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Preface

This work began as an investigation into the various

techniques of propagation of EM fields in optical devices.

The two simple techniques, geometric optics and scalar

diffraction theory, are both based on assumptions that

violate Maxwell's equations, except for special cases. The

current vector diffraction theories were rigorous, but

difficult to apply to various problems. Major Glenn Doughty,

who acted as my advisor, had the initial insight of using

complex field vectors in the rigorous diffraction problem,

which led directly to the development detailed in the first

two sections of Chapter III. This insight was so fruitful

that we decided to redirect the effort toward developing

the complex field vector approach to diffraction theory.

The significance of the approach lies in (1) specifying the

resultant field in terms of separated component equations, and

(2) deriving the Rayleigh-Sommerfeld equation. The second

point helps explain where scalar diffraction theory can be

an accurate description of a vector field.

I am most indebted to Major Doughty for his insight,

guidance and patience in our many hours of discussion. My

thanks is also extended to Ms. Sharon Gabriel for her typing

assistance. I cannot add sufficient appreciation for my

loving wife, Jan, who supported me equally in times of victory

and discouragement. Most of all, I thank my Lord Jesus Christ
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for His strength and love. As the Great Physicist, He

has shown me "great and mighty things" which I did not

know. (Jer 33:3) I offer this work to His praise and

glory.

Mark E. Rogers

:... .
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Abstract

A rigorous solution to the diffraction problem is obtained

by using two complex field vectors: Q - PH + i/u- E and

P - i/17' E . The derivation begins with Maxwell's

equations that are uncoupled in terms of Q and P . Then,

following the work of Stratton and Chu and that of Doughty,

the field equations are integrated directly to yield a pair

of uncoupled vector integral equations involving the tangential

components of q and F on some open surface S . When S'

is planar, the equations are expanded in a more useable set of

six component integral equations. The main assL.ptions in the

derivation of these latter equations are that the initial

and H must satisfy Maxwell's equation on S' and that the

resultant field must be calculated for k >> 1/R . For the

case where (1) the initial field is traveling normal to S ,

and (2) the resultant field is calculated only in the region

near the optical axis, the expressions for the tangential

components of the resultant E are identical in form with the

Rayleigh-Sommerfeld equation of scalar diffraction theory.

Three examples are developed to show the method of applying

complex field vectors to diffraction problems and to show the

agreement on axis with the results calculated from the Rayleigh-

Sommerfeld equation. The examples also provide insight into

the diffraction process by discussing the approximations

made in obtaining the resultant field near the axis. Thus,

the complex field vector approach provides a rigorous, yet

simple and straightforward, method of solving the diffraction

problem.
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THE USE OF COMPLEX FIELD VECTORS

IN DIFFRACTION THEORY

I. Introduction

The goal of the general diffraction problem is to

calculate a resultant electromagnetic field on some surface

S from an initial electromagnetic field on some surface

S' . Building on the work of Huygens, Fresnel, Kirchoff

and others, many authors (e.g., Refs 1-5) have taken various

approaches to solving this problem. However, the two basic

approaches are both based in principle on Maxwell's

equations. The first approach deals rigorously with the

vector nature of the 51 field, and is known as vector

diffraction theory. The second approach assumes that each

field component may be considered independently. This

scalar diffraction theory is suggested by the separate wave

equations for the electric and magnetic field intensities,

r and T , that are obtainable from Maxwell's equations.

However, the "real problem is not the integration of a wave

equation, either scalar or vector, but of a simultaneous

system of first-order vector equations relating the vectors

and H ." (Ref 6:463) Unfortunately, the inherent

coupling of E and H makes the rigorous solution of the

general diffraction problem difficult to obtain.
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The vector diffraction theories have some common

advantages and disadvantages. Each is a rigorous solution

to Maxwell's equations for a given set of assumptions and

boundary conditions. However, the resulting expressions

are often difficult to apply to general problems and may

obscure the underlying physical phenomena involved in

diffraction.

Scalar diffraction theory is a more phenomenological

approach, but it is more easily applied and quite accurate

in certain regions. The approach, which is a rigorous

description of the propagation of sound waves, is suggested

by the separation of the vector wave equations for E and

H into six scalar wave equations when rectangular coordinates

are used. However, the assumption that each component is

independent ignores the inherent coupling of E and H

and the results generally do not satisfy Maxwell's equations.

From the above discussion, we see that no approach is

both rigorous and easily applied. The goal of this work is

to develop a theory of diffraction that incorporates the

advantages of the vector and scalar approaches while avoiding

some of the shortcomings. Specifically, the primary objective

of this work is to develop an approach to diffraction that

uses complex field vectors to recast Maxwell's equations

into a set of separated integral equations that describe the

resultant EM field. Two secondary objectives are: (1) to show

that scalar diffraction theory is a special case of this

approach, and (2) to show that this approach is readily

2



applicable to various diffraction problems. A minor

objective in this application is to gain some familiarity

with Fast Fourier Transform techniques as applied to the

computation of solutions to diffraction problems. The

objective of this report is to describe the development and

application of this approach to the general diffraction problem.

The use of complex field vectors, Q = vH + i/1- and

P -H - i/,T , has two significant features. The first

feature is the development of a set of uncoupled vector

integral equations that retain the vector nature of the EM

field. The component equations that result from this

decoupling are easily applied, interpreted and understood,

and yet they are still rigorously based on Maxwell's equations.

The second contribution is the substantiation of scalar

diffraction theory under conditions common to many diffraction

problems.

This presentation begins with a review of past work and

a discussion of some theoretical preliminaries, both of

which are contained in Section II. This review is intended

to set the stage for later developments, and is not an

exhaustive history of diffraction theory. The theoretical

preliminaries provide the background for the theoretical

development of the complex field vector approach in Section

III. Three example fields are examined in Section IV to

3



illustrate the application of this approach. Section V

contains the conclusions and recommendations. Various

appendices contain detailed mathematical developments to

support this work. All equations will be in MKS units

unless otherwise specified.
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II. Theoretical Preliminaries and Past Work

This section develops the geometry for the general

diffraction problem, discusses the type of medium assumed in

this report, and derives some preliminary relations based

on Maxwell's equations. The section also includes a

discussion of two areas of past work that are relevant to

this report. The first is a direct integration of Maxwell's

equations as developed by Stratton and Chu (Ref 4) and

extended by Doughty (Ref 7); the second is the Rayleigh-

Sommerfeld formulation of scalar diffraction theory.

The reader interested in a more in-depth treatment of

vector diffraction theory is referred to the paper by

Kottler (Ref 2), the article by Bouwkamp (Ref S), the

treatment by Born and Wolf (Ref 8:556), or the book by

Baker and Copson (Ref 9:102). Scalar diffraction theory is

discussed in most texts on physical optics, such as the text

by Born and Wolf (Ref 8:320). The Rayleigh-Sommerfeld

formulation described in this section is based on the

discussion in Goodman (Ref 10:30).

