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I. Introduction

In this paper, the modeling of 2-D linear and shift-invariant systems given

by their input/output data will be considered. This problem will be studied both

in the deterministic case, i.e. when the point spread function of the system is

known, and in the stochastic case when only input and output covariances are given.

For convenience, we shall restrict our attention to the case of single input-

single output systems.

In the deterministic case, the realization problem will be formulated as a

2-D Padg approximation problem. Thus, given a point spread function

g(z,W) = gi. z (1)

we shall approximate g by rational functions

^(z,W) = b(zW) (2)a(z,w)

where a and b are 2-D polynomials. Such a problem has been considered by Chisholm (

Hughes Jones and Makinson [2], Graves-Morris, Hughes Jones and Makinson [3] among ot

but the results discussed here will be somewhat different. The main difference is

that the realization algorithms presented in Sections II and III are recursive.

These algorithms extend to the 2-D case a realization procedure originally intro-

duced by Lanczos [4], Berlekamp [5], Massey [6] and Rissanen [7] in the 1-D case.

The recursions that we obtain exploit the properties of Hankel block Hankel matrices

These properties can be used to relate the recursions obtained for g to those de-

rived by Jackson [8] for 2-D orthogonal polynomials on the hyper real line.

In Section IV we study the relation existing between the 2-D partial realiza-

tion problem considered here and the complete reali'zation problem studied by Ho

and Kalman [9], Silverman [10] and Youla and Tissi [11] in the I-D case, and by

-1-



-2-

Fliess [12], Fornasini [13], Clerget [14] and Kao and Chen (15] in the 2-D case.

By doing so, we obtain a set of simple conditions on the Markov parameters of g

that can be used to verify whether the partial realization = b/a is also a com-

pLte realization, i.e. whether 9 = g.

The stochastic realization problem is considered in Section V and is formu-

lated as an autoregressive modeling problem. Thus, if the system considered is

linear and shift invariant, and if it is driven by a 2-D white noise process u(ij),

the output process will be modeled as

y(i,j) + aI(k,t) y(i-k,j-Z) = u(ij) (3)

I-(0,0)

where I is a causal asymetric half plane set of the type considered in [16]-[18].

The coefficients aI(k) of the filter (3) will be selected so that

y(i,j) = "7 al(k,Z) y(i-k,j-Z) (4)

I-(0,0)

is the linear least-squares estimate of y(ij) given observations over the set

I(ij) = {(i-k,j-Z) : (k,t) e: I - (0,0)1.

To solve this linear least-squares estimation problem, we shall use a 2-D version

of an algorithm originally introduced by Levinson [19] in the 1-D case. The re-

cursions that we obtain for ai(.,.) were first described in [20], [21], and they

differ from those presented by Justice [22] by the fact that the orders n and m of

aI in z and w can be increased separately (Justice's recursions were requiring that

either n or m be fixed a priori). These recursions present also some similarity

with the recursions derived by Genin and Kamp [23] for 2-D orthogonal polynomials

on the unit hypercircle (see [17]-[18] and (24]-[27] for more details).



-3-

In addition, we relate the stochastic modeling problem to the spectral

factorization results of Helson and Lowdenslager [28], Pistor [29], Ekstrom and

Woods [16], Murray [30] and Genin and Kamp [18]. It is shown in this context

that when the domain I becomes infinite, aI(z,w) converges to the spectral factor

of the output spectrum r(z,w). Finally, the Section VI contains some observa-

tions on some open problems and on possible extensions of the results discussed

here.

* I
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II. The 2-D Padi Approximation Problem

Throughout the following sections, it will be assumed that the 2-D transfer

function g(z,w) that we want to realize is a South-West (SW) quarter plane causal

filter, i.e.

g(z,w) = gij z 1
w' (5)

i>0, j>o

so that g(z,w) will be modeled by a transfer function = b/a such that
n m

a~z,) ijzn-i M-j
a(z,) = I a i m , a0 0 = 1 (6a)

i=0 j=0

is monic, and

n m

b(z,w) = I b ij zn'ipm'j (6b)

i=o j=0

There is no loss of generality in making the previous assumption since an arbitrary

transfer function g(z,w) can always be decomposed into four parts which are causal

in each of the four quadrants, i.e.

g = gsw + gNW + gSE + gNE

These four parts can then be approximated separately.

In the following, we shall consider two types of Pad6 approximants for g.

Definition Let J(z,w) = b(z,w)/a(z,w) be a 2-D rational function. Then ^ is said

to be a rational Pad6 approximant of g in the domain D C 2 if
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g(zW)- (zW)= dziz -Wj (7)

(i,j) e D

where 6 is the complement of D. Similarly, 9 is said to be a modified Padg approxi-

mant of g over the domain A C ? if
d. ,

a(z,w) g(z,w) - b(z,) =W (8)

(i,j) A

where A is the complement of A.

The motivation for making the distinction between the problems (7) and (8) is

that it is not always possible to convert a rational approximation problem into

a modified one and vice-versa. An example of domain of modified approximation

that cannot be converted into an equivalent domain of rational approximation is

described in Figure 1. In this case, the parameters of a(z,w) and b(z,w) satisfy

2(n+l)(m+l) linear constraints, but if we consider = b/a, the Markov parameters

gij of g(z,w) are matched by those of ^ only over the domain

D(n,m) = {(i,j) : (0,0) < (i,j) < (n,m)}

which contains (n+l)(m+l) parameters. The modified approximation problem associated

to Figure 1 will be considered in Section III. However, we shall consider also

several geometries of rational approximation that can be converted easily into modi-

fied ones. The Figure 2 describes several cases that will be discussed below.

To justify the study of both the problems (7) and (8), it is useful to note

that when = b/a is rational, the rational approximant g and the modified approxi-

mant g are such that

---". . . .. . . ' . . . . .. . - " ".... . .III . . . .. .. . .. . . .. . . .. . ]1. . . . ' . . ....- . ... g. . . . .... lm . . . . . .Il
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provided that the domains 0 and A are chosen sufficiently large. In the remainder

L of this section we shall discuss the rational approximation problem for the cases

A -C of Figure 2.

Case A: This case was the one considered by Chisholm [1], Hughes Jones and Makin-

son (2] and Graves-Morris, Hughes Jones and Makinson [3]. In this case, the Pad6

approximants have several interesting properties (such as invariance under a large

class of transformations), but this geometry does not permit the efficient exploit-

ation of the shift-invariance properties of the realization problem. This means

that the Pad6 approximants tn,n (z,w) where

n - degz a = deg a

cannot be computed recursively.

Case B: If the domain of rational approximation is given by

D(p,q) = {(i,j) : (0,0) < (i,j) < (p,q)} (9)

and if we assume that

(n = deg z a, m = deg a) < (p,q)

then the rational approximation problem (7) can be transformed into an equivalent

modified approximation problem where the domain A of approximation is given by

A(n,m; p,q) = {(i,j) (-n,-m) < (i,j) < (p-n, q-m)}. (10)

This means that if we denote by HA the projection operator which selects the co-



efficients of a Laurent power series

h(z,w) h.. z- iW3

which belong to 6, i.e.

1 h(Z' W) h.. z- iW-

then a~z,w) and b(z,w) satisfy the equation

TA(n,m; p,q) a(zw) g(z,w) - b(z,w) 0 .(11)

Consequently, the coefficients of a(z,w) and b(z,w) obey a set of linear

equations given by

b gik~- akt (ij) e D(n,m) (12)

D(n,m)

0 = i-k,j-t ake, (ij) E: D(p,q) -D(n,m) .(13)

D (n ,m)

By scanning the set D(p,q) row by row and by denoting

a.(~) i b j (np b 0 < j < Mn (14a)

0 0p-n p-n
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, goj

gij - 1 \1 1

G (p) (14b)

N. N,
N,

'g gij goj

where 0 is a zero p-n x 1 vector, we can rewrite (12) and (13) in matrix form.

