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SECTION 1

INTR ODUCTION

Current interests in aeroelastic problems in the transonic range demand

vi ab le  me thods for unstead y flow calculations . At present , there are two

classes of numerical me thods in progress: first , computation based on flow

field ‘meshes ’ or ‘elements ’, and second , computation based on wing p lanfo rm

elements . The method in the first class , known as the ‘computational method ’,

r ” l i e s mainly on the finite difference scheme (References 1 through 6) and on

the finite element scheme (Reference 7). Althoug h these me thods in many

. ases provide accurate details of the transonic flow field , their app lica-

tions to the three-dimensional flutter calculation appear to be still too

costl y in practic e . Besides , there are some frequency restrictions in these

lIlt I I I t ~ I I S (lU ’~ to .1 t lit i t R i t I ion S imp 11 fl -~ L iou (e .g. , Re ference 5) or require—

muil t s In conve, gt nce (‘ . ~~~. , Reference 1).

The me thods  i n  t h e  second c lass  are based on the l i f t i n g - s u r f a c e  theory

t o r m u l a ~~j on . In terms of the paneling scheme , these methods require consid-

era b ly fewer elements and hence .ii - c potentiall y more c o s t — e f f e c t i v e .

Ever since K~issner (Reference 8~ formulated the classical lifting surface

theory, there has been a long-standin g research effort devo ted to the develop-

ment of the kerne l function methods (e.g., Reference 9). in the last dccsde ,

th i s method was advanced and adopted by various aircraft industries as a

conunon pra t i ut for flu I t ci a I culat lon purposes (Re ference 10). As the

method is based on :i pressure formulntion , it has the advantage tha t the cal-

u l at ion domain can safely exclude the upstream and the wake reg imes wi thout

m y I ocs  o f  ~ t ui , r i  ii ty (scc Fi gure 1). Moreover , the method is proven to be

t i ex ib l e in incorpor ating various modes Into the flut t e r calculation scheme in

- ‘  t a t  I v  wi d e  f r equency  r ange . The scope of this met hod , however , has yet to

- p  b red f u r  the r In two i m p o r t  a n t  a r e a s . i i  i- st , the method was 1 i i gel y

I 

- 5~~~~~~~~~--5~~~~~-5- ~~~~~—- - - - -~~~~ 
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re st i icted to the linet rl ied subsonic and supersonic  f low regimes , whereas

i t s  app lication In the transonic flow regime only until recently was uncer-

tain. Second , the app lications of the kerne l function formulation have been

successfull y combined with the use of the pressure-mode method (References II

and I ) ,  which , however , lacks the flexible and versatile feature of that of

the pa nel method s , e.g., the doublet lattice (DL) scheme (Reference 13).

A l t h o ug h the p ressure-mode method has been worked out  in the p u r e l y

subson ic  and supersonic reg imes , the panel method has been I tmi ted to the

subsonic  reg ime and i t s  sup er soni c u n s t e a d y cou n t e r p a r t  has never been com-

p le te l y worked ou t .  In recent years , the kernel  function method was extende d

to the transonic range by Tijdeman and Zwaan (Reference 14) ,  and by

A . Cunning ham (Reference 15) . These me thod s are , however , based on the mod-

i f  i c at io n  of the  c lass i cal pu re ly  subsonic and/or  the pu re ly  supe r son ic  ker-

nd f unc t ions  in which the s tead y flow nonuni formity was not formally con-

s idered.  Some good results were produced by these methods as a r e s u l t  of the

partial inclusion of the receding-wave e f f e c t s , but  the fo rma l express ions  of

the t ra nsonic kerne l func t ions  and the c a l c u la t i o n  procedures  remain to be

e s t a b l i s h e d .

More r e c e n t l y ,  Ll u and his  a s s o ci at ’s  (Re ferences  lo  th roug h 19 ) have

proposed a Mixed Kernel  Function (MKF) method for unsteady transonic flow

a l c u l a t i o n s .  In these publications , mixed procedures of various types of

• kerne l f u n c t i o n s  In combination wi th the pane l method were proposed . The

method was aimed a t  a u n i f i e d  three-dimensional  approach , whic h would  b r i d g e

the classic al su bsonic and supersonic lifting surface me thods through the

t r a n s o nic  regime , inc l u d i n g  the e f f e c t  of the o s c i l l a t o r s ’  shock wave . The

onl y p r o v i s i o n  ol  the  MKF approach is tha t the mean f l o w  s t r u c t u r e  in the

pr o x i m i t y  a t  the p l a n f o rm mus t  be supp l i ed  by either experiment s or other

Tnt’ ~i IT S of  compu ta  t i ons .

To t a c k l e  the th ree -d imens iona l  p rob lem as such , howe ver , r e q u i r e s  a

f i r m  unde r s t and ing  of the bas ic  MKF p rocedure.  Hence , i t  is  the purpose of

this report to Investi ga te the bas ic  issues r e l a t e d  to the MKF procedure for

t~o~-dimens iona1 flow. The present work cons is t s  of two goals . On one hand ,

the transonic acceleration po tential equation is derived and the transonic

—• ---

~
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kernel functions in various flow regions are established . The formulation

of the MKF method is then followed by the numerical evaluations of these

transonic kernel functions and the application of the local linearization

procedure to these functions. On the other hand , thorough investigations of

various discre te-element types of paneling schemes are required . These
amount to selecting a promising candidate from the DL scheme, the Constant

Pressure Panel (CPP) scheme , and the Linear Pressure Panel (LPP) scheme, for
a unified paneling scheme applicable throughout the regimes of subsonic ,

transonic, and supersonic flows. It is considered a challenging task, as no

such unified paneling scheme has been found workable for unsteady flow cal-

cu la t ions  in the past . In later  sections , it is demonstrated tha t our LPP

scheme is indeed a unified method suitable for all linearized flow regimes.

The success of this scheme really depends on the correct choice of the con-

— trol point location. Then the local linearization procedure is combined

with the LPP scheme to account for the nonuniformi ty of the steady mean flow
(it is called ‘nonlinear ’ flow hereafter~ spec i f icall y, we refer to it as

transonic/subsonic flow, transonic/supersonic flow, and nonlinear sonic flow).

To demonstrate the transonic LPP method , calculation examples are pre-

sented for pitching and flapping NACA6AAOO6 a i r fo i l s  in subsonic flow , for

the pi tching Cuderley airfoil and parabolic-arc airfoils in sonic flow, and

for the pitching wedges and parabolic-arc airfoils in supersonic flow. Both

purely linearized flow results and nonlinear results were compared wi th those

calculated by various methods. A MKF procedu re was perfo rmed on a Guder ley
air fo i l for the case o f shockless smoo thed sonic fl ow. Also, based on the

proposed MKF concept , the o sc i l l a t o ry  shock pa tch ing scheme was der ived for
the case of Eckhaus-Landahl ’ s a i leron buzz model. F ina l ly ,  assessments of

and reconinendations for the present me thod are given.

4
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SECTION 2

BASIC FOR)IIJ LATION

The total time-dependent velocity potential ?~(x ,y,z,t) can be written as

U~~ + ~~~~ (2.1)

where the barred symbols indica te  the true physical  q u a n t i t i e s  and U, being

the freestreaun velocity. The per tu rbed potential I is normalized by (U,~)

and is split into a steady and unsteady component, i.e.,

•(x ,y, z , t )  - $(x,y,z) + ~(x ,y,z,t) (2.2)

where (x ,y , z , t )  = 
~~~ ~~~ /~, ~ U,/~~) and~~ is the phys ica l  chord length .

For transonic flow, the first term, $, is governed by the steady-flow non-
linear small disturbance equation (e.g., Reference 20) and the second term,

is governed by the oscillating flow equation (e.g., Reference 21).

( 2 . 3 )

where

~~~~~~~~~ +~~~~~
—

~y
2 

~z
2

= ( I  - M,
2) .~~~.- .  - 21 kN,

a 
-
~~~~~ + k

2M,
2

—ik t (2.4)
cp= ~~3e

5
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and 
°x ~~~ and E ~ + l)M,

a. The parameters N,, ‘q, and k are the

freestreaut Mach number , the specific heat ratio of the gas , and the reduced

frequency (defined as k — u~/ (2U,), where ~ is the chord length, and w is the
circular frequency of oscillation).

2.1 Transonic Accelera tion Po tential

The acceleration potential, !, is rela ted to the fluid pressure and
densi ty as

— ..J’ ~2 + F(t) (2.5)

where P(t) is some function of time. According to Bernoull i’s equa tion, Y
can be written in terms of the total potential , CX ~~~ 1(U

,~~~
) ) ,  i.e.,

— + (vC~ VC1 - 1) 12 (2.6)

Substituting Equations (2.1) and (2.2) into Equations (2.5) and (2.6) and

keeping terms of comparable order to those in Equation (2.3), we ob tain

‘~~~
,x +t

~t + + ,x~~x
1 (2.7)

The acceleration potential can be split into two components, i.e.,

ikt (2.8)

where

f.
Is  — A l  , A

0 0 0

[ $ - A ~ , A s i k + ( 1 + l
~
)
~~~

4 
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It is seen tha t the transonic acceleration potential , 5, con tains an addi tional

term , •x~
tO the one coninonly used by the purely subsonic and supersonic flow

analysis.