Theoretical Preliminaries

Figure 1 shows the geometry for the general diffraction

problem used in this report. The initial EM field is assumed

to be non-zero only on the open surface S' ;

values on So will be denoted using primes. The resultant

SI
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EMj field is described on some open surface S ; values on

.S will be unprimed. The distance from a source point on

S' to an observation point on S is given by R - j 1'j

and the angle 0 is defined by the angle between r-r

and n , where n is a unit normal to S' pointing

toward the surface S . The origin is chosen to lie on

the S' such that if S' and S were plane surfaces, the

points on S' would be described by (x',y,O) and those

on S by (x,y,z) . For many applications, S' and S

will be planes, but in the general equations they need not

be so restricted.

Throughout this report, the propagation medium will be

assumed to be homogeneous, isotropic, linear and free of

charge, unless otherwise stated. Ohm's Law is assumed to

hold in the medium, unless otherwise stated. Under these

assumptions, Maxwell's equations can be written as follows:

V x F,t) -L

at

v x 1 CF,tt) - c [FCit)] oE (2)

v.• iCt) - 0 (3)

V • (C,t) - 0 (4)
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Both r and H can be expanded here in normal modes, as

shown in Eq (S) for an arbitrary vector

K1F,t) f 1 K(C ,w) e iWt dw C5)(2 i) 3 - f

Using these expansions in Eqs (1) and (2), one finds for an

arbitrary frequency w

v x E F) + iw W ()V 0 (6)

7 xiTF iWE?(~ 0 (7)

where the frequency dependence has been suppressed and the

complex dielectric constant is defined as C - i

Equations (6) and (7) provide the starting point for the

development in Section III. Before this development begins,

however, it will be useful to review some past work that is

relevant to this report.

Past Work

A Vector Diffraction Theory. Stratton and Chu

developed an analytic solution to the diffraction problem

by direct integration of Maxwell's equations using a

vector analogue to Green's theorem (Ref 4 or Ref 6:464).

For a nonconducting medium, they obtained the resultant

and if at any point on the interior of a volume V

bounded by a closed surface Sc , where

8



E and H are expressed as the sum of a volume integral and

an integral over Sc . The initial field is specified on

Sc . By assuming the volume to be free of charge and current

and the initial field to be non-zero only on some finite

portion of Sc , say S , the integral equations for

and Rl can be rewritten as the sum of an integral over S'

and an integral on the contour c' enclosing S . These

equations, Eqs (8) and (9), are equivalent to those derived

by Kottler (Ref 2).

- 1 1 d.

1 T f [iP(nxH')*1 + (nxLE) x . (n.E')v#1 ]dS-
(8)

- 1--
c 1

1S iw(r x Y')#- (n x ff') x -1 (n.f)v:JdS"

(9)

where i1 exp (ikR]/R . In a parallel development,

Doughty (Ref 7:21) developed an analogous set of equations

for the case where Ohm's Law holds in the medium and without

9



assuming the initial field is zero everywhere except on S'

For the diffraction problem, Doughty's approach is equivalent

to that of Stratton and Chu. Taking the curl of Doughty's

equations, one obtains

f(i - J[. L_ (r -. vxv + vx .(nE)J]dS (10)
S W e i

HC(-) f I i- (nxEi VxVxZ + Vx?. (nxf dS'S"

where t is a complex dielectric constant that accounts

for the absorption or gain in a medium, and v refers to

the gradient with respect to the primed coordinates

(x*,y,z" ,and is the dyadic Green's function,

S a a * + a~ * + a a a } 0 (12)

where

0 - exp C- ikR]/4wR (13)

where R -IF r'I . The resultant EM field expressed by

Eqs (10) and (11) is a solution to Maxwell's equations but,

owing to the coupling of f and f , the system of equations

is not readily solved.

10



Rayleigh-Sommerfeld Formulation. A brief discussion

of scalar diffraction theory highlights its phenomenological

nature, and provides background for Sections III and IV. The

underlying assumption is that light can be treated as a

scalar phenomenon, described by some scalar wave function

u(r) that satisfies the scalar Helmholtz equation,

(V2 + k2 ) u() - 0 (14)

where the wave number k - = .-Z- u(F) is

phenomenologically interpreted as one of the transverse

components of E or H . By using Green's theorem, the

value of u(F) within a volume V can be represented as an

integral over a closed surface Sc that depends on the

values of u on Sc and a scalar Green's function G

that satisfies Eq (14). The closed surface can be partitioned

into a plane surface S1 and a hemispherical surface S2  *

The integral on S2 approaches zero as the surface is expanded

toward infinity, provided u(7) meets the Sommerfeld radiation

condition. Then the resultant function is represented by

u(in f 1 jA G( nr -P u(') dS, (1)

where - denotes the derivative with respect to n . The
an

infinite plane S1  is usually broken into two regions, an

aperture (such as the open surface S' ) and the region

11



exterior to the aperture. Choosing G to be 0 as defined

by Eq (13) leads to specifying both u and U to be zero
an

except on S' , which are inconsistent boundary conditions.

Sommerfeld showed that a Green's function exists that is

zero on the plane surface S1 and thus the boundary conditions

are reduced to specifying u(F') to be zero except on S

Then Eq (15) becomes

-ikRuY u wf(F- e-R cos e dS' (16)
XS o

where e was defined in the preceding section. Using

Eq (13), the above equation can be rewritten:

u(F) - ik f u(FI) (2 cos e) o dS" (17)

Both Eqs (16) and (17) are forms of the Rayleigh-Sommerfeld

equation, which is mathematically consistent, but was obtained

by assuming each field component is independent. In spite

of this deficiency, the irradiance patterins do agree with

experimental results when e is small (Refs 11, 12).

Equations (10), (11), and (17) are important results

that will be used in the development and application of the

complex field vector approach. This development is the

subject of the next section.

12



III. Theoretical Development of the Complex

Field Vector Approach in Diffraction

The purpose of this chapter is to solve the diffraction

problem with complex field vectors. In the first section

below, these vectors are introduced and the resultant electro-

magnetic field is expressed by a set of uncoupled vector

integral equations over open surfaces. The integral equations

are then specialized to open planar surfaces; so then the

resultant field is described by six component integral

equations. A discussion of these six equations provides

insight into the diffraction process. The chapter closes by

deriving the Rayleigh-Sommerfeld equation from these component

equations.

The Uncoupled Field Equations

As stated earlier, several different approaches could

be taken to rigorously solve the diffraction problem. Since

most practical problems are based on a knowledge of the initial

field, a solution based directly on that knowledge seems most

useful. For this reason, the approach taken here follows

that of .:' ratton and Chu (see Section II) and relies on a

knowledge of the initial field intensity vectors, E and H

Let the complex field vectors be defined as in Eqs (18)

and (19).

