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Abstract

A polynomial equation for the eigenvalues of the modes

of off—center unstable confocal resonators is developed. A

constant gain for steady state modes in a bare cavity is as-

sumed. The field is built-up from right and left-traveling

diffraction components for a number of round trips through

the resonator and geometrical components from the core re-

gion. Using an asymptotic expansion of the diffraction into—

gral , the boundary conditions are developed. These, with the

propagation equations across the resonator , are used to re—

late the diffraction and geometrical components to the diffrac-

tion amplitude after one round trip in the cavity. The poly—

nomial equation for the eigenvalues is developed from the

first round trip amplitude function , after approximating a

slowly varying function of the field to be constant . A meth-

od is proposed for examining the behavior of the approximated

function for the centered resonator case and including it in

mode calculations if necessary .
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ASYMPTOTIC ANALY SI S OF

0FF-CENTER UNSTABLE

CONFOCAL RESONATORS

I.  In t roduc t ion

Unstable re~~nators have many attractive features in-

cluding large mode volume , substantial transverse mode dis—

crimination , and direct output coupling (Ref 9:156). Due to

these characteristics , the determination of the resonant

modes of these resonators has been the subject of much re—

search. Unlike stable resonator modes (Ref 10:328-332),

those of the unstable resonator cannot be easily described

in terms of well—known special functions.

Many methods have been used to determine the modes of

unstable configurat ions. Geometric approaches (Ref 9:156)

yield crude results for only the lowest—loss mode. These

results are valid only for high Fresnel number resonators.

Methods which iterate to self—consistent field distributions

(Ref 2) typically yield only lowest-loss mode information .

More elaborate techniques have been developed which employ

Fast—Fourier—Transform techniques and include effects of

gain, diffraction , and index of refraction variations (Ref

13). This technique , however , is not practical for high Fres—

nel number resonators due to prohibitive increases in the

required computing time . Other techniques using numerical 
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integration also become costly to run for high Fresnel num-

ber resonators.

An asymptotic theory of unstable resonator modes using

an asymptotic expansion in the resonator integral equation

has been deceloped by Horwitz (Ref 3) which yields the low-

est—loss mode and higher order modes, uses little computer

time, and is valid for a wide range of Fresnel numbers. The

elgenvalues of the modes are found as the roots of a polynom-

ial equation in this method. Horwitz has extended this H

theory to include misalignment of the feedback mirror by a

small tilt (Ref 4).

Moore and McCarthy (Ref 6) have extended the asymptotic

approach of Horwitz to determine the steady state modes of a

bare resonator and a loaded resonator with arbitrary fixed U
gain distributions. Their analysis applies to the positive

branch unstable strip confoca]. resonator (Ref 9:355). For

this geometry the optical axis passes through the center of

both mirrors. This centered confocal resonator geometry is

chosen because the beam is not focused within the cavity , al-

so the output beam should be well collimated since in the geo-

metric limit it would be a plane wave.

In comparison to the centered resonator geometry , reson—

ators with an off—center feedback mirror appear to offer ad—

vantage in beam quality. Better mode—loss separation and

more far field energy in the first Airy square (for rectan—

gular mirror cavities) may be achieved (Refs 7:2159 and 14:

1828). To examine these characteristics, a method 
of2



determining the modes for off—center unstable confocal res-

onators is needed.

The primary objective of this work is to extend the

analysis of Moore and McCarthy to obtain a polynomial eq-

uation for the eigenvalues of the oft-center geometry . A

secondary objective is to examine the approximations made by

Moore and McCarthy in their analysis of the centered geometry

and to report the results of this work.

This report consists of six chapters and five appendices .

Following this introduction , Chapter II presents the basic

formalism, assumptions , and general approach used in this an—

alysis. Chapter III develops the equations for the boundary

- I conditions on the mirrors while the amplitude functions for

the field in the resonator are developed in Chapter IV . The

polynomial equation for the oigenvalues of the off-center un-

stable resonator modes is developed in Chapter V. An approx-

imation made by Moore and McCarthy to obtain the polynomial

equation for the centered case is also examined in this chap-

ter. The last chapter presents specific conclusions and rec-

oimnendations . The appendices include mathematical derivat ions

and detailed discussions supporting the work presented in the

main body of this report.

3 
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I I .  Problem Formulation

The purpose of this chapter is to set the framework for

use in the following development. Four major areas are dis-

cussed. The first area is the basic formalism for the prob-

lem. This includes a discussion of the geometry , assumptions,

and general approach used in the development . The second

section presents the basic form assumed for the field in the

cavity. Next, gain in the cavity is considered in light of

assumptions made for steady state modes to be supported.

Finally, the assumed form of the field amplitude expressions

is discussed.

Basic Formalism

Geometry. The geometry of the off—center unstable strip

con focal resonator cunsidered in this report is illustrated

in Fig. (1). This cavity consists of a convex cylindrical

feedback mirror at the right end and a large concave cylin-

drical mirror at the left end. The feedback mirror, M1, is

located distance d to the left of the common focal point ,

f.p. The large mirror is displaced a distance D to the

left of the feedback mirror along the optical axis. The op—

tical axis is taken as the line joining the centers of curv—

ature of the mirrors , C1 and C2
The upper edge of the feedback mirror is located dis-

tance b from the optical axis and the lower edge distance

4
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Fig 1 OFF-CENTER UNSTABLE CONFOCAL GEOMETRY
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—a. For this development it is assumed that Ib I> !a I . The

transverse dimensions of the large mirror are assumed to be

sufficiently large so that all of the incident radiation is

reflected without introduction of diffraction effects. Prac-

tically, this “sufficiently large” transverse dimension can

be considered to be at least b(M+1) (Ref 6:228) where N

is the resonator magnification developed in Appendix H and

given by

D+d (1)

A
Two effective Fresnel numbers can be defined for this

cavity due to the asymmetry of the feedback mirror edges to

the optical axis. They are

• Feb
u!
~~~~ 

(2)

(3)

These are also reffered to as equivalent Fresnel numbers

(Refe 3:1529 and 12:39).

The asymmetry caused by the feedback mirror not being

centered on the optical axis can be introduced by starting

with the centered geometry and rotating the feedback mirror

about its center of curvature. The difference between the

asymmetry being introduced by a rotation rather than a tilt-

ing of the feedback mirror is discussed in Appendix A. It

6
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U is clear that when the feedback mirror edge distances from

the optical axis are equal, tb I IaI , the expressions de-

veloped in this analysis should reduce to those of the cen-

tered case.

As in Moore and McCarthy ’5 analysis (Ref 6:228), the

field in the cavity can be modeled by a right—traveling mod-

ulated plane wave and a left—traveling modulated cylindrical

wave originating at the focal point. To describe these fields

conveniently, two coordinate systems are used, see Fig. (1).

A cartesian coordinate system (z,x) with its origin at the in-

tersection of the optical axis with the large mirror, has pos-

itive z defined to the right of the mirror and positive x

above the axis. The cylindrical coordinate system (p,e) has

its origin at the focal point. Positive 0 is defined as a

clockwise rotation in the (z,x) plane about the focal point

with 0 0  along the optical axis to the left of the focal

point.

When the paraxial approximation is valid these coordin-

ate systems are related by

— p — M d-z (4)

(5)

Then the paraxial coordinates (p,x) can be used to describe

locations relative to the focal point.

Assun~pt ions. To make the development more tractable,

7
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without sacrificing accuracy, five major assumptions are made:

1. The field is scaler.

2. The mirrors are perfectly conducting.

3. The laser is operating in steady state.

4. The main contributions to the modes are from parax ial

regions in the resonator.

5. The optical axis does not pass closer than several

Fresnel zones from the feedback mirror edge .

The f irst  assumption greatly simplifies the analysis of

the problem . The scalar equations neglect the vector nature

of the field and so polarization effects are not modeled .

This allows the use of the strip resonator geometry. In a

bare cavity analysis this is not a serious drawback. If a

specific gain medium was being modeled then polarization be-

comes a factor.

The assumption of perfectly conducting mirrors implies

that all of the incident light is reflected. Thus losses due

to absorption by the mirrors are not modeled.

Oscillation in steady state at a single frequency neglects

time-dependent phenomena. It also implies a constant gain in

the resonator that exactly cancels losses due to output coup-

ling. This analysis differs from that of a truly bare cavity

(no gain medium) which would exhibit decaying modes.

The assumption of paraxial modes implies that the major

contribution to the mode comes from a paraxial region about

the geometric source point.

8
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It is assumed that the optical axis does not pass closer

than several Fresnel zones from the edge of the feedback mir-

ror because of the asymptotic expansion used in this analysis.

This expansion is carried out to terms of the order of the in-

verse Fresnel number for the edge nearest the optical axis.

If the optical axis passes closer than several Fresnel zones

this expansion becomes increasingly inaccurate.

Approach. The general approach to obtaining the poly-

nomial equation for the mode eigenvalues consists of four

parts. The first part assumes a form for the field in the

cavity built up from a geometric contribution and diffraction

components due to the feedback mirror edges. The boundary

conditions relating these field compenents are developed in

the second part of the analysis. In this section the devel-

opment of the boundary conditions on the feedback mirror in-

volves the use of an asymptotic approximation for a diffrac-

tion integral evaluated over the limits of the mirror. The

third part of the analysis develops expressions relating the

geometrical components and diffraction components of the am-

plitude function to the diffraction components after one

round trip in the resonator. The diff’ action amplitude com-

ponents are then expressed in terms of an auxiliary slowly

• varying function . In the fourth part an approximation of the

auxiliary function , similar to Moore and McCarthy ’s (Ref6:233),

is made to obtain a polynomial for the eigenvalues. This sec—

tion then returns to the centered case and proposes a matrix

9
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equation that could be used to examine the auxiliary function

approximation and determine its validity.

Field Considerations

Field in Resonator. The field inside the cavity is as-

sumed to consist of a right—traveling wave and left—traveling

wave similar in form to those of geometrical theories (Ref 9-:

157). The right—traveling wave has the form of a modulated

plane wave where its amplitude function includes rapidly os-

cillating transverse phase terms due to diffraction effects.

Similarly, the left—traveling wave assumes the form of a mod-

ulated cylindrical wave originating at the focal point of the

cavity. Its amplitude function also includes diffraction ef—

fects. The total field in the cavity is then given by

E — [f(z,x)exp{ik(z+Md)}_P *g(P, 0)exp(ikP)]e~~’~ (6)

The mirrors of the cavity impose boundary conditions up-

on the field. At the mirrors the phases of the right and left—

traveling waves must match. Also, the total field must vanish

on the two mirrors. This yields the boundary conditions

f(O,MOd ) — (Md~~
1g(Md 8) (7)

d1f(D,0d)e2~’~~;— ~~ic O ic.~
g(d ,0) — (8)

0 ;otherwise

10
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(. Gain Considerations

From the assumptions used in this analysis, the field

must obey the scalar Helmholtz equation

v2E _ 7.

