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Abstract

Solutions of the general linear matrix equation

n

I A;XB, = C are obtained and presented in this thesis. Some
i=1

special cases do arise like the Liapanov matrix equation.

Necessary conditions and sufficient conditions are established

for the solution of the general linear matrix equation. Other

forms of solutions than those obtained through the use of
similarity transformations that have been considered make use
of the spectral decomposition of matrices and tensor products
of matrices or Kronecker products. In considering the general
linear matrix equation, linear matrix equations in which two
different variables appear are also studied. Conditions for
the existence of a solution for this type of equation are
given. The theory of the generalized inverses of a matrix was
used in obtaining a solution to the general linear matrix equa-
tion. More general forms of the solution are given and condi-
tions under which these solutions exist have been established.
Solutions to systems of matrix equations were also considered.
As a by-product of this investigation, some aspects of the
model reduction problem may be treated from the point of view
of matrix equations. In particular, a new method of solution

of the matrix equation AXB ¢ CXD = E which was recently con-

sidered by S.K. Mitra (Siam Journal of Applied Math, 32) and

others was obtained. Applications of the results of this

iv



work are of use in the estimation of variance and covariance

components of linear models as treated by C.R. Rao.




SOLUTIONS OF THE MATRIX EQUATION
AXB + CXD = E

I. Introduction

Matrix equations are becoming a more significant part
of the formulation, computation and solution of problems in
the engineering and social sciences. The classic engineering

investigations of the Liapanov equation
AX + XB = C (1.1)
and the matrix Ricatti equation
XDX « AX + XB + C = 0 (1.2)

are probably the most commonly known. Solations to these

equations and their more general forms, given by the equation

n
LA
i=1

XB, = C (1.3)

- gt

are studied in this thesis.

Solutions to Eq (1.3) are found through the application
of various methods of solution. Necessary and sufficient con-
ditions are stated for the case in which n = 2 in Eq (1.3).
These conditions can easily be extended to cover larger values
of n. The conditions given are predominently based upon the

use of similar matrices. With similarity shown, the concept




e

of pencils of matrices is used to generate the actual solution |
to the matrix equation. 1
More complex matrix equations are handled through the
introduction of the concept of spectral decomposition. This
is basically writing a matrix in terms of eigenvalues and
idempotent matrices. After some of the theory of spectral
decomposition is investigated, it is extended by introducing
nilpotent matrices. The theory of solutions is developed for
square matrices first, and then extended to include rectangular
coefficient matrices and also rectangular variable matrices.

Following this is a brief digression to consider equations of

the form

AXB « CYD = E (1.4)

Equations of the type in Eq (1.4) are studied from the point
of view of being able to be rewritten into an equation of the
type in Eq (1.3) with n = 2,

Two other methods of solution of the equation AXB +

CXD = E are considered. A brief look is taken at how general-

ized inverses can be used to solve equations. In doing so, it
becomes apparent that more than one solution can exist for an |
equation. The theory of how these additional solutions are
generated is developed in Chapter III. The last method of
solution considered is through the use of Tensor Analysis.
The second half of this thesis develops the concepts !

of generalized inverses by extending the methods that are

currently being employed to allow a wider class of solution

2




to be possible. This is done by extending the theorems that
exist to include more arbitrary matrices. This then lets the

user have some control over the results and more closely fit

Y

the solution to the problem at hand. Also in this section,
applications of the theory are made to the area of model
reduction.

i The last portion of the thesis recapitulates some of
’ the ideas of linear modeling and then applies the previous

work to finding the variance and covariance matrices. Another

application is to the concept of the reduced order filter.
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I1I. Solutions of the Matrix Equation

AXB + CXD = E

In this chapter the results of Roth (Ref 38), Rosenblum
(Ref 36), Mitra (Ref 28), Jones (Ref 14), and Lancaster (Ref
21) are extended by use of procedures taken from Rao and Mitra
(Ref 35), Nering (Ref 29), and Browne (Ref 4).

Special cases of the matrix equation

AXB + CXD = E (2.1)

occur if B =C =1 or A=D = I, where I denotes the identity
matrix. Thus, Eq (2.1) reduces to the Liapanov equation.
Much attention has been given to solutions of the Liapanov equa-
tion, particularly Gantmacher (Ref 10), Ma (Ref 26), Rosenblum
(Ref 36), and Ziedan (Ref 46). Many others have also done work
in this area. Leuthauser (Ref 23) had studied Eq (2.1) in the
cases where the matrices are all taken to be square. The re-
sults presented in the remainder of this chapter mostly pertain
to rectangular matrices. That is, in general the solution matrix
X is an element of a class of matrices that are of dimension

m by n. This will be deuoted by X The dimensions of the

(m,n)"*
A,m)* Bn,@)’ Cp,m)* P(n,q)’ 3¢ E(p,q)-

Solutions of Eq (2.1) and also of the more general matrix

other matrices are:

equation

m
LAXB=Q (2.2)
i=1




will be found through use of matrix methods, tensor products,

and spectral decomposition of matrices.

Necessary and Sufficient Conditions
Tor the Solution of Eq (2.1)

Roth (Ref 38) developed his results for square matrices

by using the concept of similar matrices. Since the equation
now under consideration has rectangular component matrices,
the restriction that the matrices be similar is relaxed and
all that is required is that the matrices be equivalent.

Definition: A matrix B is said to be equivalent to a
matrix A if there exist nonsingular matrices P and Q such that
B = PAQ.

Theorem 2.1 (Necessary Condition): Let X denote

(m,n)

(pm)’ B(n,q)°
C(p,m)’ D(n,q)’ and E(p,q)’ then the fcllowing pair of matrices

the matrix solution of AXB + CXD = E where A

A(p.m) E(p.q)
] (2.3)

[A(p.m) °(p.q)]

O(n.m) D(n.q) 0(n.m) D(n.q)

are equivalent.
Proof: To show that the above matrices are equivalent,

there must exist two nonsingular matrices P and Q such that,

p A @)

(p*n,p+n) = | " Umeq,meq) "

Om,m) P(n,q)

A p,m) Otp, )]
L

(2.4)
Otm,m)  Pn,q)°




1 -CX I -XB
i [ (P.P) (p.n)} R [ (m,m) (m,q)} 3

Om,p)  Tem,n) Ota,m  T(q,0)

Then by substitution, the resulting equation is

[I(p.p) 'Cx(p,m)] PA(p.m) E(p.q)]

Om,p)  In,m O,m) P(n,q)

[I(m,m) 'XB(m.qq A (p,m) o(p.q)]

(2.5) §
o(q.m) I(q.q) |

-O(m,n) D(n.q)

Multiplying the first two matrices on the left together yields:

[“(p,m) E'an(p.q)]. {I(m,m) "‘B(m,q)}

O(n,m) D(n.q) O(q,m) I(q,q)

Apom) ©(p,q)
= (2.7)

Otm,n) P(n,q)

Now, multiplying the remaining two matrices yields,

[A(p,m) 'A"B*E'ancp.q)] [“(p,m) °cp.q):l
= (2.8)

LO¢n,m) D(n,q) Otm,n) (n,q)

Since AXB+CXD=E, then -AXB+E-CXD=0 and Eq (2.8) becomes
["‘(p,m) °cp,q)] [A(p.m) °(p,q)]
o 2.9
°(n.m) D(n.q) 0(m,n) D(n,q) iy

which shows the matrices to be equivalent and completes the
proof.




