
AD-AOBO 362 AIR FORCE INST OF TECH WRIGHT-PATTERSON APB ON SCHOO--EC P/6 9/2
GRAPHICAL ZNPUT METHODOLOGY FOR COMPUTER AIDED ANALYSIS DO CONT-ETC(U)
DEC 79 D E TROXEL

UNCLASSIFIED AFIT/SE/MA/79D-1

.mmmmmonuimumoIIIIIIIIIII
I mulllluluullulllll111111l
muuIIIuuuI
-mEEEllllllllE
-EllllllllEEEI
-mllllllllEEEI

AFI T/GE/MA/7 9D- 1

- RAPHICAL 4NPUT -ETHODOLOGY
C U FOR /
COMPUTERIDED JNALYSISF.w~~OF "/"..

SCCONTROL JYSTEMS ,-

THESIS -

AFIT/GE/MA/79D-1 Donald E. roxe

ApprWvd fl -rel e;

Approved for public release: distribution unlimited.

AFIT/GE/MA/79D-1

GRAPHICAL INPUT METHODOLOGY
FOR

COMPUTER AIDED ANALYSIS
OF

CONTROL SYSTEMS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University
in Partial Fulfillment of the

Requirements for the Degree of
Masters of Science

by
Donald E. Troxel, B.S.
Capt USAF

Graduate Electrical Engineering
December 1979

Approved for public releasel distribution unlimited.

Preof e

Most computer programs feel like they are designed to be

operated only by a computer programmer and not by the general

user. The work described In this paper is my effort to design

an analysis tool that does not have the above property.

The GRAPHIC analysis system which is proposed in this

paper is designed to feel natural and convenient to the user.

My goal was to determine what aspects of human interfaces

control the success of computer interfaces. After determining

this, the GRAPHIC system was designed to meet these

requirements. The resulting system is intended to be as

convenient to employ by the user as normal pen and paper

methods.

Donald E. Troxel

tA

iiI

Contents

PrefacL Pae

List o:' Figures........... v

List of Tables vi

Abstract . vii

I. Introduction 1

Background1
Statement of Objectives 2
Approach 2

II. System Definition 3

Detailed Analysis of Problem 3
Requirements Definition 4

III. Human Interface Design...... 7

Human Interface Factors. 7
Components of a Sucessful

Human Interface. 7
Human Psychological Factors Affecting

Man-Machine Interfaces 9
Task Related Factors Affecting

Man-Machine Interfaces 12
Design Constraints for a Sucessful

Human Interface 14
Interface Design 15

Graphic Interface Mode 16
Textual Interface Mode 25
Compairson to Requirements and

Constraints 26

IV. System Design and Implementation 29

Program Overview 29
Main Overlay 32
DRAW Overlay 32
GROUP Overlay 37
PARAMETER Overlay 38
REDUCE Overlay41
SAVE Overlay 44
RESTORE Overlay 44

!i

Contents

Data Structures.
Graphic Database 46
Numeric Database 58
Signal Flow Database 52

V. Design Evaluation 54

System Implementation 54
User Test 57
User Test Results 62
Modifications 69

VI. Conclusions and Recommendations 73

Bibliography 76

Appendix A: User's Manual

Appendix B: Updates to User's Manual

Appendix C: Core Library

Appendix D: Description of GRAPHIC Program
Implemientat ion

Appendix E: Abbreviations and Mnemonics

Vita

iv

List of Figures

Figure Lage

1 Block Diagram Topology Example 17

2 Block Diagram Topology Example. 17

3 Terminal Display Face Organization 23

4 Contents of Proapt Area 24

5 Basic Overlay Structure of GRAPHIC 31

6 Main Overlay 33

7 DRAW Overlay 34

8 GROUP Overlay 39

9 PARAMETER Overlay 4

is REDUCE Overlay 42

11 SAVE Overlay 45

12 RESTORE Overlay 45

13 DRAW Mode Initial Display 58

14 Sample of Block Diagram Definition 60

15 Sample of Miniature Display 61

16 Error Message Example 63

17 Example of PARAMETER Mode Input 64

18 Block Diagram Example 65

19 EASY5 Textual Description of Block Diagram 66

26 Representation of Input and Output Symbols 72

V

List of Tables

Table Page

I Element Producing Commands in DRAW Mode 20

II Non-Element Producing Commands in DRAW Mode . . 21

III DRAW Mode Commands 36

IV Graphic Database Record Format 48

V Specialized Records in Graphic Database 49

VI Parameter Database Record Format 51

VII Signal Flow Database Record Format 53

VIII GRAPHIC Program Test Implementation Size 56

IX Draw Mode Commands 59

vi

I

APIT/GE/MA/79D-l

Abstract

This report describes the design of a graphical input

language and a CAD system for specifying control system block

diagrams. The goal to develop a graphical means of defining

block diagrams that avoided the need to create the textual

descriptions required by most existing traditional analysis

packages was accomplished. Generalized requirements for a

successful human interface were developed. A graphical input

methodology was developed that meets these human constraints.

The CAD system designed allows graphical definition of linear

systems and translation of these systems into forms acceptable

by traditional analysis programs.

vii

GRAPHICAL INPUT METHODOLGY
FOR

COMPUTER AIDED ANALYSIS
OF

CONTROL SYSTEMS

I. Introduction

Backg round

In the guidance and control field there is the

traditional need to analyze linear control systems which are

represented by block diagrams. To assist in this task there

are many conputer aided design tools which perform various

classical analyses such as root locus, frequency response and

time response. The general problem with many of the conputer

programs for analyzing linear control systems is the

couplexity of the required input data. Almost all of these

design tools require input that is not in the form normally

used by the design engineer in his daily work. Instead of a

textual description of the control system as required by

current programs, the design engineer is used to representing

the system with a block diagram. This diagram is a directed

graph of lines and boxes, the lines representing the signal

flow paths and the boxes representing the transforms that

operate on the signal. The process of translating this

diagram into an equivalent textual list of nodes and

interconnections is time consuming and error prone.

Additionally, once the textual description is produced its

complexity is such that it is difficult to detect errors and

also difficult to modify. It is these problems that motivated

the effort detailed in this paper.

Statement of Objectives

The objective of this effort was to design a more

effective method for defining linear control systems for

subsequent analysis by existing computer programs. A major

goal was to employ interactive graphics as a more natural

method for specifying the block diagrams of the systems to be

analyzed by the computer programs.

Approach

The overall approach for this effort was divided into

four phases: system definition, human interface design,

system design and implementation, and design evaluation. The

final section of this paper presents the conclusions that

were derived from the effort and the recommendations for

further work in this area.

2i

II. System Definition

Problem Analysis

This effort was sponsored by the Control Dynamics Branch

of the Air Force Flight Dynamics Laboratory (AFFDL/FGC).

Since the engineers in the laboratory would become the prime

users of any programs developed, the problem analysis was

restricted to discussions with the laboratory personnel and a

literature search.

The discussions with tne labaratory design personnel

yielded the following list of deficiencies in the existing

computer aided design programs such as EASY5 and TOTAL (Ref

7,12,13):

1) Input formats to existing computer programs are

entirely different from any format used by the design

engineers in normal daily work.

2) Current input formats are extremely complex and

difficult to remember, often requiring relearning for each

use.

3) The interrelationships between input elements are

complicated and numerous, making detection of errors

difficult.

The literature search revealed that these problems

described by the laboratory personnel were common to most

control system design analysis programs. While the

literature showed some effective methods of interacting with

the output of some tools to produce minor modifications in

3

the analysis, no examples were found that addressed the

problem of rapid and simple methods for input generation.

As a result of this analysis the overall problem was

determined to be the absence of a good human engineered

interface for defining control systems. Or stated in

positive terms, the problem was to develop a convenient,

easily remembered input method in which errors could be

easily detected.

Requirements Definition

The requirements for the new design tool being

implemented are derived from the general items identified in

the problem analysis. The future plans for software and

equipment also helped guide the development of the

requirements. Each of these areas will now be analyzed in

further detail.

The most significant aspect of the problem analysis is

that the items identified deal almost entirely with aspects

of input generation for existing computer aided analysis

tools. Detailed review of the problem analysis clearly

points out the requirement for the development of a new

input language for describing complicated control systems.

Further this new input language must be in a form that feels

natural to the design engineer to allow easy input

generation and verification. Thus to fill the need for a

new input method a requirement for a graphical input

methodology is established. A graphical method was choosen

4

as potentially the most sucessful method since it was the

means used by most design engineers when describinn control

systems among themselves. Also graphical methods allowed

rapid error detection due to the excelletlt pattern

recognition ability in humans.

In the laboratory there was eneral sAtisfaction with

the quality and varity of existinq conputer aided analysis

tools in terms of Lhe analysis performed and the output data

produced. Thus no requirements were produced for the

generation of new mathematical analysis tools.

In the hardware and software area there in a teneral

long ranoe plan established by the Control Dynamics Branch

(ArF OL/ GC) . In the hardware area this plan calls for no

change in terminal equipment. This meant that the Pxint ink

storage tube graphics terminals would be nelected as the

target interface device for human input. In the loftware

area there are plans to combine a number of[on~utr aided

design analysis tools, includinti the CRAPIC system to be

developed as part of this effort. This combination effort is

planned to occur over several years and not involve a

permanent design team. Thus the hardware requirement is to

interface with the 'Tektronix 4040's serties otoaoe tube

terminals. The software requirement is to deoian the new

program with a modular structure to allow for future addition

and combination efforts,

[5

The complete requirements are summarized in the list

that follows:

1) Develop a graphical method of generating control

system definitions. This method should allow for rapid

definition and modification of complex control systems for

analysis.

2) Develop a method to convert the graphically defined

control systems into textually defined control systems

suitable for use as input to existing analysis tools such as

EASY5 (Ref 7) and TOTAL (Ref 12,13).

3) Select a language and program structure that would

facilitate future modifications by the Flight Dynamics

Laboratory personnel.

6

III. Human Interface Design

This section details the steps that were taken in

designing the input format and graphic language for the

GRAPHIC system being developed. Since the human interface

was already identified as the primary problem during the

problem analysis, the approach taken here was to first make

an in depth study of the factors that control the development

of a successful human interface and then to design the new

graphical language and other interfaces with these factors as

constraints.

Human Interface Factors

The factors that effect the design of a human interface

are many, complex and overlapping in scope. The method used

here to analyze these factors was as follows: First, the

elements of a sucesaful interface were derived based on the

author's experience and previous studies found in the

literature (Ref 11,12,14,15,16,20). Then the aspects of

human psychology and task related factors were analyzed to

see how they affected the success of the interface design.

Finally, the primary factors in a human interface desion were

considered and realistic constraints were derived to help

assure production of a successful interface.

C ouOnents of a Successful Human Interface. A successful

human interface for a computer program has many aspects with

7

which it must comply. The most important of these aspects are

that the interface must be friendly, easy to learn, and

natural.

The nature of the interface must be friendly to the user

(Ref 11,12,26). It should allow for easy detection and

correction of errors. It should also allow easy changes in

tasks so that the user can start one task, change to another

task and then return to the first with a minimum of effort

(Ref 12).

The man-machine communications format should require

little training to master and should be relearnable almost

immediately after a long period of non-use (Ref 16). In

order for the interface to be easily relearned and retained,

the language must approximate the important aspects of human

to human communication. The most notable of these is that

each input or output should consist of a complete thought

(Ref 11,16,20). It also must have a uniform syntax. In this

way, communication via the interface will feel like it is in

one language instead of several languages, each with its own

rules.

The interface should be natural. In this sense, it

should be designed such that the user converses with the

computer in terms and concepts that he normally uses when

describing the steps to another human. This will cause the

interface to feel "right", like a native language, instead of

unconfortable, like conversing in a poorly learned foreign

language.

8

In general, the human interface that embodies these

aspects of friendliness, easiness to learn, and naturalness

represents a symbiosis between the man and machine which

allows the user to work as a partner with the machine to

perform a task together (Ref 11). This interface should

allow conversation with the machine regarding aspects of the

task being performed to occur without conscious thought as to

the method of expressing the individual ideas.

Human Psychological Factors Affecting Man-Machine

Interfaces. Much analysis of the nature of human

communication and thought has been done over the past years.

These studies have developed a detailed knowledge of the

physical or biological limits that control the success of

human communication.

The aspects that are of greatest interest in developing

a good human interface include the following: information

capacity and memory characteristics, psychological closure,

and psychological discomfort such as boredom, panic,

frustration, or confusion. Each of these aspects will be

examined in detail.

Analysis of human information transmittal capacity and

short term memory have produced evidence indicating that

there is a definite upper limit to the amount of data a

human can absorb and retransmit. Extensive studies have

shown that this limit is approximately seven items for a

unidimensional measurement (Ref 14). This means that an

individual can be expected to remember accurately no more

9

than seven values of a given parameter at a time. Common

examples of this would be seven lengths of a vector or seven

magnitudes of a truck's speed. Further experiments have

demonstrated that as the dimensionality of the data

increases, the human memory capacity increasesi but the

accuracy of the recall for the individual parameters in each

dimension decreases (Ref 14). For example, the mechanism of

recognizing people involves remembering hundreds of faces;

but recalling accurately the details of each face is almost

impossible. This overall capacity or span of memory is also

affected by the grouping or coding that is done by the

individual in representing the items being remembered. In

terms of numeric digits, a human could remember a binary

number of about only seven consecutive binary digits, but

recoding the information into decimal digits converts the

capacity into seven consecutive decimal digits, the

equivalent of twenty-three binary digits. In this manner it

is clear that the conceptual unit of thought also affects the

memory capacity (Ref 14).

In human conversation it is important that individual

actions be psychologically closed or in other words be in

complete thoughts. Studies have shown that transfers of

information between individuals are less sucessful, in terms

of correct transfer of data, if an interruption of any kind

occurs during the transfer. For example, most people, after

looking up a new phone number, have to look up the number

again if interrupted while dialing (Ref 15,16). This is

1

related to the fact that absolute memory capacity of a human

is limited. The details of a thought are important during its

expression, but once complete only the general idea of the

thought need be remembered. In terms of the preceding

paragraph, recoding of the information cannot be done until

the thought is complete; therefore the absolute quantity of

information items stored in a human memory keeps increasing Iuntil the thought is completely expressed.

Psychological discomfort in the form of boredom, panic,

frustration, or confusion contributes to the failure of man-

machine interfaces. As with human to human communication, man

to machine communication depends on a two way exchange of

information. Any interruption in this exchange results in

psychological discomfort to the human. Studies have shown

that it is the speed of this feedback that can make or break

the sucess of a man-machine interface (Ref 15). The

absolute speed of the feedback that is required varies

depending on the type of input. For individual key strokes,

studies show that the response must occur within 50

milliseconds in order to avoid psychological discomfort,

while responses to complete thoughts can take as long as five

seconds without creating ill effects (Ref 11,15).

In general, it is these human aspects of information

capacity, memory, psychological closure, and psychological

discomfort which must be considered as design limits in all

man-machine interfaces, regardless of the task being

performed, in order for the interface to be successful.

11

Task Related Factors Affecting Man-Machine Interfaces.

There are several task related factors that affect the

success of the man machine interface. These factors are task

related in that the actual form of the solution to produce a

good interface will vary depending on the individual

combination of task and user. The primary factors are the

process model, the command language, and the level of

prompting.

The process model is the most important of these

aspects. It is the method or the user's perception of the

steps that the program takes to perform the complete task.

If the process model does not match the user model, the

manner in which the user conceives of the problem being

solved, the interface will be a failure (Ref 11,15). The

user will constantly have to translate between the steps of

his thoughts, the user model, and the steps of the computer,

the process model, causing needless overhead for the human.

An example of this would be one in which the user considers

the process to be one of "calculating" the values and

"plotting" the response. The process model to support the

above user model should have corresponding "calculate" and

"plot" steps rather than something like "execute" and

"display" steps if needless translation effort is to be

reduced.

