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Preface

This study was prompted by a phase estimation problem of

a fading signal in a laser line-scan imagery system. The sys-

tem is sponsored by the Air Force Avionics Laboratory and it

is designed to produce a three dimensional image of the ground

surface when operated from an aircraft.

The problem of nonlinear phase estimation in a fading

environment is quite general and there are possible applica-

tions in many areas for a phase estimator which is insensitive

to amplitude fluctuations. The wide application of this es-

timation problem has made it particularly interesting and

stimulating to me.

- I would like to extend my thanks to my thesis advisor,

Capt. Stanley Robinson,PhD, MSEE, BSEE, for his guidance and

assistance on this project over the last nine months; and to

my committee members Professor Peter Maybeck, PhD, BSEE,

and Major Gary Reid, PhD, MS , BS for their very useful

comments and suggestions. A very special thank you is also

due my wife, Maripat, for her time, encouragement, suggestions,

and typing throughout this project. Her help has meant a

great deal to me.

David E. Meer

(.!



*W2M

Contents

Preface ......... ........................... ii

List of Figures ..... .............. . . . . . . . v

Abstract .......................... viii

I. Introduction ....... ................. . . I

Background ............ .............. 2
Phase Estimation Problem . ..... ........... 3
Methods of Phase Detection .... ............. 6
Scope and Assumptions ....... .............. 7
Overview .......... .................... 7

II. Theoretical Background ....... .............. 8

Signal Model . . ... ........... . 8
Optical Detector Output .......... 8
Signal Model ..................... ... 12
Phase Statistics ..... .............. ... 13
Phase Sequence Estimation .............. 17

Viterbi Algorithm. . ............... 21

III. Performance Analysis . ........ . . . . . . 26

Mean-Squared Error ....... ........... ... 26
Probability of Error Path. . .......... .34

Minimum Free Distance ...... ............. 36
Linear Phase Transition ... ......... . 37
Step Transition........ ...... 43

Random Variable Amplitude .... .............. 47
Linear Phase Transition ... ............ 53
Step Phase Transition............ 54

Bias . . . . . ............ . . . 57
Performance Analysis Comments.......... ...... 60

IV. Estimator Simulation . . . . . . . . . . . . . . . 61

Simulation Setup 61
Simulation Results........ 65

Confidence of Sample Statistics ...... 65
Sample Estimation ...... . . . . . . . 67
Ambiguous Decisions . . . . . . . . . . . . 72
Parameter Variations. . . . . . . . . . . . 72

iii



V. Comparison with Other Estimators . . ........ 95

Cramer Rao Lower Bound. ...... . . 95
Phase-Locked-Loop, Constant Amplitude. ..... 98
Phase-Locked-Loop, Rayleigh Amplitude. . . . . . 100
Comments .. ................... . . . . . 100

VI. Implementation Considerations. . . . . . . . . . . 103

Storage Requirements . . . . . ........... 103
Complexity..... _._. . . . 104
Modulo-2n Data Interpretation. ......... 105

VII. Conclusions and Recommendations. . . . . . . . . . 108

Conclusions ........ . .... . . . . . . . . . 108
Recommendations for Further Study. . . . . . . . 110

Bibliography........ . . . . . . . . . . . . . . . 112

Vita . . . . . . . . . . . . . . . . . . . . .. . . . . . 114

ii



I

List of Figures

Figure

1 Geometry of the Laser Line-scan System . . . . .. 3

2. Block Diagram of Laser Line-scan Imagery System. 4

3. Shifted Spectrum of Terrain Information ......... 10

4. Quadrature Demodulator ..... ............. . 18

5. Phase Trellis, M=5........ . . . . . . . . 27

6. Error Event ........ .................... ... 33

7. Minimal Error Path a ...... .............. . 39

8. Predicted MSEN, Linear Transition, Constant A. . . 41

9. Lower Bound on MSEN, Linear Transition, Constant A 42

10. Predicted MSEN, Linear Transition, Constant A.. . 44

11. Lower Bound on MSEN, Linear Transition, Constant A 45

12. Predicted MSEN, Step Transition, Constant A. . . . 48

13. Lower Bound on MSEN, Step Transition, Constant A . 49

14. Predicted MSEN, Step Transition, Constant A. . . . 50

15. Lower Bound on MSEN, Step Transition, Constant A . 51

16. Predicted MSEN versus M,. Linear Transition, Random
Variable A ....... .................... ... 55

17. Predicted MSEN versus E/No, Linear Transition, Ran-
dom VariableA. . . . . . . . . ......... 56

18. Predicted MSEN versus M, Step Transition, Random
Variable A ...... . ....... ..... . . 58

19. Predicted MSEN versus E/N 0 , Step Transition, Ran-
dom Variable A..... . . . . . . . . . . . . . 59

20. Tactical Phase Signal . . . . . . ........... 63

V



21. Number of Runs ....... .................. 66

22. Sample Estimation ................ 68

23. Ensemble Mean-Squared Error . . . . . . . . . . . 69

24. Sample Estimation ...... ................ . 70

25. Ensemble Mean-Squared Error .. ........... ... 71

26. MSEN, Varying Levels, A, ................. 74

27. MSEN, Varying Levels, , . ... ............ 75

28. MSEN versus E/No, Varying Levels, Tactical 4, A 76

29. MSEN versus E/No, Varying Levels, Tactical ¢, 77

30. MSEN, Varying VARPH, 4,A ... ............. .... 79

31. MSEN, Varying VARPH, 4,k .... ............. ... 80

32. MSEN, Varying VARPH, Tactical 4, A. . ........ 81

33. MSEN, Varying VARPH, Tactical , ........ ... 82

34. MSEN, Varying Depth, A, . . . ............ 84

35. MSEN, Varying Depth, , ............. .. 85

36. MSEN, Varying Depth, A Tactical ........... . 86

37. MSEN, Varying Depth, k Tactical 4 ............. 87

38. MSEN, Varying Coherence Times, , . . . . . 88

39. MSEN, Varying Coherence Times, k,Tactical 4 . 89

40. MSEN versus E/N0, In PhaseAmplitude Estimation
Disturbance ...... ................... ... 91

41. MSEN versus 'EN0 , Quadrature Amplitude Estimation

Disturbance .................... 92

42. MSEN versus E/N0 , Correlated Phase, Varying VARPH,k 93

43. CR Lower Bound and ML Estimator Performance . . . 97

44. Simulated Estimator Performance versus PLL, Con-
stant A.. . . . . . . . . . . . . . . . . . . '99

vi



45. Simulated Estimator Performance versus PLL,.
Slowly Fading A. . . . .......... .. . 101

46. Display Mapping Functions. .. ........... 106

vii



Abstract

An airborne laser line-scan imaging system can determine

the relative range to a target by power modulating the illum-

inating laser and detecting the relative phase of the reflect-

ed signal with respect to the modulation phase reference.

The amplitude of the reflected signal may fluctuate greatly

due to such factors as speckle noise and the varying reflec-

tivity of the target, resulting in the severe degradation of

performance of commonly used phase detection circuitry.

In this report, a maximum-a posteriori (MAP) phase se-

quence estimator is developed based upon the Viterbi algo-

rithm. The signal is observed in additive, zero mean, white

Gaussian noise and the statistics of the amplitude are as-

sumed to be Rayleigh. Perfect knowledge of each realization

of the signal amplitude is assumed and the sensitivity to

errors in the amplitude estimate is investigated. Expres-

sions for approximate mean-squared error and a lower bound

on mean-squared error are developed and verified by a Monte

Carlo simulation of the estimator.

For quantization of the phase estimates to 15 levels and

for a signal with constant amplitude, the estimator outper-

forms a first order phase-locked loop (PLL) by 2-6 dB over

the range of input signal to noise ratios of 3-17 dB.

For the case when the amplitude is rapidly fading, the

viii



estimator outperforms a first order PLL by greater than 10 dB.

This performance margin is based on the Viterbi estimator's

performance for a rapidly fading signal compared to PLL

performance for a slowly fading signal. Note that as the

amplitude fading bandwidth of the PLL signal is increased, the

PLL will lose lock completely, so that the .rprovement margin

presented is extremely conservative.

The Viterbi estimator is shown to be insensitive to er-

rors in the estimate of the signal amplitude for input sig-

nal to noise ratios larger than 2(3dB). The MAP sequence es-

*1 timator is also shown to reduce its mean-squared error with

Iincreasing decision depth (fixed lag of the Viterbi algorithm),

and increasing number of discrete phase levels. The performance

depends weakly on the match between the variance of the actu-

al phase and the variance assumed by the estimator.
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PHASE SEQUENCE ESTIMATION

FOR LASER LINE-SCAN IMAGERY

IN THE PRESENCE OF RAYLEIGH FADING

I. Introduction

A laser line-scan imagery system is currently being de-

veloped by the Air Force Avionics Laboratory and the Environ-

j mental Research Institute of Michigan. It is designed for air-

borne use and will provide a three dimensional image of the

earth's surface. Slant range information is obtained by mod-

ulating the incident laser beam with a periodic signal and

then comparing the phase of the reflected signal with a known

reference. The slant range to the surface (assumed to be flat

earth) can be combined with the two dimensional reflected sig-

nal power image to provide intelligence data to a human oper-

ator or to automatic cueing equipment.

The signal reflected from the ground target is perturbed

in amplitude by the spatially varying reflectivity of the tar-

.get and speckle noise (to be defined subsequently) (Ref6:4-5).

This amplitude variation detrimentally affects phase estim-

ation. For example, a linearized first order phase-locked-loop

will lose lock as the fading bandwidth of the signal is

increased (Ref 13).

The purpose of this thesis is to develop a phase estimator
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which is insensitive to amplitude variations. The performance

of the estimator will be calculated and results will be verified

by a simulation of the estimator algorithm.