Theorem 1 shows that a necessary condition for a solu-
tion to exist is that the matrices A and D from Eq (2.1) can
be written in block diagonal form. Similarly, the same result
can be shown for the matrices B and C of Eq (2.1).

Theorem 2.2 (Necessary Condition): Let X denote

(m,n)

the matrix solution of AXB+CXD=E where A(p m) * B(n Q)’ C(p m) *

D(n,q) and E(p’q). then the following pair of matrices are

equivalent:

[C(p.m) E(p.q)] [C(p.m) o(p.q)]
X (2.10)

Otm,m) B(n,q) Om,m) B(n,q)

Proof: The proof of Theorem 2.2 is identical to the

proof of Theorem 2.1 with the choice of P and Q as follows:

Let P = [I(p:p) °Ax(p'n)] and Q = [I(mnm) -Xn(moQ)](Z.ll)
0(n.p) I(n.n) O(q,m) I(q.q)

Two other necessary conditions arise if in Eq (2.1)
the matrices A and C are of the same square dimension and the
matrices B and D are also of the same square dimension but
different from A and C. These conditions arise from the study
of pencils.

Definition: Let A anc C be a pair of square matrices
of the same order and let A be an element of the complex num-
bers, then A + \C is called a pencil.

Definition: A pencil is considered to be regular if

the matrices A and C are square and the determinant |A + AC|




is not identically zero. Otherwise, the pencil is singular
(Ref 28:823).

Theorem 2.3: If A+\AC and B+)\D are regular pencils,

then Eq (2.1) has a solution if and only if the following
pair of matrices

[(c-eA)‘1 (C-eA) !

E(B+en)‘1] [(c-eA)'1 0
0 -D(B+eD) !

_1] (2.12)
0 -D(B+eD)

are similar, where there exists an e, a complex scalar, such
that |-eA+C| ¥ 0 and |B+eD| # 0.

Proof: Since A+AC and B+AD are regular pencils, the
determinants are |A+\AC| # 0 and |B+AD| # 0. This implies that
|A+AC| is a polynomial in A and has at most n-zeros. Hence,
there are at most m values of A for which |A+AC| vanishes.
This is similarly true for B+AD. Choose e not equal to any
value of A for which |A+AC| , |B+AD| vanishes (Ref 8:824).
Thus e is a scalar such that |-eA+C| # 0 and |B+eD| # 0, which

implies (-el\+C)'1 and (B'reD)'1 both exist. Thus, the following

is true:
AXB + CXD = E (2.13)
AXB + eAXD - eAXD + CXD = E (2.13a)
AX(B+eD) + (C-eA)XD = E
(C-eA) "AX(B+eD) + XD = (C-eA) 1E

(C-eA) "1E(B+eD) !

(C-eA) 1ax + Xp(B+eD) !

Eq (2.13) has then been reduced to a Liapanov equation. By
the results of Roth (Ref 38:392), the matrices in Eq (2.12)

are similar which completes the proof.
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Theorem 2.4: If A+\C and B+AD are regular pencils,

then Eq (2.1) has a solution if and only if the following

pair of matrices

FA+0C)°1C (A+eC)‘1E(D-eB)‘1] [fA+eC)'1 o]

0 -D(B+eD) "1 0 -D(B+eD) "}

are similar, where there exists an e, a complex scalar, such
that |A+eC| # 0 and [D-eB| ¥ 0.

Proof: The proof of Theorem 2.4 is similar to the proof
of Theorem 2.3. The major difference is that in Eq (2.13a), the
matrix eCXBshould be used instead of the matrix eAXD.

Theorem 2.5 (Sufficient Condition): Let

AX + cXB"lp = E (2.14)

where B is a nonsingular matrix, and let

A+)\C E A+AC 0
[ ’ (2.15)
0 -D+AB 0 -D+AB

be a pair of equivalent matrices, where A+\C and D+AB are
regular pencils of matrices. Then there exists a solution of
Eq (2.14). :
Proof: By the results of Roth (Ref 38:392), and since
the matrices in Eq (2.15) are equivalent with elements in F(})
where F is a polynomial domain and A is an indeterminant, then
X(A) and Y(A) are matrices with elements belonging to F(1).

Hence Eq (2.14) can be rewritten as

(A+AC)X(X) - Y(A)(D-AB) = E (2.16)

..L.--.--"'“'."""""--.--l-IIlllllﬂﬂlﬂ=========} . i




2 3

- P .
Let X(\) xo+xx1¢x X2+A X3+...+X Xp. p <m-l (2.17)

and let

3

] Y(A) = Y0+xvl~xzyz+x Yyt.. A%, @ <0l (2.18)

where p and q denote the number of matrices with elements in F.
Since X()) and Y(A) are of the same dimension, then p = q.
Thus Eq (2.16) can be expressed as
(A+AC) (X #AX #AZX %o . AP )
0 1 2 L p

; : (2.19)
- P -\B) =
(YO+XY1+X Y2+...+x Yp)(D AB)=E

Equating the coefficients of like powers of A in Eq (2.19),

L the following p+2 equations can be arrived at:
Axo - YOD = E
Axl + CXO - Y1D + YB = 0
AX. « CX, - ¥,0 * Y;b * 0

2 | 2 1

: ¢ g (2.20)
A%, *+ C%_y- YaD * Yh.g® = O

+ Y B = 0
cxP P

Multiplying each of the equations of Eq (2.20) by I, B'ID,
(B'lb)z, (B'ID)S,..., (B'ID)p+1 respectively yields:

-1 -1
AX, (B77D) + CXy(B "D) = 0 (2.21)
AX,(81D)2 « Cx (B7ID)E = 0

.

10




-1,.h Bk _
AX, (B™'D)" + €X, ;(B7'D)" = 0

: (2.21)
cxl,(n'ln)"’1 i

Adding the equations of Eq (2.21) and factoring yields:
A[x0+x1(a'ln)+x2(n‘1n)2+...+xp(8'1n)P] +
C[xo(s'ln)+x1(3‘ln)2+xz(n'1n)3+...+xp(n'1D)P*1] = E (2.22)
which implies
A[xo+x1(3'ln)+x2(n‘1n)2+...+xp(n'ln)91 .
C[xo+x1(n‘1n)+xz(n’ln)z +...+xp(s'ln)P](B'ln) - E (2.23)
Hence, a solution of

AX + cxBl

D=E (2.24)
exists and the theorem is complete.

Conditions for the Solution

n
of the Matrix Equation I AiXB.-C
i=1 s

Conditions that are necessary and sufficient for solu-
tions of the general linear matrix equation
n

iZIAiXBi = C (2.25)

will be based upon the ideas of a spectral decomposition of a
matrix into a representation that uses idempotent and nil-

potent matrices.

11




Definition: Let N be a square matrix with elements in
a field F. If Nz = N, N is said to be idempotent.

Definition: Let N be a square matrix with elements in
a field F. If there exists a positive integer m such that
N = 0, N is said to be nilpotent.

Definition: Let A and B be two idempotent matrices.
Then if AB = BA = 0, A and B are said to be orthogonally idem-
potent.

Orthogonally idempotent matrices are generated by
spectrally Hecomposing a matrix. Matrices that are associated
with different eigenvalues are orthogonal.

Definition: Let A = .g AiEi. The representation of
A where each Ai is an eigenv;;ie of A and each Ei is an idem-
potent matrix associated with the Ai is called a spectral
decomposition.

From a theorem of Rosenblum (Ref 36:268), there exists
the property that the sum of the orthogonal idempotent matrices
equals the identity matrix, I.