The command language must be both structured and

flexible at the same time. It must be structured in two

aspects. First, the language must present the user with a

12

AMA

consistent and predictable syntax for all inputs. In this

way the communications will feel like they are in one

language instead of many languages. Second, the "words" of

the language must match what the user normally employs to

describe the steps he would perform. Specifically, the

developer or programmer should not be allowed to invent new

acronyms to be used as commands. At a low level this match

is related to the high level matching between user and

process models. In terms of flexibility, the language must

support expansion and interruption. Expans~on allows the

user to add new "words" to the language that act as synonyms

or functional groups of other "words" already defined. In

this way the language can be self conforming to the user's

vocabulary. Interruption as a form of flexibility refers to

the ability to start a step or portion of a command and then

suspend it to do some other operation. Upon completion of

the second operation, the first operation would be resumed

automatically from the point of suspension. Without this

interruption capability, the user would have to have all

inputs prepared ahead of time or be faced with starting over

every time he failed to predict the need for a particular

calculated value (Ref 11,12,15).

The final task related factor is the level of

prompting. The level or amount of detail in the prompting

must vary in two aspects. The first of these is that the

detail must match the complexity of the required input. The

second is that the detail must match that required by the

13

user. To provide too much detail causes boredom for the

experienced user, while to provide too little detail causes

confusion for the inexperienced user. This indicates that

the level of detail must be adjustable by the user to suit

his taste.

It is these task related factors of process model,

command language, and prompting which must be considered as

design constraints if the interface is to feel natural and

comfor table.

Design Constraints for a Sucessful Human Interface. It

is clear from the preceding material that many factors

control the acceptability of man-machine interfaces. In

order to insure success, designs for interfaces must have all

aspects within the constraints imposed by the human and task

related factors.

These constraining factors can be best summarized in

terms of complexity, vocabulary, and prompting. The

complexity must be restricted to a narrow range: that is,

low enough so that information can be manipulated within the

capacity of the human memory, but high enough so that

complete thoughts can be expressed. The vocabulary must be

matched to the user. This matching must not only be in terms

of the "words* of the language, but ilso in terms of the

model of the operations being performed. Finally, the

prompting must be adaptable to the user's experience level.

The prompting must be such that the expert does not feel

talked down to and that the novice does not feel ignored.

14

By careful attention to these factors it should be

possible to consistantly design successful man-machine

interfaces: that is, a human interface that feels natural for

the particular task at hand and can be used with little if

any conscious thought during the performance of the task it

supports.

Interface Design

For a program such as GRAPHIC which is beinq developed

primarily as a complicated translator of input languages

from one form to another, it is clear that the design of the

human interface would receive considerable attention.

In light of the discussion presented in the first half

of this section, the early assumption during the requirements

definition that a graphic input method was needed is well

supported. For many aspects of control system specification

the graphical, block diagram method truely represents the

natural human method for describing linear systems. But for

other aspects of the control system specification, such as

specifying transfer function zeros and poles, the standard

textual mode is still completely natural. For this reason the

interface selected for the GRAPHIC program was designed with

both a graphic interface mode and a textual interface mode.

Each mode is described separately in detail. Since the User's

Manual, Appendix A, explains the actual operation of the

GRAPHIC program the followinq sections concentrate on the

design and its rationale.

L ls15

Graphic Interface Mode. The GRAPHIC program has six

modes of operation as described in Section IV. The graphic

interface mode was selected for the DRAW and GROUP modes of

GRAPHIC operations. These modes are where the topology of

the control system block diagram is defined.

The approach taken was to analyze what conscious actions

were performed by the design engineer when sketching a block

diagram on a piece of paper. From this analysis a graphic

language was developed that required no more conscious

thought than in the paper drawing to generate the diagram on

the display screen.

On close examination of the topology specification

process, it is clear that the design engineer deals with the

specification problem not as how to place individual line

segements but as how to order and connect the set of

possible elements for the diagram. In this case the elements

consist of the basic functional building blocks in a linear

control system such as inputs, outputs, adders, samplers, and

transform boxes. The connection of elements is specified

simply by interconnecting lines. Also it appears that no

conscious thought is given to the orientation of various

elements or the orientation of their connections. For

example for the block diagram shown in Figure 1, there is no

conscious differentiation between transform one and transform

two due solely to the fact that one has its input on the left

while the other has its input on the right. Similarly in

Figure 2 there is no conscious differentiation between adder

16

11

Trans form

OnOne

FI

\ Trans form

Twoi

Figure . Block Diagram Topology Example

A1 Adder

Figure 2. Block Diagram Topology Example

~17

one and adder two due solely to the fact that one has two

inputs from below while the other has one input from below

and one from above.

Clearly, in order to retain natural feeling to the

interface it will be necessary to handle all subconscious

aspects of block diagram drawing automatically within the

computer. In this way, the visible interface will require no

more conscious thought for use than needed for sketching on

paper. Specifically, this means that the computer will have

to keep track of orientation and input output pairing of

elements within the diagram. To do this the concept of a

current working location (CWL) and drawing direction vector

are used. The current working location is the XY position

that is the location of the output for the most recently

drawn symbol. The drawing direction vector is a vector

pointing in the same direction that the last line element was

drawn in. The visible effect of the CWL and drawing

direction vector are that as elements are added to the

diagram they appear connected to the previous element and in

the proper orientation automatically. The drawing convention

is that all elements are specified in the order corresponding

to the direction of signal flow. This means that the user

would define the diagram starting at an input and working

toward any output. This convention allows automatic

generation of clarifying marks such as arrowheads to help

indicate the input side of elements in the block diagram.

18

For the paper sketch example the user consciously

decided only what element to draw next and where to draw it.

With this in mind the interface requires only the equivalent

information, the code letter for the element desired and the

crosshair position for the element location. The individual

code letters were chosen to be the first letter of the

elements name as shown in Table I. In order to retain as

much of the natural feeling as possible and avoid conscious

translation effort, the names of the elements were picked to

be the names most often used by actual design engineers.

In addition to the commands depicted in Table I several

other commands are needed for complete generality. These

commands are required to delete, modify, and review the

elements in the block diagram and are described in Table 11.

For all of these commands the first letter of the command

name was used as the command code unless there was a

conflict.

This form of interface produced the most convenient and

rapid method available for defining block diaqram topologies.

It was one in which' actions could be accomplished based on

one character inputs from the user.

The next most important aspect of the graphics interface

is the layout and use of the display screen. Since the

terminal was a storage tube connected to a timesharing

network certain aspects of the interface had to consider the

constraints that this imposed. The particular thing to avoid

was the need to erase some small item in the display and

Table I

Element Producing Commands in Draw Mode

Name Code Representation

Box B E

Sampler S

Adder A

Input I

Output 0

Line L

20

Table I1

Non-Element Producing Commands in Draw Mode

Name Code

Move M

Connect X

Delete D

End E

Working Location W

Center C

Redraw R

21

retransmit all the elements that were to remain visible.

This erase and retransmittal of the data was particularly

undesirable due to the low data rate of the timesharing

network, 38 to 120 characters per second.

For the above reasons the display face was organized as

shown in Figure 3. The display was organized into four

major areas: prompt, work, miniature, and text areas. The

graphic prompt area lists all of the commands defined in the

graphic language. Each command is shown with its

corresponding graphic symbol or descriptive mnemonic (Figure

4). This approach, displaying the entire list of commands,

was taken since there are fifteen different command

codes. As mentioned earlier a human can only be expected to

accurately remember seven or less items in a set such as the

command code set. The text message area is used by the

program to post error and status messages. The messages in

the text area appear one after the another on each line using

every character position before starting the next line. This

feature reduces the frequency of display erasures due to

insufficient text message space for the next message to be

posted. The work area is where all of the drawing is done to

create or modify the block diagram topology. The detailed

explanations of the drawing commands are given in the User's

Manual, Appendix A. In addition to the commands to create

the diagram elements, there are also commands to position the

entire diagram within the work area. For this purpose the

drawing can be thought of as being on a large sheet of paper

22

~~40

94.
dtC w
£14
00

4)-
0 CL

-4

-4

c)0.0

qq

23

B A S L

M - Move

X - Connect

I 0

C n Center

D a Delete

R a Redraw

W = Work Loc

E - End

Figure 4. Contents of Prompt Area

24[

which is viewed through a window called the work area. The

CENTER command allows the user to direct which element in the

drawing is to be centered in the middle of the work area. The

system keeps track of the total diagram size and whenever any

of the elements disappear outside the window edge a minature

display of the entire diagram without the element labels is

produced. The production of this minature can be inhibited

by the user if desired. This approach was taken to allow the

experienced user to avoid the delay caused by the trans-

mission time needed to produce the minature.

Based on the analysis of the system requirements given

in Section II and the constraints on designs for successful

human interfaces, this graphic interface was implemented to

allow efficient and natural definition of block diagram

topologies.

Textual Interface Mode. The textual interface mode is

used for all aspects of input and output to the GRAPHIC

program that are not directly associated with generation of

the block diagram topology. The major areas of use for this

interface mode are in the PARAMETER and REDUCE features of

the of the GRAPHIC program. In the PARAMETER mode the

transfer functions are specified while in the REDUCE mode the

form of the reduction is specified.

The textual mode is used when there is no graphic data

present on the screen. It is used to communicate with the

user in a teletype style that is normally associated with

computer communications. Each group of inputs or outputs

25

uses a new line whether or not the previous line was full.

Although this method wastes space on the face of the storage

tube display and requires more frequent erasures it was still

determined to be more beneficial than the text communication

method used in the graphic interface. The main reason was

that it eliminates the internal bookkeeping and calculations

required to post messages in the graphic mode. This allows

for the most rapid response available and therefore helps

prevent user frustration. The second reason is that it

allows for longer prompting messages. Longer messages are

possible since there is no concern as to how often the

display screen fills up and has to be erased. Unlike

operations in the graphic interface mode, where large amounts

of data, specifically the block diagram, had to be redrawn

after each erase, in the text mode the old data corresponds

to already answered questions and can be discarded with the

erase. The data to be input and output during the PARAMETER

and REDUCE modes of GRAPHIC is primarly textual in nature,

consisting mostly of numeric coefficients and element

labels.

Comparison to Requirements and Constraints. This

combination of graphic and textual input modes was

implemented for the GRAPHIC program as the most likely design

for the human interface considering the system requirements

stated in Section II and the design constraints stated in the

first half of this section.

26

The graphic interface mode has a command set that is

rich enough to allow definition and modification of block

diagrams representing arbitrary topologies of linear

systems. The complexity of the user inputs is low, being in

the general case the specification of a location with the

croashair and a command with a code letter. The vocabulary of

the graphic language is matched to the user since the

mnemonics for the command names are taken directly from the

most commonly used term employed by the actual design

engineers who will be the primary users. Finally, the

prompting display of user options is constantly

presented in the graphic prompt area (see Figure 4). This

approach frees the user from memorizing the command set. The

production of the minature, another form of prompting, can be

disabled depending on the user's preference.

The textual interface mode allows for complete

specification of the required cofficient data and reduction

parameters for output translation. Its complexity and

vocabulary are ideally suited for the large amounts of

numeric data that must be input in this mode. The elimination

of the graphic data from the screen allows more rapid and

complete prompting to be accomplished.

This combination of interfaces was implemented as being

the best choice for the combined requirements. It is

designed to allow rapid definition of control systems in the

form of arbitary block diagrams. The ability of this

27

interface design to perform this function while retaining a

natural communication feeling in the user will be discussed

in Section V.

28

Aj

IV. System Desi and Implementation

The GRAPHIC program was designed to be implemented using a

highly modular structure at all levels (Ref 10,22). This

modularization was designed in for several reasons. First,

it allowed nearly independent implementation of the major

functions. Second, adding of new features in the future

would not require dissecting the entire package but simply

connecting a new module. Finally, grouping the code into

modules makes it easier to understand. This last item is

relatively important since the author would not be the

maintainer of the developed system.

Within the code, two additional features were employed

to increase readability and understandability on a system

wide basis. Whenever possible parameters passed between

routines either as formal parameters or as common data

structures were given the same alphanumeric identifier in all

routines. Also the use of numeric constants is avoided in

preference for the use of variables that are treated as

constants. Both of these features help to clarify where the

value being used comes from and also provide a better

indication of when the value is used.

Program Overview

The GRAPHIC program is written entirely in FORTRAN for

the Control Data Corporation (CDC) CYBER series computer (Ref

4,8). It is designed to run as an INTERCOM job under the

NOS/BE operating system (Ref 1,3,5,9). For this reason the

29

code is overlayed to reduce its memory requirement to under

65,000 base eignt words at any given instant. The GRAPHIC

program is designed to be used only at a Tektronix 460

series terminal.

As shown in Figure 5 the basic overlay structure of

GRAPHIC consists of one main overlay and six primary

overlays. Each of the six primary overlays corresponds to

one of the six major features or modes of operation in

GRAPHIC.

The GRAPHIC program uses support routines from three

specialized libraries to obtain services that are not a part

of the normal CDC FORTRAN environment. These libraries are

TEKLIB, NOSLIB, and CORE. The TEKLIB library is a set of

routines that provide the low level drivers to interface

directly to the user's Tektronix 4000 series terminal (Ref

18). The NOSLIB library provides file manipulation

capabilities for cataloging files (Ref 2). The CORE library

is a complete set of subroutines implementing a general

purpose three dimensional graphics system. This three

dimensional system is modeled after the proposed standard for

graphics interfaces produced by the Association for Computing

Machinery (ACM) Special Interest Group for Graphics

(SIGGRAPH) (Ref 17). The TEKLIB and NOSLIB libraries are

maintained by the ASD computer center at Wright- Patterson

AFB, Ohio (Ref 6). The CORE library was developed by a

group of Masters students including the author at the Air

30

MAIN

31ELA

Force Institute of Technology as part of a class project (Ref

19) and is further described in Appendix C.

Main Overlay. The main overlay is resident in memory at

all times when the GRAPHIC program is in operation. As

depicted in Figure 6, the main overlay handles the

initialization of global variables and controls the execution

of each of the six primary overlays.

Besides initializing all of the global variables upon

start up, the main overlay acts as a storage area for shared

data. Since this overlay is the only overlay that is

resident in memory continuously, any data that is shared or

passed between the primary overlays must be stored in the

main overlay.

Once the global variables have been initialized the only

active function the main overlay has is to select which

primary overlay to execute next. This is done based upon the

user input and results in execution of primary overlay DRAW,

GROUP, PARAMETER, REDUCE, SAVE, or RESTORE. After the

primary overlay completes execution, control is returned to

the main overlay and another primary overlay is selected for

execution.

Draw Overlay. The DRAW overlay is responsible for

accepting the block diagram definition from the user and

storing it in the graphic database. As depicted in Figure

7, it has a separate routine for each major operation that

can be performed during the block diagram definition.

The graphical interface mode is the only form of

32

MAIN

OVERLAY

INITIALIZE

EXECUTE

OVERLAYS

Figure 6.Main Overlay

33

v4

34

communication with the user while running under this overlay

to define a diagram. This means in the general case that

all inputs are restricted to a one letter command code and in

some cases an additional XY location given by the crosshair

position. Table IllI contains a complete list of the

commands available and their meaning.

The DRAW overlay operates as a ten way switch:

requesting a command from the user, performing the operation

indicated, and then requesting the next command. Each time
the program is ready for a new command the crosshair appears

on the screen. While the system is busy processinq the

input the crosshair is removed from the screen. This feature

provides the user with positive feedback as to whether an

operation is in progress or not. The switch structure of

the overlay allows new features or commands to be added to

the graphic interface simply by modifyinq the section of

code that forms the input command filter.

As each element in the block diagram is defined a

corresponding entry is established in the graphic database.

