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L1ST OF SYMBOLS
Definition
coefficients of the curve fit polynomials for Cp.

variant coefficients of Eq (2.10)
coefficients of the curve-fit parabola for Fm‘s
physical chord length

associated constants of the two-dimensional kernel
functions, Eq (3.13) m = o,1,2

associated constants of the three-dimensional kernel
functions

pressure coefficient of steady mean-flow

in-phase pressure distribution, real part of p

out-of-phase pressure distributions, imaginary part of p
DH the kernel matrix element

Abjl integrated D for the ith or (i+1)th element

i
fi(g) assumed tunctions for p(¥) in the panel method

Fm(x‘ -~ €) vregular functions; m = 0,1,2

H(X) unit step function

2 (1xl), Hfg\(‘xl) Hankel functions of zeroth and first ovder of the
second kind

i S

Jo (XY, Jy(X) Bessel functions of zeroth and first order

x = W /U ), the reduced frequency

K,__«(X\.K, (X) moditied Bessel functions

NW(X.U) transonic kernel functions m = o,! and 2 for sonic,
£ transonic/supevsonic, and transonic/subsonic flow
regimes
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total acceleration potential
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oscillatory acceleration potential
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SECTION 1

INTRODUCTION

Current interests in aeroelastic problems in the transonic range demand
viable methods for unsteady flow calculations. At present, there are two
classes of numerical methods in progress: first, computation based on flow
field 'meshes' or 'elements', and second, computation based on wing planform
elements, The method in the first class, known as the 'computational method’,
relies mainly on the finite difference scheme (References 1 through 6) and on
the finite element scheme (keference 7)., Although these methods in many
cases provide accurate details of the transonic flow field, their applica-
tions to the three-dimensional flutter calculation appear to be still too
costly in practice, Besides, there are some frequency restrictions in these
methods due to either equation simplification (e.g., Reference 5) or require-

ments in convergence (e.g., Reference 1),

The methods in the second class are based on the lifting-surface theory
formulation, In terms of the paneling scheme, these methods require consid-

erably fewer elements and hence are potentially more cost-effective.

Ever since Kussner (Reference 8’ formulated the classical lifting surface
theory, there has been a long-standing research effort devoted to the develop-
ment of the kernel function methods (e.g., Reference 9)., In the last decade,
this method was advanced and adopted by various aircraft industries as a
common practice for flutter calculation purposes (Reference 10). As the
method is based on a pressure formulation, it has the advantage that the cal-
culation domain can safely exclude the upstream and the wake regimes without
any loss of generality (see Figure 1), Moreover, the method is proven to be
flexible in incorporating various modes into the flutter calculation scheme in
a fairly wide frequency range. The scope of this method, however, has yet to

be explored further in two important areas, First, the method was largely
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Figure 1, Oscillatory Transonic Airfoil as a Boundary Value Problem




restricted to the linearized subsonic and supersonic flow regimes, whereas

its application in the transonic flow regime only until recently was uncer-
tain, Second, the applications of the kernel function formulation have been
successfully combined with the use of the pressure-mode method (References 11
and 12), which, however, lacks the flexible and versatile feature of that of

the panel methods, e.g., the doublet lattice (DL) scheme (Reference 13),

Al though the pressure-mode method has been worked out in the purely
subsonic and supersonic regimes, the panel method has been limited to the
subsonic regime and its supersonic unsteady counterpart has never been com-
pletely worked out, In recent years, the kernel function method was extended
to the transonic range by Tijdeman and Zwaan (Reference 14), and by
A. Cunningham (Reference 15). These methods are, however, based on the mod-
ification of the classical purely subsonic and/or the purely supersonic ker-
nel functions in which the steady flow nonuniformity was not formally con-
sidered. Some good results were produced by these methods as a result of the
partial inclusion of the receding-wave effects, but the formal expressions of
the transonic kernel functions and the calculation procedures remain to be

established,

More recently, Liu and his associates (References 16 through 19) have
proposed a Mixed Kernel Function (MKF) method for unsteady transonic flow
calculations. In these publications, mixed procedures of various types of
kernel functions in combination with the panel method were proposed. The
method was aimed at a unified three-dimensional approach, which would bridge
the classical subsonic and supersonic lifting surface methods through the
transonic regime, including the effect of the oscillatory shock wave, The
only provision of the MKF approach is that the mean flow structure in the
proximity of the planform must be supplied by either experiments or other

means of computations,

To tackle the three-dimensional problem as such, however, requires a
firm understanding of the basic MKF procedure. Hence, it is the purpose of
this report to investigate the basic issues related to the MKF procedure for

two-dimensional flow, The present work consists of two goals. On one hand,

the transonic acceleration potential equation is derived and the transonic
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kernel functions in various flow regions are established, The formulation
of the MKF method is then followed by the numerical evaluations of these
transonic kernel functions and the application of the local linearization
procedure to these functions. On the other hand, thorough investigations of
various discrete-element types of paneling schemes are required, These
amount to selecting a promising candidate from the DL scheme, the Constant
Pressure Panel (CPP) scheme, and the Linear Pressure Panel (LPP) scheme, for
a unified paneling scheme applicable throughout the regimes of subsonic,
transonic, and supersonic flows., It is considered a challenging task, as no
such unified paneling scheme has been found workable for unsteady flow cal-
culations in the past, In later sections, it is demonstrated that our LPP
scheme is indeed a unified method suitable for all linearized flow regimes,
The success of this scheme really depends on the correct choice of the con-
trol point location, Then the local linearization procedure is combined
with the LPP scheme to account for the nonuniformity of the steady mean flow
(it is called 'nonlinear' flow hereafter; specifically, we refer to it as

transonic/subsonic flow, transonic/supersonic flow, and nonlinear sonic flow).

To demonstrate the transonic LPP method, calculation examples are pre-
sented for pitching and flapping NACA64A006 airfoils in subsonic flow, for
the pitching Guderley airfoil and parabolic-arc airfoils in sonic flow, and
for the pitching wedges and parabolic-arc airfoils in supersonic flow. Both
purely linearized flow results and nonlinear results were compared with those
calculated by various methods. A MKF procedure was performed on a Guderley
airfoil for the case of shockless smoothed sonic flow, Also, based on the
proposed MKF concept, the oscillatory shock patching scheme was derived for
the case of Eckhaus-Landahl's aileron buzz model. Finally, assessments of

and recommendations for the present method are given,




SECTION 2

BASIC FORMULATION

The total time-dependent velocity potential {i(x,y,z,t) can be written as

0 =ux+ ¥x,y,z,t) (2.1)
where the barred symbols indicate the true physical quantities and U, being

the freestream velocity, The perturbed potential % is normalized by (U.-E)
and is split into a steady and unsteady component, i.e.,

O/(UT) = 8(x,y,z,t) = ¢(x,y,2) + @(x,y,z,t) (2.2)
where (x,y,z,t) = (x/c, y/c, z/c, ?U./z) andc is the physical chord length,
For transonic flow, the first term, ¢, is governed by the steady-flow non-
linear small disturbance equation (e.g., Reference 20) and the second term,

$, is governed by the oscillating flow equation (e.g., Reference 21).

Op = v (¢ .9 ) (2.3)
where

2 2

ay" dz°

2
A=(1-M2) -:—; - 2ikM.? -g; + KoM 2
X

=ikt

(2.4)
[ @ = fe
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and ()x = %; and v, = (y + 1)M_°, The parameters M_, Y, and k are the
freestream Mach number, the specific heat ratio of the gas, and the reduced
frequency (defined as k = d:/(ZU.), where ¢ is the chord length, and w is the

circular frequency of oscillation),

2.1 Transonic Acceleration Potential

The acceleration potential, Y, is related to the fluid pressure and
density as

Y= R4 R (2.5)

where F(t) is some function of time. According to Bernoulli's equation, Y
can be written iu terms of the total potential, Q(= ﬁ/(UDE)), i.e.,

Y = ﬂt + (vQ - vQ - 1)/2 (2.6)

Substituting Equations (2.1) and (2,2) into Equations (2.5) and (2.6) and

keeping terms of comparable order to those in Equation (2.3), we obtain
v=o +[8, ++0)8] (2.7)
The acceleration potential can be split into two components, i.e.,
Y=y et (2.8)
where
d

*o i Ao° ’ Ao " x

d
V= Ay ,A-1k+(1+ox)-a;
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It is seen that the transonic acceleration potential, ¥, contains an additional
term, ox,to the one commonly used by the purely subsonic and supersonic flow

analysis,

2.2 The Transonic Acceleration Potential Equations

Applying operator A to Equation (2.3), making use of Equation (2,8), and

keeping only the lowest order terms result in

Chabcadiicahs

oy = v [(e ¥ ) + (o . 9) +ik(s 9 )

X'X X

]+ - 06 (2.9)

X

Furthermore, if we assume that ox is a one-dimensional function depending
only on x, the last term in Equation (2.9) becomes waox. After some rear-
ranging, Equation (2,9) can be further simplified to the following form, i.e.,

B2y

(o] xx+'

gy ¥ ¥yy * AL HBY = -lke * F (2.10)

where
]
i 2 2
S F M - A
A= -2 - ik(2M4° + 1))
r
1 3 -]
B=k'[MS - (y+ 2)A ] - u + 24kl (2.11)
E = 2 -
: L Tep Ry A, ~ 24kl
‘ Parameters A\, Aoy [y [o, B, and po are all steady mean-flow coefficients

defined as
[\ = v.Ox = (y + l)ko

< r- V.Oxx - (Y+ l)ro

¥ Yot © Ve ¥,/ (Mg + 1) (2.12)