Background

The geometry of the line-scan imagery system is depicted

in Figure 1. The aircraft carrying the scanning system is

shown flying in the Y direction while the laser beam is

swept across the ground in the X direction. When the beam

reaches the end of a scan, it is pointed to the start of the

next scan and a new strip of ground is illuminated as the beam

scans in the X direction.

The beamwidth of the laser, speed of the aircraft, speed

of the sweep, and altitude of the aircraft must be interrelated

to allow the scanner to sweep contiguous strips of ground and

cover the entire area. For a typical beamwidth of one milli-

radian (Ref3:2) and an altitude of 1000 feet, the illuminated

area is a spot one foot in diameter. The time that a point is

illuminated by the beam is the dwell time. If the scan length

extends to 1000 feet on either side of the ground track of the

aircraft, and if the aircraft has a speed of 600 knots, the

dwell time is approximately 0.5 microseconds.

A block diagram of the scanner system is shown in Figure

2. The modulator provides a reference signal to the phase es-

timator, in addition to modulating the power of the laser

source. The scan optics sweep the incident beam across a

2
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j Scan Length-

Fig. 1. Geometry of the Laser Line-Scan System

strip of ground and focus the reflected signal onto the op-

tical detector. Either direct optical detection or hetero-

dyne detection is suitable for the receiver, and speckle

noise is present in the detected signal of each (Ref 6).

Signal processing encompasses any amplification, fre-

quency translation, or filtering required before the signal

is routed to the phase estimator and the image forming cir-

cuit.

Phase Estimation Problem

As described previously, amplitude fluctuations in the

received signal adversely affect the task of phase estimation.

These variations in amplitude arise from three main sources.

3
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The first is the reflectivity of the target surface. As

the illuminated spot scans from lightly colored objects to dark

objects, the energy in the reflected signal will vary.

The second cause of amplitude variations is speckle noise.

When light is reflected from a surface which is rough with re-

spect to the wavelength of the incident light, a random ampli-

tude distortion is produced. When the reflected light is used

for image formation, the distortion manifests itself as vary-

ing intensities across the image. This is called speckle

noise (Ref 6:4-5).

The third cause of phase estimation errors is the receiv-

i~1 er hardware itself. The signal of interest has a large dynam-

ic range due to the reflectivity of the target and due to

speckle noise. Typically, receivers designed to accomodate a

large dynamic range have nonlinearities in their phase and am-

plitude response curves. These nonlinearities can distort the

phase input to the estimator and cause additional amplitude

variations. Also, amplitude modulation (AM) at the input to the

receiver may be converted into phase modulation (P11) directly by

AM to PM conversion.

The first two causes of estimation problems, reflectiv-

ity and speckle, are inherent in the nature of an actively

illuminated system. It is essential, therefore, to use a

phase estimation scheme which is robust with respect to am-

plitude fluctuations.

Phase estimation problems caused by imperfections in the

5



receiver are under the control of the system designer; however,

an estimator which is insensitive to amplitude variations is

still desirable. The problem of a receiver design with good

amplitude and phase characteristics can be treated as a sep-

arate problem.

Methods of Phase Detection

The current system detects the zero crossings of the re-

ceived signal and the reference. The relative phase is deter-

mined by measuring the time between zero crossings. This type

of estimator will not operate below a threshold set by the par-

ameters of the circuit, and there is no provision for making a

"reasonable" estimate during periods when the estimator is be-

low threshold.

Phase-locked-loop (PLL) performance is well known for

phase estimation applications and it is useful as a benchmark

against which other estimators can be measured. A PLL exhibits a

threshold effect too, usually two to four db lower than that of a

zero crossing phase estimator. Prior statistics of the phase

process may be available; however, PLL estimators do not usually

make use of this prior information.

Both zero crossing and PLL estimators are sensitive to ampli-

tude fluctuations. Amplitude limiters are typically used to

condition the input signal before the phase is estimated.

The phase estimator developed in this thesis is one which

produces the maximum a posteriori (MAP) estimate of the phase

6
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sequence after some fixed delay. The algorithm is an appli-

cation of discrete smoothing and employs the Viterbi algo-

rithm (dynamic programming) for actual computation of the

MAP sequence.

Scope and Assumptions

In this thesis, the amplitude of the received signal will

be considered a random variable with Rayleigh distribution and

independent from sample to sample. The amplitude of the sig-

nal (before addition of noise) will be assumed known. Noise

in the received signal will be assumed to be white and gaussian.

Phase sequence estimation will be made on a scan by scan basis.

The phase sequence in the X direction of Figure 1 will be

assumed first order Gauss-Markov. In the Y direction, the

phases are assumed independent.

Overview

This report begins with a description of the underlying

system constraints and the nature of the phase estimation

problem. Chapter II develops the phase model and algorithm

for a MAP phase sequence estimator utilizing the Viterbi al-

gorithm. The performance of the estimator is calculated in

Chapter III and simulation results verifying the calculations

are given in Chapter IV. Comparisons with the performance of

other phase estimators are made in Chapter V and comments on

the implementation of this estimator are given in Chapter VI.

Finally, conclusions are reviewed and recommendations for fur-

ther study are given in Chapter VII.

7



II. Theoretical Background

In this chapter, the theoretical background of a modulo-2ff

MAP phase sequence estimator is presented. The material is log-

ically divided into two sections. The first develops a model

of the continuous phase process to be estimated and the discrete

representation of that process. Statistics of the process are

determined and an expression for the MAP likelihood of a sequence

is proposed. Because the likelihood measure can be computed re-

cursively, the sequence estimation problem can be solved effi-

ciently through the use of the Viterbi algorithm (Ref 9). The

application of the algorithm to this estimation problem is dis-

cussed in the second section of this chapter.

Signal Model

In order to develop a model of the phase process, it is

useful to begin by looking at the signal available from the

direct optical power detector.

Optical Detector Output. The output of a direct optical

detector for the proposed system configuration can be modeled

by (Ref 10:6)

y(t) = P0 fp(x)b(x-vt)m(t - 2r(x) d (1)

where P0  is the peak optical power including fixed optical

losses, p(x) is the terrain reflectivity including fluctu-

ations due to speckle, b(x) is the beam filtering function

8



(Ref 10:6), m(t) is the periodic modulation function, r(x)

is the slant range to the target, v is the sweep velocity,

and c is the speed of light. Since m(t) is periodic, it

can be expressed as a Fourier series expansion:

m(t) = mne (2)

where f is the fundamental frequency of m(t) and them

Cn's are the Fourier series coefficients. By substituting

equation (2) into equation (1) and taking the Fourier trans-

form, the frequency domain expression for Y(f) can be ob-

tained.

-% Cn f-n[f-fm

Y(f) "y(t)= P. E n Bf m D [ (3)
n=-co

In equation (3), BI(f) is the transform of b(x) and D n(f)

is the transform of p(x)ex j4Lnfcr(x)] , the terrain informa-Cl

tion. The spectrum of the terrain information is shifted to

multiples of fm the fundamental frequency of the modulation

signal, as shown in Figure 3.

In general, the lobes of the spectra can overlap, causing

aliasing errors; however, in this report it is assumed that

there is no aliasing error. It should be noted that this as-

sumption of no aliasing error usually implies that filters

with "steep" skirts must be used in the receiver. For many

9
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Fig. 3. Shifted Spectra of Terrain Information

analog filter designs, this means that there will be phase

distortion introduced by these filters.

If the signal y(t) is passed through an ideal band-

pass filter centered at nf m  , the output y'(t) can be

described as:

00~

y'(t) = PO Cn J P(x)b(x-vt)exp 2irnfm(t- r~x))]dx (4)

(Ref 10:7)

The filtered signal, y'(t) , can be viewed as the real

part of a compex signal:

y'(t) = Re[A(t)e J O(t)e j 2 n f m] (5)

10



The complex signal can be related to equation (4) by

y'(t) = A(t)cos[ (t)+27rnfmt

0(6)

=P 0 fP(x)b(x-vt)lCnl2Cos[n27rfm(t- 2r(x))+ ]dX

where

Cn = lnIe j en (7)

The compex signal representation will be useful in the devel-

opment of the likelihood ratio derived later in this chapter.

Without loss of generality, the first harmonic of f can bem

selected so that n=1

Because the modulating signal m(t) is periodic, the

phase 0(t) can be measured modulo-2n with respect to the

reference signal. Since the slant range to the target is cal-

culated from 0(t) , the range estimate will have an ambigu-

ity interval of:

C
ramb 2f (Ref 3:19) (8)

m

The range estimate will give a measure of the range within the

ambiguity interval, but it will not describe in which ambigu-

ity interval the absolute range lies. This fundamental limi-

tation allows the phase to be estimated modulo-2n with no loss

of range information.

11



Signal Model. The signal of interest will be observed in

additive white gaussian noise with a two sided power spectral

density of NO/2 watts per Hertz. The task is to estimate a

realization, 0(t)t stStf , of the phase process based on a

real measurement

(t) = k(t)cos(Q(t)+2fffmt)+ (t) ts-t:tf+T (9)

where (t) is the real measurement, A(t) is the amplitude

of the signal, (t) is white gaussian noise and the " "

denotes a random variable. The interval of the estimate is

from t5  to t f The interval of the measurement is allow-

ed to extend past tf by T seconds. By allowing the measure-

ment interval to be longer than the interval of the estimate,

the estimator can operate with a fixed lag and use smoothing

to improve the estimate.