~~~~

E _

~~~~~

fE (9)

where

c — velocity of light

— permeability of gain medium

o conductivity of gain medium

— G the gain coefficient of the medium

Since the field consists of right and left—traveling waves,

these traveling waves individually satisfy the Relmholtz

equation. Substituting the right—traveling wave from Eq.(6)

into Eq.(9) yields

2ik(~~f(z,x)_Gf(z~x)) + f(z,x) 0 (10)

when second derivatives of the z—coordinate are neglected due

to the slow variation of the field as a function of z.

Similarly, when the left—traveling wave of Eq.(6) is sub-

stituted into Eq.(9)

2ik(.~~g(p,0)_Gg(p,0))+p
_2
~~.rg(p,0) — 0 (11)

where second derivatives with respect to p are neglected due

to the slow variation of the field as a function of p • Al—

so terms of order *p’~g( p , O) are neglec ted when compared to

11



2kp 1 t~~ g(p,8) In Eq.(10) and Eq.(l1) the 0 term is as-

sumed to be a constant.

If diffraction effects are ignored the second derivative

terms of Eq. (10) and Eq.(11) can be neglected (Ref 6:229)

yielding the geometrical rate equations

Gf(z) (12) -
•

.
~~g(p) Gg(p) (13)

The solutions of Eq.(12) and Eq.(13) are

f(z) f(O)exp{Gz} (14)

g(p) g(O)exp(Gp} (15)

The right and left—traveling waves in the cavity are de—

pendent upon each other. This dependence can be expressed in

terms of the gain in the cavity. The Wronskian of Eq.(12) and

• Eq.(13) can be found by multiplying Eq.(12) by g(p) and Eq.
• (13) by f(z) and then subtracting one equation from the oth-

er. In the paraxial approximation, the p dependence is chang-

ed to z using Eq.(4). This yields

[~~ f(z) ]g(M d_z ) — [_ ~~g(Md_z)]f(z) (16)

Integrating yields

f(z)g(Md— z) — C (1?)

12
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(5 - where C is a constant of integrat ion .

Evaluating this expression at each mirror yields

f(O)g(Md) — f(D)g(d) (18)

Upon substituting for 1(0) from Eq.(7) and for 1(D) from

Eq.(8) it is found that

e211WM4g2(Md) — g2(d) (19)

From Eq.(15)

g2(Md) — g2(d)e2~~ (20)

A constant gain coefficient Q which satisfies the steady

¼ state requirement for this analysis can be defined as

Q — G D  (21)

Then substituting Eq.(20) into Eq.(19) yields

— M e 211
~~e

2
~ (22)

• where, for this geometrical case

(23)

• The p terms are the eigenvalue for the resonator modes.

When diffraction effects are included , the p terms are

found to be the roots of a polynomial equation where each

root is the eigenvalue of a different resonant mode. Thus

H 13

______

___________ ________ ~~~~~~~~~~ 
-



the constant gain required to sustain each mode in steady

state is different .

Diffraction Effects

The amplitude functions of the right and left—traveling

• waves are expanded in terms of a geometrical amplitude func—

tion and edge diffraction amplitude functions as shown by

Horwitz (Ref 3:1530) and Moore and McCarthy (Ref 6:230). The

diffraction terms consist of slowly varying amplitude functions

and phase terms that have rapid transverse oscillations. Well

within the geometrical shadow boundaries the diffraction terms

can be viewed as cylindrical wavelets emanating from the vir—

tual images of the feedback mirror edges (Ref 6:230). From

Appendix B, these virtual Images are located on two half-

parabolas. For the (d,b) edge of the feedback mirror, the

images are located at

~~~~~~ = (dM an ,bMn) ;n=0,±1,±2,...,±N (24)

and for the (d,—a) edge

= (dM2fl,_aM
fl);n=O ,±1,±2,...,±N (25)

For n>0 these Images lie behind the large mirror and

their cylindrical wavelets contribute to the right-traveling

wave amplitude function which can be written as

14
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f(z,x) ( x b ) 2

~~~~~~~~~~~~~~~~~ ( p~~
_

~~)~~~ (26)

+f(p,x)

where

r~(P,x) = diffraction amplitude functions from left

images of edge (d,b)

= diffraction amplitude functions from left

images of edge (d,—a)

f(p,x) = geometrical amplitude functioi~

The n=0 wavelets originate at the feedback mirror edges

and the n<O wavelets originate at the virtual images to the

right of the feedback mirror. These images approach the focal

point as n-~—~ . These cylindrical wavelets contribute to the

left—traveling amplitude function which takes the form

—N+1 -

p4g(p,O) (P_P~)
4u~(ø,x)exp ~~

n=O,-1,—2 I - I

a~ z
+ (P_Pn)~~

vn(P,x)ex P ~~~~~~~ 
~~~~~~~ (27)

• 
p
!1 

p

+p4g(p , x )

15
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where

u~(P,x) — diffraction amplitude function from right

images of edge (d,b)

v~(~~.x) — diffraction amplitude function from right

images of edge (d,-a)

~(p, x) — geometrical amplitude function

The phases appearing in Eq.(26) and Eq.(27) are the Fres—

nel approximations to the phases of cylindrical waves emanat-

ing from points (pn~
bn) or 

~~~~~~~ 
. When m t  is small

the phase terms are rapidly oscillating but when In ) becomes

large the phases associated with edge (d,b) terms approach

• the constant phase

exp{’~~
2
} 

— exp{2lriFeb} (28)

and the phases associated with edge (d,—a) terms approach

the constant phase

exp{1~~
2
} exp (2niF } (29)

It has been found by Horwitz (Ref 3:1533) that a practical

value for large N is given by

MN — 2SOF ff (30)

This is practical in the sense that a larger N changes the

eigenvalues at most in the third decimal place. In the

16
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off—center case let Feff
uF
eb since F b~

F . This will as—

sure a large enough number of terms in t h e  expansion.

Finally, substituting liq.(26) and F:q.(27) into E q . (9 )

yields the rate equations

3r 35
— Gr~ ; ~~~ — Gs~ ; 4— — (31)

— Gu~ : ~~~ Gv~ ; 4~ 
(32)

where is the directional dorivat ly e  a long  t h e  direction

of the diffraction ray propagat ion off t h e  optical axis . This

is consistent with previous gain considerations .

In the special case where )a) — )b ) these preceding cx-

pressions reduce to those of Moore and McCarthy (Re f ~3) for

the centered unstable con focal  resonator.

In summary , this sect ion has developed t h e  exp ans ion s  for

the r ight  and l e f t — t r a v e l i n g  wave amplitude functions in t erms

of geometric and edge diffraction n mp H t u d o  f u n c t i o n s .

17
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III. Boundary Conditions on the Mirrors

This chapter details the development of the boundary con-

ditions, including the diffraction terms, on the two mirrors

of the cavity. These conditions specify the relationships be-

tween the right and left-traveling waves. The development is

arranged into two sections. The boundary conditions on the

large mirror are developed first. The second section devel-

ops the boundary conditions on the feedback mirror using an

asymptotic expansion of a diffraction integral.

Boundary Conditions on the Large Mirror

Since the large mirror is assumed to reflect all of the

incident field, the boundary conditions on it are easily ob-

• tam ed. From Eq.(7) the boundary conditions on the large mir-

ror are found be equating the right hand sides of Eqs.(26) and

(27) for p—Md and $—x/Md . Using Eq.(24) it can be shown

that the resulting equation has like exponentials on each side

of the equality

exp

~~

!

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

- exp~~~ ~~~ 

- 
(33)

—n n—1,2...,N

a

exp~~~ ~~~~~~~ - exp~~~ 

~~~~~~
_: 

~~~~~ (34)

n 1 , 2 . . . , N

18 
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( The coefficients of these like exponentials must also be equal.

Equating these coefficients yields the boundary conditions for

the diffraction amplitudes:

n
_ M r

n(Md ,
~~ 

— (Md—~1_~)
4u1_~(Md ,x) (35)

;n1 ,2, . . .

(~~—Md)
4s~(Md,x) (Md—~1_~)

4v1_~ (Md ,x) (36)

;n 1 ,2, . . .
Equating the remaining terms yields the boundary condition for

the geometrical amplitudes:

~(Md,x) (Md~~~~(Md,x) (37)

Boundary Conditions on the Feedback Mirror

The boundary conditions on the feedback mirror are more

difficult tO develop. While the total field must vanish on

the mirror, the left—traveling component must be zero off the

mirror. A diffraction integral evaluated over the feedback

mirror will account for these requirements. It is assumed that

• the gain coefficient is zero very near the feedback mirror , so

this term is not included in the integration. Then , the Huy—

gen—Presnel diffraction integral will give an expression for

g(p O) in terms of g(d O):

19
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1 12 ik ~~ (
b/d

g(p,O) — 
~~ I!_ i J J g(d,0 )  (38)

[p ~:j  _a
/sd

x ~~~~~~~ 
ço-e~~

2 
dO #

where the Fresnel degree of approximation has been used in

phase terms. Making the change of variables, ~=8’

and replacing g(d,8’) with the form from Eq.(8) yields

1 [21Tika21~ 2ikDg(p,O) 
~ 11 i\i e

J (39)• b 2

• 
f 

f(D,afl)exp ’
~~11~~ 

d~
-1

The expression for f(D,a~) given by Eq.(26) is substituted

into this equation. This integral can be approximated by an

asymptotic expansion about the stationary phase point as de—

• scribed in Appendix C. The results of the specific integra-

tion in Eq.(39) are developed in Appendix D where the approx-

imation neglects terms of higher order than Fea
1 

. The

expression for g(p,O) near the feedback mirror is then

found to be

20
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g( p , O)  - ~~~~~ ( • :~~

• x [11+12+13]

where 11, 12, and 13 are developed in Appendix D. Eq. (D-4

- • of this appendix presents Eq.(40) in detail.

Recalling Eq.(27) and letting the summation index n =

yields

g(p,O) 
[N_i

m—0,1,2

/ b \ 2
ie - -~~ I

x u_m(P,x)exP 
~~~~~ ~~~ 

(4 1

+v_m(P,x)exP~~~ 

I
~~~~~~ 2~

]

The expressions for g(p ,O) in Eq.(41) and Eq.(40) can then

be equated. It can be shown that as p approaches d ther

are like exponentials on both sides of the equality

b ‘~I
exp~~~ p~:d)+d(p d)~ 

—> exp r.i
ki ~~ 

(•r
-

• 

~\
p_n P)

• n — 1,2 . . . , N— 1

21
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_ _ _ _  

(a
exp~~~ p (p

~
_
~
)+d

~
p-d)F> exp~~~~~~ 1 (43)

n = 1, 2 , . . . , N—i
Therefore the coefficients of these like exponentials can be

equated as p approaches d . These are the boundary con-

ditions for the diffraction amplitude functions on the feed-

back mirror:

~~~~~~~~~~~~~~~~~~~ = (d— ~_~)~~u~~(d,x) (44)

n = 1,2,... ,N—1

e21
~~

(p n
_d)4sn(d ,x) = (d_P _n)~~

v_n (d,x) (45)

n =

The geometrical term from Eq.(41) can then be equated to the

geometrical term and the Nth diffraction terms. Here N is

assumed large as given by Eq.(30) and so the phases are con-

stant as given by Eq.(28) and Eq.(29). The boundary condi-

tion for the geometrical terms as p approaches d is then

d~~ê(d,x) — e2 D[(pN
_d)

_
~rN(d,x)exp~~~~

2} 
(46)

+ (P N-d)
4sN(d ,x)exp

~~~~~}+~
(d ,x)]

22
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• Then the m—O terms remain from Eq.(41) which equal the re-

maining terms from Eq.(40). This is taken as the expression

for the diffraction amplitude functions on their first trip

across the cavity and is used in the next chapter.

In summary, this chapter has developed the relationship

between the various amplitude functions at the mirror bound-

aries. It remains to relate these amplitude functions to a

common expression , the diffraction amplitudes after one round

trip in the cavity.

23
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IV. Amplitude Functions in the Resonator

This chapter develops the relationships among the geo-

metric and the diffraction amplitude functions. The devel-

opment of these relationships consists of three sections.

The first section relates the diffraction amplitude functions

on the nth round trip of the cavity (equivalent to emanating

from the nth virtual image of the feedback mirror edges) to

the first round trip value. The first round trip amplitudes

are then defined in terms of auxiliary functions, q~(x) and

The second section relates the geometrical amplitude

functions to these auxiliary functions. In the last section

the expressions for these auxiliary functions are developed

in terms of the elgenvalues for the resonator modes.

It is important to determine these relationships be-

tween the various amplitude functions because the values of

these amplitudes can be found once the value for the first

round trip diffraction amplitude functions are known. With

values for all the amplitude functions the total amplitude

functions for the right and left—traveling wave can be deter-

mined.

• Diffraction Amplitude Functions

Initial Amplitude Functions. After the boundary condi-

tions on the feedback mirror are extracted from the right

hand side of Eq.(41) equated with the right hand side of

24 
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U Eq.(40), the remaining terms yield expressions for the diffrac-

tion amplitude functions on their first trip across the cavity

from the feedback mirror. From these remaining terms it can

be shown that the following exponentials are equal by using

Eq.(24) and Eq.(25):

a

exp ~~ - exp ~~~~~~~~~~ ~~~~:~~~~~
2 

(47)

Po P

(0+ !.~\
exp ~~ ~~~ exp ~~~~~~~~~ p~a+ed~

2 
} 

(48)

p0 p

This leads to the expressions for the diffraction amplitude

functions on their first trip across the cavity:

u0 (p,x) _;(~~~)1e
21~~

[