It is seen that Equation (2.10) contains two dependent variables,
and @, as related by Equation (2.8). Hence, Equation (2,10) is in essence
an integro-differential equation in terms of § only. To simplify the equa-
tion, we assume the mean flow is accelerated at a fairly slow rate such that
lo ~ O(k) and u ~ O(k?®), the right-hand side of Equation (2.11) can thus be
ignored up to the third order in k, i.e,,

B2y, vy, +y

g, A vy = * A'x + By =0 (2.13)
In the Addendum to this report, Landahl derived a transonic acceleration
potential equation (Equation (L,1)) witha more general approach in which he
also recognized the acceleration potential obtained in Equation (2,8). Start-
ing out with the full potential equation, he arrived at a slightly different
low-frequency oscillatory equation from ours (Equations (2.13) and (2.11)).
It turns out that the difference lies only in the coefficients A and B;
Landahl's expressions read

A= -2l - (R(MP - (EPA) + 287 (y - DT,

B = k'M® - b - 2ikyD, (2.14)

When Equation (2.14) is eompared with Equation (2.11), it is seen that
the difference is insignificant between the coefficients 'A', but there is
some disagreement between Landahl's and our coefficient 'B', The latter dif-
ference could be a result of our approximation in starting with the small dis-

turbance equation, However, further investigations on this issue are needed.

Next, let us examine the coefficients, A and B, represented by other
theories. Previous work in References 14, 15, and 21 all suggested replacing
the freestream Mach number by a local Mach number in the DL method, the
pressure-mode method or the sonic box method, We caution that such a replace-
ment only partially recovers the mean-flow nonuniformity, and that some terms
were left out, If one consistently ignores the 0(0x°) term in the approxi-
mations, the expressions in the previous work then differ from Equation (2.11)




by a complex coefficient 2I' - ik\ in A and a complex coefficient k®(2\ + Ao)

+ 0o - 2ikl; in B, This implies that a part of the mean-flow damping mecha-
nism was ignored. In our earlier work (Reference 16) and that of Dowell (Ref-
erence 23), both proposed to employ the velocity potential equation (Equa-
tion (2.3)) as the governing equation for y. In this case, the differences

e e St

from Equations (2.11) are a complex coefficient, I' + ikA in A and a complex
coefficient K2 (\ + Ao) + Mo - 2ikT in B, With reference to Equation (8a) of
our AGARD paper (Reference 17), it is seen that the coefficient A remains
unchanged but the coefficient B differs by a complex coefficient, k'xo + o -
p +2ikl, Clearly, the additional terms are generated as a result of intro-

ducing the transonic acceleration potential.

In the subsequent calculation scheme, we have set up a completely general
input for the coefficients A and B, so that one can easily assess various
degrees of approximation by judging from the numerical results as well,

Other than Equation (2,11), we often used, in the latter calculation, the
following two sets of coefficients for expedient calculations. The first set
is the AGARD paper formulation in which only purely linearized acceleration

potential operator was used, resulting
A= -2(T + 1kM.°) - 1k
B = K°M°? (2.15)
The second set is the further simplification of the above, i.e.,
A= -2(T + 1k4.2)

B = k°M° (2.16)

Clearly, when I' is a constant, Equation (2,16) is reduced to Oswatitsch and
Maeder's parabolic approximation (References 24 and 25).
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SECTION 3

DEVELOPMENT OF TRANSONIC KERNEL FUNCTION

To derive the kernel function, it is necessary to integrate Equation (2,8)
along the mean flow direction. Hence, the integrated tramsonic velocity

potential in the subsonic freestream can be expressed in terms of § as

o e-ikf(x)jx _l_*:%_ I ICY I (3.1)

where

x
f(x) = f 'T—%;;; and X = x - €

Establishing the kernel function by the above equation results in a
rather complicated formulation., However, if we restrict the analysis in the
low frequency range, namely 0(k®, k?¢x), Equation (3.1) can be approximated

to yield the commonly-used kernel function, i.e.,

b - AR -1kX
K (X,Y,0) = i_i::g;j‘_“e ¥, (%,Y,2)dx% | * e (3.2)

where X = x - §, Y=y - T, and subscripts m = o, 1 and 2 representing the

sonic, supersonic, and subsonic cases, respectively,

3.1 Basic Solutions

Basic solutions, *m’ should satisfy Equation (2.13), There are several

ways to derive approximate solutions from Equation (2,13), depending on the




stage at which we apply the primary step of the local linearization procedure
(Reference 26), that is, to assume the parameters A, I, and 4 to be constants,
The simplest form can be obtained by assuming constant coefficients of Equa-
tion (2.13) as the start, The three-dimensional basic solutions have been
derived previously in Reference 18 (see Equations (10a), (10b), and (10c));

they read

Co -(on +'%£;)
o =5 "e , X 20, (3.3)
for sonic flow; and
h o= GeMXosh(/AR)R L, X2 |8y (3.4)
for transonic/supersonic flow; and
R W o , for all X, (3.5)

for transonic/subsonic flow,

where

[ A, = B/A

Ay = A/28°
{4 A = _(Aﬂ . 4%28)1,./2%2

i = (x3 + %3r2)1/5

=7 +2° (3.6)
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and G, C;, and C; are the associated constants, For the case of

two-dimensional flow, which is the case considered, the basic solutions can

be obtained from solving the two-dimensional version of Equation (2.13) or

taking the integral transform of Equations (3.3) through (3.5) in the spanwise

direction, i.e., the y-direction, These solutions read i

e + X220, (3.7)

for sonic flow

h = cieiabeo(GR) » X 2 Bz (3.8)

=0, otherwise,

for transonic/supersonic flow

B = et X2 (or) , for all X, (3.9)

for transonic/subsonic flow.

where J, and ﬂ,(a) are the zeroth order Bessel function and the zeroth-order
Hankel's function of the second kind, respectively; both functions contain

complex arguments, namely the complex parameters, ©.

The complex arguments read

oudd o, JA
2!0a 2my®
mp® = -py2 (3.10)
13




o=1ip
Mo
{3.11)
p=- 5= VA + mg®B :
for transonic/supersonic flow, and
o=
Bo
(3.12)
1 vf"‘i‘“‘“’é
X = == \/ 4B°B - A
28y % ’
for transonic/subsonic flow; the constants cp, ¢y, and cg read
f n
c°=21K
21
Oy (3,13)
1 nb
im
i

It should be noted that the sonic solution Equation (3.7) can also be
derived as a limiting case of the transonic/supersonic basic solution, Equa-
t tion (3.8), and that of the transonic/subsonic basic solution, Equation (3.9).
1 When we let ﬁbaor mba approach zero, and meanwhile keeping X nonvanishing in
the latter equations, it can be shown that both expressions lead to the sonic
solution by means of asymptotic expansions of the Bessel function and the

Hankel function for the large argument oR. Also, we note that these basic

14
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solutions (Equations (3.7) through (3.9)) contain the purely sonic/supersonic/
subsonic basic solutions (i.e., the linear solutions) as special cases,
Indeed, when the transonic parameters I', A, and p are put to zero, the sonic
solution (Equation (3.,7)) transonic/supersonic solution (Equation (3.8)) and
the transonic/subsonic solution (Equation (3.9)) reduce to the purely linear-
ized solutions of Rott (Reference 27), of Miles (Reference 28), and of

Possio (Reference 29), as expected, Hence, it is appropriate to describe
these basic transonic solutions as the 'transonic/supersonic' solution or

the 'transonic/subsonic' solution, thus, implying that they are general enough

to cover the transonic flow range as well as the linearized flow range.

3.2 Transonic Kernel Functions

The derivation of the transonic kernel functions, based on the previous
basic solutions, is an essential step towards the MKF formulation. During
the course of our study, the transonic/subsonic kernel function was first
derived, followed by the transonic/supersonic kernel function, and lastly by
the sonic kernel function, In the subsequent development, we will present

these kernel functions in this study sequence,

e Transonic/Subsonic Kernel Function (m = 2)

Substituting Equation (3.9) into Equation (3.2), and making use of the

governing equation (2,13) results in

KlX.e) = Minly » 0"

2-%0

X 4«3
s
_'r ,Pb(a)(oR)elkx°d
o 82"

2 X
%o
= o e I [%—R-_ el(® + K%y (3 (op) + 18,7 (ap + k)uo“"(ck)]

X
+ [Bo® (g + k)P - Xa]f el(ao + k)“tb‘a‘(oa)dxo|
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and }ﬁ(a) is the first-order Hankel function of the second kind, The last
integral can be reduced to a simpler integral by means of Laplace transform.

