<" AD=ADB0 362 AIR FORCE INST OF TECH WRISHT=PATTERSON AFB OH SCHOO-=ETYC F/¢ 9/2 .
GRAPHICAL INPUT METHODOLOSY FOR COMPUTER AIDED ANALYSIS OF CONT==ETC(U)

DEC 79 O E _TROXEL
UNCLASSIFIED AFIT/SE/MA/T9D=1 NL

.

iy

AFIT/GE/MA/79D-1
& N GRAPHICAL INPUT METHODOLOGY /
g FOR / Lo ey
SOMPUTER HIDED ANALYSIS / e
| “ggywnon §stsms s -fﬂ}
THESIS -

[— S i
AFIT/GE/MA/79D- 17 Donald E. 'rroxel) S
10 a .

]
(9\) masz rsi? t“ ODW l

@ietf

Approved for public release; distribution unlimited.

Lm.-—-'
T s

ppe——gmappo—aEEE

PETIPE-mens

<

oA g RN T > SRS, N2

iy

s e o en 2

ERg ot ooy

AFIT/GE/MA/79D~-1

GRAPHICAL INPUT METHODOLOGY
FOR
COMPUTER AIDED ANALYSIS
OF
CONTROL SYSTEMS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Regquirements for the Degree of
Masters of Science

e

by
bonald E. Troxel, B.S.
Capt USAF
Graduate Electrical Engineering
December 1979

Approved for public release; distribution unlimited,

N O e -

Preface

Most computer programs feel like they are designed to bde

operated only by a computer programmer and not by the general

user. The work described in this paper is my effort to design
an analysis tool that does not have the above property.

The GRAPHIC analysis system which is proposed in this
paper 1is designed to feel natural and convenient to the user.
My goal was to determine what aspects of human interfaces
control the success of computer interfaces. After determining
this, the GRAPHIC system was designed to meet thease
requirements. The resulting system is intended to be as
convenient to employ by the user as normal pen and paper

methods.

Donald E. Troxel

i1

SOAB G TR e ST TP RN i 4

Ry

contents

Page
Pfefac&. . a - . - . . . - L] . 4 L] ‘- L]

List o:‘ Figutes * - L] L . L] L] . L . . L . . * L . L L] . v
List of Tables . . « ¢ ¢ ¢« &« ¢ ¢ ¢ ¢ s o o o o o o o o vi

Absttact 3 . L} [} L] . .- vii

I. Introduction . . & &+ ¢ o ¢ ¢ o o ¢« s s s e e 1
BaCkground . L] . o L] . L] - . L] . L L] L] L] » . 1
Statement of Objectives .« .« ¢ o o ¢ ¢ o o o 2
Apptoach L] L] L] * . L2 L] L] L] - L] L] L] - - * - * 2
II. system Definition L L . * L] . L] . L] L] * * L L] * 3
Detailed Analysis of Problem « « . . 3
Requirements Definition + « « « « & 4
III. Human Interface Design. . ¢« « « & ¢ ¢ o & o o o« 7
Human Interface FAactorsS. . + « ¢ o o o o o« o @ 7
Components of a Sucessful

Human Interface . . « ¢« « s ¢ ¢ o o o 7

Human Psychological Factors Affecting
Man-Machine Interfaces &« 9

Task Related Factors Affecting
Man-Machine Interfaces 12
Design Constraints for a Sucessful

Human Interface . « ¢« ¢« ¢ ¢ o o o o & 14
Interface Design « « ¢« ¢ + ¢ o ¢ ¢ s o o o & 15
Graphic Interface Mod e e e s s e e e s 16
Textual Interface Mode . . . « . ¢ o« « & 25

Compairson to Requirements and
Constraints . « « ¢ ¢ o ¢ o 4 o o o @ 26

Iv. System Design and Implementation 29

Program Overview .
Main Overlay .
DRAW Overlay .
GROUP Overlay .
PARAMETER Overlay
REDUCE Overlay .
SAVE Overlay . .
RESTORE Overlay .

® o o & o & &
s o & & o o s o
e o o6 o ¢ o o o
e o & ¢ o * o
. * . » L] . .]
*» o ® & o & s o
* e = @& o o a2 o
* e & o & 3 » @
e & e o 8 s s @
* o e o ¢ o & o
e o o & ¢ o o o
e o & & o & o o

L7

~J

iii

s

Contents

Data Structures.« .
Graphic Database . . .
Numeric Database . . .
Signal Flow Databage .

e o & o
» o e o
o o o o

V. Design Evaluation . . . ¢« . ¢« « .« &

System Implementation
Ugser Test
User Test Result o
Modifications

¢« ° s »
e o o o
o o o o
e e o o
s e o @

VI, Conclusions and Recommendations . .
Bibliography .« « ¢ & ¢ ¢ ¢ v ¢ ¢ o o o« + &
Appendix A: User's Manual

Appendix B: Updates to User's Manual
Appendix C: Core Library

Appendix D: Description of GRAPHIC Program
Implementation

Appendix E: Abbreviations and Mnemonics

vita

iv

Figure

x N O v & W N~

le
11
12
13
14
15
16
17
18
19
20

List of Figures

Block Diagram Topology Example . .
Block Diagram Topology Example . .
Terminal Display Face Organization
Contents of Prompt Area ,
Basic Overlay Structure of GRAPHIC
Main Overlay . . . ¢« ¢« ¢« ¢ ¢ o & &
DRAW Qverlay . . « ¢ & ¢ o ¢ o o &
GROUP Overlay . . + ¢ ¢« v « s « »
PARAMEBTER Overlay . . « . . . « .
REDUCE Overlay . « o ¢« ¢ o« o o o &
SAVE Overlay « « « o o o o« « o o &
RESTORE Overlay . . +« &« « ¢ ¢ « &
DRAW Mode Initial Display
sample of Block Diagram Definition
sample of Miniature Display . . .
Brror Message Example
Example of PARAMETER Mode Input .
Block Diagram Example
EASYS5 Textual Description of Block

Representation of Input and Qutput

Diagram

Symbols

Page
17

17
23
24
31
33
34
39
449
42
45
45
58
60
61
63
64
65
66

72

List of Tables

et s g g

Table Page
1 Element Producing Commands in DRAW Mode 28
II Non-Element Producing Commands in DRAW Mode . . 21
III DRAW Mode Commands . . « « ¢ « « ¢ o s o« o« o s « 36
Iv Graphic Database Record Format . « . « « . « . « 48
v Specialized Records in Graphic Database 49

VI Parameter Database Record Fformat . + « « « « « « 51

SRR s e 0 Tl

Vil Signal Flow Database Record Format 53

Tk 2

VIII GRAPHIC Program Test Implementation Size 56

IX Draw Mode COMMANAS . « ¢ ¢ s « o« ¢ o o o o« o o« o« 959

o

P e R R

vi

AFIT/GE/MA/T9D-1

Abstract

This report describes the design of a graphical input
language and a CAD system for specifying control system block
diagrams. The goal to develop a graphical means of defining
block diagrams that avolded the need to create the textual
descriptions required by most existing traditional analysis
packages was accomplished, Genefalized requirements for a
successful human interface were developed. A graphical input
methodology was developed that meets these human constraints.
The CAD system designed allows graphical definition of linear
systems and translation of these systems into forms acceptable

by traditional analysis programs.

vii

P

WIDAMBO

GRAPHICAL INPUT METHODOLGY
FOR
COMPUTER AIDED ANALYSIS
OF
CONTROL SYSTEMS

I. Introduction

Background

In the guidance and control field there is the
traditional need to analyze linear control systems which are
represented by block diagrams. To assist in this task there
are many conmputer aided design tools which perform various
classical analyses such as root locus, frequency response and
time response. The general problem with many of the computer
programs for analyzing linear control systems is the
complexity of the required input data. Almost all of these
design tools require input that is not in the form normally
used by the design engineer in his daily work. Instead of a
textual description of the control system as required by
current programs, the design engineer is used to representing
the system with a block diagram. This diagram is a directed
graph of lines and boxes, the lines representing the signal
flow paths and the boxes representing the transforms that
operate on the signal. The process of translating this
diagram into an equivalent textual list of nodes and

interconnections is time consuming and error prone,

Additionally, once the textual description is produced its
complexity is such that it is difficult to detect errors and
also difficult to modify. It is these problems that motivated

the effort detailed in this paper.

Statement of Objectives

The objective of this effort was to design a moce
effective method for defining linear control systems for
subsequent analysis by existing computer programs. A major
goal was to employ interactive graphics as a more natural
method for specifying the block diagrams of the systems to be

analyzed by the computer programs.

Approach

The overall approach for this effort was divided into
four phases: system definition, human interface design,
system design and implementation, and design evaluation. The
final section of this paper presents the conclusions that
were derived from the effort and the recommendations for

further work in this area.

II. System Definition

Problem Analysis

This effort was sponsored by the Control Dynamics Branch
of the Air Force Flight Dynamics Laboratory (AFFDL/FGC).
Since the engineers in the laboratory would become the prime
users of any programs developed, the problem analysis was
restricted to discussions with the laboratory personnel and a
literature search.

The discussions with the labaratory design personnel
yielded the following list of deficiencies in the existing
computer aided design programs such as EASYS and TOTAL (Ref
7,12,13):

1) Input formats to existing computer programs are
entirely different from any format used by the design
engineers in normal daily work.

2) Current input formats are extremely complex and
difficult to remember, often requiring relearning for each
use.

3) The interrelationships between input elements are

complicated and numerous, making detection of errors

difficult.

Qe

The literature search revealed that these problems

described by the laboratory personnel were common to most
control system design analysis programs. While the

literature showed some effective methods of interacting with i

the output of some tools to produce minor modifications in

the analysis, no examples were found that addressed the
problem of rapid and simple methods for input generation.
As a result of this analysis the overall problem was
determined to be the absence of a good human engineered
interface for defining control systems. Or stated in
positive terms, the problem was to develop a convenient,
easily remembered input method in which errors could be

easily detected.

Requirements Definition

The requirements for the new design tool being

implemented are derived from the general items identified in
the problem analysis. The future plans for software and
equipment also helped gquide the development of the
requirements. Each of these areas will now be analyzed in
further detail.

The most significant aspect of the problem analysis is
that the items identified deal almost entirely with aspects
of input generation for existing computer aided analysis
tools. Detailed review of the problem analysis clearly
points out the requirement for the development of a new
input language for describing complicated control systems.

Further this new input language must be in a form that feels

natural to the design engineer to allow easy input
generation and verification. Thus to fill the need for a
new input method a requirement for a graphical input

methodology is established. A graphical method was choosen

as potentially the most sucesaful method since it was the
means used by most Jdeaign enygineers when describing control
systems among themselves., Also graphical methods allowed
rapid error detection due to the excellent pattetn
recoynition ability in humans.

In the laboratory there was veneral satisfaction with
the quality and varity of existing computer aided analywis
tools in terms of the analysis perfotmed and the output Jdata
produced. Thus no requirements were produced forv the
generation of new mathematical analyais touls.

In the hardware and software atea there is a gyenetal
long ranoce plan established by the Control Dynamice Branch
(AFFOL/FGC) . In the havdware avrea thia plan calls for no
change in terminal equipment. This meant that the existing
storage tube graphice terminals would be selected an the
target interface device for human fnput, In the avf{tware
area there are plans to combine a number ol computer atded
design analysis tools, including the GRAPIU myatem tuo be
Jdeveloped as part of this effort, This combination effort i=s
planned to occur over several yeara and not involve a
permanent design team, Thus the hardwatre tegquivrement (a2 to
interface with the Tekttonix 4090's meries atuvage tube
terminala., The software regquitement {a tu desfun the new
program with a modular structure to allow for future addition

and combination effortas,

The complete requirements are summarized in the list

that follows:

1) Develop a graphical method of generating control
system definitions. This method should allow for rapid
definition and modification of complex control systems for
analysis.

2) Develop a method to convert the graphically defined
control systems into textually defined control systems
suitable for use as input to existing analysis tools such as
EASYS5 (Ref 7) and TOTAL (Ref 12,13).

3) Select a language and program structure that would
facilitate future modifications by the Flight Dynamics

Laboratory personnel.

III. Human Interface Design

This section detajls the steps that were taken in
designing the input format and graphic language for the
GRAPHIC system being developed. Since the human interface
was already identified as the primary problem during the
problem analysis, the approach taken here was to first make
an in depth study of the factors that control the development
of a successful human interface and then to design the new
graphical language and other interfaces with these factors as

constraints.

Human Interface Factors

The factors that effect the design of a human interface
are many, complex and overlapping in scope. The method used
here to analyze these factors was as follows: First, the
elements of a sucessful interface were derived based on the
author's experience and previous studies found in the
literature (Ref 11,12,14,15,16,20). Then the aspects of
human psychology and task related factors were analyzed to
see how they affected the success of the interface design.
finally, the primary factors in a human interface desian were
considered and realistic constraints were derived to help
assure production of a successful interface.

Components of a Successful Human Interface. A successful

human interface for a computer program has many aspects with

which it must comply. The most important of these aspects are
that the interface must be friendly, easy toc learn, and
natural.

The nature of the interface must be friendly to the user
(Ref 11,12,28). It should allow for easy detection and
correction of errors. It should also allow easy changes in
tasks so0 that the user can start one task, change to another
task and then return to the first with a minimum of effort
(Ref 12).

The man-machine communications format should require
little training to master and should be relearnable almost
immediately after a long period of non-use (Ref 16). In
order for the interface to be easily relearned and retained,
the language must approximate the important aspects of human
to human communication. The most notable of these is that

each input or output should consist of a complete thought

(Ref 11,16,20). It also must have a uniform syntax. In this
way, communication via the interface will feel like it is in
one language instead of several languages, each with its own
rules.

The interface should be natural. In this sense, it
should be designed such that the user converses with the
computer in terms and concepts that he normally uses when
describing the steps to another human. This will cause the
interface to feel “right", like a native language, instead of
unconfortable, like conversing in a poorly learned foreign

language.

In general, the human interface that embodies these
aspects of friendliness, easiness to learn, and naturalness
represents a symbiosis between the man and machine which
allows the user to work as a partner with the machine to
perform a task together (Ref 11). This interface should
allow conversation with the machine regarding aspects of the
task being performed to occur without conscious thought as to

the method of expressing the individual ideas.

Human Psychological Factors Affecting Man-Machine

Interfaces. Much analysis of the nature of human
communication and thought has been done over the past years.
These studies have developed a detailed knowledge of the
physical or biological limits that control the success of
human communication.

The aspects that are of greatest interest in developing
a good human interface include the following: information
capacity and memory characteristics, psychological closure,
and psychological discomfort such as boredom, panic,
frustration, or confusion., Each of these aspects will be

examined in detail.

Analysis of human information transmittal capacity and

short term memory have produced evidence indicating that
there is a definite upper limit to the amount of data a
human can absorb and retransmit. Extensive studies have
shown that this limit is approximately seven items for a
unidimensional measurement (Ref 14). This means that an

individual can be expected to remember accurately no more

9

than seven values of a given parameter at a time. Common
examples of this would be seven lengths of a vector or seven
magnitudes of a truck's speed. Further experiments have
demonstrated that as the dimensionality of the data
increases, the human memory capacity increases; but the
accuracy of the recall for the individual parameters in each
dimension decreases (Ref 14). For example, the mechanism of

recognizing people involves remembering hundreds of faces;

but recalling accurately the details of each face is almost
impossible. This overall capacity or span of memory is also
affected by the grouping or coding that is done by the
individual in representing the items being remembered. In
terms of numeric digits, a human could remember a binary
number of about only seven consecutive binary digits, but
recoding the information into decimal digits converts the
capacity into seven consecutive decimal digits, the
equivalent of twenty-three binary digits. In this manner it
is clear that the conceptual unit of thought also affects the
memory capacity (Ref 14).

In human conversation it is important that individual
actions be psychologically closed or in other words be in
complete thoughts. Studies have shown that transfers of
information between individuals are less sucessful, in terms

of correct transfer of data, if an interruption of any kind

occurs during the transfer. For example, most people, after

looking up a new phone number, have to look up the number

again if interrupted while dialing (Ref 15,16). This is

related to the fact that absolute memory capacity of a human
is limited. The details of a thought are important during its
expression, but once complete only the general idea of the
thought need be remembered. In terms of the preceding
paragraph, recoding of the information cannot be done until
the thought is complete; therefore the absolute gquantity of
information items stored in a human memory keeps increasing
until the thought is completely expressed.

Psychological discomfort in the form of boredom, panic,
frustration, or confusion contributes to the failure of man-
machine interfaces. As with human to human communication, man
to machine communication depends on a two way exchange of
information. Any interruption in this exchange results in
psychological discomfort to the human. Studies have shown
that it is the speed of this feedback that can make or break
the sucess of a man-machine interface (Ref 15). The
absolute speed of the feedback that is required varies
depending on the type of input. For individual key strokes,
studies show that the response must occur within 50
milliseconds in order to avoid psychological discomfort,
while responses to conmplete thoughts can take as long as five
seconds without creating ill effects (Ref 11,15).

In general, it is these human aspects of information
capacity, memory, psychological closure, and psychological
discomfort which must be considered as design limits in all
man-machine interfaces, regardless of the task being

performed, in order for the interface to be successful.