Indeed, if 0 denotes the matrix Kronecker product, and if we define( a0(n;p) b 0(n;p)

a(n,m; p,q) = a(n;p) b(n,m.; p,q) = bm(n;p)

Oq-m 0 Op+ I  Oq-m Q Op+l

G o(P)0

G(p,q) ((15)

Gq(p) G1 (p) Go'p)

it is easy to see that (12) and (13) are equivalent to

b(n,m; p,q) a(n,m; p,q) (16)

This equation has several interesting features. One of them is that G(p,q) is

a block lower triangular Toeplitz matrix whose blocks are themselves lower trian-

gular Toeplitz. This property will be denoted as G(p,q) e LT2 , and it will be

shown below that this structure has several advantages. Another interesting aspect

.l'N .....
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of (16) is that the coefficients of b(z,w) are entirely given by those of a(.,.),

so that the main problem is to compute a(.,.).

To solve (16), one needs to match the (p+l)(q+l) elements of A(n,m; pq) with

the 2(n+l)(n~l) coefficients of a(.,.) and b(.,.), so that we have to select p and

q such that 2(n+l)(m+l) > (p+l)(q+l). One such choice is given by

p = 2n + , q = m (17a)

or symmetrically by

p = n, q = 2m + I (17b)

This choice corresponds to the geometry C of Figure 2. Other choices are possible,

but they do not seem to give rise to recursions in n and m for the polynomials

a(.,.) and b(.,.). Another approach that will be considered in Section III is

when

p = 2n + , q = 2m + 1 (18)

and when only the parameters of the subset of A(n,m; 2n+l, 2m+l) described in

Figure 1 are matched. As we shall see, this case is the most closely related to

the I-D case (it depends on the properties of 2-D Hankel matrices).

Case C: If p and q are selected as in (17a), we can denote by

bn,m (z,W)

n (z,W) = a ,
nm a n (ZW, )

the Padd approximant that matches the Markov parameters gij in the domain D(2n+l,m).

Since an,m (z,w) is chosen to be monic (i.e. its leading coefficient a n,m 0)=l),

the number of free coefficients of n,m (z,w) is only 2(n+l)(m+l)-l, which" is one



less than the number of parameters in D(2n+l, m) or in A(n,m; 2n+l, in). Therefore,

it will be assumed in the following that the coefficient of z- W)~ in A(n,m);

2n+l, mn) is not matched. In this case, (11) becomes

11a (z,w) g(z,w) = b (z'W) + a z (19)A-1m 2n+l, m) n,in n,in n,in

where 6 is the residual corresponding to the mis-match of z(nln,in

-~ Since A(n,m; 2n+l, mi) =-D(n,m)U X(n,in), where

-D(n,in) = {(i,j) (-i,-j) e D(n,m)}

YE(n,in) = {(i,j) (il )E: D(n,in)}

we can decompose (19) into two parts:

IIDnm a nm(z,w) g(z,w)= b nm(W)(20)

expresses b nm(z,w) in function of a nm(z,w), and

IT y(n ,m) a n m (Z'W) g(z,w) = 6 ~ Z- (nl) Wm (21)

is the equation satisfied by a (z,w). To obtain the matrix form of these equa-n in

tions, one can denote by

a~n ~ a 0 a(n,m) b b0~m = b(n,m) (2(~~m a 0(n,m) (~~m b 0 (n,n) (2
a m(n,m) b m(n,m)

with

a .(n,n) a (n':(ij) P b .(n,n) b~ n (i~j)J

aI'm(~j n,m (n,j)1
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the vectors which are obtained by scanning the coefficients of a nm(z,w) and

b nm(z,w) row by row. In this case, (20) can be written

b(n,m) = G(n,m) a(n,m) (23)

~.i. where G(n,m) is defined as in (15). Similarly, one can define

/gn~l j i
T (n) (24a)

and

T (n)
0 

0

-r(n,m) N,- (24b)

T m(n) T I(n) T 0(n)

*where the matrix T(n,m) has a lower triangular Toeplitz block Toeplitz structure.

Then, if we introduce

* 1 0

0
d(n,m) m 1 ~ 0 n 1~l (25)

0

n,m
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the matrix form of (21) is given by

T(n,m) a(n,m) = 6(n,m) (26)

To compute a(n,m) and b(n,m) recursively, we will now exploit the structure of

the matrices G(n,m) and T(n,m). This gives the following recursions.

Increase in m

The lower triangular structure of t (n,m) can be exploited by assuming that

in (22) the vectors a (n,m) do not depend on m, i.e.

JL
a.(n,m) = a (n) for all j. (27)

This implies that the vectors b. (n,m) do not depend on m either. Thus, given

a(n,m) and b(n,m), to compute a(n,m+l) and b(n,m+l), we need only to find am+l (n)
and b m+l(n). This can be done by direct substitution, so that

m
a (n)= T (n) T (n) am+ (n) (28)aM+1 ~ -

j=l

m+1

b n+l (n) = G. (n) aM+1. j (n). (29)

j+0

-Since T0(n) is a Toeplitz matrix, its inverse can be computed with 0(n ) opera-

tions by using the inversion algorithm of Levinson [19] and Trench [31], or with

2
0(n log n) operations if we use a more efficient version of this algorithm based

on doubling ideas (cf. Gustavson and Yun [32], Morf [33] and Bitmead and Anderson

(34]). In addition, since the matrices T.(n) and G.(n) have a Toeplitz structure,

the vectors T (n) a (n) and G (n) a (n) can be computed by using fast con-
Sm+l-j l-

volution algorithms. This shows that the number of operations required by the re-

cursions (28) and (29) is 0(mn log n).



-14-

Increase in n

To compute a(n~l, m), we can use the Toeplitz structure of T. To do so, we

consider the identity

a 0(n) 6 (n)

a (n) 6 (n) 0

0

T (n,m)
a _ (n) 0

am(n) am_1 (n) a0 (n) 6(n)

a(n,m) a(n,m-1) a(n,0) (30)

where

0

6(n.) I n +

0

6n

Then, in order to replace the row by row scanning of the set of D(n,m) by a column

by column scanning, we can define the transformation

P(n,m) = I 0 In+I

where A 6 B denotes the Paley product of two matrices. If A and B are some matrices

of size n x n and m x m, this product is defined as

A consequence of the structure (27) for a(n,m) is that the residual 6 does

not depend on m. nm
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A

A OD B

m

where B. is the jth row of B. By multiplying the rows and columns of T(n,m) by

P(n,m), and by observing that P(n,m) = pT(nm) = I'(n,m), one can rewrite (30) as

10

T(n,m) A(n,m) = I (31)
1

0

A(n,m)

Here, we have

T n+(m T(M)N

A(n,m) 

\ N (32a)
N

2n(m) T (m)T Cm) n+i.

with

gio

A m gil gio 0T \ " (32b)
1 N

N

\ \
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and

A0 (n,m)

Am

A(n,m) A nm (33a)

A n(n,m)

with

a n (i,O0)

a n (i,) a n (i,O0) 0
A nm N 1 (33b)

N,

a~ (i,m) a n(i,l1) a n(i,O0)
n

where a~ (ij) - a (ij) is the (i,j) cefcen fa (zwie
nn,m cofiin fan,m zwie

n m
a (z,) a (,j) n-i Wm-3

n~m n ,m

i=O j=O

(observe that the structure (27) for a(n,m) implies that a (ij) does not
n,m

depend on i). Also, the m + 1 x m + matrix A(nm) is given by

IA

andAI~m - da { A°n n ' (34

The main aspect of (31) is that i(nm) and A(nm) have both lower triangular

Toeplitz (LT) block entries. Since the algebra of LT matrices is closed (the

product of two LT matrices is commutative and LT, the inverse of a nonsingular

LT matrix is LT), one can operate on the blocks T.i and A.i as if they were scalars.