2.2 The Transonic Acceleration Potential Equations

Apply ing opera tor A to Equation (2 . 3), making use of Equation (2.8), and

keeping only the lowest order terms result in

os = v,t($~$~
)
~ 

+ ~~~~ + ik(+~ cp
~
)
~
] + tP,~ DO,~ (2.9)

Furthermore, if we assume that is a one-dimensiona l function depending

— 
only on x, the last term in Equation (2.9) becomes ~~~~~ After some rear-

ranging , Equation (2.9) can be further simpli fied to the follow ing fo rm , i.e.,

+ tyy + + A$
~ 
+ B$ - -ikç F (2.10)

where

A - -21’ - ik(2M,,9 + X)

B — k~ [N,~ - (y + 2) X0] - + 2 ik1’0 
(2 • ii)

F + k5(y + 2)X0 - 2ikF0

Parameters X, x0, 1’, 1’~, ~, and I~o 
are all steady mean-flow coefficients

def ined as

— — v,u0/(VM,,2 + I) (2.12) 
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It is seen that Equation (2.10) contains two dependent variables , 5
and ~, as rel ated by Eq uation (2 .8) .  Hence , Equation (2.10) is in essence
an integro-dtfferenttal equation in terms of $ only. To simplify the equa-
tion, we assume th. mean flow is accelerated at a fairly slow rate such that
r0 .‘O(k) and e— O (k5), the right -hand side of Equation (2.11) can thu s be
ignored up to the third order in k, i.e.,

Bo
5$,~~~+ $ yy + $ zz + A $ x + B $ uI O (2.13)

In the Addendum to this report , Landahi derived a transonic acceleration

— potential equation (Equation (L.1))wttha more general approach in which he
- 

- 
also recognized the acceleration potentia l obtained in Equation (2.8). Start-

ing out with th. full potential equation, he arrive d at a slightly different
low— frequency oscillatory equation trots ours (Equations (2.13) and (2.11)).

It turns out that the difference lies only in the coefficients A and B;
Landahi’s expressions read

A — -21’ - ik(2M,,~ - (.~ : 1 ) X)  + 2B,
5(y -

B • k5M,~ - - 2iLvyF0 (2.14)

When Equation (2.14) is eolnpared with Equation (‘.11), it is saen that
the difference is insignificant between the coefficients ‘A’, but there is

some disagreement be tween Landahl ’s and our coefficie nt ‘B’ . The latte r dif-

ference could be a result of our approximation in starting with the small dis-

tur bance equation . However, further investigations on this issue are needed.

Next, le t us examine the coefficients, A and B, represented by other
theories , Previous work in References 14, 15 , and 21 all suggested replacing
the fr.•str.atn Mach number by a local Mach number in the DL method , the

press ure-mode method or the sonic box method. We caution that such a replace -

mint only partially recovers the mean-flow nonuniformi ty , and that some terms

were lef t out. If one consistently ignores the term in the app roxi-
mations, th. expressions in the previous work then differ from Equation (2.11)

_ I
_ _ _ _ _ _
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by a complex coefficient 21’ - ikX in A and a complex coefficient k5(2A + X0)

+ 0~~ - 2ikr0 in B. This implies that a part of the mean-flow damping mecha-

nism was ignored. In our earlier work (Reference 16) and that of Dowell (Ref-
erence 23), both proposed to employ the velocity potential equation (Equa-

tion (2.3)) as the governing equation for 5. In this case, the differences
from Equations (2.11) are a complex coefficient, 1’ + ikX in A and a complex

coefficien t k3(X + )~ ) + ~ - 2ikl’ in B. With reference to Equation (Ba) of

our AGARD paper (Reference 17), it is seen tha t the coeff icien t A remains
unchanged bu t the coeff icien t B d i f fe rs  by a complex coefficient, k’)c~ + I~o -

&+2ik1’. Clearly, the additional terms are generated as a result of intro-

ducing the transonic acceleration potential.

In the subsequen t ca lcula tion scheme, we have set up a comple tel y general
inpu t for the coeff icien ts A and B, so tha t one can easily assess various
degrees of approxima tion by judging from the numerical results as well.
Other than Equation (2.11), we often used , in the la tter calcula tion, the
following two sets of coefficients for expedient calculations. The first set

is the ACARD paper formulation in which only purely lineartz~ed accelera tion
potential operator was used, resul ting

A = -2( 1 ’+ ikM,
2)- ikx

B k2M,
2 (2.15)

The second set is the further simplification of the above, i.e.,

B — k2M,’ (2.16)

Clearly, when 1’ is a cons tan t, Equation (2.16) is reduced to Oswatitsch and

Maeder ’s parabolic approximation (References 24 and 25).

9
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SECTION 3

DEVELOPMENT OF TRANSONIC KERNEL F1JNCTION

To derive the kernel function , it is necessary to integrate Equation (2.8)

along the mean flow direction. Hence , the integrated transonic velocity
po tent ia l  in the subsonic freestreaxn can be expressed in terms of $ as

cp = e~~~~~~
)
J
”
~ 1 + $~ 0 

e~~~~~
Co) dxo (3.1)

where

x
c’ dx

f(x)=j 
1 + 1  

a n d X = x - ~~
x

— Estab l i sh ing  the kernel function by the above equation results in a

rather complicated formulation. However, if we restrict the analysis in the

low frequency range, namely 0(k3, k9 l~
), Equa tion (3. 1) can be approximated 

I
S

to yield the commonly-used kernel function, i.e.,

K ( X ,T ,O) = u r n  -
~~~

— J’ e1’~~~$ ( x 0,Y,z)dx0 e 1
~~ (3 .2)

Z40 ~ Z

where X = x - ~, Y = y - 1~, and subscripts m = o, 1 and 2 representing the

sonic, supersonic , and subson ic cases, respectively.

3.1 Bas ic Solu tions

Basic solu tions, $~ should sa tisf y Equation (2.13). There are several

ways to derive approxima te solutions from Equation (2.13) , depend ing on the

11
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stage at which we apply the primary step of the local linearization procedure

(Reference 26), that is, to assume the parameters ?., 1’, and ~i. to be constants.

The simplest form can be obtained by assuming constan t coefficients of Equa-

tion (2.13) as the start. The three-dimensional basic solutions have been

derive d previously in Reference 18 (see Equations (lOa), (lob), and (b c));

they read

c~
$0 — e , X � 0, (3.3)

for sonic flow; and

= Cie
_
~~

X
cosh(/~~R)IR , X � B ~r, (3.4)

for transonic/supersonic flow; and

= c~e~~ ’~ 
+ A

~
R/R , for all X , (3.5)

for transonic/subsonic flow,

where

A0 = B/A

A1 = A f 2~~~

A5 = -(A2 - 4B0
2B)115/2~~

2

P. — (X5 +

= + z2 (3.6) 
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and C0, C1, and C~ are the associated cons tan ts. For the case of
two-dimensional flow, which is the case considered , the basic solutions can
be obtained from solving the two-dimensional version of Equation (2.13) or
taking the in tegral transfo rm of Equations (3.3) through (3.5) in the spanwise
direc tion, i.e., the y-direction. These solutions read

$0 e~~~
°
~~~~~

’
~~ , X �O , (3. 7)

for sonic flow

— c1e~~”~J0(oR) , X � Bz (3.8)

= 0, o therwise,

for transonic/supersonic flow

= ~~~e
i
~~~

)C
I~~~

2)
(aR) , for all X, (3.9)

for transonic/subsonjc flow.

Where J0 and IL~~~ are the zeroth order Bessel function and the zero th-order

Hankel’ s func tion of the second kind, respectively; both functions contain
complex arguments, namel y the complex parameters, a.

The complex argumen ts read

iA iAa0 2
20o 25b2

‘no2 
— 

~~~~~~~ (3.10)
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‘no

(3.11)

for transonic/supersonic flow,and

x

(3.12)
X = ~~~~~~~~~~~~~~A

2

for  transonic/ subsonic f low; the constants C0, c1, and c5 read

= — (3 .13)

ca - - . ~ i

It should be noted that the sonic solution Equation (3. 7) can also be

derived as a limi ting case of the transonic/supersonic basic solution , Equa-

tion (3.8), and that of the transonic/subsonic basic solution , Equa tion (3.9).
When we let 80

2or n~
2 app roach zero , and meanwhile keep ing X nonvanish ing in

t he la t ter equ a t ions , it can be shown that bo th expressions lead to the sonic

solut ion by means of asymp totic expansions of the Bessel function and the

Hankel function for the large argument aR. Also , we note that these basic

16 
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solutions (Equations (5 .7) through (3.9)) contain the purel y sonic/supersonic/

subsonic bas ic  solutions (i.e., the linear solutions) as special cases.

I ndeed , when the t ransonic  parameters  1’, X , and ~ are put  to zero , the sonic
solution (Equation (3 . 7 ) )  t ransonic/ supersonic  s o l u t i o n  (E quat ion  (3 .8) )  and
the transoni c/subsonic solution (Equation (3.9)) reduce to the purely linear-

ized solutions of Rott (Reference 27), of Miles (Reference 28), and of

Posslo (Re ference 29), as v xpected . Henc e, it is appropriate to describe

t h u s t ’  basic t r anson i c  so lu t ions  as the ‘ t ransonic/ supersonic ’ so lu t ion  or
the ‘ transonic/subsonic ’ solution , thus , imp ly ing  tha t they are general  enough

to cover the transonic flow range as well as the linearized flow range.

~ Transonic Kernel Functions

The derivation of the transonic kernel func t ons , based on the previous

basic solutions , is an essential step towards the MKF formulation . During

the course of our study , the transonic/subsonic kernel function was first

derived , followed by the transonic/supersonic kernel function , and lastl y by
the sonic kernel function . In the subsequent development , we will present

these kerne l functions In this study sequence .

a Transonic/Subsonic Kernel Function (m 2)

Substituting Equation (3 .9) into Equation (1.2), and making use of the

govcrning equation (~~.l 1) results in

K5(X,1) — lim l5 . e
_ t

~~ (3 .14)
z-eo

w h er e

x 2

a J’ ~~ }
2 ) (~yg)~~ikX o~~ 0

- c5 
i(a0 + k)~~~~(a~ (~~) + i~~

2(a0 + k)~~~
3
~ (aR)]

+ [@~~(a0 
+ k)2 - x2] fe’~~’ 

+ k)x
~~~