13



S( ) =  ui(Th - i VO CF) (19)

Others have used combinations of E and H to reduce

Maxwell's equations to particularly compact form (Refs 9,

13, 14). The definitions used here follow Stratton

(Ref 4:32), but the forms in Eqs (18) and (19) were first

suggested for application to the diffraction problem by

Doughty (Ref 15). Note that these complex field vectors

retain the proper phase relationship in the field. In

F , f is advanced by 900; in Q , f is retarded by

90*. Equations (18) and (19) are solved for B and

H to obtain the equations,

- - 3(20)

H - ~~+~)(21)

where v 1 14C . Substituting these expressions into

Eqs (6) and (7), one can so-ble the equations simultaneously

to obtain uncoupled equations in Q and P :

14



v x -k (22)

v x P - - kP (23)

Applying these equations, as well as the definitions of

and P , Eqs (10) and (11) can be manipulated by first

multiplying Eq (10) by iVI- and Eq (11) by p , and then

adding or subtracting Eq (10) from Eq (11) to yield two

uncoupled integral equations over open surfaces that depend

on the values of q and I on the open surface, as shown

in Eqs (24) and (2S).

- ([nxQ(riJ.vx nxQ(r-J.vxvxC} dSI (24)S,

- f dS" (25)
SO

Recall that G is the dyadic Green's function defined in

Eq (12). The above equations represent the resultant field

due to the initial field on S' , since E and H can

be obtained via Eqs (20) and (21).

To properly use Eqs (24) and (25), the initial field

used to form Q' and P' must be a valid EM field on

S' Thus, either E , H" or the tangential components

of ' and HI on the surface S' must be known in order

is



to obtain the resultant field. The same knowledge of the

initial field would permit Eqs (10) and (11) to be solved,

but Eqs (24) and (25) are simpler to use because they are

uncoupled. But even these equations are cumbersome. In

the next section, we will use these equations to generate

a set of six component integral equations on S' that are

not only quite easy to apply, but reveal a good deal about

the diffraction process.

Application to Plane Surfaces

Let S' be a plane surface, and choose n = +a

Consider first the integrand in Eq (24). By replacing

n with +az  ,the cross product of n and Q decomposes

Q into transverse components. The continued expansion of

the integrand into components is facilitated by recalling

R - 1r - r'l which leads to the relationship vt - -v' .

Calculating the derivatives and taking the scalar product

of Q(r) with a , ay and az sequentially, Eq (24)

can be decomposed into three scalar equations: (Appendix A

contains details of this decomposition.)

f "[ ' o " (k2,+O xx ) - Q' oxy]) dS' (26)
S- 1

Qy W f '-l,z [-Q(k 2 0+O +xx 0 y dS- (27)

"s ( Q06,x + Qyy 0 Q -y QO) dS (28)

Qz1



where the notation on the terms containing 9 represent

the derivatives of o with respect to the subscripted

variable; for example, Ox a. and o - 2,x V- Myy

Assuming k >> 1/R , which restricts the evaluation of the

resultant EM field to be at least several wavelengths from

surface S' the generalized first and second derivatives

are approximated by Eqs (29) and (30), respectively.

(See Appendix B.)

x 1 1
- - ik, -nR-- (29)

iko (Xx:-x) (x-xf) (0# x i x j i Z -I i j - k 2 o I R 2 1 1( 0

where x is associated with the values x , y ,and z

as 9 ranges from 1 to 3 , respectively. Using these

derivatives and the definitions below

sin .x - x' sin cos 8 B z - zo-r ; si =-- R'

one obtains three integral expressions for the components

of Q , as indicated in Eqs (31) through (33)

Qx 0 k f o[Qx(i cose-sinasino) - Q'(1-sin 2a)] dS" (31)

-- k f o[Qyfi cose+sinasins) + Q;(1-sin2 o)) dS" (32)
S,

S k f" *-Q'(i sina+sinecose) - Q'(i sino-sinacose)] dS'

(33)

17



These equations are written in a particularly compact

form by introducing the complex components defined in

Eq (34) with an analogous definition for the components P

These components are an alternate way of decomposing q

and P into components. Although their transformation

properties are more complicated than their rectangular

counterparts, these components lend particular insight

into the diffraction process, as will be discussed in the

next section.

Q± i (34)

Using this definition as well as the definition that

6 - tan "I (sina/sins) and the angular relationship sin 2e a

sin 2 + sin 2 o which is obtained from the definition of

R , Eqs (31) through (33) become Eqs (35) through (37).

-- ik f 0(cose+l - sin2e - 1 Q sin2 6 e' 2 i610 dS- (35)
S.

S o 'Q - ik f (Q:(cose-l siM e + 1 Q sin2e e i'0dS- (36)
Si62

.- QUcosO)e' - Q:(l-cose) e'6 sin dS (37)

18



By a similar series of steps, Eqs (38) through (40) can

be obtained for P(F)

p - ik f [P;(cose-r + +n.o + P1 sin2e e'2i]o dS- (38)
S 2

P - ik f [P:(cose+l - sj-lO P sin2 e 2i']o dS (39)

P k f [P+(l 'cose)e6 " PI(l+cose) e'i6 It sine dS" (40)

Equations (35) through (40) are the six component integral

equations that are used to find the resultant EM field if

S' is a plane. The initial I and ff are assumed to

satisfy Maxwell's equations, and the component equations

were developed with the approximation k >> 1/R . One

should note here that the methodology of using the complex

field vectors in diffraction begins by taking E and i

on plane S' and forming Q' and P . These vectors

retain the coupling of E and H , but allow the resultant

field to be expressed by the six component equations biven

above. Using the definitions of Q and P, , Eqs (20)

and (21) can be rewritten in a form that facilitates reforming

the resultant field in terms of f and f . Eqs (41)

through (43) show the relationships for .

19



Ex  - i(Q. Q. - P+ - P (41)

Ey - - (Q. - Q+ - P. + P+) (42)

E iv (43)Ez - "- r(QZ PZ) (3

The set of scalar integral equations is a mathematically

simple yet rigorous solution to the diffraction problem.

Discussion of Component Integral Equations

In this section we analyze three terms that occur in

Eqs (35) through (40), namely the complex components Q±

and P± , the term 6 , and the angular dependence (which

is also called the obliquity factor).

The Complex Components. To investigate the nature of

Q± and P± , we discuss their definition using polar

coordinates, their expression in terms of impedances, and

their circularly polarized nature.

First, the components can be readily expressed in

cylindrical coordinates, as shown in Eq (44):

Q (Q ± i Q,) e±i. (44)

where the transformation matrix in Eq (45) has been used.

20



(x) coso -sinol 0 (4 )

ysino cos, 0 0(5

z (0 0 (Z)

The expression in Eq (44) and the analogous expression for

P are useful in problems with cylindrical symmetry, since+

the component integral equations can still be used in their

present form.