For all elements this is done by the UPDATE routine. This

design was chosen to centralize access to the graphic

dataoase. In this way any changes to the internal structure

of the graphic database could be hidden from the other

routines and handled entirely within the UPDATE routine.

rhe graphics presented on the face of the display are

produced using the three dimensional drawinq support routines

in the CORE library. Although all items are represented as

35

Table III

DR?&I t4ode COma6ds

commaCode

Boxc

Sampler
S

Adder
A

Input
I

output
0

Line
L

Connect
x

Delete
0

working Location
w

Center
C

Redraw
R

36

two dimensional sketches, a three dimensional support package

was used to allow easy expansion into the third dimension

should a meaningful way of representing control system block

diagrams in three dimensions be developed in the future.

Actual manipulation of the graphical data is controlled

using the following concept of separate coordinate systems.

All data in the graphic database such as specific XY points

for each symbol is treated as locations in an infinite User

Coordinate System (UCS). The display terminal face is

treated as a separate Device Coordinate System (DCS). In

this manner data in the graphics database completely

describes the block diagram in UCS. The production of a

picture of the diagram on the display face is just a mapping

of the points within a window in UCS into a viewport in DCS

space. This concept is quite powerful and, with the addition

of clipping to the window boundaries, allows the symbols in

the work area, miniature area, and prompt area to be produced

entirely by the same software with only changes in the

mathematical mapping. This assures unchanging proportions

between the symbols and the different areas in which they

appear since there is only one set of vector commands for

each graphic symbol type: box, sampler, adder, input, output,

and line.

Group Overlay. The GROUP overlay is responsible for

creating collections of elements as specified by the user's

input. Once created, the collections can be used in the DRAW

mode by referring to them with one command code for each

37

individual collection. The specific details on how this is

done are in Appendix A.

The GROUP overlay is.essentially a specialized form of

the DRAW and PARAMETER modes. It is structured as depicted

in Figure 8. The major sections of code in this overlay are

just an encapsulated copys of the DRAW and PARAMETER overlay

code. The other section allows the existing groups of

elements to be scaned and any new groups to be generated.

Parameter Overlay. The PARAMETER overlay is responsible

for acquiring the numeric data to complete the mathematical

definition of the diagram defined by the DRAW overlay. Its

structure is depicted in Figure 9. This overlay allows the

user to specify the numeric values of the polynomials that

form the transfer functions for each box element in the

diagram. It also allows specification of the sampling period

for every sampler in the diagram.

The program is set up to cycle through the list of box

and sampler elements requesting the needed parameters or to

allow the individual parameters to be set one at a time

based on the user input. The polynomials that form the

transfer function can be specified by either a list of

coefficients or a list of roots on an individual polynomial

basis. Additionally, there are key words and mnemonics to

allow skipping over unchanged roots when redefining

parameters. The conplete details of how this would be

accomplished are in the User's Manual, Appendix A.

Regardless of whether the polynomial parameters are

38

GROUP

OVERLAY

GROUP

SCAN

DRAW PARAMETER

Figure 8. GROUP Overlay

39

PARAMETER

OVERLAY

TRANSFORM EASY5 SAMPLING

FUNCTION VALUES RATES

ROOT COEFFICIENT

INUT 9IPAAMTEUOeT a

entered as coefficients or roots, they are stored in both

forms in the database. This approach was taken to allow

direct coipatibility with the storage format in use by TOTAL

(Ref 12). Additionally, the routines used by TOTAL to

convert between coefficient and root form can be employed in

GRAPHIC without modification.

Reduce Overlay. The REDUCE overlay is responsible for

reducing the data stored"in both the graphic and numeric

databases. The structure of this overlay is depicted in

Figure 10. REDUCE operates in two general modes. In one

mode it produces a file of card images for use as input to

the EASY5 program (Ref 7). In the other mode it calculates

the equivalent transfer function for a subset of the block

diagram and stores the answer for further use in interactive

processing.

Regardless of which mode is in effect, the program

first makes any temporary changes in the block diagram

topology that the user requests and then acquires the points

on the diagram between which the equivalent transfer

function is to be calculated. Then the graphic database is

analyzed and compressed to form the signal flow database.

The FLOW subroutine performs this work which amounts to

discarding the graphical position data to create a signal

flow graph that retains only the mathematical connectivity

information. The signal flow database is small enough to fit

entirely in memory. From this point the processing diverges

depending on the mode of operation desired.

41

REDUCE

OVERLAY

FLOW

PROCESSING

EASY5 FONLINE
PROCESSING REDUCTION

Figure 10. REDUCE Overlay

42

NUS/BE operating system (Ref 1,3,5,9). For this reason the

29

If the BASY5 mode is used the signal flow database and

the numeric database are expanded and converted to an

equivalent textual description describing the block diagram

topology and polynomial roots. This operation of mapping

from the GRAPHIC representation into the EASY5 representation

is somewhat complicated since it is a one to many mapping.

This is because GRAPHIC allows transfer functions as large as

order 58 while EASY5 must cascade functions of order 2 or

less. Additionally, while GRAPHIC has an arbitrary element,

the transform box, for any transfer function, EASY5 has many

different elements depending on the combination of numerator

and denominator polynomial orders. Once produced, the text

file describing the block diagram is available for use

without further modification as the complete input file for

EASYS.

If the interactive mode is selected, the sional flow and

numeric databases are analyzed directly and the equiv.lent

transfer function is calculated and stored as a special entry

in the numeric database. This allows the result to be used

in later diagrams and analyses. The method used to find this

transfer function is a computerized implementation of Mason's

reduction method developed by Young (Ref 21).

In this overlay the division of ta3ks in operation is

such that all information shared between subroutines is

stored in the signal flow database. This allows the

routines for FLOW, EASY5 mode, and interactive mode

processing to be implemented as secondary overlays and

43

, : _ -' ' l J -

30

therefore have their code areas share the same memory space

but operate at different times.

Save Overlay. The SAVE overlay is responsible for

permanently storing the GRAPHIC databases so that they can be

reused at a later time. This feature eliminates the need to

redefine the block diagram everytime the program is

activated. The structure of this overlay is depicted in

Figure 11.

The three step process used to save the graphic and

numeric databases consists of the following items. First,

the desired filename is obtained from the user. Second, the

databases are converted from their ramdom mass storage form

to a more compact sequential form. Finally, the sequential

file is passed to the operating system for cataloging as a

permanent file. This method of storing the database is

similiar to that used by the TOTAL program (Ref 12).

Restore Overlay. The RESTORE overlay is responsible for

rebuilding the databases from information in a permanent file

established by a previous SAVE command. The structure of

this overlay is depicted in Figure 12 and closely parallels

the structure of the SAVE overlay.

The RESTORE overlay performs a three step process that

is the logical inverse of that performed by the SAVE

overlay. First, it obtains the name of the file containing

the stored data. Second, it requests the operating system to

attach the specified file to this program. This operation

uses the routines in the NOSLIB library (Ref 2). Finally,

44

SAVE

OVERLAY

GRAPHIC NUMERIC STORAGE

DATABASE DATABASE FILE

Figure 11. SAVE Overlay

REDUCE

OVERLAY

GRAPHIC NUMERIC STORAGE

DATABASE DATABASEFL

Figure 12. 'RESTORE Overlay

15

it reads the data from the file and recreates the two

separate ramdom access mass storage databases of graphic and

numeric data.

Data Structures

Large amounts of data are received and stored by the

program in the process of accepting the block diagram

definition from the user. That data is functionally

categorized and divided into three general data structures

or databases. As mentioned in the preceding parts of this

section, these data structures are the graphic database, the

numeric database, and the signal flow database.

The graphic and numeric databases are shared among all

five of the primary overlays. The data in these two

databases is derived directly from user inputs. The signal

flow database is used only by the REDUCE overlay. The data

in the signal flow database is derived from the content of

the graphic database.

Graphic Database. The graphic database is generated from

the commands input by the user during the DRAW mode of

operation. It contains all the information needed to

reproduce the drawing of the block diagram on the terminal

display screen. Additionally, the information on the diaqram

topology, specifically what symbols connect to each other, is

also contained in this database.

As the user enters commands to define elements of the

block diagram, corresponding records are created in the

46

Ai

database. One record is created for each box, sampler, adder,

input, output, and line element defined by the user. A

connection command generates a record only if a diamond

connection symbol was produced. Otherwise the connection

command results only in a change in the topology information.

The records of the database are structured as shown in

Table IV. Each record contains all the necessary information

to define the representation of the element and its

connectivity to other elements in the drawing. In this regard

the record has entries for the symbol type, location, and

orientation as well as the element label. Additionally, the

record contains pointers to the records for the elements

which are connected to it in the diagram. In this way the

database records form a doubly linked list indicating the

signal flow paths. If the record is for a box or sampler

element it also contains pointers into the numeric database

to the location of its describing paramaters.

To make it easy to access the database, linked lists of

the records are maintained for each element type. A separate

linked list is maintained for each set of box, sampler,

adder, input, output, line, and connection element records.

Additionally, the maximum size or extent of the block

diagram is maintained as a separate parameter for use in

controlling the generation of the optional miniature diagram.

The collection of linked lists and diagram size data are

treated as two nonstandard records in the graphic database.

The structure of these records is given in Table V.

47

Table IV

Graphic Database Record Format

Element Type Use

I ASCII Command code for graphic symbol type.

2 Real X value of current working location.
3 Real Y value of current working location.
4 Real X value of end point for line symbol.
5 Real Y value of end point for line symbol.
6 ASCII System generated visible label.
7 Unused.
8 ASCII User supplied label.
9 ASCII Flag for S or Z domain.
10 Unused.
11 Integer Pointer to numerator polynominal in

Numeric Dataase.
12 Integer Pointer to denominator polynominal

in Numeric Database.
13 Integer Pointer to record for output element.
14 Integer Pointer to record for output element.
15 Integer Pointer to record for input element.
16 ASCII Sign of input from element entry 15.
17 Integer Pointer to record for input element.
18 ASCII Sign of input from element entry 17.
19 Integer Pointer to record for input element.
20 ASCII Sign of input from element entry 19.
21 Real Direction vector X component.
22 Real Direction vector Y component.
23 Real Minimum X limit of element.
24 Real Maximum X limit of element.
25 Real Minimum Y limit of element.
26 Real Maximum Y limit of element.
27 Real Line direction vector X component.
28 Real X location of element label.
29 Real Y location of element label.
30 Integer Element label lenght.
31 Unused.
32 Unused.
33 Unused.
34 Real Line direction vector Y component.

48

Table V

Specialized Records in Graphic Database

a) Linked List (entry 1001)

Word Use

1-100 Array of 6 interwoven linked lists.
1001 Pointer to start of box list.
1002 Pointer to end of box list.
1003 Pointer to start of sampler list.
1004 Pointer to end of sampler list.
1005 Pointer to start of adder list.
1006 Pointer to end of adder list.
1007 Pointer to start of input list.
1088 Pointer to end of input list.
1009 Pointer to start of output list.
1010 Pointer to end of output list.
1011 Pointer to start of line list.
1012 Pointer to end of line list.
1013 Pointer to start of connect list.
1014 Pointer to end of connect list.
1015 Pointer to first free location in array

of linked lists.
1016 Count of box entries.
1017 Count of sampler entries.
1018 Count of adder entries.
1019 Count of input entries.
1020 Count of output entries.
1021 Count of line entries.
1022 Count of connect entries.

b) Drawing Extent (entry 1002)

Word Use

1 Left edge of diagram in UCS.
2 Right edge of diagram in UCS.
3 Bottom edge of diagram in UCS.
4 Top edge of diagram in UCS.

Note: * UCS * User Coordinate System. (Units the
drawing is referenced to in the
database.)

49

Because of its size, no attempt is made to keep the

graphic database in memory. Instead, the database is

organized as a random access mass storage file. Although

this approach introduces additional overhead for each access

to the database the delay is not significant. The random

access method was chosen since most of the time only one

element record is of interest while processing a given

command. It is only for the DELETE and CONNECT commands that

the database needs to be completely searched. The linked

lists allow the PARAMETER mode to selectively access only the

box and sampler element records and avoid the need to read

the rest of the records. The only other time all the

database records are read is when the diagram is redisplayed

after the CRT screen is erased or when the signal flow

database is generated.

Numeric Database. The numeric database contains all

information necessary to define the mathematical properties

of the arbitrary transform boxes and samplers in the graphic

drawing. It contains one record for each transform and one

combined record for all sampling rates.

The individual transform records each contain the

mathematical description of the transfer function stored as

a ratio of polynomials. The functions are stored in both

coefficient and root form as shown in Table VI. The format

chosen for this data is identical to the storage format used

by TOTAL in order to increase future compatibility between

the two programs.

5,

Table VI

Numeric Database Record Format

Element _TM Use

1-51 Real Coefficients of numerator polynominal.
52-192 Real Coefficients of denominator polynominal.
183-152 Real Real part of numerator polynominial roots.
153-202 Real Conplex part of numerator polynominal roots.
263-252 Real Real part of denominator polynominal roots.
253-302 Real Complex part of denominator polynominal roots.
363 Integer Order of numerator polynominal.
364 Integer Order of denominator polynominal.
305 Real Gain of transfer function.
366 Real Gain of numerator polynominal.
307 Real Gain of denominator polynominal.

51

..Il1l I I I i~ l l I

The sampling rates of all samplers in the system are

stored as one record at the end of the database.

The database is created during the "PARAMETER" mode of

the program and resides on a mass storage device. It can be

reused in later invocations of the program, but only with

its corresponding graphic database.

Signal Flow Database. The signal flow database is

created during the REDUCE mode of operation. It is generated

from the data in the graphic database and has pointers into

the numeric database.

This database represents the signal flow graph of the

diagram defined during the DRAW mode. As such it contains

only information regarding the diagram topology or

connectivity. All information from the graphic database

regarding labeling or the absolute positioning and

orientation of elements is discarded. The records of the

signal flow database occur in three different formats. The

exact content of each record format is shown in Tablc VII.

The signal flow diagram, unlike the graphic and numeric

databases, is maintained entirely in memory. This is done to

allow easy and rapid access to all records during the

reduction process. This access is needed since the process of

translating the diagram into EASY5 format as well as the

process of finding the equivalent transfer function both

require repeated accesses to all records of the signal flow

database.

52

Table VII

Signal Flow Database Record Format

a) Format for Adder Elements:

Entry Me Use

I Integer Key of original record in graphic database.
2 ASCII Symbol type indicator.
3 Integer Pointer to output element record.
4 Integer Pointer to input element record.
5 Integer Pointer to input element record.
6 Integer Pointer to input element record.
7 ASCII EASY5 label assigned to this element.
8 Integer Pointer to output continuation record.

b) Format for Output Connection Records:

Entry L Use

1 Integer Unused.
2 ASCII Flag indicating output connection record.
3 Integer Pointer to output element record.
4 Integer Pointer to output element record.
5 Integer Pointer to output element record.
6 Integer Pointer to output element record.
7 Integer Pointer to input element record.
8 Integer Pointer to next connection record.

c) Format for Box, Sampler, Input, and Output Elements:

Entry Z Use

1 Integer Key of original record in graphic database.
2 ASCII Symbol type indicator.
3 Integer Pointer to output elemeht record.
4 Integer Pointer to output element record.
5 Integer Pointer to output connection record.
6 Integer Pointer to input element record.
7 ASCII EASY5 label assigned to this element.
8 Integer Pointer to parameters in numeric database.

53

V. Design Evaluation

The design of the GRAPHIC system and its interfaces as

discussed in the two preceding chapters is fully documented

in the form of a User's Manual which appears as Appendix A to

this paper. Although the GRAPHIC system was designed with the

interface constraints discussed in chapter three in mind, it

was necessary to verify the actual feasibility of the

proposed design. For this reason a subset of the total system

was implemented. The area of specific interest was the

suitability of the proposed graphic input language.