(2
~
(R)d 1

15
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and ~~~~ is the first-order Hankel. function of the second kind. The last

in tegral can be reduced to a simpler in tegral by means of Laplace transform.
As the first two terms vanish in the far f ie ld , the 1 expression is fur ther
simplified. Consequently, af ter the limi ting process , we obtain the transonic/
subsonic kernel func tions , i.e.,

;(X ,o) - f [ ~~
2a~ 

~~
( a ) ( a I x l ) +  i~~

2
(a0 +k)

2)
(aIX I)}e 0+

~~~

+ [B~
2 (a0 + k)2 - . [(. j-~—)Ln(~~~)

+t ~~~~ + k it~~~~(a~ xo )dx
oI j~ 

e 1
~~ (3.15)

wher e

o *=ia

s = i I ( a 0 + k )3 -a2

S — i(a~ + k) + s (3.16)

Several special cases can be reduced from Equa tion (3.15). In the case

of parabolic approximation (Reference 24) where X — — 0, the steady kernel
funct ion can be obta ined by setting k approach zero. Thus, the kernal func-

tions read

;(x ,o) (2~~i)r~~~~
X 

l
SBn(X) .K i(~~ lX I) .

~Ko(~~Ix I)~ (3 .17)

16
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whe re K1 and K,, are modified Bessel functions of the first and the zer.oth

order , respec tively. Furthermore , letting r approach zero results

K ( X ,0) 
(3.18)

This is exactly the purely-subsonic steady kernel function.

In the case of unsteady purely-subsonic kernel function , we take the

limi t in r approaching zero for Equation (3.14). The resul t reads

ikx,~

K ( X , 0) - - 

~~~~~~

. ~e~~
”

+ 
2~~ 

(1 ~‘)÷ ik!IL~~’~(K x o )e 
B,, 

dx
oj  e~~

1
~ ( 3 19)

where K — X / B , and Sgn(X) — 1 i f X > 0 and Sgn(X) — -l if X < 0.

— This is precise ly  the expression of Posaj o ’s integral equation , which was derived
by Wa tkins , Runyan , and Wool ston star ting from a three-dimensional kernel
func tion (Reference 30, Equa tion (8.18)).

• Transonic/Supersonic Kernel Function (m — 1)

Based on the nature of the supersonic wave propaga tion , the domain of
interest for the transonic/supersonic kernel function is confined to (mz,X)
rather than (-.,x).  Hence , the kernel function reads

K 1(X ,0) — lim I I • ~~~~ (3.20)

17
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where

Ii a2~_J’ e~~
t0 .

mz

- 

~~~ 
if

X 
cie~~

ao + k)x J0(oR)H(x~,
.. mz)dx0 (3.21)

App lying the differentiation, making use of Equation (3.2 ) ,  and finall y taking
the l imi ting process yields

-i/k +
~ ~~2J

K1(X ,O) — c1m0
2 e 6(X) +~~~~~~~~~~ . H(X)J 0(aX )  - aH(x)31(aX)

3 2 X
- + ~~~~~ f H(x0)e J0(ax0)dx0 (3.22)
\

~~~ 2 

~~,
whe re

6(X) is Dirac ’s del ta func tion

H(X) is the Uni t Step func tion.

Var ious spec ial cases of Equation (3.22) will be discussed here. For
parabolic approximation , A — U 0, the steady kerne l funct ion in this  case
r eads

K1(X,0) - c1m,,2 . 
{

6(X) + H(X) . ~i( .L~ x) f (3.23)

where m,,2 — - 1.

18
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As r approaches zero , the above becomes

K~(X ,0) — c1m,,2 6(X)

On the o ther hand , for purely supersonic flow case, where r — A — U — 0, the

unsteady kernel function Equation (3.22) reduces to

-iICM,,2 
x

lç, (x ,0) — c~m,,2 e . [~() + .!i H(X)J0 ( KX)
I

- H(X)J1 (,cX)~

- ikx0

2 X m 3

+ ..~~~~_ ~~~~~ J’ H(x0)e J0(Kx0)dx0 (3.24)
in,, a

where c — .~~~~an d c  ‘1~~~

m 2 in,,

The above equa tion checks iden tically wi th Wa tkins and Berman ’s supersonic

kernel function (Equation (49), Reference 31).

• Sonic Kernel Function (m = 0)

The Sonic Kernel function derived here is meant to be the transonic

kernel func tion , for ~ — 0 (or M — 1.0), thus including the transonic thick-

ness effect. Inserting the basic solution Equation (3.9) into Equation (3.2)

and making use of the governing sonic equati in, Equation (2.13) yields

V0(X,0) - oA!e
,,~ 

- 2~~ 
~~~~~ 

Ca~
X dA C (3.25)

19 
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where

co uu1 2i\j~

B

The sonic kernel function can be derived from either Equation (3.15) or

Equation (3.22). It can be shown that Equation (3.24), in fact , is the sonic

limiting case of these subsonic and supersonic kernel functions. The limiting

procedur es depend primarily on the validity of the asymp totic expansion of
the Hankel function and the Bessel function , provided tha t the domain of ‘X ’
(of the argument aX) be excluded from zero.

For the case of purely sonic flow, we let r = = — 0, and let M,, a 1.0,

Equation (3.25) then is reduced to the same form as the equation itself excep t

tha t the coefficients , c0 and ~~, are simplified to

co a 4 V=~r~
-

~ ik
(3 . 26)

The purely sonic kernel func tion here check s iden ticall y with that derived by
Watkins, et al ., (Equation (8.23), Reference 30).

20
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SECTION 4

PANEL METHOD S FOR PRESSURE EVALUATION

The oh~.ctive of the present formulation is to make use of the kernel

function approach for solving the downwash integral equation , i.e.,

W(x) - 
~~ $ K ( X ,0)p(~~)d~ (4 .1)

where 1 is the tota l normalized chord length (normalized by half-chord length ,

i.e., I • 2) and the pressure function is the solution sought,def ined as

- 
I’~lower~~~ 

- “upper~~I /(~~P,,u:) (4 .2)

Given the downwash function W(x), one is required to solve for p(~ ).

The solution techniques for pressure in the kerne l function approach can be

broadly  ca tegor ized  in two classes , namely, the pressure-mode method (e.g.,

Re fere nce s 11 and 12) and the pane l method or the d iscre te elemen t me thod ,
e.g., Referenc es tO , 13 , and 14. The gene ral app roa ch is to prescribe an
approximate solution p(~) in the following form , i.e.,

N
p(
~
) — E p

1
f
1
(~ ) (4.3)

i— I

where ~ and the subs cr i p t ’i’ represent the sending point and the sending

panel . In the pressure-mode method , fur ther knowledge of f~ is needed , a
priori. For the panel methods , 

~1 
can be expressed more freely in various

ways , depending on the soph i s t i c a t i on  of the paneling scheme as one des ire s.

There are several pane l me thods now being widel y used. The simplest

method (a the doublet lattice (DL) method (e.g., Reference 13). It is a

coiim~onty-used tool for flutter analyses. But the method is restricted to the

21

__________ -- - — -- -—-—-- -. - — -~~~~~~~~~~~~~~~~~~~~ —— — -5-  5 - - - --- ~ - - ‘5 - - 
-



-- .5 - - - - - - 5 -- - 5———--——---------5---5 - -
~~~ 

subsonic flow regime due to its inherent elli ptical characteristic of the

collocation scheme adopted. The constant pressure panel (CPP) method was

f ir st proposed by Woodward (Reference 32) and was extended to cope wi th the
uni fied unsteady, purely subsonic/supersonic three-dimensional flow cal-

cul ations by Winther (Reference 33). While the unsteady part of the subsonic

calculation worked out successfully, the unsteady part of the supersonic flow

calculation did uot. This then led us to investigate the applicability of

the Linear Pressure Panel (LPP) method for a unified unsteady, subsonicf

transonic/supersonic flow calculations . The LPP me thod , also known as the
elementary vortex distribution (EVD) method , was first proposed by Shen, et al .,

(Reference 34) for incompressible steady flow calculation for lifting wings

wi th jet-augmented flaps. Apart from the unsteady subsonic work by Frome,

et at ., (Reference 35), no attempt was made to unify such an approach to the

supersonic flow regime. In what follows , we shall discuss the DL, the CPP,

and the LPP paneling schemes, with special emphasis on the development of the

LPP me thod for un i fied uns teady transonic flow calculations .