Next, the complex scalar Q_ is rewritten in terms

of intrinsic and wave impedances, using Eqs (18) and (34)

as well as the definition of the intrinsic and wave

impedances (Ref 16:87):

(46)

ExR Ex +nxy +  = -nxy - +nxy (47)

EE . _ny+ = (48)
Hx yx yx- + yx±

21



The + sign on the subscripts of the wave impedances

refers to positive z propagation, while the - sign

refers to negative z propagation. The order of x and y

indicates which ratio of components is implied. Finally,

the combined symbol using the ambiguous sign allows the

equations using the wave impedances to be written in a

compact manner. The resulting equations for Q+ and Q_

are shown in Eqs (49) and (50). (See Appendix C.) An

analogous procedure can be applied to P .

Q+- /76- E (1t -  )+ i /,e Ex(l a ) (49)
y x +  xy

Q. - /Eylfl )e+i/J E(1 2  ) (SO)

yx xy

Recalling the time factor is e i Wt  , and writing

SE+ a + E a where

a . Cx ±ia) (sa)

one can show that E is associated with right circular

polarization and E. with left circular polarization for

*a propagation, and vice versa for -z propagation.
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For uniform plane waves, Inxy- I -nyx I - m . Then,

for a uniform plane wave propagating in the +z direction,

Eqs (49) and (50) become

Q+ 2i /1 (Ex + i E ) 2/T i V'W E (52)

Q. 0 (53)

The expressions for P are P+ U 0 and

P - -2i /Ip(E i E) -V-2 i V- E (54)
X y +.

A similar analysis for the -z direction reveals that Q

is identified as left circular and P± as right circular.

For predominantly +z propagation, where k az

Q_ and P are negligible, while Q and P are

negligible for -z propagation. Since the quantities Q±

and P± are components, they do contain the vector sense

of direction and polarization. Any polarization state can

be formed with P and Qt by the proper choice of E+

and E

We have seen that the complex components can be expressed

in either rectangular or cylindrical coordinates. The components

are dependent on both the medium and the ratio of the field

vectors, and they contain the vector nature of the field as

shown by the inherent circular polarization and directionality

of Q, and P. for predominantly ±z propagation.
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The a Term. This term represents a spatial phase shift

between the initial field and the resultant field since 6

can be expressed as

. x x- x:)Cs
5 tan- ( X. (SS)

y-Y'

This term is the only one in the integrand that is linear

in (x-x') and (y-y') . It is also worth noting that each

term containing 6 is also directly related to the angle

0 , so as 0 gets small, the sense of orientation is

weakened. This explains in part why scalar diffraction theory

is accurate in the paraxial region (where e is small).

Obliquity Factors. A comparison of the various

obliquity factors sets the stage for the derivation of the

Rayleigh-Sommerfeld equation in the next section. Consider

again an initial field traveling in the predominantly +z

direction. Then, for angles less than about 450, Eqs (35)

and (39) dominate Eqs (36) and (38) in terms of magnitude,

since Q >> Q and P, >> P' and cose > sin 2 e

Notice that the term (cose + 1 - sin 26) is common to both

Eqs (35) and (39). This term can be compared against the

obliquity factor of the Fresnel-Kirchhoff formulation of

scalar diffraction theory, 1 + cosO , and that of the

Rayleigh-Sommerfeld formulation, 2cose . At first glance

the new factor, identified as B in Figure 2, seems to be

a corrected Fresnel-Kirchhoff factor, identified as A in

Figure 2. But in the paraxial approximation,
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e
2

cose : 1 - -- sine z e (56)

the Rayleigh-Sommerfeld factor, designated C in Figure 2,

is identical with factor B . The closeness of the curves

for B and C suggests that the scalar integral equations,

Eqs (35) and (38), may be reducible to the Rayleigh-Sommerfeld

equation, Eq (17).

Derivation of Rayleigh-Sommerfeld Equation

Consider again the case of an initial field propagating

predominantly in the +z direction. As shown above,

Q: and P; are negligible in this case. Since curve B and

curve C in Figure 2 are so close, we use the paraxial approxi-

mation of Eq (56) and write Ex  by substitution of Eq (35)

into Eq (41):

.M k f ((Q-P*)(2-6 2) + (Q: ezi -P e1 6  )0 dS' (S7)so +4 - +7

Since the term (2-e2) can be replaced by 2cose , and a

more rigid angular restriction is made such that the terms
e 2

containing - are negligible, then the above equation

can be written as Eq (58).

E ik L ' (2cosB)o dS' (8)
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Figure 2. Plot of Various Obliquity Factors

where A -l1cose , B = A-isin2 e

and C -2cose
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This is the Rayleigh-Sommerfeld equation, Eq (17), if the

scalar wave function u(r) is associated with Ex  . A

similar equivalence is found for Ey , showing that the

Rayleigh-Sommerfeld equation can be accurately applied to

the transverse components of the initial field, provided

that (1) the initial field is valid EM field, (2) k >> 1/R

(3) k kz  , and (4) the angle e is small. This last

restriction, termed the near-axial approximation, can be

stated as 0 << 1 rad . Yet, even this approximation is

not overly restrictive for most applications. This derivation

indicates why the scalar diffraction theory is an accurate

representation for the transverse components in the near

axial region. The examples in Section IV will illustrate how

the complex field vector approach is applied to three different

polarization states, as well as illustrate that it yields

results identical to those predicted by scalar diffraction

theory.
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IV. Application of the Complex Field Vector Approach

The goal of this section is to illustrate now useful

the complex field vector approach is in solving diffraction

problems. We begin with some comments on methodology and

other topics common to the three examples used in this section.

The three examples are then presented, beginning with a

linearly polarized field and followed by fields of azimuthal

and circular polarizations. The section concludes with some

observations on the application of the complex field vector

approach to diffraction problems.

Preliminary Comments

As noted in Section III, the initial F and Hf are

specified on surface S' . In each example in this section,

the initial fields are chosen so that the fields are zero

at the tdge of S . This boundary condition eliminates

the need to consider edge currents. The propagation vector

of the initial field is assumed to be T = k az  , so thatzzz

the field is initially traveling in a predominantly +z
direction. In each example, a characteristic scalar, F

is obtained that is proportional to the term (k ± kZ)

If the area S' has a minimum dimension that is at least

several wavelengths in size, then F_ can be neglected in

comparison to F+ , simplifying the analysis. The first

example will show this comparison in detail. Further, each
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example will be solved by using the far field approximation

which is valid when the area of S' , denoted as A2  ,

is related to the wavelength and distance to the observation

plane, z , by Eq (59).