This means that to solve (31) efficiently, we will need only to exploit the block

Toeplitz structure of tr(n,m). This will be done by using a set of recursions de-

rived originally by Lanczos [41, and introduced in the context of realization theory

.
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by Kung [3S1 and Kailath [36].

These recursions are based on the observation that we have

0 0
0 0

T ;+ ) A (i, m) ___ ___ ____

4. - A
A(n,m) A(n-i,m) A(n,m) 0 &(n-l,u)

AA A

R(n~m A~n R(n-l,m)

0 S(n,m) R(n,m) S(n-l,m)

* (35)

* Iwhere R(n,m) and S(n,m) are LT matrices since they are obtained as the combina-

tion of LT matrices. Consequently, if we define

M(n,m) =A (n-1, m) Anm 3a

M)A 
M)l

NI(nm) =A 1(n~m R(n,m) - A (n-1, m)R(n-i, m) ,(36b)

the matrix

0 0
0

A(n~l, m) = A(n,m) -N(n,m) -M(n,m)

A(n,m) A(n-l, m)

0

(37)

will satisfy the equation (31), provided that we replace n by n + 1. In this

case, the new residual is given by

A AAA

A(n~l, m) =S(n,m) - R(n,m) N(n,m) - S(n-l, m) M(n,m) (38)
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Since LT matrices form a closed algebra, the recursions (37) involve only the

multiplication of m + 1 x m + 1 LT matrices. Therefore, the recursions (37)

require only O(nm log m) operations if one used fast Fourier transform techniques

to multiply LT matrices.

Remark The LT matrix A(n+l, m) obtained in (38) is not diagonal in general.

If one wants A(n+l, m) to be diagonal as in (34), one needs only to factor

A(n+l, m) in its lower triangular part with unit diagonal, times its diagonal

AA

part. Then, we can renormalize A(n~l, m) accordingly.

Another useful observation is that the residual matrices A(n,m) = diag {6 n

have to be assumed nonsingular for the previous algorithm to be valid. When

6 = 0 for some n, a generalized set of recursions (the Berlekamp-Massey recur-
n

sions) have to be used. These recursions were introduced in the 1-D scalar case

by Berlekamp [5] and Massey (6], and then generalized to the 1-D matrix case by

Dickinson, Morf and Kailath (37]. However, we will not consider this case here,

and it will be assumed that 6 # 0 for all n.~n
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III. A Modified Approximation Problem

The geometry L(n,m; 2n+l, m) is not the only one for which the modified Pade

approximation problem (8) has a recursive solution. In this section, we shall

consider the geometry A(n,m) described in Figure 1. As mentioned earlier, the

j modified approximation problem associated with A(n,m) does not admit an equiva-
A

lent formulation in terms of rational approximants. However, if gn,m(Zw) =

b (z,w)/a (z,w) is the modified Pads approximant associated with A(n,m), we
n, m n,m

shall show that the polynomials a (z,w) and b (z,w) obey a set of recursions
n ,m n,m

similar to those obtained by Jackson [8] for 2-D orthogonal polynomials on the

hyper real line.

The first step is to decompose A(n,m) as A(n,m) = -D(n,m) U D (n,m) with

D+(nm) = {(ij) : (i-l, j-1) e D(n,m)}.

Then, by considering the equation

lA(n,m) a n,m(zw) g(z,w) -b n,m(z,w) = 0 (39)

we can verify that b (z,w) obeys the same equation as in Case C of Section II
n,m

(it is given by (20) or (23)). However, an,m(zw) satisfies a different relation

given by

D+(n,m) an(ZW) g(z,W) = Zn,m z-(n + l) W-(m+l) (40)

provided that we assume that the coefficient of z(n+l) (ml) is not matched.

Note that, as in Case C of Section II, the polynomial a (z,w) has only

(n+l)(m~l) - 1 free coefficients, or one less than the number of parameters in

D+(n,m). If a(n,m) denotes the vector obtained by scanning the coefficients of

a n,m(z,w) row by row, (40) can be tranformed into
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T(n,m) a(n,m) =e(n,m) (41)

where

e(n,m) =ml + 1' n f 1 (42)

and

H wth n,m) = ~~if) ~(43a)

The atrx T~~m)isT oelit bln) Toepl marx(ndino)spnst

andg~l ifoedeie

T ~ ~ m (n 0 N+P (44)
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the matrix H(n,m) has a Hankel block Hankel structure. It differs however with

the Hankel matrices introduced by Fornasini [13] and Kao and Chen [15] to study

the 2-D realization problem. This difference will be explained in Section IV,

where it will be shown that the Hankel matrix H(n,m) does not play as central

a role in the characterization of rational functions g(z,w) = b(z,w)Ia(z,w) as

it did in the 1-D case.

The Hankel structure of H(n,m) can be exploited to relate the partial reali-

zation problem (41) with the theory of orthogonal polynomials on the hyper real

line. To do so, we consider a nonnegative weight function p(x,y) defined on R

and we denote the moments of p by

h.. = xi y i(x,y)dxdy (45)

Then, the matrix

H0 (n) H 1 (n) Hm (n)
0/

H(n,m) H H1(n )  (46a)
A

A

H (n) H (n)
M 2m

with

h. h h
oj lj nj

H (n) h 1lj (46b)

hA hnj 2nj

can be used to characterize the inner product of polynomials of degree less than

n and m in x and y. If a(x,y) and b(x,y) are two such polynomials and if we de-

note by a and b the vectors obtained by reversed row by row scanning of the
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coefficients of a(x,y) and b(x,y), we have

<a,b> a(xy) b(x,y) iJ(x,y) dxdy = b * T H(n,m)a . (47)

Also, if we consider

n m
a~x,y). a" xn-i ym-j

i=0 j= a

and if a and a denote the vectors of coefficients of a(x,y) obtained by direct

and reversed row by row scanning, one has

a = (J ) a  (48)
m+l l

where

aa
0 0

a = a and a. = a

a ma nj

Consequently, if a (x,y) is a monic polynomial such that a (X,y)IL x yj for
n ,m n,m'

(0,0) < (ij) < (n,m) and if one denotes

<a ,xn ym> = nmn,m' ~

the vector a (n,m) of coefficients of a (x,;) satisfies the equationn,m

H(n,m) a (n,m) = e(n,m) (49)

where e(n,m) is defined as in (42). By taking (44) and (48) into account, this

shows that the coefficients of a n,m(x,y) satisfy exactly the same equation as the

coefficients of a n,m(zw) in the partial realization problem. This observation sug-

gests that the recursions derived by Jackson [8] for the orthogonal polynomials
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anm (x,y) can be adapted to the approximation problem considered here. The only

difference between these two problems is that in the- study of 2-D orthogonal

2
polynomials on R , the Hankel matrix H(n,m) of the moments of j(x,y) is nonnegative

definite, while this is not usually the case when H(n,m) is constructed from the

Markov parameters of g(z,w). However, as we shall see, this difference does not

play a role in the recursions satisfied by a (Zw).

