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Abstract

\

A polynomial equation for the eigenvalues of the modes
of off-center unstable confocal resonators is developed. A
constant gain for steady state modes in a bare cavity is as-
sumed. The field is built-up from right and left-traveling
diffraction components for a number of round trips through
the resonator and geometrical components from the core re-
gion., Using an asymptotic expansion of the diffraction inte-
gral, the boundary conditions are developed. These, with the
propagation equations across the resonator, are used to re-
late the diffraction and geometrical components to the diffrac-
tion amplitude after one round trip in the cavity. The poly-
nomial equation for the eigenvalues is developed from the
first round trip amplitude function, after approximating a
slowly var&ing function of the field to be constant. A meth-
od is proposed for examining the behavior of the approximated

function for the centered resonator case and including it in

mode calculations if necessary.
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ASYMPTOTIC ANALYSIS OF
OFF-CENTER UNSTABLE
CONFOCAL RESONATORS

I. Introduction

Unstable resonators have many attractive features in-
cluding large mode volume, substantial transverse mode dis-
crimination, and direct output coupling (Ref 9:156). Due to
these characteristics, the determination of the resonant
modes of these resonators has been the subject of much re-
search, Unlike stable resonator modes (Ref 10:328-332),

those of the unstable resonator cannot be easily described

in terms of well-known special functions.

Many methods have been used to determine the modes of
unstable configurations. Geometric approaches (Ref 9:156)
yield crude results for only the lowest-loss mode. These
results are valid only for high Fresnel number resonators,
Methods which iterate to self-consistent field distributions
(Ref 2) typically yield only lowest-loss mode information.
More elaborate techniques have been developed which employ
Fast-Fourier-Transform techniques and include effects of
gain, diffraction, and index of refraction variations (Ref
13). This technique, however, is not practical for high Fres-
nel number resonators due to prohibitive increases in the

required computing time, Other techniques using numerical

il . , m,_.ﬁﬁﬁ.ﬂnﬁgnnnnunﬂﬁiﬁ‘



integration also become costly to run for high Fresnel num-
ber resonators.

An asymptotic theory of unstable resonator modes using
an asymptotic expansion in the resonator integral equation
has been deceloped by Horwitz (Ref 3) which yields the low-
est-loss mode and higher order modes, uses little computer
time, and is valid for a wide range of Fresnel numbers. The
eigenvalues of the modes are found as the roots of a polynom-

ial equation in this method. Horwitz has extended this

theory to include misalignment of the feedback mirror by a

small tilt (Ref 4).

Moore and McCarthy (Ref 6) have extended the asymptotic
approach of Horwitz to determine the steady state modes of a
bare resonator and a loaded resonator with arbitrary fixed
gain distributions. Their analysis applies to the positive
branch unstable strip confocal resonator (Ref 9:355). For
this geometry the optical axis passes through the center of
both mirrors. This centered confocal resonator geometry is
chosen because the beam is not focused within the cavity, al-

so the output beam should be well collimated since in the geo-

metric limit it would be a plane wave,
In comparison to the centered resonator geometry, reson-
ators with an off-center feedback mirror appear to offer ad-

vantage in beam quality. Better mode-loss separation and

more far field energy in the first Airy square (for rectan-

gular mirror cavities) may be achieved (Refs 7:2159 and 14: |
i
|

1828). To examine these characteristics, a method of




determining the modes for off-center unstable confocal res-

onators is needed,
The primary objective of this work is to extend the

analysis of Moore and McCarthy to obtain a polynomial eq- H

uation for the eigenvalues of the off-center geometry., A
secondary objective is to examine the approximations made by
Moore and McCarthy in their analysis of the centered geometry
and to report the results of this work,

This report consists of six chapters and five appendices,
Following this introduction, Chapter Il presents the basic
formalism, assumptions, and general approach used in this an-
alysis, Chapter 111 develops the equations for the boundary
conditions on the mirrors while the amplitude functions for
the field in the resonator are developed in Chapter IV, The
polynomial equation for the eigenvalues of the off-center un-
stable resonator modes is developed in Chapter V., An approx-
imation made by Moore and McCarthy to obtain the polynomial
equation for the centered case is also examined in this chap-
ter. The last chapter presents specific conclusions and rec-
ommendations., The appendices include mathematical derivations

and detailed discussions supporting the work presented in the

main body of this report.




