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20. Abstract (cont'd)

characterize the recoverable material contained in the Navy
waste stream and to compile information on how these material
are handled at typical Navy installations. The work was con-
centrated in two areas: compiling and analyzing available data
about Navy solid waste composition and generation, and develop-
ing a set of realistic descriptions of typical Navy solid waste
handling practices. Ay

For waste composition and generator/rate, data available
from the NACWIS data base, including R4 surveys conducted under
the direction of the Naval Environmental Support Office (NESO),
were compiled and analyzed. Navy facilities were listed in
classes according to the amount of waste.

A simplified technique was examined ~\éatimating quanti-
ties of the various recoverable resources generated by a Navy
installation. This technique was tested against data obtained
from the R4 surveys mentioned above. The test was aimed at
evaluating this relatively low-cost technique for possible use
in augmenting Navy solid waste data to enable adequate field
planning, selection, and preliminary sizing of Navy resource
recovery systems. The technique requires a series of field
observations of the volumes of waste generated and the waste's
origin to estimate weight and composition. Once the bulk
densities are thus derived, a few periodic volume observations
will establish trends and cycles.

Existing information concerning current Navz practices for
handling its solid waste was also derived from R* survey results
obtained by the Navy. The information includes At indication of
the type of personnel involved in the collection, the tvype of
disposal methods used, useful life of landfill sites; and
whether the landfill is on Navy property. The format in which
the data are compiled was intended to enable the establishment

of the number of Naval installations in each class.

This report also includes a brief analysis of how Navy and
all other landfills will be affected by RCRA and the Safe Drink-
ing Water Act (SDWA).
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I SUMMARY

Opportunities to recover resources from solid waste at Naval instal-
lations have been analyzed in a research project that SRI International
(SRI1) conducted for the U,S, Navy Civil Engineering Laboratory. SRI's
research under this project is reported here; it addresses concepts of
recovering energy from solid waste by utilizing naval facility energy
conversion systems (i.e., its steam plants) as principal building blocks

of candidate solid waste/resource recovery systems at Navy installations.

The Navy's steam plants were first characterired in terms relevant
to firing or cofiring of waste derived fuels (WDF); they were then
assigned to categories suitable for subsequent treatment as optional
components in cost and effectiveness analyses of solid waste/resource

recovery systems.

For this study, the steam plants and their boilers were classified
in a simple, eight-class scheme. Size (designed heat input capacity,
10° Btu/hr) and type of primary fuel are the basic parameters of the
classes. Four size classes and two types of primary fuel burning capa-
bilities (coal, noncoal) were selected, and distributions of plants

*
planned for 1985 were plotted for each of the eight classes.

To relate the steam plants' capabilities to burning WDF, four alterna-
tive means for utilizing WDF--adding incinerators, replacing boilers,
modifying existing boilers, and making hybrid conversions--were considered
for each class. Incineration and modification of existing boilers were
emphasized. These alternatives appeared to be the most feasible ones for

near-term implementation and were therefore central to the Navy's current

*Fuel type capability classes other than "coal' and 'noncoal' may be
more useful. Suggestions made after this report was completed include
“coal," "noncoal,” and "noncoal but readily convertible" or "solid fuel
capable" and "other" as classes. These classifications are being in-
vestigated in follow-on work,
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interests. Problems encountered, system modifications required, and
costs associated with the alternatives in the classes were defined as

clearly as the accuracy of the available data would allow.
The major conclusions of this portion of the project are:
e Although it is technically feasible to adapt Navy energy con-

vergsion systems to fire WDF in one or more of its forms, the
optimal form selected should be a site-specific total system,

o Near- to intermediate-term programs should probably continue
to give first consideration to waterwall incinerators and to
the cofiring of solid WDF in coal-capable plants because these
options are the ones most completely developed and documented.

e Package incinerators and conversion of oil burning plants to
fire a fluff form of solid waste fuel may be the options with
the greatest potential for the intermediate term because
waterwalls would be uneconomical in many small plants and be-
cauge the majority of medium-sized oil-burning plants will
not be converted to burn coal.

¢ Pyrolytic processes to produce gaseous and liquid fuels have
not been sufficiently developed as yet to be specified for

| commercial operation. However, these forms of WDF have wide-
i spread potential applicability. If they (liquids in particu-
lar) become available, they could become the most cost-effective
alternatives; using them would minimize the necessary modifica-
tions of existing energy conversion systems, Probably 5 years
or more of development and testing will be needed before the
future of pyrolysis is clear.

This volume also offers suggestions for the RDT&E cited below to

develop data related to specific problems that were identified during

the research:

e A review of Navy solid waste components that could emit sig-
nificant quantities of noncriteria air pollutants during
combustion

* A preliminary technical/economic evaluation of a fluidized bed ;
combustor preceded only by a trommel and shredder for solid
waste combustion at Naval installations (perhaps a part of the
DOD/DOE Great Lakes Training Station experiment)

e A study of the operating characteristics, performance, and
investment and operating costs for particulate control de-
vices for small eolid waste combustion units (20 to 200
ton/day)

o A study of the costs of controlling nuisance odor problems at
resource recovery plants by scrubbing building ventilation
system exhaust

_ o o




A study of possible design improvements for shop-fabricated
incinerators to achieve more complete combustion of fixed
carbon in ash and to achieve better process control

A continuing review and evaluation of developments in small-
scale solid waste conversion units., (Auger bed incinerator
development is a possible subject to be included, as are up-
dates on gasification and pyrolysis units, Identifying
European developments that employ mechanical grate units is
another possible topic.)

A preliminary technical/economic evaluation of the O'Connor
rotary combustor,

The Navy is likely to encounter these isgsues in implementing resource

recovery from solid waste,




IT1 INTRODUCTION

A, The Problem

Operating costs at Naval shore activities have increased dramatically
since 1973, largely because the cost of imported petroleum has quadrupled.
In FY.1973, Naval shore activity energy costs were approximately $173
million;* estimated FY 1978 energy costs at the same activities were
approximately $500 million, despite a 20% reduction in energy use by the
activities during the same 5-year period., The need to halt and, if
possible, reverse the cost trend in the energy bill is obvious. Conse-
quently, the Navy is studying a number of options that may help reduce
energy costs at its shore activities. One option involves purchasing
and substituting low-cost (possibly less than $1.00/106 Btu) waste de-
rived fuels (WDF) for significantly higher cost primary fuels (i.e.,

oil, gas, coal).

Another energy-reléted option that may help reduce shore activity
operating costs ig8 Navy recovery of fuels from its own solid wastes.
If the credits for the WDF produced and for reduction in the disposal
(landfill) costs outweigh the costs of producing the WDF and modifying
the existing systems to burn the WDF, this option can be quite attractive.
However, the break-even costs in this second option for producing WDF may
be critically sensitive to landfill cost projections and to other site-
specific factors such as the costs of air and water pollution abatement

measures, '

At present, deciding how and where the implementation of either or
both of these options might be cost-effective is both difficult and risky.
In only a few instances has implementing either of the options proved to

be cost-effective, Furthermore, neither the successes nor the fallures

*
Navy Energy R&D Plan, Vol. II (1977),




have been gufficiently analyzed in technical and economic terms. This

is particularly true of operational and maintenance (0&M) factors for
small- to medium-scale systems, the sizes appropriate for most Navy shore
activities,

A significant number of feasibility studies* have been performed by
numerous engineering firms for U.S. municipalities and large utilities
to evaluate the potential for processing municipal solid wastes into WDF
and for utilizing the fuels under specified large-scale conditions.
These studies routinely use estimates of full-scale operational data
extrapolated from pilot system cost and performance data. Howev«., the
accuracy of these estimates has been disappointing. To compound che
problem, adequate data have been available on the pilot systems of only
a few of the technically feasible alternatives, thereby limiting the

number of alternatives that have been given serious consideration.

The Navy has also had similar site-specific studies performed for
a number of its larger activities, Many of the studies for the Navy
(using essentially the municipal system data bases) have indicated that
processing an activity's solid waste into fuel and using this fuel in
the activity's boller plants would be uneconomical because the plants
are small and the process is capital-intensive. On the other hand,
studies of some Navy activitiesT have concluded that purchasing WDF and
cofiring them with primary fuels would be cost-effective, In either
case, typical conditions and system requirements at Navy installations
that could contribute to making a particular processing technique or WDF
utilization system cost-effective have not been set forth for the broad
spectrum of Navy activities. Apart from rough scale-of-operation data,
little or no cost or effectiveness sensitivity information is available

to guide system designers or decision makers.

*
SRI project staff members have reviewed more than 30 such reports (see
Chapter VII, Bibliography).

fCharleston Naval Shipyard and Philadelphia Naval Shipyard, for example,




The objective of the work reported here, therefore, is to assemble
available energy conversion system/WDF utilization data, analyze them
for relevance to Navy applications, and portray the results in terms
suited to subsequent analyses of total solid waste/resource recovery
systems., Incineration technology and cofiring of WDF with primary fuels
in conventional boilers are covered in detalil, The processing of solid
wastes into WDF is summarized to the extent necessary to describe tech-
nical feasibility and to estimate costs of processing Navy solid wastes
into WDF of various kinds.

B. Previous Related Work and Data Sources

SRI had previously examined ways of estimating the potential for
utilizing WDF in Navy boiler plants at a few selected sites in two brief
studies. Understanding gained during these studies, particularly of the
difficulties in obtaining realistic estimates of costs and performance
of small-scale systems, helped to focus the work reported here. With
this orientation, SRI's project team abstracted data from available solid

waste/resource recovery feasibility studies.

Scope of This Volume and Its Relationship to the Total Project
This volume reports work on:

¢ Characterizing Navy energy conversion systems

e Developing a classification method to indicate the potential
for utilization of WDF of each class

Estimating the number of systems in each class

Assessing the potential for converting systems in each class
to use alternative forms of WDF

Identifying modifications required and technical and logistic
problems anticipated, and estimating costs of implementing WDF
fuel alternatives for each class,
Typical Navy energy conversion systems (boiler plants) and their
operating characteristics are surveyed, and the technical potential ¢l
these plants for using WDF in several forms is assessed, Within the

limitations of data availability, the findings reported here are
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representative of technically feasible energy conversion components (the
WDF utilization subsystem) of total solid waste/resource recovery systems
that the Navy could consider implementing in the next 5 years.

Two special studies were performed as part of the effort covered
herein, The firet, ''Mass Burning of Refuse in Shop Fabricated Incinera-
tors," was performed by SRI staff members, with contributions from project
consultants, and is included as an appendix to this report, The second,
"Waste Fuels Utilization in Existing U.S. Naval Base Boilers," was per-
formed by Gilbert/Commonwealth under subcontract to SRI and is reported

separately,

These special studies concern two of the most important near-term
options--installation of package incinerators and modification of ex-
isting boiler plants, Information from these special studies is discussed
in Chapters IV and V of this volume,
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TI1 CHARACTERTZATION OF NAVY SHORE ACTIVITY ENERCY CONVERSION
SYSTEMS AND DEVELOPMENT OF A CLASSIFICATION METHOD

In prior roaearch* under other Navy solid waste contracta, SR1's
firat characterirzations of the boilers and boiler plants operating at the
Navy's facilities were only partially completed, General informatiom
about the boilers (e.g., size, activity and building locationa, fuel

types, average fuel throughput, boiler tvpes, and manufactureras) was ob-

tained for approximately 2,000 Navy boilersa., Site-apecific featuves to

be considered in analyzing the technical and economic feasibility of co-
firing WDOF were also identified. Information of this kind, avaflable to
SRI's study team at the outset of this project, provided a good back-
ground for completing the task of chavacterizing Navy energy conversion
systems and for developing a classification scheme suited to evaluating
"typical” Navv energy conversion plants as components of solid waste/
resource recovery svstems, The approach used to chavacterize Navy boflers
in this study {s described below, tollowed by an explanation of how a

classification method to facilitate analvais was developed,

A, General Characteristics

l. Size

A primary chavacteristic of Navy boilers and boiler plants that must
be accounted for in a classification scheme are their sizes in terma of
heat input capacities or steam output capabilities, Many other teatuves,
such as use, type, pollution control requirements, and possible modifica- ]

tions, correlate roughly with size. The obvious veason for assigning

+

[
*SRI International, "A Pilot Study of the Potential for Navy Utilization I
of Solid Waste-Derived Fuels,” Contract NOOO14-76-C-0351 (June 1978) 1,
and "Potential of Waste-Derived Fuels to Offset Foasil Fuel Consumption
at Selected Naval Facilitiesa,'" Contract N62583/78-M-R222, Technical '
Memorandum (April 1978),




such importance to size is that boiler technology for large and smatl
boilers has advanced along different lines. Of course, no absolute
generalizations based on size can be made, In general, however, boilers
with heat input capacity of 100 X 106 Btu/hr or greater are usually
custom-designed, field-erected units, By contrast, those with capacities
of less than 20 X lO6 Btu/hr are more than likely shop-fabricated and of
relatively unsophisticated design. Boilers ﬁith even smaller capacities
are probably simple fire tube designs ordered from catalogs and intended
for steam heating of spaces (saturated steam) rather than for generating

process quality steam ({.e., high-pressure, superhcated steam),

The Navy's major boiler plants (i.e., the bvilers and all of their
support equlpmeﬁt at large activities) are usually designed around mul-
tiple boilers of common or similar design and size to facilitate O&M,
Total boiler capacity of these plants {s usually high enough that the
peak expected steam load can be produced by about half the boilers oper-
ating at full design capacity, As a rule, significant amounts of excess
boiler capacity arc found at plants where the process steam load is high

and steady, and where cogeneration 1s practiced.