Auxiliary Solutions

One of the main features of Jackson's recursions and of the recursions that

we shall present below is that they require the introduction of several auxiliary

solutions. At stage (n,m), we will introduce n + m + 1 modified Pads approximants

which will be divided into n + I horizontal approximants and m + I vertical approxi-

mants. The horizontal approximants will be denoted

A i

g(z,w) = k, (z,w)/h (Zw) (50)
n ,m n ,m

with 0 < i < n. They are such that

n

h 1 W m + hi e(k,O)zn-km
n ,m n,mk=n-i+l

n m

+ h i (kt) zn-k m-t (51)

k=O t=l

is an asymetric South-west (Sw) causal filter and such that g = k /h is a
nm n,m

modified Pads approximant of g over the domain A described in Figure 3a. This

means that k (z,w) and hi (z,w) satisfy, respectively, the equations
n ,m n ,m

l_ hi (z,w) g(z,w) = k' (z,W) (52a)-D(n,m) n ,m n ,m

D+nm hn(ZW) g(z,W) = 6:im(z)z-(n+l) -(m+l) (52b)
Dn hn ,m nm z
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where 61 (z) is a polynomial in z only such that
n,m

deg 6 1~ (z) = n-.(53)

Similarly, the vertical approximants will be denoted

g(z,w) = uJ  (z,w)/V j  (ZW) (54)
%'m n,m

where m

V J (Z') =z nJ + vi (0,1)znWmz

n nm
+ v~~£-j.kt zl -Z(5

k=l e=o

is a West-south (Ws) filter with 0 < j < m and where = nj vm is a modified

Pad6 approximant of g for the geometry A described in Figure 3b. Therefore, the

polynomials U3 (z,w) and vi (z,w) satisfy the equations
n ,m n ,m

f- nm (z'W) g(z,w) = UJ (ZW) (56a)-D(n,m) vnm n,m

v (z,W) g(z,w) = " M Z-(n+l)-(m+l) (56b)D+ n,m n, m

where YJ (w) is a polynomial in w only such that
n,m

deg Yj() = m - j. (57)

The total number of auxiliary approximants is only n + m + 1 if one observes that

(z,W) = kn (Zw)/hn (ZW) = um (z,w)/Vm (zW)
n, m n ,m n ,m n, M

= bn,m (z,w)/a n,m(z,w) (58)

n -m-----
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-n _____________

01 n+1

]L -M

Figure 3a The Domain of Approximation of k' /h
n M n,m

'1+

-n I

0 1 in+1

/-M

Figure 3b The Domain of Approximation of uj /V)
n ,m n,m
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is the quarter plane Pade' approximant that we want to compute.

The equations (52) and (56) can be written in matrix form by scanning

the coefficients of ki ,h ,U~ and v row by row and by denoting byn,m' n,m' n,m n,m

*K(n,m) = (k 0(nm)......kn (n,m))

L(n,m) = (h 0(n,m)......h n(n,m))

* and

JIU(n,m) = (u 0(n,m)......um(n,m))

V(n,m) = (v 0(n,m)......v m(n,m))

the block matrices obtained by grouping the vectors of coefficients of k~m h
nM n'M

and U'm v~ Then, the numerators satisfy the relationnM n 'm

(K(n,m), U(n,m)) = G(n,m) (L(n,m), V(n,m)) (59)

where G(n,m) is given by (1S), so that the main problem is to compute L(n,m) and

V(n,m). To do so, we shall use the identity

T(n,m) (L(n,m), V(n,m)) =(D(n,m), CQn,m)) (60)

where T(n,m) is given by (43) and D and C are matrices of respective size

(n+l)(m~l) x (n+l) and (n~l)(m~l) x (m~l) which are given by

0

D(n,m) =m e1 * i(n,m) (61a)

0

and
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C(n,m) =r(n,m) 0 n + 1 (61b)

0

1

Here, A(n,m) and r(n,m) are the n + 1 x n + 1 and m + 1 x m + 1 matrices whose

columns A (n,m) and rJ(n,m) are given, respectively, by the coefficients of the

residual polynomials 6' (z) and Ym (w). An important feature of A(n,m) andresdul olnoias n,mZ an m

r(n,m) is that these matrices are lower triangular. This property is a consequence

of (53) and (57).

Increase in m

* iThe introduction of the auxiliary solutions L(n,m) and V(n,m) is motivated

mainly by the fact that these solutions can be computed recursively. To do so,

we shall use an algo-ithm based on the block form of the recursions discussed in

Lanczos [4]. The main difference with Lanczos' recursions is that when m is in-

creased to m + 1, one has not only to compute L(n,m+l), but also V(n,m+l) (note

that this requires the construction of one additional auxiliary solution since at

stage (n,m+l), there are m + 2 vertical approximants). Thus, we have

Computation of L(n,m+l)

One uses the identity

0 0

0

T(n,m+l) L(n,m)

L(n,m) L(n,m-1)
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0

(62)
A(n,m) 0 A(n,m-1)

R(nm) A(n,m) R(n,m-1)

S(n,m) R(n,m) S(n,m-l)

which is similar to (35) with one important modification: instead of being lower

triangular Toeplitz (as for T(n,m)) the blocks of T(n,m) are fully Toeplitz. This

difference is significant since the algebra of Toeplitz matrices (unlike the alge-

bra of lower triangular Toeplitz matrices) is not closed. In fact, its closure

is formed by the sums of products of lower times upper Toeplitz matrices (see,

e.g., [38], [39]). This means that the block entries of L(n,m) as well as A(n,m),

R(n,m), S(n,m) are not Toeplitz in general. These matrices are usually arbitrary.

Thus, if as in (36), we define

M(n,m) = A-1(n,m-1) A(n,m) (63a)

and

N(n,m) = -1(n,m) R(n,m) A - 1(n,m-l) R(n,m-l) (63b)

the recursions

0 0

0

L(n,m~l) = L(n,m) N(n,m) - M(nm)

L(n,m) L(n,m-l)

0 (64)
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require O(mn) 3operations instead of O(mn log n) for the corresponding recursions

in the geometry C of Section II.

Computation of V(n,m~l)

The first step is to observe that

T(nm+l) L(n,m+l) = C(n,m) 0 (65)

P(n,m) A(n,m+l)

Therefore, if we introduce

Q(n,m) A-1 (n,m+l) P(n,m) (66a)

and

10
V(n,in+l) ) - L(n,m+l) Q(n,m) (66b)

the matrix V(n,m+l) satisfies the equation4

T(n,m+l) V(n,m~l) = C(n,m) (67)( 0
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This implies that the first m + 1 columns of V(n,m~l) are given by V(n,m+l).

To obtain the new auxiliary solution (i.e. the last column of V), one needs only

to note from (58) that the last column of V(n,m+l) is the same as the last column

of L(n,m+l). But this column has just been computed, so that

V(n,m+l) = ((n,m+l), hn(n,m+l)). (68)

The number of operations required by (68) is also 0(mn ).

Increase in n

Due to the symmetry of the domain of approximation A(n,m), to increase n

one can use the same recursions as for m, provided that the set D(n,m) is scanned

column by column instead of row by row, and that the roles of L(n,m) and V(n,m)

are exchanged, as well as those of n and m.

Remark 1 There is a significant difference between the previous recursions for

the Pads approximants h and vm and those derived by Jackson [8] for 2-D
n,m nm

orthogonal polynomials on R 2 . This difference arises from the fact that there are

several complete orderings of the monomials xi yj which are compatible with the

partial ordering

iij k L
x y x y iff i< k, j <.

The ordering considered by Jackson was based on the degree of the monomials

xi yJ, i.e.,

degx y = i + j

i . k t . i xk L i jso that one had x y<x y if either deg x yJ < degx y of if deg x y =

deg xk y and j < L. Then, Jackson's orthogonalization procedure was based on
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using the polynomials of degree n and n - 1 to compute those of degree n.