4. 1 D~ JNWASH MATRIX EQUATION AND PRESSURE FUNCTIONS

The downwash integral equation (4.1) in combination with Equation (4.3)

can be written in terms of the panels scheme as

N ~i+lW(x) — ~~ ~~ K(x - 
~~~~~~~~ p1 

(4.4)
(a t

where

N a total  number of panels

P j  pressure at the sending point 
~i

(DL) , or pressure magni tude on the
panel (cPP), or pressure at the leading edge of the ith panel (LPP)

22
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Pt X
1 Doublet Lattice

lttI..1.141_1i1.1.1_1 Constant Pressure Panel

Linear Pressure Panel

~i+l

Figure 2. Sending and Receiving Points
(o r Panels) for DL , CPP , and LPP Me thods

Now, le t W~~~W(x ~) where Xj is the location of the receiving point (or called
the control-point) associated with the jth panel . In terms of the matrix element
form. Equation (4.4) reads

— D~~ (4.5)

where

~i+1
- .
~ 5~ K (x~ - ~)f

1
(~ )d~ (4.6)

and

1 — 1, . . . ,  N

j  — 1, . , .,  N

N being some pos it ive in teger

23
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In the i th panel , the pressur e fuc tion f~(~) is prescribed by var ious models
according to the panel schemes used.

For the DL method ,

f~~~) - 6(~ - . (4.7)

where

— length of the ith panel

6(e) Dirac ’s del ta function

For the CPP me thod ,

— H(~~ ) — H(
~ i+i

) (4.8)

where

H(~) — the uni t step func tion

For the LPP me thod , the ith regul ar panel element has the pressur e func tion

- ~)/ (
~ i+1 

- 
‘ 

~i+l

(~ - ~~~~~~~ - 

~i-l~ ~i-l ~ 
(4.9)

~~i—l)th~j~ ith
panel pane l

p

p
i-l P

~ 
P1~ 1

Figure 3a. Regular LPP Elements
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‘ .2 The Kerne l Matrix Element~~~1

Accordingly , the kernel matrix element D
11 

Equation (4.5) can be expressed ,
in terms of Equa tions (4.7) through (4.9), as follows.

For the DL method

D ‘~~~~Ke (xj ~~j )b~~ (4 . 10)

1. — 1, ..., N

j  — 1, . . . ,  N

For the CPP method

~i+l
— .

~~ 
J’ K ( X ~ - ~)d~ (4.11)

For the LPP me thod

~i+l
D
3~ 

= j ~ 
K

~
(X

j 
- ~)f ~ (~~)d~ (4 .12)

i—i

Notice that the domain of integration for the ith pane l is 
~~~ ~~~.,.j) 

for 
- H

the CPP me thod and is cç_ 1~ ~ +~J for the LPP me thod. Clearly, these three

methods differ from each other in their ease of applica tion.

The DL method requires no integration for obtaining ~~~ hence is the
simples t, whereas the CPP and the LPP method require the integration proce-
dure. In fact, in term s of the in tegra tion scheme, the LPP me thod is ~o more
than a ‘h igher-moment ’ in tegra l of the CPP me thod; hence the in tegra tion
procedure of the LPP method is sligh tly more complicated. On the other hand,

i it is this ‘higher-momen t’ characteristic of the LPP method that provides a

linear distribution of the calculated pressure , which is a defini te refinement

of the cPP method. The coninon characteristicsof the CPP and the LPP methods are

25
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that the edge behaviors (including leading edge singularities, trailing edge

behaviors and hinge-point singularities, Reference 36) and the shock-jump

behaviors (e.g., References 37 and 38) to a large extent, can be incorporated

into their kerne l ma trix formula tion, whereas the DL method does not have
this advantage. However, these edge behaviors must be derived from analyti- j
cal means. Such types of edge behavior and shock-jump behavior have not yet
been formally derived for airfoils in the unsteady transonic regime (now with
the exception of Reference 38). For this reason, in the subsequent calcula-
tion, we use either the known purely subsonic leading edge singul ari ty or ,
for the mos t part, set up the calcula tion scheme wi thou t the incorpora tion of
the edge behaviors. In the following paragraphs, however , pressure-function
models are set up at various elements in different flow regimes. These pres-

sure models, when properly assigned, indeed provide correct edge behaviors.
This can be observed from the computed numerical results (see Section 5 and

figures). However , one is cau tioned tha t the ‘singularity-like’ lead ing edge
(for subsonic or sonic flow) or the hinge point behaviors obtained are really

not singular, if one takes up the presen t element modeling for f~(~) itt
par agraph 4.3. We achieve these ‘singularity-like’ edge behaviors by ref ining
the element size in the neighborhood of these edges. The usual practice in

our computation scheme is to distribute abou t five to ten elements within

five percent chord length in the edge neighborhood. In so doing, one ob tains

more enhanced singularity-like behavior. What really happens in this outcome

is the following. Al though the f
1
(g)’s are not singular, and the correct

should be singular (but are integrable singularities), D
ii 

a lways
remains regular in either case. Al so, the value of would amount to the

same order of magni tude locally for bo th cases. This then in turn assures

the singularity-like behavior in the pressure function at these edges.

In what follows, we will res trict our considera tions to the LPP me thod,
as it constitutes the main body of the present MK.F calculation procedure.

S
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The Transonic LPP Mode l of f 1()~~

The success of the LPP method depends mainly on the correct modeling of

the pressure function , hence f j (~~) .  Here, regular elements and the irre gula r

elements will be described. The regular elements consist of the usual reg-

ular panel element , the leading-ed ge element , and the hinge-point elements.

The irregular elements consist of trailing-edge elements and the shock-point

element . The last element will not be included in the following description .

• Regular Element

The typical regular element is shown in Figure 3a and the pressure

function is defined as Equation (4.9).

• Leading-Edge Element

= o 

- 

(i.e., the leading edge)

f1(
~~~

) a

~~~~~~~~~~~~~~~~~
Figure Th. Leading-Ed ge ~~(o )  = 1 (4.13)

Element

A s m e n t i o n ed ear l i e r , i t  is seen tha t the present  mode l ing  of f 1(~~)

~ ‘es not prc~vide the leading—edge singularity .

• Hin g e-Poin t  Element

Uhe pressure  f u n c t i o n  behind the hinge point of the oscillating f l a p

sur~t’~ the same pressure function as that of the leading-ed ge ele-

ment , i.e.. Equation (-..H), except tha t ~ is now the hinge-point

location . Ahead of the hinge point ~~, the pI.essure function then

ass umes .i mirror image of f1(~ ) along the hinge line ~ — ~~~~. I t  should

be remarked that although the strength of the edge singularities

varies , depending on the location (at the leading edge or at the

hi nge p o i n t ) ,  the local Mach number, and airfoil geometry, they are

usuall y integrable singularities , even for the cases in oscillatory

f l ow. Consequently, the kernel  m a t r i x  here remains regular

regardless of the edge behavior.
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The trailing-ed ge elements are considered as irregular elements

because they behave differently when the flow regime changes.

• Subsonic Trailing-Edge Element

p (~
)
~~ ~~~~~~, \ •-=~

~ N - 1  ~N ~N+ 1

Figure 3c. Subsonic Trailing-Edge Element

= 2 (i.e., the trailing edge)

(2_
~~
)/(2 -

~~N
) ‘ 

~~~~~~~~~
= (4.14)

- 
~N-1~”~~N 

- 
~N- l~ 

‘ 

~N-1 ~N

• Sonic Trailing-Edge Element

_ __ _ _ _

Figure 3d. Sonic Trail ing-Edge Element

= 2 (i.e., the trailing edge)

= (4.15)

- 

~N-2~ ”~~ N-l - 
~N-2~ 

‘ ~~~_ 2  ~ ~ ~N-l

a - 
~N-1~ ’~~N 

- 
~N-l~ 

‘ 

~N-1 
‘ � 2
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• Super soul c 5r t- a lit fl~~ Etige El ciflen I

Figure ~~ Supersonic Trailing-Edge Element

I i - a t  II ug edge)

~~N+i 
- 

~~“~~N+i - 2 )

- 

~N -l~~~~ 
- 

~N- 1~ ~N-t ~ ~ 2 (4.l~~)

It is necessary to clearly define the regular subsonic , sonic and 
A

supersonic elements at this stage . Given the mean flow pressure (or local

Mach number), we can measure the local value of ~~ 
at the mid chord of the

c l ement . The pane l clement is then defined as the subs nic element , super-

sonic element , or sonic element dependthg on whether is positive , negative ,

or ;ero , respective l y. For the case of mixed flow (e.g., Fi gure 3 f ) ,  two

t- x t i a  types ot panel elements are added .

F i r s t , tin pane l elements are tailor ed Sonic Line

t o  t i t  the sonic point location; this 
M < M ~ I

I e s tilts in two ad }accnt panel element s , /
one on the ups tream side o I thi’ sonic /
point , the other on the downstream side. / Sonic/supersonic

/ element
thus , the st ad I a t e n t  ci emen t s are I 

~ 
I

Subsonic/sonicde t I ned is t he sub st in t c / sonic ci cinen t
clement

and the sonic/supersonic clement (Fig-

ure ii). Figure 3f. Adjace n t Elements  i n
Mixed Flow

29
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4 .4 The Contro l Point x1

It is crucial to determine the proper control point (or receiving point,

X
j
) location for the LPP elements in various local flow regimes in order to

obtain the correct pressure distribution. A classical case is the Doublet

La ttice method in which remarkable subsonic pressure dis tr ibu tions resul t
when the con trol point is located at the three-quarter chord of each ele-
ment (References 13 and 39).

As a resul t of our inves tigation, we found that the control-point loca-

tion of each LPP element is not entirely independent of the local flow con-

ditions. For regular elements and irregular trailing-edge elements, the

control-point locations are determined by the following

(~ + 
~ +1~ ’2 

for subsonic elements
j 

~ and sonic elemen ts
X
j  

= (4.17)

for superso nic elemen ts

This is to say that the proper location of the control point should be

placed at the midchord of the subsonic and the sonic elements, whereas it

should be placed at the leading edge of the supersonic element. In the

mixed-flow case, the adjacent subsonic/sonic element assumes the same contro l

point location as that of the subsonic element. For the adjacent sonic/

supersonic element, we p lace the con trol poin t at the midchord.

We are fairly confident of the choice of the control-point locations for

the former elements. Bu t for the adjacen t elemen t, our choice of the con trol
point may not be the most appropriate , as shown in the sonic flow calculation

(Figure 31). Hence, further investigation on the mixed flow panel elements

is needed.
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~~~~~ Evaluation of Kerne l Matrix_Ele n~ n t D 1~

To evaluate the D
11 

integral (Equation 4.6)

~i+l
— 

~~ K ( x
1 

- 
~~~~~

it is n e c e s s a ry  t o  assess the singular behavior of the transonic kernel function

Km(X). In the previous section , we have shown tha t w h i l e  the subsonic and the

sonic kernels arc singular , K,(X) l/X and K0(X)~~ l/J~ , the supersonic ker—

F ~~ K~~(x)-S x) as ~~ approaches zero . Consequently , regular functions

F1~1 (tn — 0,1 ,2) arc introduced for the purpose of D
ii 

evaluation .