As the first two terms vanish in the far field, the I expression is further
simplified. Consequently, after the limiting process, we obtain the transonic/

subsonic kernel functionms, i.e.,

Bo®oX
Ko (X,0) = c; l ['ITT' BP0 X])+ 182 (0 + K)H 2 (0| X |)]e“°'° tE0E

+ TR e + 107 - ] - [(- RIS

X
+ [ oo H 0 (g l)dXo]l‘ B 3,259
o

where

[ ox = {0

1 s=1(a +k)° - &

L S =1i(ap +k) +s (3.16)

Several special cases can be reduced from Equation (3.15). In the case
of parabolic approximation (Reference 24) where A = | = 0, the steady kernel
function can be obtained by setting k approach zero. Thus, the kernal func-

tions read

r
2cq1\ =X
x.(x.o)-(-%—)rea "Sgn(X) -K,(;I;|x|>+l(o<;r-;|x|>l (3.17)

16
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where K, andKa are modified Bessel functions of the first and the zeroth

order, respectively, Furthermore, letting [' approach zero results

Ko (X,0) = 5% (3.18)

This 1s exactly the purely-subsonic steady kernel function.

In the case of unsteady purely-subsonic kernel function, we take the
limit in [ approaching zero for Equation (3.14), The result reads

1kxg
s

LR
Ke (X,0) = - '3‘1’ cfe - Im.Sgn(x)H,"’(xlxD- uo"’(x|x|)|

1kxg
218 1+8 X B>’ ”
+— ln( v '>+1kjrb"’(x|;c°|)e * gl v oI
® o

(3.19)

where x = \/B_ and Sgn(X) = 1 {f X > 0 and Sgn(X) = -1 i{f X <0,

This is precisely the expression of Possio's integral equation, which was derived
by Watkins, Runyan, and Woolston starting from a three-dimensional kernel
function (Reference 30, Equation (B.18)).

e Transonic/Supersonic Kernel Function (m = 1)

Based on the nature of the supersonic wave propagation, the domain of
interest for the transonic/supersonic kernel function is confined to (mz,X)
rather than (-®,X), Hence, the kernel function reads

K;(X,O) = lim Ix s G-ikx

2-%0

(3.20)
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where

X
32° “mz

aa X

= et (% + K% (omi(xo- me)dx (3.21)
z mz

Applying the differentiation, making use of Equation (3,2), and finally taking
the limiting process yields

-1k+_k°_>t[

Ky (X,0) = ¢ymg? 8(x) + tko “‘° H(X)Jo (0X) - oﬂ(x)J,(ox)]

-1kgx

0, k%) -tk Y o
- (_a' + __:>e f H(xg)e Jo (o%5 )dxo (3.22)

where

o~

ko /mp® = - (ap + k)

4 &(X) is Dirac's delta function

| H(X) is the Unit Step function,

Various special cases of Equation (3.22) will be discussed here. For

parabolic approximation, A = w = 0, the steady kernel function in this case
reads

K, (X,0) = ctm: « {8(X) +—-- H(X) - J,<£ >] (3.23)
mﬁ mQ
where m: = M: -1,




As T approaches zero, the above becomes

Ky (X,0) = cym ® + 8(X)

On the other hand, for purely supersonic flow case, where ' = A = u = 0, the

unsteady kernel function Equation (3.22) reduces to

.1k1r? %
m
K (X,0) = eym e . [a(x) + 2 1003 (X)
mﬂ
¢ ﬁ; H(X)J;(xx)]
mﬂ
~1kxg
2 X m”a
+-liz e'ikx I H(xg )e Jo (kXg )dxe (3.24)
(<3

where k = E!! and ¢ = %ﬂ

The above equation checks identically with Watkins and Berman's supersonic

kernel function (Equation (49), Reference 31).

e Sonic Kernel Function (m = 0)

The Sonic Kernel function derived here is meant to be the transonic
kernel function, for By = 0 (or M = 1,0), thus including the transonic thick-
ness effect, Inserting the basic solution Equation (3.9) into Equation (3.2)
and making use of the governing sonic equation, Equation (2.13) yields

X VX~ |
Ko (X,0) = coA 27{' e fo Sl (3.25)
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where

=

o = 20\/3

~ B
p ik - T

¢

The sonic kernmel function can be derived from either Equation (3.15) or
Equation (3.22). It can be shown that Equation (3,24), in fact, is the sonic
limiting case of these subsonic and supersonic kernel functions. The limiting
procedures depend primarily on the validity of the asymptotic expansion of
the Hankel function and the Bessel function, provided that the domain of 'X'
(of the argument oX) be excluded from zero,

For the case of purely sonic flow, we let ' = A = 4 = 0, and let M, = 1.0,
Equation (3.25) then is reduced to the same form as the equation itself except
that the coefficients, co and ap, are simplified to

mik
e &

~ o &
w (3.26)

The purely sonic kernel function here checks identically with that derived by
Watkins, et al,, (Equation (B.23), Reference 30).




SECTION 4

PANEL .METHODS FOR PRESSURE EVALUATION

The objective of the present formulation is to make use of the kernel

function approach for solving the downwash integral equation, i.e.,
1 L
wn-ﬁ%ﬁymmma (4.1)

where £ is the total normalized chord length (normalized by half-chord length,

i.e., £ = 2) and the pressure function is the solution sought,defined as

p(§) = lplower(g) 3 pupper(g)l /(';'D,U.') (4.2

Given the downwash function W(x), one is required to solve for p(§).
The solution techniques for pressure in the kernel function approach can be
broadly categorized in two classes, namely, the pressure-mode method (e.g.,
References 11 and 12) and the panel method or the discrete element method,
e.8., References 10, 13, and 14, The general approach is to prescribe an

approximate solution p(§) in the following form, i.e.,

N
pE) = T p,f,(E) (4.3)
i=1

where & and the subscript'i' represent the sending point and the sending
panel, 1In the pressure-mode method, further knowledge of fi is needed, a

priori. For the panel methods, f, can be expressed more freely in various

i
ways, depending on the sophistication of the paneling scheme as one desires.

There are several panel methods now being widely used. The simplest
method is the doublet lattice (DL) method (e.g., Reference 13), It is a

commonly-used tool for flutter analyses, hut the method is restricted to the
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subsonic flow regime due to its inherent elliptical characteristic of the
collocation scheme adopted. The constant pressure panel (CPP) method was
first proposed by Woodward (Reference 32) and was extended to cope with the
uni fied unsteady, purely subsonic/supersonic three-dimensional flow cal-
culations by Winther (Reference 33). While the unsteady part of the subsonic
calculation worked out successfully, the unsteady part of the supersonic flow
calculation did not, This then led us to investigate the applicability of
the Linear Pressure Panel (LPP) method for a unified unsteady, subsonic/
transonic/supersonic flow calculations, The LPP method, also known as the
elementary vortex distribution (EVD) method, was first proposed by Shen, et al,,
(Reference 34) for incompressible steady flow calculation for lifting wings
with jet-augmented flaps, Apart from the unsteady subsonic work by Fromme,
et al., (Reference 35), no attempt was made to unify such an approach to the
supersonic flow regime, In what follows, we shall discuss the DL, the CPP,
and the LPP paneling schemes, with special emphasis on the development of the

LPP method for unified unsteady transonic flow calculations,

4,1 DOWNWASH MATRIX EQUATION AND PRESSURE FUNCTIONS

The downwash integral equation (4.1) in combination with Equation (4,3)

can be written in terms of the panels scheme as

g
N i+l

NGO == T | KGx - §)E,(8)dE | p, (4.4)
=180

where
N = total number of panels
P; = pressure at the sending point §1(DL), or pressure magnitude on the

panel (CPP), or pressure at the leading edge of the ith panel (LPP)
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ol Doublet Lattice
NS
Li
: ’
: &4 = eS|
3
E
- Pi x ~ Pi+1
€1 €i+1

Figure 2, Sending and Receiving Points
(or Panels) for DL, CPP, and LPP Methods

form, Equation (4.4) reads

bt il
where
\ Siv1
Dyy =l Klxy - ©)E (8)aE
Sia1
and

WA cvey N
J=l, vy N

N being some positive integer
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PIW%
] Constant Pressure Panel

Linear Pressure Panel

Now, let NJE N(xj) where Xy is the location of the receiving point (or called
)

the control-point) associated with the jth panel, In terms of the matrix element

(4.5)

(4.6)




In the ith panel, the pressure fuction fi(g) is prescribed by various models

according to the panel schemes used,

For the DL method,

£,(8) = e<§ - ;1) - €, (4.7)

where

Agi = length of the ith panel

8(€) = Dirac's delta function

For the CPP method,

£,(8) = HE,) - H(E,, ) (4.8)

where
H(E) = the unit step function

For the LPP method, the ith regular panel element has the pressure function

£,(8) =

(€ -8 /(€ - T N €, SEsE (4,9)
i-1)th g, ith
panel paunel

1‘\’1-1 Py Pi+1
70N a4
N\ ‘
/ | N\ / ! \
/7 \|/ | N
el - X i AAgE

i-1 gi gi'H.