By comparison, the method that we have used to compute hi (resp. vn)J is
n ,m n m

based on a simple row by row (resp. column by column) lexicographic order of the

monomials zi W. In this framework, instead of performing a complete row by row

A scan of iN (the rows would be infinite), we truncate the rows to length n, i.e.,

we consider the monomials z i & such that i < n, and we have

Sk
" "zi Wj < zk W

.Vjif either j < Z or j = t and i < k. Then, the recursions for hn involve either

an order increase (m * m+l) or a change of truncation (n - n+l).

Remark 2 Since a(n,m) = hn(n,m) = vm(n,m), the previous recursions enable us

to compute a(n,m). To compute b(n,m), one needs only to observe that b(n,m) =

kn (n,m) = um (n,m) and that

(K(n,m), U(n,m)) = G(n,m) (L(n,m), V(n,m))

so that the matrices K(n,m) and U(n,m) obey exactly the same recursions as L(n,m)

and V(n,m). The same observation holds for the computation of the numerator

b(n,m) in the geometry C of Section II.
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IV. Complete Realization of 2-D Transfer Functions

The previous partial realization schemes can be related to the results

obtained by Fornasini [13], Clerget [14] and Kao and Chen [15] for the study

of the complete realization problem. In this case, we want to characterize the

2-D quarter-plane transfer functions g(z,w) which are rational, i.e., such that

g(z,w) - b(z,w)/a(z,w)

and such that a(z,w) has degree (n,m).

Then, if one considers the geometry B of Figure 2, for all (p,q) > (n,m),

the rational function g(z,w) satisfies

A(n,m;p,q) a(z,W) g(z,A) - b(zw) = 0 (69)

" 2 where A(n,m;p,q) is defined as in (10). This means that by decomposing the domain

6(n,m;p,q) as A(n,m;p,q) = -D(n,m) U A(n,m;p,q), where A(n,m;p,q) is the complement

*of -D(n,m) in A(n,m;p,q), one has

* "(n,m;p,q) a(z,w) g(z,W) = 0 . (70)

This identity can be used to characterize the transfer functions g(z,w) which admit

a rational realization of degree (n,m). To do so, we rewrite (70) in matrix form

by introducing the matrices

T (n;p) T (n;p) . . . Tl(n;p)
M+1 m1

T(n,m;p,q) = T M+2(n;p) T M+in;p). . T2 (n;p) (71a)

T (n;p) T (n;p). . . T (n;p)
q q-1 q-m
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To (n; p)

T, (n; p) To (n; p)

T (n, m; p) =(71b)

T m(n; p) T Cn; P) T Cn; pl

em~ (n 6m (n) . . . .6 1 (n)

e m+2 (n) em,1 (n) .. . . 2 (n)
e(n,m;q) =.(71c)

q q1q -m

where

T (n;p)

and

e.i(n;p) =l o

Then, if we define
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S(n,m;p)•

" Z E(n,m;p,q) - Tnm;p,q) ,(72)

6 (n, m;q)

and if a denotes the vector obtained by scanning the coefficients of a(z,w) row

by row, (70) can be written as

E(n,m;p,q)a = 0 (73)

This identity leads to the following realization criterion for g(z,w).

Theorem (cf. Kao and Chen (15])

If .(n,m)4 E(n,m; 2n+l, 2m+l), the transfer function g(z,w) has a rational

realization of order (n,m) if and only if

rkZ(n,m) = rkZ(n,m;p,q) = (n+l)(m+l) - 1 (74)

for all (p,q) > (2n+l, 2m+l), and if the first nm + n + m columns of Z(n,m)

are independent.

The main aspect of this result is that it depends on the 3(n+l)(m+l)x(n+l)(m+l)

matrix E(n,m) which does not have either a Toeplitz or a Hankel structure (note,

however, that in Kao and Chen [15], this matrix is said to be the Hankel matrix

of g(z,w)). By identifying

T(n,m) = T(n,m; 2n+l)

(75)

T(n,m) = T(n,m; 2n+l, 2n+l)

with the matrices defined in (24) and (43), it is clear that the matrix T(n,m)
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(which is obtained by reordering the columns of the 2-D Hankel matrix ?1(n,m))

is only a submatrix of Z(n,m). This shows that, unlike in the l-D case,

H(n~m) cannot be used to characterize the rationality of g.
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V. Stochastic Modeling

In this section, the 2-D realization problem will be considered from a

stochastic point of view. It will be assumed that we are given a 2-D zero-mean

stochastic process y(i,j), (ij) e 72, which is space-invariant, so that its

covariance is such that

r.. = E[y(k+i, J+j)y(k,Z4] (76)

for all (k,k) e 22. Then, we shall seek to find a model for y(ij) which is

both autoregressive and causal, so that

y(ij) + akky(i-k, j-f) = u(ij) (77)

I-(0,0)

where u(ij) is a 2-D white noise, i.e.,

E[u(i,j)u(k,k)] = u 6ik j _£

and where I is a finite and causal subset of Z2 (by causal, we mean that I be-

longs to an asymmetric half plane of 2). The main property of such models is

that if

r(z,W) = r ij z' j

is the spectrum of y(.,-), and if

a(z,w0) = 1 + I aijz - i - j

i-(t)

is the polynomial associated with the filter (77), then
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r (z, w) U (78)

a(z,Wa(zl(z )

is a spectral factorization of r(z,w). The 2-D spectral factorization problem

has already been the object of a large amount of attention (cf. Helson and

Lowdenslager [28], Pistor [29], Ekstrom and Woods [16], Murray [30], Delsarte,

Genin and Kamp [27]), and here this problem will be considered only indirectly.

' -However, one needs to recall the conditions of existence of factorizations

such as (78). If I is chosen to be an asymmetric half-plance, i.e.,

(i) (0,0) C I

(ii) (i,j) E I if and only if (-i,-j) 4 I, unless (i,j) = (0,0)

(iii) if (i,j) and (i',j') e I, then (i+j, i'+j') E I,

and if

72 log r(e'0 , i)dedO >- , (79)
4'r 0 0

it is shown in [28] that there always exists a factorization (78) such that

a(.,.) is stable. However, the support I of a(.,.) is in general infinite.

If I = N2 is the positive quarter plane, it is shown in Murray [30] that the

factorization does not exist, unless the Fourier coefficients

S- log r(e i , e i ) exp. i (k6 + 4)ddk 4r2 0 0

2are zero in the second and fourth quadrant of 2 , i.e., sk = 0 if kk < 0.

In this section, we will be concerned with the problem of finding some

approximants for the spectral factor a(-,.) . This approximation problem will

be formulated as a causal linear least-squares estimation problem for the process

y(.,.). At stage (n,m), we shall consider the set of asymmetric half-plane
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predictors of order (n,m) for y(-,-). There are n~m+l such predictors and,

as in Section III, they can be divided into n+l horizontal predictors h 0 <icn,
n,m, -

and into m~l vertical predictors vim ,O ip. The horizontal predictors are

such that

n

R(t-i, sjH1~ h',m(kO)y(t-k, s)
k=i'.l

n m

-hi (k,X,)y(t-k, s-94) (80)
nm

k=O 2,=l

is the linear least-squares estimate of y(t-i, s) given the observation of y(-,-)

*1 iover the set H described in Figure 4.a (where 0<i<n). These predictors haven m

the property that the error

n ,m nI i

is orthogonal to y(-,-) over the domain H 1i i.e.

i~m

Efe(t-i, sIH3 )y(p,q)] = 0 (82)

for all (p,q) e H1 ' By introducing the vector

y0(t's; n)