11

e ————

Task Related Factors Affecting Man-Machine Interfaées.

There are several task related factors that affect the
success of the man machine interface. These factors are task
related in that the actual form of the solution to produce a
good interface will vary depending on the individual
combination of task and user. The primary factors are the
process model, the command language, and the level of
prompting.

The process model is the most important of these
aspects. It is the method or the user's perception of the
steps that the program takes to perform the complete task.
If the process model does not match the user model, the
manner in which the user conceives of the problem being
solved, the interface Qill be a failure (Ref 11,15). The
user will constantly have to ‘translate between the steps of
his thoughts, the user model, and the steps of the computer,
the process model, causing needless overhead for the human.
An example of this would be one in which the user considers
the process to be one of “calculating" the values and
"plotting” the response. The process model to support the
above user model should have corresponding “"calculate® and
"plot" steps rather than something like "execute" and
“display" steps if needless translation effort is to be
reduced.

The command language must be both structured and
flexible at the same time. It must be structured in two

aspects. First, the language must present the user with a

12

consistent and predictable syntax for all inputs. In this
way the communications will feel like they are in one
language instead of many languages, Second, the “words" of
the language must match what the user normally employs to
describe the steps he would perform. Specifically, the
developer or programmer should not be allowed to invent new
acronyms to be used as commands. At a low level this match
is related to the high level matching between user and
process models. In terms of flexibility, the language must
support expansion and interruption. Expans.on allows the
user to add new "words™ to the language that act as synonyms
or functional groups of other "words" already defined. In
this way the languagé\can be self conforming to the user's
vocabulary. Interruption as a form of flexibility refers to
the ability to start a step or portion of a command and then
suspend it to do some other operation. Upon completion of
the second operation, the first operation would be resumed
automatically from the point of suspension. Without this
interruption capability, the user would have to have all
inputs prepared ahead of time or be faced with starting over
every time he failed to predict the need for a particular
calculated value (Ref 11,12,15).

The final task related factor is the level of
prompting. The level or amount of detail in the prompting
must vary in two aspects., The first of these is that the
detail must match the complexity of the required input. The

second is that the detail must match that required by the

13

—

user. To provide too much detail causes boredom for the

experienced user, while to provide too littls detail causes
confusion for the inexperienced user. This indicates that

the level of detail must be adjustable by the user to suit

his taste.

It is these task related factors of process model,
command language, and prompting which must be considered as
design constraints if the interface is to feel natural and
comfortable.

Design Constraints for a Sucessful Human Interface. It

is clear from the preceding material that many factors
control the acceptability of man-machine interfaces., 1In
order to insure success, designs for interfaces must have all
aspects within the constraints imposed by the human and task
related factors.

These constraining factors can be best summarized in
terms of complexity, vocabulary, and prompting. The
complexity must be restricted to a narrow range: that is,
low enough so that information can be manipulated within the
capacity of the human memory, but high enough so that
complete thoughts can be expressed. The vocabulary must be
matched to the user. This matching must not only be in terms
of the “words" of the language, but 1also in terms of the
model of the operations being performed. Finally, the
prompting must be adaptable to the user's experience level.
The prompting must be such that the expert does not feel

talked down to and that the novice does not feel ignored.

v

b
i

By careful attention to these factors it should be
possible to consistantly design successful man-machine
interfaces: that is, a human interface that feels natural for
the particular task at hand and can be used with little if
any conscious thought during the performance of the task it

supports.

Intertace Design

For a proqram such as GRAPHIC which is being Jdeveloped
primarily as a complicated translator of input languages
from one form to another, it is clear that the design of the
human intevface would receive considerable attention.

In light of the discussion presented in the first half
of this section, the early assumption during the requirements
definition that a graphic input method was needed is well
supported. For many aspects of control system specification
the graphical, block diagram method truely represents the
natural human method for describing linesar systems. But for
other aspects of the control system specification, such as
specifying transfer tunction 2eros and poles, the standard
textual mode is still completely natural. For this reason the
interface selected for the GRAPHIC program was designed with
both a graphic interface mode and a textual interface mode.
Each mode is described separately in detail. Since the User's
Manual, Appendix A, explains the actual operation of the
GRAPHIC program the following sections concentrate on the

design and its rationale.

Graphic Interface Mode. The GRAPHIC program has six

modes of operation as described in Section IV. The graphic
interface mode was selected for the DRAW and GROUP modes of
GRAPHIC operations. These modes are where the topology of

the control system block diagram is defined.

The approach taken was to analyze what conscious actions
were performed by the design engineer when sketching a block
diagram on a piece of paper. From this analysis a graphic
language was developed that required no more conscious
thought than in the paper drawing to generate the diagram on
the display screen.

On close examination of the topology specification
process, it is clear that the design engineer deals with the
specification problem not as how to place individual line
segements but as how to order and connect the set of
possible elements for the diagram. 1In this case the elements
consist of the basic functional building blocks in a linear
control system such as inputs, outputs, adders, samplers, and
transform boxes. The connection of elements is specified
simply by interconnecting lines. Also it appears that no
conscious thought is given to the orientation of various
elements or the orientation of their connections. For
example for the block diagram shown in Figure 1, there is no
conscious differentiation between transform one and transform
two due solely to the fact that one has its input on the left
while the other has its input on the right. Similarly in

Figure 2 there is no conscious differentiation between adder

16

e e R

e e

Bt B o Bt e

e e

Transform

One

Transform

Two

Figure 1. Block Diagram Topology Example

Adder
One

Adder
Two

L

!

Figure 2. 3Block Diagram Topology Example

17

T,

L e e LT

one and adder two due solely to the fact that one has two
inputs from below while the other has one input from below
and one from above.

Clearly, in order to retain natural feeling to the
interface it will be necessary to handle all subconscious
aspects of block diagram drawing automatically within the
computer. In this’way. the visible interface will reguire no
more conscious thought for use than needed for sketching on
paper. Specifically, this means that the computer will have
to keep track of orientation and input output pairing of
elements within the diagram. To do this the concept of a
current wocrking location (CWL) and drawing direction vector
are used. The current working location is the XY position
that is the location of the output for the most recently
drawn symbol. The drawing direction vector is a vector
pointing in the same direction that the last line element was
dcawn in. The visible effect of the CWL and drawing
direction vector are that as elements are added to the
diagram they appear connected to the previous element and in
the proper orientation automatically. The drawing convention
is that all elements are specified in the order corresponding
to the dicection of signal flow. This means that the user
would define the diagram starting at an input and working
toward any output. This convention allows automatic
generation of clarifying marks such as arrowheads to help

indicate the input side of elements in the block diagram.

18

For the paper sketch example the user consciously
decided only what element to draw next and where to draw it.
With this in mind the interface requires only the equivalent
information, the code letter for the element desired and the
crosshair position for the element locatiun., The individual
code letters were chosen to be the first letter of the
elements name as shown in Table I. In order to retain as
much of the natural feeling as possible and avoid conscious
translation effort, the names of the elements were picked to
be the names most often used by actual design engineers.

In addition to the commands depicted in Table I several
other commands are needed for complete generality. These
commands are regquired to delete, modify, and review the
elements in the block diagram and are described in Table I1.
For all of these commands the first letter of the command
name was used as the command code unless there was a
conflict,

This form of interface produced the most convenient and
rapid method available for defining block diagqram topologies,
It was one in which actions could be accomplished based on
one character inputs from the user.

The next most important aspect of the graphics interface
is the layout and use of the display screen. Since the
terminal was a storage tube connected to a timesharing
network certain aspects of the interface had to consider the
constraints that this imposed. The particular thing to avoid

was the need to erase some gsmall item in the display and

19

R tlighe. Aot

_ P

‘ - Im_.__w~ —

ey gl

Name

Box

Sampler

Adder

Input

Output

Line

Element Producing Commands in Draw Mode

Code

Table I

Representation

O
>
>

Table II

Non-Element Producing Commands in Draw Mode

Naﬁe Code

Move

Connect

TR

Delete

Working Location

M
X
D

End E |
W
Center c
R

Redraw

21

retransmit all the elements that were to remain visible.
This erase and retransmittal of the data was particularly
undesirable due to the low data rate of the timesharing
network, 38 to 120 characters per second.

For the above reasons the digsplay face was organized as
shown in Figure 3. The display was organized into four
major areas: prompt, work, miniature, and text areas. The
graphic prompt area lists all of the commands defined in the
graphic language. Each command is shown with its
corresponding graphic symbol or descriptive mnemonic (Figure
4) . This approach, displaying the entire list of commands,

was taken since there are fifteen different command
codes. As mentioned earlier a human can only be expected to
accurately remember seven or less items in a set such as the
command code set. The text message area is used by the
program to post error and status messages. The messages in
the text area appear one after the another on each line using
every character position before starting the next line. This
feature reduces the frequency of display erasures due to
insufficient text message space for the next message to be
posted. The work area is where all of the drawing is done to
create or modify the block diagram topology. The detailed
explanations of the drawing commands are given in the User's
Manual, Appendix A. 1In addition to the commands to create
the diagram elements, there are also commands to position the
entire diagram within the work area. For this purpose the

drawing can be thought of as being on a large sheet of paper

uoljezueldap 9ovg Avydsyg TeRUTWIdYL °f dINZTL

BaJIY 3X3%

eaay
san3eTuTK o
N
Baay
AI0M
goIy

qduwoag

Center

Delete

Redraw

Work Loc

= End

M = Move

X = Connect

o A YRR e

Pigure &.

Contents of Prompt Area

prS e

T g T

%
!

which is viewed through a window called the work area. The
CENTER command allows the user to direct which element in the
drawing is to be centered in the middle of the work area. The
system keeps track of the total diagram size and whenever any
of the elements disappear outside the window edge a minature
display of the entire diagram without the element labels is
produced. The production of this minature can be inhibited
by the user if desired. This approach was taken to allow the
experienced user to avoid the delay caused by the trans-
mission time needed to produce the minature.

Based on the analysis of the system requirements given
in Section II and the constraints on designs for successful
human interfaces, this graphic interface was implemented to
allow efficient and natural definition of block diagram
topologies.

Textual Interface Mode. The textual interface mode is

used for all aspects of input and output to the GRAPHIC

program that are not directly associated with generation of

the block diagram topology. The major areas of use for this
interface mode are in the PARAMETER and REDUCE features of

the of the GRAPHIC program. In the PARAMETER mode the

transfer functions are specified while in the REDUCE mode the
form of the reduction is specified.

The textual mode is used when there is no graphic data
present on the screen. It is used to communicate with the
user in a teletype style that is normally associated with

computer communications. Each group of inputs or outputs

25

T TRORT TR

uses a new line whether or not the previous line was full.
Although this method wastes space on the face of the storage
tube display and requires more freguent erasures it was still
determined to be more beneficial than the text communication
method used in the graphic interface. The main reason was
that it eliminates the internal bookkeeping and calculations
required to post messages in the graphic mode. This allows
for the most rapid response available and therefore helps
prevent user frustration. The second reason is that it
allows for longer prompting messages. Longer messages are
possible since there is no concern as to how often the
display screen fills up and has to be erased. Unlike
operations in the graphic interface mode, where large amounts
of data, specifically the block diagram, had to be redrawn
after each erase, in the text mode the old data corresponds
to already answered questions and can be discarded with the
erase. The data to be input and output during the PARAMETER
and REDUCE modes of GRAPHIC is primarly textual in nature,
consisting mostly of numeric coefficients and element

labels,

Comparison to Requirements and Constraints. This

combination of graphic and textual input modes was
implemented for the GRAPHIC program as the most likely design
for the human interface considering the system regquirements
stated in Section II and the design constraints stated in the

ficrgt half of this section.

The graphic interface mode has a command set that is
rich enough to allow definition and modification of block
diagrams representing arbitrary topologies of linear
systems. The complexity of the user inputs is low, being in
the general case the specification of a location with the
crogshair and a command with a code letter. The vocabulary of
the graphic language is matched to the user since the
mnemonics for the command names are taken directly from the
most commonly used term employed by the actual design
engineers who will be the primary users. Finally, the
prompting display of user options is constantly
presented in the graphic prompt area (see Figure 4). This
approach frees the user from memorizing the command set. The
production of the minature, another form of prompting, can be
disabled depending on the user's preference.

The textual interface mode allows for complete
specification of the required cofficient data and reduction
parameters for output translation. Its complexity and
vocabulary are ideally suited for the large amounts of
numeric data that must be input in this mode. The elimination
of the graphic data from the screen allows more rapid and
complete prompting to be accomplished.

This combination of interfaces was implemented as being
the best choice for the combined requirements. It is
designed to allow rapid definition of control systems in the

form of arbitary block diagrams. The ability of this

27

3
[T

interface design to perform this function while retaining a
; natural communication feeling in the user will be discussed

in Section Vv,

-’

e YRR

O™ Y = 17 PRI o TP N SN N T, SR IRT e, U LT ASIELTING, 73R -

TR P TR A

IV. System Design and Implementation

The GRAPHIC program was designed to be implemented using

highly modular structure at all levels (Ref 10,22). This
modularization was designed in for several reasons. First,
it allowed nearly independent implementation of the major
functions. Second, adding of new features in the future
would not require dissecting the entire package but simply
connecting a new module. Finally, grouping the code into
modules makes it easier to understand. This last item is
relatively important since the author would not be the
maintainer of the developed system.

Within the code, two additional features were employed
to increase readability and understandability on a system
wide basis. Whenever possible parameters passed between
routines either as formal parameters or as common data
structures were given the same alphanumeric identifier in all
routines. Also the use of numeric constants is avoided in
preference for the use of variables that are treated as
constants. Both of these features help to clarify where the
value being used comes from and also provide a better

indication of when the value is used.

Program Overview

The GRAPHIC program is written entirely in FORTRAN for
the Control Data Corporation (CDC) CYBER series computer (Ref
4,8). It is designed to run as an INTERCOM job under the

NOS/BE operating system (Ref 1,3,5,9). For this reason the

code is overlayed to reduce its memory requirement to under

65,000 base eignt words at any given instant. The GRAPHIC
program is designed to be used only at a Tektronix 40430
series terminal.

As shown in Figure 5 the basic overlay structure of
GRAPHIC consists of one main overlay and six primary
overlays. Each of the six primary overlays corresponds to
one of the six major features or modes of operation in
GRAPHIC.

The GRAPHIC program uses support routines from three
specialized libraries to obtain services that are not a part
of the normal CDC FORTRAN environment. These libraries are
TEKLIB, NOSLIB, and CORE. The TEKLIB library is a set of
routines that provide the low level drivers to interface
directly to the user's Tektronix 408383 series terminal (Ref
18) . The NOSLIB library provides file manipulation
capabilities for cataloging files (Ref 2). The CORE library
is a complete set of subroutines implementing a general
purpose three dimensional graphics system. This three
dimensional system is modeled after the proposed standard for
graphics interfaces produced by the Association for Computing
Machinery (ACM) Special Interest Group for Graphics
{SIGGRAPH) (Ref 17). The TEKLIB and NOSLIB libraries are
maintained by the ASD computer center at Wright- Patterson
AFB, Ohio (Ref 6). The CORE library was developed by a

group of Masters students including the author at the Air

g ko

DRAW

MAIN
OVERLAY

REDUCE

OVERLAY OVERLAY
GROUP PARAMETER
OVERLAY OVERLAY
SAVE REDUCE
OVERLAY OVERLAY
Figure 5. Basic Overlay Structure of GRAPHIC

By e Y o e

T s 3 e S g T

<0 2%

g7y TOEOPRE MR

i 2

Force Institute of Technology as part of a class project (Ref

19) and is further described in Appendix C.

Main Overlay.

The main overlay is resident in memory at

all times when the GRAPHIC program is in operation. As

depicted in Figure 6, the main overlay handles the

initialization of global variables and controls the execution

of each of the six primary overlays.

Besides initializing all of the global variables upon

start up, the main overlay acts as a storage area for shared

data. Since this overlay is the only overlay that is

_,.,-M

resident in memory continuously, any data that is shared or

passed between the primary overlays must be stored in the

main overlay.

Once the global variables have been initialized the only

active function the main overlay has is to select which

primary overlay to execute next. This is done based upon the

user input and results in execution of primary overlay DRAW,

After the

REDUCE,

GROUP, PARAMETER, SAVE, or RESTORE.

primary overlay completes execution, control is returned to

the main overlay and another primary overlay is selected for

execution.

Draw Overlay. The DRAW overlay is responsible for

accepting the block diagram definition from the user and

scoring it in the graphic database. As depicted in Figure

7, it has a separate routine for each major operation that

can be performed during the block diagram definition,

The graphical interface mode is the only form of

MAIN
OVERLAY
INITIALIZE
EXECUTE
OVERLAYS
Figure 6. Main Overlay
33

i VL T PTG

v

T T T T T

ferasap myud °) 2anBg

a5vyavivd
OIHdVYHYD

HOYV3E

j|
ANIT 104100 I04NI HALNED

L L LY [)
1 _ [1 1

a1a73q LOENNOD 2A0K yaaav HT1dHVS xo8
[i [I P 1

AYTHEAO
AVHQ m

communication with the user while running under this overlay
to define a diagram. This means in the general case that
all inputs are restricted to a one letter command code and in
some cases an additional XY location given by the crosshairv
position., Table III contains a complete list of the
commands available and their meaning.