II. Problem Formulation

The purpose of this chapter is to set the framework for
use in the following development. Four major areas are dis-
cussed. The first area is the basic formalism for the prob-
lem. This includes a discussion of the geometry, assumptions,
and general approach used in the development. The second
section presents the basic form assumed for the field in the
cavity. Next, gain in the cavity is considered in light of
assumptions made for steady state modes to be supported.
Finally, the assumed form of the field amplitude expressions

is discussed.

Basic Formalism

Geometry. The geometry of the off-center unstable strip

confocal resonator cunsidered in this report is illustrated
in Fig. (1). This cavity consists of a convex cylindrical
feedback mirror at the right end and a large concave cylin-

drical mirror at the left end. The feedback mirror, M is

1*
located distance d to the left of the common focal point,
f.p. The large mirror is displaced a distance D to the
left of the feedback mirror along the optical axis. The op-
tical axis is taken as the line joining the centers of curv-
ature of the mirrors, 01 and C2 .

The upper edge of the feedback mirror is located dis-

tance b from the optical axis and the lower edge distance
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-a, For this development it is assumed that |b|>la|. The
transverse dimensions of the large mirror are assumed to be

i sufficiently large so that all of the incident radiation is

reflected without introduction of diffraction effects. Prac-
tically, this "sufficiently large" transverse dimension can

be considered to be at least b(M+1) (Ref 6:228) where M

is the resonator magnification developed in Appendix B and

given by

Two effective Fresnel numbers can be defined for this
cavity due to the asymmetry of the feedback mirror edges to

the optical axis. They are

kb?

Fob = Ira : (2)
ka?

Fea = Ird (3)

These are also reffered to as equivalent Fresnel numbers
(Refs 3:1529 and 12:39).

The asymmetry caused by the feedback mirror not being
centered on the optical axis can be introduced by starting
with the centered geometry and rotating the feedback mirror
about its center of curvature. The difference between the
asymmetry being introduced by a rotation rather than a tilt-

ing of the feedback mirror is discussed in Appendix A. It




is clear that when the feedback mirror edge distances from
the optical axis are equal, |b|=|a] , the expressions de-
veloped in this analysis should reduce to those of the cen-
tered case.

As in Moore and McCarthy's analysis (Ref 6:228), the
field in the cavity can be modeled by a right-traveling mod-
ulated plane wave and a left-traveling modulated cylindrical
wave originating at the focal point. To describe these fields
conveniently, two coordinate systems are used, see Fig. (1).

A cartesian coordinate system (z,x) with its origin at the in-
tersection of the optical axis with the large mirror, has pos-
itive 2z defined to the right of the mirror and positive x
above the axis. The cylindrical coordinate system (p,8) has
its origin at the focal point. Positive 6 1is defined as a
clockwise rotation in the (z,x) plane about the focal point
with 6=0 along the optical axis to the left of the focal
point.

When the paraxial approximation is valid these coordin-

ate systems are related by

p = Md-z (4)
¢=2 (5)

Then the paraxial coordinates (p,x) can be used to describe
locations relative to the focal point.

Assumptions. To make the development more tractable,




without sacrificing accuracy, five major assumptions are made:

1., The field is scaler.

2. The mirrors are perfectly conducting.

3. The laser is operating in steady state.

4. The main contributions to the modes are from paraxial

regions in the resonator,

5. The optical axis does not pass closer than several

Fresnel zones from the feedback mirror edge.

The first assumption greatly simplifies the analysis of
the problem. The scalar equations neglect the vector nature
of the field and so polarization effects are not modeled.

This allows the use of the strip resonator geometry. 1In a
bare cavity analysis this is not a serious drawback. If a
specific gain medium was being modeled then polarization be-

comes a factor.

The assumption of perfectly conducting mirrors implies
that all of the incident light is reflected. Thus losses due
to absorption by the mirrors are not modeled.