Y(t,s; n,m) = jts;n (83a)

yt,s; n)

where
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y(t, s-i)

y (t s;n) (t-,s (83b)

y(t-n, s-j)/

th nm

where h i (n,m) is the vector obtained by scanning the rows of the filter h (..)

n,m

one can rewrite (82) as

R(n,m)h1 (n,iu) = e(n,m) (85)

where R(n,m) =E[Y(t,s; n,m)Y T(t,s; n,m)] is the covariance of Y(t,s; n,m),

and

Fi =m m.1e5'(n,m) .(86)

~ (n~) (i)
i

Here, 6 (n,m) is the n+l-vector obtained by correlating e(t-i, s(H~ %' with the

ii

6 (n,m) itself is always nonzero if the prediction problem is nonsingular, i.e.,

if the mean-square prediction error E[e 2 (t-i, sIH~ ig )]O. The equation (84)

presents the feature that R(n,m) is Toeplitz block Toeplitz. Indeed, we have
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R0 (n) R1 (n). R m(n)

R (n) R0 (n)

R(n,m) - Rl (n) (87a)

R_m(n) R_ 1 (n) R0 (n)

with

r j rlj T rn)

rr

R.(n) _lj * j.(87b)

* j
rnj -lj "Oj

Our main objective here will be to take advantage of this structure to obtain

some recursions for the horizontal and vertical predictors hi  and vi
n,m n,m

The vertical predictors are defined symmetrically. Thus,

m

?(t~s-i V~im= ~vi (0J2)y(t, s-2Z)

nm

n in

-i ~ ~ (k,Y.)y(t-k, s-Z) (88)

k=l X=0

is the linear least-squares estimate of y(t, s-j) given the observation of

y(.,) over the set Vi described in Figure 4.b (where Oj<m). In this case,' n,m

e(t, s-jV J n , m ) = y(t, s-j) - 9(t, s-jVJ n, m ) (89)

is orthogonal to y(" ") over the domain VJ  so that by denoting by v (n,m)n n, m
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the vector obtained by scanning the coefficients of vi .,.) row by row, we

n,m"

obtain 
m

R(n,m)vj (n,m) = nj (n,m) (90)

The vector n&(n,m) is given by

n (n,m) yJ (n, m) 0 n+l (91)

L 0

where y3 (n,m) is the m+l-vector obtained by correlating e(t, s-jIVJ ) with the
Lfly

column vector

50(ts) = y(t, s-j)

y(t, s-M)

By noting that

hO(n,m) * vO (n,m) • a(n,m) (92)

where a(n,m) is the quarter-plane predictor of order (n,m) associated with y(-,.),

we see that the number of predictors introduced at stage (n,m) is only n~m+l.

Then, if one denotes

H(n,m) = (hO(n,m) .. .h (n,m))

V(n,m) - (v (n,m) ...vm(n,m))
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(t -n, s-rn)

*1 Figure 4.a The Prediction Geometry for the Horizontal Predictor hn,m

(t -n,s- m)

Figure 4.b The Prediction Geometry for the Vertical Predictor v)nn
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the equations (85) and (90) can be regrouped as

R(n,m)(H(n,m), V(n,m)) = (e(n,m),n(n,m)) (93)

where _(n,m) and n(n,m) are the matrices whose columns are ei(n,m) and n1 (n,m).

To solve (93), we shall now introduce a 2-D generalization of the recursions

introduced by Levinson (19], and by Krein (40] in the continuous case, to solve

1-D Toeplitz equations.

The recursions that we consider were first presented in [20], (21] and

their main feature is that n and m can be increased separately. By comparison,

we note that the recursions introduced by Justice (22] were requiring that

either n or m be fixed a priori (in fact Justice's recursions were more like

those introduced by Whittle [41) and Wiggins and Robinson [42) to generalize

Levinson's recursions to the I-D matrix case). These recursions differ also

from those considered by Marzetta [24] and Delsarte, Genin and Kamp (18] for

asymmetric half-plane Toeplitz systems in the sense that the recursions derived

by these authors were corresponding to a different geometry involving infinite

vertical (or horizontal) strips.

The first step in the derivation of the 2-D Levinson recursions is to intro-

duce the filters

(zw) - hi (z- -

n,m n,m

v j (z,) - v j  (z W -l (94)
n,m n,m

which are obtained by reversing the direction of propagation of the horizontal

and vertical predictors hi  and vi3 . These filters can easily be seen to pro-
n,m nm

. ..........
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vide the linear least-squares North-east (Ne) and East-north (En) asymmetric

half-plane predictors of order (n,m) associated with the process y(-,.). Then,

* the vectors of coefficients of h*i and v j are given by
n,m n,m

h * i (nm) = m~ l Jnl)h i (nm)

v * j (n,m) = (Jn+l Jn+)v j (n,m) (95)

* *
and if one denotes by H (n,m) and V (n,m) the matrices obtained by regrouping

these vectors, one finds that

R(n,m)(H (n,m),V (n,m)) = (E (n,m), n (n,m)) (96)

* where

0

e (n,m) = 0 A (n,m), A (n,m) JniA(n,m) (97)

0
* * *#

n (n,m) r r (n,m) : , r (n,m) --J r(nm),

the matrices A(n,m) and r(n,m) being the matrices whose columns are 6i(n,m) and

y (n,m). Now, the 2-D Levinson recursions can be described as follows:

Increase in m

To increase m, one has not only to compute H(n,m+l) (this will be done by

using the block 1-D Levinson recursions), but also V(n, m+l), a step that in-

volves the introduction of one auxiliary solution.
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Computation of H(n, m~l)

Consider the identity

0 4(n,m) cg*(fl,m)

R(n, m.l) H(n,m) *-0 0 (98)
H (n,m)

0 ct(n,m) A*(n,m)

where the residuals are

ct~n,m) 4 (R_ (m+l) n R_ I(n))H(n,m)

a (, ) jn+l &n,m)

Then, if we define

0

H(n,m~l) =H(n,m) - H (n,m) nm)(9

0

with

*p(n,m) A A (n,n)(n,m) ,(100)

*the matrix H(n,m~l) satisfies (93), where we have

A(n,m~l) a A(n,m) - a (n,m)p(n,m) (101)

However, iA(n,m~l) is not upper triangular in general as would be required by
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the geometry of horizontal prediction chosen here. To transform it into this

form, one needs only to factor A(n,m+l) in its upper times lower part and

renormalize H(n,m~l) accordingly.

Computation of V(n,m+l)

One needs to note that

( 0 I~ ~m ______l

R(n,m+l) H(n,m+l)J = (n) nml) (102)

*V(n,m) /j rCn,m)0

where

$Cn,in) - (R,(n) .. R 1 (n))V(n,m)

Thus, if we introduce

ar(n, m) = (n,m~l)B(n,m) ,(103)

the matrix

(0 \ (
V(n,m~l) =- H (n ,m+ 1) o(n,m) (104)

V(n,m) /i

obeys the same equation as the last m+l columns of V(n,m+l). To obtain the

first column, one needs only to note that the first columns of V and H- are iden-

tical, so that

V(n,m+l) =(h 0(n,mel), V(n,m+1)) (10S)
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In general, as noted earlier, even though the blocks of R(n,m) have a Toeplitz

structure, this is not the case for H(n,m) and V(n,m), so that the number of

operations required by the recursions (99) and (104) is 0(mn 3). Also, a condi-

>1!  tion for the validity of the previous recursions is that A(n,m) be nonsingular.

But, since A(n,m) is upper triangular, and since its diagonal terms are equal

to E[e 2 (t-i, slHi,)]n O<i<n, we see that A(n,m) will be invertible if the

estimation problem is nonsingular.