For convenience , let us first define the element integral operator in

Equation (4.~~) as

~i+l
) ~~ f . 

1d ~~~ (4.18)

~i-l

rhus ,

• Subsonic Element (m a 2)

P a ( x j -T
i x~ -

F~~(x ~ - ~) = (X
j 

- 
~

)K ?(xj - ~
) (4.1t~)

• Supersonic Element (m 1)

1) — 

l1[r~(x~ — . f~(~ )) +
mt
~~(x I 

— 
~~ 

~j ~t— l

Ii (4. 20)
0 , x

1~~~~ 1 1
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Fj(x
1 

- ~) ..,~
— to

Sonic Element (m a

F0(xj,- )~
_ _ _ _ _  

f ( ~)

D a 

Xj - 
(4.21)

ii

0 ~ < 
~t-l

f[x~ - K 0(x
1 
- ~)

Fo(x
1 

_~~~~ ) a

1.0

Now , since Fm (X) ’ S are analytic everywhere over the domain of interest
in and ~, the singulari ties in D

ii 
involv ing cases of m — 2 and 0 are

removed. Thus, the f unc tions Fm(X) are subject to the parabolic curve fit
scheme. The values of Fm

(X) are obtained at three points of each element,

namely, the leading edge, the midchord and the trailing edge. In the case of

sonic and sonic/supersonic elements (with control point located at the mid-

chord), we simplify the curve fit scheme by a linear fit in letting Fm
(X)

go through the leading-edge point and the midchord.

As an examp le , we shalt demonstrate the evaluation scheme for a regular

subsonic element, using Equation (4,9) and Equation (4.19). First, let us

write the curve- fit formula, i.e.,

O < x ~~c 2

- + ~ (Xj 
- 0 4 (4.22)
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where A , ~, and C are determined by the parabola fit. Now, accord ing to
Equation (4.9) and Fa (X) given above, D11 

can be in tegra ted , for the ith
or the (i+1)th element (denoted as AD

11
) ,  to yield (refer to Figure 3a)

AD~~ — ~~ — .
~
.) + 85~+ 2~ [l + (~ — ~~)b~ I 

X_
~~~~~

i
, (4 .23)

where

a (x
j 

— ~~)/~~ (4.24)

- 
‘i-i
) 

~~
_i 

~

~i+1
_
~~ i

1 
1 

~~
_j 

~ ~

-1 , 
~i

�
~~~~~~i+1

Notice tha t now AD~~ is a regular function as a result of the proper
arrangemen t of F2(X). For the evaluated formulas of ~~~ for the sonic and

— the superson ic elements, we refer them to Appendix A.
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SECTION 5

RESULTS AND DISCUSSION

In this section, numerical resul ts for all flow regimes are presented

and followed by brief discussions. Figures 4 through 13 present all the
transonic/subsonic results for thin airfoils (flat plates) and for a pitch-

ing or flapping NACA64AOO6 airfoil, using either the Transonic Doublet Lattice

me thod (TDL2D code) or the Transonic Linear Pressure Panel method (TLP2D

code). Based on the unified formulations in the previous section, we shall
demonstrate further that the LPP method is equally applicable to the sonic

and supersonic cases, whereas the DL method is not. Figures 14 through 22

present transonic/supersonic resul ts for pitching thin airfoils (flat plates),
wedges, and parabolic-arc airfoils. Sonic flow resul ts are shown in Figures

24 through 31, for pitching thin airfoils, Cuderley airfo ils, and parabolic-
arc airfoils. In particular , Figure 23 illustrates the divergence of the

purely subsonic and purely supersonic kernel calculations , and Figure 31

presents results of a study for the mixed kernel function procedure.

Notice that in all the figures, only the in-phase and out-of-phase

pressure distributions , ACp ’ and ACp”, or their magnitudes and phase angles,

I ~Cp I and ~, are presented. The pressure coefficients are defined by

Equation (4.2) as

ACp ’ = Real part [p], the in-phase pressure and

= Imaginary part [p], the out-of-phase pressure.

All the pressu re coeff icien ts are plo tted agains t the chordwise coordina te, x.

For convenience of presentation, the range of x and that of ~ is changed to

(0 ,1), this amounts to changing the total chord length L = 1, ins tead of 2,
as defined in Sec tion 4. The percent thickness in all the plots is defined
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Figure 4. Flapping NACA64AOO6 Air fo i l  at 0.825
and k = 0 wi th Hinge Point at Three-Quarter
Chord