As stated earlier, a considerable amount of work has

been done to find the solution of equations of the type
BX - XA = Q (2.26)

Most of this effort has been directed towards those cases in
which the matrices A and B have been square and of the same
dimension. Rosenblum (Ref 36) has derived both necessary and
sufficient conditions for this case. The next theorem extends
his work to the case where the matrices are of different

12
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dimensions.

Theorem 2.6: Let A be a square matrix of dimension m,

m
such that A = I aij and B is a square matrix of dimension n,
j=1

n
such that B = I b Fk, where the Ej's and Fk's each form dis-

k
k=1
tinct sets of orthogonal idempotent matrices. A necessary and

sufficient condition that the matrix equation Eq (2.26) have a

solution X is that whenever for some pair of indices s and

(n,m)

r, ag = br' that is the characteristic roots are equal, then

FLQEg = 0y o

Proof: To show necessity, suppose X is a solution

(n,m)
of Eq (2.26) such that gy * br' Then Eq (2.26) implies

n m
T (byF, )X - X( 2 a,E.) = Q (2.27)
k=1 Kk k j=1 3
which can be rewritten as
n m
T b,F,X- T a.XE. =0 (2.28)

Multiplying from the left in a termwise fashion by Fr and at
the same time multiplying from the right in a termwise fashion

by Es yields:
brFrXEs - asFrXEs = FnQEs (2.29)

since the Eg's and F_.'s are orthogonally idempotent. Factoring
Eq (2.29) yields:

(br-as)FrXEs = FrQEs (2.30)

But by hypothesis b, = a_, thus the left side of Eq (2.30)
13




becomes 0 This then implies

(n,m) "
FrQEs A o(n,m)

To show sufficiency, the following convention will be used.

If B, br' then FrQEs = 0 and = * 0 = 0. Thus the expression
F—F\ QE; (2.31)
k%5 J
has meaning for all j and k. Next let V be defined as follows:

1
Y= ¥ 3 —— F, QE. (2.32)
kel ju1 P85 KT

If V is a solution of Eq (2.26), replacing X by V should result

in Q. Hence,

m n 1 m n 1
BV-VA =B I ¢ 5 FQE; - I I p—— FQE; A
k=1 j=1 Bk TE i R e j=1 °x 3 3
. & (apkqej - FQE;A
k=1 j=1 k"
m
m n I (F)FQE; - FQE; I (aE)
« § g A3 k=l
k=1 je=1 oy
, B a byF\QE; - a,F QE,
% by -a.
k=1 j=1 k %)

m n
I T
k=1 j=1 FxQ;

T E)Q (I
= L B
(E PO (I ED

il
14




Therefore V is a solution of Eq (2.26) and the proof is com-
plete.
Example 2.1: The technique derived in Theorem 2.6

will now be used to solve for the matrix X in the following

[? 1] r. 0 o] r. 2 il |
2% 2 1] » (2.33)
0 3 0 0 3 4 2 -2 ;

The representation of A is

equation:

A= alﬁl + azEz + 3353
and B is

B = bIFI + szz

In terms of the values from Eq (2.33), these become
1 ¢ 0 0 0 O 0 0 O
A=11[0 0 0] * [0 -1 -1] + 3 [0 0 1]
0 0 O 0 0 O 0 0 1
1 -1 0 1

From Theorem 2.6 the solution will look like Eq (2.32), thus

z FkQE

k-1 3-15

F,QE, F1Q53 F,QE, F,QE,

X = + + +

15




1 -3 2 3B o0 o6 1 -11f1 2 3310 0 0O
: 0 0 O [ 0 0 1
- X » 0 0 2 =2 0 0 . 0 0JL4 2 -2JL0 0 1 <
. 2-1 2-3
0 11f1 2 3If1 0 0O 0 13f1 2 390 0 O
L HE I

1 2 -1JL0 0 O L0 1J44 2 -1JL0 0 O 3
3-1 3-2 j
i |

[3 0 0 0 0 S 1 4 0 0 0 2 =2
Bl i s b, L abL L
0 0 O 0 0 O 4 0 0 0 2 -2
<k, - & ~F
X =
2 2 -2

To extend the results of Theorem 2.6 use will be made

of the fact that if two matrices commute, then the associated
idempotent representation will also commute. The extended

theorem is as follows.

Theorem 2.7: Let A and C be square matrices of dimen-

sion m, such that A and C can each be expressed as a sum of
products of eigenvalues and orthogonal idempotent matrices.
Let B and D be square matrices of dimension n, such that B
and D can each be expressed as a sum of product of eigenvalue
and orthogonal idempotent matrices. Also, let AC = CA and

BD = DB. Then a necessary and sufficient condition that the

matrix equation

BXC + DXA = Q (2.35)
has a solution x(n m) is that whenever for some set of
»
indices (r,s,v,p} the following holds: csbv+ardp = 0, that

the products of the characteristic roots sum to zero, then

16




HvaQGsEr- O(n,m) (2.36)

Proof: To show necessity, suppose X is a solution

(n,m)

of Eq (2.35) such that csbv*ard = 0, then Eq (2.35) implies

P

n m n m
(T B F)X( 2 c36:)+( T d,H,)X( E aE.)= Q
kel K K770501 70737 N VT

Multiplying from the left by Fv in a termwise fashion and also

multiplying from the right by Gs in a termwise fashion yields:

n m
CsvavXGs + Fv(lfllel)X(iflaiEi)Gs = FVQGs (2.37)

Using the fact that if two matrices commute, then their idem-

potent matrices commute, Eq (2.37) can be written as

m
H, F_XG £ a.,E. = F QG

n
CsbyF A, * lfldl 1 vis jop i ves

S VvVvy

Now multiply from the left by Hp in a termwise fashion and
multiply from the right by Er in a termwise fashion which

results in

csvavaXGsEr + ardepFVXGsEr = HvaQGsEr (2.38)

Eq (2.38) then implies

(csbv+ardp)HvaXGsEr = HvaQGsEr (2.39)

By hypothesis csbv+ardp- o(n,m) and thus the left hand side

of Eq (2.39) is equal to O(n m) ° which implies that
’

HF\QGGE, = 00 o

17




To show sufficiency, use will be made of the convention that
whenever csbv = -ardp, then HvaXGSEr = 0 and » -0 = 0, thus
the expression

1
5T FkQG; E;
cj taidy 1"k 1

will have meaning. Define

m n m n H,F QG.E.
% I 3.3 1 =k dd

(2.40)
i=1 k=1 j=1 1=1 %;°k*3;i%

and let V be a solution of Eq (2.35). Thus substituting the

spectral representation for the matrices A,B,C, and D yields:

n m n m n H{F,QG.E. m
BVC+DVA = I bF, I I I T ElEE;EJHl Sck
A=1 i=1 k=1 j=1 1=1 €j°k*3j%1 y=1 “ ¥

n m n m n HleQG.Ei m
z dOHO z I X z - -y 5 a¢E¢
o=1 i=1 k=1 j=1 1=1 “j "k “i"1 ¢=1

n m
m n m n ( Zb,F)H,F,QG.E.( £ ¢ G.)
P R e L AN $
i=1 k=1 j=1 1=1 cjbk+aid1

n m
m n m n (ofldoHG)HlkaGjEi( §1a°E®)
¥ .r % 3 e (2.41)
i=1 k=1 j=1 1=1 P i i

Using the properties of orthogonal idempotent matrices and
commutativity, Eq (2.41) simplifies to
m n m n cjkaIFkQGjEi