Oscillation in steady state at a single frequency negiects
time-dependent phenomena. It also implies a constant gain in
the resonator that exactly cancels losses due to output coup-
ling. This analysis differs from that of a truly bare cavity

(no gain medium) which would exhibit decaying modes.

The assumption of paraxial modes implies that the major
contribution to the mode comes from a paraxial region about

the geometric source point.




It is assumed that the optical axis does not pass closer
than several Fresnel zones from the edge of the feedback mir-
ror because of the asymptotic expansion used in this analysis.
This expansion is carried out to terms of the order of the in-
verse Fresnel number for the edge nearest the optical axis.

If the optical axis passes closer than several Fresnel zones
this expansion becomes increasingly inaccurate.

Approach. The general approach to obtaining the poly-
nomial equation for the mode eigenvalues consists of four
parts. The first part assumes a form for the field in the
cavity built up from a geometric contribution and diffraction
components due to the feedback mirror edges. The boundary
conditions relating these field compenents are developed in
the second part of the analysis. In this section the devel-
opment of the boundary conditions on the feedback mirror in-
volves the use of an asymptotic approximation for a diffrac-
tion integral evaluated over the limits of the mirror. The
third part of the analysis develops expressions relating the
geometrical components and diffraction components of the aﬁ—
plitude function to the diffraction components after one
round trip in the resonator. The diffraction amplitude com-
ponents are then expressed in terms of an auxiliary slowly
varying function. 1In the fourth part an approximation of the
auxiliary function, similar to Moore and McCarthy's (Ref6:233),
is made to obtain a polynomial for the eigenvalues. This sec-

tion then returns to the centered case and proposes a matrix




equation that could be used to examine the auxiliary function

approximation and determine its validity.

Field Considerations

Field in Resonator. The field inside the cavity is as-

sumed to consist of a right-traveling wave and left-traveling
wave similar in form to those of geometrical theories (Ref 9:
157). The right-traveling wave has the form of a modulated
plane wave where its amplitude function includes rapidly os-
cillating transverse phase terms due to diffraction effects.
Similarly, the left-traveling wave assumes the form of a mod-
ulated cylindrical wave originating at the focal point of the
cavity. 1Its amplitude function also includes diffraction ef-

fects. The total field in the cavity is then given by

wt

E = [f(z,x)exp{ik(zﬂdd)}-p‘*g(p.G)exp(ikp}]e'i (6)

The mirrors of the cavity impose boundary conditions up-
on the field., At the mirrors the phases of the right and left-
traveling waves must match. Also, the total field must vanish

on the two mirrors. This yields the boundary conditions

£(0,M8d) = (Md) ¥g(Ma,6) (7
ate(p,0d)e21kD; 2<o<d
g(d,e) = (8)
(o] ;jotherwise
10
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Gain Considerations

From the assumptions used in this analysis, the field

must obey the scalar Helmholtz equation

P et _ 2u0 3 _
Sl 10 ot w b
where
¢ = velocity of light
u = permeability of gain medium
o = conductivity of gain medium

uo = G the gain coefficient of the medium
Since the field consists of right and left-traveling waves,
these traveling waves individually satisfy the Helmholtz
equation. Substituting the right-traveling wave from Eq.(6)
into Eq.(9) yields

2
21k(%§f(z,x)-0f(z,x)> + 37 £(2,x) = 0 (10)

when second derivatives of the z-coordinate are neglected due
to the slow variation of the field as a function of z,

Similarly, when the left-traveling wave of Eq.(6) is sub-
stituted into Eq.(9)

2
Zik(%p-z(p.e)-Gg(o.e))+p"%31-s(o.6) -0 (11)

where second derivatives with respect to p are neglected due
to the slow variation of the field as a function of p . Al-

so terms of order ip-ig(p,e) are neglected when compared to

11

o e " i 5 T r—




A A S S

ka" g; g(p,8) . In Eq.(10) and Eq.(11) the G term is as-
sumed to be a constant,

If diffraction effects are ignored the second derivative
terms of Eq. (10) and Eq.(11) can be neglected (Ref 6:229)

yielding the geometrical rate equations

1(z) = Gt(2) (12)
358(0) = Ge(o) (13)

The solutions of Eq.(12) and Eq.(13) are
f(z) = £(0)exp{Gz} (14)
g(p) = g(0)exp{Gp’ (15)

