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\) The three-parameter logistic model has been used by many

researchers as the model for the multiple-choice item,

regardless of the fact that for most multiple-choice test

items the examinee's behavior does not follow the knowledge

or random guessing principle, upon which the model is based.

Estimation of the operating characteristics without

assuming any mathematical forms has been pursued by the present

author and many combinations of methods and approaches have

been produced. The application of these methods for many

empirical data will enable us to discover the operating

characteristics of multiple-choice items, and, eventually,

lead us to more meaningful models than the three-parameter

logistic nidel. While the research in this direction is in

process, however, it will be helpful if some other model or

models, which is based upon-a sounder rationale than the

knowledge or random guessing principle, is proposed.

In the present paper, a family of models for the i

multiple-choice item is proposed for this purpose. These

models are built in consideration of the behavior of distractors
XI

of the multiple-choice item, as well as the examinee's random

- ! guessing. One incentive for proposing these models is Shiba's

research which includes the construction of a vocabulary test,

and which I came across while I was doing research in Tokyo,

Japan in summer, 1979.
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A NEW FAMILY OF MODELS FOR THE MULTIPLE-CHOICE ITEM

ABSTRACT

The three-parameter logistic model has been used by many

researchers as the model for the multiple-choice item,

regardless of the fact that for most multiple-choice test

items the examinee's behavior does not foll ,.. the knowledge

or random guessing principle, upon which the model is based.

Estimation of the operating characteristics without

assuming any mathematical forms has been pursued by the present

author and many combinations of methods and approaches have

been produced. The application of these methods for many

empirical data will enable us to discover the operating

characteristics of multiple-choice items, and, eventually,

lead us to more meaningful models than the three-parameter

logistic model. While the research in this direction is in

process, however, it will be helpful if some other model or

models, which is based upon a sounder rationale than the

knowledge or random guessing principle, is proposed.

In the present paper, a family of models for the

multiple-choice item is proposed for this purpose. These

models are built in consideration of the behavior of distractors

of the multiple-choice item, as well as the axaminee's random

guessing. One incentive for proposing these models is Shiba's

research which includes the construction of a vocabulary test,

and which I came across while I was doing research in Tokyo,

Japan in summer, 1979.

The research was conducted at the principal investigator's
laboratory, 409 Austin Peay Hall, Department of Psychology,
University of Tennessee, Knoxville, Tennessee. Those who worked

for her as research assistants include Paul S. Changas and Philip
S. Livingston. Typing and data organization were helped by Nancy
Jayne Taylor, Deusdedit Furlan and Tamra Gordon.
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I Introduction

The three-parameter normal ogive, or logistic, model

(Birnbaum, 1968) has been widely used for the multiple-choice

test item among psychometricians and other researchers in mental

measurement (e.g., Bejar, I. I., D. J. Weiss and G. G. Kingsbury,

1977, Hambleton, R. K. and J. Gifford, 1979, McBride, J. R., 1977,

Reckase, M. D., 1977, Swaminathan, H. and J. Gifford, 1979,

Sympson, J. B., 1977, Urry, V. W., 1977, Warm, T. A., 1978).

The model is based upon the knowledge or random guessing principle,

i.e., the examinee either knows the answer, or guesses randomly

among the alternatives. It is alarming to note, however, that,

- in spite of its unusual popularity, none of the researchers have

even tried to validate the model, buz adopted it rather blindly,

except for Lord (Lord, 1970). Experienced test constructors

try to include wrong, but plausible, answers among the alternatives

of multiple-choice items, which are called distractors, so as not

to make the correct answers too conspicuous ard destroy the quality

of questions. It should be noted that we need some higher mental

processes other than random guessing to recognize the plausibility

of a distractor, and to be attracted to it. It is contradictory,

therefore, to applv the three-parameter normal ogive, or logistic,

model for multiple-choice items with distractors, although many

researchers do.

Bock has developed a multinomial model (Bock, 1972) for

the multiple-choice item taking a completely different standpoint.

He postulated his rationale assvming a response tendency for each
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alternative, including the correct answer, aud assumed 
a normal

distribution for the conditional distribution of each response

tendency, given ability, and the invariance of the ratio of the

conditional probabilities with which two alternatives are selected

in preference to each other, regardless of the set of alternatives

they are placed in. In Bock's model, no considerations are given

for the examinee's random guessing behavior. It is assumed that

1 every examinee seriously compares each alternative with each other,

and selects his answer.

• The homogeneous and heterogeneous cases of the graded response

model have been proposed by Samejima (Samejima, 1972), and later

I ' "the model has further been expanded to the continuous response model

(Samejima, 1973a). Typical examples of models in the homogeneous

case on the graded response level are the normal ogive and the

logistic models, which were originally proposed as models for binary. L
items (cf. Lord and Novick, 1968). This family of models was

built and proposed, mainly, for the purpose of extracting a greater

amount of information from free-response test items. ManyI--researchers have thought that they are for the multiple-choice item,
however. :f we take this latter standpoint, then we shall have

to say that these models are close to the multinomial model in the

sense that the idea of random guessing is completely missing.

The role of the wrong answers as alternatives in the multiple-

choice item is simply to provide noise, as it is viewed by the three-

parameter normal ogive, or logistic, model. The multiple-choice

item is, therefore, nothing but a "blurred image" of the free-response

-4I
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NA item. On the other hand, in Bock's model or in the normal ogive,

or logistic, model on the graded response level, the multiple-choice

test item is much more than a poor substitute for the free-response

item, i.e., the item which provides us with a greater amount of

information and a higher accuracy of ability estimation, than the

binary, free-response item.

1 When we consider the fact that most well-constructed multipie-

I choice items have distractors, the multinomial model or one of the

. graded response models looks more reasonable to adopt than the three-

parameter normal ogive, or logistic, model. It should be noted,

however, that we cannot completely ignore the examinee's random

guessing behavior, since most examinees depend upon random

guessing as the last resort, when a strong pressure for success

is present, as is the case in many testing situations. We must

conclude, therefore, that neither the three-parameter normal ogive,

or logistic, model nor the multinomial or graded response model

serves our purpose of interpreting the multiple-choice item properly,

when it is given in a typical testing session.