A2A 2 < < 7(59)
A z T

The area A2 is interpreted as either the area of a

diffracting aperture or the cross-sectional area of a

field of finite extent. The far field approximation

restricts the proximity of S with respect to S' for a

given area A2  . For the calculations in this section,

the dimensions of S' are all on the order of several

microns, the wavelength is chosen to be 0.6 microns, and the

distance to S is chosen to be one meter. For these

parameters, the far field approximation is valid. For the

normally incident fields considered here (k = k aZ) I

most of the energy in the resultant field is expected to

be near the axis. So, we also make the axial approximation

that 6 u 0* . These approximations not only simplify

the calculations, but in each example the resultant field

is then proportional to either a Fourier transform or a

Fourier-Bessel transform of the initial field. For the

initial fields chosen here, the transforms are solved in

closed form and the resultant irradiance patterns are

illustrated. Finally, the Rayleigh-Sommerfeld equation is
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used for each example to demonstrate the equivalence discussed

at the end of Section III. Let us then begin by discussing

the linearly polarized field, I,

Example 1: Linear Polarization

The Solution. Consider the field defined by

Cos 7 cos 0e x on S'

1 everywhere else (60)

where S- is the rectangular surface defined by Jxj 5 a

and jyj : b . Figure 3 shows the normalized irradiance

pattern for E1  where a - 1.2 Wm and y - 0 o The

magnetic field is found with Maxwell's equations. Using

the definitions of q and F as expressed in Eqs (18)

and (19), and noting that specializing for S' , z' = 0

the initial field is represented by

t x iF± E' (61)

P - -iF E' (62)

-z PA i sin cos (63)
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where

F+ - (k+k) (64)z

for

k2 k + 2 +

and

cos fx s Ix'l f a, ly I b
Ex (65)

E0 co elsewhere

Since we assumed km kza k 2 >> 1 +
-2 b2

and the ratio of F. to F+ can be expressed as

F 2 [l (66)

a2  b
2

For a z A and b Z A , the terms containing F_ can

be neglected when compared to terms containing F+

Neglecting these terms, and making the approximation

discussed earlier that e : 00 , one finds that only the

Q+ and P_ integral equations, Eqs (3S) and (39), are

significant: (See Appendix D)
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Q -P - -2 F+ k f E' ds (67)
S x

Under the far field approximation discussed earlier, the

integral can be written as two Fourier transforms that

have closed form representations. So the resultant field

is expressed as Eq (68).

-i -ikz -k .~(x 2+y2 ) 7r2
E(r - ~- e-7

kxa .kyb.
cos(L-) cos( z )ax

x a (68)

(k)(f)- 3 1 Z 2

This field has the same polarization as the initial field.

When the arbitrary assumption is made that the components

of the initial field can be treated separately with the

Rayleigh-Sommerfeld approach, the same resultant field

is obtained for a - 0* . (See Appendix D)

Utility of the Fast Fourier Transform. In the

derivation of Eq.(68), the Fourier transform in Eq (69)

was obtained for the integral of x' components of the

initial field.
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o .x" i2f x'"

F(fx) = f T(xi)cos-2 - e dx' (69)

where T(x') = 1 for Ix'I S a and is zero elsewhere, and

the spatial frequencies are fx - The integral can

be solved in closed form as

F(f V cos(2va x )  (70)(70)x 2 - f 2

An alternate approach to evaluating the integral in Eq (69)

is by numerical computation. Let us begin by reviewing

some essentials. The continuous Fourier transform (CFT)

pair are shown in Eqs (71) and (72).

- i 2lrfxx

f(x) - f x ) e dfx (71)

I'" e-i2u x

F(f X) - f f(x) e X dx (72)
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The discrete Fourier transform (DFT) is an approximation

to the CFT that allows numerical calculation of the transforms.

The discrete Fourier transforms pair is (Ref 17:41)

N-i i2w

f(k) I [ F(j) e , k=0,1,...,N-1 (73)
j-0

F j) N I f(k) e , j-0,1,...,N-1 (74)
k= 0

where k are spatial values, j are spatial frequencies

and N is the number of sample points taken of the function

in the summation. Direct summation of the DFT requires a

time proportional to N , while the use of a Fast Fourier

Transform (FFT) reduces this computation to a time propor-

tional to N log 2 N (Ref 18:70). The FFT routine used for

this report was a library routine in the International

Mathematics and Statictics Library (IMSL).

For this example, the resultant field was calculated

using both the FFT routine and the analytic expression

which permits the comparison of the DFT with the CFT. In

this comparison, an important tradeoff is made between the

distance over which the initial field is sampled (the data

window) and the number of sample points taken in this window.

Note that the data window must at least cover the non-zero

portion of the initial field, but may extend beyond this
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region, giving a finite approximation to the actual geometry.

In the discrete case, the spatial point xi that corresponds

to a given spatial frequency f is given by

Xx i

xi = i) (r) i=0,1,...,N-l (75)

where L is the length of the data window (Ref 19).. So,

for a given N , the resolution of the resultant field,

which is inversely related to the range of xi  , increases

as L increases. But the comparison for this example

showed that (1) for fixed N , the maximum percent difference

between the CFT and DFT values increased as L increased,

and (2) for fixed L , the maximum percent difference

decreased with increasing N . One concludes that the

resolution must be traded against an accurate representation

when using the DFT to compute the resultant field.

Figure 4 shows the normalized irradiance pattern for

the resultant field using the FFT routine. Here, N - 128

and L - 12a . The maximum percent difference between

this result and the normalized irradiance pattern predicted

by Eq (70), shown in Figure 5, is 1.08 percent. The

average percent difference is about 0.05 percent. Thus,

the DFT did serve as an accurate approximation to the

analytical result for this example.
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Example 2: Azimuthal Polarization

Consider the initial field represented by

-ik Z

E -k J1 (kPp) e Z a for p a
0 for p > a

where a is the radius of a circular aperture and

k a - 3.83170S970 (second zero of Jl (kp ) ). Figure 6

shows a sketch of the normalized irradiance for an aperture

with a 6 um radius. Using E2  and the corresponding Ft2

obtained from Maxwell's equation, and F' are written

on the surface S' . These can be written in component form

as shown in Eqs (77) through (79).

Q- F e±i'T J1 (k c') (77)

P' F e i-* Jl(k P) (78)

ik 2
QA Pi " " (k .79)

where the characteristic scalar is

k
F± -2.(k ±k) (80)z

and

k2 " k2 + k2  (81)

z3p
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By an argument similar to that made for the previous

example, terms containing F. are neglected in comparison

with terms containing F+ when a is on the order of a

wavelength or greater. By using the six scalar integral

equations, Eqs (35) through (40), with the far field

approximation, and assuming e : 00 ; the resultant field is

2.kaop

2iii2 J1  -- J0 (k Pa)
- 2 a -z eE2  * -a iz (82)
2(y) A z]

p

which is of the same polarization as the initial field.

The Rayleigh-Sommerfeld equation yields the same result if

one assumes the transverse rectangular components of Y2

can be treated independently. (See Appendix E) Figure 7

shows the resultant field for a - 6 um.