The right and left-traveling waves in the cavity are de-
pendent upon each other. This dependence can be expressed in
terms of the gain in the cavity. The Wronskian of Eq.(12) and
EqQ.(13) can be found by multiplying Eq.(12) by g(p) and Eq.
(13) by f(z) and then subtracting one equation from the oth-
er. In the paraxial approximation, the p dependence is chang-

ed to 2z wusing Eq.(4). This yields

S_i(z)|g(Md-2) = |- S g(Md-2z)|f(=) (16)
3z 328

Integrating yields
f(z)g(Md-2z) = C (17)

12
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where C 1is a constant of integration.

Evaluating this expression at each mirror yields
£(0)g(Md) = f(D)g(d) (18)

Upon substituting for f(0) from Eq.(7) and for f(D) from
EqQ.(8) it is found that

e21kDy=#02 (\q) = g2(q) (19)
From Eq.(15)

D

g2(Md) = g?(d)e?C (20)

A constant gain coefficient Q which satisfies the steady

state requirement for this analysis can be defined as

Q = GD (21)
Then substituting Eq.(20) into Eq.(19) yields

o M-§e21kDe2Q (22)
where, for this geometrical case

el (23)

The u terms are the eigenvalue for the resonator modes,
When diffraction effects are included, the u terms are
found to be the roots of a polynomial equation where each

root is the eigenvalue of a different resonant mode; Thus

13




the constant gain required to sustain each mode in steady

state is different.

Diffraction Effects

The amplitude functions of the right and left-traveling
waves are expanded in terms of a geometrical amplitude func-
tion and edge diffraction amplitude functions as shown by
Horwitz (Ref 3:1530) and Moore and McCarthy (Ref 6:230). The

diffraction terms consist of slowly varying amplitude functions

and phase terms that have rapid transverse oscillations. Well
within the geometrical shadow boundaries the diffraction terms
can be viewed as cylindrical wavelets emanating from the vir-
tual images of the feedback mirror edges (Ref 6:230)., From
Appendix B, these virtual images are located on two half-
parabolas. For the (d,b) edge of the feedback mirror, the

images are located at

(pysby) = (aM2® ,bM®) :n=0,+1,%2,...,%N (24)

and for the (d,-a) edge

(p.,-a_) = (aM?" -aM®);n=0,%1,:2,...,2N (25)
n n

For n>0 these images lie behind the large mirror and

their cylindrical wavelets contribute to the right-traveling

wave amplitude function which can be written as

14
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N
£(z,x) = j{:(on-o)'*rn(p.x)exp
=1

ik (x-bp)?
. i (o,=0) ;

ik

(x+apn)?|
Z (o -0) | (26)

+(p,-P) és (p,x)exp

+1(p,%) ?
where :
rn(p,x) = diffraction amplitude functions from left é
images of edge (d,b) i
sn(p,x) = diffraction amplitude functions from left
images of edge (d,-a)
%(p,x) = geometrical amplitude functiown

The n=0 wavelets originate at the feedback mirror edges
and the n<0 wavelets originate at the virtual images to the
right of the feedback mirror. These images approach the focal

point as n+-» | These cylindrical wavelets contribute to the

left-traveling amplitude function which takes the form

~N+1
0 3g(p,0) = Z (p-pp) o, ")exP’lk _{e;—xnl.g

n=0,-1,-2
ik o+ =)°
+(p-on)'*vn(p,x)exp 5 N (27)
Pp P
+0"%g(p,%)




where
un(p,x) = diffraction amplitude function from right
images of edge (d,b)
vn(p,x) = diffraction amplitude function from right
images of edge (d,-a)
§(p,x) = geometrical amplitude function
The phases appearing in Eq.(26) and Eq.(27) are the Fres-
nel approximations to the phases of cylindrical waves emanat-
ing from points (pn,bn) or (on,—an) . When |n| 1is small
the phase terms are rapidly oscillating but when |n| becomes
large the phases associated with edge (d,b) terms approach
the constant phase
exp{lggi} = exp{2niFeb} (28)
and the phases associated with edge (d,-a) terms approach
the constant phase