For the scanning system described in chapter I, ts

represents the start time of a scan and tf +T is the time at

which the scan ends. In practice, an estimat= of k(t) can

be made for the entire measurement interval t st5t +T ; how-

ever, the estimate of t(t) for tf tSt will not have the

benefit of the full lag T

The continuous time model of equation (9) can be repre-

sented by the complex discrete time measurement

k ke Ak k=1'2'...,K+ko (10)

12



where ck = p(t=kT) on the interval (k-l)T~t~kT , and T

is the sampling interval.

The noise term in equation (11), k , is a white Gaussian

process which is discrete in time. It is assumed that k(t)

is constant over the interval (k-l)T~t~kT and k(t)=Ak on

this interval. The amplitude, k , is assumed to be a ran-

dom variable with Rayleigh statistics and independent from

sample to sample. The effects of a correlation between ad-

jacent amplitude samples is investigated in Chapter IV. The

estimator will be developed with the assumption that the se-

quence of values Ak , k=1,2,...,K+K0  , is known. The

question of sensitivity of the estimator to imperfect know-

ledge of is investigated in Chapter IV.

As in the continuous case, an estimate of the sequence
K -K+Ko

k} will be made based on the measurement sequence {Zk}

where K 0 is the fixed lag. In the discussion of the Viterbi

algorithm later in this chapter, the fixed lag KO will be

referred to as the decision depth, or merely depth.

Phase Statistics. (Ref 9:8-11) In order to obtain a

stationary distribution on the process k(t) , and to calcul-

ate conditional transition probabilities, let (t) be a ran-

dom walk on the unit circle, where k(t) can take on values

from the interval (-r,ff) . The conditional probability of a

transition to 0(t) = Ot given that O(s)=Os , t>s , is

denoted by p(otlos) . This conditional density satisfies

the partial differential equation (Ref 9:8)

13



- P(otls) = o (11)

where a2 is the infinitesimal variance (random walk diffusion

parameter) and - Ptos:7,t>s . The boundary conditions are

lim P(ct!s) = (t- s )
t-s

pO t=-Is ) =O p(t=IT S)  (12) i

T )( t- pO t= 7Ts

The solution for equation (11) is (Ref 9:9)

= /~r 02(os z exp - --~ni (1317a 2(t-s 2a 0
2 (t-s)0 s n=_co

The process t(t) is thus conditionally approximately gaussian

with mean P(s) and variance a0
2 (t-S) when 0 2

0 (t-s) is

small (E{(Ot - s)210s} = 02(t-s)).

The discrete time version of equation (14) can be obtain-

ed by considering the sequence {kI arrived at by sampling

t(t) at intervals t=kT , k=0,1,2 .... K. The transition den-

sity from 0k-I to Ok is

= 1 Etexp - (14)

14



Since t(t) is Markox, {¢kI is a Markov sequence with a
K

probability distribution for k)' K of

K
P K({ k} K )  H p(Oklok-l) (15)

k=1

The initial condition, p(11¢0) , may be uniform or preset

to known initial condition.

In the application of the Viterbi algorithm to this extim-

ation problem, the phase space (-ff,R) will be discretized into

values m m=O,1,....M-1 . The discrete values of phase,

'1 , will be selected with equal spacing from the interval

(-ir) and M will be restricted to an odd integer. This

allows the possibility of no change in the phase from the cur-

rent time to the next, and the number of possible levels of

phase steps in the positive and negative directions is equal.

It is necessary to calculate the transition probabilities

for all M2 pairs (EE), j and m=O,1,...,M-1

From equation (14) let

P(k=Em1Ok-l=j) bP(ctk=Eml4kll=E) (16)

where b is chosen so that

• M-1

E p(Ok=Cm1 Ok-l=E ) = 1, j=0,1, 2, ... M-1 (17)
m=0

The sum in equation (14) must be truncated at some level which

15
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gives sufficient accuracy. If the discrete phase values are

equally spaced over (-n,n) , then the value p depends only

on the distance between phase values 1Cj- m I modulo-2n on

(-n,n) . Therefore, only (M+I)/2 values of T need to be

stored for transition probability lookup, as opposed to the

M2 number of possible transition pairs.

Scharf (Ref 9:12-13) develops the relationship between

.9. a realization, 4(t), of the continuous phase process and

the discrete time realization of the process by a zero order

hold (ZOH) approximation, Sk=(t=kT) , (k-I)TtkT He

shows that triples (P{.},6,T) can be selected so that the

ZOH approximation to (t) is close to P(t) where P{.} is

the probability that k differs in value from (t) by more

than 6 over the interval T . Scharf has shown that this

probability is given by

P{.} = 4Q [6 (Ref 9:12) ('18)

where Q[x] is the Q-function

Q[x f = I exp(_6 2 )d6 (19)

x

The value selected for T depends on the sampling rep-

resentation of ZK and the speed of the estimator in comput-

ing a MAP estimate. In any event, it is desired that T be

less than or equal to the dwell time.

16
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Phase Sequence Estimation. The real and imaginary parts

of Zk=Uk+jVk can be obtained from S(t) by a quadrature de-

modulator of the form shown in Figure 4.

This is equivalent to

kT 21rf t
Zk f S(t)e m dt (20)k T

(k-1)T

As in equation (10), Zk is the sum of the signal Ke

and white gaussian noise with a power spectral density of

No/2 watts per Hertz. If AK and K are given and constant

over the interval (K-1)TSt!KT , then Uk  and Vk  are each

conditionally gaussian with zero mean and variance N0 /T (Ref

9:15). The real and imaginary parts respectively are given by

Sk AkCOSk+c k

(21)

k = A ksin k+s.k

where kck and ksk are the discrete time narrowband repre-

sentations of the noise process k(t) (Ref 14:502-504).

A likelihood function, DK ,can now be developed in order

to make a MAP estimate of the phase sequence (*k}1.
401 The

following results are similar to those obtained by Scharf (Ref

9:14-15) but have been expanded to include the case where the

amplitude of the signal, Ak , is a random variable, constant

over each interval T. A different amplitude value is allowed
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I for each T second interval.

The likelihood function can be constructed

f ({z I K 
DK K (22)

fo({Zk }1)

in which f,(.I) is the joint conditional probability den-
IKK

sity of {zk given the phase sequence K and fo('l.)

is the joint conditional density of {z K given only noise

in the measurement.

18



At time kT , the conditional density of k given 'k

and Ak is

f(zkkAk) - exp - k (23)f2 2No

and the conditional density of zk given only noise is

-. 1f(z Inoise) exp 2 (24)

Because the noise is white, the joint conditional densities

f, and f0  can be obtained by appropriate products of equa-

tions (23) and (24). The likelihood ratio (Refs 9:14 and 11:

26-27) portion of equation (22) (neglecting the priors on 0)

can be written

LK LL f-! = -2,/ep- i-1
KK { K 22

T 2 exp T I Zk~
(2T o exp 2N i= 1

(25)

This may be simplified to

K
T T r.

L K = e x p - E i z .- A e 2 N---+ i- _ z i

or K i(26)

LK = exp - [ -2CiAicos(*i-oi)+Ai (27)
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or

K K

LK = exp N CiAi cs( i-) 2N A i  (28)
ii 1

Because the EAi2  term in equation (28) is independent of the

data of interest, it will be neglected. The likelihood func-

tion can now be obtained by multiplying LK by the priors on

(29)

K K
DK= exp 00 CiAicos( i-¢i ) IH P(¢iloi )

ipl i=1

The expression for DK gives a measure of the likelihood

that a sequence {@k K  is the correct sequence given the
S{001

measurement sequence {Zk and the amplitudes {A.} " The

phase sequence which maximizes D is the MAP estimate of
K

By taking the natural logarithm of DK , this result can

be simplified further to

K K
:: r~K In(DK) _- ~ n p @rf l( A NC Aicos(*i-¢i )+  l [¢iji_l )j (30)

i=K i=l

where Ci  is the magnitude of the measurement Zi  and

is the argument of Zi  , as shown in Figure 4. The subscript

K on the likelihood measure rK indicates that rK has been

calculated for the sequence of measurements (Z In

20



general, a ri may be calculated for measurements from Z

to Z.

A more useful expression can be obtained by noting that

r can be computed recursively and that the phase process is

first order Markov.

r. = r + :ACcs( i+nP (31)
1 _ No1 1[ 1 l

The recursive expression for ri  leads very nicely to the

application of the Viterbi algorithm for phase sequence estim-

ation.

Viterbi Algorithm

As previously stated, the desired result is selection of

-%K
the sequence {¢k}1 out of all possible sequences which max-

k Kimizes rK given the measurement sequence {Zk}1 . This is

the MAP estimate of the phase sequence. If, at each time k

I the phase Ck can take on one of M values, then there are

MK  possible sequences to search through in order to find the

one that maximizes rK . The complexity of this calculation

quickly becomes too large to be useful as M and K become

large.

Because rK can be computed recursively, as in equation

(31), this exponential increase in complexity can be avoided.

It will be convenient to define Yk as the path metric

Y(Jm) A kCkCos(k-k=j)+ln p (32)
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therefore

rK = rK l+YK(Jm) (33)

K K- K

The sequence ¢k 1 which maximizes r K while passing

through K-1 on its way to 4K must do so by following

sequence ( k} - 2  which maximizes rk_ . If it did not, a

AK-2better sequence {k} 1 could be chosen. Therefore, at time

K , it is only necessary to store M sequences {k}1

one ending in each of the M phase values at time K ; M

values of rK corresponding to the M sequences; the current

time counter, K ; and the transition probability values (Ref

9:24-27).

To extend the MAP estimate of phase to time K+1 , the

estimator algorithm must take the new measurement ZK+1  and,

for each phase value ,K+1
=  , j=0,1,...M-1 , calculate

for each sequence {$1  plus -K+1=j For eachrK+l Kl% .Frec

value of j , the maximum rK+1 is selected and the value of

K+i= j is concatenated with the sequence{¢k} which ends in

At the end of the calculation, ZK+l will no longer

be required and it can be discarded. There will be M phase

sequences stored, one ending in each of the M possible dis-

crete values of phase. The sequences can be extended another

step in time by taking measurement, ZK+2  , and repeating the

calculations.