~~~~~n
_d
~~~ (49)

x r~(d,b)exp{~
.!E 

2

} [

~~~ 
+ _ _ _ _ _ _

4(Pn~~
)
~~
5n(d,1 )exp{~~ 

(b+a )2
}

_ _ _ _  + 

~~

-o]

~~~ 
+~(d~b)[P~~

;9
~~
]]

and

25

• -—~~ ~~~~~~~~~ ~
--



( 
v0(p,x) - ; (~~~)~~

e2~~~~
[
~~~ (Pn

_d)_*r
fl
(d ._a)

x exp{~~ ~
a+b

pr} [a+b~ + 
~~~+~~)]_1 (50)

x(~~-d) s~(d,-a)exp~~~ ~~~:~~~~~
2

}

x [~~~~ + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The ; at the beginning of the righthand side of Eqs.(49) and

(50) explicitly denotes the choice of roots from the square

root. In Eq.(40) the positive root of the square root was im—

plicitly chosen so that the real part was positive (Re16:23i).

This leads to the choice of the negative root here.

In Eq.(49) it can be shown that

____  + _______  — 
[~bn~~] 

(51)

and

____  + P~b 0~~
] [Ban~~]~~ 

(52)

where

(53)

26
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is the angle with respect to the optical axis of the ray join-
ing the mirror edge (d,b) with a point (~~,x) in the cavity

8bn (~;:~
- + a) — ~(l+M~~)~~ (54)

is the angle for the ray joining image point (
~~n~

b n) with
edge (d ,b),

~an 
— (b+ag + = 

~~ 

(55)

is the angle of the ray joining points 
~~~~~~~~~ 

with edge
(d,b) . These angles are illustrated in Fig.(2). Also it

can be shown that

[ ] 1 
= [
~ ]

1 

(56)

Similarly, for Eq.(5O)

• 
+ ~~a~~~~

] [Xbn
+
~] 

—l 

(57)

and -

_ _ _  + 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~[~an

+
~]

’ 
(58)

-•  
where

1~÷~\
~%

a) (59)
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(I,-*) (,k11
.L1)

Fig 2 RAY ANGLES FOR u0(p,x) AMPLITUDE FUNCTION

is the angle of the ray joining edge (d,-a) with a point

(p,x) in the cavity,

~~n =(~~~~
_a + = a(

\1...M_2n) 
(60)

is the angle of the ray joining points ~~~~~~~~ with edge

(d,—a),

aan “(Z~ 
+ 

~
) — ~ [1÷~,~n]~~

1 (61)

is the angle of the line joining points (~ _~~—a~~) with

edge (d ,—a) . These angles are Illustrated in Fig.(3). Al-

so it can be shown that
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/
(d,~ t)

Fig 3 RAY ANGLES FOR v 0(p,x) AMPLITUDE FUNCTION

r -i—i r
I p c a+ e d ) l  

= + cx l (62)Ld(~~ j j

It can also be shown that using the angle expressions, cx

and B , allows the left—hand sides of Eq.(49) and Eq.(50)

to be written as

u0(p,x) = u0 (p,(p—d)6+b) (63)

v0 (p,x) = v0(p,(p—d)ct—a) (64)

Recall that Eq.(49) and Eq.(50) are valid only near the feed-

back mirror because the gain coefficient was assumed to be

zero when these equations were developed. To propagate ac-

ross the cavity, maintaining steady state, the diffraction

29 
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amplitudes of Eq.(49) and Eq.(50) must be multiplied by the ex-

ponential of the gain coefficient , Q , from Eq.(21). Then ,

using Eq.(51) through Eq.(64), the diffracted amplitude func-

tions on the first trip across the resonator can be express-

ed: 

u0(p,(p—d)B+b) = - (
~

)
~ 

e~e
21
~~

x ~~~(P~ _d)~~r (d ,b)
n— i

x exp{~~ ~~~:~~~~
2
~~ [Bbn

_ B]_ l  (05)

+(p~-d) s~(d,b)exp~~~ 
(b+a )2~

—1
x [Ban_8]

— 
B]]

and 
-

v0 (p,(p— d)ct—a) _ (
~

) eQe2i~~

I N
x l ~~ (P n~~~

) n (d~~~~
)

, Ln— 1

x exp~~~ ~:~~~~~
2 [ a bn ÷cx] (66 )
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~~~n~~~~~~~~d,-a exp~~~ ~~~~~~~~~~

I }•~1 A 1a i —ilx [cx a-~j  +f (d~
_a)[_+~~j 

~
j (60 )

~~~~~~~~ Equations Acros~- CaV14. An exprcssjo~ isneeded to relate the ampljt~tde fu~ctjo1~ of the right_ tra~0~ing diffraction ternis at the feedback mirror on the nthround~tr1p to their values for the ftr~~ round_trip o f th~ c:~v—ity . To develop thp~t’ round~tI.j1) expressions the propag~~j~~expressions are needed for diffracted rays going from the feed-back mirror to the large mirror on the nth trip to the leftand a similar expressi0~ for th e  n t h  trip to the right . On thetith trip to the left or right a diffracted ray can be viewedas originating from the correspoflding n t h  v i r t  ual image of theappropriate feedback mirror edge. The diffracted wayC on thenth round trip travel5 t hat part of the ray path if lside thecavity . This is illust rated In Fig.(4)
For these image rays to the right , intersectjt~g the largemirror at any point (Md ,x) , the amplitude fun~ ti~ ,i8 Rlongthe ray paths, including steady state gain , are given by

r~(Md~z,~
_ 
~~~~~ z) - r~(Md ,x)eQ (67)

n — ~~~~~~ ,N

s~(Md-z ,~
_ ~~aj1 

~~ s~~~1d ,x)e~ (68)

n —
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Similarly, for the nth ray paths to the left , intersecting

the feedback mirror at any point (d,x) , yields

~~~~~~~~~~~~~~~~~ u~(d,x)e~ (69)

n —

v~(~~,x+~~~~(P_d)).. v~(d,x)e~ (70)

n —

Amplitude Functions from nth Transit of Cavity . The ex-

pressions relating rn to r1 and s~ to S
1 

will now be

developed. The diffracted amplItude function r~(d,x) is the

amplitude of the diffracted wave caused by the feedback mir-

ror edge (d,b) after it has made n round trips through the

cavity. This function can be related to the rn i (d,x’) am-

plitude function by propagating it back through the cavity

one round trip. Here (d,x’) is the point a ray must start

from on the feedback mirror to propagate to point (d,x) .

Starting with r~(d,x) and using Eq.(67) to propagate

the amplitude function on the feedback mirror to the large mir—

ror yields

r~(d,x) — r~(Md,n)e~
(71)

n —
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U where, using Eq.( 1)  and Eq .(24 )

— ~ ~
-
~: — b Mn(M_1) (72)

1—M 1_M 2~

At the large mirror the oundary condition of Eq.(35) gives

eQrn(Md ,ri) = e~ 
~~~~~~~~~ 

u1_~ (Md ,rI) (73)

n — 1,2,... ,N

From this Eq.(69) is used to propagate u1~~(Md,~~) back to

the feedback mirror:

/Q( M~~-M ~e 
~~~M

2(1..fl)) U1_n(Md ,~~)

— e2Q~~~~:~
t
l_ n ) ) è ul_n (d , x~ )

n — 2 , 3, . . . , N

where

x , — n _ _ _ _ _ _ _ _  + b M
<1

~~~~~~~~~!;1~~

The boundary condition at the feedback mirror Eq.(44) then

• yields

e2Q(M
2
~~~l fl))

1 
u~~~(d,x’)



_
- 

~~
_ _ _ _ _ _

— e2
~
e2
~
’
~~
rn..i(d,x’) (76)

/1_M”1_~~ Man _M \ ~X
~~a (n l) jj2(1_n))

n = 2,3,... ,N

Using Eq.(72) and Eq.(75), the x ’ value can be expressed in

terms of x . Then the r~ amplitude function can be relat-

ed to the r~_1 function using Eq.(71), Eq.(73), Eq.(74) and

Eq.(76):

rn(d,x) = M~e
2
~e

21
~~

x r~~ 1 (d ,XM::_M + b
M

Z~~
M...M

~~~~~~

) 

(77)

n 2,3,... ,N

From this equation r~_1 can be related to r~_2 which can

then also be related back to r~. Continuing in this manner

leads to an expression relating r~ to r1:

rn (d ,x) — M e
2 _ 1

~~e
2ik

~~
h1_1) (78)

x rl(d ,kbfl(x)) ; n=1,2,...N

where

~ M2~~
1 
~4k (x) — x 2 ‘~ ~~‘tb—2- 

— (79)

_ 
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By a similar procedure the diffracted amplitude function

can be related to s1 which yields

s(d ,x) M ~j! e2 e2 D(1
~~~
) (80)

X sj(d~
kan(x)) ; n 1,2,...N

where

k (x) — x 
2_i) 

—a 
M2h1

~~—M (81)

First Round Trip Amplitude Function. From Eq.(78) and

Eq.(80) the nth round trip diffracted amplitude functions are

related to that of the first round trip . Expressions are now

developed for the first round trip amplitudes.

From Eq.(65) the diffracted amplitude u 0 is known at

any point (Md,x’) on the large mirror by letting p=Md and

substituting x’ into Eq.(53) for angle B . This gives

the amplitude function

u0 (Md ,x’) — u0(Md,b+(Md—d)B) (82)

where

x’-b— d(M— 1) ( 83)

The boundary condition at the large mirror Eq.(35) is then

used to relate u0 to r1
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uo (Md,x’) _ (~~:~~)~~
ri Md

~
x ’ (84)

Then Eq .(67 ) is used to propagate r 1(M d , x ’)  across the cay—
ity to r1(d,x):

e~ r 1(Md , x ’)  r 1(d , x ) (85 )

Therefore, combining Eq.(84) and Eq.(85) yields

r1(d,x) = M~e% 0 (Md , x ’)  (86 )

where

x’ = (x+b)1~~ (87)

Also , from Eq.(83)

B — 
xM 1 —bM 2 

(88)
d(1-M )

Finally, using Eq.(86), Eq.(88), Eq.(54), and Eq.(55) in Eq.(65)

yields the needed diffraction amplitude expression , r 1 (d,x)

r 1 (d,x) = _
~~e

2Qe2D (~~~)~ (89)

X 

[

~~~~d4(M 2 ui _ 1)~~~exr~1~~ 
( 1 M t1) 2~

n—i —

:7 

- 

~~ 
] L



r - - - _

~~~~~

-_-

~

_

~

-

~~~

-----

+d
_
~(M 2h1.1)_*exp~~~~

2 (
b n)2 

(89)

Xs (d~b)[~ 1M
:2n - ~~

_ 1
bM

_2]

- 
xM

_
_bM_2] 

]
Similarly, the amplitude function s1 (d,x) can be dev—

eloped :

s1(d,x) = ~M~e
2
~e

2
~~~ 

~~
x 
[
~~~

d
~~

(M 2n_1)
_

~
exP

1

1
~~~ 
(~
+M~~~

n=1 M -1

Xrn(d~_a> [~ ~::: + 

~~~~~~~~~~~~

+d (M 2
~~_ i) 4exp~~1~~~

2 ( 1M h1 ) 2~ 
(90)

Xsfl(d~
_
a)[~ ~

—
~::n 

+ 
XM

_ 2
+aM

_2]

+~ (d , + 
xM +aM ] 
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Up to this point the diffraction amplitude functions,

u0 (p,O) and v 0(p ,6) , have been propagated through one

round trip in the cavity. Also , all of the succeeding round

trip amplitude functions have been expressed in terms of

these first round trip amplitudes (Eqs.78 and 80). Now at-

tent ion is turned to finding the value of these first round

trip amplitude functions by using an auxiliary function q(x)

(Ref6:232).