System Implementation.

The system implemented to test the graphical interface

with the user contained only selected features from each of

the modes of operation of GRAPHIC. In the DRAW mode, the

entire set of basic commands was implemented. Only the user

group feature, which allowed formation of collections of

symbols, was omitted. In the PARAMETER mode, the coefficient

and root forms of input were implemented. The input for

sampler periods was omitted. In the REDUCE mode, the EASY5

translation for continuous systems was implemented. The

digital or sampled systems and the online reduction features

were omitted.

Although some of the features were omitted for the test,

the capacities of the internal tables were maintained at

their full size estimates. This was done to obtain realistic

estimates of the amount of memory space needed to implement

54

the complete version of GRAPHIC as defined in Appendix A. In

this regard the graphic database was implemented to allow

109e elements (records) and the signal flow database was

implemented to handle 500 nodes (records). These sizes are

proportional to each other since the signal flow database

contains approximately one entry for every record in the

graphic database that is not a line or connection element

record. The items omitted from this system implementation, as

discussed earlier, did not effect the memory size estimates

since they were to be implemented as parallel or secondary

overlays and therefore share space with the modules

implemented for this test. The overall size of the test

system is shown in Table VIII.

The overall capabilities of the test system implemented

allowed the user to draw arbitary block diagram topologies

representing linear time continuous control systems. In the

DRAW mode, commands were implemented to allow the user to

define and modify block diagrams as well as recentering them

within the work area. The section of the PARAMETER mode that

was implemented allowed specification of the transfer

function polynomials. In the REDUCE mode, only a subset of

the EASY5 processing was implemented. This subset allowed the

translation of linear time continuous systems only.

User Test.

The primary purpose of the user test was to verify the

design decisions made in deriving the specification for the

55

Table VIII

GRAPHIC Program Test Implemientation Size

a) Overlay Sizes:

Overlay Size: Decimal Octal

MAIN 15670 36466
DRAW 4210 10162

*PARAMETER 3008 5706
REDUCE 9292 22114
SAVE 1301 2425
RESTORE 1196 2254

b) Size During Execution (Including Overhead):

Overlay Size (octal)

MAIN 36466
DRAW 46655
PARAMETER 44373
REDUCE 68667
SAVE 41129
RESTORE 40747

56

GRAPHIC system. As such the items that were of greatest

interest during the test were whether the user could create

the block diagram and modify it using the commands defined

and also whether the process provided for doing so seemed

logical and convenient to the user. Since the above factors

to be evaluated for the test would have subjectively

developed answers, the test is best characterized as an

experiment rather than a performance measurement.

The subjects used for the test were design engineers

from the Flight Dynamics Lab. These subjects would be the

prime users of the program and in some cases were individuals

who had participated earlier by providing inputs during the

problem analysis and requirements definition. The subjects

were allowed to use the program with a minimum of

instructions. Some instruction was necessary since complete

descriptive documentation had not been generated at the time

of the test.

During the user test the subjects were first presented

with the initial display for the DRAW mode, Figure 13.

Using the basic command list in Table IX they were able to

experiment with the graphic interface and define systems of

block diagrams such as the one in Figure 14. The actual

method of producing such a diagram is detailed on a step by

step basis in Appendix A. Also it was possible to shift the

drawing within the window and cause the miniature to appear

automatically when any of the elements fell outside of the

work area, Figure 15. Error messages, when required were

57

0 L.

@2
q.4

'-4
us
'-I

'-4

4)
V

l.a 0

LI

S

II
3 0 ri

r, q~h. I I S ~ 4)

~ I! ~ 54 h

58

Table IX

DRAW Mode Commands

Command Code

Box B

Sample S

Adder A

Input I

Output 0

Line L

Move M

Connect X

Delete D

Working Location W

Center C

Redraw R

59

0 1

" -I
S°f1!U

EJ" .

E I' 5 i

d1.

0

t 04)

0;
3R H4

61.

scrolled horizontally across each line the text area using a

"$" as the start of message delimiter as shown in Figure 16.

Once the drawing had been defined the user was able to

activate the PARAMETER mode. In the test implementation of

GRAPHIC all transforms were assumed to be real continuous

transforms and all samplers were assumed to have equal

sampling periods of one second. The only mode implemented

for transform parameter input was where the program

automatically polled the user for each transform needed. An

example of the format is in Figure 17. Figure 17

corresponds to the input required by the drawing shown in

Figure 18.

Once the diagram and its parameters were defined, the

user was able to use the REDUCE mode. As mentioned eariler,

only a restricted portion of the EASY5 reduction capability

was implemented. The system was capable of producing the

textual card image definitions for any linear time continuous

control system diagram. Figure 19 shows the EASY5 definition

produced by the test system from the inputs shown in Figures

17 and 18.

Additionally, the test program allowed the user to

operate the SAVE and RESTORE modes. However, for the test

implementation only the graphic database was saved.

User Test Results

The results of the user test were derived from the

activities of the individual users during numerous runs of

62

w r4

[U

-. to.

639.1 I
• =I=!! 0

i*

eerErtcacfr op ROOT room i dcfRI %C
-*,-E POLY COEUS

it"*T f1"C? THfIIOm Were COUcsIID
v0 i RP CoUrs "IGHsy To Louts?

S4.'ch THAT 04" 1 S11" I(NI)3 S(-I
Ct"fq ri MAH Ontof.cof VS)0.9.4047"c T~ DEW"g owIvca.corus Ms.2.3
MCIA TF1 tM OftCRICOEFS)1.4.3.-3.1

9INmTEr Kw1mN ORDER. COES)8.1.-1.3I1A&-4
amTEr 3 HUN OR0to COEFS >*. -3
EKN W3 DENO" @nkiW .cat 31.1.4.3
ALL COWFS SE?

Figure 17. Example of PARAMETER Mode Input

64

-)I
"__ __ _ __ _ _ __ _ __ _'

• o I.'

55

..III

CA

cu

(Uo

AA

0

'4 0

z j 4.4 - .4 q

.0

OIL 0 P4

Pag A

." (Y.4 4 -, %e

60 US ob W4V IUP 4M v 4 %

lb,& IL bd .4 o tyN0 m 4

w a la 6 0 V9A -
IL 4 (YW411) .r to %a j i

4m IL se of a~-r 0. 11 ss4 U
m 0 30 a-20 .49 ft a * 4

W4 Ve e4 W4 V414 1 4 4-4
.. .a - 4 I

'iV-lWoc coo NWNoz y4w9 4054 0.4%.S =Womw~w O.N..W

i w IL u 0 K 0m~4~cm. 0NQ.NCLI C) Lw aei.iCa CI- I- 4
2~S*~ u41 a.. @.Nouuuuu~oO~a~g..

loommoll66

the GRAPHIC test implementation,

During the tests the factors that were of most interest

were: 1) questions asked by the test subjects, 2) actions

taken by the test subjects that produced results different

from what the subject expected, and 3) feelings expressed by

the test subjects regarding whether the commands, actions,

and graphics seemed logical.

The general results of the user test conducted on the

GRAPHIC system are summarized below:

1) The three step process for defining and analyzing a

block diagram via the DRAW, PARAMETER, and REDUCE modes was

considered a convenient and logical partitioning of the

problem.

2) The ability to save and restore the databases was

considered essential since it eliminated the need to

redefine the block diagram systems upon every reuse of the

GRAPHIC program.

3) The division of the terminal face into four distinct

areas as previously shown in Figure 3. was considered an

acceptable organization for the display.

4) When in the DRAW mode, the complete list of commands

in the graphic prompt area was noted as freeing the user

from having to memorize the command codes.

5) The use of the first letter of the command mnemonic

as the command code was cited as excellent with one

exception. The resolution of the conflict between CENTER and

CONNECT by assigning the code C to CENTER and the code X to

67

CONNECT was considered unacceptable. During the user test

there was a high incidence of selecting C for the CONNECT

operation even with the actual command codes displayed in the

prompt area.

6) Correct positioning of the current working location

(CWL) prior to using the CONNECT command was not always

correctly performed by the users. Since the CONNECT

operation affects the elements of the diagram in the vicinity

of the CWL, in order to split an output it is necessary to

MOVE to the location where the split is to be placed and then

perform a CONNECT. It was the MOVE prior to the CONNECT that

was often ommitted by the test subjects. The other case of a

connection, where an element just drawn is to be connected

into the drawing, presented no problem since the act of

drawing the element to be connected automatically positions

the CWL correctly.

7) The ability to move the drawing around in the work

area for defining and viewing different areas of a large

diagram was considered essential. The implementation of the

CENTER command was considered somewhat inconvenient. It was

pointed out by the users that, since the CENTER command

required one to point at the position that was to become the

center, centering on an element not currently visible

required repeated use of the CENTER command. This condition

was further aggravated since after each CENTER command there

was a delay while redrawing the diagram before the next

CNTER command could be issued.

i 68 '

8) The graphic symbols used to depict the various

elements in the block diagram were considered acceptable

except minor changes in the input and output element symbols

were suggested.

9) The automatically generated miniature drawing for

large diagrams was cited as being very useful for keeping

track of the entire drawing. The use of corner marks to

indicate what portion of the miniature was visible in the

work area was noted as being useful for rapid correlation

between the miniature and work area displays.

Modifications

Based on the results of the user test several modifi-

cations were made to the graphic input language. These

changes were made to eliminate the confusion that was

experienced by the test subjects during the user test.

A review of the user test results shows that items 5,

6, 7, and 8 each identify problems that exist with the

initially proposed design for the GRAPHIC system, Appendix

A. The discussion that follows addresses each problem

identified and the design change that was developed to

eliminate that problem.

Item 5 in the test results concerned the confusion

between command codes C and X representing CENTER and CONNECT

respectively. The initial assumption for the original design

was that the use of X as the code for CONNECT could be

equated to the use of an X in electronic circuit diagrams to

69

indicate a connection between two wires that crossed. This

assumption proved false as was demonstrated in the test.

Since it was noted during the test that CONNECT commands were

used more often than CENTER commands, the letter C was

assigned as the code for CONNECT. The command code for

CENTER was also modified. Changes to the CENTER command are

explained in conjunction with item 7 below.

Test result item 6 addresses another problem associated

with CONNECT. This problem arises when the user forgets to

first position the CWL with a MOVE command before attempting

to split outputs via the CONNECT command. This is a clear
example of the process model and the user model not matching. t
The process model, as controlled by the input language,

represents this action as a two step operation. On the other

hand, the user views it as a one step operation, simply

connect. Further analysis indicated that the first step, the

MOVE step, in the computer process model is associated solely

with positioning the CWL. Since the concept of a CWL is not

consciously present in the user's mental model of the actions

required for drawing a diagram, clearly it is the MOVE step

which must be eliminated. The approach taken was to assume a

MOVE command was issued and handle it automatically, if the

crosshair location is not at the CWL when the CONNECT command

was received. This approach solves the problem by causing

the process model and user model to coincide.

Item 7 of the test results identified a problem with the

CENTER command. The manifestation of the problem was that the

70

user could not center an object in the work area with a

single command if the element was not already visible in the

work area. The solution to this was to expand the power of

the CENTER command. Specifically, when pointing to the

element that was to be centered in the work area, the user

would now be allowed to select any element that appeared in

either the work or miniature areas. This would allow direct

one command positioning to any element in the diagram.

Additionally, two other specialized options of the CENTER

command were created. One allowed centering on the initial

default window, while the other allowed centering on the CWL.

The symbol representation problem identified in item 8

was just a graphical depiction problem. It is a simple

example of the problems that occur when the programmer is

allowed to specify the aspects of the interface instead of

the user. The solution to this was simply to redefine the

graphic symbols as the user expected them to appear.

The change in the graphic symbols was effected as soon

as the problem was discovered. This was done to prevent the

graphic symbology problem from overshadowing any of the other

aspects of the test. The old symbols and the new final

versions are shown in Figure 20. Because the change occurred

at a very early stage, all figures in this report show only

the final graphic symbols for these elements. The other

changes mentioned above were accomplished as modifications to

the proposed design after the test was completed. The

complete details of these changes are documented in Appendix B.

71

ORIGINAL FINAL

a) Input

b) Output

Figure 20. Representation of Input and Output Symbols

72 4

VI. Conclusions and Recommendations

The GRAPHIC system as designed represents an effective

computer aided design tool. It al.'Owr the rapid

specification of arbitrary topology contol systems in the

form of block diagrams and then translates these diagrams

into forms acceptable to other programs such as EASY5 and

TOTAL for further analysis.

The implementation of the graphic input language for

this system is well suited for the process of creating the

block diagrams. The interface as designed matches the level

of concentration required by the user for CRT definition of a

block diagram with that required for a paper sketch

definition of the block diagram. In this way the interface

retains a natural feeling for the user instead of requiring

conscious thought for the selection of the correct input

command. The use of graphics successfully hides unneeded

information, such as orientation angles of symbols, while

displaying the significant items, the signal flow

interconnections, in their natural diagrammatic form. This

makes optimum use of the human pattern recognition

capabilities available for error detection since any errors

are completely depicted in the visible drawing on the CRT.

The user test sucessfully demonstrated that an effective

graphical method can be developed for use in specifying

control system block diagrams for computer analysis. It also

demonstrated that this graphical method can be designed to

73

allow rapid block diagram definition while retaining enough

aspects of the normal non-computer sketching method to

continue to feel natural to the user.

Due to the positive results obtained during the user

test it is recommended that a fully functional version of

the GRAPHIC program be implemented. This system should be

*=reated from the design specified by Appendices A and B.

The test implementation as documented in Appendix D should

serve as the foundation for this implementation.

Although the GRAPHIC system greatly improves the ease

with which a user can generate block diagrams for analysis,

there are still many areas where further investigation would

be fruitful. These areas are summarized below:

1) The GRAPHIC program currently is designed only to

interface with the Tektronix 4000 serie-, terminals. Any

hardcopy of the diagraMi analyzed is produced through these

terminals. It would be desirable to extend the design to

allow for other interactive graphic terminals and also to

allow the diagrams to be copied to noninteractive devices

such as plotters.

2) As was mentioned earlier, the GPAPHIC support library

CORE allows drawing in three dimensions. It would be

desirable to investigate the use of the third dimension for

representing varying levels of detail. Conceptually this

would allow one to step back and view s system under

Soaiulys as several high order black boxes or zoom in for a

teAilod tepresentation of the individual elements

74

i l l A

within the black box.

3) The entire GRAPHIC system should be integrated with

the TOTAL system (Ref 12) to allow complete definition and

analysis of control systems as though the two packages were

one consolidated computer aided design tool. Specifically,

the consolidation should attempt to eliminate any conscious

user thought involved with transferring data between the

GRAPHIC and TOTAL packages.

"75

Bibliography

1. Air Force Institute of Technology. Dgital C
Manual for Faculty and Students of it ool--
ngineer i (-t-TEd'ton). Wright-Patterson AFB, Ohio:

AFIT, August 1978.

2. ASD Computer Center. Battelle Disk File Manipulation
Routines User's Guide (RevisioW B). -W'rght-Patterson
AFB, Ohio: ASD Computer Center, July 1978.

3. ASD Computer Center. CDC NOS/BE User's Guide (Revision
F). Wright- Patterson -ATB,--i: ASD Compu-t-er Center,
August 1979.

4. ASD Computer Center. Cyber Control Language. Wright-
Patterson AFB, Ohio: AS Coi5mpuErCenter, December 1977.

5. ASD Computer Center. INTERCOM Guide (Revision A). Wright-
Patterson, Ohio: ASD Computer Center, September 1976.

6. ASD Computer Center. Subprogram Library Guide (Revision
D). Wright-Patterson AFB, Ohio: ASD Computer Center,
January 1978.

7. Boeing Aerospace Company. EASY5 User's Manual for
Control System Simulation. Document No. D 180-19147-3,
Contract- 5- -7. Seattle, Washington, Boeing
Areospace Company, 1979.