Estimation of the operating characteristics of the graded

response categories has been investigated by Samejima (Samejima,

1977b, 1977c, 1978a, 1978b, 1978c, 1978d, 1978e, 1978f), without

assuming any mathematical forms. One of the incentives when the

author started this part of research in latent trait theory is to

investigate the operating characteristics of the distractors in

the multiple-choice item, using the estimation methods thus developed.

When this is realized, we can make use of the information given by

. . . I = 7 .. . . . . - / - , .,.,.,. . . . .
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the distractors, as well as the one given by the correct answei,

and create a more efficient ability estimation by means of multitoe-

choice items. Under the circumstaDces, this approach seems to be

the most productive, and scientific, one. It will be benefictil,

however, if we can propose some other family of models that has

more reasonable rationale for the multiple-choice test item, to

satisfy the immediate need of replacing the three-parameter normal

4ogive, or logistic, model.

'iFor this purpose, in the prsent paper, a new family of mcels P

for the multiple-choice item is formulated and proposed. These

models are a natural consequence of combining the higher mental

process of recognizing the plausibility of distractors and random

guessing. In addition to this proposal, desirable qualities

of multiple-choice test items are discussed in the light of the new

family of models.

N :
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II No-mal Oitive Model on Lhe Graded Response Lev.L and Bock's
I Mfultinomial Model

The normal ogive model, which was originally introduced

for a binary, free-response itLem, has been expanded to fit a LWre

j general case, in which the item is k-raded iL.to more th;,, two

item score categories (Samjima, 1969, 1972). Iii this chapter,T

we shall compare this model. with Bock's multiuomial model.

.,z hzas be.-n pointedi out (Samejima, i972) t~hat, althourh

Bock's model was originally deve 'ped for Deninal catiz;,ories,

i.e., the categories which are nar ordered among themselves, it

can be considered as a model in the heterogeneous case of the

graded response level.

Let 8 denote ability, or latent trait, which is assumed

-- to be uni-dimensional, such that

(2.1) - < 8 CO

Letg b a ultpl-choic# item, h, i or k be one of its sLet gbe amultpleS

alternatives, and X0  X and X.k be the response tendency

for the alternative, h , i or k W Ihen any tto alternatives,

I Iih and k , are cow~pared alone, the probability with which h is

chosen in prefe~rence to k is assumed to be a function of ability

0 ,and is denoted by (Og Thus we can write

(2.2) rh(e;g) + 7.kt(e;g) - 1

Wcn the comparison~ is made among m (,2) alternatives, the

conditional probability with wihich the alternative h is chosen

t Q
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in preference to all the other (n -I) alternatives, giver 6 is

I02
denoted by Ph(C;g, and we have

Ii g -1~~ (2r - h(S;g) =1•

h-i I

We shall define a variabl- X.. ,such that

hK;g

(2.4) ,

i.e., the differei-e between the two response tendencies, Xhb and

Xkg. j
Hereafter, for simplicity, we shall drop the subscript g

whenever it is clear that we are dealing with ouly one ui-tiple- I

choice item. Thus, i s such a case, Wbk(e) s used for ,(O:.),

X-hl f or Xhl; an4 so forth. -

In the multinomial model, it is assumed tk.&t: 1) the

conditional distributon of , given e , Is normal, with Pk(O;g)

or uk( 3 ) , and Ok(8;g) , or ok(e) , as the two parameters: 2) Xk'S j
are conditicnally, wmutally indpendent, given 6 ; and 3) the ratio A

of the probabilities with -ich the two alternatives are chosen,

respectively, is invariaat for the set cf alternatives among which

the two alternatives are c-mpared. Thus for the third assumption

we can write

(2.5) Ph(0)IPk(O) - 1hk(O)/1kh(O) -

From the first two of these assimptions, it is derived that

the conditional distribution of , given 8 , is also narmal,

Xhki

AST
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with phk(8;g) , or ph(6) , and Ohk(O;g) , or Ohk(O) ,as the

two paraeters, which are given by

(2.6) ph() = )h (6 )  r
hk hf k

SI
- S and

(2-7) ia() ;j0(e) + 02i(0)11

We can also write for rh (0) and kh(e) such that
-1/2hk

(2.8) (21(5) = exp[-fXk-ii/() 2 )dxh

and

(2-5)- exp-[X,, (-h: /{21 (8)J~d,

(2.9) kh() = (2(6))l2h %k

Now we shall use the logistic approximation to the normal

.Udstribution function, which is, with D = 1.7 , given by

_ - / 2 -U 2-
(2.10) (2) e du [+exp{-Dui 1

T 21us we obtain from (2.6), (2.7), (2.8), (2.9) and (2.10)

(2 11) " bk(e)I/lkh(e) -[i+exp[Dp,(ke)lok(e))]
h-l

=1- 1exp Vhk(e)/hk() -1 1

= ex[luk(8) ))hk (6)(

k hc k-

rrow (2.5) and (2.11) we can write

Up.(6)I/P (6)] T- ()P ()(2.1k) [= k = ik k
=I M=
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m
E exp[D{p i()-1k(6)}/{cy2(e)+oa(e)}1/2II i=l

and then

(2.13) P = Pk() [Prhk(e)/7rkh(6)]

= exp(D{PhC- ( 6)/( } 2{o(e)+a2(e1}l12
h k

4M

[ ep{b~(0-11 (O)]/[1a2(6)+ 2(e)]1/ 2 ] -1
exp{D[JI~e-k8 11 (Y ()11}1-,

ik

for h = 1,2,...,m . Note that k is an arbitrarily chosen, fixed

alternative.

If we add two other assumptions such that: 4) the regression

of the response tendency Xh (h=l,2,...,m) is linear; and 5) the

conditional variance of X , given 0 , is constant, i.e.,
n

(2.14) P = a*8 + c*
h h h

and

(2.15) a2( 0 ,

then we can write

EN.iI')

(2.16) D[ph(e)-pk(e)11/[Co(6+(e)1112 = ah8 + ch

where

and

2+r)1/2
(2.18) c D D(c*-c*)/(a 2 G

h h k h k
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Substituting (2.16) into (2.13), we obtain

m L
(2.19) Ph(6) exp[ahO+ch][ E exp{ai6+ci}]'

Thus (2.19) specifies the operating characteristic of the category

h in the multinomial model. Note that both ai's and ci's in

(2.19) are of arbitrary origins, for we have for arbitrary d and e

m
(2.20) Ph(e) exp[ah6+ch]exp[d6+e][ E exp{dO+eiexp{aiO+ci}]-

i=l

m -1
x exp[(ah+d)e+(ch+e)][ E exp{(ai+d)6+(ci+e)} .' i=l1i

While in the multinomial model we assume m different

response tendencies .and their conditional independence, and the

invariance of the ratio of the two probabilities of alternative

I* selection, in the normal ogive model on the graded response level,

we assume that there exists a single response tendency, or item

variable, X , or X , behind the selection of any one of the

=. m alternatives, and the conditional distribution of X , given

6 , is normal, with P(e) and o(6) as the two parameters.