Auxiliary Function g(x) . From Eq.(89) a new function ,

q~ (x )  , can be introduced which accounts for the slowly vary-

ing x—dependence of the d i f f r ac t ed  amplitude funct ion r~ (d , x ) .

Let

r1 (d x) M~e2
~ e2 %

b ( x ) [b _  
~~~~~~~~~~~ 

(91)

Similarly, from Eq.(90) a i~unction , q~(x) , associated

with diffracted amplitude s~(d,x) is introduced :

s~(d,x) 
- M~e2Qe2~~Dq~(x) [a+ x]

_ t  

(92)

Now the rn(d,b) amplitude function of Eq (89) can be ex-

pressed in terms of q~(x) . From Eq.(78) at x b

r~(d,b) — M~~~ e
2 e2~~~~~~~ (93)

X r
~
(d,kbfl(b) )

where, from Eq.(79)
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kb (b) — b M
1
+M ’~~ (94)a

From Eq.(91)

r (d,kbfl(b)) = M~e
2
~e
21
~~ (95)

X q~~(b M ’+M~~~”~ Fb 1-M
\ l+M / L 1+M~~~J

Then, substituting Eq.(95) into Eq.(93)

r~(d,b) = MT e2
~~~e2~~~~~ t.

x ~b (b 
M
_ 1
+M

1_n ) 

[
b 

~~
] ‘ 

(96)

Similarly, using Eq.(80), Eq.(81), and Eq.(92)

s~(d b) = MT e2fl%21~i~~~

~ tia(a 
M
1_n
(~ +M )M ’

~+ ~ M~~~~
)) 

(97)

[a 
(
~ +

Now an expression for q~(x) is needed. Using Eq. (91)

and substituting Eq.(96) and Eq.(97) into Eq.(89) gives the

following expression for
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Upon algebraically simplifying the bracketed terms and
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approximating Mr
~/(M

2n_1) ~ by M~~
/2 

, the ~~(x) ex-

pression of Eq.(98) becomes

= —( id 
~~
[
~~~M

—
~ e

2
~~e

2thi
~~

\2nrkb2/ n 1

x expI1~~
2 ( i M fl)2} clb(b 

( M M ~~~~(1_M~~ ))

x(1_M
_2n) (1—M ”) — 

bM~~(1_M
2 )(1_M~~)

2

(]~~( 
n) (b— ~~)

+ M T  e2~~ e
2
~~~~~exp 

~~~~~ 

(
b

)2} (99)

~ 
M~~” (~~~

+ ~~~ M~~
)_
~r’(~

X ( l_M — 2 ’
~) + M — n )  + bM

’~(i—M
2 )(

~ +M~ ’) 
2 — i

I (i—M s) (b — i)

+~ (d ,b)d~b (1_M
_2
)

Finally, a similar procedure leads to an expression for

q (x)  — -( id ‘
~~ {EM~~ 

e
2 1
~~e

2hh i
~~a 

\2-irka2/ fl=~

x exp ~~~~~ (~~~~ 
+Mn)

• ( M n _i
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~~~ ~1
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2 / b
X ( l M 2

~~) (b +M~~\+ 
aM~~(1—M ~~~~~ 

+M ~~J
a / (1—M~~

11) (a+ ~)

+M T ~~~~~~~~~ ex~ {1~~
2 ( 1 M U )

2} (100)

X ~~ (_a 
(1-M~~)(W

’+M ’)
~~~ 

)

X (l-W
2
~~) (1-M~~) - 

aM
_n

(1_M
_2
)(1:M~~)21

( 1—M ) (a+ ~) J

+~ (d~_a)d~a(l_M
_2

)]

The analysis to this point has expressed the r~ and

• s~ diffraction amplitude functions of Eq.(26), at the feed-

back/output mirror plane , in terms of the first round trip

diffraction amplitude functions r1 and s1 . These first

round trip amplitudes have then been expressed in terms of

the auxiliary functions q~(x) and q~(x) . Using the re—

lationships between the various diffraction amplitudes on

succeeding trip through the resonator to the first round

trip amplitudes , the q(x) functions can be expressed in

terms of a series expansion in terms of q(x~ at distinct
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locations on the feedback mirror and the geometrical corn—

ponent , , of the field amplitude from Eq.(26). Attent ion

is now turned to expressing this geometrical amplitude In

terms of the q(x) functions.

Geometrical Amplitude Functions

Expressions for the geometrical amplitude functions
A Af ( d ,b) and f ( d ,—a) from Eq.(89) and Eq.(90) are needed to

evaluate the field amplitude. From the boundary condition

Eq.(37) the geometrical terms can be propagated to the feed-

back mirror along the geometrical rays.

From Eq.(37)

~(Md ,Mx) = (Md)~~a(Md,Mx) (101)

The ~ wave propagates along a ray parallel to the optical

axis. The ~(Md,Mx) ampl itude is mult i plied by the steady

state gain in propagating across the cavity to the feedback

mirror. Then

~(d , Mx) = e~ f ( Md ,Mx) (102)

The ~(Md,Mx) amplitude of Eq.(101) must be propagated back-

wards to its origin on the feedback mirror. This ray origin-

ates at the focal point and intersects the feedback mirror at

(d ,x) . The steady state gain must be included in this prop-

agation expression also:

~(Md,Mx) = e~~(d,x) (103)
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Then from Eq.(102) and Eq.(103)

~(d,Mx) M e 2%~~~(d,x) (104)

Recalling the boundary condition Eq,(46) at the feedback mir-

ror, this expression can be written as

~(d ,M x) M e 2Q
e

2 i
~~~

x [(P N _ d)
_
~ rN (d ) x ) e x P I i~~~2 J

(105)

+(p
N
_d)4sN

(d ,x)exp
~~~~

i I
+~(d,x)

From this expression for rN and SN in terms of ~~(x) and

are needed. From Eq.(78)

rN~
d,x) — MT e2( l)Qe2i~~~

N_1)

(106)
X r l (d,kbfl(x))

where , for N large

kbN(x) - (107 )
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From Eq.(91)

rl (d,kbN(x)) = Mhe2Qe2~~~

(108)

X “bG~i) [b
1_M _ 2 j  

— 1

Then , combining Eq.(108) and Eq.(106)

rN(d,x) — M2 ~~~~~~~~~

% ~b (~~)[~~~
1_M

)] (109)

Similarly, the expression for the Sn term is found to

• be

sN(d,x) — MT e2~~e
2
~~~~

x q
~~~) [a(l_.M

_2
)J (110)

Then , approximating MN/(M2N_l) ~ by M~~
’2 

, using

~ from Eq.(22), and the right hand sides of Eq.(109) and 
-

Eq.(110) in Eq.(105) yields

~(d ,Mx)
- 

x 
[
~b(~~) 

exp
j
~~~ 2 

}[b (1_M
_2
)}

’

x 
~~~~~~~~~~~~~~~~~ expI1~~2! [a(l_M

_2
)}

_L

P. 
(111)

+f(d,x)
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The geometrical expression , ~(p,x) , is the amplitude

of a plane wave moving toward the right. In the purely geo-

metrical case where the left mirror is “sufficiently large”

to reflect all the incident wave, this amplitude is constant

across the wave—front. Then

~(d,Mx) ~(d,x) (112)

From this, Eq.(i11) yields

A N+1
f(d,x) = d

x [qb(
~ )exp~~~~

2~ 
[b(1~M~~)] (113)

+q (~~~)exp 1
1ka2

} [a(1_M
_2
)} 

]

Noting that this expression has no x—dependence, as expected ,

it then follows that

f(d,b) = f(d,—a) = f(d,x) (114)

Auxiliary Functions in Polynomial Equations

The q~ (x) and ~~(x) auxiliary functions of the r1 (d,x)

and s 1 (d ,x) amplitude functions can now be written in terms

of a polynomial expression for the eigenvalues. Using Eq.(113),

Eq.(114), Eq.(2), Eq.(3), and Eq.(22) In Eq (99) gives

47



— • - -—--- •—
~- •• -_ -•—- •-- -- —-

~~~
• •- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— _ _ _

X exp 
I2~~

}
e
~ ~~2 fl

j~~~~
j  

I-l
fl

X 
~~ (b 

(M 1 +M ’
~~~~(1-M

fl ))

X(l—M 2
~~) I(1-M~ ’) - bM~~(1-W

2 )(1_M]~~~~~
I (1—M 2’

~) (b — 

~
) 

•J

+ exp f2iriF ~ 
+Mn)2~ l~l

n 
(115)

M
2
~ —i

x q (—a M 1 
(i+ 

~ M
’s) 

M’ (~~~ 
+M ’)

~ \

1-M 2
~ /

X (1-M~~~) 
(~~~ 

+M ’~) + 
bM~~(1-M

2) 
(~~~~ 

.~~-nJj
(1—!C

2
~ ) (b - 

~~~~~) 
- J

+ ~~
!+1 

[~ b~~~ exp I

2 l T iF

b I

-

• 

+ 
b 

~ 
exp 

I
21T
~~ I }

48

~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _  - - - 

Similarly, for
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In summary , the r~ and s~ diffraction amplitude func—

tions of Eq.(26) were related to the amplitudes r1 and 
~~2

These first round trip diffraction amplitude functions were re-

lated to the auxiliary functions q~(x) and q~(x) . The geo-

metrical amplitude function , ~ , from Eq.(26) was also re-

lated to the q~(x) and q~(x) functions. Equations (115)and

(116) are the resulting expressions for the auxiliary functions.

The next chapter, using several assumptions, develops the eigen-

value polynomial from these equations. Each eigenvalue can

then be used to solve for the r~ , 5n and ~ of Eq.(26)

for each mode.
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V. Eigenvalue Equations and Limitations

The purpose of this chapter is the development of ex-

pressions from which the eigenvalues of the off-center un-

stable resonator can be determined and their limitations.

- • The first section develops a polynomial equation using an ap-

proximation on the q(x) functions. The eigenvalues are the

roots of this equation. The second section discussed the

validity of the approximations made in the first section.

It then proposes a matrix equation which can be used to de-

termine the eigenvalues and the behavior of the q(x) function .

The final section discusses the limitations on the application

of the eigenvalue expressions.