Increase in n

Similar recursions can be obtained by reordering R(n,m) in blocks of size

m+l x m~l, and by exchanging the roles of n and m and those of H and V.

Remark. The previous recursions can be related to those obtained by Genin and

Kamp [23] for 2-D orthogonal polynomials on the unit hypercircle. This relation

is based on the isomorphism [43] existing between the Hilbert space of random

variables y(ij), (i,j) e I 2 with scalar product

<y(ij), y(k,Y)> = ik,j. £

and the space of functions wh*ch are square integrable over [0,27r] 2 with respect

ie ioto the positive weight function r(e ,e ). From this point of view, the predic-

tion problem in the plane and the one of orthogonalizing the monomials z' j with

respect to r(.,.) on the hypercircle zfi = Ijw = 1 are exactly the same. However,

as in the deterministic realization problem, there is a difference between our

recursions and those of Genin and Kamp which is due to the total order of the

monomials zi') that we have chosen. As in the deterministic case, we have cho-

sen a lexicographic order with truncation, while Genin and Kamp's order was
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based on the grade of the monomials z'wJ , i.e.,

grade z 1 = max(i,j)

so that one had ziw < zk J if either grade ziw1 < grade zkJ or grade

z Wj = grade z w and j < Z or k < i.

The previous recursions enable us to compute the planar predictors h i  andn,m

vi recursively. However, as was mentioned at the beginning of this section,
n,m

the motivation for computing these predictors is to approximate the spectral

factors of r(z,w). We now justify this claim by considering the stability and

convergence properties of hi (Z,,w) and vi (z,w). The first observation isn ,m n ,m

that, unlike in the I-D case, the filters hn1 (z,w) and vi (z,w) are not always

stable, as noted in [23], unless r(z,w) is separable, i.e.,

r(z,w) = rl(z)r2().

However, it was shown by Helson and Lowdenslager [28], and by Delsarte, Genin

and Kamp [18], that

Theorem: Convergence of hi
nm

ie ioIf the function r(e ,ei ) is strictly positive and summable over [0,27r] 2, and

if asw (z,w) denotes the spectral factor (78) associated with the South-west Half-

plane I = {(i,j): j < 0, or j = 0 and i < 0) , when n-k,m and k --, we have

hk r.ie io e

h (e ,e ) asw(e ,e (106)

2
over (0,21]

Since asw (z,w) is stable, this shows that when n,m and i tend to infinity,

|[Sw
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iii

hn (z,w) is stable. In fact, it was shown by Chang and Aggarwal [17] that, for

a fixed value of m, there exists an integer k such that hn (z,W) is stable for i>k0 n "m -0
i 6 io ei

Ic",m~(eiS,e i

and n-i > k0 . By symmetry, when n,m-j + o, one gets v as(e ,e)

where aws is the spectral factor corresponding to the West-south half-plane.

However, these results do not settle completely the convergence problem

for the filters hi  or vJ  . For example, the existence of limits for hi  (zW)
n,m n,m n,m

when n,m with i constant is not clear. In the special case when i = 0,

h n z,w) = a (Z,w) is the quarter-plane predictor of order (n,m) associatedn ,m n,m

with y(.,.) and only partial results on the convergence of a (z,w) are
n,m

available (see [25]-[27]). In fact, this question is related to Shanks' con-

jecture [44], [23] on the existence of stable planar least-squares inverses for

a given 2-D polynomial, and on the existence of 2-D Beurling factorizations in

the Hardy space H2 (cf. [451).
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VI. Conclusions and Extensions

In this paper, we have presented some recursive algorithms for the deter-

ministic and stochastic modeling of 2-D systems. These results can be extended

in several directions. One such extension would be to consider the matrix form

of the results presented here. We note in that respect that a matrix version

of the 2-D modified approximation problem of Section III has recently been

studied by Bose and Basu [46]. Also, as noted in Sections III and V, the 2-D

Lanczos and Levinson recursions that we have obtained for the solution of

Toeplitz block Toeplitz equations require O(n3 m 2) or O(n 2m 3) operations to invert

a matrix with m+l blocks of size n+l x n+l. By comparison, the I-D Levinson al-

gorithm requires only O(n 2) operations to invert an n+l x n+l Toeplitz matrix,

so that the 2-D recursions do not preserve the efficiency of the 1-D algorithm

in both dimensions. To obtain algorithms of complexity O(n2 m 2) (or less), it is

likely that the recent doubling algorithms of Morf [33] and Gustavson and Yun

[32] will play a significant role. Another direction of generalization would

be to consider 2-D extrapolation problems for the case when the process y(.,.,

is not only translation invariant, but also isotropic, i.e., when the covariance
of y(t, s) and y(t', s') depends only on d = ((t-t') 2 + (s-s) 2)1/2 , the distance

between (t,s) and (t',s'). For such processes, some extrapolation problems pre-

senting a circular symmetry have been considered by Popov [47] and Yadrenko

[48]. However, the extrapolation algorithms obtained in this context are still

quite inefficient, and the problem of finding some efficient algorithms seems

worth considering.



" -51-

References

1. J.S.R. Chisholm, "Rational Approximants Defined from Double Power Series,"
Math. Comput., Vol. 17, pp. 841-848, October 1973.

2. R. Hughes Jones and G.J. Makinson, "The Generation of Chisholm RationalApproximants to Power Series in Two Variables," J. Institute Math. Applica-

tions, Vol. 13, No. 3, pp. 299-310, 1974.

3. P.R. Graves-Morris, R. Hughes Jones and G.J. Makinson, "The Calculation of..... Some Rational Approximants in Two Variables," J. Institute Math. Applica-
tions, Vol. 13, No. 3, pp. 310-320, 1974.

4. C. Lanczos, "Solution of Systems of Linear Equations by Minimized Iterations,"
J. of Res., National Bureau of Standards, Vol. 49, No. 1, pp. 33-53, July
1952.

5. E.R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1969.

6. J.L. Massey, "Shift-Register Synthesis and BCH Decoding," IEEE Trans.
Inform. Theory, Vol. IT-15, No. 1, pp. 122-127, January 1969.

7. J. Rissanen, "Recursive Identification of Linear Systems," SIAM J. Control,
Vol. 9, No. 3, pp. 420-430, August 1971.

8. D. Jackson, "Formal Properties of Orthogonal Polynomials in Two Variables,"
Duke Math. J., Vol. 2, pp. 423-434, 1936.

9. B.L. Ho and R.E. Kalman, "Effective Construction of Linear State-Variable
Models from Input/Output Functions," Proc. Third Allerton Conf., pp. 449-
459, 1965, and Regelungstechnik, Vol. 14, pp. 545-548, 1966.

10. L.M. Silverman, "Representation and Realization of Time-Variable Linear
Systems," Department of Electrical Engineering, Columbia University, Tech.
Rept. 94, June 1966.

11. D.C. Youla and P. Tissi, "N-Port Synthesis via Reactance Extraction, Part I,"
IEEE International Convention Record, Vol. 14, Pt. 7, pp. 183-205, 1966.

12. M. Fliess, "Matrices de Hankel," J. Math. Pures et Appliqu6es, Vol. 53, pp. 197-
222, 1974.

13. E. Fornasini, "On the Relevance of Noncommutative Power Series in Spatial
Filters Realization," IEEE Trans. Circuits Systems, Vol. CAS-25, No. 5,
pp. 290-299, May 1978.

14. M. Clerget, "Realization of Two-Dimensional Recursive Filters," Proc. IFIP
Congress, pp. 367-371, 1977.



-52-

15. Y.S. Kao and C.T. Chen, "Two-Dimensional Hankel Theory," to appear in Int.
J. Control, 1979.

16. M.P. Ekstrom and J.W. Woods," Two-Dimensional Spectral Factorization with
Applications in Recursive Digital Filtering," IEEE Trans. Acoust., Speech,
Signal Processesing, Vol. ASSP-24, No. 2, pp. 115-128, April 1976.