2
exp{igg—} = exp{ZniFea} (29)

It has been found by Horwitz (Ref 3:1533) that a practical

value for large N is given by
M\ = 250F (30)

This is practical in the sense that a larger N changes the

eigenvalues at most in the third decimal place. In the

16




off-center case let Feff.Feb since Feb)Fea . This will as-

sure a large enough number of terms in the expansion,
Finally, substituting Eq.(26) and Eq.(27) into Eq.(9)
yields the rate equations

arn ds

- s n-
| S TUI Do

3un avn 3 <
o " 0§ gr= O 5% = Gg (32)

where 3. is the directional derivative along the direction

RE)
of the diffraction ray propagation off the optical axis, This
is consistent with previous gain considerations,

In the special case where |a| = |b| these preceding ex-
pressions reduce to those of Moore and McCarthy (Ref 6) for
the centered unstable confocal resonator,

In summary, this section has developed the expansions for

the right and left-traveling wave amplitude functions in terms

of geometric and edge diffraction amplitude functions,




=

III. Boundary Conditions on the Mirrors

This chapter details the development of the boundary corn-
ditions, including the diffraction terms, on the two mirrors
of the cavity. These conditions specify the relationships be-
tween the right and left-traveling waves, The development is
arranged into two sections. The boundary conditions on the
large mirror are developed first. The second section devel-
ops the boundary conditions on the feedback mirror using an

asymptotic expansion of a diffraction integral.

Boundary Conditions on the Large Mirror

Since the large mirror is assumed to reflect all of the
incident field, the boundary conditions on it are easily ob-
tained. From Eq.(7) the boundary conditions on the large mir-
ror are found be equating the right hand sides of Eqs.(26) and
(27) for p=Md and 6=x/Md . Using Eq.(24) it can be shown
that the resulting equation has like exponentials on each side
ik (x-bp)?| _ . )ik i
2 (o, - i g & g

' Md

of the equality

exp (33)

n=1,2,.,,N

exp

2
X 89.n\?
ik (x+an)? ik \Md Y i
= exp (34)
S %E;rﬂ%7s ’2‘ 1 1
n=1,2,...,N

18
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The coefficients of these like exponentials must also be equal.
Equating these coefficients yields the boundary conditions for
the diffraction amplitudes:

(o, -M)"Hr (Md,x) = (M=o, )7Hu, (M) (35)

;n=1,2,...,N

(pp=M)™3s (Md,x) = (Ma-p;_)7Hv,  (Ma,x) (36)
2 L I RS |

Equating the remaining terms yields the boundary condition for

the geometrical amplitudes:
F(Md,x) = (Md)“¥g(mMd, x) (37)

Boundary Conditions on the Feedback Mirror

The boundary conditions on the feedback mirror are more
difficult t6 develop. While the total field must vanish on
the mirror; the left-traveling component must be zero off the
mirror. A diffraction integral evaluated over the feedback
mirror will account for these requirements. It is assumed that
the gain coefficient is zero very near the feedback mirror, so
this term is not included in the integration. Then, the Huy-
gen-Fresnel diffraction integral will give an expression for

g(p,8) 1in terms of g(d,0):

19




1 fawax b [PVa
g(p,0) = T b g(d,e”) (38)
P~ d] “asy

X exp de”

:§5 ge-e‘}2

6 d

where the Fresnel degree of approximation has been used in

phase terms. Making the change of variables, n=9' g

and replacing g(d,6') with the form from Eq.(8) yields

1 [2nika?]? o21kD
o

g(p,0) = 5 qrr;
o d
(39)
%/a a_ \?
0=-=n
x/ £(D,an)exp #g—-%)- dn
4 5

The expression for f(D,an) given by Eq.(26) is substituted
into this equation. This integral can be approximated by an
asymptotic expansion about the stationary phase point as de-
scribed in Appendix C. The results of the specific integra-

tion in Eq.(39) are developed in Appendix D where the approx-

-1
ea %

expression for g(p,0) near the feedback mirror is then

imation neglects terms of higher order than F The

found to be
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e 1

2 )%
g(p,08) = %; 2nika e21kD (a0
d d

.