Activities requiring large steam plants often have central steam
distribution systems, obviating multiple small or medium boilers dis-
tributed throughout the activity, Shipvards and air stations typically
have installations of this type. On the other hand, activities with
little or no demand for process heat (e.g., training atations) are likely
to have many smaller boilers, each serving a barracks, a classroom, a

galley, and so on.

The size (input in 10b Btu/hr) distribution of Navy boilers is shown
in Figure 1.

2. Fuel Type

Another characteristic certain to be {mportant in a classification
scheme for boilers and boiler plants is the type or typea of fuels they
can burn, Fuel type is {mportant for many reasons., The deaigns of the

fire box, the heat exchanger, and all the auxiliaries of the boiler take

10
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fuel characteristics into consideration, The physical and chemical
nature of the fuel will determine the handling cequiiements, as well as
the burning and clean-up requirements, In fact, the efficfency (thermo-
dvnamic and economic) of a botler {s very much a functiom of how well the
design of the boiler and its fuel are matched, (The Gilbert/Commonwealth
report provides a detafled account of the {mportance of boiler and fuel

compatibility.)

The typees of fuels currently used by Navy shore facilities as pri-
mary fuels can be penerally c¢lassified bv theivr phveaical state as solids,
liquida, or gases. Numerous fuels in each of thesc three states are
available to the Navy (e.g., svolid fuela fnclude coals, woods, and peat;
liquid fuels include petroleum distillates and vesiduals; gases {nclude
natural gas, LPG, and propane). Fach has somewhat different phvaical,
chemical, or burning characteristica. Theoretically, optimim performance
is achieved when the charactevistics of a sinple specific fuel determine
the design of a plant. In practice, however, a plant must be able to
accommodate variations {n the fuel. Thia is particularly true of Navy
plants, which must meet the requirements of the Navy for opevational

flexibility.

Older, large Navy boflers were urually designed to burn coal, How-
ever, these coal-fired planta have almost unfversally been modified to
burn ofl and/or gas and can no longey burn coval,  Some of them will be
converted, with various depreea of difficulty and at significant coat,
back to coal. Plants originally designed to burn only ofl or only gax
can, without major difficulty, usually be modified to burn efther fuel
interchangeably, and all the larger Navy boilers have been so modified.
Unfortunately, plants originatly designed to five oil or gas ave not av

readily modified to burn coal or other solid fuels,

To examine the role that the '"type of fuel" characteviatic might
play {n classifying Navy boilers, we firat examined the distribution of
these boilers by the tvpe of fuel being burned at present (see Figure 2),
Oll-burning boilers dominate, We knew, however, of plana and divectives

that would change these diatributions (e.x., Navy plana to reconvert a




.
| «
! N
3 o ¥ |
R | o
" i ) * i
- .
S |2
: o | s
3: ‘ ,
1 |
g ; I | ‘ ] og:.‘
;I ! ! ‘ | ‘ i ao
|

13
BITUMINOUS
COAL
BOILERS BY FUEL

-

ng
¥




significant number of its previous coal boilers back to coal and OSD
directives that require all newly constructed boilers 100 x 106 Btu/hr
or larger to be coal-capable). The effects of converting the 20 plants
given in Table 1 on the distributions of Figure 2 are shown {n Figure 3,
Although these boilers are few, their size and the relative versatility
of coal-capable plants for burning a variety of fuels without major
modifications make them important. In fact, coal-burning capability may
be of such importance that characterizing Navy plants as "coal" or 'non-
coal" might suit our purpose. A two-category representation of fuel
type, combined with three or four size categories and perhaps categories

based on a few other boiler plant characteristics might be adequate,

3. Fuel Throughput

In our earlier work, it appeared that the quantity of fuel of a
given heat value fired in a given time (e.g., 1b/hr) to meet the steam
demand and also the heat release rate (e.g., 10 Btu per lb/min) needed to
meet a varying demand could importantly influence the form, as well as
the amount, of WDF a plant could utilize. In other words, because the
heat content of the primary fuel, {ts volatility, and the way in which
it will be introduced into the furnace were all taken into account in
designing the boiler, these same features of the cofired fﬁels should be
important in determining WDF cofiring capability. Fuels with radically
different characteristics would have different limits in the rates (mini-
oum as well as maximum) at which they could be properly consumed in a
plant of a given design, and they would adapt differently to fluctuating
demands. (The relationship between primary and secondary fuel heating
values, rates of firing, and matching of boiler characteristics is dis-

cussed in some detail in the Gilbert/Commonwealth report.)

Whether the typical amounts of fuel throughput, as a characteristic,
would need to be included in the classification was unclear. We had
observed in our earlier studies that the total annual throughput and the
design capacity of a normally operated boiler could be related with a
simple function, at least as a first approximation. But if throughput

was to be indicated on a quarterly, monthly, daily, or hourly basis (as

14




Table 1

NAVY COAL BURNING CAPABILITIES AND CONVERSIONS: FY 1974-1985

Burning Coal at Present (1978)
MCB Camp Lejeune
NSY Charleston
Subbase Bangor

*
Under Construction (1978)
MCAS Cherry Point
PWC Norfolk

(Five activities above will burn coal by 1980)
Boilers in FY 80 MILCON Program

106 Btu/hr Year
1. PWC Norfolk 865
2. NAB Little Creek 270
3. NOS Indian Head 495 1980
4. MCEDC Quantico 301
5. NAS Brunswick 254
6. NSY Mare Island 125
7. PWC Great Lakes 500
8. NSY Norfolk 720 1981
9., NAS Memphis 300
10, Newport Bldg. 86 290
Newport Bldg. 7 150 1982
11. MCRD Parris Island 200
12, Subase New London 375 1982
13, PWC Pensacola 250
14, NSY Portsmouth N, H, 360 1984
15. NAS Jacksonville 200
Total 5,655

*If a boiler is to have input capacity of 100 X 106 Btu/hr
(400 bbl/day) or larger, it must be constructed as a coal
burner, If low-sulfur coal is not available, the unit
will be constructed to fire both coal and fuel oil.

1f a boiler is to be between 50 X 105 Btu/hr (200 bbl/day)
and 100 x 10% Btu/hr (400 bbl/day), it is to be constructed
to burn coal. If low-sulfur coal is not available, the unit
can be constructed to burn fuel oil but must be convertible
to coal at a later date,

Source: Information obtained from NAVFAC 102 (March 1978);
DOD directives regarding new or replacement boilers,
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might be the case for determining WDF utilization potential), relating
throughput and boiler capacity became much more complicated. For ex-
ample, Figure 4 (prepared from NAPSIS quarterly estimates of percentage
of annual throughput) shows seasonal variations for several plants., But
Figure 5 (plotted from monthly consumption data for a single large plant
as reported in DEIS II records) indicates seasonal variations more

strongly.

Only a few activities were examined for monthly profiles of fuel
throughput similar to Figure 5 because of the excessive labor required
to extract the data manually from the fuel consumption records available

at SRI--hard copy computer printouts of DEIS II monthly reports by Major

*

Claimant. (Another SRI project for the Navy sought to facilitate the
analysis of DEIS II reports of Navy energy consumption. When this
computer-managed data file becomes available, a more comprehensive study

of consumption versus capacity should be performed.)

We decided that, although it was undoubtedly important in calculating
cofiring potential and economic data for a given plant, we would not use
fuel throughput as a primary variable in our boiler classification scheme.

6 Btu/hr) was a reasonable substi-

Instead, it appeared that size (in 10
tute; L1f throughput were needed for this study we assumed that the fol-
lowing relationships would suffice:*
s Average monthly throughput ~307 of designed capacity (106
Btu/hr) X 720 hr,

¢ Peak monthly throughput ~50% of designed capacity (106
Btu/hr) X 720 hr.

* Maximum monthly throughput ~400% minimum monthly throughput.

*
Project NEUPAAS (Users' manual for the Navy Energy Usage Profile and
Analysis System) conducted by SRI for OPNAV 413,

TThe reader is cautioned that these relationships result from averaging
data from a sample of five arbitrarily selected plants. The relation-
ships should be reexamined when NEUPAAS is available.
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4, Other Characteristics

Descriptive information characterizing Navy boilers, such as boiler
age, manufacturer, type (water tube or fire tube), economizers, super-
heaters, and so forth was examined for possible use in the classification
scheme. However, none of these items appeared to provide direct informa-
tion useful in typifying Navy boilers for this study, and for the time
being, we omitted this level of detail from our classification scheme.
Nonetheless detailed information about Navy boilers can be obtained when

needed from engineering and utility files and routine reports,

B. Site-Related Characteristics

The type of information discussed above includes those kinds that
could be used to characterize the Navy boiler plants, without regard to
regional or local physical site requirements., Several analyses were per-
formed to ascertain whether Navy boilers had well-defined group charac-
teristics in common that were related to regional conditions such as
climate or indigenous fuels, Some evidence was found that small boiler
plants of recent vintage varied by region of the United States (e.g.,
oil was preferred in the North and Northeast, gas in the South and West).
Because only two coal-capable boiler plants were operational, no regional
preference for them could be determined, Proximity to ample supply of
a specific low-cost fuel probably influenced the choice of boiler type
in earlier years. However, with pipelines, railroade, trucks, and barges
conveying fuel to nearly every point in the United States, regional
groupings are probably no longer so important, at least not for plants

in the size range of those the Navy operates,

Local conditions can aictate a number of boiler plant design and
operating factors, Of particular importance are local conditions that
could prevent utilization of WDF, including space limitations, environ-
mental restrictions, lack of a rail trunk line, or lack of feasible truck

access to the boiler plant site. These problems, as well as numerous

20
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institutional obstacles, are reported* to have resulted iﬁ the cancella-
tion of several resource recovery/energy conservation projects, Although
factors such as these can constrain or eliminate options that might

; otherwise be feasible, in this broad characterization of boilers and
boiler plants we found no adequate way of accounting for uniquely local

' We therefore

factors as they related to boller plants as ''types.’'
omitted local influences from our classification scheme. These factors
will, however, have to be taken into account in the final stages of the

analyses,

C. Development of a Classification Method for Navy Energy
Conversion Systems

The characterization effort was the first step in sorting out infor-

mation from detailed day-by-day records on individual boilers to cate-

gorize attributes of the Navy's energy conversion system. It was then
necessary to select those characteristics that most effectively (and
efficiently, insofar as data management is concerned) represent the
technical and economic features of these energy conversion elements in

the analyses of solid waste/resource recovery systems, To make these
selections, we needed to know, at least roughly, which characteristics

had to be studied directly, which could be represented by other attributes
of the total system, and which could be omitted. The procedure used to

select the characteristics included in the classification scheme is dis-

cussed below.

We first developed an overall systems analysis structure (see Figure
6) to indicate conceptually what information should result from our
analysis. From this structure, it became apparent that the analysis

should seek to compare different types of existing total solid waste sys-

tems with technically feasible alternative solid waste/resource recovery i

systems--in particular alternatives that provide for energy recovery.

*

Gordian Associates, Inc., "Overcoming Institutional Barriers to Solid
Waste Utilization as an Energy Source,'" Final Report prepared for U.,S,
Department of Energy (November 1977),
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The main yardsticks chosen for the comparisons were economics, envirom-

mental aspects, and manpower.

For classification purposes, the key words were "different types of
existing systems' and "alternative systems.” We knew that the Navv's
existing energy conversion systems would all be different {f enough de-
tails were considered, From previous studies, we also knew that four
technically feasible system alternatives were of interest: heat recovery
{ncinerators, new replacement boflers, boflers moditied to burn WDF in
one or more torms, and hybrid waste-to-fuel-to-boiler conversion (e ..,
plant conversions employing pyrolysis), It was necessavy to establish
a classification typology that contatned the essential functiomal chavac-

teriatics of both the exiating systems and the alternative svatems,

Finally, note that the energy conversfon classificatio: scheme was
to contribute to the representation of an entire soltd waste/rescurce
recovery system; a classification system for the energy conversfon sub-
system that did not fit in the total system typology would not be uaef:!
to this project. Compatibility between the classification scheme for
the energy conversion components and other system components required
close cooperation among project team members in developing the scenavioe

and the candidate systems.

The classification scheme for the cnergy conversion system that
ovolved was keyed to two characteristics--"size of activity" and "type
of fuel." To measure "size of activity" i{n terms relevant to this
project, two criteria were used: (1) the quantity of solid waste gener-
ated, and (2) the steam load or fuel demand of the energy system, Be-
cause we were principally interested insofar as solid waste/resource
recovery was concerned in WDF, we elected to use the solid waste gencra-
tlon rate as a single indicator of "size." The solid waste generation
daily rates selected were 0-20 T/DS.* 21-50 T/DS' 51-100 T/DS’ and >101
T/Ds; it appeared that these classes adequately covered the Navy activi-

ties individually or grouped in complexes.