In addition to this first assumption, we also assume for the

normal ogive model that: 2) the whole dimension of the item

variable X is divided into m subintervals; and 3) the alternative

h will be selected if the examinee's response tendency is in the :1
subinterval assigned to that category. We can write

(221 p(O =[2]-/2[ 8 ] - h
(2.2) [2r]- [rih) lexP[-{u-)j(8)}2{2o (0) } ]du,
hi

fI I
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where Yh is the upper endpoint of the subinterval of X which

is assigned to the category h ,and we have

(2.22) {m

fhed:E2:;naltEF assumptions, 4) and 5), for the multinomial

modlwhih reformulated by (2.14) and (2.15), respectively, L

ar loaotdfor the item variable X in the normal ogive [

mode. Ths wecan write for the conditional expectation, or

regrssin, f X on 0 and the conditional vatiance of X

12.23) ii(e) a*6 + c*,

(2.24) 02()F

Substituting (2.23) and (2.24) into (2.21), we obtain

-1/ 12 h ep-ua _*)2 2T]d
(2.25) P h(0) [2r] afh~(a0c)/22Jd

= 2r1/2 f(Yh *Oc) /a exptt 21 dt

fa*O+cyhl)/
(a*O~c _YxpCFte /2] dt

where

(2.26) t (u-a*6-c*)/(

4 -



-11- 11-7

We define the item parameters, ag or a and bhg or b
9 hg h

such that

(2.27) a = a*/a

and

(2.28) bh = (Yh-c*)/a*

A4 where

41 (2.29)
lb
tm

Substituting (2.27) and (2.28) into (2.25), we obtain for the normal

ogive model on the graded response level,

(2.30) Ph(O) [ fa(O-bh) exp[-t 2/2] dt

We have seen in the preceding paragraphs that in both the

normal ogive model on the graded response level and Bock's multinomial

model the normal assumption is made for the conditional distribution

of the response tendency, given ability 0 . The biggest difference

between the two models is that, in the normal ogive model, a single

item variable is assumed behind the examinee's selection behavior,

whereas, in the multinomial model, a separate response tendency is

assumed for each of the m alternatives. The decision as to which

model should be adopted should depend upon the psychological reality

behind our data.

I.
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It should be pointed out that in both models the operating

characteristic is strictly decreasing in e for the category 1, M

unimodal for the categories, 2 through (m-i), and strictly increasing

! -i in 6 for the category m , and the modal points of these operating

characteristics are in the ascending order, provided that

(2.31) a. < a < ... < a

2. m

in the multinomial model (cf. Samejima, 1972). It should also be FJ
j noted that in neither model is the effect of random guessing

accounted for. The application of these models for the multiple-

choice test item must be restricted, therefore, to the case where

the supervision of examinees is well conducted and guessing is

F strongly discouraged in the instructions. t
Another interesting difference between the two models is

that the normal ogive model requires ordering the response categories

a priori, while the multinomial model does not, in estimating the

item parameters. This ordering is a fairly easy prncess, however. c

One of the good methods of ordering the alternatives of the multiple-

choice item when we use the normal ogive model may be the following.

(1) Treat all the items as binary items, and estimate each,.

examinee's ability by the maximum likelihood estimation.

This process is facilitated if we use the logistic approximation

(cf. Birnbaum, 1968), whose item characteristic function,

P (0) , or P(0) , is given by

g

([- 1
47- (2.32) P(6) [l+exp{-Da(O-b_ -IM

• -1

IM
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IN
(2) Find out the sample mean of the maximum likelihood estimate

of ability for each subgroup of examinees, who have chosen

a specific alternative.

(3) Order the alternatives according to the sample means obtained

in (2).

J
We can expand the logistic approximation to the normal ogive model

j further for the category h , and define the logistic model such

I that, for h 1,2,.. .,m- "

4 (2.33) Ph(e) = [l-exp{-Da(b -b h)}[l+exp{-Da(h-b )}1

-1
[l+exp{Da(O-bh) }]-I

IH
where b and b satisfy (2.29). This model has similar

0 m

characteristics as the normal ogive model, although it also has

interesting differences (cf. Samejima, 1972).N I "

* I "The three models described in the previous paragraphs of .

this chapter can be applied for the multiple-choice item, but

only in a restricted way. As'we have seen, the examinee's guessing

,I. behavior is not considered in the rationale behind these models.

Furthermore, it is unrealistic to assume a strictly decreasing

function for the operating characteristic of one of the wrong

answers. This problem will be solved by modifying the models,

which will be presented in the following chapter.
= IP
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III A New Family of Models for the Multiple-Choice Test Item

Suppose that our multiple-choice test item is constructed

well enough to prcvide us with (m-l) distractors, which have some

plausibility to attract examinees as correct answers. Suppose,

further, that there is some simple statistical relationship between

J1 each distractor and ability 0 , i.e., the conditional probability

with which the examinee chooses the distractor h as the correct

answer in comparison with all the other (m-l) alternatives, given

- which increases in 6 up to a certain level of 8 ,and then

decreases in 0 . This implies that there possibly are individuals

who are not even good enough to recognize the plausibility of any

distractor as a correct answer. Suppose that the conditional H
probability with which the examinee does neither solve the problem

nor recognize the plausibility of any distractor, given e , is

~strictly decreasing in ability 0 • If the item characteristic

A function, which is the conditional probability, given E , with which

the examinee selects the correct answer, is strictly increasing in

ability 0 with zero and unity as its two asymptotes, and if, Ia

addition, the two asymptotes of the "plausibility" function for

each of the (m-l) distractors are uniformly zero, and those of the

conditional probability for the "no recognition" category are unity

and zero, respectively, then we will notice that the type of models

which includes both the normal ogive model on the graded response

level and the multinomial model may be appropriate for our test item.