The DRAW overlay operates as a ten way switch: . i

requesting a command from the user, performing the operation

indicated, and then regquesting the next command. Each time
the program is ready for a new command the crosshair appears
on the screen. While the system ig busy processing the

input the crosshair is removed from the screen. This feature
provideg the user with positive feedback as to whether an
operation is in progress or not. The switch structure of

the overlay allows new features or commands to be added to

the graphic interface simply by modifying the section of

code that forms the input command filtert.

As each element in the block diagram iz Jefined a
corresponding entry is established in the araphic database.
For all elements this is done by the UPDATE routine. This
design was chosen to centralize access to the qgraphic
datapase. In this way any changes to the internal structurve
of the graphic database could be hidden from the othet
routines and handled entirely within the UPDATE routine,

The graphics presented on the face of the display are
produced using the three dimensional drawing support routines

in the CORE library. Although all items ate represented as

i3

Table III

DRAW Mode Commands

Command
Box
samplet
Adder
Input
Output
Line
Move
Connect
Delete
Work ing Location
Center

Redraw

O

- » 0 © |0
Q.

o

wnzcxzro

36

0t

two dimensional sketches, a three dimensional support package

was used to allow easy expansion into the third dimension
should a meaningful way of representing control system block
diagrams in three dimensions be developed in the future.

Actual manipulation of the graphical data is controlled
using the following concept of separate coordinate systems.
All data in the graphic database such as specific XY points
for each symbol is treated as locations in an infinite User
Coordinate System (UCS). The display terminal face is
treated as a separate Device Coordinate System (DCS). In
this manner data in the graphics database completely
describes the block diagram in UCS. The production of a
picture of the diagram on the display face is just a mapping
of the points within a window in UCS into a viewport in DCS
space. This concept is quite powerful and, with the addition
of clipping to the window boundaries, allows the symbols in
the work area, miniature area, and prompt area to be produced
entirely by the same software with only changes in the
mathematical mapping. This assures unchanging proportions
between the symbols and the different areas in which they
appear since there 18 only one set of vector commands for
each graphic symbol type: box, sampler, adder, input, output,
and line.

Group Overlay. The GROUP overlay is responsible for

creating collections of elements as specified by the user's
input. Once created, the collections can be used in the DRAW

mode by referring to them with one command code for each

37

individual collection. The specific details on how this is
done are in Appendix A.

The GROUP overlay is essentially a specialized form of
the DRAW and PARAMETER modes. It is structured as depicted
in Figure 8. The major sections of code in this overlay are
just an encapsulated copys of the DRAW and PARAMETER overlay
code. The dther section allows the existing groups of
elements to be scaned and any new groups to be generated.

Parameter Overlay. The PARAMETER overlay is responsible

for acquiring the numeric data to complete the mathematical
definition of the diagram defined by the DRAW overlay. Its
structure is depicted in Figure 9. This overlay allows the
user to specify the numeric values of the polynomials that
form the transfer functions for each box element in the
diagram. It also allows specification of the sampling period
for every sampler in the diagram.

The program is set up to cycle through the list of box
and sampler elements requesting the needed parameters or to
allow the individual parameters to be set one at a time
based on the user input. The polynomials that form the
tranafer function can be specified by either a list of
coefficients or a list of roots on an individual polynomial
basis. Additionally, there are key words and mnemonics to
allow skipping over unchanged roots when redefining
parameters. The complete details of how this would be
accomplished are in the User's Manual, Appendix A.

Regardless of whether the polynomial parameters are

38

, I,,ﬁ;;:;.....||.‘iiﬁllli

GROUP
OVERLAY

GROUP
SCAN

DRAW PARAMETER

Figure 8. GROUP Overlay

ey

i

; 1

| ¢

] 3
r

PARAMETER
OVERLAY
TRANSFORM EASYS SAMPLING }'
FUNCTION VALUES RATES ‘
ROOT COEFFICIENT

INPUT INPUT

FORM

CONVERSION ¢ ‘

;.

STORE §

DATA]

Y

L :

H

Figure 9. PARAMETER Overlay ;

}

!:

13

4o

'\
¢

entered as coefficients or roots, they are stored in both
forms in the database. This approach was taken to allow
direct compatibility with the storage format in use by TOTAL
(Ref 12). Additionally, the routines used by TOTAL to
convert between coefficiént and root form can be employed in

GRAPHIC without modification.

Reduce Overlay. The REDUCE overlay is responsible for

reducing the data storedin both the graphic and numeric
databases. The structure of this overlay is depicted in
Figure 1d. REDUCE operates in two general modes. In one
mode it produces a file of card images for use as input to
the EASYS program (Ref 7). In the other mode it calculates
the equivalent transfer function for a subset of the block
diagram and stores the answer for further use in interactive
processing.

Regardless of which mode is in effect, the program
first makes any temporary changes in the block diagram
topology that the user requests and then acquires the points
on the diagram between which the equivalent transfer
function is to be calculated. Then the graphic database is
analyzed and compressed to form the signal flow database.
The FLOW subroutine performs this work which amounts to
discarding the graphical position data to create a signal
flow graph that retains only the mathematical connectivity
information. The signal flow database is small enough to fit
entirely in memory. From this point the processing diverges

depending on the mode of operation desired.

41

728 R ST T Ay 5 AR B TOE I ML

s
,?
r

REDUCE
OVERLAY

FLOW
PROCESSING

EASYS
PROCESSING

ONLINE
REDUCTION

Pigure 10. REDUCE Overlay

42

NOUS/BE operating system (Ref 1,3,5,9). For this reason the

29

If the EASYS mode is used the signal flow database and
the numeric database are expanded and converted to an

equivalent textual description describing the block diagram

topology and polynomial roots. This operation of mapping

from the GRAPHIC representation into the EASYS representation
is somewhat complicated since it is a one to many mapping.
This is because GRAPHIC allows transfer functions as large as
order 50 while EASYS must cascade functions of order 2 ot
less. Additionally, while GRAPHIC has an arbitrary element,
the transform box, for any transfer function, EASYS has many
different elements depending on the combination of numerator
and denominator polynomial orders. Once produced, the text
file describing the block diagram is available for use
without further modification as the complete input file for

EASYS5.

If the interactive mode is selected, the sicnal flow and
numeric databases are analyzed directly and the equiv.lent
transfer function is calculated and stored as a special entry
in the numeric database. This allows the result to be used
in later diagrams and analyses. The method used to find this
transfek function is a computerized implementation of Mason's
reduction method developed by Young (Ref 21).

In this overlay the division of tasks in operation is
such that all information shared between subroutines is
stored in the signal flow database. This allows the
routines for FLOW, EASYS5 mode, and interactive mode

processing to be implemented as secondary overlays and

43

e e o e

e ot ———————— AT

g, e A = —

30

2o0 BUEAS e SRR E L s o 1o o S IE I AR

therefore have their code areas share the same memory space

but operate at different times.

Save Overlay. The SAVE overlay is responsible for

permanently storing the GRAPHIC databases so that they can be
reused at a later time. This feature eliminates the need to
redefine the block diagram everytime the program is
activated. The structure of this oveilay is depicted in
Figure 11.

The three step process used to save the graphic and
numeric databases consists of the following items. First,
the desired filename is obtained from the user. Second, the
databases are converted from their ramdom mass storage form
to a more compact sequential fqrm. Finally, the sequential
file is passed to the operating system for cataloging as a
permanent file. This method of storing the database is
similiar to that used by the TOTAL program (Ref 12).

Restore Overlay. The RESTORE overlay is responsible for

rebuilding the databases from information in a permanent file
established by a previous SAVE command. The structure of
this overlay is depicted in Figure 12 and closely parallels
the structure of the SAVE overlay.

The RESTORE overlay performs a three step process that
is the logical inverse of that performed by the SAVE
overlay. First, it obtains the name of the file containing
the stored data. Second, it requests the operating system to

attach the specified file to this program. This operation

uses the routines in the NOSLIB library (Ref 2). Finally,

~1 g e e o

~ g ey

SAVE
OVERLAY

GRAPHIC NUMERIC

DATABASE DATABASE

STORAGE
FILE

Figure 11. SAVE Overlay

REDUCE
OVERLAY

GRAPHIC NUMERIC

DATABASE

DATABASE

\

STORAGE
FILE

Figure 12. 'RESTORE Overlay

45

W TAR

-

13 iooiss O PP,

it reads the data from the file and recreates the two
separate ramdom access mass storage databases of graphic and

numeric data.

Data Structures

Large amounts of data are received and stored by the
program in the process of accepting the block diagram
definition from the user. That data is functionally
categorized and divided into three general data structures
or databases., As mentioned in the preceding parts of this
section, these data structures are the graphic database, the
numeric database, and the signal flow database.

The graphic and numeric databases are shared among all
five of the primary overlays. The data in these two
databases is derived directly from user inputs. The signal
flow database is used only by the REDUCE overlay. The data
in the signal flow database is derived from the content of
the graphic database.

Graphic Database. The graphic database is generated from

the commands input by the user during the DRAW mode of
operation. It contains all the information needed to
reproduce the drawing of the block diagram on the terminal
display screen. Additionally, the information on the diagram
topology, specifically what symbols connect to each other, is
also contained in this database.

As the user enters commands to define elements of the

block diagram, corresponding records are created in the

46

ot g

il isn i e R~ i e
e il R "

database. One record is created for each box, sampler, adder,
input, output, and line element defined by the user. A
connection command generates a record only if a diamond
connection symbol was produced. Otherwise the connection
command results only in a change in the topology information.

The records of the database are structured as shown in
Table IV. Each record contains all the necessary information
to define the representation of the element and its
connectivity to other elements in the drawing. In this regard
the record has entries for the symbol type, location, and
orientation as well as the element label. Additionally, the
record contains pointers to the records for the elements
which are connected to it in the diagram. In this way the
database records form a doubly linked list indicating the
signal flow paths. If the record is for a box or sampler
element it also contains pointers into the numeric database
to the location of its describing paramaters.

To make it easy to access the database, linked lists of
the records are maintained for each element type. A separate
linked list is maintained for each set of box, sampler,
adder, input, output, line, and connection element records.
Additionally, the maximum size or extent of the block
diagram is maintained as a separate parameter for use in
controlling the generation of the optional miniature diagram,
The collection of linked lists and diagram size data are
treated as two nonstandard records in the graphic database,

The structure of these records is given in Table V.

47

Y S —— i :
i . defatilannia,

 —p—r

— -y
N nd

Element

Graphic

Type Use

Table IV

Database Record Format

et E @IS WM~
[~

—
w N

ASCII Command

Real X value
Real Y value
Real X value
Real Y value

code for graphic symbol type.
of current working location,
of current working location.
of end point for line symbol.
of end point for line symbol.

ASCII System generated visible label.

Unused.

ASCI1I User supplied label,
ASCII Flag for S or Z domain.

Unused.

Integer Pointer to numerator polynominal in
Numeric Dataase,

Integer Pointer

to denominator polynominal

in Numevic Database.

Integer Pointer
Integer Polinter
Integer Pointer
ASCII Sign of
Integer Pointer
ASCII Sign of
Integer Pointer
ASCII Sign of

to record for output element.
to record for output element.
to record for input element.
fnput from element entry 15.
to record for input element.
input from element entry 17.
to record for input element.
input from element entry 19.

Real Direction vector X component.
Real Direction vector Y component,
Real Minimum X limit of element.
Real Maximum X limit of element.
Real Minimum Y limit of element,.
Real Maximum Y limit of element.
Real Line direction vector X component,
Real X location of element label,
Real Y location of element label.
Integer Element label lenght.
Unused.
Unused.
Unused.
Real Line direction vector Y component,

48

Table V

Specialized Records in Graphic Database

a) Linked List (entry 1401)

Word Use 1

1-1000 Array of 6 interwoven linked lists.

1001 Pointer to start of box list.

1902 Pointer to end of box list.

1003 Pointer to start of sampler list. 4

1004 Pointer to end of sampler list.

1605 Pointer to start of adder list.

1086 Pointer to end of adder list. b

1087 Pointer to start of input list.

1008 Pointer to end of input list.

1009 Pointer to start of output list.

1010 Pointer to end of output list.

1011 Pointer to start of line list.

1012 Pointer to end of line list.

1013 Pointer to start of connect list,

1014 Pointer to end of connect list.

1815 Pointer to first free location in array
of linked lists.

1016 Count of box entries.

1017 Count of sampler entries.

la1ls Count of adder entries.

1019 Count of input entries.

1920 Count of output entries,

1921 Count of line entries.

19022 Count of connect entries.

I —
A,

- —— —y

b) Drawing Extent (entry 1082)

Word Use H
s
| 1 Left edge of diagram in UCS. _
; 2 Right edge of diagram in UCS. :
i 3 Bottom edge of diagram in UCS.
/ 4 Top edge of diagram in UCS.
Note: * UCS = User Coordinate System. (Units the

drawing is referenced to in the
database.)

g

Because of its size, no attempt is made to keep the

graphic database in memory. Instead, the database is

organized as a random access mass storage file. Although
this approach introduces additional overhead for each access
to the database the delay is not significant. The random
access method was chosen since most of the time only one
element record is of interest while processing a given
command. It is only for the DELETE and CONNECT commands that
the database needs to be completely searched. The linked
lists allow the PARAMETER mode to selectively access only the
box and sampler element records and avoid the need to read
the rest of the records. The only other time all the
database records are read is when the diagram is redisplayed
after the CRT screen is erased or when the signal flow
database is generated.

Numeric Database. The numeric database contains all

information necessary to define the mathematical properties

of the arbitrary transform boxes and samplers in the graphic
drawing. It contains one record for each transform and one

combined record for all sampling rates.

The 1ndiv1du§1 transform records each contain the
mathematical description of the transfer function stored as
a ratio of polynomials. The functions are stored in both
cécfficient and root form as shown in Table VI. The format
chosen fcr this data is identical to the storage format used

by TOTAL in order to increase future compatibility between

the two programs.

Table VI

Numeric Database Record Format

Element Type Use

1-51 Real Coefficients of numerator polynominal,
52-102 Real <Coefficients of denominator polynominal.
183-152 Real Real part of numerator polynominial roots.
153-282 Real Complex part of numerator polynominal roots.
283-252 Real Real part of denominator polynominal roots.
253-302 Real Complex part of denominator polynominal roots.
383 Integer Order of numerator polynominal.

304 Integer Order of denominator polynominal.

305 Real Gain of transfer function.

306 Real Gain of numerator polynominal.

387 Real Gain of denominator polynominal.

o ez -

The sampling rates of all samplers in the system are
stored as one record at the end of the database,

The database is created during the “PARAMETER” mode of
the program and resides on a mass storage device. It can be
reused in later invocations of the program, but only with
its corresponding graphic database.

Signal Flow Database. The signal flow database is

created during the REDUCE mode of operation. It is generated
from the data in the graphic database and has pointers into
the numeric database.

This database represents the signal flow graph of the
diagram defined during the DRAW mode. As such it contains
only information regarding the diagram topology or
connectivity. All information from the graphic database
regarding labeling or the absolute positioning and
orientation of elements is discarded. The records of the
signal flow database occur in three different formats. The
exact content of each record format is shown in Table VII.

The signal flow diagram, unlike the graphic and numeric
databases, is maintained entirely in memory. This is done to
allow easy and rapid access to all records during the
reduction process. This access is needed since the process of
translating the diagram into EASYS format as well as the
process of finding the equivalent transfer function both

require repeated accesses to all records of the signal flow

database.

S ————

Entry Type

Integer
ASCII

Integer
Integer
Integer
Integer
ASCII

Integer

O~JOWNd WN K-

Entry Type

Table VII

Signal Flow Database Record Format

a) Format for Adder Elements:

Use

Key of original record in graphic database.
Symbol type indicator.

Pointer to output element record.

Pointer to input element record.

Pointer to input element record.

Pointer to input element record.

EASY5 label assigned to this element.
Pointer to output continuation record.

b) Format for Output Connection Records:

Use

Integer
ASCII

Integer
Integer
Integer
Integer
Integer
Integer

QNN & W~

Entry Type

Unused.

Flag indicating output connection record.
Pointer to output element record.

Pointer to output element record.

Pointer to output element record.

Pointer to output element record.

Pointer to input element record.

Pointer to next connection record.

c) Format for Box, Sampler, Input, and Output Elements:

Use

Integer
ASCII

Integer
Integer
Integer
Integer
ASCII

Integer

QAW

Key of original record in graphic database.
Symbol type indicator.

Pointer to output element record.
Pointer to output element record.

Pointer to output connection record.
Pointer to input element record.

EASYS5 label assigned to this element.
Pointer to parameters in numeric database.

53

V. Design Evaluation

The design of the GRAPHIC system and its interfaces as
discussed in the two preceding chapters is fully documented
in the form of a User's Manual which appears as Appendix A to
this paper. Although the GRAPHIC system was designed with the
interface constraints discussed in chapter three in mind, it
was necessary to verify the actual feasibility of the
proposed design. For this reason a subset of the total system
was implemented. The area of specific interest was the

suitability of the proposed graphic input language.