"
T/Dg = ton/day for a 5-day week.

A "complex" as used here is a major Navy activity (serving as host),
plus tenant activities and smaller nearby dependent activities,

23

i

e e v bt Sotne e e
o .




Convert{ng solid waste fndicators (T/DS\ into fuel demand ajve fn-
dicatove \lﬂ“ Btu/he) for use with energy conversion plants and boilevs
tequired the ume of fudirect rvelatiouships. We had obhaervved that plant
solld waste generation vate and bofler plant size were probably related,
as shown {n Figure 7, and also that bofler plant sirze and average monthly
plant fuel demand were positively corvelated (mee Figure 5), On the
basis of these velationships, we concluded that, as a {{ret approxima-
tion for use {n thie atudy, the fuel demand to solid waste relationship

could be expreased byv:

Plant fuel demand (10¢ Btu/hy)
Plant aolid waste genevation rvate (1/Dg

y -~ 3

Using this velatiouship, plant fuel demand clasmens of <80 N 10" Rtu/hr,
81-200 N 106 Btu/he, 2001-400 % 100 Bru/hr, and 401 X lﬂh Btu/hr weve
eatablished to correspond with the rolid waste clanses aelected (<20 T/D

21-50 T/DS. S1-100 T/Ds. and >101 T/DS‘.

5;

In addition to the fuel demand/avlid waste relationship, the aizes
of boflers vepresented by the aclid waste classes in the classification
scheme wetre of interest becavme a boilev's size was velated to the possi-
bllity for convertiug {ta fuel. All of the boflers {n each Navy complex
were caided {u clame nizea an: <5 \ 106 Beu/hy, 5-19 % 106 Btu/hr,

20-49 % 10% Beu/hr, 50-99 % 10% Bew/he, 100-149 N 10° Beu/hr, and

149 ) 100 Btu/hr, The distribution of theae clasnes of boflers in

three of the (our clasai{ficat{ion alze categories (f.e., the solid wante
generation vate) {s ahown in Figure 8, Becaume the data {n the ~101 T/DS
category were {naufficient, that category was combined with the 51-100

T/DS clasn to make the ~S0 T/D‘ clase,

The other chavacter{at{c melected fuor the energy conversion clasei-
fication scheme was ""type of (uel' ({.e., the primary fuel (ired),
Recogniging the diffeving potentials of coal-capable bhoileva and other

botlers to use WDF {n varifous forms, we decided that two classes of "tvpe

of fuel” should be tvied--"coal" and "noncoal "

e e
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Combining the size criterion (four classes) and the type of fuel
criterion (two classes) gave an energy conversion system classification

scheme of eight classes (a 4 X 2 scheme),
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IV NAVY ENERGY CONVERSION SYSTEMS IN CLASSES

Classifying the energy conversion systems by size and by the type
of fuel consumed was a first step in solving the classification problem,
To ascertain whether this scheme was applicable, it was applied to the
Navy's existing energy boilers. The resulting classes were then examined
to determine whether they could be considered the typical building blocks
of future candidate options (i.e., systems typical of those that would be

modified to utilize WDF in one or more forms).

A. Classificagtion of Existing Boilers

Figure 9 indicates the distribution of existing Navy boilers among
scenario classes under size and type-of-fuel consumed classifications.

The preponderance of relatively small, noncoal boilers is significant.

Next, the Navy's coal conversion plans were projected for the ex-
isting boiler inventory, and the resulting distribution was calculated.
Figure 10 shows the results. This figure illustrates how the coal con-

version program focuses on large boilers and large waste generators.

These large coal-firing boilers will certainly be system components for

WDF utilization in one or more candidate systems.

B. Clagsification Scheme and Energy Conversion Options

The boilers classified as shown in Figure 10 are assumed to repre-
sent candidates for modification, augmentation, or replacement, after
which they would represent energy conversion subsystem options in future
solid waste/resource recovery syatems, To analyze the total system, we
needed to select the most technically feasible energy conversion subsystem
options and to include them in the candidate future systems for tomparison
with current, unaltered operations.
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To judge whether the WDF energy conversion subsystem options were
technically feasible, it was first necessary to review the technology
of burning WDF in various forms as a function of boiler sizes and the
form of WDF, as well as transforming the WDF into the fuel suited to a
particular method of burning.

1. Incineration and WDF Preparation

Energy may be recovered from solid waste by mass burning (incinera-
tion) or by processing the waste into various fuels for subsequent burning
in existing boilers. In theory, mass burning can be successful, both
environmentally and insofar as solid waste disposal is concerned, with a
minimum amount of preparation of the raw waste if the incinerator is
properly designed to accept the particular waste., Heat recovery can im-
prove the economics of incineration, Techniques for incineration have
been improving for centuries and are continuing to advance, with in-
creasing emphasis on improving heat recovery and pollution control. Re-
cent studies of ways to improve heat recovery and to gain better control
over air and water pollution have pointed to the desirability of a cer-
tain amount of preprocessing of the raw waste to remove objectional items
and to make the waste more uniform in size and composition. More sophis-
ticated methods of controlling air and feeding, as well as methods of
stirring and ash handling, are also being developed to improve incinerator
operation., The optimal compromise between preparing solid waste for the
incinerator and tailoring the incinerator design to the waste form and
composition has not been found; incineration still appears to be more
art than science, Although relatively small package incinerators are
being tried with various kinds of waste, only one form of incinerator--
the waterwall incinerator--has been widely accepted in the United States
for disposal of mixed solid waste. This type is suitable for large-scale
installations (see Appendix A for a detailed analysis of the state of the

art in incineration),
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2, Conversions of Existing Systems and WDF Preparation

If incinerators were thought capable of providing cost-effective

solutions to all energy recovery from solid waste needs, there would be
little or no interest in developing processes to prepare fuels from the
waste for use in existing (or modified) energy conversion systems. The
motivation behind WDF preparation is to make a fuel from the waste that
is compatible with the boiler and the primary fuels in order to make
maximum use of existing heat recovery equipment, thereby avoiding as

much as possible costly plant rearrangement or duplication of components,

It is technically possible to produce almost any form or kind of
fuel from solid waste, but at present the economics of producing these
fuels is very uncertain., Most of the processes are capital-intensive
and have strong economies of scale. Because one of the purposes of
processing the waste into WDF {s to produce a product readily accepted
as either a substitute or an augmentation fuel, a substantial cost-saving
incentive is required to promote the use of the process, The ultimate
goal in developing waste refining processes is to produce solids, liquids,
and gases compatible with (or resembling) the primarv fuels (i.e., coals,
oils, and gases) conventionally used, and to use the refined waste as
fuel thereby substantially iowering the total system costs. So far this
has proven quite difficult., More refined WDF forms generally perform
better and require less additional support equipment, but they cost sig-
nificantly more per unit of energv. The trade-offs between the degree
of processing and the amount of modification are quite complex because
of interactions among functions in the refining and burning processes,

and the economics of scale for modifications,

The methods developed to date to produce WDF usually involve to dif-
fering degrees the following first-stage processing steps: sire reduc-
tion, removal of inert materfal, and classifications into combustible
and noncombustible fractions. Several forms of what are commonly called

*
"fluff RDF" result. These fluffs can be processed further (second-stage

*
RDF is an acronym for refuse derived fuels, RDF as used here refers to
solid forms of WDF,




processing) by mechanical means into denser solid forms, chemically tnte j

dust solids, or thermally into liquids or gases. However, the physical
and chemical properties of each of these solid, liquid, or gaseous forme I
of WDF can vary widely., One of the requirements in producing WDF {is A
process control to ensure that the end product (produced from a complex,
highly variable raw material) is usable or marketadle, That {s, 1t must
be sufficiently uniform to be substituted for, or cofired with, a con-

ventional fuel.

Isolating unit processes without regard to their intevactions for

the purpose of developing unit process technical or economic data has not
*
been very successful. The controlled testing necessary has not been done,

Capital costs for the unit processes can be obtained from equipment ven-
dors and architects and engineering firms, but estimating operating and
maintenance costs per unit processes with any precision is impossible
because no detailed records vet exist of svstem operations., Common prac-
tice at present is to set total system O&M costs at a percentage of the
total capital cost, This approach was used for developing the incinevator
costs shown in Appendix A and the costs of other alternatives discussed

in Section V.,

*
Midwest Research Institute, "Study of Preprocessing Equipment for Waste- w
to-Energy Systems," prepared for EPA Workshop, New Orleans (8-10 February

1977).
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V  POTENTIAL FOR CONVERTING SYSTEMS IN EACH CLASS TO USE
ALTERNATIVE FORMS OF WASTE DERIVED FUELS

The energy conversion subsvstem classes defined {n the preceding

chapter can be displaved in matrix form, as shown i{n Table 2

-

Table 2

MATRIX OF ENERGY CONVERSION CLASSFS

Type of Fuel (Primary)

Plant Sige 1106 Btu/hr) a. Coal b, Noncoal
1. <80
2. 81-200

3. 201-400

a. >01

The alternative forms of WDF that are constdered feasible to produce

(or purchase) within the next 5 vears are:

Solids--(1) raw; (2) fluff; (3) dust; (4) densified

Liquids--(1) highly oxvgenated pyrolvtic oils: (2) low oxygen
content oils

Gases--(1) low-Btu; (2) medium-Btu; (3) high-Btu.

Current literature on cofiring WDF indicates that cofiring any of
the processed forms of WDF (excluding raw solid waste) with coal {n coal-
capable boilers is technically feasible, regardless of the size of the
boiler., But conversion requirements must also be considered because ex-
tensive additions or modifications may be requived to accommodate some
forms of WDF in a given plant, Navy plants capable of firing coal within
the next 10 years have capacities greater than 200 X 106 Btu/hr.* (of

.
A plant is assumed to have multiple hoilers. Therefore boiler sizes be-
low 100 X 100 Btu/hr were disrcgarded as candidatea tfor coal conversion,
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the 20 plants operating or planned, 8 will have capacities greater than
400 x 106 Btu/hr.) The potential for converting these larger plants to
use WDF is rated as moderate to high, depending on the form of WDF under
congideration, The two smaller coal classes will be deleted because no

plans exist for coal-capable Navy boilers in those classes,.

For noncoal plants, few constraints, i{f any, are foreseen on firing
or cofiring liquid or gaseous WDF in these plants, regardless of their
size. Burning characteristics of low-Btu gases may, however, so decrease
the capacities of smaller plants firing these gases that they could not
meet the peak loads. (Smaller systems usually have less excess capacity
to meet peak loads.) One factor to consider in rating the potentiagl for
converting noncoal boilers to fire liquid WDF is that the smaller plants
are most frequently designed to burn distillate only, whereas the larger
plants may be set up to fire either residual or distillate oils, For
this reason, the potential for firing low-oxygen WDF liquids appears
greater (the method is more universally acceptable and has fewer fuel
heating and pumping problems) than the potential for firing highly oxy-
genated WDF liquids. Nevertheless, the potentials for both are judged
to be high.

Burning solid forms of WDF in noncoal boilers is now undergoing
considerable research., Technical feasibility has been demonstrated at
several large industrial plants that fire fluff and dust, but problems
related to arrangements for ash handling and particulate control can be
difficult and expensive to solve, especlally at smaller plants. The
Gilbert/Commonwealth report contains a case study of a typical medium-
sized, oil-fired plant base loaded on fluff WDF, Simplified conceptual
firing arrangements are presented, and the capital cost estimates appear
to be attractive., The costs of this method are discussed in the next

section and covered in detail in that report.