In situations like the one described in the preceding

paragraph, the type of models is suitable only if the supervision

El
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is strict and the examinees are extremely discouraged to guess when

they do not knjw the right answer. It may be more realistic

to assume, however, that in most testing situations the pressure for

success is so strong that the examinees do guess when they have no

idea about the correct a:nswer. Suppose that these examinees guess

randomly, and select one of the m alternatives with equal

probability. Thus we obtain a new family of models, which includes

modified forms of such models as the normal ogive and logistic models

on the graded response level and the multinomial model.

Let P (0) be the operating characteristic of the graded
x
g

response category x (=0,1,2,... ,m), whose mathematical formK is given as P (O;g) in (2.19), (2.30) or (2.33), or of any other

model of similar characteristics. For convenience, we chall call

these models as models of Type I on the graded response level, just

as we did on the dichotomous response level (Samejima, 1979). To

be specific, models of Type I are those which satisfy the following.

(1) P (6) is strictly decreasing in 0 , with unity and zero
x
g

as its two asymptotes, for Xg= 0

(2) P (8) is unimodal with zero as its two asymptotes, for

x2 1,2,..., r-)

g g
(3) Px (6) is strictly increasing in 0 with zero and unity

x
as its two asymptotes, for xg g

mg

The above conditions for Type I models also imply that Z P (0) is
sxS=X

strictly increasing in 0 with zero and unity as its two g asymptotes,

for xg= 1,2,...,m

I9
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We use this additional response category x 0 for those
g A

who have no idea at all of the correct answer in the multiple-choice

situation. Thus the probability with which the examinee belongs

to this category is strictly decreasing in e , with unity and zero

as its two asymptotes. We assume that the (m -1) distractors

of the multiple-choice item g have an implicit order among

themselves, and the response categories x 1, 2,..(m -1) are

used for the distractors. Thus the operating characteristics

of the distractors are unimodal, with zero as their two asymptotes,

respectively. The other category, x = m , is used for the

correct answer, and its operating characteristic is strictly

increasing in 8 with zero and unity as its two asymptotes. Since,

in reality, the examinees who belong to the category, x 0

are assumed to guess randomly, however, the operating characteristic

for this response category disappears, and those of the other

categories, or the m alternatives, are affected by this random

guessing. The operating characteristic of the alternative h can

be written, therefore, such that

(3.1) Ph(6;g) P x (O;xg=h) + (l/mg)Px (e;xgO)

g g

Thus (3.1) specifies the new family of models for the multiple-

A choice item. When P (0) follows the normal ogive model on theg

graded response level, Ph(e;g) , or p , takes on a form such

that

-12 a(8-bh) e-?122du tfa

'(3.2) P = (2-)-1/2[ (b) e du + (1/m) ) e du]

Ia (O-b h+) f(-b 1 )

g.LI
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where a > 0 , and

i (3.3) - < bl < b2 < " '" < b  < bm~ f

1 2 m ml1'C

- For simplicity, we shall call it Model A of Type I for the multiple-

choice item. When P (6) in (3.1) is specified by the logistic

model on the graded response level, we can write

(3.4) Ph(6) = [l-exp{-Da(bh+l-b ][+exp{Da(b) }- 1

h h )'] 01

[l+exp{Da(Obh+l)}1 I + [m{l+exp[Da(O-bl] 1-

where a > 0 , and the inequality (2.3) holds. We shall call it

Model B of Type I for the multiple-choice item. When P (6) in
x

(3.1) is given by the operating characteristic of the category x

in the multinomial model, we obtain

i m) ah h}+(/mex{aOO+c0  a m-1
(3.5) = [exp{a I+ (i/m)exp{ I[ E exp{ 6 ]-

h h0 0 {a8+

f Iwhere

(3.6) a0 < a1 < a2 < ... < a_ !. m

We shall call it Model C of Type I for the multiple-choice item, or

Bock-Samejima model for the multiple-choice item.

For the purpose of illustration, Figure 3-1 presents the

operating characteristics of the six response categories, following

- the normal ogive model on the graded response level, with a = 1.00,N g

b I -1.50, b2=-0.50, b3  0.00, b 0.75 and b 1.25 . The

modal point of the operating characteristic of each of the (m-l)

intermediate categories is given by (bh+ bh+l)/ 2 (Samejima,
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1969), and this will help the reader to identify each operating

characteristic in Figure ".-!. Figure 3-2 presents the corresponding

:.perating characteristics of the five alten atives following Model A

of Ty:,. T for the multiple-cholate item. We can see that these

cuc'ves are no longer symmetric for h - 1,2,3 and 4, and they are

I not even unimodal for h - 2,3 and 4. it Is indicated in the figure

that the asymptotes of these operating characteristics at e - -

are tuniforwiy 0.2, or 1/m . To make this contrast clear, Figure

3-5 presents the five pairs of operating characteristics in the

normal ogive model and Model A, with dotted and solid lines, for

the alternatives. 1 through 5, respectively. We can see in these

graphs that the modal point is shifted to the negative direction

V" in Model A, fcr each of the alternatives, 1 through 4, and the
44o a

amount of shift is greater for lower categories. We also observe

that for the correct answer, or h - 5 , the operating characteristic

decreases in 8 for a certain interval of 8 , and then increases

in e. This shape is similar to the one observed for a mathematics

test itea (Lord and Novick, 1968, Figure 16.4.1), for which a rather

crude approximation to the item characteristic function, i.e., the

percentage correCt plotted agains the total test score, is used.

Tt should be noted, moreover, that, if the curve is truncated around

e = -0.8 , then it looks as if the operating characteristic had

a lower asymptote a t - than 1/r. If we combine this with

the fact that this operating characteristic ccnverges to the item

Acharacteristic function of the three-parameter normal ogive model

as b., b2, bm_I  tend to b , then we will notice that A
- , -A , ]

.i zt
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in the case where bh's (h-l,2,...,m) are close to one another

the operating characteristic of the correct answer looks as if

it followed the three-parameter normal ogive, or logistic, model

with the lower asymptote less than 1/m , which has been asserted

often (e.g., Lord, 1968).