-

x [1,+12+1,

where 1,,I,, and I; are developed in Appendix D. Eq.(D-40
of this appendix presents Eq.(40) in detail,
Recalling Eq.(27) and letting the summation index n =

yields
-1
g(p,8) = E o*(p-pﬁm) 3
m=0,1,2
k (41
x |u_ (p,x)exp §-<
+v_ (p,x)exp %5 +g(p,X)

The expressions for g(p,0) in Eq.(41) and Eq.(40) can then
be equated. It can be shown that as p approaches d ther

are like exponentials on both sides of the equality

2
f;____:i)_
ik p(bp=0d)?2 e ik \®* Pp 3
°"p;2-pon- +a(o- i A 2"(1 _-3_) N
(Y P
-n

n= 1,2.00’N-1
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and

ik _ p(ap+6d)? !
z p(pn-s)‘rd(p-tﬁ% ». e

exp (43)

ns= 1,2,.0..N"1

Therefore the coefficients of these like exponentials can be
equated as p approaches d . These are the boundary con-
ditions for the diffraction amplitude functions on the feed-
back mirror:

#0(o ~a)7Hr (a,%) = (d-o_7Hu_ (4,1 (44)

n = 1,2,...,N"1

2ikD

e* M Pp ~)Es (d,%) = (a-o_7Hv_ (a,x) (45)

n=12,.,..,N-1

The geometrical term from Eq.(41) can then be equated to the
geometrical term and the Nth diffraction terms. Here N is
assﬁmed large as given by Eq.(30) and so the phases are con-
stant as given by Eq.(28) and Eq.(29). The boundary condi-

tion for the geometrical terms as p approaches d is then

d-*

8(a,x) = 2P [¢

" 2
Py-d) i’N(d'x)exp‘ikg } (46)

2y A
+(oN—d)'isN(d.X)exp{1§%-}+f(d.x)]
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Then the m=0 terms remain from Eq.(41) which equal the re-
maining terms from Eq.(40). This is taken as the expression
for the diffraction amplitude functions on their first trip
across the cavity and is used in the next chapter.

In summary, this chapter has developed the relationship
between the various amplitude functions at the mirror bound-
aries, It remains to relate these amplitude functions to a

common expression, the diffraction amplitudes after one round

trip in the cavity.




IV. Amplitude Functions in the Resonator

This chapter develops the relationships among the geo-

metric and the diffraction amplitude functions. The devel-

opment of these relationships consists of three sections,
The first section relates the diffraction amplitude functions

on the nth round trip of the cavity (equivalent to emanating

from the nth virtual image of the feedback mirror edges) to

L b

the first round trip value. The first round trip amplitudes
are then defined in terms of auxiliary functionms, qa(x) and
qb(x) . The second section relates the geometrical amplitude
functions to these auxiliary functions. In the last section
the expressions for these auxiliary functions are developed
in terms of the eigenvalues for the resonator modes.

It is important to determine these relationships be-
tween the various amplitude functions because the values of
these amplitudes can be found once the value for the first
round trip diffraction amplitude functions are known. With
values for all the amplitude functions the total amplitude
functions for the right and left-traveling wave can be deter-

mined.

A5 e IR O S TR TR TRETIE: S SRV R AW SAPTT W

"Diffraction Amplitude Functions

Initial Amplitude Functions. After the boundary condi-

tions on the feedback mirror are extracted from the right

hand side of Eq.(41) equated with the right hand side of

| 24
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Eq.(40), the remaining terms yield expressions for the diffrac-

tion amplitude functions on their first trip across the cavity

from the feedback mirror. From these remaining terms it can

be shown that

the following exponentials are equal by using

Eq.(24) and Eq.(25):

exp

exp

This leads to

°L5’

2
#r i oxp {35 gficant)

%g_gi_ 9,2 ‘ = exp ik péawd;’} (48)

the expressions for the diffraction amplitude

functions on their first trip across the cavity:

N
3 e
o (0, %) -:(2-,%1;) FHDL 3 (B2 (49)

and

n=1

x rn(d,b)exp{ik Lb_-%n)_} [g_—___g gég:edz]
+(on-d)‘isn(d,b)exp{%5 £§§%3li}
x[%i%& + Eé%%%%%] -1+§(d,b)[9§b;gd;]