Polynomial Expression Assuming Constant q[x)

Development of Polynomial. To obtain a tractable poly-

nomial equation for the elgenvalues, ~i , of the centered

resonator , Moore and McCarthy (Ref 6:233) make two approxi-

mations. First , the function q(x) is assumed to be a con-

stant. Secondly, with the exception of exponential terms,

is neglected when compared to one. To obtain the equiv—

alent expressions for the off—center case requires the approx—

imat ions

(117)
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q~(x) — 
~a 

(118)

a b
M ~<min imum of 1,~~,or a (119)

Here , ~~ and cia are constants. In the case of the center-

ed resonator . Equation (119) does not apply for ar-

guments of exponential terms. Using these approximations in I 

-

Eq.(115), and dividing through by 
~~~~~ 

yields

1 11 = — 

~~~~~ 
(2r b)

x{~~ u~’ [ex~ J 2~iFeb ;

~~~1~~ 2 }
+ ~ exp f 2lTiFea ~~2~ M1) j ] (120)

+ 

~~ 
[ exp 1

27T
~

F b J 
-

+_
~~~~exP

I
2iriF I ] ]

Similarly , after dividing through by 
~a 

rather than 
~~

Eq.(116) gives
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~~~/ i  \ k

{
~~~ 

[~ ~ 
exp 2

~
iFeb ~~zn~~~ f

+ exp 2iriF ~~~~~ 1] (121)

N+1
+ exp 2lTiFea

+exp 
j
2lriF

ea}] }
The laser parameters (wavelength, magnification, mirror

separation, and the distances a and b of the feedback mir-

ror edges from the optical axis) are assumed to be known.

Then Eq.(120) and Eq.(121) have two unknown parameters , u
and 

~~~~~~~~~~~~~~~~~~~~~ , which can be determined. After multiplying

through Eq.(121) by (bqa/aqb) and subtracting from Eq.(120),

the resulting equation can be solved for (ci~/~~) , result-

ing in the following expression

= 

11~ ~~ 
[(2~~b)~ (2~~~) ~}

53 



____ - ~~~--

x ~~~~~ [ex~ 
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2lriF b 
~~~~~~~~ j

— exp 
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2
~~M~~

2 

~ 1 } (122)

÷ { ! (1+ ~~ 
[(2~y (2F ) 

~

X ~~~~ {exp 2lTiFe 
a+M

n—i I M -1

— exp 2idF ~1.M
’1)~ 1’\ea M2n_l j ,

The elgenvalue polynomial in terms of ~ can then be

obtained by substituting this expression into Eq.(120) for

Bringing - all terms on the left to the right hand

side of the equation, multiplying through by (1—u ) , and
collecting like summations yields the eigenvalue polynomial :

o — ~~~~
n— i k—i

N
+ ~~~ u~

i(Bn(1_p)+p
1
~~
1Cn) (123)

n 1

+uN+lD+~_1
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+ exp 2niFea 2fl
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• The eigenvalues for the m odes of the off—center unstable

confocal resonator are the roots of the polynomial in Eq.(123).

In the case of the centered resonator where a—b , these ex-

pressions reduce to Moore and McCarthy ’s (Ref 6:233).

Field on the Feedback Mirror. The right—traveling field

on the feedback mirror can now be determined to within a con—

- — 1  — i
stant multiplicative factor , q or . From Eq.(91)

and Eq.(92), using Eq.(22), r1 (d,x) and s1 (cI ,x) can be ex—

pressed as

r1 (d,x) = M1.1q~~
b_ 

~~~ 
(128)

s1 (d,x) = Muqa (a+ ~~ (129)

Substituting these into Eq.(78) and Eq.(79) yields
r
I kb (x)J

r~(d ,x) = M
~u
”qb [b_ ~~~M j (130 )

- a n  k~~(x)ls(d ,x) = M ~~~q a+ a (1-31)n a M i

Using Eq.(130) and Eq.(131) in Eq.(26) and also approximating

M2~ /(M
2’
~—l) ~ as unity, the right—traveling field amplitude ,

to within the multiplicative constant , is given by

f(d,x)qb~ 
=

n 1
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kbfl(x)1
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+ exp 2lTiFea 2
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[a+ 
kan(x)]

)

(132)

+ d~~ ~ (ex~ 2lTiFeb) [b1 ~~_ 2 }
’

q 
I

+ exp I 2 lr iFeaI [a(1—M
2 )

— Validity of Approximations and Proposed Solution

For the centered resonator case the feedback mirror

edges are an equal distance from the optical axis. Then

a—b and Eq.(1l5) becomes

q( x ) —
~~~~~~~ 

(
~ c;)

ê

exp 12 11i 
~~~~

x ~(a 
M
_ 1

+M 1_n ) 
(1+M~~)• 1+M~~

~~ 
— 

a~M~
fl (1_M ~

2) 
1 (133)

I. (1+M~ ’)(a— ~)J
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—

(l~~l
_n
)(a ~

)

+ 
~~~~ [~(~) +q(~~)] exp 211 iF’~ f }

This expression reduces to Moore and McCarthy ’s (Ref 6:232)

expression only it’ q (x) — q(—x) for the  case of symmetr ic

modes in the centered geometry .

The approximation that M 1’ can be neglected when com-

pared to one is valid for large N, and ii grea te r  than one

or two . Howeve r , for cases where the m a g n i f ic a t i o n  approach-

es unity it can easily be seen tha t  neglect in g t he M t
~ terms

(for small n) when comparing this term to one is a poor approx-

imation .
In Moore and McCarthy ’s analysis for the cent ered reson-

ator geometry the a u x i l i a r y  func t  ion , q( x )  , is assumed to

be a constant. This allows the q—terms to be divided out of

Eq.(133) to obtain the elgenvalue polynomial. It is not cucar

whether or not this is a valid approximation . Moore and

McCarthy offer no Justification for it. A method of solving

for the eigenvalues and also examining the behavior of the

q(x) function without neglecting M~~ terms can be develop-

ed however.
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Equation (133) expresses q(x) in terms of a summation

over q(xk) values where Xk are specific locations on the

output mirror. Each q(Xk) can be expressed in the form of

Eq.(133). For any upper bound , N , of the summation this

leads to a system of 2N+1 equations of the form given in

Eq.(133). This system of equations can be written as a non-

linear matrix eigenvalue problem. If this can be solved for

the true eigenvalues (ie. no constant q(x) assumption made)

then the resulting eigenvectors can be used to determine the

behavior of the q(x) function for various modes in the cen-

tered resonator geometry.

To obtain the matrix equation form the following symbol—

ism is introduced :

— 

c _ _ ~~~~(~~_ )~ (134)

E - exp 211
~~e 

M’~~1 

f 

(135)in M u  -

E0 — exp 211iFel (136)

-i  i-k

L 

x k a uM (137)± 1±M

-

~~~ x0 —~~~~ (138)
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A
±fl(x±k) = (l±M

_n
) ~ (1±M ~~)(a-~~~~)J (139)

where n—1,2,...,N and k 0 ,i,...N.

Replacing q(x) by q(xk) in the left hand side of Eq.

(133) and using the above symbolism leads to an equation for

each q(Xk) of the form

o — ~~~~~ ~~~~~~~~~~~~~~~~~~

+CE fl A fl
(x~)q(x fl)~

n (140)

N+1
+ 2CE0q(x0)

The 2N+1 equations of this form (from the 2N+1 values of

k ) can then be written in the homogeneous matrix equation

form

(141)

where A(u) is a square matrix of dimension (2N+1) and ~

a vector of (2N+1) elements, The matrix elements of A(p)

consist of the coefficients of q(x~) in Eq.(140). Appen-

dix E develops representative elements in this matrix. These
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coefficients contain only one unknown parameter, ~ , the

elgenvalue. This is then a non—linear matrix elgenvalue

problem. Problems of this type are very difficult to solve

in general. If this one can be solved it will yield the

true eigenvalues, ~.i , and the elements of the elgenvector

, for each eigenvalue can be used in the right—hand side

of Eq.(133) to determine the behavior of the function q(x).

Limitat ions

There are limitations to the range of applicability of

these expressions which are due to the geometry of the reson-

ator and approximations used in this development.

The polynomial expression, used to determine the eigen-

values for the modes, is valid only for the positive branch

unstable confocal geometry with an off-center (or centered in

the case where a=b ) feedback mirror. Since a magnification

of unity cannot be achieved by this configuration , the expres-

sions developed become increasingly inaccurate as M approach-

es one. At M equal to one the expressions blow up as il-lus—

trated by the geometrical contribution to the field in Eq.(132).

The asymptotic expansion used in this development has a

singularity at the geometrical shadow boundary . The eigen-

value expressions are correct but the field can only be deter—

mined well within the shadow boundaries.

As an effective Fresnel number for the resonator approaches

unity, this analysis becomes increasingly inaccurate. This
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stems from the asymptotic expansion where terms of higher

order than :Fea~~ 
are neglected . As the effective Fresnel

number approaches unity, more terms must be included in the

series expansion for the diffraction integral. For the off—

center geometry this requires that the optical axis not pass

very close to an edge of the feedback mirror in this analysis.

Another limitation to this analysis is due to the Fresne].

approximation used in the phase terms of the diffraction am-

plitude functions. When these amplitudes are used in the dif—

fraction integral the resulting field amplitude becomes valid

a small distance from the feedback mirror. How close this

distance is to the mirror is limited by the Fresnel approx-

imation. This implies that the left—traveling field at a

point close to the feedback mirror consists of the contribu—

H tions at the point where the geometric ray intersects the

feedback mirror and from points in some small region about

that point that satisfy the Fresnel approximation. Contri—

butions from other points outside this region are thus as-

swned to be negligible.
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VI. Conclusions and Recommendations

The primary objective of this work has been accomplish-

ed. An eigenvalue polynomial for the modes of an off—center

unstable confocal resonator has been developed. In the

special case of the centered feedback mirror, the off-center

eigenvalue polynomial should reduce to the form developed by

Moore and McCarthy(Ref 6:233). This has been verified, val-

idating the off—center eigenvalue polynomial in this limit.

In fulfillment of the secondary objective , a non—linear

matrix eigenvalue problem has been developed to examine the

behavior of the q(x) function for the centered case. If

solutions to this problem are feasible, the approximation of

q(x) as a constant can be examined.

It is recommended that methods of solving the q(x) non—

linear matrix eigenvalue problem be investigated . If solving

the problem proves feasible, the behavior of the q(x) func-

tion should be investigated. If q(x) varies significantly

from a constant value , its effects on the modes of the reson—

ator should b€- determined.

If q(x) can be evaluated for the centered case, it is

recommended that this technique be extended to examine the be-

havior of the functions qb(x)  and qa(x) for the off—center

case. Their combined effect in the off—center case may make

modes for this resonator geometry more sensitive to deviations
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of the q(x) functions from constant values.

With the eigenvalue polynomial for the off—center geom-

e-try , the computer program developed by Moore and McCarthy

should be modified to calculate the eigenvalues and the modes

for the off-center geometry. A parametric study could then

be undertaken of the elgenvalues and modes of various reson-

ator configurations.

This asymptotic analysis should be extended to allow

the determination of the field beyond the geometrical shadow

boundaries. This could be accomplished using either the

method employed by Moore and McCarthy (Ref 6:234) or the uni-

form asymptotic expansion of Horwitz (Ref 4:172). With the

field across the entire output plane the mode intensity dis-

tribution could be determined. Then Fast Fourier Transform

techniques could be used to calculate far field intensity dis-

tribut ions.

65 

- - -—— 5—  —- - - - _ —_-_-,~~._,______ 



- -

Bibliography

1. Erdê].yi, A. Asymptotic Expansions. New York: Dover
Publications Inc., 1956.

2. Fox, A.G. and Tingye Li. “Resonant Modes in a Maser
Interferometer ,” Bell Systems Technical Journal, 40:
453—488 (March 1961).

3. Horwitz, Paul. “Asymptotic Theory of Unstable Reson-
ator Modes,” Journal of the Optical Society of America,
63 (12):1528—1543 (December 1973).

4. . “Modes in Misaligned Unstable Resonators ”
Applied Optics, 15 (1):167—178 (January 1976).

5. Klein , Miles V. Optics. New York: John Wiley and Sons
Inc., 1970.

6. Moore, Gerald I. and Robert J. McCarthy . “Theory of
Modes in a Loaded Strip Confocal Unstable Resonator ,”
Journal of the Optical Society of America, 67 (2):228—
241 (February 1977).

7. Phillips, E.A., J.P. Reilly, and D.B. Northam. “Off-
axis Unstable Resonator: Operation ,” Applied Optics, 15
(9):2159—2165 (September 1976).

8. Sanderson, R.L. and W. Streifer. “Laser Resonators with
Tilted Reflectors, “ Applied Optics, 8 (11):2241—2248
(November 1969).

9. Siegman , Anthony E. and Raymond Arratboon . “Modes in -

Unstable Optical Resonators and Lens Waveguides,”
Journal of quantum Electronics, 3 (4):156-163 (April 1967).

10. Siegman , Anthony E. An Introduction to Lasers and Masers.
New York: McGraw-Hill Book Company, T~~71.

11. . “Unstable Optical Resonators,” Applied Optics, 13
(2):353—367 (February 1974).

12. . “A Canonical Formulation for Analyzing Multiele-
ment Unstable Resonators,” Journal of Quantum Electronics,
12 (1) :35—40 (January 1976). — _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _

66



- - “ -~~~~~~~~‘S~~~~~~~~~’S ~~~~~~~~~~~~~~~~~~~~~~ ‘ ‘~~~~~~~ 5- ’ ’

13. Sziklas, E.A. and A.E. Sieginan. “Mode Calculations in
Unstable Resonators with Flowing Saturable Gain. 2:Fast
Fourier Transform Method,” Applied Optics, 14 (8):1874—
1889 (August 1975).

14. Weiner, N.M. “Modes of Empty Off—axis Unstable Reson—
ators with Rectangular Mirrors,” Applied Optics, 18 (11)
1828—1834 (June 1979).

( _ _)

67

-- -~~~~~ .;- —- -- --- -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—___-_- -n____ 
~~~~ ~~~~~ -5~~~~~~~~~~

__ 
-—S.

-

Appendix A

Phase Effects of Tilt

Versus Rotation of the Feedback Mirror

-1 The purpose of this appendix is to illustrate the differ—
— ences that can occur in the distance a ray from the feedback

mirror travels in an off—center resonator due to tilting the

feedback mirror rather than, rotating it about its center of

curvature. The difference in distance traveled is related

to phase differences.