Figure 3a. Regular LPP Elements
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4.2 The Kernel
ernel Matrix Element D)1

Accordingly, the kernel matrix element Dji‘ Equation (4.5) can be expressed,
in terms of Equations (4.7) through (4.9), as follows,

For the DL method

Dyy = 75 Kalxy - 81)08 (4.10)

1-1’ -.o.N

j-l’ ‘--,N

For the CPP method

. i1
Dy =gm ) Kalxy - £)a8 (4.11)
&
For the LPP method
1 Sin1
°51 =7 J‘; Km(xj - g)fi(g)dg (4.12)
i-1

Notice that the domain of integration for the ith panel is [gi. §1+I] for
the CPP method and is [gi_l, §1+1] for the LPP method, Clearly, these three
methods differ from each other in their ease of application,

The DL method requires no integration for obtaining Dji’ hence is the
simplest, whereas the CPP and the LPP method require the integration proce-
dure. In fact, in terms of the integration scheme, the LPP method is nho more
than a 'higher-moment' integral of the CPP method; hence the integration
procedure of the LPP method is slightly more complicated. On the other hand,
it 1s this 'higher-moment' characteristic of the LPP method that provides a
linear distribution of the calculated pressure, which is a definite refinement
of the CPP method. The common characteristicsof the CPP and the LPP methods are
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that the edge behaviors (including leading edge singularities, trailing edge
behaviors and hinge-point singularities, Reference 36) and the shock-jump
behaviors (e.g., References 37 and 38) to a large extent, can be incorporated
into their kernel matrix formulation, whereas the DL method does not have
this advantage. However, these edge behaviors must be derived from analyti-
cal means, Such types of edge behavior and shock-jump behavior have not yet
been formally derived for airfoils in the unsteady transonic regime (now with
the exception of Reference 38). For this reason, in the subsequent calcula-
tion, we use either the known purely subsonic leading edge singularity or,
for the most part, set up the calculation scheme without the incorporation of
the edge behaviors. In the following paragraphs, however, pressure-function
models are set up at various elements in different flow regimes, These pres-
sure models, when properly assigned, indeed provide correct edge behaviors.
This can be observed from the computed numerical results (see Section 5 and
figures). However, one is cautioned that the 'singularity-like' leading edge
(for subsonic or sonic flow) or the hinge point behaviors obtained are really
not singular, if one takes up the present element modeling for fi(g) in
paragraph 4.3, We achieve these 'singularity-like' edge behaviors by refining
the element size in the neighborhood of these edges. The usual practice in
our computation scheme is to distribute about five to ten elements within
five percent chord length in the edge neighborhood. 1In so doing, one obtains
more enhanced singularity-like behavior, What really happens in this outcome
is the following. Although the fi(g)'s are not singular, and the correct
fi(g)‘s should be singular (but are integrable singularities), Dji always
remains regular in either case, Also, the value of Dji would amount to the
same order of magnitude locally for both cases, This then in turn assures

the singularity-like behavior in the pressure function at these edges,

In what follows, we will restrict our considerations to the LPP method,

as it constitutes the main body of the present MKF calculation procedure,




4.3 The Transonic LPP Model of fi(g)

The success of the LPP method depends mainly on the correct modeling of
the pressure function, hence fi(§). Here, regular elements and the irregular
elements will be described. The regular elements consist of the usual reg-
ular panel element, the leading-edge element, and the hinge-point elements,
The irregular elements consist of trailing-edge elements and the shock-point

element, The last element will not be included in the following description,

e Regular Element

The typical regular element is shown in Figure 3a and the pressure

function is defined as Equation (4.9).

e Leading-Edge Element

P

1-—— \\ﬁ\ € =0 (i.e., the leading edge)

P |\ L -t

l_ A \\ f(8) > —p— 0sg<g
gEw v =

Figure 3b. Leading-Edge £, (0) =1 (4.13)

Element

As mentioned earlier, it is seen that the present modeling of f, (§)

does not provide the leading-edge singularity,

e Hinge-Point Element

The pressure function behind the hinge point of the oscillating flap
assumes the same pressure function as that of the leading-edge ele-
ment, i.e., Equation (4.13), except that § is now the hinge-point
location, Ahead of the hinge point §, the pressure function then
assumes amirror image of fy (§) along the hinge line § = § . It should

be remarked that although the strength of the edge singularities

varies, depending on the location (at the leading edge or at the
hinge point), the local Mach number, and airfoil geometry, they are
usually integrable singularities, even for the cases in oscillatory
flow., Consequently, the kernel matrix Dji here remains regular

regardless of the edge behavior,
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The trailing-edge elements are considered as irregular elements

because they behave differently when the flow regime changes.

e Subsonic Trailing-Edge Element

p(§) A

3 —>
SN-1 SN N+1
Figure 3c., Subsonic Trailing-Edge Element
Sy = 2 (i.e., the trailing edge)
(2 - §)/(2 - &) y sl
£4(8) = (4.14)

(S, ), 8., stk

e Sonic Trailing-Edge Element

% T A ATFRPTE A, N 1.3 %, 5.0

(ON

-2 -1 N SN+l

Figure 3d., Sonic Trailing-Edge Element

et s 2o S

gN+1 =2 (i.e., the trailing edge)

Q- O = Bi) v By 9880

fu-1(8) = (4.15)
(g b gN-Z)/(gn-l i gN-Z) ’ gN-Z s€< gN-l

fN(E) B (; it §N_l)/(§N B gN-l) ’ gN‘l < g <2
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e Supersonic Trailing-Edge Element

PNay

Sn-1 ¢ SN

Figure 3e, Supersonic Trailing-Edge Element

§N w 2 (i.,e,, the trailing edge)
£,(8) =
(€ - §N_‘)/(2 - EN-I) gN-l sg<2 (4.16)

It is necessary to clearly define the regular subsonic, sonic and
supersonic elements at this stage., Given the mean flow pressure (or local
Mach number), we can measure the local value of Béa at the mid chord of the
element, The panel element is then defined as the subs)nic element, super-
sonic element, or sonic element depending on whether Bo 1s positive, negative,
or zero, respectively, For the case of mixed flow (e.g., Figure 3f), two
extra types of panel elements are added,

First, the panel elements are tailored Sonic Line

/7
to fit the sonic point location; this N <] ///’ NS 1
results in two adjacent panel elements, //
one on the upstream side of the sonic /
point, the other on the downstream side, / Sonic/supereanic
/ element
Thus, these adjacent elements are L Lo gd L — A o
defined as the subsonic/sonic element Subisonic/senic
element
and the sonic/supersonic element (Fig-
ure 3f), Figure 3f, Adjacent Elements in
Mixed Flow
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4.4 The Control Point X4

It is crucial to determine the proper control point (or receiving point,
xj) location for the LPP elements in various local flow regimes in order to
obtain the correct pressure distribution., A classical case is the Doublet
Lattice method in which remarkable subsonic pressure distributions result
when the control point is located at the three-quarter chord of each ele-

ment (References 13 and 39).

As a result of our investigation, we found that the control-point loca-
tion of each Lpp element is not entirely independent of the local flow con-
ditions, For regular elements and irregular trailing-edge elements, the

control-point locations are determined by the following

€ 8002 for subsonic elements
j j+1
P and sonic elements
g, for supersonic elements

-

This is to say that the proper location of the control point should be
placed at the midchord of the subsonic and the sonic elements, whereas it
should be placed at the leading edge of the supersonic element., In the
mixed-flow case, the adjacent subsonic/sonic element assumes the same control
point location as that of the subsonic element. For the adjacent sonic/

supersonic element, we place the control point at the midchord,

We are fairly confident of the choice of the control-point locations for
the former elements, But for the adjacent element, our choice of the control
point may not be the most appropriate, as shown in the sonic flow calculation

(Figure 31), Hence, further investigation on the mixed flow panel elements
is needed.
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4.5 Evaluation of Kernel Matrix Element Dji

To evaluate the D . integral (Equation 4.6)

[T

1 gi+1
Djl o — I{ Km(xj - Q)fi(g)dg
i-1

it is necessary to assess the singular behavior of the transonic kernel function
Ku(X). 1In the previous section, we have shown that while the subsonic and the
sonic kernels are singular, Ko (X) ~ 1/X and Ko(X)~ 1A/X, the supersonic ker=-
nel Ky (X)~8(X) as |X| approaches zero. Consequently, regular functions

F, (m = 0,1,2) are introduced for the purpose of Djl evaluation,

For convenience, let us first define the element integral operator in

Equation (4.6) as

1 gi+l
v Iwgmy 4K (4.18)
gi-l
Thus,
e Subsonic Element (m = 2)
F,(xj - £)

s S AGL |

Fa(xj- £) (xj - E)Kp(xy- §) (4.19)

e Supersonic Element (m = 1)

LR GG -8 « 6O} +708 - &) 4 x> 8,

I (4,20)
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o
Ky(xg- 8) = == 8(xy - g) » Xy 28
F;(Xj - g) -

Sonic Element (m = 0)

. S £,(8) >¢
I, {— x
g e i Eais i-1
. 0 (4.21)
ji
0 ) xj < gi-l
ij-!‘Ko(xj~§) .sz!}
Fo(xj - ;) -
0 ’ xj <Eg

Now, since Fm(X)'s are analytic everywhere over the domain of interest
in xj and €, the singularities in Djl involving cases of m = 2 and 0 are
removed. Thus, the functions rm(x) are subject to the parabolic curve fit
scheme. The values of Fm(x) are obtained at three points of each element,
namely, the leading edge, the midchord and the trailing edge. In the case of
sonic and sonic/supersonic elements (with control point located at the mid-
chord), we simplify the curve fit scheme by a linear fit in letting Fm(x)
go through the leading-edge point and the midchord.