Judgments concerning the technical feasibility of utilizing various
forms of WDF in the Navy's boiler plants can be entered into the matrix
of classes (Table 2) with the results presented in Table 3.
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Table 3

JUDGMENTAL RATINGS OF WODF POTENTIAL BY ENERGY
CONVERSTON CLASSES

Type of Fuel Primary

Plant Stze (10° Btu/ny) 2. Coal b.  Noncoal

. ~80 N.A. e, (6-3)

2. 80-200 N.A. bty @2)
3. 200-400 G200 [i-12) @) @2 [1-1.7] ©-2,9
b. 400 5-2, 0,9 [1-1,2] @-2,)|G-2,) [1-1, 2] -2,

Key to WDF type:  Solid

S-1, raw; §-2, fluffs; 8-3, dust; S-4, densifiled r
Liguid ]
L-1, highly oxygenated pyrolytic oils; L-2, low oxygen F
content ofls i
i
b

Ganes

G-1, low-Btu; G-2, medium-Btu; G-3, high-Btu

Rating: I ____L high;( 1 moderate,  Peoor and unacceptable ratings

have been omitted,

Table 3 shows that a clear preference exists for the liquid WDF

(pyroils) fn atl classes. This preference results from the rvelatively

e A g — -

high energy density (Btu/ib), apparent case of handling, and velatively

T p———

low ash content of pyroila--all of which contribute to minimizing the
clean-up, blow-down, and pollution-control requirements of the conver-

sfons,

We emphasize that the preference for pyrotls indicated {n Table 3

{e not based on pyroll fuel costs or total system economica of systems
using pyroils, At present, ne processes have been developed that have

!
a reasonable chance of producing pvroil {un the near term at a price '

competitive with projected prices of petroleum, Although {t is potentially

1
!
!
vy 4
{3
l




Attractive, widespread utilisation of liquid WDF will depend on

signifi-
cantly reducing its costs,

In the near to intermediate term, if spec{al
site conditions (e.g., a large number of small oil-fired boilers in a

region with stringent air standards) require an unusual solution
might be attractive in the total solid waste/rescurce recovery a
Pyroils are discussed furcher in the next section,
the Gilbert/Commonwealth report.

s pyroil
ystem,
in Appendix A, and {n

a8
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VI DIFFICULTIES AND COSTS OF IMPLEMENTING ALTERNATIVES

The classification scheme developed for this study tends to mask in-
dividual features of the Navy's boiler plants; each plant, in fact, is
unique in many ways. On the other hand, boilers within the classes we
have defined present common problems, similar modification requirements,
and typical costs as energy conversion alternatives, Knowledge of these
class-related traits should help narrow the field of investigation re-
quired for efficient analyses of candidates in subsequent detailed design
studies for a given class, Such knowledge also enables gross comparisons
among classes to be made for R&D planning purposes. The discussion that
follows, therefore, identifies what is known or can be estimated from
analyzing data from numerous sources and then generalizes the informa-
tion so that it may be applied to the energy systems in the classes we

have selected,

More than 200 articles, papers, and books (see Chapter VII, Bibli-

ography) were screened for relevant technical and economic information

about alternative actual or conceptual resource recovery systems, Data
were abstracted and compiled by the functional segments of a solid waste/
resource recovery system (i.e., by generation, collection, transport,
compaction, size reduction, classification, fuel recovery, energy con-
version, disposal, and marketing). SRI project staff members reviewed
the data in thelr areas of expertise and, when possible, extracted in-
formation from the compiled references that was appropriate to the 'size/

type of fuel consumed' classes selected.

Together with this survey and the literature review, two special
*
studies were performed: (1) mass burning of solid waste with heat re-
covery in shop fabricated incinerators (package incinerators), and (2)

waste fuel utilization by conversion of existing Navy steam plants, These

*
See Appendix A and Gilbert/Commonwealth report.
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two alternatives were of {mmediate interest to the Navy and thus deserved

particular attention,

Informaticn acquired through these two studies was combined with the
information retrieved from the references to form a substa.tial data base
on energy recovery systems and conversion alternatives. The alternatives

considered belonged to four general categories:

. Heat recovery incinerators

¢ New or replacement boilers capable of burning WDF

*» Boilers modified to burn WDF

* Hybrid conversions (pyrolysis and "hot smoke' generators,

plus existing boilers).

The modifications, costs, and other problems associated with implementing
each of these alternatives are discussed in the following sections, A
later section compares cost data. Suggestions concerning RDT&E that
might help solve some of the problems identified are offered in the final
section of this chapter.

A, Heat Recovery Incinerators

Waterwall incinerators are appropriate for larger class systems
(>400 X 106 Btu/hr); they can generate large quantities of high quality
steam, but they are also capital-intensive and require a major commitment
of space and manpower., Other problems exist as well, First, when they
run on raw waste, the incinerators generate unpredictable air and water
pollutants, which may be difficult and expensive to control. Second,
process control is insufficient to meet rapidly fluctuating demand. Un-
less steam demand is substantial and relatively steady year round, it is

unlikely that a waterwall incinerator could be cost-effective,

A Navy complex that has coal-burning capability might find the water-
wall incinerator a competitor to modifying the plant to cofire WDF 1if
enough waste from the nearby federal activities or surrounding communities
were available, In addition, under the same conditions, a waterwall in-

cinerator could be a strong competitor with a noncoal complex,
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Package incinerators are appropriate alternatives to be congidered
for the smaller complexes or isolated activities. Still relatively un-
proven under relevant Navy operating conditions, they are nevertheless
important candidates for the future because their technology is advancing
rapidly. Investment costs of package incinerators are comparatively
modest, and for medium sizes estimated O&M costs are reasonable, Ad-
hering to air pollution regulations in most regions does not appear to
be a problem, but some questions have arisen concerning disposal of

residues in cases of incomplete burnout,

Package incinerators should be considered as alternatives for all

systems except, possibly, the largest, >100 T/DS’

B. New or Replacement Boilers Capable of Burning WDF

DOD* design criteria for boiler and hot water heater fuel selection
are shown in Table 4., The basic intent of the ASD memorandum from which
this table was extracted was to reduce the use of natural gas in DOD
heating plants, A further objective was to reduce dependence or reliance

on any single form of fuel, and on natural gas in particular.

The criteria given in Table 4 are intended to encourage development
of dual fuel (oil/solid) capability in size categories from 5 X 106 Btu/hr
to 150 X 106 Btu/hr, and solid fuel capability for boilers with capacities
150 x 106 Btu/hr or more. This directive mandates that liquid and solid
WDF must be considered candidate fuels in new or replacement boilers in

all the classes we have selected for study.

The Navy is implementing these instructions aggressively, giving
priority to coal utilization at its major plants, Because the basic de-
signs of these new boiler plants must accommodate ash handling, dust sup-
pression, and particulate control, it should be relatively easy to add
equipment to fire WDF in some form, although the added costs may be sig-

nificant, However, cofiring of WDF of characteristically low sulfur

*
ASD I&L Memo (8 April 1976).
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content may actually improve the cost effectiveness of new coal firing
systems in some instances by reducing the sulfur concentrations in the
stack gases, thereby enabling the plants to fire high-sulfur coals with

less costly stack gas cleanup equipment,

C. Boilers Modified to Burn WDF

The problems, modifications, and costs associated with converting
existing boilers to fire WDF are (1) site-specific and (2) a function of
original boiler type. However, some general comments on this alternative
may be useful, especially in suggesting the effects of the scale of the
plant, the size of the boilers, and the type of cofiring contemplated,

Converting plants already capable of burning coal to any form of WDF
should not be technically difficult, Conversion for liquid or gaseous
forms would probably be straightforward and would be less expensive than
conversion for solid forms., (0il and gas firing systems are simpler than
counterpart systems for solids.) However, converting to solid forms
might be more cost-effective for larger systems because their fuel cost/

ton will probably be lower,

Reconverting plants previously capable of burning coal back to solid
fuels is a priority Navy program. Compared with boilers already capable
of burning coal, adapting these conversions for use with WDF may present
some added problems, depending on how the boilers and support equipment
were converted from coal burning to oil or gas. As discussed in a NAVFAC
working paper,* in some plants much of the support equipment for coal
burning was left in place (in varfous states of repair); in others, how-
ever, the spur lines, unloading platforms, conveyors, and so on were re-
moved and the areas were used for other purposes. In some cases, the
furnace grates were removed but saved; in others, the furnace bottoms
were bricked up., Detailed studies of these plants are currently under

way, Table 1, page 14, lists plants now planned to be converted to coal.

*
A study by Hoffman/Munter Associates for NAVFAC Code 102,
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It is, of course, possible to cofire liquid or gas WDF with coal in
reconverted plants, In general, i{f coal reconversion is only marginatty
cost-effective, cofiring liquid or gaseous WDF might be attractive op-
tions, if it is assumed that Btu costs for WDF fuels are lower and {f

cofiring reduces air pollution equipment costs,

Although much attention is dbeing paid to increasing coal burning
capabilities throughout the Navy, most medium-sized plants will burn oil
or gas for many years to come, Converting these boilers to burn WDF
liquids or gases may not be particularly difficult or costly, but the
availability of these forms of WDF in sufficient quantity at competitive

prices is questionadble,

The technology assessment in the Gilbert/Commonwealth veport ad-
dresses the use of fluff WOF in & modified oil-fired bofler, and identi-
fies the problems that would be encountered, the modifications required,
and the typical capital costs for equipment. Site-related conditions

tending to favor the adoption of this alternative are also ocutlined,

D, b Conv ion

A number of other combinations of solid-waste-to-fuel-to-energy-
conversion systems are possible, For example, a gasifying pyvrolyais unit
producing fuel from an activity's waste could be used in a feedwater
preheater (economizer), and a package incinerator generating "ot smoke”
could be used in the boiler or the superheater, Some of these alterna-
tives might be of interest if more technical and cost {nformation were
availadble on the pyrolytic and incinerator "full generating' processes.
Appendix A presents information about costs of package incinerators with-
out heat recovery and an overview of the available information on pyrolyvsis

processes.

The CPU 400 system, a concept under development for solid waste to
electricity in one unified deaign, {a not covered in this studv. From
the beginning, technical problema have plagued this method of using the
hot gases from solid-waste-fueled fluidized bed combustion (FBC) to drive
a gas turbine generator, Advanced experiments with FBC are planned by
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the Navy and DOE at the Great Lakes U.S, Naval Training Station. Further

development may make FBC a practicable alternative for firing solid \
o fuels, including solid wastes, to release heat or generate steam, When
more data on these systems are available, they should be ifncluded fn the

data base of this project. i

E, Economic Comparisons

The economic data obtained from the various sources and from the

two special studies are of particular i{nterest. Summary comparisons of

these cost data are provided below, Costs extracted from the l{terature

survey are given in Table 5. i

The investment cost per ton day capacity ($/TDS) has frequently been ?
used to indicate the relative costs and the sensitivity to scale of

*
various alternatives. Figures 11 and 12 are examples of thia indicator,

*

Figures 13 and 14 {1llustrate the total net annual costs of shop-
fabricated incinerators as a function of size and the cost impact of
particulate control. The costs depicted include capital recovery and

O&M costs., No credits are assumed for landfi{ll cost reduction.

The capital cost data for the Case Study of the Gilbert/Commonwealth
report (consersion of a typical existing ofl/gas plant to coffire fluff
RDF) are summarized in Table 6, These eatimates of capital costs weve
prepared by Gilbert/Commonwealth for a plant firing RDF prepared from
approximately 120 tons of waste each dav. This would {ndicate a capital

cost per ton-day capacity of $14,500, a very attractive cost compared

v
k
b
|
{
with the costs of other alternatives (see Figures 11 and 12). !
On the basis of these capital costs, SRI calculated estimates of
other costs. These estimates are shown in Table 7. The break-even
point for this particular conceptual svatem was then calculated to de-
termine the price that could be paid (or the production costa that could

be incurred) for the RDF, Table 8 indicates this calculation,

*
See Appendix A for asupporting detaflsr.
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Table 6

*
ESTIMATED CAPITAL COSTS OF CONVERTING AN EXISTING
250 x 105 Btu/hr NAVY OIL FIRED PLANT TO | 4
COFIRE FLUFF RDF i3

Thousands Approximate
Direct Costs of Dollars Percent of Total

Structural 174 10

Fluff unloading equipment 93 5
Pneumatic conveyor 417 24 9
Boiler modifications 258 15 1
Dust collectors 84 5 ]
Instrumentation 20 1 !
Electrical 70 4 1
Total direct $1,116 64 i
Field indirect 143 _8 !:
Total construction $1,259 72 v
Engineering 188 11 é
Contingency 289 17 g

Total $1,736 100

*
See Gilbert/Commonwealth report, Table 3.1.3.2 for Cost '
Estimate ground rules,

e e

Figure 15 illustrates representative net annual savings as a func-
tion of cost of RDF for this conceptual system, Estimates are given for
the base-case capital cost and for 1.5 and 2.0 times the base case capital

costs to indicate the sensitivity of net annual savings to capital :ost.

We can assume that this system uses the solid waste from the case

study activity (plus other wastes) and that any oil savings will be
credited to the solid waste/resource recovery system to offset the tipping
fee for the ash, Under these conditions, we might want to know what

tipping fees these savings could offset (tipping fee breakeven points).