& ¥ % & %
i=1 k=1 j=1 1=1 j°x* 39

m n m n aid1H1FkQGjEi
- . 8 . c;b, + a.d
i=1 k=1 j=1 1=1 “j°k iT1

18




B ? g ? g (cjbk + aidl)HleQGjEi
i=1 k=1 j=1 1=1 €30k * 239

m n m n
I T I I H.F.00.E.
j=1 k=1 j=1 1a1 L1 K371

m n m n
w E R T Po@ I G, T B
1=l L kel K7 jap J jm3 1
».Q

Hence V is a solution of Eq (2.35) and the theorem is proved.
In the more general case, solutions of equations of the

type

n

‘£1 A;XB; = Q (2.42)
1'

where the matrices A and B are square and of different dimen-
sion can be found. To solve this type of equation the
following restrictions would have to hold:
i) {Ai} would have to be a commutative set,
ii) {Bi} would have to be a commutative set, and
iii) n m

& E a.,b. =0
j=1 j=1 1)

If these three restrictions hold, then the implication is that

n m
(E BIQAT B = d
- j=1 )

Example 2.2: As an example of Theorem 2.7, consider

the equation
BXA + BXA = Q (2.43)

where the B and A matrices are as defined in Example 2.1. Let

19




10 @
Q-
2 0 o0
Then the solution for X would be:

3 2 3 2 H,PQGE,

Bew gt o x . op ——5—-13—

i=1 k=1 j=1 1=1 ¢j°k*3i%

The summation would then involve summing 32 terms. This
process could easily be adapted for a computer solution.

Not all matrices may be decomposed into a representa-
tion that involves only idempotent matrices. However, a
matrix of this type may still be decomposed by using both
idempotent matrices and nilpotent matrices. If E is an idem-
potent matrix, then let E be its associated nilpotent matrix.

Two properties of nilpotent matrices are:
ii) EiEj = EiEj = ( (i4¢#3) (2.44)
Generalizing Theorem 2.6 to this more inclusive case

results in Theorem 2.8.

Theorem 2.8: Let A be a square matrix of dimension m,

m<m
such that A = T aiEi+Ei and let B be a square matrix of
i=1
n<n
dimension n, such that B = T b.F.+F.. The sets {E.}, (F.}
jm1 33 i j

are complete sets of principal idempotent matrices and the

sets {Ei}, {Fj} are complete sets of nilpotent matrices

associated with A and B respectively. If QEi = FjQ and
20
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in - ij for all i and j, then a necessary and sufficient

condition that BX - XA = Q has a solution X ) is that for

(n,m

some pair of integers r and s, a_ = br’ then BrQAs -

s
Proof: To show necessity, let X

e e e

Qn,my- |
(n,m) be a solution of |
BX - XA = Q (2.26)

such that ag 'br' then Eq (2.26) implies

n<n m<m

[jgl(bjpj+Fj)) Xo=% [ifl(aiﬁi*gi)] - Q

K;n ﬁ;n 23 Eém ﬁ;m ¥
b,F.X + F.X - a,XB, - XE, = Q
ju) 43 3wy ) geg 21 ey 4

Recalling the properties of nilpotent matrices that are stated
in Eq (2.44) and multiplying from the left by Fr in a termwise
fashion yields

= m<m m<m =
bF X+ FX- T a.F XE, - = FXE; = F.Q

jul I S

Multiplying from the right by Es in a termwise fashion yields
F - E = 2'
brFrXBs + FrXBs - asFrXEs F.XE FrQEs (2.45)
Regrouping and simplifying Eq (2.45) becomes

(b~

r (2.406)

a JF XEB, + F (F X - XEJ)B, = F QE,
But by hypothesis F X = XE  which implies Eq (2.46) is

(b, -a )F XE = F QE (2.47)

Again, by hypothesis br = a_ and hence the left side of !

s

21
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Eq (2.47) is 0 which implies that

(n,m)

FrQEs 5 0(m.n)

To show sufficiency the convention will be used that whenever

8, = br' then FrQEs = 0 and ® « 0 = 0. Thus the expression

F, QE

ey

k%)

will have meaning for all values of j and k.

Let V be a solution of Eq (2.26) where

ﬁgm ﬁ;“ 1
Vo= F.QE, (2.48)
jm1 k=1 Dp-8; ki

Then the left side of Eq (2.26) is

vi ﬁ;m ﬁ%n F QE; ﬁém ﬁén FlQE;
BV - = B( —) - ) A
j=1 k=1 Pk % i=1 k=1 Pk %

ﬁ;m Kin BF QE; ﬁ;m ﬁén FLQE;A
- . (2.49)
i=1 k=1 °k7%i j=1 k=1 Ok 34

In Eq (2.49) substitute the spectral decompositions for A and

B to get
m<m = n<n e
mem ficn 5 AFVFOFKQE fen Ren T (8B 0B FQE,
L0 4 «. 3 I &
i=1 k=1 Dy-ay kel isl LI

m<m n<n (b, F, +F,)QE m<m n<n F,Q(aE,+E,)
T g Ea RS .Y Y kb _: ity
jel kel X k4

i i=1 k=1

Adding and then factoring out the common terms yields:

22




m<m fi<n (by F, +F, QE -F,Q(a.E,+E,)
o ak kb B ol S (2.503
i=1 k=1 ) Sl |

Expanding the numerator of Eq (2.50) changes the equation to

i=1 kel i

(2.51)

Applying the hypothesis and the properties of idempotent and

nilpotent matrices to Eq (2.51), this equation simplifies to:

il k=1 by-ay

m<m H;p (by-a;)FQE;
i=1 k=1 k73

ﬁ;m i;n
- F, QE,
jul ks1 K 1
E;n ) ﬁém }
- F, | Q E,
k=1 K jey 1
.- Q

Hence V is a solution of BX-XA=Q, and the theorem is complete.

Example: As an example of the procedures demonstrated

in Theorem 2.8, let the matrices of Eq (2.26) be as follows:

2-1 1 ; 1 2
A =3 3 -g (Ref 4:186) and B = [2 1] (Ref 29:277) (2.52)

1
[1 2 -z]
C= 12 11

Thus Eq (2.26) becomes

23
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1 2 2 -1 1 i1 2 -2
[ X-X}s$ § -2 -[ (2.53)
2 1 4 1 0J L2 1 -1

The decompositions of A and B are:

A= alﬁl - El + aZEZ + EZ
B = blF1 + szz (2.54)

In terms of the specific A and B of Eq (2.52)
A 1( [ : 1]) ( [1 10 10]) 3(1[5 3 %]) 0 ﬁ
= - 0 - + - + v
L 3 & | 1 10 10 L} 3-3 3 ;
[l 7)) sBE 2

e 7[ *Bh 1 (2.55)
|
i
|
%
{
l

From Theorem 2.8 the value of X that is being sought can be

represented as Eq (2.48) as follows

1;2 oéz F\ QE;
X = - (2.56)
i=1 k=1 Pk 3;

Expanding Eq (2.56) implies

FQF; FyQE, FQE

X = +
b8, B8, ' BE

(2.57)
For all other choices of i and k the difference bk~ai goes

to zero and, hence, by the convention in Theorem 2.8 the

quantity goes to zero. Making the substitutions into Eq (2.57)
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PR T | [1 2
X = (-
( 7)(7)(1)_-1 1] .
X =320FY 2 - 2H2 =2 2
* (-%)(%)(%) 1]Lz 1 ][% :% %]
) IR | 2 -2
+ (f)(f)(zﬂ[ 1][2 %

i 1)[0 0 o] L [-4 4 -4] (l_)[lz 12 -12]
= (- * [ +
T8 o o 37 Ly -4 s 8702 12 -12

: 2 -2]
1 § -1 (2.58)

The last theorem in this section generalizes the results
of Theorem 2.7.