As another example, Figures 3-4 through 3-6 illustrate

a similar set of graphs for an item whose parameters are: a 2.00,

-1.00, b3 0.00, b 1.00 and b 2.00. In

contrast to the preceding example, except for h = 1 and 2 , the

operating characteristics given by Model A of Type I for the

multiple-choice item are not so different from those of the normal'U.
ogive model on the graded response level, except for the "tails"

which lie on the negative side of the ability dimension. This

is mostly due to the higher value of the discrimination parameter

a for this item. Two more sets of graphs of a similar nature
g

are given in Appendix I, i.e., Figures A-1-1 through A-1-3 for

an item with the parameters, a = 1.00, bl= -1.50, b2= -1.00,

b = -0.50, b4= 0.00 and b5= 0.50 , and Figures A-1-4 through f

A-1-6 for an item with a = 2.50, bl= -1.75, b2= -0.75, b3= 0.00,

1.00 and b 5 1.75 both of which follow the normal ogive

model on the graded response level and Model A of Type I for the

4 multiple-choice item.

As an empirical example, which a model of Type I may fit,

Table 3-1 presents a contingency table between the four alternatives

of a multiple-choice test item, A, B, C and D, and the five ability

levels of examinees, which was selected from a preliminary study
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.R

in test deveiopment.* !e notice that, for this multiple-choice

test item, the mode of tl.e frequency for the alternative A is the

lowest ability group, that for the alternative B is the second

highest ability group, thit for C is the highest ability group,

which is natural since th.s is the correct answer, and that for

D is the second lowest ability group. Thus these categories

may be ordered as A, D. B and C in the ascending order. Another

similar example is shown i-i Table 3-2. For this item, the correct

i answer is the alternative i . The modes of the frequency for

the alternatives, A, B, C and D, are the second lowest ability

group, the highest ab-.U- ty vroup, the lowest ability group, and

the lowest ability, group, D.spectively. In this example, the

order is not so clear for tie alternatives, C and D, since both

have similar frequency di3tzibutions.

SFigures 3-7 through 3-11 present the operating characteristics

of the six response categei.:s in t1e logistic model, and those of

the five alterrativs ii lldel B, which follow the mathematical form

given as (3.4), for five hype-hetical multiple-choice items. In

each figure, the discrimn-iati:i parameter, a , and the difficulty
g

paraneters, b (h-l,2,3,4,5. are specified. It can be seen that~h

the set of parameters for tter 2 is the same as the one used in

Figurez 3-1 through 3-3 for the normal ogive model and Model A, and

the set of paraveters for iter 4 is identical with the one used inF Figures 3-4 throughi 3-6. Ax s expected, the rrsulting curves are

*Th. author is obliged cc. Mr. Lan Raske and Educational Testing
Setrice for allowing her r .ts_ their data, which include this
and the foioring exaspi..I: _ 

_i
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I very similar bstween the normal ogive model and the logistic model.,

jand between Models A ansd B. identification of the curves with

the categories can be made in the upper graph of each of Figures

3-7 through 3-11, since the modal points of these curves are in

_i* the ascending order of categories (cf. Sam jima, 1972).

Figure 3-12 through 3-17 present the operating characteristics

I of the five response categories following the multinomial model, and

those of the four alternatives in Model C, which are given by (3.5),

I7 for another set of six hypothetical multiple-choice test items.

In each figure, the parameters ah and ch (h-1•2,3.4,5) are

specified. Identification of the curves with the categories can

I be done in the .'per graph of each of Figures 3-12 through 3-17,

4 since the modal points of these curves are in the ascending order

of the values of a. (Samejima, 1972). in the lower graphs of
n

these figures, i.e., those for Model C, the asymptote at e * -

is 0.25 instead of 0.20 since the number of alternatives in

these exa.wples is four, instead of five.

g - -,, 2C
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IV Basi, Functions and Information Functions of the Muitiple-Choice
I tetv

The basic function, A (6) , of the item response category

Xg ,was defined by Samejima (SameJi a, 1969), such that

1) A() lgP() P' (e)/Px (a), -
x(e)) x logPx
g g g g

where P' (6) denctes the first derivative of the operating
x
g

characteristiz, P (0) , with respect to ability e . This
x
g

function has an essential role in :he nymerical soluticn of the

maxiianm 1.kkclihood estimation of the exainee's ability. A
Ii

sufficient condition that a model defined on the graded response

level provides us with a tnique maximt= likelihood estimate fcr

every possible response pattern, or unique maximum condition, it

that this basic function is strictly decreasing in 6 u-ith a

non-negative asymptote at b - an~d a non-positive asymptote

at 8 - with respect to ever,- item response category (cf.

Samejima, 1969, 1972).

The item response information function, I (8) of the
x~g

graded item score x was defined by Simejima (S-ejima, 1972)~S

5uch that

(4.2) 1 (8) - 6log P (8) = - -A (8)

= fA (0)12 - [P" (6)/P g(R)]
x x x

g g g

where P" (3) is the second derivatle of the operatIng characteristicPh

I C ihrsett 1 Tu h is tl fteuiu

~2 I
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ii :i
maximum condition can he restated in terms of the item response

informaticn function. instead of the basic functiln, i.e., our

i model provides us with a unique maximum likelih-cod estimate for

every possible response p.attern under the model. i- the item

response information f-mctio is positive, or ais.nes zero for,

at most, an enumerable number of points of 0 ;,Iti respect to

A! every item responce category, and so forth. it hai been shown

that both the nnz.ial ogive and the logistic mode-s tatisfy the

- unique maximum condition, and so does Bock's nuitinni _ model,

whereas this is not the case for the family of three-parameter

_ models (cf. Samejima, 1972, 1973b).

The ite= information function, I (e) , of ite, g is

defii:td as the conditional expectation cf the item re:ponse

information function, such that}m
(4.3) I(0)= E I (e) ? (6)x_ °S xi-0 g

Since from (4.2) and (4.3) vre obtain

g

1(..) 1 (6) = E [A (0)12 P X()Xg g 9

we can see that the item information function is alwiys non-negative

for the entire range of 9 , whether the mcdel satisfies the unique

=axi== condition, or not. Thus the use "? the item i.ormation

function, or the test infarmation functioti, at% a mea ,xre of the

accuracy of ability estimation when the three-parameter l-gistic

zc-del is adopLed is meaningleis and deceptive, cs was poit ted out

U
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earlier (Samejima, 1973b).