6
A conservative estimate of the cost of fluff is approximately $1.00/10" Btu
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Table 7

ESTIMATED ANNUAL OPERATING COSTS FOR MODIFIED OIL-FIRED BOILERS*

rate equivalent to 20% of Btu input capacity.

labor 1s required. Some installations may be able to

spection.

furnace refractory replacement grates, maintenance on

ment for the modification to allow RDF firing.

kWh/yr X $0.03/kwWh 2= $20,000/yr,

52

Approximate
Amount

Function (dollars)

Ash disposal (~4,200 tons/yr X $10.75/ton) 45,000
*
Labor

Operating labor (1/2 man/shift at $6/hr) 30,000

Payroll burden 9,000

Total QOperating Labor 39,000

Maintenance (labor and supplies) 50,000*

Electric power 20,000

Direct charges (excluding purchase of RDF) 154,000

Capital charges (at discount rate of 10%) for project
life of 25 years 191,000
Total Annual Costs (excluding purchase of RDF) 345,000

*
Cost of RDF is excluded; boiler is assumed to burn fluff RDF at a

*Assumes that no additional supervisory labor or administrative

use existing

employees to supervise RDF unloading, ash dumping, and boiler in-

*Average annual maintenance cost estimate includes consideration of
the following: Replacement of dust collector, maintenance and re-
placement of augers in live bottom bins, maintenance and replacement
of equipment in unloading area, maintenance for fixing or patching

rotary valves,

$50,000/year Ls equivalent to ~2,5% of the estimated capital invest-

V120 ton/day X 15 kWh/ton X 360 day/yr = 648,000 kWh/yr; 648,000




Table 8

1 BREAKEVEN POINT FOR CASE STUDY BOILERS
b (Thousands of Dollars)

Annual operating costs minus costs of RDF 154

Capital recovery annual costs 191
Total annual costs, less costs of RDF 345
Annual savings in oil costs by firing RDF
(79,000 bbl saved at $14.70/bbl) 1,160 ‘
Amount available for puvchase of RDF 815

JARPEPESURRCS 35

Breakeven price for RDF
$815,000 + 43,000 ton/yr) 19,00/ ton

A

or an annual saving of about $200,000 (as shown in Figure [4). If we
apply this annual oil saving to annual tipping fees, we find that, {f
4,200 ton/yr of ashes avre disposed of, tipping fees could be $47.60/ton

and the system would still break even,

F. Suggestions for RDT&E

To help solve problems that the Navy may encounter in pursuit of
resource recovery from solid waste, the following suggestions for RDT&E

are offered:

N e e Ly o g~

A review of Navy solid waste components that could emit sig-
nificant quantities of noncriteria air pollutants during
combustion,

e

ke

s A preliminary technical/economic evaluation of a fluidized
bed combustor (preceded only by a trommel and shredder) for
solid waste combustion at Naval installations with >50 ton/
day of solid waste,

e A study of the operating characteristics, performance, and
investment and operating costa for particulate control de- ]
vices for small capacity solid waste combustion units (20 to i
200 ton/day). {

{

¢ A study of the costs of controlling nuisance odor problem-
at resource recovery plants by scrubbing building ventila- %

tion system exhaust,
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A study of possible design improvements for shop-fabricated
incinerators to achieve more complete combustion of fixed
carbon in ash and to achieve better process control,

A continuing review and evaluation of developments in small-
scale solid waste conversion units, including annual written
reports on significant design improvement. (Auger bed in-
cinerator development is a possible subject to be included,
as are updates on gasification and pyrolysis units, European
work on mechanical grate units is another possible topic.)

A preliminary technical/economic evaluation of the O'Connor
rotary combustor, including a site visit to the 50-ton/day
plant reported to be operating in Yokohama, Japan.

The circumstances encountered in the Case Study can only be
representative of a ''class" of Navy Base facilities, Similar
studies should be conducted for other classes of installations
to provide the Navy with a broader basis for determining their
waste utilization potential and the corresponding capital and
O&M requirements to accommodate waste fuel firing.

A program for developing a special purpose, moderate-size steam
generating unit designed specifically to accommodate Navy refuse
in the as-discarded form, This type of unit would have broad

application, singly or in multiples, at many Navy Base facilities,
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1 INTRODUCTION

One available option for disposal of solid wastes from military
bases is mass burning of unprocessed refuse in shop-fabricated incinera-
tors. A number of military bases, including several Navy bases, have
installed or plan to install shop-fabricated incineration units. The
following review of available technology and generalized cost correla-
tions has been prepared for inclusion in the SRI-developed data base to
be used by Navy planners responsible for solid waste management and

energy conservation.

A. Scope of Work

The precise scope of this task effort is summarized below:

o Prepare a comprehensive list of suppliers of shop-fabricated
refuse incinerators that may be installed at plants with
design capacities of less than 100 ton/day of refuse. Sup-~
pliers in North America as well as in Western Europe are to be
included.

o Classify the suppliers as to (a) current production of units
for mass burning of municipal refuse with heat recovery
boilers (and possibly air pollution control devices), (b)
active development of a unit for mass burning of refuse, and
(¢) production of units for other types of wastes or residues.

] Select several installations of units from suppliers in cate-
gory (a) above for on-site inspections to gather data concern-
ing operating costs, operation and maintenance practices,
environmental control practices, and energy recovery programs.

o Prepare investment and operating cost estimates based on data
gathered from site visits and contacts with unit suppliers.
Costs are to be presented for several levels of pollution
control and for a capacity range of from less than 10 ton/day
to about 100 ton/day. All significant design assumptions and
cost estimating bases will be noted.

-

=

=
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Mines (no date).

B. Background

Unprocessed refuse may be incinerated in shop-fabricated combustion
equipment or field-fabricated equipment. To date, the most widely used
type of shop-fabricated units are horizontal flow, cylindrical furnaces
vith both a primary and a secondary combustion chamber. Such incinera-
tors have not generally been available with single-unit capacities
greater than 25-30 ton/day, primarily because the units must be ship-
pable by truck. If larger capacities are required, facilities have been
designed to have multiple units. For example, a 100-ton/day facility
may have four 25-ton/day modules., New designs with single-unit capaci-

ties of up to 100 ton/day are now available.

Shop~fabricated incinerators have been used to burn municipal

refuse in the United States only within the last decade, Heat recovery
from such units has been practiced only within the last 5 years,
although large, field-erected incinerators with heat recovery have been

used for many years,

Once the facility capacity requirement is in the range of hundreds
of tons per day, field-fabricated incinerators become economically
attractive, Within the last several decades, most European
field-erected incinerators have been large water-wall furnaces; the

United States has used these units for the last decade. Before that

time, the large field-erected incinerators were refractory chambers with
temperature control, achieved in part by injection of large quantities
of excess air. Heat recovery with the refractory wall units has not
been wide— spread but is becoming more popular as energy costs

escalate.

In water-wall furnaces, which are steam producers, unprocessed |
refuse is burned on inclined, mechanically actuated grates. Semisuspen- i
sion burning,* however, is now being practiced with some units in

Europe and is proposed for several asites in the United States, i

agpreader stoker design.
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Semisuspension buming requires preprocessing (size reduction, ferrous

mwetals removal, and separation of combustibles from noncombustibles).

The units can also burn coal, which is an important factor in many loca-
tions. Units that are equipped with high-energy scrubbers, electro-
static precipitators, or fabric filters have proved able to meet strin-

gent particulate emission standards. All large field-erected incinera-

tors are designed to operate 24 hours a day for 5 to 7 days a week.

Because most Navy installations do not generate more than 50
ton/day of refuse, shop-fabricated units are the most appropriate type

of incinerator in most cases, unless solid wastes from the surrounding

area are also to be burned. Although numerous types of shop-fabricated

i incinerators exist, most fall within one general class: two-stage com-

bustors with the first stage operating with substoichiometric air, and
the second stage serving as an afterburner to burn gases and particu-
lates. These two-stage units are commonly referred to as "controlled-
air" or "starved-air" incinerators. The suppliers of these units claim
that particulate emissions can be adequately controlled by the secondary
combustion chamber and thus no particulate collection device is
required. (This claim will be carefully evaluated in the technical

evaluation of the units.)

The market for shop-fabricated incinerators has historically been

comprised of industrial plants, commercial sites, and hospitals where
the wastes are mainly composed of paper and plastic packaging materials,
vood scraps and pallets, office paper, and food scraps. On the basis of
reports by equipment suppliers, more than 5,000 of the controlled-air
units have been installed in the United States within the last decade,
but fewer than 100 of these installations practice heat recovery. Be-

cause most of these units burn waste materials with little ash content

(relatively few bottles and metal cans), automatic ash removal equipment
is not generally installed. Some units at industrial sites can operate
three shifts a day, six days a week, with cleanout of ash scheduled

during a shutdown on the seventh day.
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CDC 6400 Extended FORTRAN

The CDC 6400 version of standard FORTRAN was used to sort data

files held in the SIR system and to carry out arithmetic computations

using the data. This FORTRAN language is a version of the common

FORTRAN programming language that has been tailored for use on the CDC

6400, The sorting activities included the retrieval of data files and
resequencing of the information on the basis of certain attributes
identified in each data base. Specifically, data stored in a random

sequence were ordered into two new files in sequence according to waste

.

generator type in one file and acording to waste type in the other.
FORTRAN programs were used to perform summations using the new sorted
files, to calculate bulk load densities, and to prepare new files for

input to SPSS.

SPSS

SPSS is a package containing subprograms to carry out a multitude
of arithmetic, graphical, and statistical procedures. It is used to
analyze data, test hypotheses, plot, and to do many other activities.

In this report, SPSS was used to perform regression analyses for
coefficient estimation and to test confidence levels of the coefficients

generated.

Regression analysis is a technique used to generate the
coefficients for an equation that can describe the relationship between
a measured variable (like volumes of each waste type) and an unknown
variable (the weight of a load consisting of a certain mix of waste
types). In the regression analysis, the observations of the
"independent” variables (e.g., volumes of waste types) and the

"dependent"” variable (i.e., weight of a load) are compared to determine

coefficients that represent the relationship between the variables

(here, the densities of each waste type).

A=
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I1 SURVEY OF TECHNOLOGY IN THE UNITED STATES
AND WESTERN EUROPE

A. U.S. Technology

From listings of equipment suppliers in trade journals, discussions

with suppliers at trade shows and conferences, and personal communica-

tion with consulting engineers concerned with combustion equipment, SRI

has compiled information on shop-fabricated combustion equipment for

solid wastes as well as for agricultural and forestry residues. Those
suppliers that have installed shop-fabricated units to burn municipal
refuse or that are attempting to sell units for that purpose are listed

in Table A-1. The suppliers are classified into three major categories:

o Those with systems (including heat recovery) now burning muni-
cipal refuse.

o Those with units not now burning municipal solid waste (MSW)
but with the potential to do so or with units burning MSW but
without heat recovery.

o Those with units requiring extensive development to allow
burming of municipal refuse or units not designed for heat

recovery.

Table A-1 also notes any need for processing of the refuse before

combustion. The table also indicates the type of furnace and hearth,
the method of ash removal (manual or automatic; ash pusher or bomb-bay ;
doors), the type of boiler usually supplied, the type (if any) of parti- ]
culate collection equipment usually supplied, and the range of capaci- ‘

!
ties available for individual modules. E
i

Table A-2 identifies the sites (by supplier) where MSW is now or
soon will be burned in shop-fabricated incinerators. Table A-3 fﬁ
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lists the sites that were visited during this study to gather data on
operating experiences. We visited the Basic Environmental Engineering
unit in the Chicago area because we learned that their unit was being
evaluated by the staff and consultants of St. John's University and
Abbey (Collegeville, Minnesota), along with units supplied by the Comtro
Division of Sunbeam Equipment Corporation, Consumat Systems, Inc.,
Econo-Therm, and the Kelley Company. We also visitied the Comtro unit
at Knoll Furniture. No Comtro unit was burning MSW; several addi-
tional installations are under construction. The other sites were
selected as representative of typical installations of specific sup-
pliers as well as being within travel budget constraints. Inspection of
the O'Connor unit at Yokohama (50 ton/day capacity) would be worthwhile,

but such a trip was not within the scope of this effort.

Table A-3
SITES VISITED TO INSPECT SHOP-FABRICATED INCINERATORS

Equipment Supplier Site of Installation

Basic Environmental Engineering Dominick's Market
Distribution Center?
Chicago, Illinois

Comtro Division, Sunbeam Knoll Internationald
Equipment Corporation East Greenville,
Pennsylvania

Consumat Systems, Inc. North Little Rock, Arkansas
Blytheville, Arkansas

Envirommental Control Products Diamond International
Groveton, New Hampshire

Kelley Company, Inc. Meredith, New Hampshire
Pittsfield, New Hampshire

8Burns packaging material and some food wastes.

bBurns wood waste and plant trash.

&
¥
5
¥
4
§
X




Although some companies have installed units with gas-to-gas heat
exchangers to recover heat for building heating systems, only steam gen-
eration was considered in this study because of the more widespread need

for steam on a year-around basis at Navy installations.
The findings from the site visits and discussions with the equip-

ment vendors and operators are summarized in a later section of the

report.

B. Other U.S. Technology Identified But Not Evsluated

Fluidized bed combustion of processed MSW has been the subject of
research for the last decade. Much of the research work has been con-
ducted by the Combustion Power Company of Menlo Park, California, under
EPA sponsorship. A fluidized bed has also been tested for combustion of
the short fiber stream at the Black-Clawson Resource Recovery plant at
Franklin, Ohio. Sewage sludge was burned along with the short fiber
stream. A codisposal facility for sewage sludge and processed MSW that
will use a fluidized bed combustor is being installed at Duluth,
Minnesota. A fluidized bed combustor with a heat transfer surface in
the combustor is currently being evaluated by Stanford University and

Combustion Power Company under EPA spoasorship for MSW combustionm.

In fluidized bed combustors, however, the MSW must be shredded and
the heavy fraction (metals, glass, other inorganic solids) removed
before combustion. For a small facility, extensive preprocessing is not
economically feasible. One leading company in this field® is now
evaluating the possibility of using a trommel screen alone for

8gnergy Products of Idaho has been supplying fluidized bed combustors
to the forest products industry since 1972, During the 4-year period
from 1973-1977, the company installed 22 commercial units in sizes up
to 80 x 106 peu/hr.

A-10
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processing MSW injected into the combustor. Energy Products of Idaho
believes that its combustor may offer an attractive option for communi-
ties needing to burn less than 200 ton/day of refuse, Testing of the

concept is under way now at the company's pilot plant in Idaho.