Theorem 2.9: Let A and C be square matrices of dimen-

m<m m<m
sion m, such that A = ¥ aE .+ E and C= ¥ ¢.G, *C , and let
i=] =1 i3

n<n
B and D be square matrices of dimention n, such that B = kf bka*Fk
=1

n<n
and D = 1?llelﬂll, where the sets (Bi}. {Gj} " (Fk} , and
{Hl} are complete collections of principal idempotent matrices
and the sets {El} : {Ej} s {fk} , and {ﬁl} are complete collec-
tions of nilpotent matrices. Then a necessary and sufficient

condition that the matrix equation
BXC + DXA = Q (2.359)

have a solution X is that whenever for some set of in-

(n,m)
dices {r,s,v,p} where HvFr and GSEP form nonsingular matrices,

25
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FrQ + erUs + apHvQ + dvEpQ ¥ FrQUs + HVQE'p
implies that X is also a solution of
(brcs*dvap#csFr#apHQ)x + X(ers+dva) > Fers+ H&be = Q

Proof: Let X be a solution of Eq (2.35) such that

(n,m)

n<n m<m
Q= kf (by Fy* k)) ( (chj*Gjﬂ

n<n m<m
| T (4 H +H )) ( (aiE.+E.)) (2.59)
1=1 1-1 it

Expanding Eq (2.59) yields

n<n m<m n<n m<m
RN LRI R AN}

j=11

!n<n m<m n<n m<m
+| TF ) T c.G, ) ( k f C

k=1 j=1 3 3] k=1

(2.60)

n<n \ (m<m n<n m<m
§{td1H1 faE) de)(

1=1 ji=1

'nfrnn) msm ) " x r E)
+ a.E

1=1 M \a 1 e T

Multiplying on the left by Fr and Hv in that order in a term-
wise fashion and then multiplying on the right by G, and Ep
in that order in a termwise fashion making use of commutativity
and the idempotqet properties of these matrices yields from

Eq (2.60)
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rsvr

HvFrQGsEp = b.c,HFXGE + b HF XUsEp

P rvr
+ CsHvFrXGsE + HvFrXUsEp + d a H F XG_E (2.61)

P vip v r*UsTp

+ devFrXGsEb + apﬂvFrXGsE * ﬂ&FrXGsEb

P

Using the properties of nilpotent matrices and factoring,

Eq (2.61) can be reduced to
H,F QG.E, = HVFrEbrc stdya e Foea H )X
* X(b, T +d E)) + FXG + Hvpr}'.ssp (2.62)

Since HvFr and GSE are nonsingular matrices, then their in-

P
verses exist and Eq (2.62) can be reduced to

Q= (brcs+dvap+csl~'r+apﬁv)x+X(ers+dvEp)+Frxcs+ﬂvpr

Which implies X is also a solution of this equation and
necessity has been shown. To show sufficiency the convention
will be used that whenever brcs +da_= 0, then HvFrXGsE = 0

vV'p P
and » « 0 = 0, then the expression

HvFrXGsE

brc od e (2.63)
rs

vop

will be well defined. Let V be a solution to Eq (2.63) where

m<m m<m n<n ngn HOF QG.E

VeI T I T gyt (2.64)

p=l v=1 r=1 s=1 "r"s vap ;




n<n ) m<m m<m n<n n<n H, F _QG.E )
k)‘

nvc+DVA-k}: (by Fy *F Bx_.r_J_B
.1

p=1 v-l r-l s-l

m<m n<n
RACLRSS )) ( T (dlulml))

) Bl’La—B T (a E{*E,) (2.65)

(m<m m<m n<n n<n H_F QG E ](m<m
p=1 v=1 r-l s=1 i=1

Simplifying Eq (2.65) by multiplying and making use of the

properties of idempotent and nilpotent matrices yields:

m<m m<m n<n n<nf(c h +d a ) H,F QG

BVC + DVA= T T T 5P
p=1l v=1 r=1 s- b B " *d ap
H F (c F Qb QG +a H Q+d E +F QG +H,QE )G E, Lo
B S ¥avap (z.

Utilizing the convention, Eq (2.66) simplifies to

m<m M<m N<n n<n
Lk e SR e HvFrQG E
p=1 v=1 r=1 s=1

ol
Which completes the proof of this theorem.

Generalizing these results to equations of the type

2 A XB = Q (2.67)
i=]1
where
m
Ai - jz (ale +A1J) and B JEl(leBlJ Eij)
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with {Aij} . {Bij} forming sets of complete idempotent matrices
and {Kij} " {Fij} forming complete sets of nilpotent matrices.
A necessary and sufficient condition that the Eq (2.67) have

a solution X(n m) is that whenever for some set of indices the
»

n m n m n m X
I 0T A..and T N B,. have inverses and I E B..%, .0
j=1 j=1 13 j=1 j=1 1J j=1 j=1 1371]

n m
+ ..QB.. = i i f
ifl jEIKIJQﬁlJ 0, then X(n,m) is also a solution o

n m n m ikl n m -
z I a,:b.,. + I T bi:A . )X + X(2 3 : Bz s
(ill j-l 1) 1j i=] j-l 1) ]'J) (i-1 j-l alJ IJ)

m m n B\K T
£ LR OB K. E.}e4q.
i=1 j=1 i=1 j=1 1) 1)

An alternate solution to Eq (2.35) exists if either pair of
matrices B,C or A,D are nonsingular. If this condition exists

then the equation to be solved is

1 1

X + B lpxac’! = B 1qc!

or

1 1

BXCA™! + X = plqa’l

Spectral Decomposition of
EectaggpIar Matrices

In this section, the results of the last section will

D"

be generalized to solutions of matrix equations in which the
coefficients are rectangular matrices. In solving these equa-
tions use will be made of the following theorem.

Theorem 2.10: (Rao and Mitra (Ref 14:38)) Any m x n

matrix A can be written as:
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m
A= .ElaiUi (2.68)
1-

where ui. i=1, 2, ..., u are the distinct nonnull eigenvalues

of A*A and the matrices

Uy = o tAlI-(A*A-alD) ((A*A-alD)?) (a*A-alD)]  (2.69)
1 1l 1 1
satisfy
| U, UV = U, Vi

UjU3 =0, URU = OVi f (2.70)

(ai is taken to be the positive square root of “g which is

real and positive since A*A is hermitian and non-negative

E definite.)

| For a proof of the above theorem, the reader is directed

to the source cited. The notation used above is defined as

follows: a matrix denoted by A* is the conjugate transpose

of the matrix A; and a matrix A~ is the generalized inverse

of the matrix A.