-1

25




N
3 :
\ Vo(p,x) = 3 (Q%ﬂz) 201D " (o ) Hr (d,-0) |

n=1

f ik (a+bp)?) [a+b (a+ed) | (50)
. X exp{i— %3;:&%—} [3;:3 + §T6137‘]

2
x(pp=d)"¥s (a, -arexp{zk (2-t) |
n

RN R L

P

=1 -,
a-an p(a+dd) A p(a+dd
x[}n'd + d(p-d)] +f(d,_a)[ e ]

A S S YL e

The 7 at the beginning of the righthand side of Eqs.(49) and

e

(50) explicitly denotes the choice of roots from the square

- AR, 41

root. In Eq.(40) the positive root of the square root was im-

plicitly chosen so that the real part was positive (Ref6:231).

This leads to the choice of the negative root here.
In Eq.(49) it can be shown that

-1 -1 :
b-b b-0d §
[p -3 £ dio-ag] i [ﬁbn's] (81) :
1 n 3
and {
51 4 ?
b+a p(b-8d & .
[3;& i %Tm%] [Ban's] (82) 5
‘ where :
X=b !
B = (3:3) (53) ;
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is the angle with respect to the optical axis of the ray join-

ing the mirror edge (d,b) with a point (p,x) in the cavity,

= [ b=b by _ b -n,-1
an (5;:3.+ 3) 3(1+M ) (54)
is the angle for the ray Joining image point (p_n,b_n) with
edge (d,b),
g
- (brap , bY_ b1+
Ban (pn— . d) d 1-y-2n (85)

is the angle of the ray joining points (o_n,—a_n) with edge

(d,b) . These angles are illustrated in Filg.(2). Also it

can be shown that

esg] - 5]

Similarly, for Eq.(50)

=1
a+b5 p§a+edz »

-

and

-1 -1
a-aa p§a+ed2 i}

where

et vr———




(d,b)

A Cﬁ..hq)

optical axis

J&LI:Ea AE}.

(/-af(u)

(M4, x)

6&1)

Fig 2 RAY ANGLES FOR wu,(p,x) AMPLITUDE FUNCTION

is the angle of the ray joining edge (d,-a) with a point
(p,x) 1in the cavity,
b,(-n
1+=M
= [ &tb a) _ 8 a
®bn (—%pn- *a) I\ oo i
is the angle of the ray joining points (p_n,b_n) with edge
(d,-a),
a-g
4 Ees ) IR -n| -1
ng (W + a') a [1+M ] (61)
is the angle of the line joining points (p_n;-ann) with

edge (d,-a) . These angles are illustrated in Fig.(3). Al-

so it can be shown that




(446)
(M.{,x') (,” b )

"j“ fa
e e

(J)"‘)

Fig 3 RAY ANGLES FOR v,(p,x) AMPLITUDE FUNCTION

-1 -1
EEa R (o2

It can also be shown that using the angle expressions, a
and B , allows the left-hand sides of Eq.(49) and Eq.(50)

to_be written as

u,(p,x) = u,(p,(p-d)B+b) (63)

vol(e,x) = v, (p,(p-d)a-a) (64)

Recall that Eq.(49) and Eq.(50) are valid only near the feed-
back mirror because the gain coefficient was assumed to be

zero when these equations were developed. To propagate ac-

ross the cavity, maintaining steady state, the diffraction

I PPy




amplitudes of Eq.(49) and Eq.(50) must be multiplied by the ex-
ponential of the gain coefficient, Q , from Eq.(21). Then,
using Eq.(51) through Eq.(64), the diffracted amplitude func-

tions on the first trip across the resonator can be express-

ed:

L]
U, (0, (p=d)B+b) = - (2%12) Q2 1kD

N
x Z(on—d)'*rn(d,b)

n=1

x exp{fk (b=ba)7) [an-e] T (en)

n

‘ ...(pn.-cl)"*sn(d.b)exP{é'}S L%i%ﬁli}

and

' %
v, (p,(p-d)a-a) = _(E%E) oQe21kD

N
x| 20 o =) 7r (4,-0)