17. Y. Chang and J.K. Aggarwal, "Design of Two-Dimensional Semicausal Recursive
Filters," IEEE Trans. Circuits Syst., Vol. CAS-25, No. 12, pp. 1051-1059,
December 1978.

18. Ph. Delsarte, Y. Genin and Y. Kamp, "Half-Plane Toeplitz Systems," Report R391,
Philips Research Laboratory, Brussels, February 1979.

19. N. Levinson, "The Wiener RMS (Root-Mean Square) Error Criterion in Filter
Design and Prediction," J. Math. Phys., Vol. 25, pp. 261-278, January 1947.

20. B.C. L~vy, S.Y. Kung and M. Morf, "New Results in 2-D Systems Theory: 2-D
State-Space Models-Realization and the Notions of Controllability, Observa-
bility and Minimality," Proc. Symp. on Current Mathematical Problems in
Image Science, pp. 87-95, Monterey, CA, November 1976.

21. B.C. Livy, M. Morf and S.Y. Kung, "New Results in 2-D Systems Theory, Part
III: Recursive Realization and Estimation Algorithms for 2-D Systems,"
Proc. 20th Midwest Symposium on Circuits and Systems, Lubbock, Texas, August
1977.

22. J.H. Justice, "A Levinson-Type Algorithm for Two-Dimensional Wiener Filtering
Using Bivariate Szeg6 Polynomials," Proc. IEEE, Vol. 65, No. 6, pp. 882-886,
June 1977.

23. Y.V. Genin and Y.G. Kamp, "Two-Dimensional Stability and Orthogonal Poly-
nomials on the Hypercircle," Proc. IEEE, Vol. 65, No. 6, pp. 873-886, June
1977.

24. T.L. Marzetta, "A Linear Prediction Approach to Two-Dimensional Spectral
Factorization and Spectral Estimation," Ph.D. Dissertation, Department of
Elec. Engineering and Ccmp. Science, M.I.T., Cambridge, MA, Janiuary 1978.

25. Ph. Delsarte, Y.V. Genin and Y.G. Kamp, "Planar Least Squares inverse Poly-
nomials, Part I: Algebraic Properties," IEEE Trans. Circuits Syst., Vol.
CAS-26, No. 1, pp. 59-66, January 1979.

26. Ph. Delsarte, Y. Genin and Y. Kamp, "Planar Least Squares Inverse Polynomials,
Part II: Asymptotic Behavior," Report R377, Philips Research Laboratory,
Brussels, July 1978.

27. Ph. Delsarte, Y. Genin and Y. Kamp, "A Survey of Two-Dimensional Toeplitz
Systems," Proc. 4th Int. Symp. Mathematical Theory of Networks and Systems,
Delft, The Netherlands, July 1979.



° -53-

28. H. Helson and D. Lowdenslager, "Prediction Theory and Fourier Series in
Several Variables, I and II," Acta Mathematica, Vol. 99, pp. 165-202, 1958
and Vol. 106, pp. 175-213, 1961.

29. P. Pistor, "Stability Criterion for Recursive Filters," IBM J. Research Devel.,
* I Vol. 18, No. 1, pp. 59-71, January 1974.

30. J.J. Murray, "Spectral Factorization and Quarter-Plane Digital Filters,"IEEE Trans. Circuits Syst., Vol. CAS-25, No. 8, pp. 586-592, August 1978.

31. W.F. Trench, "An Algorithm for the Inversion of Finite Toeplitz Matrices,"
J. SIAM, Vol. 12, No. 3, pp. SIS-S22, September 1964.

32. F.G. Gustavson and D.Y.Y. Yun, "Fast Algorithms for Rational Hermite Approxi-
mation and Solution of Toeplitz Systems," IEEE Trans. Circuits Syst., Vol. CAS-'1 26, No. 9, pp. 750-755, September 1979.

33. M. Morf, "Doubling Algorithms for Toeplitz and Related Equations," submitted
to IEEE Trans. Informat. Theory.

34. R.R. Bitmead and. B.D.O. Anderson, "Asymptotically Fast Solution of Toeplitz
and Related Systems of Linear Equations," Tech. Report No. EE 7915, Depart-
ment of Elec. Engineering, The University of Newcastle, New South Wales,
Australia, July 1979.

35. S.Y. Kung, "iMultivariable and Multidimensional Systems: Analysis and Design,"
Ph.D. Dissertation, Department of Elec. Engineering, Stanford University,
Stanford, CA, June 1977.

36. T. Kailath, Introduction to Linear Systems Theory, Englewood Cliffs, N.J.:
Prentice Hall, January 1980.

37. B.W. Dickinson, M. Morf and T. Kailath, "A Minimal Realization Algorithm for
Matrix Sequences," IEEE Trans. Automat. Control, Vol. AC-19, No. 1, pp. 31-
37, February 1974.

38. T. Kailath, S-Y. Kung and M. Morf, "Displacement Ranks of Matrices and Linear
Equations," J. Math. Anal. Appl., Vol. 68, No. 2, pp. 395-407, April 1979.

39. T. Kailath, B. L6vy, L. Ljung and M. Morf, "The Factorization and Representa-
tion of Operators in the Algebra Generated by Toeplitz Operators," SIAM J.
Applied Math., Vol. 37, No. 3, December 1979.

40. M.G. Krein, "The Continuous Analogues of Theorems on Polynomials Orthogonal
on the Unit Circle," Dokl. Akad. Nauk SSSR, Vol. 104, pp. 637-640, 1955.

41. P. Whittle, "On the Fitting of Multivariable Autoregressions and the Approxi-
mate Canonical Factorization of a Spectral Density Matrix," Biometrika,
Vol. 50, pp. 129-134, 1963.

42. R.A. Wiggins and E.A. Robinson, "Recursive Solution to the Multichannel Fil-
tering Problem," J. Seophys. Res., Vol. 70, pp. 1885-1891, 1965.



/ -54-

43. T. Kailath, A. Vieira and M. Morf, "Inverses of Toeplitz Operators, Innova-
tions and Orthogonal Polynomials, SIAM Review, Vol. 20, No. 1, pp. 106-119,
1978.

44. J.L. Shanks, S. Treitel, and J.H. Justice, "Stability and Synthesis of Two-
i.. IDimensional Recursive Filters," IEEE Trans. Audio Electroacoust., Vol. AU-20,

No. 2, pp. 115-128, June 1972.

45. W. Rudin, Function Theory in Polydiscs, New York: Benjamin, 1969.

46. N.K. Bose and S. Basu, "2-D Matrix Pads Approximants: Existence, Non-Uniqueness
and Recursive Computation," submitted to IEEE Trans. Automat. Control.

47. Yu. D. Popov, "On Linear Extrapolation of a Homogeneous and Isotropic Random
Field by Discrete Observations on a Circle," Theory Probab. Math.Statistics,
No. 4, pp. 115-120, 1974.

48. M.I. Yadrenko, "On a Linear Extrapolation Problem for an Isotropic Random
Field," Theory Probab. Math. Statistics, No. 1, pp. 239-247, 1974.



• -55-

Figure Captions

Figure 1. A geometry of modified approximation.

Figure 2. Some geometries of rational approximation.il i
Figure 3. (a) The domain of approximation of kn /h

nom n,m

(b) The domain of approximation of un /V mn ,in n,m

Figure 4. (a) The prediction geometry for the horizontal predictor hi .

(b) The prediction geometry for the vertical predictor vi
n,m

I