As an example, we shall demonstrate the evaluation scheme for a regular
subsonic element, using Equation (4.9) and Equation (4.19), First, let us
write the curve-fit formula, i,e,,

l"(xj -g) = (xj - ;)K’.(xJ -g) 0 < xy %2
n-f\(xj - 8)® + Blx - 0) + c (4.22)
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where K, 5, and C are determined by the parabola fit, Now, according to

Equation (4.9) and F, (X) given above, D { ¢an be integrated, for the ith
or the (i+l)th element (denoted as Anji)’ to yield (refer to Figure 3a)

o, - g;i; (Re2 (x - 3) + Bay+ 28[1 + (X - 1)m|ii—1| 1 (4.23)
where

-(gy - &5.y) » S11 SEE G,

&g =
Civ1 = 84 AT S TP}
1 » 841 S8 <8
ei'
= » 8y £C <G

Notice that now ADji is a regular function as a result of the proper

arrangement of F,(X). For the evaluated formulas of Abji for the sonic and
the supersonic elements, we refer them to Appendix A,
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SECTION 5

RESULTS AND DISCUSSION

In this section, numerical results for all flow regimes are presented
and followed by brief discussions, Figures 4 through 13 present all the
transonic/subsonic results for thin airfoils (flat plates) and for a pitch-
ing or flapping NACA64A006 airfoil, using either the Transonic Doublet Lattice
method (TDL2D code) or the Transonic Linear Pressure Panel method (TLP2D
code). Based on the unified formulations in the previous section, we shall
demonstrate further that the LPP method is equally applicable to the sonic
and supersonic cases, whereas the DL method is not, Figures 14 through 22
present transonic/supersonic results for pitching thin airfoils (flat plates),
wedges, and parabolic-arc airfoils. Sonic flow results are shown in Figures
24 through 31, for pitching thin airfoils, Guderley airfoils, and parabolic-
arc airfoils., In particular, Figure 23 illustrates the divergence of the
purely subsonic and purely supersonic kernel calculations, and Figure 31

presents results of a study for the mixed kernel function procedure,

Notice that in all the figures, only the in-phase and out-of-phase
pressure distributions, ACp' and ACp'", or their magnitudes and phase angles,
|ACp| and @, are presented. The pressure coefficients are defined by
Equation (4.2) as

ACp'

Real part [p], the in-phase pressure and

ACP"

Imaginary part [p], the out-of-phase pressure.

All the pressure coefficients are plotted against the chordwise coordinate, x.
For convenience of presentation, the range of x and that of § is changed to
(0,1), this amounts to changing the total chord length £ = 1, instead of 2,
as defined in Section 4, The percent thickness in all the plots is defined

b4
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Figure 4. Flapping NACA64A006 Airfoil at M_ = 0,825

and k = 0 with Hinge Point at Three-Quarter

Chord
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Present LPP method
———=————— Linear theory (Ref 40)
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(a) In-phase pressure distributions

(b) Out-of-phase pressure distributions

Figure 5, Flapping NACA64A006 Airfoil at M, = 0.825 and k = 0.062
with Hinge Point at Three-Quarter Chord
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(b) Out-of-phase pressure distributions

Figure 6, Pitching NACA64A006 Airfoil at M_ = 0.85 and k = 0.06
with Pitching Axis at the Leading Edge
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(b) Out-of-phase pressure distributions

Figure 7. Flapping NACA64A006 Airfoil at M, = 0.85 and k = 0,06
with Hinge Point at Three-Quarter Chord
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Ehlers (Ref 1)

Tijdeman and Schippers (Ref 41)
TLP2D, Eq (2.15)

TLP2D, Eq (2.16)

TDL2D, Eq (2,16)

Al

1.4

Figure 12,

In-Phase Pressure Distributions for a Flapping NACA64A006 Airfoil at

My = 0.8 and k = 0,253 with Hinge Point Located at Three-Quarter Chord
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Figure 13, Out=of-Phase Pressure Distributions for a Flapping NACA64AQ06
Afrfoil at M = 0,8 and k = 0,253 with Hinge Point at Three-
Quarter Chord
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Figure 14, Pitching Thin Afrfoil (T = 0) at Me = 1.2 and Reduced Frequency
k = 1,0 with Pitching Axes at (a) Leading Edge, (b) Midchord,
and (c¢) Trailing Edge

46




@® Chadwick-Platzer (Ref 43)
Present LPP method

Figure 15, Pitching Thin Airfoil (T = 0) at M, = 1,15 and
Reduced Frequencies at (a) k = 0.2 and at (b)
k = 0.6 with Pitching Axis at the Leading Edge
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Figure 16, Pitching Thin Airfoil (T = 0) at Me = 1,25 and Reduced
Frequency k = 1,0 with Pitching Axis at the Leading Edge
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and (a) k = 0,02, (b) k = 0,166 with Pitching
Axis at Midchord
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Figure 18, Pitching Thin Airfoil (T = 0) at Me = 1,5
and (a) k = 0,416, (b) k = 0,625 with
Pitching Axis at Midchord
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Figure 19. Transonic/Supersonic Out-of-Phase Pressure Distributions
for 5% Thick Wedge at M, = 1,15 and (a) k = 0.2, (b) k = 0,6
with Pitching Axis at the Apex
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Figure 20, Transonic/Supersonic Pressure Distributions for a Parabolic-Arc
Airfoil with Thickness T = 0,0125 at Mo = 1.2 and k = 0,5 with
Pitching Axes at (a) Leading Edge, (b) Midchord, and (c) Trail-
ing Edge, using Linear Supersonic Steady Flow Input and Local
Linearization Steady Flow Input
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Reduced Frequencies k =0.05 (Circles)
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Figure 25, Pressure Magnitudes of Pitching Thin

Airfoils (T = 0) at Me = 1,0 and at
Reduced Frequencies k = 1,0 (Circles)
and k = 2,5 (Triangles) with Pitching
Center at the Leading Edge
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Figure 30. Comparison of Pressure Distributions for a Six Percent
Parabolic-Arc Airfoil in Nonlinear Sonic Flow (Me = 1.0;
k = 0) at Steady Angle of Attack
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Figure 31, Comparison of the Pressure Distributions of
a Six-Percent Pitching Guderley Airfoil in
Nonlinear Sonic Flow (Mg = 1.,0) at k = 0,05,
using the Sonic Kernel Function (broken lines)
and the Mixed Kernel Function Methods (Solid
Lines)
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as two times that of the thickness ratio, T, and 7 is defined as Q/E for an
airfoil and 6/2 for a finite wedge where t is one-half of the maximum thick-

ness and 3 is the apex angle,

5.1 Computer Program Description

The general inputs to the TDL2D and the TLP2D programs consist of the
given flow parameters and the paneling parameters. The given flow parameters
are the freestream Mach number, My, the reduced frequency, k, and the pitch-
ing axis location, X5; the paneling parameters are the total number of panels
assigned along the chord, the sending point location (for TDL2D only), and
the control point location, Also, the distribution of the panels, fine or
coarse, can be easily tailored in these programs, For nonlinear transonic
flow calculations, the transonic parameters and the steady mean-flow input
must be considered. The coefficients A and B are built in with options of
using Equation (2.11), (2.15), or (2.16); the transonic parameters, A, I, and
B can also be assumed different values, or put to zero individually., These
parameters become functions of the steady mean-flow pressure (see Equa-

tion (5.2)), when the methods are switched to the scheme of local linearization,

The steady flow input is always given by other means, either by other
theories, numerical methods, or by experiment, For example, the steady flow
inputs for the NACA64A006 airfoil in Figures 8 through 13 are based on
Tijdeman and Schippers' measurement (Reference 41), whereas in the supersonic
cases (Figures 19 through 22) and sonic cases (Figures 27 through 31), the
inputs are based on analytical formulas, At any rate, the steady pressure

coefficient CPo is expressed in terms of a polynomial, i.e.,
G = Pt ’ 0<g<1 (5.1)

where € is the 'sending-point' coordinate, N is an integer up to N = 9, Of
course, an's are obtained by applying the curve-fit scheme to the given data,
The Cpo's used for all figures are listed in Appendix C. Thus, the transonic

parameters read




9 r =—cp°.(g)

b= 2 Gy"(E) (5.2)

In the TLP2D code, the parameter aoa’ rather than M, is used as an
indicator of the type of the local flow characteristics, and hence the type
of panel element that should be applied. Given Cno, Equation (5.1),
the calculation scheme is switched to subsonic, sonic, or supersonic type
according to wherever ﬂoa is less than, equal to, or greater than zero, mea-
sured at the midchord (usually the control point) of each element. Such a
local-flow indicator is specially designed for the case of mixed flow, hence
the mixed kernel function procedure, More will be discussed in the sonic

flow section,

5.2 Transonic/Subsonic Results

The in-phase and the out-of-phase pressure distributions (i.e., ACP'
and ACP") for flapping and pitching NACA64A006 airfoils in purely subsonic
flow are presented in Figures 4, 5, 6, and 7. The purpose here is to check
out the TDL2D and the TLP2D codes against the linear theory. It is seen
that the present results are in good agreement with the linear theory and
those by the finite-difference method (References 3, and 42). It should be
remarked that in all these cases, the results obtained using the TDL2D code
are indistinguishable from those in Figures 4 through 7 using the TLP2D code.

Figures 8 through 13 present the transonic/subsonic calculations in the
subcritical regime for NACA64A006 airfoils in pitching and flapping motions.
In these cases, the steady mean-flow inputs, Cpo's, are given by Tijdeman and
Schippers (Reference 41), and are curve-fitted as polynomials (see Appendix C).