System Implementation.

The system implemented to test the graphical interface
with the user contained only selected features from each of
the modes of operation of GRAPHIC. In the DRAW mode, the
entire set of basic commands was implemented. Only the user
group feature, which allowed formation of collections of
symbols, was omitted. In the PARAMETER mode, the coefficient
and root forms of input were implemented. The input for
sampler periods was omitted. In the REDUCE mode, the EASYS
translation for continuous systems was implemented. The
digital or sampled systems and the online reduction features
were omitted.

Although some of the features were omitted for the test,
the capacities of the internal tables were maintained at
their full size estimates. This was done to obtain realistic

estimates of the amount of memory space needed to implement

54

pr———_

T Ay O PBGND T ARSI TN

e R

i R vy g P

T AT BN BT 2 Ayt T et

i
¥

the complete version of GRAPHIC as defined in Appendix A. In
this regard the graphic database was implemented to allow
1000 elements (records) and the signal flow database was
implemented to handle 500 nodes (records). These sizes are
proportional to each other since the signal flow database
contains approximately one entry for every record in the

graphic database that is not a line or connection element

record. The items omitted from this system implementation, as

discussed earlier, did not effect the memory size estimates
gsince they were to be implemented as parallel or secondary
overlays and therefore share space with the modules
implemented for this test. The overall size of the test
system is shown in Table VIII.

The overall capabilities of the test system implemented
allowed the user to draw arbitary block diagram topologies
representing linear time continuous control systems. In the
DRAW mode, commands were implemented to allow the user to
define and modify block diagrams as well as recentering them
within the work area. The section of the PARAMETER mode that
was implemented allowed specification of the transfer

function polynomials, In the REDUCE mode, only a subset of

the EASYS processing was implemented. This subset allowed the

translation of linear time continuous systems only.

User Test.

The primary purpose of the user test was to verify the

design decisions made in deriving the specification for the

55

Table VIII
GRAPHIC Program Test Implementation Size

a) Overlay Sizes:

Overlay Size: Decimal Octal

i MAIN 15670 36466 ;
s DRAW 4210 10162 :
i PARAMETER 3008 5700 :
L REDUCE 9292 22114 g
B SAVE 1301 2425 ;
“% RESTORE 1196 2254 i
o :
i x
i

g; b) Size During Execution (Including Overhead):

Qverlay Size (octal) ?

.

*; MAIN 36466
E DRAW 46655
; PARAMETER 44373
| REDUCE 60607
< SAVE 41129
| RESTORE 40747
|
1

e AN P F NS

¢
{
;

56

GRAPHIC system. As such the items that were of greatest
interest during the test were whether the user could create
the block diagram and modify it using the commands defined
and also whether the process provided for doing so seemed
logical and convenient to the user. Since the above factors
to be evaluated for the test would have subjectively

developed answers, the test is best characterized as an

experiment rather than a performance measurement.

The subjects used for the test were design engineers
from the Flight Dynamics Lab. These subjects would be the
prime users of the program and in some cases were individuals
who had participated earlier by providing inputs during the
problem analysis and requirements definition. The subjects
were allowed to use the program with a minimum of
instructions. Some instruction was necessary since complete
descriptive documentation had not been generated at the time
of the test.

During the user test the subjects were first presented

with the initial display for the DRAW mode, Figure 13.
Using the basic command list in Table IX they were able to
experiment with the graphic interface and define systems of

block diagrams such as the one in Figure 14. The actual

method of producing such a diagram is detailed on a step by
step basis in Appendix A. Also it was possible to shift the
drawing within the window and cause the miniature to appear
automatically when any of the elements fell outside of the

work area, Figure 15. Error messages, when regquired were

57

AeTdsSTd TeT3ITUI 9POW MYYA °ET1 2an3t4g

UMD WILINT=S
207 MOR NO NRINI)oe

58

ASEYT e T~ -

Table IX

DRAW Mode Commands

Command Code
Box B §
&
Adder A %
Input I %
Qutput o) %
Line L
Move M
Connect X
Y
Delete D .
Working Location w :
Center C :
]
Redraw R ;
g
:
A
'
!
?
]
{

59

uot3juTjeq weadeiq xqoord Jo drdwes -y dIN3T4

B2 ‘WILIN] -8
207 JOR M0 HILNII=e

P

ferde1g sanjejuty Jo otdwes °GI danBrd

61

scrolled horizontally across each line the text area using a
“$" as the start of message delimiter as shown in Figure 16.
Once the drawing had been defined the user was able to

activate the PARAMETER mode. 1In the test implementation of

GRAPHIC all transforms were assumed to be real continuous
transforms and all samplers were assumed to have equal
sampling periods of one second. The only mode implemented
for transform parameter input was where the program
automatically polled the user for each transform needed. An

example of the format is in Figure 17. Figure 17

corresponds to the input required by the drawing shown in
Figure 18.

Once the diagram and its parameters were defined, the
user was able to use the REDUCE mode. As mentioned eariler,
only a restricted portion of the EASY5 reduction capability
was implemented. The system was capable of producing the
textual card image definitions for any linear time continuous
control system diagram. Figure 19 shows the EASYS definition
produced by the test system from the inputs shown in Figures
17 and 18.

Additionally, the test program allowed the user to

operate the SAVE and RESTORE modes. However, for the test

implementation only the graphic database was saved.

User Test Results P
The results of the user test were derived from the

activities of the individual users during numerous runs of

62

drdwexy 9BYSSIY JOaIId °YT SJnITL

dlTTq OL INAWZIE ON ¢

COEFFICIENT OR ROOT FORM 2 (C/R) DC
£%TER FOLY COEFS
FIPST U THEN l\tl UMEN REQUESTED
FOFN ’!': hs.l!! COEFS NIGHESY TO LOVEST
SUCH THAT ANt STIN e (“(N-SH 2 SEB(N-1) o see ¢ 0
ENTES TPy NUN ORDER . COEFS)0,.2.4
noER 1Fy DENON ORDER.COEFS 31.2.3
NTER TFR NUN R,COEFS D1,4 J.
NYER TFQ PENON ORDER COEFS)&.1.-1. 3. $.0E-¢
NTER TF) NUN ORDER OE
NTER TF3 DEMON ORDER.COEYS 3122, 4.3
ALL COEFS SET
Figure 17. Example of PARAMETER Mode Input
64

ordusxy weaSeyQ)Roord °gI dJInBTy

" MRAMBI WILINIeS

[r 1})

2307 MN-A

WIBI*I

2UTTIN-8

s &
—t O |

65

AT ST N o Y o

i L 2 201000

wea$eTqg }001d Jo UOT3dTI089Q TBNIXSL GASVE ‘6T °anSid

(9S22S)€ 9T14(ES=2S)E ¢ (3522 %)

et NN

NOTI LONNJ 434SNVYNYL

91=1nd it
97=1134NI
9I=1NINT
3= N4 NT
JH=ININ]
YH=LiNdNI

= N4NI

28 2
s 1
p

L ¥ §-

-

37¢0N8I43 2~
PRAS S 1 NI RV

SP=3LTFI090282°¢

2629106649 °
azg2ng602L”°
(1ir€cIeT 2
0ION0V0u’T .
T90E0302°Y

"N NMNMN -
o
-l

1S31=N01Je¢

YH=iNd INO 414
VYhz lNaod] 41
107 ¥3INING
ey § 01 10
N0 107d
¥O03»

N=T OH &)
6= OH £3
T+4=% oW 20
T+4=1 D T9
YK 29
YH 13
7 0d
°1 07
57 rd
91 92
21 4
% 02
=T =7 1v9

o
"
[y

-t
W wuwn
NNMMN

-t
[

"on
.

INTHd
T300H 40 ONI
INP=ND11YI0
S¢r=NO0JILVI0
C00=MNOTIVYI0)
%0C=NOILVI0
£00=NOIJVI0
200N 11Y20T
T00=NOIIVIO0T
JudS3n 3IQ0H

403«

22 VP21 14S 10 T2 L TINI VST SICACASYI *N193 60
*17 44V =NS 5ASVI=0I ¢S TI00a® HOVLLY
GOTYEIIXNDY LS LTEP6LL 00T 10CCOLZNIOLN

T AT M v

66

the GRAPHIC test implementation,

During the tests the factors that were of most interest

were: 1) gquestions asked by the test subjects, 2) actions

taken by the test subjects that produced results different

from what the subject expected, and 3) feelings expressed by

the test subjects regarding whether the commands, actions,

and graphics seemed logical.

The general results of the user test conducted on the

GRAPHIC system are summarized below:

1) The three step process for defining and analyzing a

block diagram via the DRAW, PARAMETER, and REDUCE modes was

considered a convenient and logical partitioning of the

problem.

2) The ability to save and restore the databases was

- considered essential since it eliminated the need to

redefine the block diagram systems upon every reuse of the

GRAPHIC program.

3) The division of the terminal face into four distinct

areas as previously shown in Figure 3. was considered an

acceptable organization for the display.

4) When in the DRAW mode, the complete list of commands

in the graphic prompt area was noted as freeing the user

from having to memorigze the command codes.

command mnemonic

5) The use of the first letter of the

as the command code was cited as excellent with one

exception. The resolution of the conflict between CENTER and ‘

CONNECT by assigning the code C to CENTER and the code X to

67

CONNECT was considered unacceptable. During the user test
there was a high incidence of selecting C for the CONNECT
operation even with the actual command codes displayed in the
prompt area.

6) Correct positioning of the current working location
(CWL) prior to using the CONNECT command was not always
correctly performed by the users. Since the CONNECT
operation affects the elements of the diagram in the vicinity
of the CWL, in order to split an output it is necessary to
MOVE to the location where the split is to be placed and then
perform a CONNECT. It was the MOVE prior to the CONNECT that
was often ommitted by the test subjects. The other case of a
connection, where an element just drawn is to be connected
into the drawing, presented no problem since the act of
drawing the element to be connected automatically positions
thé CWL correctly.

7) The ability to move the drawing around in the work
area for defining and viewing different areas of a large
diagram was considered essential. The implementation of the
CENTER command was considered somewhat inconvenient., It was
pointed out by the users that, since the CENTER command
required one to point at the position that was to become the
center, centering on an element not currently visible
required repeated use of the CENTER command. This condition
was further aggravated since after each CENTER command there
was & delay while redrawing the diagram before the next

CENTER command could be issued.

68

8) The graphic symbols used to depict the various
elements in the block diagram were considered acceptable
except minor changes in the input and output element symbols
were suggested.,

9) The automatically generated miniature drawing for

large diagrams was cited as being very useful for keeping
track of the entire drawing. The use of corner marks to
indicate what portion of the miniature was visible in the
work area was noted as being useful for rapid correlation

between the miniature and work area displays.

Modifications

Based on the results of the user test several modifi-
cations were made to the graphic input language. These
changes were made to eliminate the confusion that was
experienced by the test subjects during the user test.

A review of the user test results shows that items 5,
6, 7, and 8 each identify problems that exist with the
initjally proposed design for the GRAPHIC system, Appendix
A. The discussion that follows addresses each problem
identified and the design change that was developed to

eliminate that problem.

Item 5 in the test results concerned the confusion
between command codes C and X representing CENTER and CONNECT
respectively. The initial assumption for the original design

was that the use of X as the code for CONNECT could be

egquated to the use of an X in electronic circuit diagrams to

69

indicate a connection between two wires that crossed. This
assumption proved false as was demonstrated in the test,
Since it was noted during the test that CONNECT commands were
used more often than CENTER commands, the letter C was
assigned as the code for CONNECT. The command code for
CENTER was also modified. Changes to the CENTER command are
explained in conjunction with item 7 below.

Test result item 6 addresses another problem associated
with CONNECT. This problem arises when the user forgets to
first position the CWL with a MOVE command before attempting
to split outputs via the CONNECT command. This is a clear
example of the process model and the user model not matching.
The process model, as controlled by the input language,
represents this action as a two step operation. On the other
hand, the user views it as a one¢ step operation, simply
connect. Further analysis indicated that the first step, the
MOVE step, in the computer process model is associated solely
with positioning the CWL. Since the concept of a CWL is not
consciously present in the user's mental model of the actions
required for drawing a diagram, clearly it is the MOVE step
which must be eliminated. The approach taken was to assume a
MOVE command was issued and handle it automatically, if the
crosshair location is not at the CWL when the CONNECT command
was received. This approach solves the problem by causing
the process model and user model to coincide.

Item 7 of the test results identified a problem with the

CENTER command. The manifestation of the problem was that the

70

i
N
:

PRSI <

user could not center an object in the work area with a
single command if the element was not already visible in the
work area. The solution to this was to expand the power of
the CENTER command. Specifically, when pointing to the
element that was to be centered in the work area, the user
would now be allowed to select any element that appeared in
either the work or miniature areas. This would allow direct
one command positioning to any element in the diagram.
Additionally, two other specialized options of the CENTER
command were created. One allowed centering on the initial
default window, while the other allowed centering on the CWL.

The symbol representation problem identified in item 8
was just a graphical depiction problem. It is a simple
example of the problems that occur when the programmer is
allowed to specify the aspects of the interface instead of
the user. The solution to this was simply to redefine the
graphic symbols as the user expected them to appear.

The change in the graphic symbols was effected as soon
as the problem was discovered. This was done to prevent the
graphic symbology problem from overshadowing any of the other
aspects of the test. The old symbols and the new final
versions are shown in Figure 20. Because the change occurred
at a very early stage, all figures in this report show only
the final graphic symbols for these elements. The other
changes mentioned above were accomplished as modifications to

the proposed design after the test was completed. The

conplete details of these changes are documented in Appendix B.

71

ORIGINAL

a) Input

b) Output

Figure 20. Representation of Input and Output Symbols

VI. Conclusions and Recommendations

The GRAPHIC system as designed represents an effective
computer aided design tool. It allowe cthe rapid
specification of arbitrary topology contol systems in the
form of block diagrams and then translates these diagrams
into forms acceptable to other programs such as EASY5 and
TOTAL for further analysis.

The implementation of the graphic input language for

this system is well suited for the process of creating the

block diagrams. The interface as designed matches the level
of concentration required by the user for CRT definition of a
block diagram with that required for a paper sketch
definition of the block diagram. In this way the interface
retains a natural feeling for the user instead of requiring
conscious thought for the selection of the correct input
command. The use of graphics successfully hides unneeded

information, such as orientation angles of symbols, while

displaying the significant items, the signal flow
interconnections, in their natural diagrammatic form. This
makes optimum use of the human pattern recognition
capabilities available for error detection since any errors

are completely depicted in the visible drawing on the CRT.

The user test sucessfully demonstrated that an effective
graphical method can be developed for use in specifying
control system block diagrams for computer analysis. It also

demonstrated that this graphical method can be designed to

73 ‘

R m“-.-‘.-.-g.-.--n...ﬂ.l.'.llll.ll“

allow rapid block diagram definition while retaining enough
aspects of the normal non-computer sketching method to
continue to feel natural to the user.

Due to the positive results obtained during the user
test it is recommended that a fully functional version of
the GRAPHIC program be implemented. This system should be
>reated from the design specified by Appendices A and B.
The test implementation as documented in Appendix D should
serve as the foundation for this implementation.

Although the GRAPHIC system greatly improves the ease
with which a user can generate block diagrams for analysis,
there are still many areas where further investigation would
be fruitful. These areas are summarized below:

1) The GRAPHIC program currently is designed only to
interface with the Tektronix 4000 serie- terminals. Any
hardcopy of the diagramz analyzed is produced through these
terminals, It would be desirable to extend the design to
allow for other interactive graphic terminals and also to
allow the diagrams to be copied to noninteractive devices
such as plotters.

2) As was mentioned earlier, the GPAPHIC support library
CORE allows drawing in three dimensions. It would be
desirable to investigate the use of the third dimension for
representing varying levels of detail. Conceptually this
would allow one to step back and view a system under
snaiysis as several high order black boxes or zoom in for a

o 1o f@vsi1led Lepresentation of the individual elements

74

within the black box.

3) The entire GRAPHIC system should be integrated with
the TOTAL system (Ref 12) to allow complete definition and
analysis of control systems as though the two packages were
one consolidated computer aided design tool. Specifically,

the consolidation should attempt to eliminate any conscious

user thought involved with transferring data between the

GRAPHIC and TOTAL packages.

190.

11.

12.

Bibliography

Air Force Institute of Technology. Digital Computer
Manual for Faculty and Students of the School of
Engineering (4th Edition). Wright-Patterson AFB, Ohio:
AFIT, August 1978.

ASD Computer Center. Battelle Disk File Manipulation
Routines User's Guide (Revision B). Wright-Patterson
AFB, Ohio: ASD Computer Center, July 1978.

ASD Computer Center. CDC NOS/BE User's Guide (Revision
F). Wright~- Patterson AFB, Ohio: ASD Computer Center,
August 1979.

ASD Computer Center. Cyber Control Language. Wright-
Patterson AFB, Ohio: AED Computer Center, December 1977.

ASD Computer Center. INTERCOM Guide (Revision A). Wright-
Patterson, Ohio: ASD Computer Center, September 1976.