The analogous basic function and info-.ation functions can

be defined for the multiple-choice item. Thus the basic function, 2

A h(0) , of the alternative h is written as

(4.5) A -- log Ph(() /Ph( )

where P'(0) is the first derivative of the operating characteristic

P (0) of the alternative h with respect to ability 0 . For

A the alternative information function, Ih(), we can wtite

where P,'(0) is the second derivative of the operating

characteristic P (0) of the alternative h with respect to 0

The item information function of the multiple-choice item is the

conditional expectation of the alternative information function,

given 0 , such that

m m
(4.7) I (a)= X 1 h(0P.0= X [Ah(0)] 2 h I)

g h=l h=l

It should be noted that these basic functions and information

functions assume Tr- . complicated forms than the correspondingI functions for the graded item response categories, if we adopt

one of the models for the multiple-choice item proposed in Chapter

3 • Because of the opularity of the three-parameter logistic

model among reseatc : , we shall take Model B of Type I in this

chapter, and observe its basic functions and information functions,

which are gi,,en by (4.5), (4.6) and (4.7), with respect to the
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examples given in Chapter 3 . Comparison wi.Ll be made between

these functions in Model B and those in the logistic model on the

graded response level, which share the same parameters, as we did

in the preceding chapter.

Let P*(0) be such that
h

(4.8) P*(O) [1 + exp{-Da(0-bh} 1

Then we can rewrite (3.4) for the operating characteristic of the

alternative h in the form

(4.9) p (0) [l-exp{-Da(b -b )}]P-(0)fJ-P* Ce)]
hi h+l h h h+l

+ (l/m)[l-P*(O)]
1

From (4.9) we obtain the first and second derivatives of P (0)h

such that

(4.10) P (6) Da[{.-expf-Da(b h+-b h)}P*(0){l-P* +(0)1{l-p*(0)-P* +(0)13

-(1/m)DaP*(O) tl-P*(O)]

and

(4. 11) Pj"(0) D d[Iep-ab b ]{l-P*(O)-P* ()1
h ~ ~~ex[D~h+l bh)1 h h+l

-P*(0)[l-p*(0)] - P* (0)[l-P* ()}
h h h+l l

-(l/m)D 
2 a 2 P*()[1-P*(0)][1-2P*(6)]

It is noted that the last term in each of (4.9), (4.10) and (4.11)

is the term which makes the functton different from the corresponding

function in the logistic model on the graded response level. The
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amount of effect caused by these additional terms on the basic

functions and the information functions for different levels of

e depends upon the parameter bI ,or bh for h I. If

these additional terms do not exist, i.e., in the logistic model

on the graded response level, we can write for the basic functions

and the information functions

(4.12) Ah(O) Da[l-P*(e)-P* (e))

(4.13) 1h(6) = D2a2 [P*(e){l-P*(e)} + P* +I(){l-PI) , i

where h = 0,l,2,...,m , and

m
(4.14) I () = D2a2 Z [1-p*(0)-p* (6)2[P*(O)-P+(*(414 g h=0 h h+1 h h+l

=Figures 4-1 through 4-5 present the basic functions of the

six categories in the logistic model, which are given by (4.12),

and those of the five alternatives in Model B of Type I for the t

multiple-choice item, which were obtained by substituting (4.9)

and (4.10) into (4.5), for the-five hypothetical test items observed

in the preceding chapter. As we can see in the first graph of each

figure, all the six basic functions in the logistic model are strictly

decreasing in e , with the common asymptote, 1.7a , at 0 -co for

h = 2,3,4,5,6 and -l.7a at 6- for h = 1,2,3,4,5 , while for

h = 6 the asymptote at e- is zero and for h = 1 the one at

0-- is zero, respectively (cf. Samejima, 1969). it should also

be noted that for the four intermediate categories, h 2,3,4,5

the basic functions take on zero at e (bh+bh+l)/2
hh
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we find quite a contrasting set of five basic fuiicri.ns in

the second graph of each of the five figures, Figures 4-i tirough

4-5 In fact, none ef these basic functions are strictly

decreasing in 6 but each has a unique modal point, and, e.cept

for h I a unique lc-cal minimu= also. The common asy-prcte

at 0-" for the alternatives excluding the correct answer i..-1.7a,

just as in the logistic model, and the other common asympt.e at

6 --:- , along with the asymptote at e-- for the correct anaser,

is zero, as is expected from (4.91 and (4.10). It is very obvious

from these results that Model B does not satisfy the unique maxLmum [
cndition, and, therefore, a unique maximum likelihood esti'-ate

is nct assured for every possible response pattern. We neeG to

F-H Prsue the characteristics of this model further and find out sone

pra-crical solution for this problem, therefore, as was done for

am the three-parameter logistic model (SaneJima, 1973b).

We notice that these basic functions are practically :Aen:ical

with the corresponding curves in the logistic model, for certain L

intervals of higher ability. Neeeless to say, it is desirable if

these intervals start from relatively lower levels of ability 4.6

is-, is obvious C*.-=-- ne lower endpoint of such an interval depends

upon th-e para cer b, . which is indicated by an arrow in each

graph f Model B . We c&n also observe that there is a tendency I

that this lower endpoint Gf the interval is higher for an item

with a high discrimrination parameter.

Figures 4-6 and L 7 present the alternative information ii

functions in the logis:ic =-del, and the coriespouding alternative

Np

--- . . .. ._.. . ._. ._ -.-
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information functions in Model B, in the upper and lower parts,

respectively, for items 1 and 2 . Among each of the two sets

of six and five curves for the alternative information functions,

we find the item information function, which is drawn by a thicker,

dashed line. As was pointed out earlier, in the logistic model,

all the six alternative information functions are positive for

"I the entire range of 0 , while the same is not true for the five

alternative information functions in Model B. This result was

expected from the result for the basic functions, which were

observed earlier in this chapter. It has also been pointed out

earlier in this chapter that the item information function always

assumes non-negative values for the entire range of 0 , regardless

of the behavior of the alternative information functions, and this

is exemplified in these two figures.