Example 3: Circular Polarization

Owing to the circular nature of Q ± and P± , this

example is quite straightforward. Consider the right

circularly polarized initial field

-ik zz

E3 {J0 (kP ) e a+ for p 5 a (83)

0 for p a

41



at I

owl U3

aa
LI-S 0

lu

424



0~ 0 0

-J E
a~,- U

-4a4

hJ4U

L 0 (1

.j 0

.,q

4-1

434



where a is the radius of the aperture and k a - 2.4048255577
p

(first zero of Jo(kP p) ). Figure 8 shows the normalized

initial irradiance for a 6 microns. Then on S' ,

Q' - 0 and P' - 0 exactly, and

Q- 4- i F_ J 0 (k P ) (84)

V - -r2 i F J0 (k '') (85)

ik
Q z - ___ J (kp')(cos - sin ') (86)

where

F ± - (k k)

Again,

k2 =k2 + k 2  (81)
z 0

since cylindrical coordinates are used. Recall that for

+z propagation, P and Q. have a right circular nature

as reflected here. Again, the F+ terms dominate the F

terms and, using the six integral equations (Eqns (35) through

(40)) with the far field approximations and letting a : 0*

the resultant field is
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ikp 2  (kpa)
2ri a Jl(kpa) eikz Z 0 Z a

'E3 e e + (87)
zk [(kP )2 -1

p ____P

zkk

which is a right circularly polarized field. The normalized

irradiance pattern for this field with a = 6 pm is shown

in Figure 9. By using Eq (54) and applying the Rayleigh-

Sommerfeld equation to each transverse rectangular component,

Eq (87) is obtained. (See Appendix F)

Observations on Applications

The methodology is straightforward: (1) form Q and

from f and Hi , (2) use the component equations to obtain

the resultant Q and 17 , and (3) reform r and R .

The results agree with scalar diffraction theory in the far

field approximation and for 6 : 00 , provided the scalar

theory is applied to the transverse rectangular components.

Notice that, by assuming e 00 , the possibility of any

off-axis power flow is eliminated since the scalar integrals

that could contribute to such power flow depend directly

on e . The possibility of polarization shifts for the

off-axis region is similarly negated. An example of such a

polarization shift would be the development of a ay or

az component in the resultant field of example 1. Thus,

the complex field vector approach clearly indicates that
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scalar theory can be used under the far field approximation

and for e : 0*

The characteristic scalar, F± , not only simplifies

the application, but gives insight into the diffraction

process. If the aperture is smaller than two wavelengths

in size, the F. terms could not be neglected, and the

resultant field would be changed accordingly. This could

give rise to other polarizations and change the amount or

direction of power flow.

Finally, the application of this approach is straight-

forward since, once i' and P are formed, the resultant

field is obtained from a set of component equations. The

application is particularly straightforward for circular

polarization problems, as seen in example 3. This approach

avoids the necessity of resolving the initial E into

rectangular components as required when using scalar

diffraction theory. However, since this approach agreed

with scalar diffraction theory under the axial and far field

approximations, and since the scalar theory was shorter in

application, applications in this region are more quickly

accomplished with scalar theory without any loss of accuracy.

If either approximation is not valid, the complex field

vector approach, though more lengthy in application, is more

appropriate than the scalar theory. So, this approach ,s

not only rigorous in its development as shown in Section III,

but it is applied in a straightforward manner as demonstrated

in this section.
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V. Conclusions and Recommendations

In this section, three important conclusions and four

major recommendations are discussed. As a brief summary,

recall that the use of the complex field vectors led to

uncoupled field equations. Then these equations were solved

by rewriting the results obtained by Doughty in terms of

and F . The resultant field was expressed at this

point by a pair of uncoupled vector integrals over the open

surface S" . When S' was planar, the resultant field

was written in terms of six component integrals over

S' . Section IV considered three examples that showed how

easily these integrals are applied. In the special

case where (1) k k a initially, and (2) e << 1 rad ,z

the tangential components of the resultant field were

expressed in a form identical to the Rayleigh-Sommerfeld

equation. With this summary in mind, the following conclu-

sions are presented.

Conclusions

First, the objectives set forth in Section I have been

met in this report. The complex field vector approach leads

to two separated vector integral equations, Eqs (24) and (2S),

that are evaluated over an open surface S' . The only

restrictions on these equations are the assumptions that

Ohm's Law holds in the medium and that the medium is homogen-

eous, isotropic, linear and free of charge, and the

48



requirement that the initial E and H must satisfy

Maxwell's equations on S . When S' is specialized to

be a plane surface, the six component integrals in Eqs (35)

through (40) were derived by the further restriction that

k >> 1/R . Thus, the development of resultant field is

rigorous, as is required for an acceptable vector diffraction

theory. This approach has the further advantage that the

application is mathematically simple, since only separated

component integrals are involved. Indeed, for the special

case where k k a initially and e << 1 rad , the scalarz
equations express the transverse components of the resultant

in a form identical to the Rayleigh-Sommerfeld equation.

So the complex field vector approach can be as simple and

straightforward as scalar diffraction theory.

Second, this derivation of the Rayleigh-Sommerfeld

equation explains why this equation accurately describes the

near-axial irradiance pattern. It further implies that the

Rayleigh-Sommerfeld equation is not accurate in the region

farther off the axis. In this region, the set of scalar integral

equations should be used. Thus, the complex field vector

approach is clearly more general than scalar diffraction theory.

Third, the applications discussed in Section IV provide

insight into the diffraction- process. The characteristic

scalar F± that occurred in the three examples describes the

effect of the aperture size on when terms in F could be

neglected by comparison to terms in F+ . Also, the
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circularly polarized nature of Q± and P+ that was

discussed in Section III is strongly evident in the third

example which dealt with a circularly polarized initial

field. Further, it is important to note that the terms

that could have caused polarization shifts and off-axis

power flow were eliminated only by the angular restrictions

and not inherently by the component integrals. Finally, the

restriction that 0 : 0* removed the terms containing 6

(Recall that 6a -tan- 1  - . The ratio of coordinates

relates field values at a point on the initial field to the

value of the field at an observation point, which gives a

certain orientation between initial and resultant fields.)

So it is not surprising that the results agree exactly

with the predictions of scalar diffraction theory.

Based on these three main conclusions, the following

recommendations are made.

Recommendations

First, the calculation of off-axis power flow and

polarization shifts needs to be developed more fully.

Using the Fresnel approximation in place of the far field

approximation casts the component integrals in the form of

two dimensional convolutions. These equations may be

amenable to fast Fourier transform techniques if the initial

field is chosen properly. The resulting components of

and V would then be used to form T and 1 as well as

the Poynting vector = x I. From these three
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quantities, the time average polarizations and power flow

can be studied.

Second, the sensitivity of this approach to the

requirement that the initial B and H satisfy Maxwell's

equations on S' should be assessed. For example, if

only the initial transverse components of B and the

direction of propagation were known, some information about

the resultant field may still be obtained by partially

forming Q and T . A weakening of the above requirement

would make the results more useful in practical applications.

Third, an example should be worked where the field is

discontinuous at the edge of the surface S' , so that an

edge current is introduced in order to satisfy Maxwell's

equations on S' . The example would illustrate how to

deal with these fields. The resultant field should be

compared against the field predicted by the Rayleigh-

Sommerfeld equation to assess the effect of edge currents

on diffraction.