This maximization algorithm can be stated
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Max K ax [rKi1+YK(i m)]j
{ }IK-I { }  (Ref5:24) (34)

or in algorithm form

For each time k=l,....K

Begin

Obtain the current measurement Zk

For each phase value j , j=O,1,...M-1

Begin

For each phase value m , m=O,1,...M-1

Begin

Calculate rk = rkl+Yk(im)

End

Pick the biggest rk
m

Concatenate 4 k=% with the sequence ending

in Ok-1=m

Set rk=rkm for the sequence {¢k}' ending

in j

End

End

At each time k , there will be a sequence of phase val-

ues ending in each of the M possible phase values. These

are called survivor sequences. In general, there will be sur-

vivor sequences from the previous time (k-i) which are not

L23



/

concatenated with a phase value to form a current survivor

sequence. These unused sequences need not be retained.

The phase values stored in the M sequences tend to con-

verge to a single value if the sequences are inspected far

enough back in time. Because of this convergence, at time

K it is possible to determine the MAP estimate of the phase,
A AK

by selecting the sequence { with the largest

rK and outputting the 4K-K value from that sequence. If

all the M sequences have not converged to a single value

of K-K0  , then the ambiguity can be resolved by making

K 0 larger. It should be noted that this does not guarantee

that is the closest neighbor to the actual phase
s

'K-Ko , only that K-K0  is the MAP estimate of the true

value.

The number K0  is the fixed lag of the system and is re-

ferred to as depth, or decision depth.

The complexity of the estimator can be seen from the al-

gorithm listing. If the times required for concatenation,

picking the biggest rK ,and updating the new values of r

are ignored, then the majority of time is spent in calculation

of the values of rk (rk is the mth rk value computed in
m m

the Viterbi Algorithm). They must be calculated M times for

each of the M values of phase, at each time k=1,2,...K.

Therefore the complexity of computation is proportional to

KM2  . This is better than the MK complexity required by
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the brute force global search method mentioned at the beginning

of this section. In addition, the Viterbi algorithm estimator

outputs phase value estimates with a fixed lag in time, as op-

posed to the global search method which must store the entire

measurement sequence and then calculate the entire MAP estim-

ate of the phase sequence.

A signal model has been developed which describes the re-

ceived signal of the laser line scan system. The phase of the

received signal can be represented by a sequence of values

over time. Using the Viterbi algorithm, it is possible to

make a maximum a posteriori estimate of this phase sequence.

The question of how well this estimator performs is addressed

in Chapter III.

25



III Performance Analysis

An analysis and prediction of the performance of an est-

imation scheme is necessary in order to determine if the est-

imator is worth building and to compare its performance with

competitive estimators. In this chapter, the mean-squared

error (MSE) of the estimate is presented as the measure of

quality for the MAP phase sequence estimator. By using the

concept of error events and minimum free distance, approximate

values of MSE are predicted for various signal energy to noise

power density ratios and number of levels of phase discretiza-

tion. Also, a strict lower bound on the MSE is calculated.

The question of bias in the estimate is discussed and the

limitations of the predicted MSE are presented.

1

Mean-Squared Error
LK

The sequence of phase values k}1 which approximates

the true phase ¢(t) , O<t KT, can be viewed as a path

through a trellis. Figure 5 shows one such path through a

trellis in which there are five equally spaced discrete phase

values. The value of p(t) , (K-1)T<tSKT , is represented

by the node at K through which the path passes. The lines

connecting nodes represent transitions from one phase value

to another.

In this example, the phase is shown changing linearly

from each point in time to the next. The linear phase
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Fig. 5. Phase Trellis, M=5

transition case and a step phase transition case will both be

used in calculating the predicted mean-square error of the

estimator.

The first case can be viewed as a piecewise lineariza-

tion of the continuous phase (range). This is a reasonable

(although simplified) model for the modulo-2ff phase which

is proportional to the slant range to the terrain being

scanned. This linear transition case will be useful in pro-

viding a prediction of the mean-squared error (MSE) of the

system when the input phase is a result of a physical pro-

cess, such as scanning of terrain.
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The second case, step phase transition, is included be-

cause this case matches the model for the Monte Carlo simula-

tion performed in Chapter IV. In the simulation, the input

phase sequence is generated as discrete values which are con-

stant over a T second interval. This corresponds to a

step change in phase in each interval.

The free distance (to be defined later) between two sig-

nals in signal space is smaller for the linear transition

case than for the step transition case. It will be seen, in

the following sections, that this results in a higher prob-

ability of making an error in phase estimation for the linear

transition case.

In this report, the correct path is defined as the se-

quence of phase values, which is closest in absolute value at

each discrete time kT to the actual phase value. Conversely,

an error path, ei  , is the i'th path which is not identical

to the correct path at all k%(1,2,...K). For a sequence of

length K which can take on one of M discrete values at each

time k , there will be one correct path and MK-l error

paths. The entire collection of error paths is denoted as E

It will also be useful to define P c as the probability that

the estimator has chosen the correct path, that is, the se-

quence of values output from the estimator is the same as the

sequence of values of the correct path. In a similar manner,

Pei is defined as the probability that the estimator has chosen
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error path e and PE is defined as the probability that the

estimator is on any error path.

It follows that

Pc = 1-pE (35)

and

P PE (36)

The estimator chooses either the correct path or an error

path. These two events are mutually exclusive and exhaustive,

therefore the mean-squared error (MSE) at any point in time on

the trellis can be defined as

MSE = (MSEIC)Pc+(MSEIE)PE

= (MSEJC)(1-PE)+(MSEIE)PE (37)

= (MSEIC)(1-P E)+ 1 (MSEjei)Pe
E l1Ee.

where (MSEIC) is the mean-squared error given the estimator

is on the correct path.

The (MSEIC) term is due to the quantization noise of the

approximation of j(t) by one of a set of M discrete levels

on the interval (-wr) . If it assumed that p(t) is dis-

tributed uniformly over each quantization interval, then

w2

(MSEIC) = (38)
3M2
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The assumption of uniformity over a quantization interval is

reasonable if M is sufficiently large and the probability

density function (pdf) of the phase is "smooth" so that the

pdf of 0(t) is essentially constant over each quantization

interval.

The (MSEJE) is similarly defined as the mean-squared

error given that the estimator has chosen any path other than

the correct path. The average mean-squared error at a point

in time (given that the estimator has chosen error path el)

is denoted (MSEIei) The(MSElei) is averaged over the

length of the error event. It will be seen in the following

development that, for many cases of interest, (MSEIE) is dom-

inated by one (MSElei) term in equation (37). The dominant

term has a length of one and the MSE defined in equation (37)

becomes a point MSE for these cases.

For the calculation of (MSEIe.) it will be useful to

use the following definitions for the signal of interest and

its phase (Ref 1:42.4.1)

s(t,) = A cos(2Tfmt+ (W)) (39)

I n

00= f- aig(a-iT)d--<tS(n+1)T (40)

-00 i =_00

where M is the number of discrete phase quantiztion levels,

and a is a sequence of integers ai selected from the alpha-

M-1bet (0,±l,±2,...±( ).
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For convenience in the development of the free distance later

in this section, the amplitude is defined

A =(41)

where E is the energy in the signal s(t,a) over a T sec-

ond interval.

The function g(t) is selected so that

100

•g(t)dt = 1 (42)

The shape of g(t) determines how the phase of s(t,.) pro-
1

gresses from one node on the trellis to the next. If g(t) 1

O<t T and g(t)=O elsewhere, then the phase changes linearly

S1 with time. If g(t)=S(t) , then the phase makes a step jump
2 1 T .

of height M - in each T second interval. The elements a
2n

of a specify the number of - radian steps in phase the sig-

nal changes on the interval iT<t (i+1)T. The a . are limited
M-1

in magnitude to - to reflect the modulo-2w nature of the

estimator.

Selection of a function for g(t) which gives a linear

phase change (or similar smooth change in phase versus time)

is useful for modeling a physical svstem such as the laser

line scanner described in the Introduction. This is due to

the bandwidth constraints which limit the dynamics of the

phase change. The simulation results presented in Chapter IV
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are based on an estimator model in which the measurements are

discrete in time and quantized in value. Thus, the Dirac

delta function more closely describes the phase transitions

for the estimator simulation.

For the rest of this section, a is a sequence of in-

tegers which describes the correct path of the estimator and

the sequence 6 will represent one of the error paths which

differs from a at L nodes. The value L is defined as

the length of the error event. An example of a correct path

a and an error event with L=2 is shown in Figure 6.

In this example of an error event the error path diverges

from and merges with the correct path only once. In general,

0 could diverge from the correct path several times and it

need not merge; however, it will be seen in the following

development that it is the L=1 "minimum error path" which

is of primary interest.

The averaged MSE given error path ei  (described by

and correct path a can be defined as

(MSEje i) L [g(aj )_g(j )]2(43)

where the sum is taken over the L nodes at which a differs

from .

Forney has shown (Ref 2:273) that error events are recurrent,

or statistically independent of each other. The averaged MSE
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Fig. 6. Error Event

for a particular error event is defined as the average of the

point mean-square errors over the length, L , of the error

event. It will be seen that the most probable error path

has length L=1 , and that (MSEIei) for this most probable

error path collapses to a point mean-square error.

If the error path diverges once at time (n-L-1)T and

merges once at time nT , then

n-I j j 12
(MSEIei) = ('-- { a .i-. (44)

J=n-L i=n-L i=n-L
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Further development of the total mean-squared error re-

quires an expression for the probability of an error path.