Rotated Feedback Mirror

If the feedback mirror is centered on the optical axis

and then rotated about its center of curvature , an of f—cen-

ter resonator of the same geometry as used throughout this

report is generated. This rotated off—center unstable con—

focal resonator is illustrated in Fig.(5). 
-

In this case the (p, e) coordinate system has its origin

at the center of curvature of the feedback mirror rather than

the focal point. The (z,x) coordinate system has its o n—

gin at the intersection of the optical axis and the large mir—

ror. The mirrors are separated by a distance D . The ra-

dius of curvature of the feedback mirror is 2d. Also , the

distance separating the centers of curvature of the two mirrors

is S . For the confocal case S equals D.
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Fig. 5 ROTATED MIRROR OFF-CENTER RESONATOR

For ease of computation , the case where D equals d

i.e. resonators with a magnification of two are considered.

For a point (2d,e) on the mirror, the distance , L

from it to the point where the optical axis intersects the

large mirror is given by

- 

. 
L — (z 2

+.x
2

)~~ (A—i)

where

z D+2d(1—cosO)

x 2d sine
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In the paraxial range of 0 , sinO=0 and cos8=1 . Then

Eq (A—1) becomes -

L = (D 2 +4d 2 0 2 )~ (A—2)

In comparison to the centered case the distance is iden-

tical for a similar point (2d,e) . So, no phase changes

must be accounted for in extending the analysis to the off—

centered confocal resonator when the off—center condition is

introduced by a rotation of the feedback mirror about its

center of curvature .

Tilted Feedback Mirror

If the centered feedback mirror is now tilted by an

angle ~ about its center, the optical axis shifts and an

of f—center resonator is generated. This geometry is depict-

ed in Fig.(6).

This resonator is no longer confocal since S , the

new separation of the centers of curvature , and the mirror

separation , D’ , are no longer equal. From the law of 
-

cosines , the distance S~ Is given by

= (4d 2+(2d+S)2_4d(2d+S)cosSl~ (A—3)

Recalling, that S d

5’ — dl12(1_cosS)+1J~ 
(A—4)
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Fig. 6 TILTED MIRROR OFF-CENTER RESONATOR

Then the change in the center of curvature separation (and

also in mirror separation) is given by

S’—S =L
~
S=[12(1_cos6)+1I

~
d_d (A—5)

If it is assumed that 6 is small then (1—cosS) is also

small. Using the binomial approximation of the bracketed

term in Eq.(A—5)

t~S 6d(1—cosô) (A—6 )

Using the series expansion of cos 6

AS 3d62 (A—7)
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I
Then the mirror separation , D’ , is given by

1~
= D—AS (A—8)

Now the distance , L’ , to feedback mirror point (2d,e)

from the intersection of the optical axis with the large inir—

ror is given by

L’ = (z~ 2+x t 2 )~ (A—9) [

where

= D’+2d(1—cos0)

x’ = 2d sinO

Again , for small 0 , Eq.(A-9) can be written

L’ = (D~~~~
2 +4d 2

O
2

)~~~~ (A—b )

Using Eq.(A—8) and Eq.(A—7)

L’ = [(D_3d6 2)2÷4d 202I~ (A-il)

This becomes

L’ = [D2+4da ea÷3d&2(3do2_2D)J~ (A—12 )

For small 6 , using the binomial approximation , Eq.(A-12)

b c os

L’= L+~AS(AS-2D) (A-13)
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I
Then

AL = IAS(AS—2D) (A—14 )

This can be neglected in phase terms if

(A—l5)

where k is the wave number.

Recalling that D equals d in the case being considered ,

and neglecting terms of order 6’ , it is found that the

condition

____ 
(A—16)

is required so that s ignif icant  phase changes do not occur.

For optical frequencies this limits 5 to very small values.

Parenthetically, a tilted off-axis resonator is equiv-

alent to an off—center non—confocal resonator (Ref 8:2242).

A tilt can then be viewed as a rotation about the center of

curvature and a shift of the feedback mirror along the op-

tical axis.

( 5
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Appendix B

Virtual Images of Feedback Mirror Edges

The field amplitude functions f(z,x) and g(p ,0) in

the laser cavity are expanded in terms of geometrical ampli-

tude functions and edge diffraction amplitude functions. The

diffraction amplitude functions can be viewed as cylindrical

wavelets originating at the virtual images of the feedback

mirror edges. The location of the virtual image sources for

the cylindrical wavelets can be determined by matrix optics

techniques.

Given the geometry of the off—center unstable confocal

resonator in Fig. (7), the image of any point (d,x) on the

feedback mirror can be found by the matrix equation

[;:}= T2RT 1 [X] (B-i)

where

x — transverse coordinate of object point

a = angle of ray leaving object point with respect to

optical axis

T
1 
• translation matrix from object point to mirror

Rm reflection matrix for imaging mirror

T2 translat ion matrix from mirror for exit ray
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Fig. 7 RAY FROM FEEDBACK MIRROR

x’ = transverse coordinate for exit ray

0’ = angle of exit ray with respect to optical axis

Substituting for the translation and reflection matrices

(Ref 5:84—100) yields

x’ = [i L’ 1 0 [2. L fx (B 2)
B’ ~O 1  -~~ 1 ~o 1  

[~
8

where

L — translation distance parallel to optical axis from

object point to mirror

— translation distance from mirror along optical axis

R — radius of curvature of mirror
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The sign convention for the radius of curvature is chosen to

be positive for concave mirrors and negative for convex mir-

rors.

Perfornilng the matrix multiplication of T~ , R

and T2 in Eq .(B—2 ) yields

x’ 1- 
~f 

L~
2L
R
L +L’

= 2 (B—3)
0’ —

~~~ i—~~~ 0

or

xM 11 M 12
= (13—4)

‘ I  
0’ M2 1  M22 0

The matrix for an image forming system has the M 12

element equal to zero.

This implies

L - 2L’L + L’ = 0 (B— 5 )

Given L and R , L’ can be determined. The distance of

L’ is the position along the optical axis of the image point

from the reflecting mirror . For L’ negative the image is

virtual and located behind the reflecting surface, for L’

positive the image is real and in front of the mirror.

For an image forming system the M 11 matrix element in

Eq.(B—4) is the transverse magnification PAT :
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2L’ (B—6)

The transverse distance of the image from the optical axis

can be determined from

x’ MTx (B—7)

So the object point (L,x) will be imaged at (L’ ,x’) rel-

ative to the imaging mirror.

For the off—center unstable confocal resonator geometry

of Fig.(7), the feedback mirror M 1 has a radius of curvature

= —2d (B—8)

The large mirror M has a radius of curvature

R2 = 2(D+d) (B—9)

The separation between the mirrors is distance D . The feed-

back mirror is distance d from the focal point.

To locate points relative to the focal point , the par—

axial coordinates (p,x) are used where positive p is the

distance to the left of the focal point and positive x is the

transverse distance above the optical axis. In this coordinate

system, a point on the feedback mirror is (d,x)

Given an object point (Pobj~
xobj) the translation dis-

tance Li from the feedback mirror is

~obj~~ 
(B—b )
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I
Then using Eq.(B—lO) in Eq.(B—5) yields

= — (B—li)

The p coordinate of the image point is then

~im d+L~ (B— 12 )

The transverse magnification of the feedback mirror using

Eq.(B—8) in Eq.(B—6) is

d+L’ ~imMT = d T  (B—l3 )

Using this in Eq .(B —7 )  yields

xjm = 
d+L~ x bj = 

~~ 
x0~J 

(B—14)

Thus, the image location formed by the feedback mirror is

given by

(0 im~~
C im ) = (d+L , d+L ’ 

Xobj ) (13—15)

Similarly, given the object point (Pobj~
xobj) to be

imaged by the large mirror M2

L2 D+d_P obj dM_P obj

— 
L2 (D+d) L2 dM B

-
. ( L2 L2-(D+d) L2—dM 

( — 1 7)
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~im 
D+d—L~ dM-L (B-18)

M
T2 

= D+d-~L 
= (B-19 )

D+d—L~ — ~imXim — D+d xObj 
— air Xobj (13-20)

where

M = ( B—21)

The object points on the feedback mirror undergo transverse

magnification M given above.

Then, the location of images formed by the large mirror

is given by

im”~im~ 
= (D+d-L , 

D~~d
;

L~ Xobj) (B-22)

or

~~im~
Cim) — ( dM-L~~, 

dM_L~) (B— 23)

- Using Eq.(B—16)through Eq.(B—20), the virtual image of

a point (d ,x) on the feedback mirror is found to be

(p1, x1)  — (dM 2 ,xM) ( 13—24 )

The image of this point (p1, x1) produced by the feed—

( )  back mirror, using Eq.(B—1O) through Eq.(B—15) is located at
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(p_1 ,x_1 ) — (d?C
2
,xM~~) (13—25)

It can easily be shown that continued reflection of the

succeeding virtual images, yields the general form

~~~~~~ = (dM
Z
~
i

, XM
ui

) ; n=±b , ±2 , . . . , ±N (B—26)

where the positive subscript indicates the nth reflection by

the large mirror, and the negative subscript is the nth re-

flection by the feedback mirror. F

Given the edges of the feedback mirror located at (d,b)

and (d,—a), the virtual images of the edges are given by

(0 n~ bn ) = (dMzn ,bMn) ; n ± i ,i2,...±N (B—27)
- I .

(p 0,b0) — (d , b) (B—28)

and

(~~~—a~) — (dM21~,_aM
n1) ; n=±i,±2,...±N (B—29)

(p 0,—a0) = (d,—a) (B—30)

It can be seen that these points lie on the halves of two dif-

ferent parabolas centered on the optical axis as shown in ~?ig.

(8). These parabolas have a common point at the focal point

of the resonator. This is the ~~~~~~ and (~~~—a~) point

for n-.-o~ .
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Appendix C

Asymptotic Expansion of Integrals

= by Method of Stationary Phase

This appendix outlines the development of the asympto-

tic expansion about the stationary phase point of integrals

with rapidly oscillating exponentials. This development gen—

erally follows that of Erdeli (Ref 1:51—56). The general form

of the expansion is then applied to the integral form whose

specific asymptotic expansion is used in Chapter III.