The usefulness of the item information function has been

emphasized earlier (Samejima, 1977a), especially in connection with

the maximum likelihood estimation of the examinee's ability. It

should be noted, however, that the blind use of the item information

function, or the test information function, is harmful, when the

item response information functions, or the alternative information

functions, are not always non-negative. This is exemplified in

the criticism related with the three-parameter logistic model

(Samejima, 1973b). With models of highercomplexities, like Model

B, care should be taken in finding OLt the limitation in using

the item information function.
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As the logical consequence of the ohservations made earlier [
for the basic functions, we find that for a certain interval of 6

which covers higher levels, the item information function in Model B

is practically identical with the corresponding item information

function in the logistic model. We can see in Figure 4-6 that

this interval is approximately (0.4, -) for item 1, and in Figure

4-7 that it is approximately (0.8, -) for item 2 It is also

noted that for these intervals each alternative information function

is practically identical with the counterpart in the logistic model,

the fact which indicates that the effect of noises caused by random

guessing is negligibly small in these intervals, and, therefore,

we can expect that the accuracy of ability estimation is as high as

in the logistic model in these intervals of 0

Because of the impossibility of presenting the twoi ii

corresponding graphs of the logistic model and of Model B in one

figure for the other three test items, the alternative information

functions and the item information function in the logistic model

for items 3, 4 and 5 are presented in Figures 4-8 through 4-11, FR"
and those in Model B are shown in Figures 4-12 through 4-14

In each figure for Model B, the value of the parameter b is

pointed out by an arrow. We can see that the difference between

the two sets of alternative information functions is enhanced, .

as the discrimination parameter, a , becomes greater.

As an additional information, the basic ftunctions of four

hypothetical, binary items following the logistic model and those

in the three-parameter logistic model are presentel in Appendix II,

IN
Lie'
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as Figures A-2-1 and A-2-2, with the discrimination parameters

a = 1.00, 1.50, 2.00 and 2.50, respectively, arid the common set
g

of the difficulty parameter and the guessing parameter, b 0.00

and c = 0.20 . If we compare them with those results of Model B,

;w it is obvious that we should expect a substantially different

outcome resulting from the analysis of data following Model B,

- from the one obtained by adopting the three-parameter logistic model.I

S1

NI

N-i

m I:
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V Qualities That Distinguisi Good Test Items from Bad Ones

Here we stop and thin, :- the qualities that make test items

ii good ones, and how they are ?elated with mental test theory. First

4 of all, there is no question .hat: good test items are those which

possess both valid contents ard predictability, whose relative

weights depend upon the testin:, purposes and the complexities nf

performances involved. Saconc y, good test items are informative

items, in the sense that they provLde us with an accurate

rj discrimination of individuals w'ch respect to the ability measured.

This second major point is clos( 1,I related wich mental test theory,

and it is the theorist's contribu ioR that makes it possible to

extract valuable information frou. the test result, and to estimate

the individual's ability efficient'hy. In so doirg, however,

essential considerations resultin. from theory must be understood

by the test constructors, and tak, n into account in the early stage

of test development.

There is no doubt that one .if the strongest uegative factors

involved in the multiple-choice it.m i: the noise caused by random

guessing. If the examinee's behavLor follows the knowledge or

random guessing principle and the tl rec=-parameter normal ogive,

or logistic, model, for example, the m ltiple-choice item is nothing

but a "blurred" image of the free-re,ponne item, with larger errors

of ability estimation especially on "cwer levels of ability. This

is still the case when we make bett-r use of the multiple-choice

item so that it is no longer a poor s.:bstitute for the free-response

item, but is a type of test item whic! has a high potential for
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being highly informative. We can say, therefore, that good

Multiple-choice irems are those which have little room for noisesIto c-itaminate the meaning of correct answers.
We have seen in Chapter 3 that, if the examinee's bahavicrI;follows, say, Model A of Type I for the wmultiple-choice item. then

u nder certain conditions the operating characteristic af the

correct answer is practically the same as that of the normal ogive

model on the g:aded response level, which includes no random guessing

i 'effect, except for the "tail" which lies on lower levels of ability.

We notice that this situation is materialized when the discriminationN!=
parameter, a , is high, and the first difficulty parameter. bI , is

g

E substantially lower compared with the 1--th difficidty parameter,

b This second condition implies that we need a distractor
m

which attracts examinees wL.ose ability levels are lowest among

other examinees of tI' group in which we are interested. In su(h

a case, ability estimation is as efficient as the one provided by

a free-response item, and with additional information given byI , the distractors it can be substantially becter, as far as our

examiee group is concerned. Effort should be put, therefore,I upon finding an answer which does not attract people of high ability,

but is appealing to thos whose ability is lowor.

An interesting, and valuable, by-product of the ahov. effort is

that we can use such a set of multiple-choice it.-s fr investigating

the operating charactertstics of the-! *'w dlstracturs. We -ecall

chat the methods cmd approache" fe: estimating the e'.ating

characteristics without assuming any mp.Vtical forms (cf. Samejiza,
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1977c, 1978a through 1978f) have two comon restrictions, such that: -1

1) we need a set of rest items, or Old T-st, whose oper ing

characteristics are knmo- ; =d 21 the - :_-so information furction of

the Old Test must be -onstant and substantial , . It can be

A -i shoua that the second restriction is n-c. really a restriction, and

we can nake uze of a test whose information function is noc constant.

I(his will be shown and discussed in a separate paper.) The

neces3ity of the Old Test is more restrictive under TSe general

circus-tances. Suppose we hav e a set 2f a reaz_-=bly large numa. I
o _ltiple-choicz. ites. whbazh are well construc te and f. r..-n which

contains a good, i " distractrr, sc that the operating

characterisqics of the cet-rect "aswers are praczically the same as

those without the effect of noises caused by random guessing, for

the is-els of ability where the examinees in questior are locat-Z.