Example 2.3: As an example of Theorem 2.10 consider 5

1 SR T |
T (2.71) i

i 2
First the nonnull eigenvalues must be found, thus A* -[1 1]

l
i 1 |
and the product

2 1 &« 1 2 e & &
A*A = |1 1| =12 2 2 (2.72)
d 13 1 1 14 2 2

i
Therefore, ﬁ

%
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(2.73)

= -As + 612

= 22(1-6)
Setting this last equation equal to zero and solving implies
A =0 or A=26

Since the uf are the nonnull values of A, the only A that can

be set equal to ug is the value of 6. Thus ug = 6 and hence

A = 601 (2.74)

To find the matrix Ul’ Eq (2.69) must be solved. Making the

substitution for a; yields

Up = AL (A*A-6D{(A*A-6D) %) (A*A-6D)]  (2.75)

g 2 2%f¢e % 81 -2 1 1 i
A*A-61 =12 2 2|10 6 oOl={| 2 -4 2 (2.76) f
.2

2 2 2dLo o0 ¢ - !
and {
, [28 -12 -12 H
(A*A-61)° =f-12 24 -12 (2.77) |
-12 -12 24 F
with F
5" 1/6 -1/12 -1/12 |
{(A*A-6I)°) =]-1/12 1/6 -1/12 (2.78) |
-1/12 -1/12 1/6 !

Substituting Eqs (2.76),(2.77) and (2.78) into Eq (2.75)
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1 [1 1 1]
U =
1 AL 11
f 1 0 0 4 2 21f 1/6 -1/12 -1/121[-4 2 2
*fjo 1 o}|-|f2 -4 2||-1/12 1/6 -1/12 2 -4 2
: 0 0 1 2 2 -4JL-1/12 -1/12 1/6 2 2 -4
| 1 3 B4R 6 B} fSs -3 -3
s [ % 1 0i.1-3 6 -3 ]
Je M 1 ) 0 1J L3 -3 6 #
1 [1 ) SR [S 3 3]
= -= 3 -5 3
8 1 1 1JL3 3 -5
1 [1 |
78 S T
Thus A can be decomposed into a summation of products of

scalers times matrices, where the scalers are determined by
the eigenvalues of A®A.
Definition (Ref 35:20): Let A be an m x n matrix of

arbitrary rank. A generalized inverse of A is an n x m matrix

G such that X = G; is a solution of AX = ; for any y which
makes the equation consistent. One of the important properties
of generalized inverses is found in the next lemma.

Lemma 2.1 (Rao and Mitra (Ref 35:20)): A  exist if and
only if AA"A = A,

Example 2.4: Let A be given as in Eq (2.71). To find
the generalized inverse of A the procedure outlined by Noble

(Ref 30:339-341) will be followed. Let A be partitioned as 1

S O | '
A -[-« ------ ] (2.79)

follows:
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then

Ay ¢ 1] , A12 » £ 1] , Ay = (1] , and AZZ « {1 1] (2.80)

From the matrices in Eq (2.80), the matrices Q, B, and C can

be generated.

=1
Mg~ BER 1 - B

A 1
B .[AH] - [ ] (2.81)
12 1

C=1(1Q =([111]

Q=A

A formulation of the generalized inverse is then given by the

equation

A" = cTeecTy 1 (aTe) 18T (2.82)

where the superscript T indicates the transpose matrix.
Making the appropriate substitutions

B Y 1 =1
AT =[1 ([1 3 1) FH (1 1) [{]] [1 1]
-1 1
[17

A =111 (1/3) (1/2) [1 1]
L]

N
A=zl (2.83)
11

Theorem 2.11 (Rao and Mitra (Ref 35:24): A necessary

and sufficient condition for the equation AXB = C to have a

solution is that

AA'CB'B = C (2.84)

33

-

g e gy e e e




in which case the general solution is

X = A'CB +Z-A AZBB~ (2.85)

where Z is an arbitrary matrix.
Proof: Let there exist a matrix X such that AXB = C.
Then:
AA'CB'B = AA AXBB B
= AXB
=C

Thus necessity follows. Sufficiency is obvious since A'CB~

is clearly a solution.

Example 2.5: Let AXB = C where A(2 3)? B(3 4) and
’ ’
C(2’4) are defined as follows:

L1 K 1 B | 3 2 -1 0
A -[ ], B =[z 3 -1 -4], and C =[4 ]
3 IR [ | Sg il =S [ S
then solve for the matrix X.
According to Theorem 2.11, all that is required to
solve for X is to set X equal to the resﬁlt of Eq (2.85).
Doing this will generate a family of solutions dependent on
the choice of the matrix Z. For purposes of this example,
let Z be equal to the zero matrix, then X = A'CB". A~ is as
found in Example 2.4, Eq (2.83).
To find the generalized inverse of B, the same proce-

dure will be followed. Checking the rank of B, it is easily

shown that p(B) = 2, and thus the partition of B is
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1 1: 0 =}
B = [2__3_:_:1__:4] (2.86)
3 &)

Therefore

3 Sp0 =] 4 o
511 3 By [ By s a1, and By, = (o1 -8

The intermediate matrices Q, B', and C' are

a = gl ~ L3 1L =L L3

B 10
B' = [B“]- [2 s] (2.87)
2R I S
and
b O | TR
c' = [14Q] [0 1 -1 -2]
Thus

T T

B” = c'Tcret Ty 1t Tpry-1pe

B allb e R b ¢

«2
'E 2
v e amfi 3[4
L0 -1

? =% 2
LS -4 1

9 6 S
B~ « (1/9)]2 -1 1] (2.88)

Returning to the solution of X and making the appropriate

substitutions from Eqs (2.83) and (2.88) yields

| X = A-CB-
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1 1 9 6 3
o (ool D)6 31 omfi L )
11 £ <& 1

which when simplified yields:

12 6 4
X = (1/9) |12 6 4
12 6 4

The next theorem generalizes the conclusions of the last

theorem.

Theorem 2.12: A necessary and sufficient condition for

the equation
AXC + DXB = Q (2.89)

to have a solution is that RR*WL*L = W, where W = RR*QL*L
and R and L are spectrally decomposed matrices multiplied
from the right and left respectively. Then a general solution
of Eq (2.89) is

X = R'WL +Z-RRZLL®
where Z is an arbitrary matrix. This solution exists provided
at least one of the following statements holds, but not both

i and ii at the same time:

i) UiUgD = 0 or BWEWk = 0

(2.90)
5 ® = =
ii) YIYIA 0 or CV;Vj 0

where the decomposition of the matrices A, B, C, and D are as

follows:

. £ g
A u g i3
™ ;5 %% 0 Bp,a) jflejvj * Cope)” oy TRX
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h

D = I §,Y
(m,n) 1=1 1'1

Proof: If Eq (2.89) is a true statement, then

R R A R R RRAR LA PY

Multiplying on the left by Uiu; and from the right by chi

yields
h f
® ® = ®
UiXGk + (Uiui ifl GlYl) X (jfl BJV .G Gk) UiUiQGf(Gk

which can be simplified to

= ®
U,U%QGEG,

UiXGk

*
+ UiUiDXBGka

But by hypothesis (i) either uiugn = (0 or/and BGﬁGk =0,

then the last equation reduces to

U;XG, = U UTQG}G,

Then this is a form of Theorem 2.11 and the proof of the
theorem is complete.
Note that if the multiplication had been by Y'I‘Y1 and

vjv; respectively, then the results would have been

¢, 8, - Y* \Ad'f 2.
IBJYIXVJ Y 1Q V3 (2.91)

and either YIYIA = 0 or cv;vj = 0 would have to be true for
the theorem to hold. Thus there exists four distinct ways

for this theorem to hold.