General Expansion

The general form of the integral to be expanded is

8
1(x) g(t)el~

i
~~
t)dt (C—i)

where x is a large real variable and h (t )  is a real func-

tion of a real variable. The stationary phase point is def in-

ed as the point t—t , where h’(t)=O is satisfied . The maj-

or contribution to the integral occurs about this point . For

other values of t the exponential is rapidly oscillating

and the average contribution is very small. The other major

contributors to the integral are the endpoints . The integral

of Eq .(C—1 ) is broken up into two integrals at the stationary

phase point t 0 . This is done to place the stationary point
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at an endpoint of the integration , this is needed for the ex-

pansion. Then Eq.(C-i) becomes

I t0 B

1( x) =
~~ 
[ + [ g(t ) e 1

~
C
~~

t ) dt (C—2 )
Vu ~‘to

Each of these integrals must meet four requirements be-

fore being expanded. First, t 0 is the only stationary

point on the integration interval. Second , h(t) is strict-

ly increasing on the integrat ion interval . Third , the end-

points of the integral are stationary point of order p—i

for the lower endpoint and a—1 for the upper endpoint where

p and a are greater than or equal to one. These orders

can be found by expressing the derivative of h ( t )  in the form

h ’ ( t )  = (t _ a ) ~~~~~( 8_t )~~~~
1H ( t )  (C—3)

where H ( t )  is any function that permits b ’ ( t )  to be writ ten

in this form. The fourth requirement is that g(t) not be

zero at t t 0

From the third requirement , integrals of the form of Eq.

(C—i) fall into three catagories:

1. For a stationary point at the upper limit of inte—

gration , p=l and a>b .

2. For a stationary point at the lower limit of inte—

gration, p>1 and a l
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3. For no stationary points on the interval of inte-

gration, p=i and a=1

An integral of the Eq.(C—b) form can be expressed

J g( t ) e iXh(t)dt = B(x)—A(x) (C—4)

where

B(x) = f f 1-v (t)j g( t ) e~~~~
t ) dt (C-5)

ct+n

B—n

-A (x) —~f v(t)g(t)ei~~~
t)dt (C-6)

and
1 ;ci~ t~ cz+n

v(t) = (C—7 )

0 ;B_ n~t�8

The v(t) function is a Van der Corput neutralizer , an

N—times differentiable function on the interval of integra—

tion. It is used to isolate the contribution to the integral

from an endpoint . This neutralizer is illustrated in Fig.(9).

The B(x) term is evaluated using integration by parts.

A change of variable is made where the new variable of inte—

gration, w , is given by

h(t) h (B)_Wa (C—8)
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Fig. 9 BEHAViOR OF VAN DER CORPUT NEUTRALIZER

From this the new limits of inte grat ion become , for t=B

= 0 (C—9)

and for t=(cz+~ )

W 2 = [h(8)-h (~+n)J~ (C-b )

A new neutralizer can be written

6 (w )  l— v ( t )  (C—li)

Its values at the endpoints are

1
6(w) (C—i2 )

0 , W W 2
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~~ ,1

Also the function y(w) is defined

y(w) = g(t) (C—13)

Using Eq.(C—8) through Eq.(C-13) the B(x) integral becomes

B(x) _e1 (8)f
2
Y(w) 6(w)e~~~~~dw (C—14)

0

To integrate by parts the following are chosen

u = y(w)s5(~ )  ; du = 
~~~

— [Y(w)6(w)] (C—15)

dv = e~~’~~ ; v = E
~
(_x ,w) (C—16)

where E (—x ,w) is some function satisfying Eq. (C-16).

The integration by parts of Eq.(C—14) yields

B(x) ei (8)y(w)~s(w)Ea
(_x ,w)ei~~~

fW 2 (C—17)
E (—X ,~~) f d~

I i  0

Here it should be noted that to carry the asymptotic expan—

sion to higher order terms the integral on the right side of

Eq.(C—17) is integrated by parts. For this analysis, terms

f rom this second integra tion are neglected.

Using Eq.(C—12) the neutralizer isolated the contribution

( )  to the B(x) to the w 1—O endpoint (from t = 8) • :
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B(x) — ,ixh(B)y(o)E (_x o) (C—iS )

A func tion E0(—x ,w) is needed which satisfied

~~ E0(—x ,w) — ~~~~~ (C—19)

A function satisfying this is given by the contour integral

$ 1 (w) — 
(_l~

fl
+Lf (z w)fleixZ

O
dz (C-20)

where

exp i arg(z-w) J — exp (C—21)

Then for the n—O case

f. ,_1 (w) — ~~
f

(z_ w)0e
_1
~~~dz

~~ $_ 1(w) - _e X
~~ (C-23)

The E
0(—x ,w) function is then

Ea
(_x ,w) —~~~(w ) (C—24)

To get an expression for Ea
(_x p O) in Eq.(C—18) the con—

tour integration of e _~_ 1 (~ ) must be performe d along the

path from w to infinity at angle ; to the real axis

which is illustrated in Fig.(iO).

A change of variable is made, letting
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— i t T
(C—25)

z — te

With this change of variable and letting ~—O , Eq.(C—20)

become s

— —e ~~~~~~~~~~~~~~~~~ (C-26)

Letting 8__~t
a 

, this equation is then

— (nil) liTy— (n+l)
— —cx e

(fl+1 _i) (C—27)

xJ s e 8ds
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The integral term in this equation is a gamma function as

defined by

r (m) sm—~e
—sds (C—28)

J o .

where m — . Then for n — 0 and using Eq. (C-24)

E0(—x ,O) — 0
1
~~~~

a e~~~F(~) (C—29)

From this, for o 1

iir

E1(—x O) — x~~e ~~~ r (i)  — (C-30)

And for a—2

E2(—x ,O) — —ix~~e~~~ 
r(*)  — (C-31)

Similarly , the —A(x) term of Eq.(C—6) can be found to be

—A(x) — —e ’
~~~ k (O)E~ (x~O) (C—32 )

where Eq.(C-6) has been integrated by parts using

h( t ) — h( cz) + u~ (C—33)

k(u) — g(t) (C—34)

and also using the following to get the final form
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E~ (x ,u) $~~(u) (C— 35)

E~ (x .O) - -p~~x ~ e ~~ r (~) (C-36)

Then for p 1,2

E1(x O) — (C—37)

E~(x ,O) — 
~~ ~ri— (C-38)

Finally , Eq (C—4) yields the general form of the asympto-

tic expansion about the stationary point , t0 , using Eq.

(C—18) and Eq.(C—32):

f 

g(t)ei*~~
t)dt - y(O)E0(-x ,O)e~~~~

8
~

(C—39)

-k(O)E~(x~O)e 1’~~~~

An Application of the Asymptotic Expansion

Given an integral of the form of Eq (C-l) that is to be

approximated by an asymptotic expansion about its stationary

phase point, five steps are used~

1. The stationary point of h(t) is found such that

2. The integral is broken up into two integrals at its

90
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stationary point , t0 , as Eq.(C—2).

3. Any changes of variable are made that are necessary

to ensure h(t) in each of the two integrals is

strictly increasing over the interval of integration.

4. The value of p and a for each integral is deter-

mined by expressing h ’(t) in the form of Eq (C—3).

5. Each of the integrals is solved as in Eq. (C—39).

For this example, the integral to be solved is

B
1(x) _f g(t) exp (—ix(at~—2bt+c)) dt .(C—40)

The stationary point is determined from

h’(t) — 2(at—b) (C—41)

This yields the stationary point , t o— , for h’(t)—O

It is assumed that ct<

Then Eq (C—40) is broken up into two integrals about the

stationary point

fçb, (B 1
1(x) [J ~J J g(t) exp I

_ix (at2_2bt+c)I dt

~ 
b/a (C— 42)

For the second integral h(t) is strictly decreasing on the

interval of integration. A change of variables, t——t , is

performed to make this strictly increasing. Then Eqe(42) can

be •zpr.ssed as I~ Ii +Ii , where
( I

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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b,~
I~ ~f g(t) expl_ix(at 2_2bt+c)I dt (C—43)

I~ —J g(—t) exp _ix(at2+2bt+c)l dt (C—44)
—B

The first of the two integrals, I~ , is now expanded.

In the form of Eq.(C—i), h(t) is identified as

h(t) — —(at2—2bt+c) (C—45)

Expressing b ’(t) in the form given in Eq.(C—3) yields

h’(t) — 2a(~ _t) (C—46)

From this it can be seen that p—i , a 2  , and H(t)2a

Then using Eq.(C-39)

Ii —

—k(0)E1(x,O)e~~~~ ’~ (C—47)

From Eq.(C-45)

h(~) — ~~ (C-48)

h(~ ) — —(aci2—2bcz+c) (C—49)

Next, the y(0) term is determined. From Eq.(C—8) it is

found that

(_ )
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— at —2bt+ (C—SO)

Then , using the quadratic formula

t — ~~~± — ~— (C—Si)

The root is chosen so that causes the resultant y(0)

term to be positive. In this case the positive root is

chosen and so

dt (C-52) 1 .L

Using Eq.(C—i3), Eq (C—51) and this expression , the y(W)

U term at w—O is

y(0) — g(~) 
._L (C—53)

Next the k(0) term is evaluated. From Eq.(C-33) (Re—

calling that p—i for this case), Eq (C—45), and Eq. (C—49)

u — —at2+2bt+(aci2—2b~) (C—54)

Using the quadratic formula

t — ~~ (c*3 -2~ct+~r_~ )1 (C—55)

Here the root is chosen so that will cause k(O) to be

I. ) negative. For this case the positive root is chosen, then

1
______—-

~~~

—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -___
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U

— _1(a2c12_2baz+bZ_au)’* (C—56)

Using Eq.(C—34)Eq.(C—55), and this expression, the k(u)

for u—0 becomes

k(O) — 1g(a)~acz_b~~
’ (C—57)

Now I~ from Eq.(C—47) can be expressed , using Eq. (C—31),

Eq.(C—37), Eq.(C—48), Eq.(C—49), Eq.(C—53), and Eq.(C-57)

— 

~~~~ 
exp~ 

_ix(c_~
2
)I

(C—58)

+g(ct)f2ix(aoi_b)J exp _ix(acz2_2bc*+c)~

By a similar procedure 12 is found to be

— èg(~ )~~fri ~w exp

+g( B) f—21x(aB—b)1 (C—59)

X exp _ix(a82_2b$+c)I

Finally, the integral from Eq.(C—40) is expressed in an

asymptotic expansion to terms of order x 1 as

Bj g(t) exp 
~: 

t2_2bt+c)~ dt

— ( r )  g(j) exp 
~
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+~(cz)~2~x(act_b)J
’
e~p _ix (aa2...2ba+c)I ( C—60)

+
~(8)t 2ix(a8 b)J

1
e I -ix(a82_2b8+c)J
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Appendix D

Asymptotic Approximation of Diffraction Integrai

for Off—Center Unstable Resonator

This appendix develops the asymptotic expansion for the

diffraction integral given in Eq.(39) where f(D,an) is re-

placed by the form in Eq.(26). The form of Eq.(39) is then

g(p ,O) CI = C(Ii+I~+I3) (D—l)

where

1 2,4ka2 2ikD
~ 

e (D—2)

~ ~~.cf)_if ex~j.~4_ 
(~~~n~~~n )

2 j

(D— 3)

a ~
X r~(d,an) exp 

— ~~~~ ~~~

— ~~~ (P~
_d)4f exp 

~~~ 

(aW 1a~ )2

/ a ‘2 
(D 4)

X S0(d ,a~) exp 
Z~~ ~r 

~~~~

- 
U
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-R
+F(~~2) 12i (Anz—B)1 exp J i(An 2

2_2Bn2+C)J

Note that this agrees with the asymptotic expansion form

Eq. (C—60) developed in the previous appendix by another meth-

od.