36

_________________________
— —‘~~ —-5---~ ---—.- ___ _5_—_~~

____
~

’___ ____ 

~~~~~~~ ~~~~~~



- — 
~~~

-
~~~~~~~~~r

__________ Present LPP method
Linear theory (Ref 40)

10.0.

AC ’ 5.0. /
p

\

0 I I I I I I I ‘1.0
x

—5.0

(a) In-p hase pressure d i s t r i b u t i o n s

r 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AC ” -5,0

-10.0 .

(b) Out-of-phase pressure distributions

Figure 5. Flapp ing NACA64AOO6 Airfo i l at t4~ — 0.825 and k — 0.062
wi th Hinge Point at Three—Quarter Chord
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as two times that of the thickness ratio , T, and r is defined as ~~ for an

airfo il and ~/2 for a finite wedge where is one-half of the maximum thick-

ness and 8 is the apex angle.

5.1 Compu ter Program Description

The general inputs to the TDL2D and the TLP2D pro grams consist of the
given flow parameters and the paneling parameters. The given flow parameters

are the freestream Mach number, M~, the reduced frequency , k, and the pitch-
ing axis location, x~; the paneling parameters are the total number of panels

assigned along the chord , the send ing poin t loca tion (fo r TDL2D only), and
the control point location. Also, the distribution of the panels, fine or

coarse, can be easi ly  tai lored in these programs. For nonlinear transonic

flow calculations , the transonic parameters and the steady mean-flow inpu t
must be considered. The coefficients A and B are built in wi th options of

using Equation (2.11), (2.15), or (2.16); the transonic parameters, X , r, and

~i.can atso be assumed different values, or put to zero individually. These

parameters become functions of the steady mean-flow pressure (see Equa-

tion (5.2)), when the methods are switched to the scheme of local linearization.

The steady flow inpu t is always given by other means, either by o ther
theor ies, numerical me thods, or by experiment. For example , the stead y flow
inputs for the NACA64AOO6 airfoil in Figures 8 through 13 are based on

Tij deman and Schippers ’ measurement (Reference 41), wherea s in the supersonic
cases (Figures 19 through 22) and sonic cases (Figures 27 through 31), the

inpu ts are based on analy tica l formulas . At any rate, the steady pressure
coefficien t C~0 is expressed in terms of a po lynomial , i.e.,

N
(5.1)

0 flaO

where ~ is the ‘sending-poin t’ coordina te, N is an integer up to N 9. Of

course , a0
t s are obtained by apply ing the curve-fi t scheme to the given data.

The C.,, ’s used for all figures are lis ted in Appendix C. Thus, the transonic

param e ters read

L. 
~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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A = — C
~, (~~~)2 ro

*
r = — c~ ‘(c)2

- 

p = —? C~”(~) (5.2)

In the TLP2D code , the parame ter ~~~~~ rather than M, is used as an
indicator of the type of the local flow characteristics, and hence the type
of panel element that should be applied. Given C~ ,

, Equation (5.1),

the calculation scheme is switched to subsonic, sonic, or supersonic type
according to wherever ~~ is less than , equal to, or grea ter than zero , mea-

sured at the midchord (usually the control point) of e~ch element. Such a

local-flow indicator is specially designed for the case of mixed flow, hence
the mixed kernel function procedure. More will be discussed in the sonic

flow sec tion.

5.2 Transonic/Subsonic Results

The in-phase and the out-of-phase pressure distributions (i.e., bC~ ’

and bc9”) for f lapp ing and pitching NACA64AOO6 airfo ils in purely subsonic
flow are presented in Figures 4, 5, 6, and 7. The purpose here is to check

out the TDL2D and the TLP2D codes against the linear theory. It is seen

that the present results are in good agreement with the linear theory and

those by the finite-difference method (References 3, and 42). It should be

remarked that in all  these cases, the resul ts ob tained using the TDL2D code
are indis tingu ishable from those in Figures 4 through 7 using the TLP2D code.

Figure s 8 through 13 presen t the transonic/subsonic calcula tions in the
subcritical regime for NACA64AOO6 airfoils in pitching and flapping motions.

In these cases , the steady mean-flow inputs, Cv ’s, are given by Tijd eman and
Schippers (Reference 41), and are curve-fitted as polynomials (see Appendix C).

Figure 8 compares the linear and the nonl inear resul ts calcula ted by TDL2D
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and TLP2D codes for a pitching airfoil. Figures 9 through 13 show the
nonlinear results based on TDL2D or TLP2D codes for flapping airfoils . It

can be observed that all theoretical methods produce pressure magnitudes

gener al ly larger than the experimental data (Reference 41). Such a differ-

ence could be due to neglecting the boundary layer effects in the anal ys is.
For detailed discussion on this issue , one is referred to References 14, 19,

and 53. In Figure 11 , the present results in phase angles are seen to have

some deviation from the finite-difference results (References 1 and 42) from

the leading edge to midchord. In Figures 12 and 13, various results in pres-

sure magni tudes and phase angles are plotted using the TDL2D code , TLP2D code,

and Ehler ’s finite-difference method. Again, it is seen that there is some

disagreement between the presen t resul ts and the exper imental da ta behind
the leading edge. Al though the TDL2D resu l t checks well wit h the TLP2D
result in AC ‘ , considerable difference is seen in the AC “ results. The

p p
cause of this difference is not clear and will be subject to fu ture

inves tiga tion.

Some remarks are in order w i t h  regard to our exper ience in us ing  the
developed codes. First, as pointed out earlier , our results exhibit some

discrepancies in the transonic/subsonic calculations , particul arl y near the

leading edge. Our experience shows that these are caused mainly by the

leading edge s ingular i ty  of the steady mean-f low . This type of s i n g u l a r i t y

actually results from the ill-fo rmulation of the small disturbance theory in

the leading edge region, be it linear or nonlinear, due to the incompatibility

of the equation and the linearized boundary condition. In other words, the

singularities may vary in their ‘strengths ’ in different flow regimes, but once

they are adopted as the steady mean-flow inputs for our transonic parameters
— (Equation (5.2)), discrepancies , or even numerical instabilities may occur.

(In particular , the most sensitive parameter of all is the acceleration

parameter, F, which is often very large in the neighborhood of the leading

edge.)

I
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To a t t a i n  a s t ab le  computation procedure , one is required to keep the

value ~f l’ constant and l e t  i t  be no g r e a t e r  than order  of one in the first

few panels. Then t’ resumes i t s  local values at the panel where the true

value oi l’ Is Indeed below one. Strictly speaking , this procedure is not

altogether legitimate . In the Addendum , Professo r Landahi’ s general formula-

tion of the phase correction method (Equation L..) may circumvent such a pro-

cedure . In his formulation , the l’-term can be integrated out altogether as

a result of a further delay step of the local linearization app lication . For

this reason , it is felt that some serious attention must be given to Landahl ’s

phase-correction method .

Next , we need to describe the ease of application of the TDL2D code and

the TLP2D code. In all the calculatiuns using the TDL2D code, we only require

equal spacing panels; normally we set N 20, regardless of pitching or flap-

ping motion . In the cases of using TLP2D code, more ref ined panels are requ ired

in the neighborhood of the leading edge and the hinge points , the panel num-

bets ranges N = 23 to N — 33. As the LPP method is a higher moment method

than the DL me thod (see Section 4), the total CPU time for the same case

required using TLPZD code runs usually more than twice of that using TDL2D

code.

• 3 rransonicfSupersonic Results

To check out the LPP method in the supersonic regime, calculations u~ ing

the TLP2D code are first performed for several purely supersonic examp les

(Figures 14 through 18). Compu ted results for pitching flat plates using

TLP2D are compared with Chadwick-Platzer ’s result using the linearized method

of c h a r a c t e r i s t i c s  (MOC ) (Reference 43) in Figures 14 and IS; also , compu ted
results are compared wi th Jordon ’s theoretical result (Reference 44) for in-

phase and out—of—phase pressure distributions in Figure 16. In these fairly

high frequency ranges (k a 0.5 and 0. 6),  it is seen that the present results

are in good agreement wi th the other results. Figures 17 and 18 again show

the comparisons of the out-of-phase pressure distributions of the present

me thod with those obtained by the cl assical me thod o f Garr ick and Rub inow
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(Referenc e 46), by Brix-Platzer’s linearized MOC (Reference 47) and by

Snyder’s finite difference method (Reference 45). Our results are in excel-
len t agreemen t wi th the resul ts calcul ated according to Garrick and Rubinov.
Figures 19 through 22 show the transonic/supersonic calculations in the non-
linear supersonic (or low-supersonic) regime for wedges and for parabolic-

arc airfoils. Using the linear formula (Equa tion (4 .26),  Reference 54) for

a wedge (T  = 0.05) as steady mean-flow input (see Appendix C), we obtained

the out-of-phase pressures at two different frequencies. The comparisons in

Figure 19 show that our result is in better agreement with Carrier’s exact

theory than Chadwick-Platzer’s MOC me thod. Notice that the present calcula-

tion scheme for the wedge case makes no approximations, as the transonic

parameter, A , is constant and I’ and ~ are identically zero. Figure 20 shows
the nonl inear resul ts qui te subs tan tially, particularly near the leading
edge. The C~ ‘s used are based on the linear formula Reference 54) and a

modif ied line~r—fit of Spreiter ’s nonlinear formula (Equation (15),
Reference 49); again, all the C coeff icien ts can be found in Appendix C.p0
In Figures 21 and 22, in-phase and out—of-phase pressure distributions for

the same given conditions (as Figure 20) are compared wi th those obtained
using Chadwick-Platzer’s MOC me thod. Observing from the results in

Figures 19, 21, and 22 , we found that, unlike the transonic/subsonic
resul ts, our TLP2D code produces generally lower in pressure magnitudes [

than those of Chadwick-Platzer’s. However, in their computation procedure,
the steady mean-flow results and the oscillatory f l ow resul ts are all
self-generated and the former result is truly nonlinear (based on Teipel ,
Reference 55). It would be interesting, therefore, to check against these
resul ts by using Teipel’ s mean-flow input in the TLP2D program.

5, 4 Sonic Results

In Sec tion 3, it was shown that the sonic kernel function (Equation (3.25))
is a limi ting case of the transonic subsonic kernel function (Equation (3.15))

and of the transonic/supersonic kernel function (Equation (3.22)). Here,
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a numerical study was performed to check out the sonic limi t for these

kernel  func t ions . Figure 23 shows that although the kernel functions are
continuous throughout the sonic limi t, the LPP me thod (N a 23 for all cases)

produces oscillatory pressure distributions as M~ approaches one (the

parmeter ~ approaches infinity). Such outcomes were found by Jordan (Refer-

ence 44), using the pressure-mode method , and was subsequently discussed ,
in terms of the wave mechani sm, by Landahl (Reference 21). This then led

Jordan to be in favor of the sonic kernel function when the freestream speed

is in the neighborhood of the sonic regime. However, the objective here is

a rather different one. We attemp t to establish a proper mixed kernel func-

tion procedure by starting out wi th a case of sonic flow wi thou t shock wave

(Figure 31). Nevertheless , in so doing , one must check out the sonic kernel

function procedure toge ther with the LPP me thod . This then constitutes

the following calculation results using the sonic-flow kernel functions

(Figures 2-. through 30).

Thus , the linear sonic flow calculations are first performed for a
pitching thin airfoil (flat plate) in order to check out the application of

the TDL code at M~ = 1.0. Calculated pressure magni tudes and phase angles

are compared wi th those obtained by Stahara and Spreiter (Reference 26) in

Figures 24, 25 , and 26. Excellent agreement can be seen for all cases con-

sidered . Figures 27 and 28 present our calculated results for a pitching

Cuderley airfoil and a pitching parabolic-arc airfoil; the steady mean-flow

C for both cases are taken from Reference 26 and are curve-fitted inp0
Appendix C. It is seen that the presen t results in pressure magni tudes are

generally lower than those by Reference 26 (similar to the finding of our

supersonic pressure magnitude to the MOC method) . Also, considerable dif-
ferenées in phase angle exist at various reduced frequencies between both

cases . We believe that these differences could be caused by two factors in the

nethod of approach. First , the unsteady local 1ineari~ ation method by Stahara

and Spreiter really did not include the edge condition . Since their formula-

tion is based on the velocity potential , to cope with such a condition would

require the Schwartichild iterative procedure. Second , in their anal ysis
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(Reference 26), the transonic parameters appeared in the kernel potential are

all expressed in terms of ‘receiving point ’ x rather than the ‘source-point ’

~~. This amounts to ignoring the higher-order flow influences due to the

panels upstream . Figure 29 shows the comparison of the results between

using the full equation (2.11), and using the approximate equation , (2.15).

It is seen tha t the deviation in pressure distribution is slight when the

reduced frequency is low. Figure 30 exhibits a comparison of all previous

sonic me thods wi th the present LPP method for a pitching parabolic-arc air-

foil (r = 0.06) at a constant angle of attack. Instead of using the steady

mean-flow C~, given in Appendix C, we adop ted Dowell’s value (a0 = 0. 45 and

= 0.585, Reference 23), which amounts to X = 0.585 and T’ = 0.45 for our

inputs. Consequently,  the lifting pressure plot shows that once again , our

value is of the lowest magnitude , but it follows the same behavior of Goodman ’s

theoretical distribution .

Finally, in Figure 31, the mixed kernel function procedure is tested ,

using a nonlinear sonic flow example. For simplicity , the Guderley airfoil

is chosen , in which the sonic point is located exactly at 40 percent chord.
Altoge ther, 33 panel elements are employed , with 15 equal-space elements

(5 percent chord each), four compact elements (occupying 5 percent chord) at

the leading edge and 14 compact elements (occupying 10 percent chord) in the

neighborhood of the sonic point . In fact, the panel width is based on the

criterion that each panel width be restricted by ~x � ~/4 ki . While the

transonic/subsonic kernel function (Equation (3.15)) is app lied to the ele-
— ments throughout the whole airfoil , the transonie/supersonic. kernel function

— (E quation (3.22)) is applied only to those downstream of the sonic point. At

the sonic point , which is situated between subsonic and supersonic panels , the

nonlinear sonic kernel function (Equation (3.25)) is used. The calculated

result is not altogether satisfactory . It is seen tha t HKF results follow
closely to the ones by the sonic kernel function method , but tha t cusps occur

in these results at the sonic point. At this stage of the MKF development ,

it is not clear whether the sonic cusp is due to an erroneous kernel func—

tion evaluation or due to an inappropriate paneling scheme in the neighborhood

of the sonic point. Future investigation on this problem is mandatory for the

development of the MKF method .

- 
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SECTION 6

CONCLUSIONS

A transonic kernel function me thod for unsteady flow calculations has

been developed. The basic formulation of the transonic acceleration poten-

tial equation was derived and its basic solutions in two- and three-dimensional

subsonic/transcnic/supersonic flow regimes were obtained . Hence, the two-

dimensiona l transonic/subsonic , transonic/supersonic , and sonic kernel func-

tions were then established . To solve for the downwash integral equation ,

two discre te element methods were introduced; these are the Doublet Lattice

me thod and the Linear Pressure Panel method. We realized that the former

me thod is only restricted to the transonic/subsonic (or subcritical and purely

subsonic) flow regime , while the latter method has the unified feature , if the

control point is properly chosen, for subsonic/transonic/supersonic flow cal-

culations , although the calculation scheme is more time-consuming than the

former.

To demonstrate the transonic LPP me thod , numerical examples were pre-

sented for simp le airfoil geometries in pitching motions for all flow regimes.

For thin airfoil cases (i.e., for purely subsonic/sonic/supersonic cases),

excellent agreements were found wi th the analytical results based on previous

classical theories. For transonic/subsonic cases, the pressure magnitude is

found to be generally larger than other results , while for transonic/supersonic

and nonl inear sonic cases , it is found to be lower than the results of other
theories. Numerical studies revealed that discrepancies and sometimes even

numerical divergence in the present transonic/subsonic calculation (e.g., Fi g-

ures 10 and 11) are largely attribu ted to the drastic variation of the tran-

sonic accelera tion parame ters ~ and r in the neighborhood of the leading edge.

Such discrepanc ies , in principle , can be greatly improved , however , if one
adopts Landahl’s general formulation of phase correction method (see Equa.’

tions (L.1) and (L.4) of the Addendum) . Phase angles can thus be corrected
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accordingly; however , this would amount to developing a scheme in acoustic
ray tracing. Lastly ,  the proposed MKF procedure is app lied to a nonlinear

sonic flow case. Close agreements are seen in comparing the MKF results

with the nonlinear sonic kernel function results except at the sonic point.

It is not clear tha t wha t causes the undesirable cusp at the sonic point and

how to smoo th it out at this time.

The present study leads to the following concluding remarks.

1. We have demonstrated that the combination of the transonic kernel

function me thod wi th a properly chosen discrete element method such

as the LPP method is a suitable method for unified treatment of

unsteady transonic flow calculations.

2. Our calculations among other unsteady flow methods assure t~’ dis-

tinctive departure of the nonlinear results from the linear ones in

all transonic flow regimes (not to mention the supercritic al regime).

3. The present stud y indeed paves the road for the MKF method develop-

ment in the supercritica l regime. It also opens up ways for the

future development of a three-dimensiona l LPP method.

In view of the encouraging results obtained by the present transonic LPP

method , we recommend the following projects for further development and

extension of the present work.

I. Improve the LPP method algorithm so that the TLP2D code can be made

equally cost-effective as the TDL2D code.

2. Generalize the TLP2D code to include three degrees of freedom , i.e.,

pitching , plunging, and flapping in all flow regime s.

3. Incorporate Landahl ’s general formulation with phase corrections into

our TI,P2D code.

4. Imp rove the MKF procedure for smoothed sonic flow cases and develop

the MKF method so tha t the TLP2D code can cope wi th supercritical

flow regime , as this can be considered as the most  important step in

the MKF me thod. In this regard , two steps a~e suggested .

1)
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a• Computation of the Eckhaus-Landahl flow model (see Appendix B).

b. Computation of the oscillatory supercrjtical flow wi th embedded
shot -k waves.
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The basic differential equation for the acceleration potential , $, reads
(corrected and valid for low frequencies only, two-dimensional case considered)

Bo°$xx + $zz +A $x +B$ 0 (L.l)

wher e

= - Moc~
2 (y + l)~x

A = -2ikMco~(I + ~~~~~) 
- 2M [(~ + I) - 1~i..:Jfl$xx

=

Bcc.2 = 1 -

For M~ close to uni ty and for low frequencies, the terms underlined may be
neglected . Thu s, the differences between this result and the earlier one by
D. Liu are unimportant.

To find an approximate solution valid for the receding wave portion we

set

$ = $1e~~
’
~ (L.2)

and choose ~(x) such that the equation for $ has only 0( 1) coefficients. One

finds the following equation for $~ :

+ si~ + ~~~ + ~~ = (L.3)

where

I 

A~ = A + 2~~
2
~~
’

= B + + ~~~~~~~~~~~~~~~~ +
and the prime superscript is defined as a total differentiation, i.e.,

.
~

..... ( .)~
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We set f = 80
2a. Then , wi th Ø~~~~ 

- M2(~ + 1) x’ 
we have

f A1 = -2ik}~
2 + 2(~~~

2 )1 
+ 2f

1 ~ 
= ~~

2Ek3 - (y + l)$
~~~~ 