. Ln=1

-3
x exp{* %gnﬁ}[ab“m] (66)
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+(pn-d)‘ésn(d,-a)0XP{éE é&;gnli}
n

| 1 -1
~ R -
x[aath- H‘(d,-a)[—a*aJ (6G)

Progagation Equations Across Cavity, An expression is

needed to relate the amplitude functions of the right-travel-
ing diffraction terms at the feedback mirror on the nth
round-trip to their values for the first round-trip of the cav-
ity. To develop these round-trip expressions, the propagation
expressions are needed for diffracted rays going from the feed-
back mirror to the large mirror on the nth trip to the left
and a similar expression for the nth trip to the right, On the
nth trip to the left or right a diffracted ray can be viewed
as originating from the corresponding nth virtual image of the
appropriate freedback mirror edge. The diffracted wave on the
nth round trip travels that part of the ray path inside the
cavity. This is {1lustrated in Fig.(4).

For these image rays to the right, 1ntersecting the large
mirror at any point (Md,x) » the amplitude functions along

the ray paths, including steady state gain, are given by

r, (Md-z, x- ﬁégg; z) rn(Md,x)eQ (67)

n = 1’2'IOQ’N

sn(Md-z,x- ﬁé%%h 2)

s, (Md, x)e9 (68)

LRt 1% SR
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Similarly, for the nth ray paths to the left, intersecting

the feedback mirror at any point (d,x) , yields

U, (0, X+5720(p-d))= u, (d,x)e” (69)
n

n = -1,-2,--."‘N+1

Va (P X+FIRR(-d))= v, (d,x)eT (70)
n = a1,-3,,..,-N+1

Amplitude Functions from nth Transit of Cavity. The ex-

pressions relating to ry and Sy to Sy will now be
developed. The diffracted amplitude function rn(d,x) is the
amplitude of the diffracted wave caused by the feedback mir-
ror edge (d,b) after it has made n round trips through the
cavity. This function can be related to the rn_l(d,x') am-
plitude function by propagating it back through the cavity
one round trip. Here (d,x') 1is the point a ray must start
from on the feedback mirror to propagate to point (d,x) ..
Starting with rn(d,x) and using Eq.(67) to propagate
the amplitude function on the feedback mirror to the large mir-

ror yields

rn(d,x) = rn(Md,n)eQ
(71)

n = 1.2,...,N
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where, using Eq.(1) and Eq.(24)

uM2? o MB(u-1)
2n 2N
1-M 1-M

n=x (72)

At the large mirror the boundary condition of Eq.(35) gives

M2y .

Q o al
e rn(Md,n) e W ul_n(ud,n) (73)

R® 3 3,58

From this Eq.(69) is used to propagate ul_n(Md.n) back to

the feedback mirror:

)
Qf M2M_ym

® oz (-0 Y1-n(Md,n)

2Q[M2 "M '
5y MoM2 (1-1 Uy _p(d,x") S
ne=223,...,N
where
U ™ o NING W) (75)
M MZI I—Il) M_MZ (1-&7

The boundary condition at the feedback mirror Eq.(44) then

yields
3

2Q[M2" M :
e ul_n(d,x )

M-M 2 =-n
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R

= e?Q21KD;  (a,x') (76)

Yyt (1B} By
M2 (A=1)_y yy? (1-1)

X

n=2,3,...,N

Using Eq.(72) and Eq.(75), the x' value can be expressed in
terms of x . Then the rn amplitude function can be relat-
ed to the r._1 function using Eq.(71), Eq.(73), Eq.(74) and
Eq.(76):

rn(d,x) = M'}ezQe2ikD

2n n -1
x g (a0t p N ) (77)
i e Pa

n=2’3,...,N

From this equation can be related to -2 which can

Th-1
then also be related back to r. Continuing in this manner

leads to an expression relating r to ry:

n
rn(d,x) = M e2(n-1)Qe21kD(n-1) (78)
X rl(d,kbn(x)) A (e 1 R | |
where
Me-lowz_yy  w20-1y
k, (x) = x +b. (79)
bn Mzn-l M2n_1
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By a similar procedure the diffracted amplitude function
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