ASD Computer Center. Subgrogram Library Guide (Revision
D). Wright-Patterson AFB, Ohio: ASD Computer Center,
January 1978.

Boeing Aerospace Company. EASYS5 User's Manual for

Control System Simulation. Document No. D 180-19147-3,
tontract §33615-79-C-3157. Seattle, Washington, Boeing
Areospace Company, 1979.

Control Data Corporation. Fortran Extended Version 4
Reference Manual. Pub. No. 60497800, Revision D.
Sunnyvale, California: Publications and Graphics
Division, 1978.

Control Data Corporation. INTERCOM Version 4 Reference
Manual. Pub. No. 60494680, Revision BE. St. Paul,
Minnesota: Publications and Graphics Division, 1978.

DeMarco, Tom. Structured Analysis and System
Specification. New York: Yourdon Inc.,I¥75.

Foley, James D. and Victor L. Wallace. "The Art of
Natural Graphic Man-Machine Conversation,” Proceedings
of the 1EEE, 62: 462-471 (April 1974).

Larimer, 2nd Lt. Stanley J. An Interactive Computer-
Aided Design Program for Digital and Continuous Control

System Analysis and synthesis. MS thesis. Wright-

Patterson ArB, Ohio: Air Force Institute of Technology,
March 1978. (AD A@55 418).

16

o 2 e YL geRL § £, cor AT

- g
e .

15.

l6.

17.

18.

19.

Larimer, Stanley J. and Gary B. Lamont. "An Interactive
CAD Program for Control System Analysis and Synthesis,*
Proceedings Sixteenth Annual Allerton Conference on

Communication, control, and Computing, 2871-295 (October

Miller, George A. “The Magic Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing
Information, " Psychology Review, 63 (2): 81-97 (March
1956) .

Newman, William M. and Robert F Spoull. Principles of
Interactive Co¥§uter Graphics (Second Edition). New
York: McGraw-H Book Company, 1979.

Spence, Robert and Mark Apperley. “The Interactive~

Graphic Man-Computer Dialogue in Computer-Aided Circuit
Design, " IEEE Transactions on Circuits and Systems, CAS-
24: 49-61 (February

“Status Report of the Graphics Standards Planning
Commi ttee of ACM/SIGGRAPH," Computer Graphics, 11 (3)
(Fall 1977).

Tektronix, Inc. Plot 10 Terminal Control System User's
Manual. Document No. 862-1474-00. Beaverton, Oregon,
Information Display Division, Tektronix, Inc., 1974.

Troxel, Donald E., et al. "CORE," unpublished report for
course MA 6.86, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, 1979.

Voltz, Richard A., et al. "COINGRAD - Control Oriented
Interactive Graphical Analysis and Design, " IEEE
Transactions on Education, E-17: 143-152 (August 1974)

Young, Kenneth Royce. The Design of Automatic Control
Systems Using Interactive Tomputer Graphics. Ph.D.
Dissertation, The University of Texas at Austin, 1974.
Ann Arbor, Michigan, University Microfilms
International, 1979.

Yourdon, Edward and Larry L. Constantine. Structured
Design (Second Edition). New York: Yourdon Press, 1978.

APPENDIX A

USER'S MANUAL
FOR
GRAPHIC

s somes

Preface

This appendix documents the complete design
specification for the GRAPHIC system. It is structured as a
User's Manual for two reasons. The first reason is to
highlight the features that will be available as part of the
GRAPHIC package. The second reason is to enable actual
examples of user inputs and outputs to be specified. This
approach of specifying the system design via a User's Manual

was considered to provide the best means of allowing the

system to be visualized prior to its implementation.

pu=—ssTrame

s

Contents

Page
Preface . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o 4 s s s e e s o s s e . o i
List of FIQULES . &+ ¢ ¢ ¢ o ¢ ¢ ¢ o o o o o o o o o o o o v
List of Tables . . . ¢ ¢ ¢ v ¢« 4 ¢ ¢ ¢ o o o ¢ o o » ¢ o« Vi
I. General Description . . . ¢ ¢ ¢ ¢ ¢« o o o s o o
OVerview . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o o o

1
1
General Operation . . & & ¢ ¢ ¢ & o o o o o 4
Notation . & & & ¢ ¢ ¢ ¢ ¢ ¢ o o e o o o o o 5
6
6

II. Modes of Operation

Draw Mode

Box Command - Code:B . ¢« « ¢ o« ¢ o o o & 8

Adder Command - Code:tA . . « « « o« « o« « 180

Sampler Command - Code:S . . .« « 18

, Input Command - Code:I « « « « . 11
1 Output Command - Code:O0 . . « +« « « « « o 11
Line Command - Code:L . . . ¢« ¢« &« +» « o o 11

Move Command - Codes:M . . . ¢ ¢ ¢ « &« &« « 12

Connect Command - Code:X . . . « . « o « 12

End Command - CodetE . « ¢ o ¢« « ¢« o o« o 12

Delete Command - Code:D . . « ¢« ¢« &+ « « o« 13

Redraw Command ~ Code:R « « « ¢ « « « o « 13

Working Location Command - Code:W 13

Center Command - Code:C . . + « + ¢« « « « 14

Group Command ~ Codesn . . « « « « « « » 14

Group Mode ¢ . ¢ 4 ¢ 4 ¢ ¢ e o s e s e o o« 15

Parameter Mode . 4 ¢« v o ¢ o ¢ o ¢ o o o o o 17

Reduction Mode ¢ ¢« ¢« & ¢ o o « o o« o« 21

Save and Restore Modes . « « « o o« s o o« « o« 25

‘Control Flags .+ « « v +v ¢ & o« o s o s s o« o « 25

Storage Variables ¢« 4« ¢« ¢« ¢« ¢« o o+ +» 26

III. Sample Operation . . o & ¢ ¢ o o ¢ ¢ o ¢« o« o o« « 27
Program Initialization « « « . . 27

Diagram Definition « ¢« ¢« ¢ ¢« ¢ &« &« « 27

Parameter Definition ¢« .« .+ . « 27

Reduction . « o v v o o ¢ o o o o o o o « o o« 28

iii

e

Contents
Page 5
Iv. Current Implementation Status 480 1
Draw MOGe@ . ¢« « ¢ o ¢ ¢ o o 2 s s ¢ « o o « o 40 %
Group uode . * -«] L] 1 3 L * L] [” [2 » » * - * 40 ?}
Parameter Mode . . « & o+ ¢ ¢ o o o « o o« o . 40 ;
REAUCE MOGE@ .+ + &« « ¢ o o « o« o o o o o s + « 48 %
Save MOde - e e ® o & a2 & @ e * o . *» & o e o 41 }
Restore Mode . . + « « o « o o o o o o o + o 41 ¢
L] L] L] . * L] * - * L] L) L[] L] * L] . 41 ;;

Summary . . .

iv 3 .

List of Figures
Figure Page
1 Terminal Display Organization . . « . « « « . & 2
2 Example of Individual Symbol Creation 9
3 Initialization Sequence . . . ¢« ¢« ¢ o ¢ ¢ ¢ o 29
4 DRAW Mode Initial Display . . ¢ ¢ o ¢ ¢ & ¢ « & 30
5 DRAW Mode Example Step 1 . . + « ¢ ¢ ¢ ¢ « o =« 32
6 DRAW Mode Example Step 2 . . ¢ s o o o ¢ o o o 32
7 DRAW Mode Example Step 3 . . ¢« ¢ ¢ o s+ ¢ o o & 32
8 DRAN Mode Example Step 4 . . ¢ ¢ ¢ « &« o o o 33
9 DRAW Mode Example Step 5 . . « « ¢ ¢ ¢« & o o« & 33
10 DRAW Mode Example Step 6 . . « « « « ¢ & & o o 33
11 DRAW Mode Example Step 7 . . ¢ « ¢« ¢ o o « o 34
12 DRAW Mode Example Step 8 . . « « ¢ ¢ o & o o o 34
13 DRAW Mode Example Step 9 . . « ¢ ¢ o &+ o« o o o 34
14 DRAW Mode Example Step 18 . . « + ¢« ¢ & & &+ o » 35
15 DRAW Mode Example Step 11 . . . « . « « « +« + . 35
16 DRAW Mode Example Step 12 . . « ¢ ¢ ¢ & o o o o 35
17 DRAW Mode Example Step 13 . ¢ ¢« « & ¢ ¢ o « o = 36
18 DRAW Mode Example Step 14 . . . ¢« ¢ ¢ ¢« ¢« o « 36
19 DRAW Mode Example Step 15 . . « « ¢« ¢« ¢« o o o &« 36
20 DRAW Mode Example Step 16 « « &« & o o« & 37
21 DRAW Mode Example Step 17 « . « « & o o ¢ o o = 37
22 DRAW Mode Example Step 18 . . ¢ « ¢« ¢« ¢ ¢ o« « & 37
23 PARAMETER Mode Example . . . &+ ¢ o o ¢ ¢ o o &« 38

»
)

Example of EASY5 Format Reduction 39

Table

I

11

List of Tables

DRAW Mode Commands . . « .« . .

Example Command Sequence . , .

vi

BT I

.
4,
¥

USER'S MANUAL FOR GRAPHIC

I. General Description

GRAPHIC is designed to allow the user to rapidly define
complicated control systems for further analysis. It does
this by allowing the user to draw the desired control system
in graphical block diagram form on the face of a CRT. In
this way the GRAPHIC system évoids the need for complicated
textual descriptions of large control systems while
capitalizing on the human's inherent pattern recognition
capability for drawing and correcting the graphical
description. Once defined in graphical form, the GRAPHIC
program can be used to find the equivalent transfer function
between any two points in the diagram. Also, if desired, the
diagram can be translated into its equivalent textual

description for analysis by the EASY5 program (Ref #7).

Overview

The GRAPHIC system is designed to operate in a
timesharing mode with the user at a Tektronix 4000 series
terminal equiped with a graphic crosshair. The terminal

display area is divided up into four areas as shown in

Figure 1. Each area is used only for the purpose indicated.

prsrnmer ey

VIR 1 9

ooy S S

B 5 g P

ey

e e T e i a

TR WA N - e

Jros ISR

uot3ezTUR3ID

fe1dsyg eutwaadl 1 o2am3Td

Yauy LXdL

vauv
AHOM

Vauv
FUNLVININW

vauy
IdWOUd

f There are six major modes of operation in the GRAPHIC

i system. These modes are described in detail in chapter two

i and are summarized below:

The DRAW mode allows block diagram topologies to

be created and modified.

The GROUP mode allows groups of elements to be

created so that the entire group can be referenced by

one command.

The PARAMETER mode allows the mathematical
parameters of the individual transfer functions to be
specified. The sampling periods are also specified in
this mode,.

The REDUCE mode allows the block diagram to be
reduced to its equivalent transfer function or
reduced to its equivalent textual description for
further analysis by the EASYS5 program.

The SAVE mode allows the block diagram and any

mathematical parameters describing it to be stored as

a permanent file,
The RESTORE mode allows a permanent file created
in the SAVE mode to be used for input to restore the

previous definition of a block diagram and its

numeric parameters for further modification and

analysis.

General Operation

The normal method of using the GRAPHIC program for block
diagram analysis would be to select the different modes of
operation in the order descritced below.

Upon initiation the GROUP mode would usually be selected
first. In this mode any groups of the symbols the user
desired to create could be defined. This mode is optional and
no groups of symbols need to be defined. The next mode would
be the DRAW mode. This mode would allow the user to define
the block diagram he desired. Next, the PARAMETER mode would
be selected to specify the switch sampling periods and the
mathematical transfer functions for the elements of the
diagram. After these modes had been completed the REDUCE mode
would be selected to accomplish the form of reduction desired
by the user. Finally, the SAVE mode would be selected if the
user desired to reuse the current block diagram at a later
date.

If the drawing had been stored perviously, the RESTORE
mode could have been selected before the GROUP mode. This
method allows the reuse of a diagram from a previous

activation of the GRAPHIC program.

AD=AOBO 362 AIR FORCE INST OF TECH WRISHT-PATTERSON AFB OH SCHOO==ETC
GRAPHICAL INPUT METHODOLOGY FOR COMPUTER AIDED ANALYSIS OF
DEC 79 D E TROXEL

UNCLASSIFIED AFIT/6E/MA/79D~1

202

a0
2080362

F/6 972 .
CONT==ETC(U)

Notation

Throughout this manual numerous examples of input and
output appear. For presentation of these examples the
following convention was used to distinguish between computer
generated output and user generated input. The computer
generated output is always shown in capitial letters and the

user generated input is always shown in lower case letters.

Example:

COMPUTER OUTPUT > user input

Additionally, due to the syntax selected for the user
interface, most of the lines of text change from computer
output to user input at the delimiter “>*,

When fut;her explanatory notes are needed to help

clarify the example they are shown in parenthesis.

Example:

COMMAND > draw (Select draw mode for diagram
definition.)

II. Modes of Operation

As mentioned in chapter one there are six modes of
operation in the GRAPHIC program. These modes are DRAW,
GROUP, PARAMETER, REDUCE, SAVE, and RESTORE. The operation of

each mode is described in detail in this chapter.

Draw Mode

In order to define the system to be analyzed the user

must draw a picture of the system's block diagram on the
CRT.

To form the desired drawing the user must use the
graphic crosshair to indicate where the symbol is to go and
the keyboard to indicate what symbol is to be drawn, Every
symbol is positioned in the same manner. First move the
graphic crosshair by using the thumbwheels and then when the
desired position is reached enter the one letter code for the
desired symbol. The commands allowed and their letter codes
are shown in Table I.

This method of producing the block diagram a symbol at a
time has been designed to reguitre only one input, crosshair
position, per symbol. Because of this all symbols are
produced at a preset and fixed size,

The elements of the block diagram must be drawn in the

direction of signal flow. When it is necessary to continue

from another point, the move command should be used. While

S T

drawing is under way the system keeps track of the cuttrent

working location (CWL) and updates it after each symbol is

BT SR S

4

Table I
DRAW Mode Commands !
;
Command Code
Box B ;
‘ Sampler S
4 ,’-{ Adder A ;
Input I f
§ Output 0 :
‘ Line L ;
Move M ;
Connect X |

Delete D

Working Location w

Center c

Redraw R

D MR T Ry e L T

Perrer ey

»
'
3
¢
!
b
:
!

Lo v vt

drawn. This working location is used as the starting point
when a symbol is requested and the crosshair is used as the
end point if an end point is needed.

The box, adder, sampler, input, and output symbols must
pe connected to a line and not directly to each other.
Drawing of symbols must always proceed in the direction of
signal flow. Arrowheads to help clarify the direction of
signal flow will be generated periodically and automatically
by the system when the topology of the diagram becomes
unambiguous., These arrowheads will appear at the inputs to
box, adder, and sampler symbols.

Box Command -~ Code:B. The crosshair location is not

needed for drawing the box, only the letter “B" is used. The
box is drawn fron the current working location, in the
direction that the last line was drawn. A new working
location is established on the far side of the box when it is
complete. Figqure 2 contains an example how the box and all
other symbols are oriented and created.

The box symbol is used for all transfer functions. As
each box is drawn the user will be queried for the type of
box being defined. The square text cursor will appear in the
lower left corner of the box. The type name is then entered
and following the type entry the box will be numbered
automatically.

The general type, TF, can be specified for arbitrary
continuous or discrete transfer functions, Specialized types

for use with EASY5 reduction can also be specified. These

Circle QO 1Indicates Current Working Location (CWL)

Hiamond <<:> Indicates Crosshair Location

Berfore Command After Command
;’, R '_&f.

a) Box P

—9 - > 0
b) Sampler ,
¢) Adder

—o —@
d) Line

e) Input
O [>—e
£) OQutput

-~ —e>

Figure 2. Example of Individual Symbol Creation

special types include FORT, AV, LO, and SD (Ref #7).
Parameters defining the specifics of each box are input
in the parameter mode.

Adder Command - Code:A. The crosshair location is not

needed for drawing the adder, only the letter “"A" is used.
The adder is drawn centered on the current working location
and this location is not changed. See Figure 2 for an example
of adder creation.

This symbol is used whenever two or three inputs must be
added together. If more than three inputs are to be added
at any one place, two or more adders must be used in series,

TSe sign of the input is requested as each input to the
adder is defined. The square text cursor will appear next to
the input and the user must input either a "+" or "-“,

Adders are numbered with An numbers for identification
starting with Al.

Sampler Command - Code:S. The crosshair location is not

used for drawing the sampler, only the letter “S" is used.
The sampler will be drawn from the current working location
in the same direction as the previous line. The working
location will be updated to the far side of the sampler
symbol. See Figure 2 for an example of sampler creation,

This symbol is used whenever digital sampling is
required. '

As each sampler is created it will be numbered for

identification with a Sn number, starting with 81,

1@

Input Command - Code:I. The crosshair location and the
letter "I" are used to draw the input symbol. The input
symbol is upright and to the left of the crosshair location.
The current working location is not used and a new current
working location is established at the crosshair location.
See Figure 2 for an example of input symbol creation.

This symbol is used to indicate all input nodes.

As each input symbol is produced it will be numbered for
identification with a In number, starting with Il.