2ik~~~~] + ~~~ [-2i~~~
3 + 2(%

2
)

h
]

-
~

~~~~~3) ~~~ 2

For the receding wave, we anticipate that ~~‘ = 0(@~,~~~), i.e., that f = 0(1).
Hence , in order for the coefficient B1 to be finite in the limit %2 4 0 we

must have

_2ik~~
2 + (~~2)’+ f = O

or

2lk14~
2

dx

Wi th this substi tution we may set

$ 2ikM,,
a 

dx

$ = $1~o
_2
e ~ (L.4)

where $~ 
is one solu tion of the equa tion

BO $1XX + 2ikt1c,2$j~x + ~~~ 
+ M[ k2 - 2iky~x,~J$1 

= 0 (L.5)

The solution of this equation may be expected to exhibi t slow variations

with respec t to x, since the shortwave component should be described by the

— phase factor exp f$(2ik~çD
2/~~

2)dx). Therefore, the fi rst term may bc

_ : - — - - ~- 1ffff~~L * ..: .~ - fl 
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neglected . Also, in the last term, 2iky$,~ could be neglected compared to
k° ( for  low fr equ encies, both k2 and 2ik~$~~ may be neglected). Note the

plus sign in front of the $ix- term. Compare this wi th Landahi’s result in

Symposium Transsonicuum I (Reference 56). The result for $ thus obtained is

only valid for the receding-wave portion. For the advancing-wave portion ,
there should be no factor B~~~

2
.

We shall now consider a recipe for constructing a uni formly valid approx-

imation for the pressure kernel starting from the local linearization result,

i.e., the solution obtained by assuming a uniform flow of Mach number equal

to the value at the sonic point. Denote this solution by superscript L. The

kernel function is obtained from the doublet solution $d’ and from the above,

one can prepare the following approximation :

cno
(V) (L) i(e - e~~~)

~d c (V) ~d 
e

where ~~ is the group velocity of acoustic waves having wave front at an

angle , ‘~, to the x-axis (see Figure Ll), ~~~ the value at the source point ,

e, the phase angle of the acoustic waves along a particular ray connecting

source and field points , and e (1
~ , the phase of the local solution .

This approxima te is consistent wi th the acoustic ray theory (see

Landahi’s article in Symposium Transsonicuum II, Reference 53).

z

cn

/

Figure Li. Group Velo- c0 a - (1 + •~
)sin

~ 
+ cosv

city of
Acoustic
Waves where a is the speed of sound.

79

L _ _ _ _ _ _ _ _ _  
- _ _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -5 ~~~~~~~~~~~~~~~~~ -5—~~-5-5- -~~~~_~~~
__

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

For the two-dimensional case, only the angles ~ = TT/ 2 and -n/2 appear , so
for the reced ing wave

C - a - (1 + $ )  M,, 1 - 1 - M~
3(.tq +

(No te: 
%~~~ 

= 1 - M2 1 - (l+$ )2/a2 B - M ( y  +

hence

a - (1 + $ )  = a2(a + 1 + ~~~~) 1~~~~~~
2 - M~

2(~ + l)~~]

_ 
- M

~,
2(~ + l)$~

] E

The phase angle may easil y be calculated in the two-dimensional case. During

the time ‘dt ’ the acoustic wave propagates a distance dx = c~dt and hence

e = k $  d~ ~~k$ ~~~
x 

C
rt

(
~~
) 

x

is the phase shift between the source point , x0, and a field point, x.

In the three-dimensional case, the calcul ation of the phase shi f t
becomes more comp licated. It will then be necessary to trace the acoustic

rays emanating from each source point , and the wave front angles along the

way. In the ordinary linearized case, the rays are straight lines, but in

Rays I

/~~~~~~Wave fron t

Figure L2. Rays and Wave Fronts
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the transonic case they would be curved , particularly for the receding wave

portions. I suggest that a ray tracing program be worked out so that one

can see how rays will behave for a particular three-dimensiona l wing case.

Poss ibly ,  the ray curva ture may be small so tha t one could approximate the

ray path by a straight line between the source and the field point , in which

case the determination of the phase angle simplifies considerably.

Going back to the two-dimensional case, the kernel is obtained from the

integral

K = lim 
x 

e k
~~ 

- xl )$ (x1 )dx1)

~~~~~ 
- Xl ) ~~~O

) 
$ (xi )e~~~~~

1) - e
~~~

xl ]d )

For small  k , which is the main concern here, the main phase variation comes

from the term exp(iS), the phase variation in the linear solution being can-

celled by the term exp(~ ie~~~). Now , from the receding-wave solution