8. Control Data Corporation. Fortran Extended Version 4
Reference Manual. Pub. No. 614978%0, Revsion D.
Sunnyvale,-California: Publications and Graphics n
Division, 1978.

9. Control Data Corporation. INTERCOM Version 4 Reference
Manual. Pub. No. 60494600, Revision E. t aul,
Minnesota: Publications and Graphics Division, 1978.

10. DeMarco, Tom. Structured Analysis and stem
Specification. New York: Yourdon I .,197)7

11. Foley, James D. and Victor L. Wallace. "The Art of
Natural Graphic Man-Machine Conversation," Proceedings
of the IEEE, 62: 462-471 (April 1974).

12. Larimer, 2nd Lt. Stanley J. An Interactive Computer-
Aided Design Program for Digital and Continuous ontrol
Sys=enmnalYsis EandS-- hes is. MS-'tesis. Wright-
Patterson AFB, OhMT: Xi Force Institute of Technology,
March 1978. (AD A055 418).

76

13. Larimer, Stanley J. and Gary B. Lamont. "An Interactive
CAD Program for Control System Analysis and Synthesis,"
Proceedings Sixteenth Annual Allerton Conference on
Commnication, Control, a-nd 'CoU ,7" October
1970). ulng28-9 6coe

14. Miller, George A. "The Magic Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information," Psychology Review, 63 (2): 81-97 (March
1956).

15. Newman, William M. and Robert F Spoull. Principles of
Interactive Computer Graphics (Second Edition).
York: McGraw-Hi Boo Company, 1979.

16. Spence, Robert and Mark Apperley. "The Interactive-
Graphic Man-Computer Dialogue in Computer-Aided Circuit
Design," IEEE Transactions on Circuits and Systems, CAS-
24: 49-61TFebruary 1977)

17. "Status Report of the Graphics Standards Planning
Committee of ACM/SIGGRAPH," Computer Graphics, 11 (3)
(Fall 1977).

18. Tektronix, Inc. Plot 10 Terminal Control System User's
Manual. Document No. A'2-IT74-. Beaverton, Oregon,
Information Display Division, Tektronix, Inc., 1974.

19. Troxel, Donald E., et al. "CORE," unpublished report for
course MA 6.86, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, 1979.

20. Voltz, Richard A., et al. "COINGRAD - Control Oriented
Interactive Graphical Analysis and Design," IEEE
Transactions on Education, E-17: 143-152 (August 1974)

21. Young, Kenneth Royce. The Design of Automatic Control
Sstems usin InteractTv C.-u'iEUr-Graphis. P..
Dissertation, The University of Texas at Austin, 1974.
Ann Arbor, Michigan, University Microfilms
International, 1979.

22. Yourdon, Edward and Larry L. Constantine. Structured
Design (Second Edition). New York: Yourdon Press, 1978.

77

APPENDIX A

UJSER'S MANUAL

FOR

GRAPH IC

Preface

This appendix documents the complete design

specification for the GRAPHIC system. It is structured as a

User's Manual for two reasons. The first reason is to

highlight the features that will be available as part of the

GRAPHIC package. The second reason is to enable actual

examples of user inputs and outputs to be specified. This

approach of specifying the system design via a User's Manual

was considered to provide the best means of allowing the

system to be visualized prior to its implementation.

Contents

Page

Prefaceii

List of Figures v

List of Tables vi

I. General Description 1

Overview 1
General Operation 4
Notation 5

II. Modes of Operation 6

Draw Mode 6
Box Command - Code: B 8
Adder Command - Code:A 10
Sampler Command - Code:S 10
Input Command - Code:I 11
Output Command - Code:O 11
Line Command - Code:L 11
Move Command - Code:M 12
Connect Command - Code:X 12
End Command - Code:E 12
Delete Command - Code:D 13
Redraw Command - Code:R 13
Working Location Command -'Code:W ... 13
Center Command - Code:C 14
Group Command - Code:n 14

Group Mode 15
Parameter Mode 17
Reduction Mode 21
Save and Restore Modes 25
Control Flags 25
Storage Variables 26

III. Sample Operation 27

Program Initialization 27
Diagram Definition 27
Parameter Definition 27
Reduction 28

ii

Contents

IV. Current Implementation Status 40

Draw Mode 40
Group Mode 40
Parameter Mode 40
Reduce Mode 40
Save Mode 41
Restore Mode 41
Summary 41

iv

List of Figures

Pigure ?lie

1 Terminal Display Organization 2

2 Example of Individual Symbol Creation 9

3 Initialization Sequence 29

4 DRAW Mode Initial Display. 30

5 DRAW Mode Example Step l 32

6 DRAW Mode Example Step 2 32

7 DRAW Mode Example Step 3 32

8 DRAW Mode Example Step 4 33

9 DRAW Mode Example Step 5 33

1 DRAW Mode Example Step 6 33

13 DRAW Mode Example Step 7 34

12 DRAW Mode Example Step 8 34

13 DRAW Mode Example Step 9 34

14 DRAW Mode Example Step 10 35

15 DRAW Mode Example Step 11 35

16 DRAW Mode Example Step 12 35

17 DRAW Mode Example Step 13 36

18 DRAW Mode Example Step 14 . o 36

19 DRAW Mode Example Step 15 36

20 DRAW Mode Example Step 16 37

21 DRAW Mode Example Step 37

22 DRAW Mode Example Step 18 37

23 PARAMETER Mode Example 38

24 Example of EASY5 Format Reduction 39

V

List of Tables

Table Page

I DRAW Mode Comnds. 7

ii Example Comimand Sequence 31

vi

USER'S MANUAL FOR GRAPHIC

I. General Description

GRAPHIC is designed to allow the user to rapidly define

complicated control systems for further analysis. It does

this by allowing the user to draw the desired control system

in graphical block diagram form on the face of a CRT. In

this way the GRAPHIC system avoids the need for complicated

textual descriptions of large control systems while

capitalizing on the human's inherent pattern recognition

capability for drawing and correcting the graphical

description. Once defined in graphical form, the GRAPHIC

program can be used to find the equivalent transfer function

between any two points in the diagram. Also, if desired, the

diagram can be translated into its equivalent textual

description for analysis by the EASY5 program (Ref #7).

Overview

The GRAPHIC system is designed to operate in a

timesharing mode with the user at a Tektronix 4000 series

terminal equiped with a graphic crosshair. The terminal

display area is divided up into four areas as shown in

Figure 1. Each area is used only for the purpose indicated.

~1

0
q

4.)

'-A

0.

04.

E-4

There are six major modes of operation in the GRAPHIC

system. These modes are described in detail in chapter two

and are summarized below:

The DRAW mode allows block diagram topologies to

be created and modified.

The GROUP mode allows groups of elements to be

created so that the entire group can be referenced by

one command.

The PARAMETER mode allows the mathematical

parameters of the individual transfer functions to be

specified. The sampling periods are also specified in

this mode.

The REDUCE mode allows the block diagram to be

reduced to its equivalent transfer function or

reduced to its equivalent textual description for

further analysis by the EASY5 program.

The SAVE mode allows the block diagram and any

mathematical parameters describing it to be stored as

a permanent file.

The RESTORE mode allows a permanent file created

in the SAVE mode to be used for input to restore the

previous definition of a block diagram and its

numeric parameters for further modification and

analysis.

3

General Operation

The normal method of using the GRAPHIC program for block

diagram analysis would be to select the different modes of

operation in the order described below.

Upon initiation the GROUP mode would usually be selected

first. In this mode any groups of the symbols the user

desired to create could be defined. This mode is optional and

no groups of symbols need to be defined. The next mode would

be the DRAW mode. This mode would allow the user to define

the block diagram he desired. Next, the PARAMETER mode would

be selected to specify the switch sampling periods and the

mathematical transfer functions for the elements of the

diagram. After these modes had been completed the REDUCE mode

would be selected to accomplish the form of reduction desired

by the user. Finally, the SAVE mode would be selected if the

user desired to reuse the current block diagram at a later

date.

If the drawing had been stored perviously, the RESTORE

mode could have been selected before the GROUP mode. This

method allows the reuse of a diagram from a previous

activation of the GRAPHIC program.

4

AD-AO0O 362 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB ON SCHOO-EIC P/e 9/k. 3 GRAPHICAL INPUT NETHODOLOGY FOR COMPUTER AIDED ANALYSIS OP CONT-TC(U)
DEC 79 0 E TROXEL

UNCLASSIFIED AFXT/B/MA/79D12///o//

EIIIIIIEEIIEEE

I.'I~/IIl
IIIIIIIIIII~i1

Notation

Throughout this manual numerous examples of input and

output appear. For presentation of these examples the

following convention was used to distinguish between computer

generated output and user generated input. The computer

generated output is always shown in capitial letters and the

user generated input is always shown in lower case letters.

Example:

COMPUTER OUTPUT > user input

Additionally, due to the syntax selected for the user

interface, most of the lines of text change from computer

output to user input at the delimiter ">".

When further explanatory notes are needed to help

clarify the example they are shown in parenthesis.

Example:

COMMAND > draw (Select draw mode for diagram
definition.)

5 , - ..

It. Modes of Operation

As mentioned in chapter one there are six modes of

operation in the GRAPHIC program. These modes are DRAW,

GROUP, PARAMETER, REDUCE, SAVE, and RESTORE. The operation of

each mode is described in detail in this chapter.

Draw mode

In order to define the system to be analyzed the user

must draw a picture of the system's block diagram on the

CRT.

To form the desired drawing the user must use the

graphic crosshair to indicate where the symbol is to go and

the keyboard to indicate what symbol is to be drawn. Every

symbol is positioned in the same manner. First move the

graphic crosshair by using the thumtwheels and then when the

desired position is reached enter the one letter code for the

desired symbol. The commands allowed and their letter codes

are shown in Table I.

This method of producing the block diagram a symbol at a

time has been designed to require only one input, crosahair

position, per symbol. Because of this all symbols are

produced at a preset and fixed size.

The elements of the block diagram must be drawn in the

direction of signal flow. When it is necessary to continue

from another point, the move command should be tised. While

drawing is under way the system keeps track of the current

working location (CWL) and updates it after each symbol is

6

Table I

DRAW Mode Commands

Command Code

Box B

Sampler S

Adder A

Input I

Output 0

Line L

Move M

Connect X

Delete D

Working Location W

Center C

Redraw R

II

drawn. This working location is used as the starting point

when a symbol is requested and the crosshair is used as the

end point if an end point is needed.

The box, adder, sampler, input, and output symbols must

be connected to a line and not directly to each other.

Drawing of symbols must always proceed in the direction of

signal flow. Arrowheads to help clarify the direction of

signal flow will be generated periodically and automatically

by the system when the topology of the diagram becomes

unambiguous. These arrowheads will appear at the inputs to

box, adder, and sampler symbols.

Box Command - Code:B. The crosshair location is not

needed for drawing the box, only the letter "B" is used. The

box is drawn fron the current working location, in the

direction that the last line was drawn. A new working

location is established on the far side of the box when it is

complete. Figure 2 contains an example how the box and all

other symbols are oriented and created.

The box symbol is used for all transfer functions. As

each box is drawn the user will be queried for the type of

box being defined. The square text cursor will appear in the

lower left corner of the box. The type name is then entered

and following the type entry the box will be numbered

automatically.

The general type, TF, can be specified for arbitrary

continuous or discrete transfer functions. Specialized types

for use with EASY5 reduction can also be specified. These

8

Circle 0 Indicates Current Working Location (CWL)

Dijwond Indicates Crosahair Location

Berfore Command After Command

a) Box

b) Sampler

a) Adder

d) Line

e) Input

f) Output

Figure 2. Example of Individual Symbol Creation

special types include FORT, AV, LO, and SD (Ref #7).

Parameters defining the specifics of each box are input

in the parameter mode.

Adder Command - Code:A. The crosshair location is not

needed for drawing the adder, only the letter "A" is used.

The adder is drawn centered on the current working location

and this location is not changed. See Figure 2 for an example

of adder creation.

This symbol is used whenever two or three inputs must be

added together. If more than three inputs are to be added

at any one place, two or more adders must be used in series.

The sign of the input is requested as each input to the

adder is defined. The square text cursor will appear next to

the input and the user must input either a "+" or "-".

Adders are numbered with An numbers for identification

starting with Al.

Sampler Command - Code:S. The crosshair location is not

used for drawing the sampler, only the letter "S" is used.

The sampler will be drawn from the current working location

in the same direction as the previous line. The working

location will be updated to the far side of the sampler

symbol. See Figure 2 for an example of sampler creation.

This symbol is used whenever digital sampling is

required.

As each sampler is created it will be numbered for

identification with a Sn number, starting with S1.

is

Input Command Code:I. The crosshair location and the

letter "I" are used to draw the input symbol. The input

symbol is upright and to the left of the crosshair location.

The current working location is not used and a new current

working location is established at the crosshair location.

See Figure 2 for an example of input symbol creation.

This symbol is used to indicate all input nodes.

As each input symbol is produced it will be numbered for

identification with a In number, starting with I1.

Output Command - Code:O. The crosshair is not used for

drawing the output symbol, only the letter "0" is needed. The

symbol is drawn upright and to the right of the current

working location. See Figure 2 for an example of output

symbol creation.

This symbol is used to indicate all output nodes.

As each output symbol is produced it will be numbered

for identification with an On number, starting with 01.

Line Command - Code:L. The crosshair location and letter

"L" are used in drawing the line. The line is drawn from the

current working location to the crosshair location and the

current working location is changed to the crosshair

location. See Figure 2 for an example of line creation.

The direction that the line is drawn in, from current

working location to crosshair location, always is taken as

the direction of signal flow through the block diagram.

11

Move Command - Code:N. The crosahair location and the

letter "N" are used for this command. The current working

location is changed to the crosshair location.

The move command is used to change the current working

location so that the definition of the block diagram can

continue from some arbitrary point that is not connected to

the last symbol that was drawn.

Connect Command - Code:X. The crosshair location is not

used, only the letter OX" is needed.

The connect command is used to specify that at the

current working location a connection is to be formed with a

previously drawn element. If this is a connection to split an

output path then a connection diamond will be drawn. Por

other types of connections no diamond .ill be drawn.

Connections without a diamond symbol will most often be used

to continue a drawing along a path that was interrupted

earlier or for the termination of a path in an adder symbol.

If the connection is to an adder symbol the appropriate

+ or - sign will be requested as explained under adder

commands.

In all cases if a successful connection is formed the

current working location will be at the crosshair location.

If an error occurs, such as no symbol to connect to, the

terminal will beep and the current working location will not

be changed.

End Command - Code:E. The crosshair location is not ,

used, only the letter "E" is needed. This command is used to

12

terminate the DRAW mode of operation and return to the

primary command level where another mode may be selected.

Delete Command - Code:D. The crosshair location and the

letter "D" are used in this command. The element pointed to

by the crosshair will be logically deleted from the database

and the drawing will be marked with two X's to indicate the

element is no longer an active part of the diagram. On

subsequent redraws of the diagram the element deleted will

not be shown at all. The current working location is

unchanged.

If, under the crosshair location, no element of the

drawing can be found or if more than one element is found

this is considered an error and the terminal will beep

indicating that the command was ignored. If a deletion is

still desired the crosshair location should be changed

slightly to better designate the desired element and then the

command reentered.

Redraw Command - Code:R. The crosshair location is not

used and only the letter "R" is needed. A redraw causes the

terminal screen to be erased and all current elements in the

database for the block diagram are drawn on the CRT. The

current working location is unchanged. The information

displayed in the text area is not redisplayed.

This command is used to remove from view all items that

have been marked by X's from previous delete commands.

working Location Command - Code:w. The crosshair

location is not used and only the letter ON" is needed. When

13

the command is received the square text cursor is displayed

with the lower left corner of the cursor indicating the

position of the current working location.