Output Command - Code: 0. The crosshair is not used for

drawing the output symbol, only the letter "0" is needed. The
symbol is drawn upright and to the right of the current
working location. See Figure 2 for an example of output
symbol creation.

This symbol is used to indicate all output nodes.

As each output symbol is produced it will be numbered
for identification with an On number, starting with Ol.

Line Command - Code:L. The crosshair location and letter

“L" are used in drawing the line. The line is drawn from the
current working location to the crosshair location and the
current working location is changed to the crosshair
location. See Figure 2 for an example of line creation.

The direction that the line is drawn in, from current
working location to crosshair location, always is taken as

the direction of signal flow through the block diagram.

11

Move Command - Code:N. The crosshair location and the

letter “N" are used for this command. The current working
location is changed to the crosshair location.

The move command is used to change the current working
location so that the definition of the block diagram can

continue from some arbitrary point that is not connected to

the last symbol that was drawn.

Connect Command - Code:X. The crosshair location is not

used, only the letter “X" is needed.

The connect command is used to specify that at the
current working location a connection is to be formed with a
previously drawn element. If this is a connection to split an
output path then a connection diamond will be drawn. For
other types of connections no diamond «~ill be drawn.
Connections without a diamond symbol will most often be used
to continue a drawing along a path that was interrupted
earlier or for the termination of a path in an adder symbol.
It the connection is to an adder symbol the appropriate
+ or - sign will be requested as explained under adder
commands.

In all cases if a successful connection is formed the
current working location will be at the crosshair location.
If an error occurs, such as no symbol to connect to, the
terminal will beep and the current working location will not

be changed.

End Command - Code:E. The crosshair location is not

used, only the letter “EB" is needed. This command is used to

12

R ag i o

-— T emee GEYYE- S T T

Py e

o

EEER LN SR e simrovse

T T

terninate the DRAW mode of overation and return to the

primary command level where another mode may be selected.

Delete Command - Code:D. The crosshair location and the

letter "D" are used in this command. The element pointed to

by the crosshair will be logically deleted from the database

and the drawing will be marked with two X's to indicate the
element is no longer an active part of the diagram. On
subsequent redraws of the diagram the element deleted will
not be shown at all. The current working location is
unchanged.

I1f, under the crosshair location, no element of the
drawing can be found or if more than one element is found
this is considered an error and the terminal will beep
indicating that the command was ignored. If a deletion is
still desired the crosshair location should be changed
slightly to better designate the desired element and then the

command reentered.

Redrav Command - Code:R. The crosshair location is not
used and only the letter "R"™ is needed. A redraw causes the
terminal screen to be erased and all current elements in the .
database for the block diagram are drawn on the CRT. The
current working location is unchanged. The information
displayed in the text area is not redisplayed. 1
This command is used to remove from view all items that

have been marked by X's from previous delete commands.

Working Location Command - Code:W. The crosshair

location is not used and only the letter "w" is needed. When

the command is received the square text cursor is displayed
with the lower left corner of the cursor indicating the
position of the current working location.

To bring the crosshair back for further drawing of block
diagram symbols enter a carrage return. This will cause the
crosshair to be redisplayed.

Center Command - Code:C. The crosshair location is used

to indicate the spot in the existing diagram that is to be
centered in the work area. The current working location is
relocated along with the entire diagram so that it remains on
the last symbol in the same relative position to the elements
of the diagram as before the command.

When the block diagram becomes larger than the work area
the center command is used to shift the existing drawing
within the work area to create more room for defining
elements. If any of the existing diagram gets shifted out of
the work area, a miniature of the entire diagram will be
produced in the miniature area. The miniature is produced
automatically unless inhibited by the value of the flag
MINIATURE.

The miniature if produced is a copy of the diagram at
the time of centering and is not updated by further drawing
in the work area, The miniature is updated only when another
center command or a redraw command is issued.

Group Command - Code:n. Both the crosshair location and

the numeric code n are used to draw the user group of

elements. The code can range from @ to 9. It indicates which

14

of the groups created by the GROUP mode commands is to be
drawn. The CWL is moved to the point on the group defined as
the final CWL location when the group was predefined.

User groups are a method of conveniently drawing a group
of symbols that are going to be repeated several times
within a diagram. Once defined as a group, the symbols can
be copied into the drawing at any location by giving the
group number as the command code, This works exactly the
same as when a code letter is given except more than one
symbol is drawn.

Elements within the user group exist as individual items
and can be modified as though they had been drawn
individually.

Group Mode

The GROUP mode is used to define collections of elements
so that the entire group can be referenced by one command.
These groups are designed to be collections of elements, such
as a subsystem, that would appear repeatedly in a block
diagram that is to be defined. By using the GROUP mode and
defining a user group, the entire collection of elements can
be referenced in the DRAW mode with one command instead of
having to position each element individually.

‘To define a user group of elements, the collection of
elements is drawn in the work area in the same manner as
entire diagrams are created in the DRAW mode, When all

elements of the group have been drawn an E is entered to

15

e v m————— — - =

indicate that the graphical definition of the user group is
complete. Next, any numeric parameters for box or sampler

elements in the group can be given default values. This is
done using the same methods employed in the PARAMETER mode.

When all of the desired defaults have been entered, the user
group is fully defined. It is now stored in the database and

is also available for use in the DRAW mode when referenced

by its group number.
The individual graphical elements and any numeric

defaults in the user group can be altered in the DRAW and

PARAMETER modes as described in their respective sections.
Any alteration during the DRAW or PARAMETER modes effects
only one particular occurrence of the group and not all
occurrences of the group. To actually redefine the diagram

or defaults for a group the GROUP mode must be used.

Example of group definition:

COMMAND > group

USER GROUPS NUMBER 1,3,7 EXIST

ENTER GROUP NUMBER TO BE DEFINED OR REDEFINED > 2
DRAW DIAGRAM OF GROUP 2 ELEMENTS NOW

enter: (The user must draw the elements he wants to
become the new group. The point where the
drawing starts is the point that will be
connected to the current working location (CWL)
whenever the user group is involked by typing
its number and the CWL that exists when the
definition of the user group is completed is
the relative location of the CWL after the user
group is involked. When the END command is
entered to leave the drawing mode the user
group is complete and its topology is
established.)

note: (All drawing commands except the user group
command are available for defining the group.)

16

ANY DEFAULT NUMERIC PARAMETERS DESIRED ? (Y/N) > y
COEFFICIENT OR ROOT FORM ? (C/R) > ¢

note: (Inputs are in the same form and sequence as in
the PARAMETER mode., Defaults can not be
assigned to any of the specialized EASYS
elements. Elements do not need to have
defaults established for them since they can i
be specified later in the PARAMETER mode.) v

ALL PARAMETERS DEFINED.
USER GROUP NUMBER 3 ESTABLISHED
COMMAND >

A maximum of ten user groups can be defined and stored
for use at any one time. These groups would each have a one
digit reference number ranging from 6 to 9. If more groups
than ten are required, they must be used in succession., This
is done by defining the first ten, then creating some of the
block diagram in the DRAW mode with these groups. When the
additional groups are needed, the original groups that are no
longer needed for further drawing are redefined. This
operation effects only the list of groups available for use
in the draw mode. It has nc effect on groups that have been
referenced and already appear in the main diagram. Once a
group is added to the main diagram in the DRAW mode, the
elements within that group exist as individual elements and

all association with the group definition is lost.,

Parameter Mode

The PARAMETER mode is used to define the numeric values

for transfer functions and sampling rates. In this mode all

rates, functions and specialized parameters are defined to

e

I el b el

complete the mathematical specification of the diagram
created in the DRAW mode.

A standard naming convention is used to allow any
parameter to be referenced directly. This allows
specification of values in any order that is convenient. The
naming convention uses the labels from the graphical drawing
and appends individual letters as needed to properly identify
the parameters to be entered. Samplers are designated using
exactly the same labels as those that appear in the drawing.

Transfer functions for individual box elements are identified

in three methods. The three methods each reference different

parts of the function. The label as it appears in the drawing
is used to refer to the entire function., The label with an N
appended to it is used to refer to just the numerator portion
of the transfer function. Similarly, the label with a D
appended to it refers to the denominator portion. A list of
the naming conventions appears at the end of this section.
Parameters for the specialzed EASY5 elements are identified
using the normal EASY5 terminology. This terminolgy is
explained in the Use:'s Manual for EASY5 (Ref 7).

These parameter names are used to reference items

individually and in random order. This is done when less ;
than the complete list of required parameters is being
established during this use of the PARAMETER mode.
Additionally, the names are used when two sets of parameters
are to be set equal to each other. The method for doing this

is explained later in this section.

18

At any time during the parameter mode the calculatocr
feature is available for use in scratch pad operations. This
feature functions exactly as the TOTAL calculator and is
activated by typing “C* in place of any single input. It
allows scratch pad calculations without affecting the input
in progress. A full description of calculator operations
appears in the TOTAL User's Manual (Ref #12).

The PARAMETER mode expects all polynominals for transfer
functions to be input in either coefficient or root form.
The desired form is established after the PARAMETER mode is
activated. Individual parameters can be specified using the
standard names or the system can be requested to
automatically sequence through the needed parameters. If a
parameter is to be redefined, the complete list of values
does not have to be reentered. Instead, an * can be
substituted for any numeric value that is to remain
unchanged. Additionally, values can be set equal to
previously defined values by equating their standard names.

Examples for the generalized transfer functions, those

box elements with TFn numbers, are shown below:

Example:

COMMAND > parameter
AUTOMATIC SEQUENCING ? (Y/N) > n
COEFFICIENT OR ROOT FORM ? (C/R) > r

ENTER
LABEL, ORDER, ROOT REAL PART, ROOT IMAGINARY PART >
tfln,*,*,*,3,* ({Redefine real part of 2nd root)

19

e

TR

Example:
COMMAND > parameter
AUTOMATIC SEQUENCING 2 (Y/N) > y
COEFFICIENT OR ROOT FORM ? (C/R) > ¢
ENTER ORDER, COEFFICIENTS FOR
TFIN > 1,2.8,1
TFID > 2'1-2'403'-6'5
TF2N > tfl (Sets denominator also)
TF3N > tfln
TF3D > 1,5,7
ALL VALUES SET
Parameters for EASYS5 specialized boxes will be requested
via individual prompts. Proper utilization of these complex
multi-input and multi-output elements will require a
detailed knowledge of and familiarity with EASYS (Ref #7).
The user will be prompted for each EASYS required value
in accordance with the particular element types used.

Prompting will be in EASYS5 termonology.

Example:
ENTER VALUES FOR ELEMENT AC 1
ALPHA=] .45
BETA=2e-3
When special additional information is needed for
AV,SD,LO,LD, and FORT type elements of EASY5 then the
information will be requested at the terminal in EASY5 card
image form.
Sampler elements require that the user specify the
sample period. These periods will be input in seconds or

fractions of seconds.

20

Example:
ENTER SAMPLING PERIODS:

Sl=le-3]
32'.01 {

Rates can be set equal to each other by supplying the

name of a sampler for which the period has allready been
defined. %
Example: L
S3=sl

Rates that are not integer multiples of each other
throughout the system will be changed to the nearest
multiple so that they will all be integer multiples of an
arbitary basic rate.

Only single rate systems can be reduced on line in the
interactive mode as described in the section on REDUCE mode

operation.

Reduction Mode

Reduction mode is used to reduce the current block
diagram to find the equivalent transfer function between a
specified input and output.

First the diagram topology is checked to insure that no
unconnected ends exist which are not either designated as
inputs or outputs. Then the database is checked to insure
that all transfer function and sampling period values have
been specified. If errors are detected a list of errors is

output to the terminal and the reduction mode is terminated.

If no errors are found the user is requested to supply the
input and output points he wants the transfer function

calculated between.

Example:

REDUCTION BETWEEN INPUT(.) AND OUTPUT(.)
INPUT NODE IS > 1
OUTPUT NODE IS > 2

result: (The equivallent transfer function will be
displayed on the terminal in both coefficient
and factored form. The value will also be
stored in the database as transfer function
answer n (TAn).)

There is space to store up to 20 answers from reductions
of diagrams. These functions, TAn, can be used in later
drawings as equations for individual elements by giving the
name TAn when requested for the degree of the numerator in
the parameter mode.

To indicate an input node point that is within the
drawing instead of one of the input symbols give its

complete alphanumeric description instead of just the input

symbol number. The same procedure applies for output

designation.

Example:
INPUT NODE IS > tfli (Stands for element TFl input)
OUTPUT NODE IS >a4i3 (Stands for adder A4 input #3.

Inputs for adders are numbered
clockwise from the adder output)

To temporarily alter the diagram prior to reduction the

commands OPEN and CLOSE exist. These commands allow the

22

P

N - S

T e Y

S T A P Vs

?
i‘

lines connecting the various elements of the diagram to be
temporarily opened or broken so that the reduction analysis
can be done on a modification of the drawing.

The open command is used to designate which lines are to
be opened. These points can be designated by name or by
position using the crosshair, To activate the crosshair mode
the key word CURSOR is entered in place of a alphanumeric

location name.

Example:
OPEN > tlo,a2ild,cursor (T1 output, A2 third input,
and activate the cursor
mode.)

While the cursor is displayed on the screen, lines can
be picked by entering a space when the crosshair is over the
line to be opened. Entering an “E" ends the crosshair
selection mode.

All lines that are opened will be designated by the
letter "0O" appearing on the line.

The cloge command is used to eliminate a previously
created temporary opening. The syntax is similar to the

open command.

Example:

CLOSE > tlo,a2il3,cursor

When using the cursor to point to an opening to be
closed the "0" marking the opening should be under the

crosshair. Reversal of a temporary opening to the closed

23

, position is indicated by an “X“ appearing over the "O".
; Additionally, the key word ALL is available to close all
of the temporary openings at one time.
Example:
CLOSE > all
To perform the actual reduction the command REDUCE NOW

must be entered. The program will verify the state of the

SN, 1 S

reduction switch to determin the type of treduction to

pecform, either online or EASYS. If a specialized EASYS

element has been used in the drawing then the state of the

b switch is ignored and EASYS5 reduction is always used,

Example:

3 REDUCE NOW

: ONLINE REDUCTION. CONFIRM Y/N > y

3 REDUCTION IN PROGRESS.

E REDUCTION COMPLETE. ANSWER STORED IN TAl

3 Example:

REDUCE NOW

EASY5 REDUCTION. COMFIRM Y/N > ¥y

FILE NAME OF ANALYSIS COMMANDS > filename
FILE NAME FOR

GENERATED EASYS BATCH INPUT FILE > filename2
FILE CREATION IN PROGRESS.

BATCH INPUT FILE CREATED. NAME IS FILENAME2

The batch operation of EASYS requires that the analysis

steps desired also be input at reduction time (file

“filename” in previous example). This is done by giving the
name of a previously created file of commands or giving the
key word INPUT. The word INPUT indicates that a file does

not exist and that the information will be entered from the

24

-

terminal in EASYS card image format,

Save and Restore Mode

In order to allow interruption of a terminal session two
commands, SAVE and RESTORE, are available., These commands
allow the user to save his work from one terminal session to
another. All aspects of the drawing topology and any
numeric parameters defined are stored in a permanent file
when tequested. During restoration the drawing is copied to
the CRT and the eguation parameters restored to the database
so that further block diagram definition can be continued.
The current working location (CWL) for the diagram is not
reestablished so the first DRAW command after a RESTORE must
be a move. This reestablishes the CWL.

Example:
SAVE, filenamel
Action: (Current data is stored in filenamel.)
Example:
RESTORE, filename2
Action: (Data in filename2 becomes current
data. This destroys any data in
the database that was not stored
by a previous SAVE command)
By using several different file names the user could

store more than one block diagram for later reuse,

Control Flags
Certain features are controlled by flags. Each flag can

be set by the user to be either on or off. the command format

25

is flagname,on or flagname,off. These commands are legal at

any time except in the DRAW mode.

Below is a list of the flags and the effects they have.

MINATURE

ON - produce minature drawing if block diagram is
larger than drawing work space.

OFF - do not produce a minature drawing

REDUCTION

ON - diagram restricted to either continuous or
single rate discrete system for interactive
reduction,

OFF - multi rate and specialized blocks of BASYS

routine are allowed and the equivalent
textual description will be generated.)

Storage Variables

Listed below are the names of the variables that the
user can access. These names should be used to examine the
contents of any polynominal. These names should also be used

when setting a new input equal to a previously established

value.

Name Meaning

Tn Transfer function for element Tn (includes
both the numerator and demoninator
polynominal)

TnN Numerator for Tn

™nD Denominator for Tn

TAN Transfer function result from reduction of
diagram,

26

III. Sample Operation

The following discussion and accompanying figures

describe the actual steps needed to generate and reduce a

r P ARSI

small block diagram using the GRAPHIC system.

Program Initialiszation

When the program is activated, it prompts to determine

T e,

what the user environment is for this session. The input
identify the terminal communication rate and the terminal
type. An example of this dialog is in Figure 3.

At this point the primary prompt of "COMMAND >" appears
and either DRAW, PARAMETER, REDUCE, GROUP, SAVE, or RESTORE

can be entered.