! Another current development effort that Navy personnel are aware of
is the auger-bed incinerator. Hoskinson and Associates, the developers,

conducted a field demonstration of this unit during May 1977. The re-

sults of the field evaluation have been reported by the Army Construc-

tion Engineering Research Laboratory.8 The field study '"demonstrated
short-term successful operation™ with the auger-bed incinerator "pro-
cessing up to 3.5 tons/hour of solid waste--more than three times the
throughput capability of currently marketed modular solid-waste inciner-
ators." Because of certain design problems, the unit is not considered
commercial at this time. The concept, however, does appear to have

technical merit,

C. Western European Technology

Professor A. G. Buekens and J. G. Schoeters surveyed Western
European incineration technology. Table A-4 summarizes the characteris-
tics of shop-fabricated units that they identified as being suitable for
incineration of 20 to 100 ton/day of MSW. European companies do not
appear to have much experience with shop-fabricated municipal incinera-
tors that burn MSW, but numerous companies with units that burn plant

trash have offered to build such units. Buekens and Schoeters did not

identify any existing modular unit that is burning MSW. Many suppliers
of large incinerators have offered to build small capacity field-erected
" units for MSW that are adapted or scaled down from their larger

85 A. Hathaway, J. S. Lin, and A. N. Collishaw, "Field Evaluation of
the Modular Auger-Bed Heat Recovery Solid Waste Incinerator," U.S. Army
Corps of Engineers, Technical Report E-128 (May 1978).
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designs. Therefore, most incinerators with a capacity of 20 to 100
ton/dav do not use the stationary horizontal refractory hearth that is
used almost exclusively in the United States. Instead, most incin-
erators use some version of a mechanical grate--either rocking,
transporting, or rotating. Most suppliers include an air pollutiomn

control device such as a scrubber or multicyclone.

At this time, European technology in building shop-fabricated
incinerators does not appear to be superior to U.S. te¢chnology. Because
‘small capacity units in Europe use mechanical grates, the units are rel-
atively expensive. In the future, more information should be obtained
from European companies on small field-fabricated units burning MSW to
determine the costs and whether they are less prone to slag problems or

provide more complete burndown than U.S. units.
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IIT TECHNICAL EVALUATION OF OPERATING UNITS
IN THE UNITED STATES

A. Incinerators with Capacities of More Than 20 ton/day

Four installations of shop-fabricated incinerators were visited:

A Consumat installation at Blytheville, Arkansas
A Consumat installation at North Little Rock, Arkansas

o A Basic installation at a Dominick's Market warehouse in
Chicago, Illinois

o A Comptro installation at Knoll Furniture, East Greenville,

Pennsylvania.

On the basis of these site visits, some general comments on the state of

the art of municipal refuse incinerators are possible.

1. Construction Quality and Unit Lifetime

Current construction standards are probably inadequate for
long-term use by municipal personnel. Some units, for example, have
loading facilities that do not appear to be designed to be sturdy or to
have sufficient safety interlocks. As a result, the door that closes
the top of the loading hopper during the feeding cycle warps. The lack
of insulation of some units made working near them uncomfortably hot;

high temperatures were particularly noticeable near heat recovery

units. Some access doors to the incinerators and heat

ment did not have heavy-duty hinges, a particularly bad

these units require frequent (several times daily) visua b M
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III TECHNICAL EVALUATION OF OPERATING UNITS
] IN THE UNITED STATES

A. Incinerators with Capacities of More Than 20 ton/day

Four installations of shop-fabricated incinerators were visited:

=

A Consumat installation at Blytheville, Arkansas

o A Consumat installation at North Little Rock, Arkansas

o A Basic installation at a Dominick's Market warehouse in
Chicage, Illinois

- e N

o A Comptro installation at Knoll Furniture, East Greenville, !
Pennsylvania. ‘

Y

On the basie of these site visits, some general comments on the state of

the art of municipal refuse incinerators are possible.

1. Construction Quality and Unit Lifetime

; Current construction standards are probably inadequate for

i long-term use by municipal personnel. Some units, for example, have

J loading facilities that do not appear to be designed to be sturdy or to
: have sufficient safety interlocks. As a result, the door that closes

: the top of the loading hopper duriug the feeding cycle warps. The lack
? of insulation of some units made working near them uncomfortably hot;

high temperatures were particularly noticeable near heat recovery

units, Some access doors to the incinerators and heat recovery equip-
ment did not have heavy-duty hinges, a particularly bad defect because
these units require frequent (several times daily) visual inspection.
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From the limited data available, unit lifetime is difficult to
estimate. Consumat promises 25 years, which is probably unrealistic,
given the condition of some in-service units. The Blytheville unit,
which has been operating for only 3 years, shows significant deteriora-
tion. The inside walls of the primary combustion chamber are almost
worn to bare metal in a few small places, and the metal and paint on the
outer surfaces are discolored--a sign of severe overheating. Oxidation
has made holes in the metal shell in some places, which have been
patched with welded-on metal pieces. Two of the four units at
Blytheville will probably be replaced within the next year. Some damage
is probably due to operation above design capacity and inadequate main-
tenance~-the Blytheville plant has had several plant managers and budget
cuts since it was built--but the units should have been constructed to

deal with this.

Because some of the design errors leading to the rapid deteriora-
tion of the Blytheville unit have been corrected, North Little Rock,
which was the next major Consumat installation, will last longer. How-
ever, the jump to a 25-year lifetime probably cannot be made in one
cycle of design changes, especially when the new units look so much like

the old ones. External signs of overheating are already visible.
The Comptro and Basic units look as though they hold up better, but

they are not in municipal service and have only been operating for a few

years. More time will be required to determine.their service life.

2. Temperature Control

Temperatures can be controlled in shop-fabricated incinerators in a
number of ways. The primary chamber operates with substoichiometric air
so that in response to short-term temperature changes its temperature
can be raised by increasing air rates or, in the case of a fixed air
supply, by adding refuse at a lower rate. Alternatively, the primary
temperature can be lowered by decreasing the air rate or by adding more

A-16
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refuse without changing the air rate. As an emergency measure, the pri-

mary temperature can be lowered by adding water from a spray system.

The secondary combustion chamber operates with excess air so that
in response to temperature changes it can be cooled by adding more air,
or heated by burning auxiliary fuel. (Heating by using less air is
probably not wise because this might interfere with providing complete
combustion). An additional temperature control option is to cool the
secondary combustion chamber by adding less air to the primary chamber;
this would reduce the amount of gaseous fuel volatilized from the refuse

and therefore decrease the amount of fuel fed to the secondary chamber.

A strong interaction exists between the temperature in the secon-
dary chamber and any measures used to control temperature in the primary
chamber. For example, if the primary chamber is cooled by adding more
refuse, the secondary chamber temperature will tend to rise because of
the rapid devolatilization of the refuse and the subsequent increase in
the fuel-to-air ratio in the secondary chamber. The temperature rise
can be dampened by increasing the secondary air flow, but this strategy

vill decrease residence times in the secondary chamber and may cause air

pollution,.

Most of the shop-fabricated incinerators visited had simple temper-
ature control systems and required a high level of operator skill.
Temperatures could not be completely controlled by simply adjusting air
flows. Some systems had locking devices to prevent overfeeding, but
none could indicate when faster feeding rates were necessary. At all
installations, the temperatures in the incinerators and the condition of
the burning refuse were not visible to the operator responsible for
loading. An inspection of small temperature gauges and the incinerator
(the primary chamber requiring a visit outside the loading area and man-
ual opening of an access door) had to be made by supervisory personnel.
The supervisor's experience then served as the basis for his verbal com-
sunication to the operator regarding the loading strategy until the
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next inspection. For example, at the Consumat installation in North

Little Rock, the primary chamber in one unit overheated during the lunch

hour because the operator did not feed it for a half hour. The over-
heating was detected by the supervisor, who turned on the water spray
and instructed the operator to feed the unit rapidly to bring the pri-
mary temperature down. These two control measures caused the unit to

smoke badly.

Of all the sites visited, the Basic incinerator, which burns mostly
cardboard, had the most sophisticated control system. Basic uses modu-
lated air as the primary temperature control and a lockout to prevent
overfeeding. Once the unit was operating within the desired temperature
range, only a minimum of auxiliary fuel was required to maintain the

proper temperature in the secondary chamber,

3. Heat Recovery Boilers

Comptro has no heat recovery boilers in MSW service that could be
inspected. Basic has not yet installed a heat recovery boiler. Both
Basic and Comptro indicate that fire tube boilers would work well in
this service and that soot blowing can be made automatic. Consumat sup-
plies water tube boilers, but the original design, represented by
Blytheville, appears to have been inadequate. The boilers are no longer
operational because they are too compact, cannot be kept soot-free, and
corroded badly. Almost all tube fins are gone. However, the new units
at North Little Rock seem to be better designed. Individual tube banks
can be replaced and enough space inside the unit exists to provide ade-
quate soot blowing. At present, the first bank of tubes cannot be
cleaned sutomatically, but modifications to solve this problem are under
way. Whether all problems have been solved is not yet known. The
units, which have been operating for less than a year, are still under-
going shakedown and have not been able to meet their steam commitments

on a sustained basis, As a result boiler efficiency cannot be assessed.




4, Burndown

During the site visits, only the two Consumat units were burning
MSW. The unit at Blytheville, which did not have automatic ash removal,
was discharging an almost completely inorganic ash., The units at North
Little Rock (operating three shifts a day with continuous ash removal)
were not providing complete burndown during our visit. Magazine pages
were readable in the ash stream, and grass clumps were still green
inside. This occurred even though the units were being fed at only 90X
of their design capacity. Apparently, additional development.{possibly
added residence time or changes in the underfire air system or both) is
required for the continuously operated units. Any fixed hearth unit
supplied by vendors other than Consumat will most likely have the same

problems because they all have similar designs.

The two municipal units visited produce some slag, but the slag
does not apparently attack the refractory or otherwise significantly
affect operation. The Consumat design for North Little Rock did have
trouble with slag clogging the underfire air ports, but this has been

fixed by a field modification.

5. Air Pollution

None of the sites visited included auxiliary controls for air pol-
lution control. The two incinerators burmming plant trash showed no
plume during normal operation, primarily because they both burn a lowash
material and therefore do not use ash-moving rams during the burning

period. Moving the ash stirs up particulates.

The two Consumat units showed visible plumes during operation and
occasionally visible pieces of ash, The North Little Rock units had
automatic soot blowing, which released a 10- to 20-second plume of brown

smoke every time it operated. Units with continuous ash removal will
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probably require an auxiliary device to operate in compliance with air
pollution regulations, especially if complete burndown of fixed carbon

is required.

B. Small Refuse Incinerator Sites (Less Than 20 ton/day)

Several small incinerators were visited, including:

o Kelley Incinerator, Meredith, New Hampshire

o Environmental Control Products Incinerator, Groveton, New
Hampshire

o Kelley Incinerator, Pittsfield, New Hampshire.

In general, the temperature control systems were simple and re-
quired skilled manual intervention. The stack condition and incinerator
burning condition were not observable by the loading operators. Nor was
temperature information readily available to the operator. A signifi-
cant problem seems to be slag attack on the refractory; the slag was
pulling pieces of refractory off the walls of the primary chamber. A
jack hammer was used to remove slag from the Groveton unit. Source sep-

aration to remove glass is required at both Meredith and Groveton.

C. Air Pollution Control

1. Emission Standards

A number of air pollution control agencies were contacted during
the study to determine what kinds of standards will apply to refuse
burning in plants with a total capacity of less than 100 ton/day. The
findings of our telephone survey for areas where there are larze Navy
installations are summarized in Table A-5. Currently, only particulate

emissions (visible and mass emissions) are being regulated. In general,
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all regions have mass emission standards for particulate matter compar-
able to the EPA New Source Performance Standards (NSPS) of 0.08 grains
per dry standard cubic foot (dscf), corrected to 12% CO, for units

«ith a capacity to burn more than 50 ton/day of refuse,

Hass omission requirements for smaller units range from the same as
NSPS for larger units, to 0.2 grains/dscf (corrected to 12% COZ). No
regulations directly address the issue of soot blowing the heat recovery
boilers. Several individuals contacted felt that incinerators with heat
recovery boilers may be required to comply with standards for solid
waste or residue-fired boilers. These standards are not necessarily
More stringent than those for incinerators. Ia Florida, for example,
snits with less than 30 x 108 Beu/hr of input must have visible emis-~
sions of less than 20X density on the Ringelmann scale, except for 2
minutes per hour, where a density of 40% is allowed. This is more leni-
ent than the standard in Florida for an incinerator with a capacity of
less than S50 ton/day, (30 x 108 Btu/hr would be equivalent to around

3.3 tons of refuse per hour, or close to 80 ton/day).

No standards now exist for control of chlorides and none have been

proposed or are anticipated in the regions identified in Table A-5.

In noncomplianca or nonattainment areas, criteria pollutants that
exceed ambient air quality standards will be strictly regulated. If
emission of a problem criteria pollutant from a new source exceeds 25
1b/hr or 250 1b/day, a new source review is required. ''Offsets" may be
necessary to allow installation of a new unit. On-site reductions in
emissions from other sources will be accepted on a 1/1 dasis in terms of
mass. Off-site reductions will be :considered on a case-by-case basis,

but will not be on a 1/1 basis.
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2, Compliance Monitoring

To date, few shop-fabricated units have been field tested while
burning MSW. The State of New Hampshire conducted tests at Meredith on
two Kelley units without heat recovery that are burning as many as 90
tons/week of MSW. The test results were as follows:

Particulate Loading (grains/dscf
corrected to 12% CO,)

First testing period (average) 0.213

Second testing period (some

burner modifications) 0.11 (Average
0.168 meets NH

0.211 standard

of 0.2.)