To bring the crosshair back for further drawing of block

diagram symbols enter a carrage return. This will cause the

crosshair to be redisplayed.

Center Command - Code:C. The crosshair location is used

to indicate the spot in the existing diagram that is to be

centered in the work area. The current working location is

relocated along with the entire diagram so that it remains on

the last symbol in the same relative position to the elements

of the diagram as before the command.

When the block diagram becomes larger than the work area

the center command is used to shift the existing drawing

within the work area to create more room for defining

elements. If any of the existing diagram gets shifted out of

the work area, a miniature of the entire diagram will be

produced in the miniature area. The miniature is produced

automatically unless inhibited by the value of the flag

MINIATURE.

The miniature if produced is a copy of the diagram at

the time of centering and is not updated by further drawing

in the work area. The miniature is updated only when another

center command or a redraw command is issued.

Group Command - Codetn. Both the crosshair location and

the numeric code n are used to draw the user group of

elements. The code can range from 0 to 9. It indicates which

14

of the groups created by the GROUP mode commands is to be

drawn. The CWL is moved to the point on the group defined as

the final CWL location when the group was predefined.

User groups are a method of conveniently drawing a group

of symbols that are going to be repeated several times

within a diagram. Once defined as a group, the symbols can

be copied into the drawing at any location by giving the

group number as the command code. This works exactly the

same as when a code letter is given except more than one

symbol is drawn.

Elements within the user group exist as individual items

and can be modified as though they had been drawn

individually.

Group Mode

The GROUP mode is used to define collections of elements

so that the entire group can be referenced by one command.

These groups are designed to be collections of elements, such

as a subsystem, that would appear repeatedly in a block

diagram that is to be defined. By using the GROUP mode and

defining a user group, the entire collection of elements can

be referenced in the DRAW mode with one command instead of

having to position each element individually.

-To define a user group of elements, the collection of

elements is drawn in the work area in the same manner as

entire diagrams are created in the DRAW mode. when all

elements of the group have been drawn an E is entered to

15

indicate that the graphical definition of the user group is

complete. Next, any numeric parameters for box or sampler

elements in the group can be given default values. This is

done using the same methods employed in the PARAMETER mode.

When all of the desired defaults have been entered, the user

group is fully defined. It is now stored in the database and

is also available for use in the DRAW mode when referenced

by its group number.

The individual graphical elements and any numeric

defaults in the user group can be altered in the DRAW and

PARAMETER modes as described in their respective sections.

Any alteration during the DRAW or PARAMETER modes effects

only one particular occurrence of the group and not all

occurrences of the group. To actually redefine the diagram

or defaults for a group the GROUP mode must be used.

Example of group definition:

COMMAND > group
USER GROUPS NUMBER 1,3,7 EXIST
ENTER GROUP NUMBER TO BE DEFINED OR REDEFINED > 2
DRAW DIAGRAM OF GROUP 2 ELEMENTS NOW

enter: (The user must draw the elements he wants to
become the new group. The point where the
drawing starts is the point that will be
connected to the current working location (CWL)
whenever the user group is involked by typing
its number and the CWL that exists when the
definition of the user group is completed is
the relative location of the CWL after the user
group is involked. When the END command is
entered to leave the drawing mode the user
group is complete and its topology is
established.)

note: (All drawing commands except the user group
command are available for defining the group.)

16

ANY DEFAULT NUMERIC PARAMETERS DESIRED ? (Y/N) > y
COEFFICIENT OR ROOT FORM ? (C/R) > c

note: (Inputs are in the same form and sequence as in
the PARAMETER mode. Defaults can not be
assigned to any of the specialized EASY5
elements. Elements do not need to have
defaults established for them since they can
be specified later in the PARAMETER mode.)

ALL PARAMETERS DEFINED.
USER GROUP NUMBER 3 ESTABLISHED
COMMAND >

A maximum of ten user groups can be defined and stored

for use at any one time. These groups would each have a one

digit reference number ranging from 0 to 9. If more groups

than ten are required, they must be used in succession. This

is done by defining the first ten, then creating some of the

block diagram in the DRAW mode with these groups. When the

additional groups are needed, the original groups that are no

longer needed for further drawing are redefined. This

operation effects only the list of groups available for use

in the draw mode. It has no effect on groups that have been

referenced and already appear in the main diagram. Once a

group is added to the main diagram in the DRAW mode, the

elements within that group exist as individual elements and

all association with the group definition is lost.

Parameter Mode

The PARAMETER mode is used to define the numeric values

for transfer functions and sampling rates. In this mode all

rates, functions and specialized parameters are defined to

17

complete the mathematical specification of the diagram

created in the DRAW mode.

A standard naming convention is used to allow any

parameter to be referenced directly. This allows

specification of values in any order that is convenient. The

naming convention uses the labels from the graphical drawing

and appends individual letters as needed to properly identify

the parameters to be entered. Samplers are designated using

exactly the same lahels as those that appear in the drawing.

Transfer functions for individual box elements are identified

in three methods. The three methods each reference different

parts of the function. The label as it appears in the drawing

is used to refer to the entire function. The label with an N

appended to it is used to refer to just the numerator portion

of the transfer function. Similarly, the label with a D

appended to it refers to the denominator portion. A list of

the naming conventions appears at the end of this section.

Parameters for the specialzed EASY5 elements are identified

using the normal EASY5 terminology. This terminolgy is

explained in the User's Manual for EASY5 (Ref 7).

These parameter names are used to reference items

individually and in random order. This is done when less

than the complete list of required parameters is being

established during this use of the PARAMETER mode.

Additionally, the names are used when two sets of parameters

are to be set equal to each other. The method for doing this

is explained later in this section.

18

At any time during the parameter mode the calculator

feature is available for use in scratch pad operations. This

feature functions exactly as the TOTAL calculator and is

activated by typing -C" in place of any single input. It

allows scratch pad calculations without affecting the input

in progress. A full description of calculator operations

appears in the TOTAL User's Manual (Ref #12).

The PARAMETER mode expects all polynominals for transfer

functions to be input in either coefficient or root form.

The desired form is established after the PARAMETER mode is

activated. Individual parameters can be specified using the

standard names or the system can be requested to

automatically sequence through the needed parameters. If a

parameter is to be redefined, the complete list of values

does not have to be reentered. Instead, an * can be

substituted for any numeric value that is to remain

unchanged. Additionally, values can be set equal to

previously defined values by equating their standard names.

Examples for the generalized transfer functions, those

box elements with TFn numbers, are shown below:

Example:

COMMAND > parameter
AUTOMATIC SEQUENCING ? (Y/N) > n
COEFFICIENT OR ROOT FORM ? (C/R) > r
ENTER
LABEL, ORDER, ROOT REAL PART, ROOT IMAGINARY PART >
tfln,*,*, *,3,* (Redefine real part of 2nd root)

19

Example:

COMMAND > parameter
AUTOMATIC SEQUENCING ? (Y/N) > y
COEFFICIENT OR ROOT FORM ? (C/R) > c
ENTER ORDER, COEFFICIENTS FOR
TFIN > 1,2.8,1
TFlD > 2,1.2,4.3,-6,5
TF2N > tfl (Sets denominator also)
TF3N > tfln
TF3D > 1,5,7
ALL VALUES SET

Parameters for EASY5 specialized boxes will be requested

via individual prompts. Proper utilization of these complex

multi-input and multi-output elements will require a

detailed knowledge of and familiarity with EASY5 (Ref #7).

The user will be prompted for each EASY5 required value

in accordance with the particular element types used.

Prompting will be in EASY5 termonology.

Example:

ENTER VALUES FOR ELEMENT AC 1
ALPHA-l.45
BETA-2e-3

When special additional information is needed for

AV,SD,LO,LD, and FORT type elements of EASY5 then the

information will be requested at the terminal in EASY5 card

image form.

Sampler elements require that the user specify the

sample period. These periods will be input in seconds or

fractions of seconds.

20

Example:

ENTER SAMPLING PERIODS:
Sl-le-3
S2-.81

Rates can be set equal to each other by supplying the

name of a sampler for which the period has allready been

defined.

Example:

S3-sl

Rates that are not integer multiples of each other

throughout the system will be changed to the nearest

multiple so that they will all be integer multiples of an

arbitary basic rate.

Only single rate systems can be reduced on line in the

interactive mode as described in the section on REDUCE mode

operation.

Reduction Mode

Reduction mode is used to reduce the current block

diagram to find the equivalent transfer function between a

specified input and output.

First the diagram topology is checked to insure that no

unconnected ends exist which are not either designated as

inputs or outputs. Then the database is checked to insure

that all transfer function and sampling period values have

been specified. If errors are detected a list of errors is

output to the terminal and the reduction mode is terminated.

21

If no errors are found the user is requested to supply the

input and output points he wants the transfer function

calculated between.

Example:

REDUCTION BETWEEN INPUT(.) AND OUTPUT(.)
INPUT NODE IS > 1
OUTPUT NODE IS > 2

result: (The equivallent transfer function will be
displayed on the terminal in both coefficient
and factored form. The value will also be
stored in the database as transfer function
answer n (TAn).)

There is space to store up to 20 answers from reductions

of diagrams. These functions, TAn, can be used in later

drawings as equations for individual elements by giving the

name TAn when requested for the degree of the numerator in

the parameter mode.

To indicate an input node point that is within the

drawing instead of one of the input symbols give its

complete alphanumeric description instead of just the input

symbol number. The same procedure applies for output

designation.

Example:

INPUT NODE IS > tfli (Stands for element TFl input)

OUTPUT NODE IS >a4i3 (Stands for adder A4 input #3.
Inputs for adders are numbered
clockwise from the adder output)

To temporarily alter the diagram prior to reduction the

commands OPEN and CLOSE exist. These commands allow the

22

lines connecting the various elements of the diagram to be

temporarily opened or broken so that the reduction analysis

can be done on a modification of the drawing.

The open command is used to designate which lines are to

be opened. These points can be designated by name or by

position using the crosshair. To activate the crosshair mode

the key word CURSOR is entered in place of a alphanumeric

location name.

Example:

OPEN > tlo,a2i3,cursor (Ti output, A2 third input,
and activate the cursor
mode.)

while the cursor is displayed on the screen, lines can

be picked by entering a space when the crosshair is over the

line to be opened. Entering an "E" ends the crosshair

selection mode.

All lines that are opened will be designated by the

letter "0" appearing on the line.

The close command is used to eliminate a previously

created temporary opening. The syntax is similar to the

open command.

Example:

CLOSE > tlo,a213,cursor

When using the cursor to point to an opening to be

closed the 0O" marking the opening should be under the

crosshair. Reversal of a temporary opening to the closed

23

position is indicated by an "X" appearing over the "0".

Additionally, the key word ALL is available to close all

of the temporary openings at one time.

Example:

CLOSE > all

To perform the actual reduction the command REDUCE NOW

must be entered. The program will verify the state of the

reduction switch to determin the type of reduction to

perform, either online or EASY5. If a specialized EASY5

element has been used in the drawing then the state of the

switch is ignored and EASY5 reduction is always used.

Example:

REDUCE NOW
ONLINE REDUCTION. CONFIRM Y/N > y
REDUCTION IN PROGRESS.
REDUCTION COMPLETE. ANSWER STORED IN TAl

Example:

REDUCE NOW
EASY5 REDUCTION. CONFIRM Y/N > y
FILE NAME OF ANALYSIS COMMANDS > filename
FILE NAME FOR
GENERATED EASY5 BATCH INPUT FILE > filename2
FILE CREATION IN PROGRESS.
BATCH INPUT FILE CREATED. NAME IS FILENAME2

The batch operation of EASY5 requires that the analysis

steps desired also be input at reduction time (file

"filename" in previous example). This is done by qiving the

name of a previously created file of commands or giving the

key word INPUT. The word INPUT indicates that a file does

not exist and that the information will be entered from the

24

terminal in EASY5 card image format.

Save and Restore Mode

In order to allow interruption of a terminal session two

commands, SAVE and RESTORE, are available. These commands

allow the user to save his work from one terminal session to

another. All aspects of the drawing topology and any

numeric parameters defined are stored in a permanent file

when requested. During restoration the drawing is copied to

the CRT and the equation parameters restored to the database

so that further block diagram definition can be continued.

The current working location (CWL) for the diagram is not

reestablished so the first DRAW command after a RESTORE must

be a move. This reestablishes the CWL.

Example:

SAVE, f ilenamel
Action: (Current data is stored in filenamel.)

Example:

RESTORE, filename2
Action: (Data in filename2 becomes current

data. This destroys any data in
the database that was not stored
by a previous SAVE command)

By using several different file names the user could

store more than one block diagram for later reuse.

Control Flags

Certain features are controlled by flags. Each flag can

be set by the user to be either on or off. the command format

25

is flagname,on or flagname,off. These commands are legal at

any time except in the DRAW mode.

Below is a list of the flags and the effects they have.

MI NATURE

ON- produce minature drawing if block diagram is
larger than drawing work space.

OFF - do not produce a minature drawing

REDUCTION

ON - diagram restricted to either continuous or
single rate discrete system for interactive
reduction.

OFF- multi rate and specialized blocks of EASYS
routine are allowed and the equivalent
textual description will be generated.)

Storage Variables

Listed below are the names of the variables that the

user can access. These names should be used to examine the

contents of any polynominal. These names should also be used

when setting a new input equal to a previously established

value.

NAM lMeaning

Tn Transfer function for element Tn (includes
both the numerator and demoninator
polynomi nal)

TnN Numerator for Tn

TnD Denominator for Tn

TAn Transfer function result from reduction of
diagram.

26

III. Sample Operation

The following discussion and accompanying figures

describe the actual steps needed to generate and reduce a

small block diagram using the GRAPHIC system.

Program Initialization

When the program is activated, it prompts to determine

what the user environment is for this session. The input

identify the terminal communication rate and the terminal

type. An example of this dialog is in Figure 3.

At this point the primary prompt of "COMMAND >0 appears

and either DRAW, PARAMETER, REDUCE, GROUP, SAVE, or RESTORE

can be entered.

Diagram Definition

For this example, the DRAW mode will be used to create

the diagram directly from the basic elements. The initial

display in the drawing mode is shown in Figure 4.

Figures 5 through 22 depict the appearence of the

display terminal as the diagram is defined. Table II lists

the actual command codes entered and the figure that

corresponds to the display status after that command is fully

processed.

Parameter Definition

The PARAMETER mode is used next to define the values of

the transfer functions that are specified in the drawing.

27

Figure 23 shows the complete PARAMETER mode display for the

diagram in Figure 22.

Reduction

Once the diagram and its parameters have been

completely defined, the system can be reduced through the

REDUCE mode. This example shows only the EASYS version of

the reduction. Figure 24 shows the resulting file that is

produced. The data shown in Figure 24 is the textual

description of the diagram from Figure 22.

28

ENM~ CHAR/sEC)120
TEAPNftL TNV! CODES

I* Ifir 4*10/41a-14.13
1 - ITD. 4eI4/4OiS
3 - 1TEZ 4014..4,)S UI7H EVIWCED GRAPHICS

DaYEM TERMINAL T VPE CODE >a

Figure 3.Initialization Sequence

29

Vd

4-)rl

ol~l 0

30* I

Table II

Example Command Sequence

step Inputs Figure

1 I 5

2 L 6

3 B 7

4 L 8

5 A 9

6 + 10

7 L 11

8 B 12

9 L 13

10 0 14

11 M,X 15

12 L 16

13 L 17

14 B 18

15 L 19

16 L 20

17 X 21

18 22

31

Figure 5. DRAW Mode Example Step 1

Figure 6. DRAW Mode Example Step 2

Figure 7. DRAW Mode Example Step 3

32

Figure 8. DRAW Mode Example Step 4

Figure 9. DRAW Mode Example Step 5

Figure 10. DRAW Mode Example Step 6

33

Figure 11. DRAW Mode Example Step 7

r 2ol

Figure 12. DRAW Mode Example Step 8

Fi3ure 13. DRAW Mode Example Stop 9L 34

Figure 14. DRAW Mode Example Step 10

Figure 15. DRAW Mode Example Stop 12

35

Figure 17. DRAW Mod* Example Stop 13

Fiur +8 RWMd xml tp1

Figure 18. DRAW Mode Example Step 14

36

Figure 20. DRAW Mode Example Step 16

Figure 21. DRAW Mode Example Step 17

Figure 22. DRAW Mode Example Step 18

37

DTRPOWY Ca"7
fift? 'eM TH04 "O Wl ISSI
rGem IS OiK. C01 IFSWSETT AS

am,,

am ss'm 01 @6iwt 8 m*;S

"Imcm

38 w a-.