~~~~~2k/%
2 ... J ~~

~~X C

Hence, integration by parts of the above approxima te kernel gives

K u r n  ~ 4’d 
)
e
i
~~ 

- ~~~~~~~~

z90 Z

- Cn $

X
~~~~~~~~~c - xl )

$ 
(L)
( ) i10~~~l )  - 8

~~~
(xl)]dX)
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Of the two terms, the f irst  one would be the most important one for low
values of k. If we now compare wi th the kernel obtained for the purely
linear case

K — Urn ~~~~~~~ •d2~~~ 
- ~ f~~

_ ik ( x -

we find that a good approximation should be obtained by taking the local

linearized kernel function for the local Mach number at the source point

and correcting it for the phase angle. Thus,

K — ~~~~~~~ 
-

trans

where e and refer to phase angles between source and field point loca-

tions. Hence, the correction involves only the computation of phase shifts

using ray theory.
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EVALUATIONS OF ~D~1
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In order to carry out the integrations for D~1 
(denoted by ~D~~) such as

Equations (4.19), (4.20), and (4.21), it is necessary to first curve-fit the

analy tical func tion Fm (Xj - ~)(m = 0,1,2), as shown in Equations (4.22) and

(4.23) for the subsonic case. Notice that all the coefficients used (i.e.,
~, ~~, and ~~ ) in F

1 
are not those defined in Equations (2.11), (2.15), and (2.16)

in the text; also, 8~ in the subsequent formulas should be distinguished from

Dirac ’s delta function, 8.

As the subsonic flow expression was given in Equations (4.22) and (4.23),

we shall only present the sonic- flow formula and the supersonic- flow formula

for

• Sonic Elements

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

Fitting F0 as a parabola , we write

Fo(x~ - ~)~~~~ xj 
- 

~~~ +~~(x~ - 
~~) +~~

AD
11 

= lO5•8~rt ~ l5A(a?/ 2  
- x

1

7/2) + 21(aA - ~)(a
5/2 

- x
1

6/~
2 

)

(A.l)

+ 35(aB - ~)(a~”~ - x
j
3t’2) + 105a~(a

3J2 - x~~
/2)~

where

8 = X

j  

- 

~~~~

- 8~

-(~~j - 
~ j ~ t)  ti—i ~ 

� 
~i, 

X
1 ~

A — for
i

- 
~i ~i 

�
~~~ 

�
~~~i+l ’ 

X
1 ~~~~ 1+1
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c_ i c+~
Figure Al . Sonic Element

For X
1 

= 1/2(~~
_
~+ ~j) = xj..1 ,

AD
11 = 

~~~ ~
/ (
~ i 

- ~i_ i) I 2  EF0(xj_i- ~i..l
) + 4F0(O)] (A.2)

For x
1 

= (
~i 

+ ~j .~~)I2 = x~,

ADu = - 
~i)/2 t2Fo(xi 

- 
~i) 

+ 3F0(o)] (A.3)

~~~~~ X
j  ~~~ X

j  c+1 ~
Figure A2. Sonic Elemen ts Showing

Receiving Points
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• Supersonic Elements

xj � I

here , 6 is Di rac ’s delt . function . For x
1 

�

AD11 - 
~~~ ~~~i-i) [Fi(xj  - 

~
i) + 2F1~ xj - ~~ +~~i i ) ]  (A .4)

For xj � 
~i+i

,

AD11 = i2~ 
[F1 x1 - 

~i) 
+ 2F1(xj - ~~ ) ] (A.5)

x
i 

� 
~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _

c-1 c— 1 X
j  

€~;~ ~

~~~~~~~~~ 
_ _ _ _ _ _ _ _ _ _ _ _

~i+u ~ ~ 
X~~ 

~i+l ~

‘

Figure A3. Supersonic Figure A4. Supersonic Element
Element Showing Receiving Points

For x
1 

= (‘i—i + ~j)/2 = xj_ 1 ,

AD11 = ~~~~ 
48-ri [F1(xj_j  - ti—i ) + 2F1(0)]

For x
1 

— (~~j + 
~i+~

)/2 — xi , (A.6)

AD
Ii 

= 48; t5Fi(xi - ~j) + 4F1(0)] (A .7)
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APPENDIX B

- KERNEL FUNCTION FORMULATION ACCORDING TO ECKHAUS-LANDAHL’S
- SHOCK-JUMP MODEL
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The oscillatory shock-jump relation based on Eckhaus-Landahl ’s

one-dimensional model (Reference 21) can be written, in terms of the veloci ty
potential , p, as

- ia~~ = -

~~~ 

- ~~~ (B.l)

where

= ~ 
-

~~~~ 
__ 

_____________

.2 + +
1 - r~~(x5 ) 1 — M(x )

Notice that the LHS of Equation (B.1) represents the downstream condition

immediately behind the shock wave, whereas the RHS represen ts the ups tream
condition immediately ahead of it. For simplicity, we let the local Mach
numbers in Regions 1 and 2 be a uniform supersonic Mach number and a uniform

subsonic Mach number. The mean shock jump is, of course, governed by the

Prantdl shock relation. Let the shock point be x~~, and hence the control

points in the panel ‘- ‘ and ‘+‘ (see Figure 81) are denoted as x~ and x~
+
.

Hence, M~ = M1 and M(x5
+)

Mean shock

V
z

Region 1 Region 2

I M~~> 1

x j \ ~~
$ Hinle Aileron

point

Figure 81. Eckhaus-Landahl Model Showing Notations
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1 1
According to the usual linearized definition of acceleration potential

(i.e., dropping the terms in Equation (2.8)), Equation (B.l) can be

recast in the following form , after a differentation in the a-direction, i.e.,

- i(k + ar)cp
+ 

= $ + i(k - ~)~p (B.2)

Now, if we define an operator L0 as

L0E.ln e~~ • lim
f 

C .
~ 

(B.3)
Z4O Z

then L0 can be applied to Equation (B.2) and it yields

• K+(X8
+,O) = 

1 
k - k)IC(X5 ,O) - i(Lo[$

~
4
1+ L o ( $~~

] ))  (B.4)

where

xs
_ 

= x
s~ 

- , ~ .~~ x
s

_

+ +xs = x s 
_
~~~ , 1> ~~~> x

8

K 1(X ,O) J L i m ~_J $i e1
~~0dx

0} 
e

11
~~ 

-x = x $

The last two terms in Equation (8 4) can be derived from Equations (3.8) and
(3. 9), i.e.,

L o[$ ”]~ L o[
~~]I ~ =

— _c.~~~~e
_ i  •!~~-k~~~~ . ~~

( 2 ) (~~ X +)/X + (8.5)

- 
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L0 ts 5i 
— 

(8.6)

~t ( ’ i t4t +k)X - 
- -

— c1e $ . {H~X5 )kl4t Ji (K ~ X 5 )/X - m36 ’(X 3 )J0 (sc~ X 5 )]

where

211
c1 — -  m — M ~ 

- l

u T  I

- kN~/n~

Consequently, when the condition at x — x3~ is obtained , the integrated po ten-

t ial in Region 2 can be wri t ten as

~,(X ,z) - e ikX $d + e 3~ P(X s
+~z)} (B .7)

Nex t , let us introduce another opera tor , ~~~~~ ~ u r n  t • L  and app ly this

operator to Equation (8.7). After some rearrangement, we obtain the kernel

function formula in Region 2, i.e.,

+ +K
3
(X,O) — K1(X,O)- [K.(X,10) - K e (8.8)

Notice that K , in Equation (8.8) is the usual subsonic kernel function in

the absence of the shock wave.
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For the applic ation of the above kernel function formulation, we selec t
the aileron-buzz model proposed by Eckhaus (Reference 52), see Figure 81.

Thus , the shock wave is pl aced ahead of the hin ge poin t. As we have assumed

tha t the mean shock wave is one-dimensional , which is infinite in extent,

the acous tic wave s genera ted by the oscillating aileron canno t diffract

toward Region 1 upstream . (Such a wave diffraction should be accounted for

in the two-dimensiona l case, as it was shown by Tijde man , Reference 14.) All

the upstream influences on Region 2 from the supersonic side is taken care of

by the shock-jump condition . Hence , in terms of the present panel-method,
the above consideration amounts to no further influence of the panels betwen

Regior 1 and Region 2 other than the shock-jump kerne l formu la rela ti ng the
adjacent panels ‘ - ‘ and ‘+‘ .

For a calculation example , we plan to compu te the stab i l ity boundary
for the hinge moment (see Figure 3, Reference 52). Since our formulation is

not restricted to low-frequency computation , our resul t may then be compared

with Lambourne ’s experimental data (k below 0.1).

Al though Eckh au s’ formulation is fairly general in the frequency range,

his calculation scheme is subject to an approximation , which restric ts the

frequency to ~ h ighe r range than 0.1. Fur thermore , as the presen t MKF
formulation is cump letely flexible in the steady flow input , little problem

is expected to generalize the aileron-buzz model to one with a nonuniform

mean flow. Cl early , stud ying this problem will certainly be t ter our under-

stand ing of the mixed kernel function procedure leading to a general scheme

for the supercritical flow computations.

Finally , it should be pointed out that the present shock—jump kernel
function formulation only amounts to one which satisfies the shock jump
condition , Eq. (8.1), at the foo t of the shock , i.e., at Z— 0. As the

assumed mean shock wave is inf in ite in exten t, Eq. (8.1) should be satisfied

formally along the shock in a—direction . Landahi (Reference 57) proposed to use

Fourier Transform in obtaining a general two—dimensional condition for a

pulsating source and has obtained solutions in the upstream and the down-

stream sides of the shock wave in the transformed plane. Further investi—

gations along this line are needed.
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APPENDIX C

9
COEFFICIENTS FOR C — a

Po
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