Example 2.6: Consider the equation,

37
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3 R (SR | 1 1 1 0 -1 r 1 s (.
L1 B L e
S e | i 1 =1 0 1 1 1 2 -1

) Ll
which corresponds to Eq (2.89). Then A* -[1 1] and from
1 |
] 33
Eq (2.88) A = (1/6)[1 1]
) [N |
Decomposing A yields
: S Y
A=au = B[l 1] (2.93)

which implies

a; = /8 and U, = a1 4

and

wr = 1/2) [} ] (2.94)

Following the same procedure for the matrix D implies

(1 e | s S N |
D* -[ ] and D = (1/4)[ ]
| S B S |

Decomposing D yields
1 1
D=2¢§Y = (2)(1/2)|0 0 (2.95)
k' k 1 1
which implies
I 1
Gk = 2 and Yk = (1/2) 2 g

thus
YrY = (1/2)[{ - (2.96)

Substituting the decompositions of A and D from Eqs (2.93)
and (2.95) respectively into Eq (2.92) yields
38




1 ¥ 3 , T 1 0-1911 1N 3
(/3)(1/¢3)[ ]x (2)(1/2)[0 o]+[ ]X[I 1]-[ ]
1 1 13 ¥ 331 e 11 13 L o1

Multiplying on the left by UU* from Eq (2.94) and on the
right by Y*Y from Eq (2.96) yields

2 0y 1 1% 1 131 1
(1/2)[ ][ ]X (1/2)[0 0][ ]
1 WLY 3 X 1 1J 1

1L 0 -1 L 9 i
+ (1/2)[1 ][ ]x (1/2)[1 1][ ]
r bk oo 1 1 2
1 11 3|[1 1
- amamnfi 116 318 1] (2.97)

In simplifying this last equation (2.97), the second term on
the left goes to zero, thus allowing the use of Theorem 2.12.

The simplified form of Eq (2.97) is then

T 1 171 1 ;R |
[ ]x[o o]+ 0 = (5/4)[ ] (2.98)
T T G

Utilizing Theorem 2.12 the solution is

I & 3} ¥ 1
X I
d 1 1s & 1wl 1
T S b R | 1 1111 1
b [ ]Z[O 0][0 0 (2.99)
1 1 1541 1 1J 1 1t 1

In Eq (2.99), letting Z = 0 implies

a 0 1
X = (5/24)[1 0 1]
i 9 1

and if Z = [ ], then the X is Eq (2.99) becomes

G
[Py
[y
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X = (1/24) L65 96 SS]
31 -7% 17

Solution of the Matrix Equation
AXB + CYD = E

In this section equations of the type
AXB + CYD = E

will be considered. The theorems to follow will be proved
for cases in which the variable matrices are the same. After
the proof is complete, those changes that are necessary for a
proof of the two variable case will be given.

Returning to the work of Roth (Ref 38), it should be
noted that his results are all stated for cases in which the
variable matrices are square. In the next four theorems these
results will be extended to the more general case in which the
variable matrices are rectangular.

Theorem 2.13: A necessary and sufficient condition

that the matrix equation

AXI, - I,XB = C (2.100)

1 2

where 11 and 12 are identity matrices and A and IZ are square
matrices of dimension m and B and I1 are square matrices of
dimension n, all with elements in the field F, is that the

matrices

A C A O
o s)2and [p B]

(2.101)
be similar.
Proof: To show similarity, there must exist matrices P
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off St ofy 2 2100

Let P .[I(m.m) Ix(lx.n)] and p-! _[I(m.m) 'xx(n,n)]
Om,m ,n) Om,m)  I(n,n)

Substituting the choice for P and P! into Eq (2.102) yields

I(m.m) Ix(m,n)q[’\(m.m) c(m.n) [I(m,m) 'XI(m.n)].[A o]
(n,m) I(n.n)- o(n.m) B(n.n) (n,m) I(n.n) 9
(1A1 -IAXI+ICI+IXBI] [A o]

- (2.103)
0 IBI| |0 B

But from Eq (2.100) -IAXI+ICI+IXBI is equal to O. Therefore,

Eq (2.103) can be rewritten as

[A o] A o]
O B O B
To show sufficiency, reliance is made on the fact that

since the matrices in Eq (2.101) are similar, then the follow-

ing pair of matrices

A -l c A-)I 0
and [ (2.104)
0 B-AI 0 B-AI

whose elements are in F[x] will also be similar. From Roth's
Lemma (Ref 38:392) there exists matrices X and Y such that

2
X f XO + Axl + A Xz + o0 v 22X

. 2 n
Yo=Y, ¢ AY) + 27, + .0+ AKX

and

(A - Al,) X - Y (B - XII) « C (2.105)
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Substituting the values for X and Y into Eq (2.105) yields

2 n

2

-1, (Y +AY 2%y +...+AnYn)(B-A11) = C (2.106)

1 2

After multiplying out Eq (2.106) and then equating like powers

of A, the following set of A+2 equations is generated.

Axlll + IZXOII -IzYlB + IZYOII =0 j
szll + IZXIII -IZYZB + IZYIII =0 (2.107) §
L SRS S TR R N R

I,X I £ I, Y I =0

2'n"1 201

All of the I1 and I2 in Eq (2.107) are square and thus can be
dropped from the equation without loss of generality. Now
multiply each row of Eq (2.107) by I, B, B2, B3, ..., B!
respectively and sum the members of the resulting equations.

After factoring the result is

2 n, _ 2 Han o
A(Xp+X,B+X,B+...+X B") (Xg+X B+X,B+...+X B")B = C (2.108)

Multiplying from the right and left by I, and I, respectively
yields

2 n i 2 Nyn o
A(xb+x13+x23 +...+an )I1 IZ(XO+XIB+XZB +...+an )JB=C

which therefore implies that a solution of Eq (2.100) exists
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and is

z, X 33 IR N

X=X.+X.B + X 3 -

o' 2P

By an entirely similar argument it can be shown that

2 n 2 Nyp .

1 2
also implies that a solution of Eq (2.100) exists and is

2

Xo= Y.+ Y B * Y B

3 n
0 1 2 A Y R s YnB

3
I1f Eq (2.100) had been

AXI, - I,YB = C

1 2
then the proof of the theorem would have been identical except
that the matrices in Eq (2.101) would be equivalent, with

matrices P and Q being defined as

I Y] I -XI
P -[ and Q -[ ]
0 I 0 I

The next theorem extends the last result by changing
one of the identity matrices into a matrix that is not an
identity.

Theorem 2.14: A necessary and sufficient condition

that the equation
AX - DXB = C (2.109)

where A and D are m x m matrices and B is an n x n matrix with
elements in F, have a solution X with elements in F is that

the pair of matrices
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A Clra O
Wy a.n
0 BJLO B

Proof. Since the matrices of Eq (2.110) are to be

be equivalent.

equivalent, then there must exist matrices P and Q such that

& £ A O
P [ ]Q -[ ] (2.111)
0 B 0 B

I -DX I X
P = [ ] and Q = [ ]
0 I 0 I

which transforms Eq (2.111) into

I -DXJ[A CfI X] [A ©
Eid [ e R R
o 1llo Bllo 1 0 B

Upon simplification, this becomes

Therefore let

IAI TAX+ICI-DXBI A O
]- (2.113)

0 IB o B

Since the identity matrices in Eq (2.113) are all square, no

g g sy -

changes occur during multiplication, thus, for example, IAI=A
Also making use of Eq (2.109), it should be noted that
AX + C - DXB = 0. Hence Eq (2.113) becomes

o i,

Since the necessary condition has been established, the matrix

pair E




A-1D C A-2D 0
[ and [ (2.114)
0 B-AlI ) B-al

will also be equivalent with elements in F(x].
Following the same procedure as in Theorem 2.14, ,;
Roth's Lemma (Ref 38:392) states that there exists matrices [

X and Y such that

}
{
2 n
X x0+xx1+x x2+...+x Xn L

and i
|

i

i

- 2 n
Y o= Y eAY $ATY AT (2.118)

Thus Eq (2.109) becomes

2 n
(A-AD)(X0+AX1+A xz+...+x xn)

- D(Yy*AY a2y s ATy ) (B-AT) = C (2.116)

1 2

Upon expansion and equating terms with like powers of \ the

following system of A + 2 equations is formed.