~pproximation. for I,

When I~ is put into the form Eq.(D—7) the following

terms are found

= —1 , n 2 = (D—9)

F(ri ) = r~(d,afl) CD—b )

A 1 = 2rrF d(p—d)+p(p~ —d) (D-ii)ea (P_d)(~~_d)

ped(p —d)+db (p—d )
B1 — 2irF (D—i2)ea a(~ _d)(P~ —d)

C1 — 2irF P O
a~(~~~~~~~~~~~~~~~

I) 
(D-13)

Using Eq (D—i1) through Eq (D—13) it can be shown that

B 
— d 

b~(o_d)+PO(p ~
_d)

A1 a d(P
~
d)+P(Pn

_d) (D—14)
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1

b~~ 
~(d,an) exp ~~ d~ (D—5 )

An asymptotic series approximation of integrals I l

12 , an d I , can be made when they are in the form (Re f 3:

1541)

t~~2
I — J  F(~~) exp I _ 1t (A ’ n 2 _2B ’ n~~’) I  dn (D—6)

n i

where t is large valued. In I~ , 1~ , and I, let

t correspond to _21TF0~ where Fea is large valued and

given by Eq.(3).

The Eq.(D-6) can be written

I — f F(~ ) expfi(Afl
2_2Bfl+C)I dn (D—7)

where

A — _2iTFea A ’ -

B — ••
~
21TFea B ’

C — -2irF C’ea
The asymptotic expansion of this integral when terms of high-

er order than Fea~
’ are neglected is

I — Vi—I F(~ ) exp i( c— 
~~ 

(D—8)

+F(n~) f—2 i(A~ 1—B)I
1
exp i(Ar1 1

2 _28n 1#C)1
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j

b
ia 

~(d,an) exp -
~~~~~~ d

fl 
(D—5)

An asymptotic series approximation of integrals I~

12 , and 13 can be made when they are in the form (Ref 3:

1541)

I 
=J 

- F(~~) exp I _ 1t (A h n2 _2B
~n~~I)I dii (D—6)

Ti 1

where t is large valued. In I~ , I~ , and 13 let

t correspond to _2trFea where Fea is large valued and

given by Eq.(3).

U The Eq.(D—6) can be written

= JT12 F(~) expfi (Aii
2_2Bn+c)) dii (D—7)

where

A = _2iTFeaA ’

B = _ 27TF aB’

C = _21TFeaC’
The asymptotic expansion of this integral when terms of high-

er order than Fea~
1 are neglected is

I B B2
I = [-.~-.J F(~ ) exp i(c_ 

~~~ 
(D—8)

+F( r~~) [—2i(An 1_B)J exp j i(An 1
2_2Brll+C)I
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+F(~ 2) 121(An2— B)1 exp i(An 2
2_2Bn2+C)I

Note that this agrees with the asymptotic expansion form

Eq.(C—60) developed in the previous appendix by another meth-

od.

Approximation for I.~

When I~ is put into the form Eq.(D—7) the following

terms are found

Ti 1 = —l , n 2 = (D—9)

k 
F(n) = r~(d,an) (D— 1O)

A 1 = 2nF d(p—d)÷p(p~—d) (D— 11)ea (~
_d)(~~_d)

pOd(p -.d)+db (p—d)
B1 = 2irF 

Il fl (D—12)ea a(P_d)(P~_d)

C1 — 2ir F pO2d2(p~—d)+db~
2(p—d ) (D 13)

Using Eq.(D-i1) through Eq.(D—13) it can be shown that

— d 
b~(P—d)+~O(~~_d)

A1 a d(P_d)+P(Pn~
d) (D—14)

- U
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~~~~ 

-~--~w-w~
____ -

C~- ~.L’. 
~ 

(D-15)

A~ n~ -B~ —
. 

- 

~~~ 
[ ;:~ 

+ 

~~ J (D-16 )

A~fl3-B~ - 

~~ 

+ (D-b7)

A 1fli 2—2B1~~1 +C1 — ~ + (D—b8 )

A 1n,2-2B1n2 +c1 - 
k 
[
~b_b~)

2 
+ ~~:~~~~~ 2 }  (D-19)

Substituting these terms into Eq.(D—8) yields

‘1 - 
~~~(~~=d)4{[~~~ ~~~~~~~~ %J1

x r 1d d ~~~~~~~~~~~~~~~~ ik p(b~—ed)
2

d(ø d)+ø(o~~d) ,
exp r

+ r
fl

(d
~_a)[ika(rt~ + ~~~))} ( D—20)

x exp 
J
~~~~(~~

:
~~~~~~

2 
+ P~~~~ I) 2

~

+r(d,b)[ika(b b
~~; ~~~~~~~~~~ -

1)J~~~

I
L



._ r_-_F-- - —
. 

_ _~~~~~~~~ - ~~- ,- - -

x exp
i 

~~~ 
((

~~~~~3 ) 2 
+ P~~;O~~

2

))}

Approximation for Ia

The limits of integration are the same as Eq.(D—9). When

- - 
- I~ is put into the form of Eq (D—7) the following terms are

found

F(~ ) — s~(d,an) (D—21)

A2 — 2it F . (D—22)

B2 — 2itF PO~ (Pp~
d n~~_d) (D—23)

C2 — 2nF pO 2d2 (p ~ —d)+da~
2(p—d) 

(D—24)ea a2(~ —d)(ø~—d)

It then follows that

— 
d pO (p~—d)—a~(p—d D 25Aj a d(p—d) +p(p~-d

C~- - 
~ ~~~~~~~(P d) (D-26)

A2n1—B2 — — + 
p(a+ed) ] (D— 27)

U 
Aafli-B~ - ~~~[b

+a
a + ~~~~ ] ( D—28)
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A2fl3 2-2B2fl1+C2 - ~ + (D-29)

A 2n2~ -2B2n2+C2 - 
k 

[

r4.a
~~~~

2 
+ (D-30)

Substituting into Eq.(D—8) yields

N I
‘2 — 

~~~(P —dY~~ 
[2tT i d(p—d)(p~—d) 1

n— i. 
n 

( ~~ 
d(~ —d)+p (p~—d)]

X s ‘d d pO (cn—d)—a~(p-d)n \ p (p~~.d) + d (p—d)

X exp
I~~ d~P_d)+~(P~

_d) I

+ s~ (d,_a) [ika(~~~~ 
+ 

— 1  

(D— 31)

x exp ~~ ((
..a)~~ 

2 
+ 

p~ a+Od) 2) 

I

+ s~ (d,b) 
[
ika(~~~~ + ______

x exp ~!~(Lb+a p
)’ 

+ I ~
Approximation for I~

The limits of integration for I, are given in Eq.(D—9).

When I, is put into the form of Eq.(D—7) the following terms
- 
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U are found

F(~ ) — ~(d,an) (D—32)

A , — 21TF (D—33)

B, — 2iTFea a(p—d) (D-34)

A 2  A2

C3 — 2trF ~~~“ “ (D—35 )ea a2(p—d)

Then it follows that

- 
(D-36)

U
C,— ~.L— — 0 (D—37)

A,~ 1— B , — 4!~ ~~~‘~~~
) (D—38)

A ,~ 2-B , — ~A (D-39)

A,~ ,2 —2B,~ 1+C , —

. 

~~~ (D—40)

A,~ 22—2B,~ 2+C, — ~ ~~~~~~~~ (D—41)

Substituting into Eq.(D-8) yields

I, — .
~-~~(p—d) ~(d ,Od)
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+ ~(d,-a) [
ika ~ +Od)J

1

x exp ik ~~a+ed~~ (D-42)

+ ~(d,b) [ika ~~~~~~~)]

x exp 
~~~~~~~ I

When Eq.(D—2), Eq.(D—20), Eq.(D—31), and Eq.(D—42) are sub—

stituted into Eq.(D—3) the expression for g(p,9) near the

feedback mirror is obtained. The final result is

1 F 2wika2 P 2ikDg(p O) — 

~~ /1 i~I e
- vj

N /

d 1I2~ d(p—d)(p —d)X 
~~ 

(
~~— ) 

~t 1~P d (p—d)+p’?p —d)
n—i

X r ‘d d pO(pn—d)+bn(p—d) \
p(p~—d)+d(p—d) F (D—43)

b ed 2
X exp r P

~
p
A

d)
~~~

(p_d) I

+ r~ (d ,_a) I a (~~-~ + 
~~~~~)I

_ 1

x exp ~~~ (
(a+b

p
)a 

+ 
~~~~~~ 

) 2)
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— 1

+ r~ (d ,b) I a (~~ 
+ _ _ _ _ _ _

X e:P J ~~~ 
(
~~~~:~~~~~

2 
+ ~~

;
O~~~~

2

) i) 

I
—I/12rr i ’ d(p—d) (p~—d+ 

~~ 
(p~-d) ~ 1~~Y ~~~~~~~~~~~~

n—i

X S ‘d d pO (p~—d)—a~(p—d)
nk ‘

X exp f ~ p(~~-a)+d~p—d) I

— 

-

~~ 
+ 
~~~~~~~ (

ika(~~~g +

X exp~~~~~(~~ 
a
g

) 2 
+ 
P(a+od~

2
)1 

(D— 43)

+ s~ (d b) 
~~ ~~ 

+

X exp ~~~~ 
(~~~~~~n )

2 
+ 

~~~~~~~~~~~ 

2) 

i)

(p—d ) j
I 

~(d , ed)

(J + ~(d ,-a) lika ~~~~~~~ 1 

-1
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( ~1

ik p (a+Od)2X exp r ä(p-d)

+ ~(d ,b) (ika ~~)~1

_1 
(D—43)

X exp 
~~~ 

_~~~Od) 2 

i) ~

U

U
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Appendix E

Elements of Coefficient Matrix Mu)

This appendix illustrates several of the elements of the

coefficient matrix A (u) of Eq.(140). The coefficients are

of a very complex form but their values could be calculated on

a computer since the eigenvalues, u , are the only unknown

parameters.

From Eq.(VI), the A(p) matrix is square and of dimen-

sion (2N+i) . It can be expressed as

1 , 1  
M

1 2
....M

l N,l~~~
I
~
Ml 2 N

N
2 2  (E— l)

M2N+l i M
~N+i~~~ ~

M N+1 N+r ’ .. .: .. . .
where is a matrix element.

Similarly, the q vector can be expressed

q(x~)

q(XN_l)

.

— q(x1) (E—2)
q(x,)

— q(X..N+l)
— q(X N)
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From Eq.(139) several examples of coefficient matrix

elements are

N
1 1  

— CE+NA+N(x+N)u
N_i (E—3)

N
1 2  

— CEN_iAN..l(x+N)u~~
’ (E-4)

N+1
— 2CE0~~~ (E—5)

M1 N+2 — CE iA_b (x+N)u (E-6)

- CE...NA ..N(x+N)u
N 

(E-7)

N
2 2

— CEN...1AN..b(xN..l)
i ..1 (E—8)

— CENAN(x_N )1IN (E-9)

— CE...NA .N (x_N)u
N_i (E.-lO)

Then, using Eq.(134) through Eq.(138), several examples of

these matrix elements in more detailed form are

I.
X exp f 2~1

~e 
~~~~ 

(l+N~~) (E ii)

107

I
_ _  _ _ _ _ _ _ _ _ _  

- -..~~
— -

- — — -- -. ~~~~~~~~~~~~~~~ -~--~~—- - - -— -- —~~-------—— - ----~~~ V ~~~~~~~~~~~~ - — —- - - - ----



F 
- —

~~~~~ 

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~

x [i— aM~~(1—M
2) 

(~
_ a ________

I l+M b+M~~ 
/

xu N )_~
— — 

~~ (
~~r) 

exp(2wiFe}
1
~1 

(E-b2 )

M i. /~~ \I
i,2N+l — ~~W ~ r) ~

X exPf 2lTiFe 

~~ 
(i_ ~~N) (E—13 )

x [i + 
aM~~(1—M ~

2) 
(a— a M

_1
+M1~~~~~

}_ 1

(1—M ) \ 1+M~~ / J

U
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