We score each of these items as a binary irez, and aahr- the binary
response pattern for each exa-inee These response -xez. canI be used as the substitutes for the rer.p~nse patterns bated on the

-!d Test:. -d -h- =axi=z ]igelihcod est'-a-e of each exzalnee's

aL!lity can be cbcained. Then we divide the total group of examinees

into m :;ubg, ips, in accerdance -ith tbc zr alternative salecticn

c-f t.:e spec..fIc item. Tr. :iperating .:haractertRtic of each

distraczor _an be estl-atd by using tk.. set of axira likelihod

esti=ate5 obtalr.- # :om the binary reipoase pazterns in one of the

combinatiz~n of etho-d and approach for estimating the npeatinc.

zharacteristics. We need only one set of test ice s, th--_fre.

instead of two, in estimating the operating c=. rcceristics of the

IL
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distractors.

Another important consideration in the effort of constructing

good test items is that we select alternatives for each item in such

a way that the resulting random guessing by examinees occurs only

when they have no idea about the correct answer. We recall that

this is one of the essential parts of our rationale behind the family

of models for the multiple-choice item, which is proposed in this

paper. We notice that each item has its own set of possible answers,

or answer space. For the purpose of illustration, suppose that our

question is 3 + 5 = ?. In this example, it is highly unlikely

that the examinee conceives of "house" as the answer. The same is

& true with any other words, or numbers such as 3.14159, -27, 128915,

604/917 , etc., or even integers like 300, 1,023, etc. Thus we

can assume there is some common answer space for most of the

individuals who have a possibility of taking the test in question.

For this specific item, this common answer space may be the set of

all the positive integers which do not exceed 19 . Suppose that

our selection of the alternatives for this test item is 7, 10, 6

and 12 , in addition to the correct answer, 8 If an examinee

is convinced that the correct answer is 9 , then he will be confused

because he cannot find his answer among the alternatives, and,

because of his confusion, he may end up with selecting one of the five

alternatives randomly. In this example, the examinee does have some

clear idea about the correct answer to the question, and he should not

be categorized into the lowest item score group, i.e., the "no idea

at all." If we do, the principle behind the family of models will
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be violated, ard the application of one of the models in the family

will produce nothing but artifacts, which are a "distorted image" of L

the psychological reality.

The above example illustrates the importance of the selection

of alternatives for the multiple-choice item. We must put our effort,

therefore, upon selecting a set of alternatives in such a way that

they can be distractors which attract separate groups of examinees

whose ability levels are centered into successively arranged

subintervals of ability. This is rather difficult to realize for

numerical items like the one exemplified in a previous paragraph,

but is less difficult for, say, verbal items. Considering that

the scoring of free-response, numerical items is, in general, muchIeasier and the multiple-choice item is not needed as much in this
area, this fact is not a serious obstacle.

Thus we have seen that one of the criteria for good multiple-

choice items is that they possess distractors which most strongly

appeal to the separatu groups of examinees whose abilities are

located at different subintervals of the ability continuum and,

together with the one for the correct answer, they cover a certain

interval of ability exhaustively. Furthermore, the lowest of such

subintervals of atility which is essentially attracted by one
=I

distractor must be substantially lower in comparison with the

corresponding subinterval for the correct answer, so tat the

operating characteristic of the correct answer is "untouched" by

the effect of noises caused by random guessing.

I

L7
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One logical consequence of developing such good multiple-

choice items is that we can use the items for tailored testing,

and the selection of an alternative for a specific item provides

us with a good way of brazching examinees. It can easily be

seen that good multiple-choice items, which were discussed in

the preceding paragraph, are efficient items for such a branching in

tailored testi-ig.

The discussion developed in the present chapter will become

-A more meaningful and productive, if it is extended to include real

data. This part of research will be conducted in the near future.

4

S1

-= I
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VI Discussion and Conclusions

A new family of models for the multiple-choice item, whichI includes Models A, B and C of Type I, was proposed. The basic

I function of the alternative, and the alternative information

I function, are discussed mainly in Model 3, which is closely related

*A with the logistic model, in addition to the operating characteristic

of the alternative. Qualities which distinguish good multiple-

choice items from bad ones were discussed, in the light of the

Jnew familj of models.

The author believes that this family of models explains

-R the psychological reality much better than any other model

] built for the multiple-choice item. Further investigation of

the characteristics of each model of Type I is essential, however,

since the present paper is just the beginning and various

considerations should be made before we can make full use of

the model and of multiple-choice items. Among others, we need

to pursue the limitation and restriction which should be put upon

the use of the item information function as the measure of accuracy

in ability estimation, because of the complexities of the models

in this family.

The traditional use of the three-parameter logistic model

I for the multiple-choice item must be terminated, unless someone

can present a strong theoretical support. Empirical support,

such as the one given by Lord (Lord, 1970) cannot be strong

erough, since we can conceive of many other mathematical forms

that will fit the data just as well. It has been reported by

I
LA
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many researchers (e.g., Lord, 1968) that the estimated guessing

parameter, cg is less than the reciprocal of the number of

alternatives. The parameter is meaningful only when the rationale

behind the three-parameter logistic model is acceptable, and the

above fact itself disproves the rationaie as far as these data are

Sconcerned.

In relation with the above fact, it should be emphasized

that researchers engage themselves in model validation whenever

j they use any models. The blind use of mathematical models will

create nothing but disaster, and will hinder the progress of

science.

An emphasis should also be put upon the scientific attitude

of perceiving the object as it is. Although the characteristic

of the multiple-choice item as a substitute for the free-response

item is only a part of its nature, most researchers have been

blind enough to ignore the information given by distractors,

which the free-response item is not able to provide.

It is interesting to note that, in the history of multiple-

choice tests, test constructors have more or less depended upon

their intuition and included distractors in the set of alternatives

in their effort of developing good test items, while data analysts

have completely ignored tne information which can be obtained

from the distractors, by depending upon the three-parameter logistic,

or normal ogive, model. This contradiction caused by the two

different attitudes of two different groups of people has had an

Snfortunate, negative effect on the progress of this area of science,
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and, evidently, the blame should be put upon the data analysts.

We must say, therefore, that researchers are indebted to the test

1constructors who have produced good multiple-choice items, and

1 they should make up for the "lost time" by trying hard to change

their orientation. For this purpose, the family of models

presented in this paper may serve well, taking the place that

-i three-parameter models have occupied for so long. It may change

the direction of tailored testing drastically, for we can use

the information given by distractors for branching the examinees,

I in the way that already realized by Shiba without depending upon

i the present family of models (cf. Samejima, 1980).

'1

I ,
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