Figure 8 compares the linear and the nonlinear results calculated by TDL2D




and TLP2D codes for a pitching airfoil, Figures 9 through 13 show the
nonlinear results based on TDL2D or TLP2D codes for flapping airfoils, It
can be observed that all theoretical methods produce pressure magnitudes
generally larger than the experimental data (Reference 41). Such a differ-
ence could be due to neglecting the boundary layer effects in the analysis.
For detailed discussion on this issue, one is referred to References 14, 19,
and 53, In Figure 11, the present results in phase angles are seen to have
some deviation from the finite-difference results (References 1 and 42) from
{ the leading edge to midchord. In Figures 12 and 13, various results in pres-
? sure magnitudes and phase angles are plotted using the TDL2D code, TLP2D code,
and Ehler's finite-difference method. Again, it is seen that there is some
disagreement between the present results and the experimental data behind
the leading edge. Although the TDL2D result checks well with the TLP2D

result in ACP', considerable difference is seen in the M results, The

cause of this difference is not clear and will be subject to future

investigation.,

Some remarks are in order with regard to our experience in using the
developed codes., First, as pointed out earlier, our results exhibit some
discrepancies in the transonic/subsonic calculations, particularly near the
leading edge. Our experience shows that these are caused mainly by the
leading edge singularity of the steady mean-flow. This type of singularity

actually results from the ill-formulation of the small disturbance theory in

the leading edge region, be it linear or nonlinear, due to the incompatibility
of the equation and the linearized boundary condition. In other words, the
singularities may vary in their 'strengths' in different flow regimes, but once
they are adopted as the steady mean-flow inputs for our transonic parameters

(Equation (5.2)), discrepancies, or even numerical instabilities may occur.

(In particular, the most sensitive parameter of all is the acceleration

parameter, I', which is often very large in the neighborhood of the leading

edge.)
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To attain a stable computation procedure, one is required to keep the
value of [ constant and let it be no greater than order of one in the first
few panels, Then [ resumes its local values at the panel where the true
value of I' is indeed below one., Strictly speaking, this procedure is not
altogether legitimate, In the Addendum, Professor Landahl's general formula-
tion of the phase correction method (Equation L.4) may circumvent such a pro-
cedure, 1In his formulation, the I'-term can be integrated out altogether as
a result of a further delay step of the local linearization application, For
this reason, it is felt that some serious attention must be given to Landahl's

phase-correction method,

Next, we need to describe the ease of application of the TDL2D code and
the TLP2D code. 1In all the calculatiuns using the TDL2D code, we only require
equal spacing panels; normally we set N = 20, regardless of pitching or flap-
ping motion. In the cases of using TLP2D code, more refined panels are required
in the neighborhood of the leading edge and the hinge points, the panel num-
bers ranges N = 23 to N = 33, As the LPP method is a higher moment method
than the DL method (see Section &), the total CPU time for the same case
required using TLP2D code runs usually more than twice of that using TDL2D

code,

5.3 Transonic/Supersonic Results

To check out the LPP method in the supersonic regime, calculations using
the TLP2D code are first performed for several purely supersonic exampies
(Figures 14 through 18), Computed results for pitching flat plates using
TLP2D are compared with Chadwick-Platzer's result using the linearized method
of characteristics (MOC) (Reference 43) in Figures 14 and 15 also, computed
results are compared with Jordon's theoretical result (Reference 44) for in-
phase and out-of-phase pressure distributions in Figure 16, In these fairly
high frequency ranges (k = 0.5 and 0.6), it is seen that the present results
are in good agreement with the other results, Figures 17 and 18 again show
the comparisons of the out-of-phase pressure distributions of the present
method with those obtained by the classical method of Garrick and Rubinow
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(Reference 46), by Brix-Platzer's linearized MOC (Reference 47) and by
Snyder's finite difference method (Reference 45)., Our results are in excel-
lent agreement with the results calculated according to Garrick and Rubinow,
Figures 19 through 22 show the transonic/supersonic calculations in the non-
linear supersonic (or low-supersonic) regime for wedges and for parabolic-
arc airfoils, Using the linear formula (Equation (4.26), Reference 54) for
a wedge (T = 0,05) as steady mean-flow input (see Appendix C), we obtained
the out-of-phase pressures at two different frequencies. The comparisons in
Figure 19 show that our result is in better agreement with Carrier's exact
theory than Chadwick-Platzer's MOC method, Notice that the present calcula-
tion scheme for the wedge case makes no approximations, as the transonic
parameter, A, is constant and ' and p are identically zero, Figure 20 shows
the nonlinear results quite substantially, particularly near the leading
edge. The Cpo's used are based on the linear formula Reference 54) and a
modified linear-fit of Spreiter's nonlinear formula (Equation (15),
Reference 49); again, all the Cpo coefficients can be found in Appendix C,
In Figures 21 and 22, in-phase and out-of-phase pressure distributions for
the same given conditions (as Figure 20) are compared with those obtained
using Chadwick-Platzer's MOC method. Observing from the results in

Figures 19, 21, and 22, we found that, unlike the transonic/subsonic
results, our TLP2D code produces generally lower in pressure magnitudes

than those of Chadwick-Platzer's, However, in their computation procedure,
the steady mean-flow results and the oscillatory flow results are all
self-generated and the former result is truly nonlinear (based on Teipel,
Reference 55). It would be interesting, therefore, to check against these

results by using Teipel's mean-flow input in the TLP2D program,

5.4 Sonic Results

In Section 3, it was shown that the sonic kernel function (Equation (3.25))
is a limiting case of the transonic subsonic kernel function (Equation (3,15))

and of the transonic/supersonic kernel function (Equation (3.22))., Here,
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a numerical study was performed to check out the sonic limit for these
kernel functions, Figure 23 shows that although the kernel functions are
continuous throughout the sonic limit, the LPP method (N = 23 for all cases)
produces oscillatory pressure distributions as Ms approaches one (the

parmeter ¢ approaches infinity)., Such outcomes were found by Jordan (Refer-

ence 44), using the pressure-mode method, and was subsequently discussed,

in terms of the wave mechanism, by Landahl (Reference 21), This then led
Jordan to be in favor of the sonic kernel function when the freestream speed
is in the neighborhood of the sonic regime, However, the objective here is
a rather different one, We attempt to establish a proper mixed kernel func- ;
tion procedure by starting out with a case of sonic flow without shock wave

(Figure 31). Nevertheless, in so doing, one must check out the sonic kernel

function procedure together with the LPP method., This then constitutes
the following calculation results using the sonic-flow kernel functions

(Figures 24 through 30).

Thus, the linear sonic flow calculations are first performed for a
pitching thin airfoil (flat plate) in order to check out the application of
the TDL code at Mo = 1.0, Calculated pressurec magnitudes and phase angles
are compared with those obtained by Stahara and Spreiter (Reference 26) in
Figures 24, 25, and 26, Excellent agreement can be seen for all cases con-
sidered, Figures 27 and 28 present our calculated results for a pitching
Guderley airfoil and a pitching parabolic-arc airfoil; the steady mean-flow
Cpo for both cases are taken from Reference 26 and are curve-fitted in
Appendix C, It is seen that the present results in pressure magnitudes are
generally lower than those by Reference 26 (similar to the finding of our
supersonic pressure magnitude to the MOC method), Also, considerable dif-
ferences in phase angle exist at various reduced frequencies between both
cases, We believe that these differences could be caused by two factors in the
method of approach, First, the unsteady local linearization method by Stahara
and Spreiter really did not include the edge condition, Since their formula-

tion is based on the velocity potential, to cope with such a condition would

require the Schwartzchild iterative procedure., Second, in their analysis




(Reference 26), the transonic parameters appeared in the kernel potential are
all expressed in terms of 'receiving point' x rather than the 'source-point'
€. This amounts to ignoring the higher-order flow influences due to the
panels upstream, Figure 29 shows the comparison of the results between

using the full equation (2,11), and using the approximate equation, (2.15).
It is seen that the deviation in pressure distribution is slight when the

reduced frequency is low, Figure 30 exhibits a comparison of all previous
sonic methods with the present LPP method for a pitching parabolic-arc air-
foil (T = 0.06) at a constant angle of attack. Instead of using the steady
mean- flow Cp° given in Appendix C, we adopted Dowell's value (ag = 0.45 and
bp = 0.585, Reference 23), which amounts to A = 0.585 and I' = 0.45 for our

inputs. Consequently, the lifting pressure plot shows that,once again, our

value is of the lowest magnitude, but it follows the same behavior of Goodman's

theoretical distribution,

Finally, in Figure 31, the mixed kermel function procedure is tested,
using a nonlinear sonic flow example., For simplicity, the Guderley airfoil
is chosen, in which the sonic point is located exactly at 40 percent chord.
Altogether, 33 panel elements are employed, with 15 equal-space elements
(5 percent chord each), four compact elements (occupying 5 percent chord) at
the leading edge and 14 compact elements (occupying 10 percent chord) in the
neighborhood of the sonic point. In fact, the panel width is based on the
criterion that each panel width be restricted by Ax < m/4 |c| . While the
transonic/subsonic kernel function (Equation (3.15)) is applied to the ele-

ments throughout the whole airfoil, the transonic/supersonic kernel function

(Equation (3.22)) is applied only to those downstream of the sonic point. At
the sonic point, which is situated between subsonic and supersonic panels, the
nonlinear sonic kernel function (Equation (3.25)) is used. The calculated
result is not altogether satisfactory, It is seen that MKF results follow

closely to the ones by the sonic kernel function method, but that cusps occur

in these results at the sonic point, At this stage of the MKF development,

it is not clear whether the sonic cusp is due to an erroneous kernel func- ’
tion evaluation or due to an inappropriate paneling scheme in the neighborhood

of the sonic point, Future investigation on this problem is mandatory for the

development of the MKF method.
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SECTION 6