Two other manufacturer's units are being installed in New Hampshire and

will be tested in the future.

Under EPA and Navy sponsorship, Systems Technology Corporation
(Systec) has been testing the Consumat units at North Little Rock,

Arkansas. Their preliminary results (subject to change) were as follows:

Particulates: 0.038 grains/dscf (at 2.5% CO3)
Range: 0.030 to 0.044

Approximately 0.18 grains/dscf (calculated based on 12% COp con-
tent in the gas stream)

NOy: 0.4 1b/106 Btu of input
Range: 0.34 to 0.46

CO: Approximately 30 ppm (at 2.5% COj)

Tests were conducted without the soot blowers operating. The con-
centration of CO2 measured in the stack gas appeared to be too low.
At 100X excess air, the CO2 should be close to 8%. Some dilution is
expected because Consumat uses an ejector to induce the draft through
the boiler. However, the amount of excess air required to dilute the

C02 to 2.5% seems excessive, The issue will be resolved when Systec's
final results are made public.




IV ECONOMIC EVALUATION

A. Limitatisns on Use of Qutput

The investment cost estimates presented in this appendix are based

on specific design assumptions, which are not likely to be applicable in

all cases because of possible site-specific differences in solid waste

PR eam——

composition, site conditions (need for pilings, possible use of existing

stru¢tures or equipment, space limitations), and local construction

labor rates and productivity. Price differences will also exist among

gt

vendors of specific types of equipment. In estimating operating costs,

we could not select unit costs or rates for utilities and labor require-

e e T

ments that are appropriate for every site. Maintenance materials and
labor are also difficult to predict. Therefore, the cost correlations ;

should be used only for very preliminary evaluation to screen alterna-

tives. The cost data should not be used as the sole basis for final

selection of any one solid waste management option.

B. Mass and Energy Balances

Table A-5 shows an estimated Navy refuse composition. A more com-
plete analysis might show a different composition, but the changes would
not substantially affect the technical and economic analysis of inciner-

ation.

On the basis of the refuse composition shown in Table A-6, mass and
energy balances have been prepared (see Figures A-1 and A~2). We assume
that glass and bulky wastes are removed before collection. Glass is

separated to prevent clinker formation in the incinerator. In Figure

SN AT TR J o 4R AL D T T, TR T PO R M VST S e B e 7 100

! A-2, 100 mass units of total refuse are used as a basis for the mass

balance. The heating value of 1 ton of incinerator feed was calculated

to be 10.1 x 106 Btu/ton.
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Table A-6

TYPICAL COMPOSITION OF SOLID WASTE
FROM A NAVAL INSTALLATION
(by Waste Type)

Type of Waste

Paper

Cardboard

Mixed office waste

Wood

Yard waste

Food waste

Metals

Sludge

Glass

Other (Including bulky items)
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The overall thermal efficiency is 502, with 100X excess air input
and a system equipment heat loss of 15%. The particulate emissions and
CO emiasions have been estimated on the basis of dats for a Consumat
unit burning MSW at North Little Rock, Arkansas; the data were supplied
to SRI by Systec of Xenia, Ohio (another Navy contractor). The SO,
emissions have been calculated on the basis of an asaumed sulfur content
typical of MSW. The NO, emissions are calculated on the assumption
that less than 30% of the organic nitrogen content of the MSW is conver-
ted to NO; and that insignificant amounts of NO7 are formed from
oxidation of Ny because of the low operating temperatures.

C. Specification of Plant Design Capacity

In the design of a facility capable of processing the MSW delivered
from a 5-day/week collection operation, the assumed source separation of
glass and bulky items, downtime for maintenance and holidays, and the
probability that the unit cannot perform at all times at the rated
mass-burning capacity must be considered. Taking these factors into
account, the incineration operation must burn a tonnage of material 18%
greater than the total tonnage of material generated on a S-day/week
basis (see Table A-7).

To include examples that are relevant to Navy operations, plant
design capacities ranging from 7 to 100 ton/day have been specified for
the economic snalysis. Few Navy bases generate 50 or more ton/day of
refuse, and most generate around 20 ton/day.

D. Economic Bases

Table A-8 summarizes information concerning the quantity of refuse
burned per year for the four facilities considered and the number of
shifts per day the facilities would operate. (The reason for selecting
fewer hours of operation for the smaller facilities is discussed later
in the analysis.)




Table A-7

CALCULATION OF DESIGN CAPAC TY FOR SAMPLE CASES

Refuse generation rate = X ton/day (5 days/week)
Refuse for burning = 0.94X (6% removed as glass and bulky items at
source)

Incineration facility scheduled to operate 5 days/week for an aver-

age of 46 weeks/year (230 operating days/year, 10 holidays, 10 days of -
other downtime). Units will operate at 90% of rated capacity.

Plant design capacity = 0.94X 260 days available

0.90 230 days of operation. 1.18x
Refuse Generation Rates Plant Design Capacities
(tons/day) (tons/day)
Approx. 6 7
17 20
42 50
35 100
Table A-8

INCINERATION PLANT CAPACITIES CONSIDERED FOR ECONOMIC ANALYSIS

Approximate
Quantity of Plant Design Quantity of No. of Shifts
Refuse Generated® CapacityP Refuse Burned Operated
(tons/day) (tons/day) (tons/day)®(tons/year) (shifts/day)

6 7 6.3 1,499 1

17 20 18 4,140 2

42 50 45 10,350 3

85 100 90 20,700 3

8Quantity generated 260 days/year (5 days/week, 52 weeks/year).
bplant operates at 90X of design capacity.

CQuantity “urned during each of the 230 days in a year that the unit
¥y
operates.
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Table A-9 summarizes the assumptions concerming the discount rate,

economic life of structures and equipment, maintenance costs, ash dis-

posal unit costs, utility prices, and labor rates,

E. Investment and Operating Cost Estimates

SRI has estimated the plant facilities investment costs, on the
basis of data supplied by equipment suppliers, ag well as on a review of
actual costs for construction of a number of facilities. Cost estimates
prepared by Pfeifer and Schultz/HDR, Inc., of Minneapolis, in a report

prepared for St. John's University and Abbey in early 1978 were also
reviewed,

The investment costs for facilities with design capacities from 2.5
to 20 ton/day ave shown in Figure A-3. Note that no particulate collec-
tion devices are included. Costs are shown for facilities both with and

without heat recovery (low-pressure steam prqduction),

Table A-10 summarizes actual operating requirements for the incin-
eration facilities. As an example of how operating costs have been est-
imated and the significance of labor charges, a facility with a design
capacity of 20 ton/day will be discussed. Four cases will be considered

for facilities operating 5 days per week:

A. No heat recovery/l-shift operation

B. No heat recovery/2-shift operation

C. Heat recovery/l-shift operation

D. Heat recovery/2-shift operation

Table A-11 shows the initial investment cost for the facility and
the current value of the facility, taking into account replacement of
the shop-fabricated incinerators after 12.5 years, or midway through the
facility lifetime. Table A-12 describes the individual operating cost
items. Note that labor charges represent from approximately one-half to
two-thirds of the total operating costs (including capital charges) for

the four cases considered at the 20 ton/day capacity level. In Table

A-13, the quantities of steam produced for Cases C and D are shown, as
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Table A-9

ECONOMIC BASES3

Economic Life Years
Permanent bduildings 25
Incinerator system 12.5
: Heat recovery boilers 25
‘ Air pollution control devices 25
Ash Disposal Cost $10.75/dry ton (in landfill)
Maintenance Material Cost 2.5 of total plant investmentd

(includes refractory replacement
after ~.25 years of operation)

Purchased Utility Costs

Water $0.60/1,000 gal
Electric power 3.0¢/kWh
Fuel oil $2.50/willion Btu

(around 36¢/gal)

Labor Costs

Operating $6.0/hx¢

Supervisory 202 of operating labor

Maintenance 2.5% of total plant
investment x

Administrative and support 20X of operating, th
supervisory, and i
maintenance f

Payroll burden 30% of total direct A
labor costs. b

i

8id-1978 costs; discount rate = 10%.

bynless noted otherwise, !

CGrose earnings of nonsupervisory workers employed by public
utilities supplying water, steam, or sanitary services, April !

1978. Source: Employment and Earnings, U.S. Department of Labor g
Statistics, Vol. TE, %o.‘ﬁ?’June 1973, :
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PLANT INVESTMENT — thousands of dollars

100 — /
S0 —
40 -
30 —
20 -
15 -
10 I S S N T N 0 I Y S B B B A
1 15 2 3 4 5 10 16 20 30 40 50 100
PLANT DESIGN CAPACITY — tons/day (for 1, 8 hr. shift/day}
S U 1 1 Y
2 25 3 4 5 6 78910 16 20 30

PLANT DESIGN CAPACITY —- tons/day (for 2, 8 hr. shifts/day)

NOTE: No psrticulate collection device. SA-7332-7

FIGURE A-3 INCINCERATION PLANT INVESTMENT COST (< 20 ton/day capacity)
AS A FUNCTION OF PLANT DESIGN CAPACITY (based on 1 shift and
2 shift per day operation)
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Table A-10

SUNMARY OF PLANT OPKRATING REQUIREMENTN

ltem Requived
M
Auxiliavy fuel 0.8 % 108 Reu/ton of vef- ’
use burued (arvund 3L of |
refune heating value) i

Klectric power 10 kWh/ton refune (No WRR,
no Pepa i
20 kWh/ton veluse (HRRA, wo i
pcH) i
10 kWh/ton refuse (WRR, PCM) i
Opervating ltaborb ? men/ahift (all plant |
ainen), avvund 100 ton/day .
Anh dinponal 0.1117 dry tone ash pey ton H
re fuse burned, '

ANRR = heat vecovery boiler
PCD = particulate collection device

PMutltiply By 1,12 to take into account veplacewents
for aick leave, vacation, peraomal leave, amd vvertime
compensat im. Supervisory, clevical, and wmaintenance
labor requivrementa Ave estimated an sepavate {tewme, :

?
i@




Table A-11

ESTIMATED INVESTMENT COSTS FOR NYPOTHETICAL
REFUSE INCINERATION SYSTEMS
(20 ton/day Design Capacity, 4,140 ton/year Burned)

8Cases with no heat recovery and no particulate collection (Case A,
1-shift; Case B, 2-shift).
Case D, 2-shift).

bkepllcnntnt of shop-fabricated incineratorvs.

Cat § = 10%.

A-35

Approximate Betimated Investment Costa
Incinerator Capacity Preaent
Case (ton/hr) Year 0 Year 13°  valye
A 2.9 $185,000 $192,500 $440,767
B 1.3 250,000 120.000 264,764
C 2.9 $%0,000 183,313 603,111
D 1.3 325,000 108,333 156,384

Cases with heat recovery and no particulate collection (Case C, l-shift;




'IllllIllIll-!-l!-l’ll-l!lU-l-ll-l!lﬂ!l-llllﬂum-!-u—nu-mL,rv S

well as the quantity from a 7-ton/day plant. Table A-14 itemizes the
estimated opersting costs for the 7-ton/day facilities, one with and one

without heat recovery.

Without heat recovery included in a 20-ton/day plant, it appears
from the drta prasented in Table A-12 that a one-shift per day operation
would be preferable to a two-shift per day operation. Figure A-4 shows
that for a plant with heat recovery, the decision between choosing a one
or two-shift operation is influenced by the value of the steam pro-
duced. <f the steam has a value of more than 32/106 Btu,a the 1
2-shift operation is more attractive. Almost 25% wore steam can be pro-
duced from a two-shift operation than from a one-shift operation (see
Table A-13,)

For a 7-ton/day plant, Figure A-5 shows that steam must have a
value of $3/10% Bru for the heat recovery system to be economically

attractive relative to the unit without heat recovery.

At the 50- and 100-ton/day capacity levels, the incinerator modules
(25-ton/day each) will be designed with automatic ash removal and will
operate J shifts per day for S days per week. 1In Table A-15, the esti-
nated operating cost items are listed for plants both with and without

Cabric filters for particulate collection. Tables A-16 and A-17 present

the details on the costs for particulate collection for facilities with
from 7 to 100 ton/day capacity. All facilities with particulate control
are assumed to have a heat recovery system. The heat recovery system

reduces the flue gas temperature to around 500°F, which is a

Athe uzcrnge steam value at Navy installations is slightly more than
$4/100 gtu. This figure includes all costs associated with stesm
osroduction. The value of the steam from an incineration operation wmay
only be equivalent to the fuel component of the $4/106 Btu figure,
which is probably $2-83/106 Btu. The current labor and capital
cherge components may be fixed costs that would not change unless the
total steam demand is met by the new incinerator instaliation.