Fourth, the term a discussed in the third conclusion

should be investigated. If the initial field is azimuthally

symmetric, a would seem less significant since the spatial

phase shift should also be azimuthally symmetric. Also, the

ratio of coordinates x'x- is not unique for each set of
y-y s

points described by r . This mapping should be investi-

gated to develop more clearly the nature of 8

Throughout this report it has been emphasized that the

diffraction problem has been solved by the complex field

vector approach in a manner that is both rigorous and
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mathematically simple. Other solutions to the diffraction

problem exist, some more useful than others. Unfortunately,

the most useful (scalar diffraction theory) is the least

rigorous and the more rigorous approaches are sufficiently

complex as to be less useful. The complex field vector

approach spans the "middle ground" of being derived directly

from Maxwell's equations and being useful in obtaining both

solutions and insight into diffraction problems.
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Appendix A

Components of the Vector Integral Equation for

The purpose of this appendix is to obtain Eq (26) from

Eq (24). Let us begin by recalling Eq (24).

~()af (Cnxq9(F~j]vxf + r(nxT'(F'i].vxv-xM dS' (A.1)

Letting nxQ'(') - J(r') , this equation can be written as

f f (vx(j.U + YJ v 'xU]) dS" (A.2)

Recalling that G - Tr , one readily finds that v'xU

is the completely asymmetric dyad,

0 9 z -y

v-xU ,z 0 S'x (A.3)

11,y "x 0)

where - etc. Then by direct manipulation,

one has
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Vx(J.V'x ) -ax [Jy3,x + Jzx " J(¢,) *,)]
ax y 0 xyr + , x ~ yy + ,ZZ]

4 J * J - JyC (9 4 ' )]

y z ,yz x 0yx y ,xx ,zz

* az [Jx Izx + J *zy - Jz(O xx y y )) (A.4)

Observing that T.Z = o, the other term in the integrand

is written in component form as

VxJ* = a (Jz - J )x Z ty y ,z

+ ay (J x 4z - Jzo,x )

+ az ( y *,x " Jxt ,y )  (A. 5)

Noting that o satisfies the scalar Helmholtz equation,

Eq (14), and choosing n = +az so that So is planar and

." " -Qyax + Qa y (A.6)

one obtains for the resultant field
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a f -. 7[Q;(k20+O ,XX) -Qoo. y] dS

+ a f{Q -'EQ'(k
2 o+o ) +QQ0 J dS-

y S. y z x yy y Syx

+ az fo{Q10 + Q 0 + 1[Q* -Q * J dS- (A.7)
S xO y ,y IFx -y ,ZX

Taking the scalar product of a xwith Eq (A.7), Eq (A.8)

is obtained:

Qx - -0 1.( ~QOk2O, ,O Qo o dS- (A.8)

This is Eq (26) as desired. Equations (27) and (28) are

obtained by the scalar product of Eq (A.7) with a y and

az respectively.
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Appendix B

Derivatives of the Green's Function

This appendix obtains the first and second derivatives

of the scalar portion of the dyadic Green's function,

- exp [-ikR]/4rR . The first derivative with respect

to xi  is obtained directly as

(xi  x)
# i  x-- - -(ik + 1/R) o (B.1)

where xi  is x for i- 1 , y for i = 2 ,and

z for i - 3 . The second derivative is more complicated.

By the rules for differentiating a product, one has

- .2~.1 a x -X ;) - x1 )(x -
O-) - (ik + r)o _ 1 1 1'x- 1 jixS ax. a ax.R2

1 2 (X1-x i(x--xf-(ik +~ 1 2

+0 (B.2)
R3

3(x -xf)
Noting that 1 - 6. , and by direct algebraic

ax.i
manipulation,
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6.. 1 (x -xf)(x.-x' 2
O - -o{.f.+(ik + + 1 i(k+lr(ik1) -k2+!.. 2) (B.3)

R2 R

Under the approximation k 1/R ,Eq (B.1) becomes

0 - ik* o (B.4)
R

and Eq (B.3) becomes

- k*..t.-k (x.-xf) CX.-xf)(BS
1 j R2

These last two equations are Eqs (29) and (30).
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Appendix C

Expression of Complex Component Q~Using Impedances

We have the complex component

Q, QX + i QY (C.1)

where

Qx - Hx + V x(C2

and

Q -v + i/p7I E~ C C. 3)

Substituting Eqs (C.2) and (C.3) into Eq (C.1), and

factoring out the component of

Q+ V1)j IE (- r-t~) + i/i-[Ex (1+/ 7) (C.4)

Using a complex form for the intrinsic impedance,

(C-S)

and defining the wave impedances following Harrington,
I

(Ref 16:86)
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Ex n (C-6)

xy

and

T -
(C. 7)

x yx

where the upper sign is for +z propagation and the lower

sign for -z propagation, one obtains the final expression

for Q+ that is Eq (49): -

Q+ -iE~ (1i±2f )+ i IAt E (I ±2~ (C.8)
Tyx± xy±
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Appendix D

Development of Example 1

This appendix gives a more detailed development of

Example 1, where the field was defined by Eq (60). On

So one has

EA Cos jicos Aj a~ (D.1)

H' a ( coj osj~+ i~ sin ~Cosj) (D.2)

Using the definitions of Q and P ,Eq (18) and (19), and

Eq (34), the components of Q' and P' are

Q t-iF i x (D.3)

P,- -i F E, (D.4)
-x

Q- -Pzsin~.cs. (D.S)

where

-~ ~(k k) (D.6)

and
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. cos j'cosx 7a (D. 7)

As discussed in Section IV, the F_ terms can be neglected

when compared to the F+ terms for a . x . Substituting

the value in Eq (D.3) into the scalar integral equations,

Eqs (35) through (37), and making the paraxial approximation

of Eq (56), one finds

Q : -k f F (2-02 ) Ex o dS' (D.8)S"X

_-k r E # dS' (D.9)
S -x

ik fF (2-e is
-" " " f- Fe 0 E' * dS' (D.10)

A similar substitution is made using Eq (D.4) for the P

equations. One should note that all the components of Q

and P are present in the resultant field, so all the

components of f and H are possible. This allows

polarization shifts and off axis power flow to occur. Also,

note that all the terms containing 8 are proportional

to 0 , so as e approaches zero, these terms vanish and

the sense of orientation represented by 8 is lost. Let

8 : O . Then, for
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Q . - F~k f E' 0 dS' (D.11)
Sx

Q- : Qz: 0 (D.12)

and-for P

P : -Q, (D.13)

P+ p :0 (D.14)

The integral in Eq (D.11) is

b a

I = f'E' o dS - f dyf dx cosna cos j (D.15)
S X -b -aa

Under the far field approximation, Eq (59), and since

6 Z 00, the 0 term is approximated by

ikR 1 ikz - Cx2+y2) iC(xx"+yy")e 1 e- -e" e e (D.16)

So the integral becomes

e-ikz - k(X2+2 (D.1y* ____ • zz" " x ly (D.17)

where
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a kxx'Ix  f cos 2- e' - dx"
-a za (D.18)
-a

and similarly for I yY

Consider the integral I . Let x" be -x' and

multiply Eq (D.18) by an aperture function T(x') where

T(x') - (D.19)
0 Ix1 >a

Then

kxx'

Ix - - f [T(x') cos"5 e Z dx" (D.20)

This is the Fourier transform of CT(x') cos.] ,

Ix  F{T(xi)cos j. I (D-21)

which has a closed form solution

cos (kxa)
I - z

6S



A similar analysis for I yield!,
y

c k (yb)
I ) _ co (kx (D.23)

So the resultant field is expressed by

Siv + -ikz e- Ikx 2  IIa~ (D.24)

where Eq (41) was used. Noting that F + one
+ V

finds

-~ ~ ~~~~f o ( (i-X (k)2(f)- )]a D.

