trap

Door Knapsacks", IEEE Trans. Information Theory, September 1978.

6. R. Tarian and A. Trojanowski, "Finding a Maximum Independent Set",

SIAM J. Computing, September 1977.

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center Dr. A. L. Slafkosky

Cameron Station Scientific Advisor
Alexandria, VA 22314 Omuandant of the Marine Corps

12 copies (Code RD-i)
Washington, D. C. 20380

Office of Naval Research 1 copy
Information Systems Program
Code 437 Office of Naval Research
Arlington, VA 22217 Code 458

2 copies Arlington, VA 22217
1 copy

Office of Naval Research
Branch Office/Boston Naval Ocean Systems Center,Code 91
Building 114, Section D Headquarters-Omputer Sciences &
666 Summer Street Simulation Department
Boston, MA 02210 San Diego, CA 92152

1 copy Mr. Lloyd Z. Maudlin
I copy

Office of Naval Research
Branch Office/Chicago Mr. E. H. Gleissner
536 South Clark Street Naval Ship Research & Development Center
Chicago, IL 60605 Cozputation & Math Department

1 copy Bethesda, MD 20084
I copy

Office of Naval Research
Branch Office/Pasadena Captain Grace M. Hopper (008)
1030 East Green Street Naval Data Automation Command
Pasadena, CA 91106 Washington Navy Yard

1 copy Building 166
Washington, D. C. 20374

New York Area lcopy
715 Broadway - 5th floor
New York, N. Y. 10003 Mr. Kin B. Thompson

I copy Technical Director
Information System Division

Naval Research Laboratory (OP-91T)
Technical Information Division Office of Chief of Naval Operations
Code 2627 Washington, D. C. 20350
Washington, D. C. 20375 1 copy

6 copies

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217

1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