CONCLUSIONS

A transonic kernel function method for unsteady flow calculations has
been developed. The basic formulation of the transonic acceleration poten-
tial equation was derived and its basic solutiens in two- and three-dimensional
subsonic/transcnic/supersonic flow regimes were obtained. Hence, the two-
dimensional transonic/subsonic, transonic/supersonic, and sonic kernel func-
tions were then established. To solve for the downwash integral equation,
two discrete element methods were introduced; these are the Doublet Lattice
method and the Linear Pressure Panel method. We realized that the former
method is only restricted to the transonic/subsonic (or subcritical and purely
subsonic) flow regime, while the latter method has the unified feature, if the
control point is properly chosen, for subsonic/transonic/supersonic flow cal-
culations, although the calculation scheme is more time-consuming than the

former,

To demonstrate the transonic LPP method, numerical examples were pre-
sented for simple airfoil geometries in pitching motions for all flow regimes.
For thin airfoil cases (i.e., for purely subsonic/sonic/supersonic cases),
excellent agreements were found with the analytical results based on previous
classical theories. For transonic/subsonic cases, the pressure magnitude is
found to be generally larger than other results, while for transonic/supersonic
and nonlinear sonic cases, it is found to be lower than the results of other
theories, Numerical studies revealed that discrepancies and sometimes even
numerical divergence in the present transonic/subsonic calculation (e.g., Fig-
ures 10 and 11) are largely attributed to the drastic variation of the tran-
sonic acceleration parameters By and ' in the neighborhood of the leading edge.
Such discrepancies, in principle, can be greatly improved, however, if one
adopts Landahl's general formulation of phase correction method (see Equa<
tions (L,1) and (L.4) of the Addendum), Phase angles can thus be corrected
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accordingly; however, this would amount to developing a scheme in acoustic

ray tracing,

sonic flow case,

Lastly, the proposed MKF procedure is applied to a nonlinear

Close agreements are seen in comparing the MKF results

with the nonlinear sonic kernel function results except at the sonic point,

It is not clear that what causes the undesirable cusp at the sonic point and

how to

smoothitout at this time.

The present study leads to the following concluding remarks,

1'

We have demoustrated that the combination of the transonic kernel
function method with a properly chosen discrete element method such
as the LPP method is a suitable method for unified treatment of

unsteady transonic flow calculations,

Our calculations among other unsteady flow methods assure thks: dis-
tinctive departure of the nonlinear results from the linear ones in

all transonic flow regimes (not to mention the supercritical regime),

The present study indeed paves the road for the MKF method develop-

ment in the supercritical regime. It also opens up ways for the

future development of a three-dimensional LPP method.

In view of the encouraging results obtained by the present transonic LPP

method, we recommend the following projects

for further development and

extension of the present work.

1,

Improve the LPP method algorithm so that the TLP2D code can be made
equally cost-effective as the TDL2D code.

Generalize the TLP2D code to include three degrees of freedom, i.e.,

pitching, plunging, and flapping in all flow regimes,

Incorporate Landahl's general formulation with phase corrections into
our TLP2D code,

Improve the MKF procedure for smoothed sonic flow cases and develop
the MKF method so that the TLP2D code can cope with supercritical
flow regime, as this can be considered as the most important step in

the MKF method, In this regard, two steps a.e suggested.
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a, Computation of the Eckhaus-Landahl flow model (see Appendix B).

‘ b. Computation of the oscillatory supercritical flow with embedded
3

E shock waves,




ADDENDUM

KERNEL-FUNCTION METHOD FOR TRANSONIC UNSTEADY FLOW

by

M.T. Landahl
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The basic differential equation for the acceleration potential, ¥, reads

(corrected and valid for low frequencies only, two-dimensional case considered)

Bo®¥xx + ¥zz + Alx + By = 0 (L.1)
where
(8% = B® - M2y + 1)ox
A= -2ikMe (1 + 4y) - 2 [(y + 1) - Bo(y - 1)Jéxx
* B = Ma”[K2 - (y + 1)éxxy_-2ikydyy]
i B’ = 1 - Mo

neglected. Thus, the differences between this result and the earlier one by

D, Liu are unimportant,

To find an approximate solution valid for the receding wave portion we

set

¥ = 0¥ (L.2)

and choose a(x) such that the equation for § has only 0(1) coefficients. One

finds the following equation for ¢, :

BoVaxx + Vazz + Mhax + By = 0 (L.3)
where

A = A+ 28%

By = B+ Bo%a’! + B°(a’)? + aa

and the prime superscript is defined as a total differentiation, i.e,,
d

o"'—_"—.n

() =5 ().




We set f = By°a. Then, with B° = g% - M (y + 1) > We have
A = -21kMs° + 2(B%)’ + 2f
= M2 f ’
By = Ma"[K° - (y + 1)¢ - 2ikyp ]+ ;8- [-2ikMs® + 2(82) 7

+ aoa(;o%)’ + -Biia

For the receding wave, we anticipate that a' = 0(f, °), i.e., that f = 0(1).
Hence, in order for the coefficient B, to be finite in the limit By® = 0 we

must have

“2ikM? + (Bo2) + £=0

or
. 21kMe”
= - o d
o n(Bp°) I - X
With this substitution we may set
2
=t
V=Bt (L.4)
where §; 1is one solution of the equation
Bo®¥axx + 2ikMg Yax + ¥izz + Ma[K° - 2ikypyxl¥y = O (L.5)

The solution of this equation may be expected to exhibit slow variations
with respect to x, since the shortwave component should be described by the
phase factor exp {f(21kMoa/ﬂ°a)dx}. Therefore, the first term may be

78




neglected, Also, in the last term, 2iky¢xx could be neglected compared to
k® (for low frequencies, both k® and 2iky¢xyx may be neglected). Note the
plus sign in front of the {; x-term., Compare this with Landahl's result in
Symposium Transsonicuum I (Reference 56). The result for § thus obtained is
only valid for the receding-wave portion. For the advancing-wave portion,

there should be no factor 8472,

We shall now consider a recipe for constructing a uniformly valid approx-
imation for the pressure kernel starting from the local linearization result,
i.e., the solution obtained by assuming a uniform flow of Mach number equal
to the value at the sonic point, Denote this solution by superscript L. The
kernel function is obtained from the doublet solution §4, and from the above,

one can prepare the following approximation:

eyt V) (L) i(8 - o(L))

Ya = < oy Va

where - is the group velocity of acoustic waves having wave front at an
angle, v, to the x-axis (see Figure L1), ¢or the value at the source point,
8, the phase angle of the acoustic waves along a particular ray connecting

2l

source and field points, and , the phase of the local solution,

This approximate is consistent with the acoustic ray theory (see

Landahl's article in Symposium Transsonicuum II, Reference 53).

z
i
Cn
3 LT ; + U
-
v T=(+007 49,7
> X
2.4
Figure L1, Group Velo- " +n=a-(1+ ¢x)sinv + ¢z cosv
city of
Acoustic
Waves

where a is the speed of sound.
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For the two-dimensional case, only the angles v = n/2 and -m/2 appear, so

for the receding wave
P ETIE S DR TR BED SRR W
(Note: % =1-M =1-(1+0)%/a° =82 - M2(y +1)¢)
hence
a-(1+¢) =a(a+1+6 )7 [B2 - M3y +1)s]
~ 3182 - M2(y + o] = 38

The phase angle may easily be calculated in the two-dimensional case. During

the time 'dt' the acoustic wave propagates a distance dx = cndt and hence

X0 d X0 &
6 =k -—-ij- =k
\.rx Cn(g ‘rx eog

is the phase shift between the source point, Xy, and a field point, x.