This is Eq (68).

If one assumes the transverse components of the

initial field can be treated independently with the Rayleigh-

Sommerfeld equation, Eq (17), then the resultant field is,

for 0 0* and using the far fiela approximation,

A Cik 2

I F e .x* 2  f costai-cosg ei( z ce)Y dS (D.26)
S

This integral is the same one evaluated in Eq (M.S), so

the resultant field obtained from scalar diffraction theory

is the same as that obtained in Eq (D.25).
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Appendix E

Development of Example 2

This appendix gives more details about Example 2,

where the field on S' was

E - -kP Jl(kpi a (E.1)

2kik

HA P z .... J1 (k pi) a 2 1 J(kp') a~ (E.2)

One forms the components of Q'and F' by using the

definitions:

Q1- F t e 1  J l(k P ) (E.3)

P F- e 1  j I(k P ') (E. 4)

ik 2
P, - .. J0 (k P") (E.5)

where

k
±~ -- .- (k~ k) (E.6)

As argued in Section IV, the F- terms are neglected in

comparison to F, terms so long as a A*The terms

in Eqs (E.3) and (E.4) are substituted into Eqs (35) through
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(40). The discussion in Appendix D applies here for the

paraxial approximation. Let us proceed immediately by

letting 0 : 0* . The far field approximation for 4 in

cylindrical coordinates is

ik 2 +i COS(T'-T)
1 I -ikz " - z

T - e e (E.7)

So the resultant field is described by the components

ik 2
2ikF+ -ikz -Q+ : -I- e e I+(E.8)

ik 2
2ikF -

P. : 4 e -ikze I (E.9)

Q- : P+ Pz : 0 (E.10)

where

a 2v w cos(T'-T)
f 1 p*dp" f d#0 e ±- l (k co p s-) e (E.11)
0 0

The integral in #* is solved first. By using the identity,

2w i-e s )imc(j e-i cos(-).de 2w(-i)m e J(a) (E.12)

0

one finds

I -2i • ± i . a dpo Jl(k o")Jl(- (E.13)
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where the identities

Jn(x) - (_I) n Jnx) (E.14)

J n(-x) - (-1) n J n(x) (E.15)

were also useful. With the use of an aperture function

like Eq (D.19), the integral in p' is a Fourier-Bessel

transform (or a Hankel transform of order one) that may be

solved in closed form. So the resultant field is

ik 2

- wa -kz- J1 ~) -C a)

.2kp
where the relation F . was used. This is Eq (82).

In order to apply scalar diffraction theory, one must

first write the initial field in rectangular coordinates,

then the initial field on S' is

ax[kPJI (kp')sin# 1 - ay[kpJ l (kop ) cosf' ]  (E.17)

Then, assume each component can be treated independently

with the Rayleigh-Sommerfeld equation, Eq (17), and use

the exponential forms of the circular functions,
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ei *e -ioC e iO+e-i(E

Consider the ax  component first. Under the far field

approximation and letting 0 : 0 , the resultant ax

component is

ik 2
k -ikz "-77

EX  - 7 e" e [I+ -I (E.19)

where the integrals I are those evaluated above in

Eq (E.11). The resultant E is then

ikP2

E X Z eikz e JokPa)sino ) (E.20)

From a similar analysis, E can be found and one recombines

the components using the relation

E0 - -ExSino + Eycoso (E.21)

and the resultant field in Eq (E.16) is again obtained. One

should note the necessary step of casting the initial field

in terms of rectangular components before the Rayleigh-

Sommerfeld equation can be correctly applied. This is due

to the fact that ax  and ay can be factored out of integrals.
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Appendix F

Development of Example 3

In this appendix, Example 3 is developed in more

detail. The initial field was described by Eq (83). On

S , we have from Maxwell's equations and Eq (54),

-- 1 (kp4.)a

EJ"(k PJo )a +±. J 0 (kpp)a F1y

1 4 J0(kpp)a + J(kpp') a

1U JL (k pl)(cos' - sino')az (F.2)

The components of and 7 follow directly:

Q0 0 0 (F.3)

Q /7 i F. J 0 (kpp') (F.4)

. 0 (F.S)

P. -"" i F J (k p') (F.6)

ik
Q- = Pz -- L2 (lk p')(cos"- sin#') (F.7)
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where F= (k ± k ) As argued in Section IV, thez

F. terms are neglected in comparison to the F+ terms.

Then, substituting into the scalar integral equations,

Eqs (35) through (40), with the far field approximation

and letting e : 00 one finds =0 Pz P+ 0

and

ik 2p

p. 4V 2 7 k) e-ikz e--2  (F.8)

where

kpp'
a 2 1r i-cos(*-o)

I f 0(k pf')p'dp f e dA (F.9)
0 0

Using the identity shown in Eq (E.12), the integral becomes

a k P
I - -2w f P'J0(k P "J0(P) dp (F.10)

0

With the use of an aperture function like that described

in Eq (D.19), this integral is a Fourier-Bessel transform

(or a Hankel transform of order zero) of J0 (kp') . The

integral has a closed form solution, so

P 4 a Jl(ka) eikz e { e 07 (F.11)

P



From Eqs (41) and (42), one finds

E+ iv p (F.12)
2VT-

so the resultant field is

ik 2  ka
2ni a Jl(k-a) e JO P)

E3  : e e kpz)2 ] z a+ (F.13)

P

This is Eq (87).

To use scalar diffraction theory, one must first

obtain the rectangular components of T as in Eq (F.1),

and then assume each component can be treated independently.

The equation for Ex  is (for e : )

Ex . i p dS' (F.14)
Xz P J0 )eiR

With the far field approximation, one has the same integral

that was solved earlier in this appendix. The resultant

E is

kai2 J3o P-
ikP (F.I$)

Sk a (ka) e'ikz e- k 2]

73



A similar development for E y leads to

ik 2  k a
VT irk a Piz 7 ______

E --- Az- 2 --- (ka) e -ize-= O (F.16)
y Az 1 [,k2)2 - k 2)

Then, using the relation E+ (E~ - iE ) Eq (F.13)X y
is again obtained for the resultant field. Thus, scalar

diffraction theory and the complex field vector approach

yield the same result in this region.
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