Diagram Definition

For this example, the DRAW mode will be used to create
the diagram directly from the basic elements. The initial
display in the drawing mode is shown in Figure ¢.

Figures 5 through 22 depict the appearence of the
display terminal as the diagram is defined. Table II lists
the actual command codes entered and the figure that
corresponds to the display status after that command is fully

processed.

Parameter Definition
The PARAMETER mode is used next to define the values of

the transfer functions that are specified in the drawing.

27

Figure 23 shows the complete PARAMETER mode display for the

diagram in Figure 22.

Reduction

Once the diagram and its parameters have been
completely defined, the system can be reduced through the
REDUCE mode., This example shows only the EASYS version of
the teduction. Figure 24 shows the resulting file that is
produced. The data shown in Figure 24 is the textual

description of the diagram from Figure 22.

GYEST
ENTER CHAR/SEC)120
Tt”lﬂ“l. TVPE CODE!
. %bk 40}0/4::214013
3 TEK 4014/4015 UITH EMD GRAPHICS
CN"ER TERRINAL TVPE CODE >

Figure 3. 1Initialization Sequence

BT g o

A9 B o T, VP TR

| Ae1dsTd TBTITUI 9POW MVHA ‘4 dan3tT4

AILNID WILINI-8
207 XUON HO AILNDIee

Table II

Example Command Sequence

Inputs

S

N W &~ © O

10
11

H 3 M O < 4+ 4

le.{uuss?

12
13
14
15
16
17
18
19
20
2l

10
11

M,X

12
13
14

15
16
17
18

22

31

Figure 5. DRAW Mode Example Step 1

D._

Pigure 6. DRAW Mode Example Step 2

>

Pigure 7. DRAW Mode Example Step 3

32

Pigure 8. DRAW Mode Example Step U

> O

Figure 9. DRAW Mode Example Step 5

D~ =0

Figure 10. DRAW Mode Example Step 6§

33

Figure 11. DRAW Mode Example Step 7

P M 2~

Pigure 12. DRAW Mode Example Step 8

> O

Figure 13. DRAW Mode Example Step 9

34

Figure 14. DRAW Mode Example Step 10

>~ ko b

Figure 15. DRAW Mode Example Step 11

> o

Figure 16. DRAW Mode Example Step 12

35

pressg g

Figure 17. DRAW Mode Example Step 13

> e

T eyt 1 AR, o N N YT

Figure 18. DRAW Mode Example Step 1

> O >

Pigure 19. DRAW Mode Example Step 15

36

LI

o o B o

Figure 20. DRAW Mode Example Step 16

D ; >

Figure 21. DRAW Mode Example Step 17

> = >

Figure 22. DRAW Mode Example Step 18

37

CIEWT Ok ROOT FORR 9 (C/R) XC
POLY COLTS
FIRST HUR THEN DENOR UNEN REGUESTED
FORR 1S ORDER, COEFS WIGNEST TO LOVEST

ml

*

SER(N-3) @

PARAMETER Mode Example

Figure 23.

38

- l:
\l?l". 70000 ‘I’IM- mu-" mm 1168
PROF LS, IDEAS\S, SN
u(‘- N “\’.Wlk‘-llﬂ!u’-l umt-o.u-o.

noon. NOCI!P‘"ON‘TI"

| 0 8
w INPUTSLE 1(52°51),LC 3($2°83),18 I(SR+84)
Nt

12
{ _J
Sre

2I55SSERC55E

s$smpose
[
-
.
{ ol
§

2823333388335
Fadd

gﬁ
<*=%3323
3—.-—.-
2000
Rl $4

TESTL
ors
3 82

13

TRARSFER FUNCTION

1
1

FPigure 24, Example of EASYS Format Reduction

39

hw\'a‘pnw A e

IVv. Current Implementation Status

The version of GRAPHIC that is currently implemented
allows a subset of the total GRAPHIC system to be used. The
exact nature of the variations from the features described in

this manual are addresed on a mode by mode basis below.

DRAW de

———

-/ In the DRAW mode all features except the GROUP command

3

are implemented. Command CONNECT has a code of X instead of
C. Command CENTER has codes of C,+,% instead of +,6,¢
respectively (see Appendix B). The BOX command forces all box
elements to be the arbitrary TF type.

GROUP Mode

None of the GROUP mode features are implemented.

PARAMETER Mode

In the PARAMETER mode only the automatic sequence mode
is available., Setting sampling periods is not allowed. Use
6f”th¢~calcu1ator feature and varible names are not allowed.
All parameters for transfer functions are considered as
Laplace, S domnin; tuqctions. The PARAMETER mode is
activated by the command “E” in response to the prompt

“COMNAND >".

REDUCE Mode

The REDUCE mode provides only BASYS form reduction. The

OPEN and CLOSE features for temporary alteration of the

diagram topology are not available. All reductions must be

from an input to an output specified by giving their
respective numbers., The REDUCE mode is activated by entering

“T* after the prompt “COMMAND >".

SAVE Mode
The SAVE mode catalogs only the drawing database and

only if it was assigned to a permanent file device.

RESTORE Mode

The RESTORE mode restores only the drawing database,.

Summarcy
The current implementation of GRAPHIC was produced to

verify the proposed design documented in this manual. This

implementation allows generation and translation of any block
diagram representing a time continuous linear control system.
The output file produced by the program can be used directly

as an input to the EASYS program,

41

o e i e 7 g e g

R SO I SR =

S e bl A

N Y EEAL PR

APPENDIX B

UPDATES TO USER'S MANUAL

- P

L,

Ty

v W)

S A R AN S’ ok ISV Nl I S o WA e

NI A5 b5 e 5

ki i

ey e

II.
IlI.

Contents

Introduction

Center Command Design .

Connect Command Design .

ii

e ————————

Aot

3
g
A
0
[
¥
o
3
3

I. Introduction

As a result of the user test conducted to verify the
design proposed for the GRAPHIC system, certain changes were
made to the design proposed in Appendix A. This appendix
documents those changes.

Since the actual changes made to the design affect only
two of the fourteen commands in the graphic input mode, only
the changed material is documented here.

Section II details the new features that were designed
into the CENTER command and Section III details the changes

that were made to the CONNECT command.

- o 1

O - i A o

II. Center Command Design

Center Command - Code:+,8,4. The CENTER command shifts

the existing drawing around in the work area to create more
space for defining additional elements. There are three
forms of the CENTER command, one associated with each of the
command codes; +, @, and #.

Ona form of the CENTER operation is to take the location
designated by the crosshair and redraw the diagram with that
location centered in the work area. The code for this is +.
Any element or point within the work area or miniature area
may be pointed to and when the + is entered the drawing will
be erased, shifted as required, and redrawn.

The other two forms of the CENTER command operate with
default locations. Entering @ causes the current working
location (CWL) to be centered in the drawing when the diagram
is redrawn. Entering ¢ causes the diagram to be centered as

it was initially when the draw mode was first activated.

III. Connect Command Design

Connect Command - CodetC. The connect command {8 used

to specify that at the cutrrent crosshair location a
connection is to be formed., There are three uses of the
CONNECT command all controlled by the same command code. The
difference {8 {n the graphic resgult produced on the terminal
screen.

A connhection can be used to split an output path so that
one element can feed two other elements., This s
acconmplished by pointing the crosshair at a line and enteting
the code C. A small connecton diamond will appear over the
poi{nt where the output splits and a line can be drawn away
from the diamond through the use of the LINE command.

The second use of the connection command i{a to join the
current path with an already existing path. This joining can
be to an adder or to the input side of any {ndividual element
that does not already have {ts input {n use. To form the
connection correctly the current path must end in a line that
is drawn to the proper spot on the existing target element,
For adders the proper spot {8 the center of the element, but
for all other elements it is the input side of the element,
When the code C {8 entered after the line is drawn a
arrowhead will be generated automatically to indicate the
signal flow direction. Additionally, {f the connection was
to form an adder input, the sign of the input will be

requested as described in the ADDER command,

e

The last use of the CONNECT command is to continue
drawing a previously interrupted path. This is accomplished
by positioning the crosshair over the output side of the last
element in the interrupted path and entering the code C.

If the requested connection con not be performed, the
terminal will beep to indicate an error and a message will be
posted in the text area. An example of an error that could

occur is that no-element is found to connect with when the

command is issued.

pre

T T T e 2

Appendix C

CORE LIBRARY

CORE LIBRARY

The CORE library is a collection of subroutines designed
to allow the creation of three dimensional drawings. It is
a partial implementation of the ACM SIGGRAPH proposed

standard for device independent graphics support.

This particular implementation was developed as a MA
6.68 class project at the Air Force Institute of Technology
in which the author participated. The version used with the
GRAPHIC system was further modified by the author.

The library consists of application program callable
subroutines that allow drawing in three dimensional space.
Any viewpoint can be established and either parallel or

perspective views can be produced.

Description of User Callable Routines.

The following routines comprise the user callable
subroutines in the CORE library. Those routines that are
defined in the proposed SIGGRAPH standard have the

corresponding SIGGRAPH paragraph number given in square
breckets, [Ref. ¢#].

e b TR

LT

P S PhmimBrayy e A T MR A SN g e ST

e ey

-

CORSYS3 (delta-x, delta-y, delta-z, scale-x, scale-y,

scale-z, rotation-x, rotation-y, rotation-z)

CORSYS3 specifies the orientation of the users

coordinate system relative to the world coordinate system.

The transform is applied as scale, rotate, then translate,
The rotations sre positive conterclockwise (as viewed from a
point on the positive axis looking toward the origin) and

applied in the order z-axis, y-axis, and then x-axis.

VUREF (%, vi-2r{Ref, 5.2+viadll_

—

VUREF specifies the reference point in the world system
for basing the viewing system. Eye point (see PERSPEC), view
plane distance (see VUDIST), view depth (see VUDEPTH), and
viewing window (see WINDOW) are measured relative to this

point.

VUNORM (delta-x, delta-y, delta-z) [Ref. 5.2.1.2}

VUNORM specifies the view direction in the world system.

VUDIST (distance) {Ref. 5.2.1.3]

VUDIST specifies the projection or view plane distance
from the reference point, measured in world units in the

direction of the normal (see VUNORM),

VIEWP3 (delta-x, delta-y, delta-z) [Ref. 5.2.1.6)

VIEWUP3 specifies (from its projection into the view

plane) which direction is up in the view plane.

WINDOW (left-edge, right-edge, bottom-edge, top-edge)
[Ref. 5.2.2.2)

WINDOW specifies the location of the window measured in
the view plane relative to the projection of the reference

point down the view normal.
VUDEPTH (front-distance, back-distance) {Ref. 5.2.1.8]

VUDEPTH specifies the front and back clipping planes.

The distance is measured from the reference point in the

direction of the view normal.

VUPORT (left-edge, right-edge, bottom-edge, top-edge)
[Ref., 5.2.1.10)

VUPORT specifies the location of the display area on the
plotting or display device. Allowable range for the

parameters is 9.0 to 1.9 (normalized device space).

PARALL (delta-x, delta-y, delta-z) [Ref. 5.2.1.4]

Spp—————

e sl Bt e

o s o

- o W B

PARALL specifies that the projection type is to be

parallel, with the objects projected along the given vector

into the view plane.
PERSPEC (offset-x, offset-y, offset-z) [Ref, 5.2.1,5]
PERSPEC specifies that the projection type is to be
perspective with the eye point offset by the given values
from the reference point., The look direction is in the
direction given by the view normal.

MOVE3 (x, y, 2z) [(Ref. 2.2.1)

MOVE3 specifies that the current beam location is to be

moved to the given user cooridnates.

DRAW3 (x, y, 2) (Ref. 2.2.2.1]

DRAW3 specifies that a line is to be drawn from the

current beam location to the user cooridnate location given.

STARTG ([Ref. 7.2.1.1)

STARTG specifies that the graphic system is to be

activated and all required variables initialized.

ENDG [Ref. 7.2.1.2)

ENDG specifies the termination of operations under the

graphic system.

OUTLINE

OUTLINE specifies that a outline around the existing

viewport is to be drawn,

Dtitilization Notes.

The system will detect and request changes to values
when they would result in mathematically undefined
operations. When such a condition occurrs all subsequent
calls to MOVE3 and DRAW3 are ignored until the viewing

parameters are changed.

The combination of calls to WINDOW and VUDEPTH establish

a view volume, Only objects appearing inside the view volume
will be displayed. The volume is a parallelepiped if PARALL

wag called and a truncated pyramid if PERSPEC was called.

Geometrically meaningless combinations of the parameters

can result depending on the users parameters. Example: window
! right edge less than windoy left edge or front distance

greater than back distance. The result is that all objects

5

o X~

are clipped and not displayed since there can be no view
volume with the given parameters. The system will never
adjust any user parameter except for the front distance
given in VUDEPTH. The front distance will be adjusted when
perspective projections are in use to insure that the front
clipping plane is in front of the eye point. This adjustment
will be done in the following manner: “if the front distance
meagsured from the view reference point in the direction of
the view normal is less than the the eye distance measured
in the same manner, then the front distance will be reset
automatically by the system to be equal to the eye distance

plus one tenth (eyedistance + .l1).*

Consistancy of the system parameters supplied by the
user are checked before performing the first MOVE3 of DRAW3
after a viewing parameter was changed. This approach to the
parameter checking allows the individual parameters to be
changed in any order and does not require that they be

consistant until a MOVE3 or DRAW3 is requested.

All coordinate systems, user, world, and view, are left

handed systems. All subroutine parameters are real values.

To assist in debug the routine STATPRT is available to
print a list of the viewing parameters in effect at any given
moment. The routine will print on the output file a list of
all the user setable parameters and also some of the

RO ., "

o on

e Y AN T T AT M AP A 0 T EOr-T——

— —rrg

internal tramsformation matrices derived from the user

parameters. These internal paramaters will have correct]

values only if either a MOVE3 or a DRAW3 has been executed ;

since the last change to any viewing parameter. The user

specifiable parameters are shown correctly at all times.

N Y

s el B R T L)
- o S A

APPENDIX D

DESCRIPTION OF GRAPHIC PROGRAM STRUCTURE

II.

!
@
contents
Page
Introduction . . « ¢« ¢ ¢« ¢ ¢ 4 ¢ o o e e s e . 1
Detailed Routine Descriptions 2
3

prige- e 2

praaE W

D, A T

:
;
:

I. Introduction

This appendix documents the design of the current
implementation of the GRAPHIC program. It describes all the
routines that comprise the GRAPHIC software.

The GRAPHIC program is written in FORTRAN for the
Control Data Corporation (CDC) CYBER 175 series computer. It
is designed to be operated interactively from a Tektronix
4900 series storage tube graphics terminal.

In addition to the source code described in this
appendix the GRAPHIC program makes use of several library
packages. These library routines provide services that are
not available in the normal FORTRAN environment.
Specifically, the TEKLIB, NOSLIB, and CORE libraries are used
(Ref. 6,18,2,19). The TEKLIB library provides routines for
communicating with the Tektronix terminal. The NOSLIB library
provides routines for managing permanent files. The CORE
library provides routines for three dimensional drawing.
Additional details on the CORE library are discussed in

Appendix C.

II. Detailed Routine Descriptions

This section discusses the general features of each
routine, program and function on an individual basis. The
exact nature of the function that each routine performs is
documented in detail in the actual source code, The list of
modules is divided into two groups, those modules that are
entry points for overlays and those modules that are not
entry points. The descriptions are in alphabetical order by

module within each group.

Overlay Entry Point Modules

The relationships between the mode names, overlay
numbers, and actual source names for the programs are shown
in Table I.

DRAW Program. The DRAW program operates as a master

control switch, seguencing the operation of all commands
allowed during the DRAW mode. Whenever the graphic crosshair
is present on the screen the DRAW program is waiting to act
on input data from its service routines to execute the
requested command.

Wwhen DRAW is first entered it draws the initial display
on the screen by calling DRAWINT., It then calls UPDATE to
open and initialize the graphic database. If the graphic
database contained data, the diagram defined by that data is
drawn on the screen through a call to REDRAW.

At this point DRAW begins the loop that forms & command

filter allowing any of the DRAW mode commands The routine

hadhe. L

s

arad

p” A,

-

Operation

(command)
DRAW

SAVE
RESTORE
PARAMETER

REDUCE

Table I

Overlay Names

Overlay

0,0
1,0
2,0
3,0
4,0

5,0

Source Name

TEST

DRAW

SAVE

RESTORE

EQUATE

REDUCE

s

Sn e s

TR BT, W e

e e,

R A Y M o g T T

R = Sy =y, e ey

¥

LOCATOR is used to obtain the command code and crosshair
location. ARROW is called to insure that an arrowhead is
automatically produced if one is needed. Then depending on
the code received, one of the following routines is called:
USERGRP, LINE, BOX, MOVEPT, ADDER, SAMPLE, CONNECT, CENTER,
REDRAW, IN, OUT, DELETE, or WORKLOC. When the code "E" for
END is received the loop is terminated, UPDATE is called to
insure that all data has been written to the graphic
database, and control is returned to the main overlay.

EQUATE Program., The EQUATE program provides all of the

process control for the PARAMETER mode operations., Its only
specific function is to select the correct routine to collect
the numeric parameters. If coefficient mode input is
requested the EQCOEFS routine is called. If root mode input
is requested the EQROOTS routine is called.