Probability of Error Path

The desired error measure is the probability per unit

time that the estimator will select a particular incorrect

node in the phase trellis. From this, the MSE per unit time

could be calculated using an equation of the same form as

equation (37). This probability measure is not directly

available; however, useful approximations and bounds to the

mean-squared error can be obtained by calculating the prob-

ability that an error event starts at time nT given that

the estimator was on the correct path at time (n-1)T (Ref 4:

273-274).

The probability that the estimator selects a particular

error path instead of the correct path is a binary hypothesis

problem and depends on the euclidean distance between the two

signals in signal space. These error events are not mutually

exclusive, therefore, the probability that any error event

occurs, PE , can be upper bounded by the sum of all the bi-

nary decision error probabilities (union bound). A lower

bound on the probability of any error event is the largest of

the probabilities of specific error events (Ref 4:273-274).

These bounds are summarized as follows (Ref 4:274)

Max [Pe] PESPei = Max[e]E j (45)
ij J

34



The binary hypothesis probability of an error, P e is

(Refl:42.4.2)

pe. = Q [D(Q , ) 3(6p e (46)

where No is the one sided power spectral density for additive

white gaussian noise, D is the euclidean distance between two

signals defined by a (the correct path) and 8 (the i'th

error path), and Q(.) is the error function defined by

00_y2

Q(x) f e - 2 dy (47)

The Q function is monotonically decreasing and rapidly

becomes small as D becomes large. As a result, the PE in

equation (45) can often be approximated by

* PE E (48)

where D is
m

D m= MinID(ot,$)I (49)m ei J

Note that PEASPE by equation (45). The minimum is taken

over all possible error paths e.1

The total mean-square error can now be approximated by

MSE = 7r2 (I-P')+(MSEem)PA (50)
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In equation (50), em is the error path which is the minimum

distance from the correct path defined by a

Since P' is a lower bound on P , a lower bound on MSE
EE

can be defined as

MSE2(MSE em)PI (51)

An upper bound on the MSE is desirable; however, this

would require evaluation of the union bound sum in equation (45).

This would provide an upper bound on PE and, therefore, an

upper bound on MSE by a substitution into equation (50).

The large number of paths over which the sum must be cal-

culated makes evaluation of an upper bound infeasible, so an

upper bound on MSE is not evaluated in this report. As will

be shown in the following development, a measure of the "tight-

ness" of the approximation of MSE is the value of the argument

of the Q function used in equation (48). This will give an

indication of the quality of the approximation without actual

calculation of an upper bound.

The minimum free distance, Dm  , must be calculated be-

fore actual values of MSE can be evaluated.

Minimum Free Distance

In this section, the normalized free distance, d=D/Y/2

(Ref 11:42.3.2), will be developed for two cases of g(t)

and then the minimum free distance, Dm will be evaluated.

The signal and phase are modeled as in equations (39) and (40),
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respectively. It should be noted that the amplitude of the

signal is constant in this development. The case of varying

amplitude will be discussed in a following section.

Linear Phase Transition. For the first case of interest,

the phase changes linearly from one time interval to the next.

This case can be viewed as a piecewise linearization of a con-

tinuously changing phase.

The phase O(a) is zero for t<O and

g(t) 1 O~tT (52)

0 elsewhere

The element ai of sequence a is defined over the interval

(i-l)TitiiT.

With this g(t) , the signal becomes

s~s ) a Cs[ft t-(n-l)T] (53)S ~ T£ = CS mt  M- a i + TanL

,i (n-l)T~t:5nT

The normalized squared distance is defined as

n (j+I)T

d 2  D2 - 1 J [s(t,a)-s(t,8)12dt (54)

j=-N+l jT

(Ref 1:42.4.2)

where N is the number of intervals of length T over which
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the phases differ. If wT 1m then

d2  Ni N Cos (!i(a+

2 d=EjT1j+1-Tj+ 1

jT

(55)

J(cj+l-j+l) dt

The integral in equation (55) must be evaluated in two
cases. When al=+

j+1 j+1

fdt T cos (ai-%(56)
i=f

When a

fdt TM 2rc+ 1 %)[sin[ 27r (at~i+cj~~%lI

(57)

sin [~ (ax-i]
The term fdt represents the entire integral in equation (55).

From equations(55), (56) and (57), it can be seen that an

error path defined by p will have a minimum distance from the

correct sequence when its phase differs from a for only two T

second intervals. This is illustrated in Figure 7, with N=2
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and the phase difference occurring at the beginning of the

sequence. The location of the phase difference in time does

not affect the value of d2

For this error event,

a = ++a2 (58)

therefore

ci-a =-(c-8 ) (59)
1 2 2

so the resulting normalized squared distance is

d2 = 2 [sinc 2- (0181 (60)

39



where

sinc(x) - sin x (61)
x

To minimize d2 in equation (60), the argument of the

sinc function must be made as small as possible. For a fixed

value of M , this can be done by selecting ,=aj±i . (They

cannot be equal because that would imply that a=8 , and no

phase difference existed.)

The minimum free distance squared can now be stated as

2n

D2 = 2Ed 2 = 4E(1-sinc 2-- (62)
m m

It should be noted that for each correct path defined by

a, there are two error paths which have the same minimum dis-

tance, Dm from the correct path. Equation (48) is moIified

to include both of these minimum distance paths.

IDm(a,6)I

pQ 2] (63)E

This result can be combined with equations (44),(50),(51)

and (62) to calculate the approximate MSE and a lower bound on

the MSE as shown in Figures (8) and (9). The MSE values in all

figures have been divided by -- to normalize them with re-

spect to a uniform phase distribution over (-n,n) MSEN =

3
(MSE) 3
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The equation for approximate MSEN is

1 3 2 (4

MSEN = R- + - (8- a) Q sn 2 f (64)

The lower bound is initially calculated by

MSN> 24 2 ) (65
MSEN M- - Q 2(L)(-sine (65)

* Since the MSEN cannot be less than the quantization noise due

to M levels, the lower bound depicted in Figure(9) is actual-

ly calculated by

MSE 2 Max- or,2 Q ( (1-sinc (66)

Figures (10) and (11) display the predicted MSEN and low-

er bound on MSEN versus an abscissa of E/No . As shown,

the performance of the estimator is limited by the quantization

noise caused by representing a continuous phase by one of M

discrete values. The flat portions of these curves denote the

domain of E/No over which quantization noise is the limiting

*factor.

Step Phase Transition. The second case of interest is that

in which the phase is allowed to make a step change at time

t=kT , for k=0,1,2,...,K . In this case, g(t)= 6(t) , the

Dirac delta function. As previously described, this case models

the Monte Carlo simulation described in Chapter IV.
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The phase function is

n
_2rr Ni (67)

i=1

and the normalized distance squared is

d2 = N- Cos 2 (ii (68)

j=n-N+l i=1

where the inner sum in equation (68) is zero for j=0 . The

same conditions for minimization of d apply for this case as

in the linear case: N=2 and al+a 2=0 1+$z. Therefore

D 2 = 2Ed2 = 4E(1-cos( -H)) (69)
m m

There are also two minimum distance error paths for the

step transition case so the (MSEIe m) term is multiplied by

two to calculate the approximate MSE and the lower bound on

MSE.

By combining equations (44), (50), (51) and (69), the

approximate MSEN can be calculated as

MSEN T + v- (8- )Q 1 cos (70)

and the lower bound is given by

24 4 (1-cos )] (71)
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The lower bound cannot be less than the quantization noise,

therefore

MSE a Max [1. , or, -- (1-cos)] (72)

Figures (12) and (13) show the results of the Normalized

MSE calculations versus M(quantization levels) for the step

transition case. The predicted MSEN results for this case are

slightly better than those predicted for the linear phase

transition case. Equations (70) and (72) are also used to

calculate MSEN and a lower bound on MSEN versus E/N0 as

displayed in Figures (14) and (15).

As in the linear transition case, the flat portions of

the curves in Figures (14) and (15) indicate regions where

the quantization noise dominates the MSE performance of the

estimator.

Random Variable Amplitude

The predicted mean-square error shown in Figures (8)

through (15) are all based on a constant amplitude signal. If

the amplitude, L2 is a random variable then the signal
T

can be defined as

s(ta) T cos(2 ffmt+ (ta))  (73)

It is assumed that is constant over each T second
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interval and Ei=(t) for (i-1)T<tSiT . Perfect knowledge

of the E i.'s by the estimator is assumed and the Ei's are

assumed identically independently distributed. The signal

can now be represented by.

s(ta i ,E) = ,- cos(2rfmt+(t,ai)) (74)

(i-l)T:St~iT

A signal with phase sequence is defined to haveamplitude

values B .

Calculation of a predicted MSE for the varying amplitude

case requires evaluation of the minimum euclidean distance D

for the phase transition being considered and

Q(Dm(Q)

pEE 2N0  75

The notation E{.1 is the expected value operator on the ran-

dom variable k and m is a function of the random variable

* . Due to the complexity of calculating E] 2(Dm Y in

closed form, the Q[.] function is approximated by

Q[x] je -  (Ref 11:40) (76)

This allows calculation of the expected value of PE.

which is now defined as
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E = E ex f ]_M21 (77)
E L4 J)1

The predicted mean-squared error can now be calculated

for the two phase transition cases previously described.

Linear Phase Transition. The normalized squared dis-
1

tance is defined as in equation (54); and g(t) is . forAOt T , and zero otherwise.

For the error event when N=2 , c,+a2 = $1+02 and

it can be shown that

D 2 2Q~k2-2ksinc(2--f(aj-8j))-

(78)

2E2sinc(II(al-01))

The minimum free distance occurs when 1ai-ai1=l , as in

the previous examples.