UTDA "" TOG. 7N11?,T*OXEL.416S

K t9A6MY.P W IL.L1NPLY.1 .I1PLT.0.LA.S.

MOM. KSCRPTOWST
ICC.I low.a B

LOWa! 06Z3 LE I .RPWOC I
LOCAT!OH.0*4 LB It IMPII?.LE I

LOCk~CHGW LO3 INPUT*LB 8
LOAIMO MI INPUTeLI It

LOCAYIONH'? PC I IHPtIreLO 1(13.11).LB V689MAS.L 2(11.4)

ca RA 1 .0
2* LB 1* 1.30000
PS L4 to -1.50000

wA L Is it. asw
20 LC 1* .78063331
PO LlI*1 .64M7667l1

20 LB 3.1
Pe LB 30 J114116

:I rA M4

at PC 1.61
M4N 1041

WON
PLOT ON

PITRPLOT$

IUFUPIIITION

Figure 24l. Example at EASY5 Format Reduction

39

IV. Current Inplementation Status

The version of GRAPHIC that is currently implemented

allows a subset of the total GRAPHIC system to be used. The

exact nature of the variations from the features described in

this manual are addresed on a mode by mode basis below.

DRAW Mode

I In the DRAW mode all features except the GROUP command

are implemented. Command CONNECT has a code of X instead of

C. Command CENTER has codes of Co+,# instead of +,@#

respectively (see Appendix B). The BOX command forces all box

elements to be the arbitrary TF type.

GROUP Mode

None of the GROUP mode features are implemented.

PARAMETER Mode

In the PARAMETER mode only the automatic sequence mode

is available. Setting sampling periods is not allowed. Use

of ^the calculator feature and varible names are not allowed.

All parameters for transfer functions are considered as

Laplace, S domain, functions. The PARAMETER mode is

activated by the command "E" in response to the prompt

"COMMAND >-.

REDUCE Mode

The REDUCE mode provides only EASYS form reduction. The

OPEN and CLOSE features for temporary alteration of the

4,

diagram topology are not available. All reductions must be

from an input to an output specified by giving their

respective numbers. The REDUCE mode is activated by entering

"T" after the prompt OCOMMAND >".

SAVE Mode

The SAVE mode catalogs only the drawing database and

only if it was assigned to a permanent file device.

RESTORE Mode

The RESTORE mode restores only the drawing database.

Summary

The current implementation of GRAPHIC was produced to

verify the proposed design documented in this manual. This

implementation allows generation and translation of any block

diagram representing a time continuous linear control system.

The output file produced by the program can be used directly

as an input to the EASY5 program.

41

APPENDIX B

UPDATES TO USERIS MANUAL

Contents

Page

I. Introduction 1

II. Center Command Design 2

III. Connect Command Design 3

iii

I. Introduction

As a result of the user test conducted to verify the

design proposed for the GRAPHIC system, certain changes were

made to the design proposed in Appendix A. This appendix

documents those changes.

Since the actual changes made to the design affect only

two of the fourteen commands in the graphic input mode, only

the changed material is documented here.

Section II details the new features that were designed

into the CENTER command and Section III details the changes

that were made to the CONNECT command.

II. Center Command Design

Center Command - Code:+,@,#. The CENTER command shifts

the existing drawing around in the work area to create more

space for defining additional elements. There are three

forms of the CENTER command, one associated with each of the

command codesi +, @, and #.

One form of the CENTER operation is to take the location

designated by the crosshair and redraw the diagram with that

location centered in the work area. The code for this is +.

Any element or point within the work area or miniature area

may be pointed to and when the + is entered the drawing will

be erased, shifted as required, and redrawn.

The other two forms of the CENTER command operate with

default locations. Entering @ causes the current working

location (CWL) to be centered in the drawing when the diagram

is redrawn. Entering # causes the diagram to be centered as

it was initially when the draw mode was first activated.

2

o nnect Command Dign

Connect Command CodetC. The connect command is used

to specify that at the current crosshair location a

connection is to be formed. There are three uses of the

CONNECT command all controlled by the same command code. The

difference is in the graphic result produced on the terminal

screen.

A connection can be used to split an output path so that

one element can feed two other elements. This is

accomplished by pointing the crosshair at a line and entetino

the code C. A small connecton diamond will appear over the

point where the output splits and a line can be drawn away

from the diamond through the use of the LINE command.

The second use of the connection command io to join the

current path with an already existing path. This joining can

be to an adder or to the input side of any individual element

that does not already have its input in use. To form the

connection correctly the current path must end in a line that

is drawn to the proper spot on the exietinq target element.

For adders the proper spot is the center of the element, btt

for all other olements it is the input aide of the element.

When the code C is entered after the line is drawn a

arrowhead will be generated automatically to indicate the

signal flow direction. Additionally, if the connection was

to form an adder input, the siqn of the input will be

requested as described in the ADDER command.

The last use of the CONNECT command is to continue

drawing a previously interrupted path. This is accomplished

by positioning the crosshair over the output side of the last

element in the interrupted path and entering the code C.

If the requested connection con not be performed, the

terminal will beep to indicate an error and a message will be

posted in the text area. An example of an error that could

occur is that no.-element is found to connect with when the

command is issued.

4

Appendix C

CORE LIBRARY

CORE LIBRARY

The CORE library is a collection of subroutines designed

to allow the creation of three dimensional drawings. It is

a partial implementation of the ACM SIGGRAPH proposed

standard for device independent graphics support.

This particular implementation was developed as a MA

6.68 class project at the Air Force Institute of Technology

in which the author participated. The version used with the

GRAPHIC system was further modified by the author.

The library consists of application program callable

subroutines that allow drawing in three dimensional space.

Any viewpoint can be established and either parallel or

perspective views can be produced.

Description of User Callable Routines.

The following routines comprise the user callable

subroutines in the CORE library. Those routines that are

defined in the proposed SIGGRAPH standard have the

corresponding SIGGRAPH paragraph number given in square

breckets, [Ref. #].

1.

CORSYS3 (delta-x, delta-y, delta-z, scale-x, scale-y,

scale-z, rotation-x, rotation-y, rotation-z)

CORSYS3 specifies the orientation of the users

coordinate system relative to the world coordinate system.

The transform is applied as scale, rotate, then translate.

The rotations are positive conterclockwise (as viewed from a

point on the positive axis looking toward the origin) and

applied in the order z-axis, y-axis, and then x-axis.

VUREF (x,-y--i-Re. 5 .-4,-..L.-

VUREF specifies the reference point in the world system

for basing the viewing system. Eye point (see PERSPEC), view

plane distance (see VUDIST), view depth (see VUDEPTH), and

viewing window (see WINDOW) are measured relative to this

point.

VUNORM (delta-x, delta-y, delta-z) (Ref. 5.2.1.21

VUNORM specifies the view direction in the world system.

VUDIST (distance) (Ref. 5.2.1.31

VUDIST specifies the projection or view plane distance

from the reference point, measured in world units in the

direction of the normal (see VUNORM).

2

VIEWJP3 (delta-x, delta-Y, delta-z) [Ref. 5.2.1.6]

VIEWUP3 specifies (from its projection into the view

plane) which direction is up in the view plane.

WINDOW (left-edge, right-edge, bottom-edge, top-edge)

[Ref. 5.2.2.21

WINDOW specifies the location of the window measured in

the view plane relative to the projection of the reference

point down the view normal.

VUDEPTH (front-distance, back-distance) (Ref. 5.2.1.81

VUDEPTH specifies the front and back clipping planes.

The distance is measured from the reference point in the

direction of the view normal.

VUPORT (left-edge, right-edge, bottom-edge, top-edge)

(Ref. 5.2.1.10]

VUPORT specifies the location of the display area on the

plotting or display device. Allowable range for the

parameters is 6.6 to 1.0 (normalized device space).

PARALL (delta-x, delta-y, delta-z) [Ref. 5.2.1.41

3

PARALL specifies that the projection type is to be

parallel, with the objects projected along the given vector

into the view plane.

PERSPEC (offset-x, offset-y, offset-z) (Ref. 5.2.1.51

PERSPEC specifies that the projection type is to be

perspective with the eye point offset by the given values

from the reference point. The look direction is in the

direction given by the view normal.

MOVE3 (x, y, z) (Ref. 2.2.11

MOVE3 specifies that the current beam location is to be

moved to the given user cooridnates.

DRAW3 (x, y, z) (Ref. 2.2.2.11

DRAW3 specifies that a line is to be drawn from the

current beam location to the user cooridnate location given.

STARTG (Ref. 7.2.1.1)

STARTG specifies that the graphic system is to be

activated and all required variables initialized.

4

ENDG [Ref. 7.2.1.2J

ENDG specifies the termination of operations under the

graphic system.

OUTLINE

OUTLINE specifies that a outline around the existing

viewport is to be drawn.

Utitilization Notes.

The system will detect and request changes to values

when they would result in mathematically undefined

operations. When such a condition occurrs all subsequent

calls to MOVE3 and DRAW3 are ignored until the viewing

parameters are changed.

The combination of calls to WINDOW and VUDEPTH establish

a view volume. Only objects appearing inside the view volume

will be displayed. The volume is a parallelepiped if PARALL

was called and a truncated pyramid if PERSPEC was called.

Geometrically meaningless combinations of the parameters

can result depending on the users parameters. Example: window

right edge less than window left edge or front distance

greater than back distance. The result is that oll objects

S!

are clipped and not displayed since there can be no view

volume with the given parameters. The system will never

adjust any user parameter except for the front distance

given in VUDEPTH. The front distance will be adjusted when

perspective projections are in use to insure that the front

clipping plane is in front of the eye point. This adjustment

will be done in the following manner: "if the front distance

measured from the view reference point in the direction of

the view normal is less than the the eye distance measured

in the same manner, then the front distance will be reset

automatically by the system to be equal to the eye distance

plus one tenth (eyedistance + .1)."

Consistancy of the system parameters supplied by the

user are checked before performing the first MOVE3 of DRAW3

after a viewing parameter was changed. This approach to the

parameter checking allows the individual parameters to be

changed in any order and does not require that they be

consistant until a MOVE3 or DRAW3 is requested.

All coordinate systems, user, world, and view, are left

handed systems. All subroutine parameters are real values.

To assist in debug the routine STATPRT is available to

print a list of the viewing parameters in effect at any given

moment. The routine will print on the output file a list of

all the user setable parameters and also some of the

6

internal tramsformation matrices derived from the user

parameters. These internal paramaters will have correct

values only if either a MOVE3 or a DRAW3 has been executed

since the last change to any viewing parameter. The user

specifiable parameters are shown correctly at all times.

7

APPENDIX D

DESCRIPTION OF GRAPHIC PROGRAM STRUCTURE

Contents

I.Introduction 1I

I.Detailed Routine Descriptions 2

rr--u- - -- -... .-- .. - - - --" ... - -W -... ... " ---' -"

I. Introduction

This appendix documents the design of the current

implementation of the GRAPHIC program. It describes all the

routines that comprise the GRAPHIC software.

The GRAPHIC program is written in FORTRAN for the

Control Data Corporation (CDC) CYBER 175 series computer. It

is designed to be operated interactively from a Tektronix

4999 series storage tube graphics terminal.

In addition to the source code described in this

appendix the GRAPHIC program makes use of several library

packages. These library routines provide services that are

not available in the normal FORTRAN environment.

Specifically, the TEKLIB, NOSLIB, and CORE libraries are used

(Ref. 6,18,2,19). The TEKLIB library provides routines for

communicating with the Tektronix terminal. The NOSLIB library

provides routines for managing permanent files. The CORE

library provides routines for three dimensional drawing.

Additional details on the CORE library are discussed in

Appendix C.

II. Detailed Routine Descriptions

This section discusses the general features of each

routine, program and function on an individual basis. The

exact nature of the function that each routine performs is

documented in detail in the actual source code. The list of

modules is divided into two groups, those modules that are

entry points for overlays and those modules that are not

entry points. The descriptions are in alphabetical order by

module within each group.

Overlay Entry Point Modules

The relationships between the mode names, overlay

numbers, and actual source names for the programs are shown

in Table I.

DRAW Program. The DRAW program operates as a master

control switch, sequencing the operation of all commands

allowed during the DRAW mode. Whenever the graphic crosshair

is present on the screen the DRAW program is waiting to act

on input data from its service routines to execute the

requested command.

When DRAW is first entered it draws the initial display

on the screen by calling DRAWINT, It then calls UPDATE to

open and initialize the graphic database. If the graphic

database contained data, the diagram defined by that data is

drawn on the screen through a call to REDRAW.

At this point DRAW begins the loop that forms a command

filter allowing any of the DRAW mode commands The routine

2

Table I

Overlay Names

Operation Overlay Source N~ame

(command) 0,0 TEST

DRAW 110 DRAW

SAVE 260 SAVE

RESTORE 360 RESTORE

PARAMETER 4.0 EQUATE

REDUCE 5,0 REDUCE

LOCATOR is used to obtain the command code and crosshair

location. ARROW is called to insure that an arrowhead is

automatically produced if one is needed. Then depending on

the code received, one of the following routines is called:

USEF3RP, LINE, BOX, MOVEPT, ADDER, SAMPLE, CONNECT, CENTER,

REDRAW, IN, OUT, DELETE, or W)RKLOC. When the code "E" for

END is received the loop is terminated, UPDATE is called to

insure that all data has been written to the graphic

database, and control is returned to the main overlay.

EUT Program. The EQUATE program provides all of the

process control for the PARAMETER mode operations. Its only

specific function is to select the correct routine to collect

the numeric parameters. If coefficient mode input is

requested the EQCOEFS routine is called. If root mode input

is requested the EQROOTS routine is called.

REDUCE Program. The REDUCE program sequences the

operation of routines during REDUCE mode operation. Routine (
EZ is called to perform the entire reduction to EASY5 format.

REDUCE posts the success or failure messaoe on the terminal

indicating the result of the attempted reduction.

RESTORE Program. The RESTORE program allows reuse of

graphic databases that have been previously saved via the

SAVE mode. Specifically, it uses the routines in the NOSLIB

to attach a permanent file as file DRAWIN. The permanent fVle

selected is specifie4 by the input that REDUCE receives from

the terminal.

SAVE Program. The SAVE program catalogs the existing

4

graphic database to allow it to be reused at a later time.

This can be done only if the file DRAWIN was assigned to a

permanent file device prior to activating GRAPHIC.

TEST Program. The TEST program forms the main overlay of

the GRAPHIC system. It contains the common data storage areas

that are shared by more than one overlay. When activated, the

program initializes the common data areas. Once the

initialization is complete, the program then loops between

getting mode requests from the user and activating overlays

to execute the requested mode.

Other Modules

All other modules in the GRAPHIC system are subroutines

or functions. The paragraphs that follow summarize the

functions of each routine so as to form a guide to the source

listings.

Subroutine ABSTWDS. The ABSTWDS subroutine converts XY

location values from the integer Device Coordinate System

(DCS) to the real User Coordinate System (UCS) for storage in

the graphic database. The actual conversion depends on the

current mapping between the DCS and UCS systems.