R SN v 3 - T LA

‘(] pUE T, 3581 405 IWEE IUI PUR § PUE ¥ SITET 30 JwWEs Yl G O3 vﬁl,.ond«

(6~v 21921 aas) TL0T = 1 PUR Jesl ¢7 = U u1Im JOIUR] L13r0032 le3jdes E 80len paie(nvie)

“pIPTIIU] DEFIE ;0 ITEE IC) 11pIIT OF
L

SL8°9L5°T 961°Cvs 1 621°9%7° 1 £€97°v92°1 INTeL 1U2EDIY
«Scl -S.\J (ge~) (ye~) (e8n331 uolfs)
% 144 131 zezioLt 61£°6¢T 787 661 3807 Tenuuy 1e30] ,
w (2€2)E97 6T (26€)5%9°99 (217) 69167 (25€)6S5°8% _s3tiey Tesjde; 1
(ZLL) 657" vE T (219),¢8¢°¢€01 (Z6L) ,051°0€1 (2S9)ETL° 06 sa%1ey; 103310 Te3I0L
(27)6%9°L (29)659* ¢ (29)L1%°9 (Z€)L19°9 €1€I03qng
K128 8T X744 00 (2724 B ianod 231312313

4
Se1's 194 21 SL1'¢ LIS (ng g0T/05°78 X
/M9 (01 X 70 X 1£/3 0y1y) Tond

$21311730 pue [#Mj peswyoing

(269) (0L ¢ 1T (299)G19° 1L (289)¢9,° 111 (206)€1L" 69 s1e3019ng
092 92 7987 (1 €09°92 e el (1oqe] 3¢ z0f) veping jioifey -
057°21 0sz*71 000°T1 000°17 - 209e] 1Joddne pue uojaIeIISTUIEPY <
sz1‘s 05LET 000° L $29°%6 (Iuamisasn] jo 21$°7) 10QE] ITUPLIIVIEK
z81°11 165°S 8111 165°S (3oget Burizessdo jo zgz) vOISTaladng
016°¢S $S6°L2 016°SS $S6°/7 (1y/9% 3% 3jIus/uem 7) uojIEIdg
ioqey
(Z8)€60°¢C1 (ZTDeT1L 81 (2£)896°11 (Z01)£65° 91 sjei01gng
896 Y 896" £96° Y 896" (3/5L°01¢ X LIT1°0 x 1£/3 Q91y) 1esodsig ysv

sz1’s 0sL'¢t 000°‘L €29°¢6 59314dns IdusTIITTEK

$20T419S pue sa7[ddng 'S{CIINIBH
$280) 2uj3ieiradp

129n/kep ¢ xaa/lep F3am/Lep ¢ X/ kep ¢
uop3Ieaado I3IYS 2 vwol1e1340 3371Yys T uojle13d0 377YS 7 uoyleiadg I371ys 1
a 2 g ¥

BOT129110) IIwind]3Iieg Oof/LkiaacOFy 1¢2R VOIIIITT0) IILINVIILILY ON/L194053Y I€9H Of

(P8890014 aedx/uol Oyiy ‘£Liyoede) ufysaqg Leqg/uol 0O7)
SWZEL1SAS NOIIVEANIONI dSNd3¥ TVDILFHLOMAH 304 ;
SI1S00 ON11lVE3AdO TYNNKY 40 KOSIEYAROD !

71-¥Y d1qe]




Table A-1)}

ENERGY RECOVERY POTENTIAL
(S 20 Ton/Day Demign Capacity)

Plant Deaign Uprratln' Steam Generation
Capacity Schedule . Rate™ 1b steam/ton
(ton/day) (shift/day) Llb/hxd. (ib/xr) . refune burned
t
20 ! aer0' 13.96 x m", wn
20 2! soo0!  17.25 x 108, are?
7 R w0 4.R8 x 10b 10

*
5 dav/week opervattion, 0T of design capacity,

Y
At 50X thermal efficiency with a refuse heat content of 1001 millton
Beu/ton and an auxtliary fuel use of 0.9 million Btu/ton.

’
Asmumes | hour requived to remove arh and get up to temperatuve,
7 hours of steam generation, 4 hours of burndown on antomatic
control at end of & hour shife.

( <0 tone.x .9 )(10-9 x 106 “‘.“) ( 7 houra steam l’.“'}'_“.'.““) (“"’)

7 hours loading 'on 11 hours burning

= 8,67 millton Btu/hr
< 8670 1b ateam/ht

tor 7 hour/day, 210 dav/vear

¢

Asprumes 1 hour required to remove ash and Ret up to temperature, 15 hours
of steam generation, 4 hours of burndown on automiat fc control at end

of second 8 hour ahift.

20 tona x 0.9 .6 x 10“ Btu (lﬁ hours steam generation (0.\)
19 hours loading Ton 19 hours burning

e 502 million Beu/h
< %000 Ih steam/hr

for 15 hour/dav, 230 dav/vear

A

Arsumen 1 hour veguived to vemove ash and get up to tempevature, 7 hours
of ateam generation, 4 hours of burndown on automatfc contvol at eand

of & hour =hift.

7 tone x 0.9 ) 0.6 x jpﬁ Rn 7 hours steam generation (0.5)
7 hour loading Ton 11 hours burning

e« L0V millton Btu/he
SO0 tha steam/hy
tov 7 houra/day, 230 day/year
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tolerable temperature for the fabric filter.® Filter material will
have to be chosen to resist buming carbon particles that may be emitted

from the secondary combustion chamber.
Table A-18 shows the estimated quantities of steam to be generated

by the 50- and 100-ton/day facilities, Figure A-6 illustrates how the

net annual operating costs are affected by the value of the steam.

F. Comparison of Investment and Operating Costs for Small and Large

Facilities

In discussions of resource recovery facilities, the investment
costs are commonly examined in terms of dollars per ton of dailv capa-
city as a function of the plant capacity. One such comparison for large
capacity systems (greater than 400 ton/day) is shown in Figure A-7.
Depending on the sige and types of process employed, an energy produc-
tion operation may require an investment of from $30,000 to well in ex-
cess of $50,000 per ton of daily capacity. These facilities are all
especially designed field-erected units.

Figure A-8 has been prepared on the basis of data presented in this
study. The investment costs per ton of daily capacity are far below the
figures previously mentioned, primarily because of shop fadbrication of
equipment, no preprocessing, and low-pressure steam production. If one
were to consider addition of a shredding operation at the 100-ton/day

plant operating one shift per duy,b the incremental investment

8400-450°F may be a safer temperature range to ensure acceptable
fadbric life,

bShredders for MSW are limited to a certain minimum size

because of feed opening requirements. Units are not generally
supplied with capacities bdelow 15 to 20 tons/hr.
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Table A-18

ENERGY RECOVERY POTENTTAL
(50- and 100-ton/day Design Capacitizas)

Plant Design Operating

Capacicty Scheduled Steam Generation Rate® Lb Steam/Ton

(tons/day) (shifts/day) (1b/hr) (1b/yr) Refuse Burned
50 3 9,940¢ 54.87 x 106 5,300
100 3 19,8809  109.74 x 106 5,300

85 days/week at 90X of design capacity.

YAt 50% thermal efficiancy with a refuse heat content of 10.1 x 106
Btu/ton and an auxiliary fuel use of 0.5 106 Btu/ton.

[

6
20 tons x 0.9 , 10.6x10 Btw , g5 = 9.94x 10° Bew/hr

(Approximately 9,940 1b steaw/hr for 24 hr/day, 230 day/yr)

d

100 toms g o4 x 105 Beu/hr = 19.88 x 10°  Bru/nr

S0 tons
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TOTAL ANNUAL OPERATING COSTS — $itwor

EANHICA NP

80

40

o

80 10 -
/

WITH PARTICUL ATE CONTROL

/ WITHOUT PARTICULATE CONTROL

20 _
-
10 —
WITH PARTICULATE
\/ CONTROL
-0~ / WITHOUT PARTICULATE
100 T/0 CONTROL
| | | i
0 2 4 ) 8 10
STEAMVALUE  $/10° B SA 13324

FIGURE A-8 NET ANNUAL OPERATING COST AS A FUNCTION OF STEAM
VALUE (50 and 100 ton/day design capacities)
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might exceed $5,000/ton of daily capacity, or more than 30% of the
incineratisn plant investment without shredding. Adding such operations

as aluminum recovery would further increase the investment,

On the basis of differences in investment cost per ton of daily
capacfty. operating costs for the small facilities might be expected to
be lower than those for large facilities; they are actually higher, how-
ever, primarily because of labor cost. Increasing the plant size by a
factor of 20, from 50 to 1,000 ton/day, probably increases the work
force by four to five-fold. There is a tremendous saviangs, therefore,
i labor costs per ton of refuse processed for a large plant relative to
a small plant. Estimated total labor costs at the 50-ton/day plant are
about $20/ton of refuse processed, For a 1,000-ton/day plant, the total
cost should be less than $6/ton.? For 50- to 100-ton/day plants, est-
imated annual labor costs are about cons:ant,b so that for a 100~

ton/day facility, the total labor costs would be 3z $10/ton of refuse
processed.

Because of the complexity of some processes being developed for
very large systems, however, the net costs of operating the facilities
are not projected to be low. To provide some perspective concerning
estimated net annual operating costs per ton for large facilities using
pyrolysis processes, Table A-19 from a study prepared by Bechtel Corpor-
ation is shown. The processes considered included the Andco Torrax pro-
cess, the Union Carbide Purox process, and the Occidental flash pyroly-
sis process. The costs must be considered preliminary estimates because

none of these processes has been commercially demonstrated. To provide

%The assumption for the plants ranging in carncity from 50-100 ton/day
was that two operators are required per shift.

bBased on data from the Edison Coordinated Joint Re;ional Solid Waste
Energy Recovery Project conducted by Bechtel (April 1977). Data are

for an Andco Torrax facility with a capacity to process 1,000 ton/day
of MSW.
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Table A-19
ESTIMATED INVESTMENT AND NET OPERATING COSTS FOR LARGE PYROLYSIS SYSTEMS

Net System Cost for Primary Sites as of the First Year of Operation
($/ton solid waste)

: Pyrolysis System
System Capacity Union

(tons/day) Site Andco Carbide Occidental
500 Santa Barbara County
Juvenile Hall 30.97 - -
Los Angeles County -
Long Beach
1,000 Spring/California 16.85 22.59 18.83
1,000 Spring/California
(PUROX-electricity) - 25.91 -

Ventura County

1,000 Mandalay 16.74 18.67 18.83
1,500 Mandalay:
Ventura Cost 15.41 13.82 14.34
Santa Barbara Cost 22.08 20.60 21.01

Estimated Capital Costs Escalated to the Midpoint of Construction
($ thousands)

Pyrolysis System

System Capacity Union
(tons/day) Site Andco Carbide Occidental
500 Santa Barbara County
Juvenile Hall $38,471 - -

Los Angeles County -

1,000 Spring/California $51,330 $71,405 $49,374
1,000 Spring/California
(PUROX~-electricity) - $64,479 -

Ventura County

1,000 Mandalay $51,134  $61,332 850,007
1,500 Mandalay $74,523  $82,468 $65,978

Source: Edison-Coordinated Joint Regional Solid Waste Energy Recovery Project
Feasidility Investigation, report prepared by Bechtel (April 1977).
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demonstrated. To provide some perspective on the costs for a proven
process such as a Von Roll water-wall incineration facility (producing
steam), the Saugas, Massachusetts, facility requires a tipping fee of
approximately §$15/ton of refuse. It appears unlikely that the Navy will
be able to send refuse to large resource recovery facilities located
near Navy operations for much less than a tipping fee of $10/ton. 1In
many cases, the fee will be considerably higher than this, and a signi-

ficant hauling fee may also be required to transport the refuse to the
facility.

G. Summary of Findings

Figures A-9 and A-10 summarize the results of the economic analy-
sis. The net annual operating costs are plotted as a function of plant
design capacity and steam value. Figure A-9 presents costs for facili-
ties without fabric filters for particulate control and Figure A-10

illustrates costs for facilities with fabric filters.
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V FUTURE RESEARCH NEEDS

On the basis of the findings of this study of shop~fabricated

incinerators, we have identified the following topics as possible sub-

jects for further research and evaluation by the Navy (possibly in coop-
eration with DOE and EPA):

(n

(2)

(3)

(4)

(s)

(6)

N

A preliminary technoeconomic evaluation of the 0'Connor com-
bustor, including a site visit to the 50-ton/day plant in
Yokohama, Japan.

A preliminary technoeconomic evaluation of a fluidized bed
combustor (preceded only by a trommel) for solid waste combus~
tion at Navy installations with more than 50 ton/day of solid
waste.

A study of the operating characteristics, performance, invest-
ment, and operating costs for particulate control devices for
small capacity solid waste combustion units (20 to 200
ton/day).

A study of the costs for controlling nuisance odor problems at
resource recovery plants by means of scrubbing building venti-
lation system exhaust.

A study of possible design improvements for shop~fabricated
incinerators to achieve more complete combustion of fixed car-
bon in ash and to achieve better process control,

A continuing review and evaluation of developments in small-
scale solid waste conversion units, with written reports pre-
pared annually on significant design improvement. (Auger bed
incinerator development is a possible subject to be included,
as well as updates on gasification and pyrolysis units.
Identification of developments in Burope with mechanical grate
units is another possible topic.)

A review of Navy solid waste components that if combusted
could result in the emission of significant quantities of non-
criteria air pollutants.
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