The amplitude of the signal, k , is assumed to have a

Rayleigh probability distribution function. A transformation

of variables (Ref 7:129-131) gives the probability density

function for k:

-2aE
fk(E) e E 0 (79)

=0 , otherwise

where
E{Awe = 21 

(80)
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The expected value of P' over ki and k2 is

E{P} 1 2r (81)

2 NO
2

Y/N 0 is the expected value of signal energy to noise power

density ratio. The predicted normalized mean-squared error

for linear phase transition and Rayleigh amplitude is

=1 32 1 (82)
MSEN = 2+ '2 (8 - ) [1 (1-sinc -2 -]

2

The results of equation (82) are shown for various values

of M and E/NO in Figures (16) and (17). In general, the

predicted MSE for the Rayleigh amplitude case is higher than

the MSE for the corresponding constant amplitude case. As in

the constant amplitude cases, the MSEN becomes smaller as the

signal to noise (E/NO) is increased and as the number of quan-

tization levels is increased.

Step Phase Transition. For the step transition case

g(t)=6(t) . When the error event is minimum length (N=2)

and i=3 , the euclidean distance squared is

D2 = 22i-2k cos(' - (83)

The minimum D 2  occurs when Ia,-8i1 = 1
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The expected value of probability of any error, E{P }

is given by

E E (4
E{PE } E{P } =E e -4N2 (84)

E{P'} = 1B + 2ir (85)
2+2N (1-cos

The predicted normalized MSE for the step transition case

is given by

_1 3 2 1
r 22:,,: (86)

2+2- (1-cos M)

* IThe results for this case are shown for various values of M

and E/No in Figures (18) and (19). The familiar trend to-

wards smaller MSEN with increasing E/NO and M is evident

in these figures. Overall, the predicted MSEN is better for

this case than for the linear phase transition case. The

reason for this is that there is a larger euclidean distance

between two signals which make step transitions than two sig-

nals which make linear transitions (over the same sequence of

phase values).

Bias

It has been shown by Scharf (Ref 9:21-23) that the max-

imum likelihood (ML) estimator is modulo-27r unbiased for the

complex normal model when the phase is constant. As pointed
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out in the reference, this is identical to the MAP case with

uniform prior statistics on the phase process.

Performance Analysis Comments

The lower bounds in figures (9), (11), (13) and (15) are

strict; however, the tightness of the bounds and the accuracy

of the predicted MSEN depends on the argument of the Q func-

tion in the prediction equation. Constant argument lines are

plotted on these graphs. There is a high degree of confidence

in the predicted values whenever the argument is larger than

about three because equation (48) is a good approximation to

P in this region.

As can be seen from the figures, many of the predicted

* points are outside of the high confidence region. Although

I the predictions may be good, there is no way to estimate how

good they are with these methods. In addition, these perform-

ance predictions give no indication of the sensitivity of the

estimator to decision depth, phase variance, or various corre-

lation times.

Because of these limitations in the performance analysis,

*a simulation of the estimator is useful.
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IV. Estimator Simulation

A Monte Carlo simulation of the Viterbi algorithm modulo-

2w phase sequence estimator is useful to obtain performance

data for an entire range of input data and estimator parameters.

Simulation Setup

The simulation program was written in FORTRAN and run on

the Cyber 175/Cyber 74 systems available for use at The Air

Force Institute of Technology. After the parameters for the

simulation have been input, the program generates a true phase

sequence, constructs the signal model in quadrature form, adds

white gaussian noise to the signal, and then estimates the

phase based on the noise corrupted measurement. The phase se-

quence is estimated over one scan (100 measurements) and the

error and mean-square error are calculated for each time inter-

val. The value of 100 measurements per scan was selected to

be much larger than the largest decision depth (10) so that

any transient effects due to startup could be observed. Es-

timations can be repeated for many runs (scans) in order to

calculate ensemble averages of error and mean-square error at

each time interval.

Two cases of true phase of the signal are used in the sim-

ulation. In the first, the phase is constant over the length

of the scan and the value for each run is selected randomly

from a uniform distribution on (-n,w) . This allows
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exercising of the estimator's parameters without any masking

effects due to changing phase. The random choice of phase is

made with the use of the intrinsic and subroutine functions

for selecting uniform random deviates.

The second sample phase function, a tactical phase, is

used to approximate what could occur in actual use. It is

assumed that the dwell time T is 0.5is , the illuminated

area is a circle one foot in diameter, and the range ambiguity

distance is 20 feet. The phase of a signal received from scan-

ning over the length of a vehicle (an interesting tactical tar-

get) on flat ground can be approximated by the phase function

shown in Figure 20.

The phase in Figure 20 is shown beginning at -w/ 2 radians

for clarity, but the phase is allowed to start at any value sel-

ected from a uniform distribution on (-T,w) . The sample

phase in Figure 20 is modified by adding zero mean white gaus-

sian noise with a variance that corresponds to one foot squared.

This is done to depict the roughness of a typical surface which

would be found under real conditions. Instead of white noise,

the phase can be varied by adding correlated noise in order to

match the phase statistics of a random walk on a unit circle.

A simple way to do this is by filtering white gaussian samples

with a one stage infinite impulse response (IIR) digital fil-

ter and then adding the correlated phase noise to the phase

function of Figure 20.

After the true phase sequence has been constructed for

62



iT
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-T

Fig. 20. Tactical Phase Signal

the whole scan, individual measurements Zk are calculated

using equation (10). Two cases of amplitude values are used

in the results that follow. In the first case, the amplitude

is constant over the entire scan and the value of Ak is cal-

culated by
E2No

Ak = No (87)
T

In the second case, the discrete time amplitude values,

Ak , are selected from a Rayleigh distribution to simulate a

fading signal. The second moment of is determined by
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-- 2No (8
E{k 2 } T (88)

where E/NG is the expected value of the signal to noise

ratio. The second moment specifies the Rayleigh distribution.

Sample values are calculated by generating a random uniform

sample and then converting it to a Rayleigh distribution sam-

ple. The coherence time of the fading amplitude can be varied

by letting each Rayleigh sample be valid for n measurement

samples; the "coherence time" for amplitude is then approxi-

mately tc=nT

In the following results, the word depth refers to the

decision depth of the algorithm. This is identical to K0

the fixed lag described in Chapter II. At time k , an estim-

ate of the phase at time k-K0  is produced by the algorithm.

The number of discrete phase values the estimate can attain is

labelled LEVELS=M in the figures that follow, where M is odd.

The term a0
2T from equation(14) is labelled VARPH in the

graphical results. This is a measure of the variance of the

phase process which the algorithm "assumes" it is tracking.

As Co2T becomes small, the transition density of equation (14)

becomes gaussian and the distribution on k becomes

N( k-l,o02T) . If O0
2T is too small, the estimator will not

follow rapid fluctuations in the true phase. Conversely, if

a 0
2T is too large, the estimator will be susceptible to track-

ing isolated noise bursts even when the phase is constant.
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The number of ambiguous decisions for a scan is labelled

AMBIG in the figures. This is a figure of merit which gives

A

the number of possible values of OkK0 when the value of

O for each of the M sequences is not identical. In gen-

eral, the values stored in the M sequences will converge to

a single sequence as time progresses. The decision rule im-

plemented in this simulation selects the sequence with the

largest rk and then outputs the k-K 0  value of $ from

that sequence. The ambiguity counter is incremented once for

A

each sequence which does not have the same value for kK0

as the MAP sequence. An ambiguous decision count of zero

does not guarantee that the correct sequence K was es-

timated, only that the MAP sequence given the measurement

sequence was estimated.

Simulation Results

The results of the estimator simulations are discussed in

this section and shown in the figures that follow. The parameter

values and conditions are shown on the figures.

Confidence of Sample Statistics. The data presented in the

following figures is a result of taking ensemble averages of the

mean-squared error over 50 Monte Carlo runs. This value was

selected by observing how the ensemble mean square error changes

with increased number of runs, shown in Figure(21). As the num-

ber of runs increases, the ensemble average mean-square error

tends to settle down to a specific value. The number 50 was
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selected to provide good results at a reasonable expenditure

of computer time. Similar results can be obtained by observ-

ing the ensemble average of the phase errors as the number of

runs is increased.

The weak law of large numbers can be used to calculate the

probability that the ensemble average of the phase estimates

is more than 0.1 radians away from the ensemble average of

the true phase. For a probability of 0.1 that the phase

difference is larger than 0.1 radians, 3290 runs are nec-

essary. A similar argument using the central limit theorem

gives a result that 809 runs are required.

The data calculated from these two limit theorems fit

the data collected from simulations. Since MSE is the prime

measure of performance and it settles quickly for number of

runs greater than 50, the value of 50 was selected for use in

the generation of the following data.

Sample Estimation. A sample phase estimation for one

scan is shown in Figure (22). The normalized ensemble mean-

squared error for 50 simulation runs with these parameters

is shown in Figure (23). The true phase plot is marked with

a "€" every ten points. As can be seen, the estimator tracks

the true phase very well.

Because the estimator is modulo-2w , estimates may be ob-

tained which appear poor, but which are actually good. An ex-

ample of this is shown in Figures (24) and (25). In this ex-

ample, the true phase crosses over the +n boundary several
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times between N=40 and 60 The estimator produces a value

"close modulo-2w" to the true value, but because the true

phase is out of the estimator's output range, the phase estim-

ate appears to vary wildly. If the estimated values near -r

on Figure(24) are adjusted up by 2
T , the figure appears very

much like Figure (22). This is also shown by comparing the en-

semble mean-squared error plots corresponding to the two exam-

ples. The mean-squared errors for both are nearly identical

despite the fluctuations in the estimated phase. This is anal-

ogous to cycle slipping in a phase locked loop (PLL). This

characteristic of a modulo-27 estimator must be considered

when designing the equipment which will use the phase estimate.