Subroutine ADDER. The ADDER subroutine handles creation

of an adder in response to the command code A.

Subroutine ALERT. The ALERT subroutine closes and saves

the graphic database mass storage file if a fatal error

occurs during graphic operation.

Subroutine ARROW. The ARROW subroutine handles the

5

creation of arrowheads to indi i::. the direction of signal

flow. This routine decides whether an arrowhead is required

or not based on the previous command and the current command.

Subroutine hSIGNS. The ASIGNS subroutine displays the

arrowheads and input signs for the second and third inputs to

adders. It is used only during redraw operations.

Subroutine BLANK. The BLANK subroutine is called to

erase the display screen and reset the scrolling messages to

start in the upper left hand corner of the text area.

Subroutine BRKLINE. The BRKLINE subroutine is called by

CLINK in response to a connect command that causes a line to

be split. This routine makes the calls to UPDATE to remove

the old line and replace it with two shorter lines.

Subroutine BOX. The BOX subroutine handles the creation

of a transform box symbol in response to a command code B.

Subroutine CENTER. The CENTER subroutine handles

repositioning the viewing window to display a different part

of the diagram in response to a command code of C.

Subroutine CHECK. The CHECK subroutine rotates the

coordinate system to provide a better check to see if a

diagonal line element is the item designated by a connect

command.

Subrotuine CLINK. The CLINK subroutine handles updating

the topology links in the graphic database for all connect

commands that were preceded by a move command.

Subroutine CLINKIN. The CLINKIN subroutine handles

updating the topology links in the graphic database for all

6

connect commands that were not preceded by a move command.

Subroutine CNDHELP. The CMDHELP subroutine posts an

explanation of the modes available in GRAPHIC.

Subroutine CMDMODE. The CMDMODE subroutine is the

command filter that sorts the response to the prompt

"COMMAND >" and determines which overlay to activate.

Subroutine CONNECT. The CONNECT subroutine handles the

request for a connection and verifys that it was acconlished

successfully.

Subroutine CONSYM. The CONSYM subroutine is called when

a connection diamond is needed. It creates the symbol on the

display and stores a record of it in the graphic database.

Subroutine DADDER. The DADDER subroutine controls the

drawing of the adder symbol. rt contains the vector drawing

commands that control the shape of the symbol.

Subroutine DARROW. The DARROW subroutine controls the

drawing of the arrow symbols. It contains the vector drawing

commands that control the shape of the symbol.

Subroutine DBOX. The DBOX subroutine controls the

drawing of the box symbol. It contains the vector drawing

commands that control the shape of the symbol.

Subroutine DCONECT. The DCONECT subroutine controls the

drawing of the connection symbol. It contains the vector

drawing commands that control the shape of the symbol.

Subroutine DELDATA. The DELDATA subroutine removes

elements from the graphic database in response to delete

commands.

7

Subroutine DELETE. The DELETE subroutine manages all

operations necessary to accomplish the deletion of an

element. This routine manages the search for, deletion of,

and marking of the element designated by the crosshair.

Subroutine DIN. The DIN subroutine controls the drawing

of the input symbol. It contains the vector drawing commands i-

that_gojtlwL- th-e- shape -of -the- -synbbI.

Subroutine DLIMIT. The DLIMIT subroutine maintains the

records on the maximum size of the current diagram being

defined. This information is needed to control the automatic

generation of the miniature drawing.

Subroutine DOUT. The DOUT subroutine controls the

drawing of the output symbol. It contains the vector drawing

commands that control the shape of the symbol.

Subroutine DRAWINT. The DRAWINT subroutine is

responsible for establishing the viewport boundaries on the

display screen and drawing outlines around them. The routine

also sets the mapping between the User Coordinate System

(UCS) and the display face.

Subroutine DSAMPLER. The DSAMPLER subroutine controls

the drawing of the sampler symbol. It contains the vector

drawing commands that control the shape of the symbol.

Subroutine CLEMUUN. The ELSWIUM subroutine determins the

next available number for each symbol type in the diagram.

This number is used to generate Lhe symbol labals that appear

on the display screen.

Subroutine ERRPRT. The RRiPRT subroutine is used to

8

print debug error messages on the display screen.

Subroutine EQCOEFS. The EQCOEFS subroutine handles the

user interface to collect and store transfer function

definitions when the user has requested the coefficient mode

of input.

Subroutine EQROOTS. -The EQROOTS subroutine handles the

user interface to collect and store transfer function

definitions when the user has requested the root mode of

input.

Subroutine EZ. The EZ subroutine handles the sequencing

of the routines that create the textual output file that can

serve as input to the EASY5 program.

Subroutine EZANAL. The EZANAL subroutine creates the

analysis section of the commands in the EASY5 text file. This

routine gets input output pairs from the user and then

transcribes this into an EASY5 format transfer function

calculation request.

Subroutine EZBLOCK. The EZBLOCK subroutine controls the

translation of block diagrams into the textual format

required by EASYS. It activates the FLOW secondary overlay to

create the signal flow database. After this, it activates

the EZWRITE secondary overlay to produce the textual model

description.

Subroutine EZUEAD. The EZHEAD subroutine creates the

control card section of the EASY5 text file.

Subroutine FATAL. The FATAL subroutine is designed to

force a fatal error. This routine is used during debug to

9

test the ALERT subroutine.

Subroutine FORMLAB. The FORMLAB subroutine forms the

visible labels used to idenitify the elements in the block

diagram. It combines the integer element number and the ASCII

element type into an alphanumeric ASCII label.

Subroutine GETSIGN. The GETSIGN subroutine queries the

user for the sign of each adder input as the input is

created.

Subroutine GPROMPT. The GPROMPT subrotine controls the

contents of the DRAW mode pronpt area. This routine draws the

figures and text that is displayed there.

Function IEZELMN. The IEZELMN function creates EASY5

element numbers. It accepts an integer and returns the two

character ASCII equivalent.

Function ILETTER. The ILETTER function converts values

into ASCII. It accepts the integer ASCII code and returns the

character that is the equivalent code. This function is used

to support the Tektronix interface.

Subroutine IN. The IN subroutine handles creation of an

input element in response to the command code I.

Subroutine INITIAL. The INITIAL subroutine initializes

all values in the main overlay. It also initializes the

graphics support package.

Function INUMBER. The INUIBER function accepts ASCII

characters and converts them to their equivalent numeric

code.

Subroutine LINE. The LINE subroutine handles creation of

i1

an line in response to the command code L.

Subroutine LISTDEL. The LISTDEL subroutine handles

deleting items from the linked list index after the item has.

been removed from the graphic database in response to a

delete request.

Subroutine LOCATOR. The LOCATOR subroutine determines

where the crosshair was pointing during the last input. The

value returned is the location relative the User Coordinate

System used for the graphic database.

Function LOCEZFM. The LOCEZPM function accepts integer

location numbers and converts them into their three character

EASY5 equivalent form.

Subroutine LUPDATE. The LUPDATE subroutine maintains the

linked list that forms the index into the entries of the

graphic database. As elements are drawn, this routine adds

pointers to the linked list.

Subroutine tCRAN. The MDRAW subroutine determins if a

miniature drawing should be produced. If one is needed, this

routine sets the coordinate mapping from the database to the

display screen.

Subroutine MESSAGE. The MESSAGE subroutine is used to

scroll all messages that are output in the text area.

Subroutine MINDRAW. The MINDRAW subroutine produces the

actual miniature drawing of the diagram when requested by

NDRAW.

Subroutine NOVEPT. The MOVEPT subroutine moves the

current working location (CWL) to the position specified by

-1111111110MOA mmNo

the crosshair.

Funiction NUMAL. The NUNVAL function returns the numeric

value of an element label. This value is used in storing the

element's parameters in the numeric database.

Subroutine OUT. The OUT subroutine handles creation of

an output element in response to the command code 0.

Subroutine PUTSIGN. The PUTSIGN subroutine posts the

sign of the first input to an adder symbol on the display

screen.

Subroutine REDRAW. The REDRAW subroutine scans the

graphic database and draws the current version of the diagram

on the display screen.

Subroutine SAMPLE. The SAMPLE subroutine handles

creation of an sampler in response to the command code S.

Subroutine SEARCH. The SEARCH subroutine supports the

delete command. It searches the graphic database and/returns

a list of elements that are near the current crosshair

location.

Subroutine SMALL. The SMALL subroutine sets the

character size for the Tektronix 4014/15 terminals to the

smallest available size.

Subroutine SMALWIN. The SMALWIN subroutine draws the

corner marks in the miniature area to mark what part of the

entire diagram is visible in the work area.

Subroutine TEKPRT. The TEKPRT subroutine is used to

print the labels that appear on the elements within the work

area.

12

Subroutine TERMINL. The TREMINL subroutine produces the

main prompt "COMMAND >" and reads the users response.

Subroutine TEXTSET. The TEXTSET subroutine puts the

terminal in text mode with the cursor positioned at any

desired location.

Subroutine TFDATAB. The TFDATAB subroutine handles all

access to the numeric database for reading and writing

transfer function data.

Subroutine UPDATE. The UPDATE subroutine handles all

additions to graphic database in response to DRAW mode

commands given by the user.

Subroutine WRSTATE. The WRSTATE subroutine reads and

writes the linked list index of elements and the drawing size

information that is stored as specialized records in the

graphic databaase.

Subroutine WORKLOC. The WDRKLOC subroutine displays the

square text cursor at the position of the current working

location (CWL).

Subroutine ZERO. The ZERO subroutine is used to

initialize the buffer where information on the current

element being formed in to be stored.

13

APPENDIX E

ABBREVIATIONS AND MNEMONICS

ABBREVIATIONS AND MNEMONICS

Term Definition

ACM Association for Computing Machinery.

AFFDL/FGC Air Force Flight Dynamics Laboratory /
Control Dynamics Branch.

CDC Control Data Corporation.

CENTER GRAPHIC DRAW mode command that moves the
window over the block diagram to allow
display of different sections of the
diagram.

CONNECT GRAPHIC DRAW mode command that causes two
independent signal flow paths to be
connected.

CORE Name of the software library that
supports three dimensional graphics.

CRT Display tube that forms the face of the
Tektronix terminal.

CWL Current Working Location. The location in
the block diagram that is the output of
the most recently produced element
symbol.

CYBER Model of computer manufactured by the
Control Data Corporation.

DCS Device Coordinate System. The coordinate
system used to control drawing on the
display face.

DRAW Mode of operation in GRAPHIC that allows
the drawing of a block diagram to be
defined.

EASY5 A control system analysis program
developed by Boeing Aerospace Company.

Term Definition

FLOW Software routine in GRAPHIC that creates
a signal flow graph from the graphical
block diagram definition.

FORTRAN Name of the programming language that
GRAPHIC is written in.

GRAPHIC Name given to the software system being
designed in this paper.

GROUP Mode of operation in GRAPHIC that allows
generation of collections of elements to
form block diagrams of subsystems.

INTERCOM Name of the interactive timesharing
system used to run the GRAPHIC program.

MOVE GRAPHIC DRAW mode command that allows
repositioning of the current drawing
location (CWL).

NOSLIB Name of the software library that
supports manipulation of permanent
files.

NOS/BE Computer operating system that the
GRAPHIC program is compatible with.

PARAMETER Mode of operation in GRAPHIC that allows
definition of the numeric parameters for
transfer functions and sampling periods.

REDUCE Mode of operation in GRAPHIC that allows
the block diagram to be reduced to an
equivalent transfer function or an
equivalent textual description.

RESTORE Mode of operation in GRAPHIC that allows
restoration of previot.s work from a
stored file.

SAVE Mode of operation in GRAPHIC that allows
all work to be saved in a file for
reuse.

SIGGRAPH Special Interest Group for Graphics, a
group within the ACM.

2

Term Definition

TEKLIB Name of the software library that
supports interfaces to the Tektronix
4088 series terminals.

TOTAL A control system analysis program.

UCS User Coordinate System. The arbitrary
coordinate system that the block diagram
is referenced to.

UPDATE Software routine within GRAPHIC that
alters the graphic database.

3

Vita

Donald E. Troxel was born on December 8, 1950 in

Washington, DC, the son of David I. Troxel and Jean M.

Troxel. In 1973 he graduated from Lehigh University in

Bethlehem, Pennsylvania with a Bachelor of Science in

Electrical Engineering and was commissioned as a

Distinguished Graduate of the Air Force ROTC program. He

entered active duty upon commissioning and served in Air

Force Systems Command at Hanscom AFB, Massachusetts until

1978, when he entered the Air Force Institute of Technology.

Permanent mailing address:

Capt. Donald E. Troxel
5242 Garfield Ave.
Pennsauken, NJ 08109

UNCLASSIFIED
S1CURITV CL ASrO I'.ATION OP T, 0 -w e JW.s note Untoeo

REPORT DOCUMENTATION PAGE RrF4 INSTRUCTIONS
_IFORC COMPLETING FORM

,. REPORT hIumaw S. GOVAV W€.¢MS 4 NO. ILEt-' t'% CATALOG NUMBERAIT/GE/MA/79D-l
A1 TITLE (e," $wwile) ol o tir a[" PERIOD cOVa[ao
GRAPHICAL INPUT METHODOLOGY FOR COMPUTER MS Thesis
AIDED ANALYSIS OF CONTROL SYSTEMS ,. EoRT NuE-

7. AUTNOR e) III CO"l RACT O4 GRANT %UWlDvrB)

Donald E. Troxel
Capt USAF

S. PERPORMING ORGANIZATION NAME AND ADDRESS 10. PgHT.OP qL MENt PROJECT. TASaC

Air Force Institute of Technology (AFIT-El') A P fI I T NUMINI

Wright-Patterson APB, Ohio 45433

II. CONTROLLING OFPICE NAME AND ADDRESS 14. REPORT OATS

Air Force Flight Dynamics Laboratory December 1979
(APFDL/FGC) '. HUEOPP

Wright-Patterson APB. Ohio 45433 166
IA, NONITORING A0ENCY NAME 6 AOORESS(If 40fo1mmI ("M CeOlN4SUh d Off#*) 15. SECURITY CLASS. (e el iwen)

Unclassified
IS& fCjAUSII C ATI ON/OOWN GRADING

W OISTRIUTION STATEMENT (of ete RqWQt)

Approved for public release; distribution unlimited.

17. DISTRIGUTION STATEMENT (oithe ab8eam. e sfte M llock 2O. If d r dem e Ne0m.)

IS. SUPPLEMENTARY NOTES

Approve kforub lic release; IAW APR 190-17
Josepl. Hip C tain, USAF
Direot Publ i cfairs

I. KEY WORDS (Castne.. an feoetoe Oe if meeoe mmd *m Ient& by Week mambor)

Computer Graphics
Interactive Graphics
Control Systems
Block Diagrams
Human Interfaces

IU, AoUTRACT'V' (Ce, ~e -, ,.eweos o M0i t a rne l ,,I i ,.NHm IV Weakmme)
This report describes the design of a graphical input language and
CAD system for specifying control system block diagrams. The goal
to develop a graphical means of defining block diagrams that
avoided the need to create the textual descriptions required by
most existing traditional analysis packages was accomplished.
Generalized requirements for a successful human interface were
developed. A graphical input methodology was developed that meets

00 , JAR UNCLASSIFIED
IECURITV CLASSIFICATION 61 ?IS PAGE MF6. Din.eW

....0

UNCLASSIFIED
SIMUc TY LbAIMICATION OF TNI PAGE(Wm Do anlt

these human constraints. The CAD system designed allows
graphical definition of linear systems and translation of these
systems into forms acceptable by traditional analysis programs.

UNCLASSIFIED
ORCuRt, CLAWFI~CAtIGw Of ?fIS PA2(ten Do*e &wrse