In the three-dimensional case, the calculation of the phase shift
becomes more complicated., It will then be necessary to trace the acoustic
rays emanating from each source point, and the wave front angles along the

way, In the ordinary linearized case, the rays are straight lines, but in

/
\\ / ¥ —vave front

—p X
JFigure L2, Rays and Wave Fronts
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the transonic case they would be curved, particularly for the receding wave
portions, 1 suggest that a ray tracing program be worked out so that one
can see how rays will behave for a particular three-dimensional wing case,
Possibly, the ray curvature may be small so that one could approximate the
ray path by a straight line between the source and the field point, in which

case the determination of the phase angle simplifies considerably,

Going back to the two-dimensional case, the kernel is obtained from the

integral

X
K = lim [I e-ik(x ¥ XI)*dz(XI)dx1}

24 -»
£ B ikl e m)  SHe .Y, ale0e) - "))
:ig {I-a : ; CalXy Ya, {xg e S s

For small k, which is the main concern here, the main phase variation comes
from the term exp(i8), the phase variation in the linear solution being can-

celled by the term exp(-iG(L)). Now, from the receding-wave solution

& . 8w B
ax-Zk/Bo cy

Hence, integration by parts of the above approximate kernel gives

(o (L)
R iin {ﬁ *dz(L)ei(e -0')

240

- C
Ng

X (L)
f o ik(x - xl)'dz(L)(xl)ei[G(xl) -0 (x,)]dxl}




Of the two terms, the first one would be the most important ome for low
values of k. If we now compare with the kernel obtained for the purely

linear case

o ug (L) T Lik(x - %), (L)
e Cng J.u® Vg, 9l

we find that a good approximation should be obtained by taking the local
linearized kernel function for the local Mach number at the source point

and correcting it for the phase angle, Thus,

(L)
(L) i(8 - 8'7)
Kerans " & ®

where 6 and B(L) refer to phase angles between source and field point loca-

tions. Hence, the correction involves only the computation of phase shifts

using ray theory.
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APPENDIX A

EVALUATIONS OF ADj 1




In order to carry out the integrations for D

51 (denoted by ADji) such as
Equations (4.19), (4.20), and (4.21), it is necessary to first curve-fit the
analytical function F‘m(xj - €)(m = 0,1,2), as shown in Equations (4,22) and
(4.23) for the subsonic case. WNotice that all the coefficients used (i.e.,

A, B, and C) in Fi are not those defined in Equations (2.11), (2.15), and (2,16)
in the text; also, 61 in the subsequent formulas should be distinguished from

Dirac's delta function, §.

As the subsonic flow expression was given in Equations (4.22) and (4.23),
we shall only present the sonic-flow formula and the supersonic-flow formula

for ADji'

e Sonic Elements

Fo(xj -8 =/xj - gKo(xj -£) y X, 2 §
Fitting F, as a parabola, we write

Fo(x, - §) = A(x, - §)® +B(x, - §) +C

] b j

AD 15K(a'7/2 - xj7/2) + 21(aA - E)(aSIQ - X 5/2)

PR g
3 1058, m j

(A.1)
+ 35(aB - C)(a%/2 . xjsla) + 105ac(al’® - le"’)}

where

a=x

et

-(8; - 8i.1) €isa SE =§;, x
8 = for

y

Eiva - &4 §i‘§‘§1+1.xj2§1+1

U TR P AR

Ry




§i41

Figure Al, Sonic Element

= 1/2(8i1+ §i) = xi.,,

&, = 73= V(&1 - £§1-1)/2 [Folxgoy- 81-1) + 4Fo(0)]

= (81 + €11 )/2 = xq,

M, = 2= V(& - €)/2 [2Fe(xs - &) + 350 (0)]

Si41 S

Figure A2, Sonic Elements Showing
Receiving Points




e Supersonic Elements

rx(x-:)-qxj-;)-‘%a(x-z) x

] ]

here, 8 is Dirac's delta function. For xJ 2 51,

aD

(81 - §i-1) g1 + h-x)] s

(
= (B - 80+ am g - 3
For x5 2 €i+,

ADji _!ﬁ%ﬁl [F;(xj - §1) + 2R (xj - i.*zﬁﬁ)]

P

S K

(A.5)

g1 §i+l s

Figure A3, Supersonic Figure A4, Supersonic Element
Element Showing Receiving Points

For x, = (8i.q4 + §4)/2 = xiy,

ab,; = = ;85 1) [P (xg-y = §1-1) + 2R (0)]

For xj = (8 + 8141)/2 = x4, (A.6)

(Siw - §1) [S5Fy (xg - &) + 4Fy (0)] (A.7)

&, = 48T
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APPENDIX B

KERNEL FUNCTION FORMULATION ACCORDING TO ECKHAUS-LANDAHL'S
SHOCK-JUMP MODEL




>

AD=A0B0 227 NORTHROP CORP HAWTHORNE CA AIRCRAFT GROUP F/6 20/4 <
TRANSONIC KERNEL FUNCTION METHOD FOR UNSTEADY FLOW CALCULATIONS==ETC(U)
MAY 79 D D LIUr W S PI+ M T LANDAHL F33615-70-c-3202

UNCLASSIFIED NOR=79=52 AFFDL=TR=79=-3085

END
DATE
FILMED
2 80

.




B —

Jllo & w
e B
v L Im'__
b

o e
I8
1E22 e e




The oscillatory shock-jump relation based on Eckhaus-Landahl's

: one-dimensional model (Reference 21) can be written, in terms of the velocity
E potential, @, as

epx"' - iog = -9 - o9 (B.1)

a = Z%f o kma
1-8xhH 1 - ue

Notice that the LHS of Equation (B.l) represents the downstream condition
immediately behind the shock wave, whereas the RHS represents the upstream
condition immediately ahead of it. For simplicity, we let the local Mach

numbers in Regions 1 and 2 be a uniform supersonic Mach number and a uniform

subsonic Mach number. The mean shock jump is, of course, governed by the

Prantdl shock relation. Let the shock point be xg, and hence the control

- +
points in the panel '-' and '+' (see Figure Bl) are denoted as x_ and x_ .

Hence, M_ = M, and M(xs+) =M.

Mean shock

v

Region 1 Region 2
M >1 M <1

R

M T, [
= e s s -—=;==;-::7>-----1K\_
’ 5 Hinge Aileron

point

Figure Bl., Eckhaus-Landahl Model Showing Notations
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According to the usual linearized definition of acceleration potential
(i.e., dropping the ¢, terms in Equation (2.8)), Equation (B.1l) can be

recast in the following form, after a differentation in the z-direction, i,e.,
+ + - -
v, -ik+a)p " = -y, +i(k-alp (B.2)
Now, if we define an operator Lg as

Lo(:]J=e " ¢« lim= [-] (B.3)
20

then Ly can be applied to Equation (B.2) and it yields
+_ o+, + 1 -y - + -
K' = K(X. ',0) = ==+ {(a - KK (x.,0) - i(Lol¥, 1+ Loly, 1)} (B.4)

where

X sx =8 ¢ < x

+ +
Xs o e 6 L>€E> Xg

Aoy 2 - 32 X i -1kX
K(X,0) = Ky (X_5,0) = ;:uot-a; agett® kX0 dxo * €

The last two terms in Equation (B,4) can be derived from Equations (3.8) and
(3.9), i.e.,

[0 1o (389

i .c.me-i(K.&'k)Xs.’. . H;‘a’(x,x,"')/x,* (B.5)

x=x"
S




Loy, 1= Lo[§ﬂ| - (B.6)

X = x.
~1 (kM +HOX T _ L 1 _
-Ce e o . [H(X. )kH‘J;(K;X. )/X. - '6'()(. )Jo(ﬂ‘x’ )]
where
G = %:—‘ : m o= M? -

in

@ " F 3 8° =1 - Mg

Ky = kM /mg
Kg = kHJ'.

Consequently, when the condition at x = x: is obtained, the integrated poten-

tial in Region 2 can be written as

+
X ikx 1kX
Pm(X,2) = e'ikx-f e ¥dxo + e S o(x +.z) (B.7)
® 2y .
s

s
Next, let us introduce another operator, L:,[-] = lim -g—!' [-], and apply this

operator to Equation (B,7)., After some rearrangement, we obtain the kernel

function formula in Region 2, i,e.,

2 + -ik(x-x,+)
xe(x,o) = Kq(X,0) - [x.(x. y0) - ] e (B.8)

Notice that Kg in Equation (B.8) is the usual subsonic kernel function in

the absence of the shock wave,
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For the application of the above kernel function formulation, we select
the aileron-buzz model proposed by Eckhaus (Reference 52), see Figure Bl,
Thus, the shock wave is placed ahead of the hinge point, As we have assumed
that the mean shock wave is one-dimensional, which is infinite in extent,
the acoustic waves generated by the oscillating aileron cannot diffract
toward Region 1 upstream, (Such a wave diffraction should be accounted for
in the two-dimensional case, as it was shown by Tijdeman, Reference 14,) All
the upstream influences on Region 2 from the supersonic side is taken care of
by the shock-jump condition, Hence, in terms of the present panel-method,
the above consideration amounts to no further influence of the panels betwen
Region 1 and Region 2 other than the shock-jump kernel formula relating the

adjacent panels '-' and '+',

For a calculation example, we plan to compute the stability boundary
for the hinge moment (see Figure 3, Reference 52), Since our formulation is
not restricted to low-frequency computation, our result may then be compared

with Lambourne's experimental data (k below 0.1).

Although Eckhaus' formulation is fairly general in the frequency range,
his calculation scheme is subject to an approximation, which restricts the
frequency to a higher range than 0.1, Furthermore, as the present MKF
formulation is completely flexible in the steady flow input, little problem
is expected to generalize the aileron-buzz model to one with a nonuniform
mean flow, Clearly, studying this problem will certainly better our under-
standing of the mixed kernel function procedure leading to a general scheme

for the supercritical flow computations.

Finally, it should be pointed out that the present shock-jump kernel
function formulation only amounts to one which satisfies the shock jump
condition, Eq. (B.1l), at the foot of the shock, i.e., at 2= 0. As the
assumed mean shock wave is infinite in extent, Eq. (B.1) should be satisfied
formally along the shock in z-direction. Landahl (Reference 57) proposed to use
Fourier Transform in obtaining a general two-dimensional condition for a
pulsating source and has obtained solutions in the upstream and the down-
stream sides of the shock wave in the transformed plane. Further investi-

gations along this line are needed.
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