Ambiguous Decisions. The number of ambiguous decisions

varied from 1400 for depth=0, to 700-800 when depth=5 , and

zero when depth=10 . The number of ambiguities drops quickly

to zero as depth is increased. Very little variation in the

number of .mbiguities was found as other parameters such as
-- 2T

MEINO, or 0 02T were changed. With a depth of 10, F/No>2

and either fixed or varying amplitude; there were no ambiguous

decisions observed.

Parameter Variations. The performance of the estimator

as the key parameters are varied is displayed in Figures (26)

through (42). Analysis of the individual figures is given in

the following paragraphs. Performance is graphed as normal-

ized mean-squared error versus Y/N 0 and families of curves

are plotted for varying levels, a 0
2T depth, amplitude co-

herence time, and errors in the estimation of the amplitude.
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Curves are plotted for the four combinations of constant

phase, constant amplitude; constant phase, Rayleigh ampli-

tude; tactical phase, constant amplitude; and tactical phase,

Rayleigh amplitude. The figures are labeled with the parameters

of interest and the performance of the estimator is evident.

Figures (26) through (29) are of particular interest be-

cause they correspond to the parameters used in predicting

the performance of the estimator. In these figures, change

in performance is displayed as the number of quantization le-

vels is varied. Values of predicted MSEN and the lower bound

'1 on MSEN (from Chapter III) are plotted on Figures (26) through

(29) for the case of M=15 . A comparison of the predicted

values with the measured results shows that the prediction is

good in areas of the curve where the argument of the Q(.)

function is larger than three. Also, the lower bound is fairly

tight. This is as expected for the step phase transition case

since the Viterbi algorithm estimator implemented in this sim-

ulation has as its input discrete phase values which are equiv-

alent to a continuous phase input with step changes in value.

As predicted, the mean-squared error decreases as the number of

quantization levels is increased. The match between predicted

MSEN and the simulation results is least good for high values

of M and low values of E/No . This is not unexpected, since

the argument of the Q function is small for low E/N 0 and large

M

As predicted, the performance of the estimator degraded
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when the amplitude was allowed to vary. Simulation results

for the Rayleigh fading amplitude case for various values of

M are shown in Figures (27) and (29). Results of several sim-

ulations indicate that the crossover of the M=15 and M=31

lines is a result of the randomness of the Monte Carlo sim-

ulation for a sampling of 50 runs and not an inherent trait

of the estimator. These results also correspond closely with

the predicted MSEN shown in Figure (19) for the random ampli-

tude case.

Figures (30) through (33) reflect the variation of mean-

squared error performance for several values of a0
2T with

M=15. As described previously, y02 T is the variance the

estimator "assumes" for the transition probabilities of the

phase process. Figures (30) and (31) reflect the performance

when the phase is constant but unknown over the whole scan.

The best performance is achieved when O2 T is small

(G0 2T=0.1 for the values displayed). This is an intuitive-

ly pleasing result since a constant phase has a conditional

transition variance of zero and this MAP estimator will tend

to select constant values of k when a 0
2T is very small.

It should be noticed that performance varies more at low val-

ues of E/N 0 than at high values. This, too, is as expected

because when the signal amplitude is very small, the estimator

"relies" more heavily on the transition probabilities than the

signal measurement for calculation of the rk's.

The performance is reversed for cases in which the phase

78



0)

C3 @0 £3 =

zocoz *OOO,-a-
3. U )L(

914

>P

0A0

0-4

CDi

CD

to0c L I ~ IIII I I jl11CV)

1-o

79



-C

o-UI6 0)w

~z w -.

~~ Wa

-01 CD

CDi
Cl)

N3SW

so0



C

0 ID 0 --

(0

L- OA 4x

~Cw
~~E-4

~A ~ -cn
-00

- - >c

to

cq
en

VI bD

15-7151511 I I I 11115

81



Il
/O

02W j Oz . .. _

Ij IL3w 14 C C t
w4~ U., 00

L --- - - -- -- - I
-LC'd

-en

-t'rl 4--)

Cd

_4

0 r

z o

LL4

z

Cf

0

I f II I I I 0 III1I1 I I I
103-0 C-0

82



is allowed to vary as shown in Figures (32) and (33). In

these simulations, white noise samples with a variance of

0.31 radians squared were added to the underlying tactical

phase shape. As can be seen from these figures, as o0
2T

was increased from 0.1 to 0.5 radians squared, the MSEN per-

formance improved. Further increase in a 0
2T produced no

significant improvement in performance. A large value of

0 2Tmay allow the estimator to track the phase of a noise

burst instead of the true phase of the signal for a specific

realization of the random measurement process; however, this

degradation in performance as a 0
2T becomes too large is not

evident in the figures because they show results of 50 scans

and the data are averaged over the 50 scans.

Figures (34) through (37) display the performance of the

estimator as the decision depth is varied. In all of these

simulations, the number of quantization levels is 15. The

results closely correspond to the results predicted in Chapter

III. There is little variation in performance due to a change

in depth over the domain of signal to noise ratios displayed.

Figure (35) does show a tendancy of lower MSEN for larger val-

ues of depth.

Figures (38) and (39) show the effect of varying the coher-

ence time of the random amplitudes. As defined previously, "co-

herence time" is tc=nT , where T is the sampling time and

n is the number of time intervals for which a specific realiza-

tion of the random amplitude is valid. There is little change
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(. in -vrformance as t varies from T to 10T. The per-

foriiance curves match closely the predicted performance.

Figures (40) and (41) display the effects of perturba-

tions in the estimation of the discrete time signal amplitudes,

Ak  . The perturbed A is calculated for the inphase case by

Ak A + (89)

and for the quadrature case by

= (Ak+kl 2+Q (90)

where Ak is the Rayleigh amplitude, and tI and a are

Gaussian random variables with zero mean and variance ai2

and a2  respectively. Little change in performance isaQ

exhibited by the estimator over the range of disturbed ampli-

tude samples. The estimator MSEN increases by a factor of

two as the variance of the disturbance is increased from 0.1

to 2.0 (at E/No=2). The change in MSEN is less at higher

values of E/NO. In general, the estimator is insensitive

to disturbances in the amplitude estimation. This is an ex-

tremely useful result. Not only is the estimator insensitive

to a fast fluctuating signal, it is not greatly sensitive to

errors in the amplitude estimate.

Figure (42) shows the results of the estimator performance

when the input is as shown in Figure (20) with correlated noise

added. The "noise" pbrtion of the input phase was calculated
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recursively by

k= Ok-1 + (91)

where 4 is a Gaussian random variable with zero mean and var-

iance of 0.5

The results shown in Figure (42) are very close to those

of Figure (33) (same parameters except the input phase is

"roughened" with white noise). The estimator displayed little

sensitivity to the match between the aoT of the transition

density and the variance of the input phase process.

The simulation results compare favorably with the per-

formance predictions developed in Chapter III. In addition, the

simulation results provide information on the effect of the

paramenters depth, a2T , coherence time, and amplitude dis-0

turbance on performance. The next chapter compares these re-

sults with other estimation schemes.
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V. Comparison with Other Estimators

A comparison of the performance of this estimator with

bounds on estimator performance and predicted results

of other methods is necessary in order to judge which scheme

is best.

Cramer Rao Lower Bound

Rife and Boorstyn (Ref 8) have shown that the variance of

a phase estimate, $ , can be lower bounded by the Cramer Rao

(CR) bound

Var{f} a2  (92)
b0 2N

where b 0 is the amplitude of the real signal b cos(wt+4)
0

a2 is the variance of additive zero mean Gaussian noise, and

N is the number of discrete time observations of the same

constant phase signal made by the estimator. This CR bound

is for a maximum likelihood (ML) estimator and corresponds to

the Viterbi algorithm estimator when the a priori statistics

on phase are uniform over the range -i to nT. The amplitude

(b0 ) and radian frequency (w) are assumed constant and known.

When N=1 , one observation is made for each value of

estimated. This corresponds to a decision depth of zero in

the Viterbi algorithm estimator.

For the signal model posed in Chapter II, the signal to
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( noise ratio of the input signal is

E (93)
No 2N0

and the variance of the additive noise is

a2 = No (94)T

The CR bound (normalized by 7r'/3) is

Var{-I 3 (95)

No

This CR lower bound is shown in Figure (43) along with

simulation results of the ML Viterbi algorithm estimator for

constant amplitude and phase with depth equal to zero. This

assumes that the estimator is unbiased so that VarW$ = MSE.

The CR lower bound for a larger N can be easily calcul-

ated from equation (87); however, the problem posed by Rife

and Boorstyn is that of estimating constant but unknown par-

ameters. The estimation problem investigated in this thesis

is that of phase sequence estimation in which the phase can

assume different values at each discrete time. Thus, the low-

er bound given by equation (92) for N>1 is not relatable to

results obtained from a simulation of the estimator presented

in this report.
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Phase-Locked-Loop, Constant Amplitude

The performance of a phase-locked-loop for phase demodu-

lation is well modeled and useful for comparison.

The phase-locked-loop (PLL) is assumed to be first order

and linearized. The variance of the phase estimate is given

by

a4- E/N2 i  (96)

where E/N0 i is the input signal to noise ratio above threshold.

Values of a2  , normalized by n 2/3 are shown in

Figure (44) plotted with simulation results for various numbers

of quantization levels. The PLL results have been taken from

Viterbi (Refl2:94).

When compared with the simulation case of 15 quantization

levels, the following results can be observed. The Viterbi es-

timator outperforms the PLL by almost six db at low signal to

noise ratios and by about two db at the higher signal to noise

ratios displayed in this ligure.