REDUCE Program. The REDUCE program seguences the

operation of routines during REDUCE mode operation, Routine
E2 is called to perform the entire reduction to EASY5S format.
REDUCE posts the success or fajilure message on the terminal
indicating the result of the attempted reduction.

RESTORE Program. The RESTORE program allows reuse of

graphic databases that have been previously saved via the
SAVE mode. Specifically, {t uses the routines in the NOSLIB
to attach a permanent file as file DRAWIN. The permanent flle
selected is specified by the input that REDUCE receives from
the terminal.

SAVE Program. The SAVE program catalogs the existing

graphic database to allow it to be reused at a later time.
This can be done only if the file DRAWIN was assigned to a
permanent file device prior to activating GRAPHIC.

TEST Program. The TEST program forms the main overlay of

the GRAPHIC system. It contains the common data storage areas
that are shared by more than one overlay. When activated, the
program initializes the common data areas. Once the
initialization is complete, the program then loops between
getting mode requests from the user and activating overlays

to execute the requested mode.

Other Modules

All other modules in the GRAPHIC system are subroutines
or functions. The paragraphs that follow summarize the
functions of each routine so as to form a guide to the source
listings.

Subroutine ABSTWDS. The ABSTWDS subroutine converts XY

location values from the integer Device Coordinate System
(DCS) to the real User Coordinate System (UCS) for storage in
the graphic database. The actual conversion depends on the
current mapping between the DCS and UCS systems.

Subroutine ADDER. The ADDER subroutine handles creation

of an adder in response to the command code A.

Subroutine ALERT. The ALERT subroutine closes and saves

the graphic database mass storage file if a fatal error
occurs during graphic operation,

Subroutine ARROW. The ARROW subroutine handles the

T

creation of arrowheads to indic:.c the direction of signal
flow. This routine decides whether an arrowhead is required
or not based on the previous command and the current command.

Subroutine ASIGNS. The ASIGNS subroutine displays the

arcrowheads and input signs for the second and third inputs to
adders. It is used only during redraw operations.

Subroutine BLANK. The BLANK subroutine is called to

erase the display screen and reset the scrolling messages to
start in the upper left hand corner of the text area.

Subroutine BRKLINE. The BRKLINE subroutine is called by

CLINK in response to a connect command that causes a line to
be split. This routine makes the calls to UPDATE to remove
the o0ld line and replace it with two shorter lines.

Subroutine BOX. The BOX subroutine handles the creation

of a transform box symbol in response to a command code B.

Subroutine CENTER. The CENTER subroutine handles

repositioning the viewing window to display a different part
of the diagram in response to a command code of C.

Subroutine CHECK. The CHECK subroutine rotates the

coordinate system to provide a better check to see if a
diagonal line element is the item designated by a connect
command.,

Subrotuine CLINK. The CLINK subroutine handles updating

the topology links in the graphic database for all connect
commands that were preceded by a move command.
Subroutine CLINKIN. The CLINKIN subroutine handles

updating the topology links in the graphic database for all

DTEEITNE TG

WS

connect commands that were not preceded by a move command.

Subroutine CMDHELP. The CMDHELP subroutine posts an

explanation of the modes available in GRAPHIC.
Subroutine CMDMODE. The CMDMODE subroutine is the

command filter that sorts the response to the prompt
“COMMAND >* and determines which overlay to activate,
Subroutine CONNECT. The CONNECT subroutine handles the

request for a connection and verifys that it was accomplished

successfully.

Subroutine CONSYM. The CONSYM subroutine is called when

a connection diamond is needed. It creates the symbol on the
display and stores a record of it in the graphic database.

Subroutine DADDER. The DADDER subroutine controls the

drawing of the adder symbol. It contains the vector drawing

commands that control the shape of the symbol.

Subroutine DARROW. The DARROW subroutine controls the

drawing of the arrow symbols. It contains the vector drawing

commands that control the shape of the symbol.

Subroutine DBOX. The DBOX subroutine controls the

drawing of the box symbol. It contains the vector drawing
commands that control the shape of the symbol.
Subroutine DCONECT. The DCONECT subroutine controls the

drawing of the connection symbol. It contains the vector
drawing commands that control the shape of the symbol.
Subroutine DELDATA. The DELDATA subroutine removes

elements from the graphic database in response to delete

commands.

[gy PR el

o

R - SPTOT R DI Rty Y - 7

e ST i Geo ST 4" £ U A TR T

Subroutine DELETE. The DELETE subroutine manages all

operations necessary to accomplish the deletion of an
element. This routine manages the search for, deletion of,
and marking of the element designated by the crosshair.

Subroutine DIN. The DIN subroutine controls the drawing

of the input symbol. It contains the vector drawing commands

that_control the-shape -of the symbol. ~~

Subroutine DLIMIT. The DLIMIT subroutine maintains the

records on the maximum size of the current diagram being
defined. This information is needed to control the automatic
generation of the miniature drawing.

Subroutine DOUT. The DOUT subroutine controls the

drawing of the output symbol. It contains the vector drawing
commands that control the shape of the symbol.

Subroutine DRAWINT. The DRAWINT subroutine is

responsible for establishing the viewport boundaries on the
display screen and drawing outlines around them. The routine
also sets the mapping between the User Coordinate System
(UCS) and the display face,

Subroutine DSAMPLER. The DSAMPLER subroutine controls

the drawing of the sampler symbol. It contains the vector
drawing commands that control the shape of the symbol.
Subroutine ELEMNUM. The ELEMNUM subroutine determing the

next available number for each symbol type in the diagram.
This number is used to generate the symbol labals that appear
on the display screen.

Subroutine ERRPRT. The ERRPRT subroutine is used to

print debug error messages on the display screen,

Subroutine EQCOEFS. The EQCOEFS subroutine handles the

user interface to collect and store transfer function

definitions when the user has requested the coefficient mode

of input.

_ Subroutine EQROOTS. The EQROOTS'Subrduﬁihe handles the

user interface to collect and store transfer function
definitions when the user has requested the root mode of
input.

Subroutine E2. The EZ subroutine handles the sequencing
of the routines that create the textual output file that can
serve as input to the EASY5 program.

Subroutine EZANAL. The EZANAL subroutine creates the

analysis section of the commands in the EASY5 text file. This
routine gets input output pairs from the user and then
transcribes this into an EASYS5 format transfer function
calculation request.

Subroutine E2BLOCK. The EZBLOCK subroutine controls the

translation of block diagrams into the textual format
required by EASYS5. It activates the FLOW secondary overlay to
create the signal flow database., After this, it activates

the EZWRITE secondary overlay to produce the textual model
description.

Subroutine EZHEAD. The EZHEAD subroutine creates the

control card section of the EASYS5 text file.
Subroutine FATAL. The FATAL subroutine is designed to

force a fatal error. This routine is used during debug to

9

i test the ALERT subroutine.
Subroutine FORMLAB. The FORMLAB subroutine forms the

visible labels used to idenitify the elements in the block
diagram. It combines the integer element number and the ASCII

element type into an alphanumeric ASCII label.

Subroutine GETSIGN. The GETSIGN subroutine queries the

user for the sign of each adder input as the input is
created.

Subroutine GPROMPT. The GPROMPT subrotine controls the

contents of the DRAW mode prompt area. This routine draws the
figures and text that is displayed there.

Function IEZELMN. The IEZELMN function creates EASYS

element numbers. It accepts an integer and returns the two
character ASCII equivalent.

Function ILETTER. The ILETTER function converts values

into ASCII. It accepts the integer ASCII code and returns the
character that is the equivalent code. This function is used
to support the Tektronix interface,

Subroutine IN. The IN subroutine handles creation of an
input element in response to the command code I.

Subroutine INITIAL. The INITIAL subroutine initializes

all values in the main overlay. It also initializes the
graphics support package.
Function INUMBER. The INUMBER function accepts ASCII

characters and converts them to their eguivalent numeric
code.

Subroutine LINE. The LINE subroutine handles creation of

10

an line in response to the command code L.

Subroutine LISTDEL. The LISTDEL subroutine handles

deleting items from the linked list index after the item has -

been removed from the graphic database in response to a
delete reguest.

Subroutine LOCATOR. The LOCATOR subroutine determines

where the crosshair was pointing during the last input. The
value returned is the location relative the User Coordinate
System used for the graphic database.

Function LOCE2FM. The LOCEZFM function accepts integer

location numbers and converts them into their three character

EASYS equivalent form.

Subroutine LUPDATE. The LUPDATE subroutine maintains the

linked list that forms the index into the entries of the
graphic database. As elements are drawn, this routine adds
pointers to the linked list., -

Subroutine MDRAW. The MDRAW subroutine determins if a

miniature drawing should be produced. If one is needed, this
routine sets the coordinate mapping from the database to the
display screen.

Subroutine MESSAGE. The MESSAGE subroutine is used to

scroll all messages that are output in the text area.
Subroutine MINDRAW. The MINDRAW subroutine produces the
actual miniature drawing of the diagram when requested by
MDRAW.
Subroutine MOVEPT. The MOVEPT subroutine moves the

current working location (CWL) to the position specified by

' value of an element label. This value is used in storing the

the crosshair. I

__Pugction'NUEVﬂﬂj"The NUMVAL function returns the numeric

element's parameters in the numeric database.

Subroutine OUT. The QUT subroutine handles creation of

an output element in response to the command code 0.

Subroutine PUTSIGN. The PUTSIGN subroutine posts the

sign of the first input to an adder symbol on the display
screen,

Subroutine REDRAW. The REDRAW subroutine scans the

graphic database and draws the current version of the diagram
on the display screen.

Subroutine SAMPLE. The SAMPLE subroutine handles

creation of an sampler in response to the command code S.

Subroutine SEARCH. The SEARCH subroutine supports the

delete command. It searches the graphic database and/reiurns
a list of elements that are near the current crosshair
location.

Subroutine SMALL. The SMALL subroutine sets the

character size for the Tektronix 4014/15 terminals to the
smallest available size.

Subroutine SMALWIN. The SMALWIN subroutine draws the

corner marks in the miniature area to mark what part of the
entire diagram is visible in the work area.

Subroutine TEKPRT. The TEKPRT subroutine is used to

print the labels that appear on the elements within the work

arcea.

12

——

R e A R

Subroutine TERMINL. The TREMINL subroutine produces the

main prompt “COMMAND > and reads the users response, i

Subroutine TEXTSET. The TEXTSET subroutine puts the

terminal in text mode with the cursor positioned at any
desired location.

Subroutine TFDATAB. The TFDATAB subroutine handles all

access to the numeric database for reading and writing
transfer function data.

Subroutine UPDATE. The UPDATE subroutine handles all

additions to graphic database in response to DRAW mode
commands given by the user.

Subroutine WRSTATE. The WRSTATE subroutine reads and

writes the linked list index of elements and the drawing size
information that is stored as specialized records in the
graphic databaase.

Subroutine WORKLOC. The WORKLOC subroutine displays the

square text cursor at the position of the current working
location (CWL).

Subroutine ZERO. The ZERO subroutine is used to

initialize the buffer where information on the curcent

element being formed in to be stored.

13

P 1

APPENDIX E

ABBREVIATIONS AND MNEMONICS

]
%’

!

cDC
CENTER

CONNECT

CORE

CRT

CHWL

CYBER

DCs

DRAW

EASYS

ABBREVIATIONS AND MNEMONICS

Definition

Association for Computing Machinery.

Air Force Flight Dynamics Laboratory /
Control Dynamics Branch.,

Control Data Corporation.

GRAPHIC DRAW mode command that moves the
window over the block diagram to allow
display of different sections of the
diagram.

GRAPHIC DRAW mode command that causes two
independent signal flow paths to be
connected.

Name of the software library that
supports three dimensional graphics.

Display tube that forms the face of the
Tektronix terminal,

Current Working Location. The location in
the block diagram that is the output of
the most recently produced element
symbol.

Model of computer manufactured by the
Control Data Corporation.

Device Coordinate System. The coordinate
system used to control drawing on the
display face.

Mode of operation in GRAPHIC that allows

the drawing of a block diagram to be
defined.

A control system analysis program
developed by Boeing Aerospace Company.

FORTRAN

GRAPHIC

GROUP

INTERCOM

MOVE

NOSLIB

NOS/BE

PARAMETER

REDUCE

RESTORE

SAVE

SIGGRAPH

Definition

Software routine in GRAPHIC that creates
a signal flow graph from the graphical
block diagram definition.

Name of the programming language that
GRAPHIC is written in,

Name given to the software system being
designed in this paper.

Mode of operation in GRAPHIC that allows
generation of collections of elements to
form block diagrams of subsystems.

Name of the interactive timesharing
system used to run the GRAPHIC program,

GRAPHIC DRAW mode command that allows
repositioning of the current drawing
location (CWL).

Name of the software library that

supports manipulation of permanent
files.

Computer operating system that the
GRAPHIC program is compatible with,

Mode of operation in GRAPHIC that allows
definition of the numeric parameters for
transfer functions and sampling periods.

Mode of operation in GRAPHIC that allows
the block diagram to be reduced to an
equivalent transfer function ot an
equivalent textual description.

Mode of operation in GRAPHIC that allows
restoration of previous work from a
stored file.

Mode of operation in GRAPHIC that allows
all work to be saved in a file for
reuse.

Special Interest Group for Graphics, a
group within the ACM,

Tecm

TEKLIB

TOTAL
ucs

UPDATE

Definition

Name of the software library that
supports interfaces to the Tektronix
4000 series terminals.

A control system analysis program.

User Coordinate System. The arbitrary
coordinate system that the block diagram
is referenced to.

Software routine within GRAPHIC that
alters the graphic database.

Sqrag—e—

-y

eTRr S

T PR R

Lt

vita

Donald E. Troxel was born on December 8, 1950 in
Washington, DC, the son of David I. Troxel and Jean M.
Troxel. In 1973 he graduated from Lehigh University in
Bethlehem, Pennsylvania with a Bachelor of Science in
Electrical Engineering and was commissioned as a
Distinguished Graduate of the Air Force ROTC program., He
entered active duty upon commissioning and served in Airt
Force Systems Command at Hanscom AFB, Massachusetts until

1978, when he entered the Air Force Institute of Technology.

Permanent mailing address:

Capt. Donald E. Troxel
5242 Garfield Ave.
Pennsauken, NJ 08109

UNCLASSIFIED

SECURITY CLASS FIZATION OF THIR 43¢ (Whan Nace ntered)

REPORT DOCUMENTATION PAGE BRF O IO oy
AL LA L 2. GOVT ACCEISION NG 3. PECIS FxT'S CATALOG NUMBER |
AFIT/GE/MA/79D=-1 {
4. TITLE (and Subtitie) ' . TYPC OF REPOAY & PEMOD COVERLD
GRAPHICAL INPUT METHODOLOGY FOR COMPUTER MS Thesis
AIDED ANALYSIS OF CONTROL SYSTEMS 8. PERFORMING ORG. REPOAT NUMBER

Y. AUTHOR(S) LN NTRALTY O ANT UM e)

Donald E. Troxel

Capt USAF
3. PERFORMING ORGANIZATION NAME AND ADORESS : ::QQ?EJ'W
Alr Force Institute of Technology (AFIT-EN)
Wright-Patterson AFB, Ohlo 45433
V1. CONTROLLING OFFICE NAME AND ADORESS 12. REPOARY DATE
Alr Force Flight Dynamics Laboratory December 1979
(AFFDL/FGC) 3. NIMBER NF PAGES
Wright-Patterson AFB, Ohio lisi33 166
N NG ACENCY NAM ADDRESS(If ditforent frem Ceontrelling Office) 18. SECURITY CLASS. (of thie repert)
Unclassified
r'y ASSIFICATION/ WN ADING
NEOULE

1. OISTRISUTION STATEMENT (ol this Repert)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abatract entered (n Bleck 20, if differont frem Repert)

o~ .
18, SUPPLEMENTARY NOTES

Approve rorifu:sic release; IAW AFR 190-17
Josepn K, Hip ;tE’Etain, USAF

Direct Public fairs

-ﬁ KEY WOROS (Continue on reverse side if necocsery and idontify by bleck number)
Computer Graphics

Interactive Graphics

Control Systems

Block Diagrams

Human Interfaces

v $ ABETRACY (Continue on roverse 5ide Il necesssry and Identily by BISh number)

A This report desoribes the design of a graphical input language and
CAD system for specifying control system block diagrams. The goal
to develop a graphical means of defining block dlagrams that
avoided the need to create the textual descriptions required by
most existing traditional analysis packages was accomplished.
Generaliszed requirements for a successful human interface were
developed. A graphical input methodology was developed that meets

00 \Jan W73 sormow or 1 wov as s oesoLeTE UNCLASSIFIED
SECURITY CLASIFICATION OF ¥wid PAGE (Woen Bove Trteren)

SIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

' [these human constraints. The CAD system designed allows
| | graphical definition of linear systems and translation of these
systems into forms acceptable by traditional analysis programs.

UNCLASSIFIED

SECURITY CLASHIFICATION OF TiIS PAGE(When Dote Bntered)