It is also evident from Figure (44) that the PLL outper-

forms the M=3 and M=7 Viterbi estimator above a specific

"crossover" signal to noise ratio. This is due to the quanti-

zation MSE lower bound inherent in the discrete value represent-

ation of the phase by the Viterbi estimator. The other two

cases (M=15 and M=31) also have a lower bound on MSE; however,

the bound is reached at a higher signal to noise ratio than
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displayed in this figure.

Phase-Locked-Loop Rayleigh Amplitude

The predicted results for PLL performance have been ex-

tended by Weber (Ref:13) to include the case of phase extima-

tion for a signal with Rayleigh slowly fading amplitude.

Results for the slowly fading amplitude case are shown on

Figure (45). All conditions are the same as for the PLL con-

stant amplitude case with the exception that the amplitude is

now allowed to fade.

A comparison with the M=15 case can again be made show-

-* ing that the PLL requires an input signal tb noise ratio of

approximately 20 (13db) to achieve the same mean-squared error

the Viterbi estimator attains at a signal to noise ratio of two

(three db). This 10 db margin is nearly constant over the do-

main of signal to noise ratios displayed in Figure (45). Weber

also notes that as the fading bandwidth becomes large (or the

loop bandwidth bandwidth becomes small) the phase tracking be-

comes worse until the PLL loses lock (Ref13:497).

Comments

From the foregoing comparisons, it can be seen that in the

constant amplitude case with E/No>10 , the Viterbi estimator

(M=15) outperforms the PLL by up to 5 db. This margin decreases

with increasing E/N until the Viterbi estimator's performance is

limited by quantization noise. Below a signal to noise ratio of

10, the smoothing effect and use of prior in the MAP Viterbi
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estimator provide significant improvements over the PLL.

Similar results are evident for the fading amplitude

case when the quantization is over 15 levels. The performance

margin of the Viterbi estimator is approximately 10 db better

than the PLL. It is important to note that the Viterbi algo-

rithm MAP estimator's performance is achieved under conditions

in which the amplitude is allowed to vary from sample to sam-

ple. The Rayleigh fading PLL results were limited to a slow-

ly fading signal. It can be expected that the PLL would per-

form much worse under the rapid fading conditions and eventually

lose lock as the fading bandwidth is increased.
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VI. Implementation Considerations

This chapter will consider the storage requirements, com-

plexity, and speed requirements for implementation of the Vit-

erbi algorithm for modulo-27r phase sequence estimation. The

problem of correct interpretation of modulo-2r data will also

be discussed.

Storage Requirements
K

The estimator must store M sequences, {$K , one for

each of the M phase states. Each sequence contains KO+1

floating point numbers representing the estimates of phase over

the time interval (k-Ko)T to kT. This is a total of

(M).(Ko+l) locations. For each sequence a value of r K must

be stored. The current time counter, k , must be stored as

well as the M+1 values of conditional transition probabili-
2

ties. This gives a total of M +2M+N permanent storage

locations. Temporary storage is necessary for the estimated

signal amplitude Ak ,the measurement amplitude, C k ,and

the measurement argument, k• Temporary storage will also

be required for holding the values of r k during calculation

of the algorithm. This requirement can vary greatly. For ex-

ample, if all the M values of r are computed in parallel,km

then all M values must be stored until the biggest is picked.

On the other hand, if the values of r k are computed serial-
m

ly, then only the current and "biggest-to-date" values need be
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stored. Because of the large time versus storage trade off

possible with temporary storage, more definite statements on

the requirements are not possible until the specific imple-

mentation of the algorithm is selected.

Complexity

This complexity and speed analysis will concern only the

serial algorithm stated in Chapter II. It is assumed that a

separate processing circuit can select the output value $kK

independent of the algorithm computation. It is also assumed

that all possible calculations are made outside of the repet-

itive algorithm to conserve time.

In order to advance all M sequences one step in time, M

values of rk must be computed. For each one, M values of

rk must be computed and M-1 magnitude comparisons must be
m

made. The calculation of one value of rk requires two

additions, one subtraction, one cosine calculation, and three

multiplies. Memory reference times for fetching values are

ignored since dedicated hardware designed for the Viterbi

algorithm can greatly optimize these times.

If the times required for the above calculations are

defined as follows:

ta - addition or subtraction time

tm = multiply time

tcomp - comparison time (97)

tCos W cos (.) calculation time
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then the total time to calculate one value of rk is
m

tr = 3t a+t cos+3tm (98)

and the total time required to advance all M sequences by one

value is

tVA = M2t+M(M-1)tcomp

(99)

M2 (tr+t comp,

Therefore, the complexity of the algorithm is KM 2

This can be computationally unfeasible for large values of M,

but is certainly better than the MK complexity previously

described for the global search version of MAP sequence estim-

ation.

Modulo-2w Data Interpretation

As previously described in the results section of Chapter

IV, a phase sequence which is estimated very well modulo-27

may appear to be quite bad.

One possible solution is to use a mapping function on the

estimated phase, r , to produce the display phase OD . Two

example functions are shown in Figure (46).

Both mapping functions will satisfy the requirement that a

* * wraparound of * from n to -n produces very little change

in the displayed phase sequence. However, both methods reduce
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Fig. 46. Display Mapping Functions

the range ambiguity by a factor of two and they tend to accent-

uate any noise in the phase estimate. In addition, the cosine

mapping is nonlinear.

Another possible method to improve the display character-

istics is to adjust the phase estimate up or down by 2ff rad-

ians depending on certain conditions. One method for doing

this can be described by the algorithm:

(
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For each 4 k' k=1,2,....,k

Begin

If I~kI > threshold and '~k+11 > threshold

Begin

If 1Tk-$k+ll >

Begin

Adjust 4 k+1 up or down by 2w to make the

the sign of k+1 equal the sign of k

End

End

End

This algorithm simply adjusts the next value of 4 up

or down by 27 when both the current value and the next value

are close to the 7 or -w boundary. As the threshold ap-

proaches w , fewer adjustments are made. There will be

cases for which the algorithm is "fooled" into making an un-

warranted adjustment, but these occurrences can be minimized

by proper selection of the threshold.
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VII. Conclusions and Recommendations

This report has dealt with the problem of nonlinear phase

sequence estimation in the presence of additive white Gaussian

noise and Rayleigh fading. Perfect knowledge of each realiza-

tion of the signal amplitude has been assumed. The problem

was motivated by the laser line-scan imagery system develop-

ed by the Air Force Avionics Laboratory; however, the estima-

tor and performance indicators derived have a much broader ap-

plication. This estimator can provide excellent phase se-

quence estimates for other communications and optics problems

in which the phase is dynamically changing and the signal am-

- plitude is rapidly varying.

Conclusions

The modulo-2 phase sequence Viterbi algorithm estimator

with 15 phase quantization levels outperforms a first order PLL

operating on a constant amplitude signal by 2-6 dB over the in-

put signal to noise range of 3-17 dB. For each value of the

number of quantization levels, there is a value of signal to

r noise ratio above which the PLL performancE is better. This
I I is due to the inherent quantization noise of the Viterbi MAP

estimator.

For rapidly fading signals, the Viterbi MAP estimator

significantly outperforms a first order PLL. The estimator

requires approximately 10 dB less input signal to noise
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ratio to equal the performance of a PLL estimating the phase

of a signal with slowly fading amplitude. As the fading band-

width is increased for the PLL estimator, performance rapidly

degrades until the PLL loses lock.

Imperfect knowledge of the signal amplitude does degrade

the phase estimate by a factor of about two when E/NO=2

however, there is little degradation at higher signal to noise

ratios. The fact that the estimator is insensitive to errors

in the amplitude estimate is significant because this implies

that the assumption of perfect knowledge of the signal ampli-

tude is not critical to the performance predicted in this re-

port.

The performance indicators developed in Chapter IV and!(
extended to the Rayleigh fading case have been validated by

the Monte Carlo simulation of the Viterbi estimator. The pre-

dicted MSE is accurate when the signal to noise ratio is large

or when the number of phase quantization levels is small. As

shown by the simulation results, the predicted results are al-

so useful, although not as accurate, for other regions of the

data.

The computational complexity of the algorithm is propor-

tional to KM 2  , where M is the number of discrete phase

levels and K is the length of the sequence. This compares

favorably with the MK complexity of a global search for the

MAP phase sequence.

109



(. Recommendations for Further Study

The following areas are recommended for further study.

The statistics on the phase process only assumed a corre-

lation in the direction of the scan. It may be possible to

exploit the correlation in two dimensions to improve the phase

estimate.

It is recommended that the joint estimation of ampli-

tude and phase be investigated. Solution of the joint prob-

lem will eliminate the need for a separate amplitude required

by the Viterbi estimator described in this report. In addi-

tion, it may be possible to exploit any correlation between

amplitude and phase in order to improve the phase estimate.

Filters with sharp cutoffs are often required to reduce

the aliasing effects described in Chapter II. These filters

often have nonlinear phase responses as a result of the re-

quirement for a sharp cutoff. It is recommended that a model

be developed which includes the effects of aliasing. With

this model, it can be determined if the filtering require-

ments can be made less stringent while still maintaining an

acceptable level of performance for the phase sequence estim-

ator.

This report considered phase estimation of a signal in

white gaussian noise. In optical systems such as this lin-

scan imager, quantum noise with point process statistics is

a significant part of the overall system noise. It is
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recommended that a similar estimator be developed for a signal

which includes quantum noise.

The simulation of this estimator has assumed either per-

fect knowledge of the signal amplitude or perfect knowledge

corrupted by gaussian quadrature noise. It is recommended

that the actual performance be determined given actual ampli-

tude estimation schemes.

S.,
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