AXO -DYOB = C
AX1 = DXO - DYIB + YOI = 0
sz - DX1 - DYZB + YII = (
. (2.117)
Axn - Dxn_1 - DYnB + Yn_ll = (
- Dxn + YnI = (
Upon multiplying the system in Eq (2.117) by I, B, Bz, e

Bn’l respectively, then adding columnwise and factoring out

like terms yields

2 n 2 Np o
A(XO*XIB*XZB +...*XnB )-D(XO#X1B+X2B *...+XnB )JB=C

45




This then implies that

2 n

X,+X,B+X,B

3
oty > +X.B +...*XnB

3

is a solution of Eq (2.109), which completes the proof.
By similar arguments it can be shown that necessary

and sufficient conditions exist for a solution of the equation
AXE - XB = C (2.118)
In showing these conditions exist, the matrix pair
A-A1 C A-)1 0
and
0 B-\AE 0 B-\E

are seen to be equivalent and the system of equations to be

solved is
AXOE - YOB = C
AXIE - IXOE - YlB + YOE = (
szﬁ - IXlE - YZB + YIE = 0
E (2.119)
AXE - IX _4E - YB+ Yoy = 0
- IXnE + YnE = 0

The A + 2 equations of Eq (2.119) are then multiplied from
the right by I, A, Az,..., An*l respectively. The result is
that Y +AY A%Y,+A%Y e, +A™Y_ is also a solution of Eq (2.118).

If Eq (2.119) had been expressed as

AX - DYB = C
then the method of solution and the proof of Theorem 2.14

would still be valid. To show equivalence, the matrix P
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would have to be changed to

P~
P =
0 I

and the remainder of the proof follows in a similar fashion.

Theorem 2.15: A necessary and sufficient condition that

AXE - DXB = C (2.120)

where A and D are square matrices of dimension m and B and
E are square matrices of dimension n, all with elements in F,

have a solution X with elements in F is that the matrix pair

A C A O :
[ ] and [ ] (2.121)
O B O B

be equivalent and that either
i) E be nonsingular and BE = EB
or ii) D be nonsingular and AD = DA

Proof: To show equivalence there must exist matrices

P and Q such that

A C A O
P [ ]Q and[ ] (2.122)
0 B 0 B

Let

I DX I ' =XE
o e o7
I 0 I

then Eq (2.122) becomes

I DXJ[A CJ[I -XE A O
b il b
0 TIJlo BJLO I 0O B
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Simplifying and realizing that multiplication by an identity

matrix leaves the original matrix unchanged yields

A - AXE + C + DXB A 0
[ - [ ] (2.124)
0 B 0O B

Using Eq (2.120), Eq (2.124) can be simplified to

Rt 5l

To show sufficiency, reliance will be made upon what has just
been proved. Since the matrices of Eq (2.121) are equivalent,

then the matrix pair of Eq (2.125) will also be equivalent.

A-AD C A-D E
] - [ ] (2.125)
0 B-\E 0 B-AE

Utilizing Roth's Lemma (Ref 38:392), there exists matrices
X and Y «here X and Y are as expressed in Eq (2.115). Making

appropriate substitutions in Eq (2.120) yields the equivalent

equation

2

(A-AD)(X0+AX1+A X

2

n
2*...+A xn)c

n ~
-D(Y0+AY1+A LEARERR R Yn)(B-AE) = C (2.126)

Multiplying out Eq (2.126) and then equating coefficients of

like powers of A yields the system of equations

AX(E . DYOB = C

AX E - DXOE - DYyB + DY E = 0

AX,E - DX, E : DY,B + DYIE = 0 (2.127)
;
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E =0

AX E - DX__

% E - DY B+ DY

1 1
- DXnE + DYnE =0

Next multiply each of the A + 2 equations of Eq (2.127 by
1, B8, (B°1B)%, (E°1B)°, ... (E"1B)™*! respectively and |

then sum columnwise to get as a result

-1 sl -1
A[Xy*X B™ B+X, (B™"B) “+...+X (B BYME

-D[X,*X 5‘13+x2(5'13)2+...+Xn(E'IBfWB .5

1

which implies that 3

X.+X,E"1

e -1,\n
o*X1 B+X2(E B) +...+Xn(E B)

R i it

B " PG el

gy

is also a solution of AXE - DXB = C which completes the proof.
Similar results hold when Eq (2.127) is multiplied by
AD'l, (AD'l)z, (AD'I)S, B S (AD'I)n respectively to yield

the equation

&

1

> g

-DYy+Y,AD Lev, (D 1y 2L ey (aD" )M B

1

*A(Y+Y AD'I*YZ(AD'I 2+...+Yn(An’1)“]E = C  (2.128)

1

Eq (2.128) can then be arranged to be in the form of Eq (2.120)

which then implies that a second set of solutions can be

generated by

1 1,2

Y +Y,AD"

- -1.n
oty #YZ(AD ) +...+Yn(AD )

The following example incorporates the technique used
in the three previous theorems. To fit this example to any H
of the individual theorems, appropriate matrices would need

to be deleted.
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Stating Eq (2.120) as

AXE - DYB = C

only has minor effects upon the method of proof given in

Theorem 2.15. The matrices can be shown to be equivalent if

I DY
P =
0 I

and the rest of the proof follows as discussed in the theorem.

P is changed to

Example 2.7: Consider the equation AXI, - I

. YD = E,

2
where

0 1 0 0 -1
A= , 1, =f o], 1, - , D=1 1],andE-[

0 0 1 -1 -1
Thus the equation of the form expressed in Eq (2.126) is

(A-AI)(X)I1 = I2 (Y)(D-AI) = E (2.129)

After making appropriate substitutions, the resulting equa-

tion is

N i |3 RN ] | ST R E

2

which simplifies to
(1-))x, 0 yi(1-2) vy 0 -1
[, 1 - |71 1 -[ ] (2.130)
-sz 0 yz(l-x) Y2 -1 -1

Eq (2.130) gives rise to the solution of four equations in

four unknowns. These equations are:
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| (1-2)xy - y;(1-2) = 0 !
» 5 Yl L | !
(2.131) ‘

TAX, - y,(l-a) = -1

-yz - -1

This system of equations then quickly reduces to

and upon further simplification, the result X, = 1 is achieved.

Thus the solution to this equation is

X =[}] ana v - 1]

The next theorem generalizes the last results to cases

in which the coefficient matrices are non-square. In addition,
the variable matrices will also be non-square. In this

theorem the proof will be in terms of two variable matrices

X and Y, but with minor changes the theorem is applicable to

equations in which the variables are the same.

Theorem 2.16: Let Acm,n)’ IZ(m,n)’ B(p’q), and C(m'q)
be matrices with elements in the polynomial domain F[x] of a

field and let I, and I, be identity matrices. A necessary |

1
and sufficient condition that the matrix equation

AXI1 » IZYB = C (2.132) |

with elements in F[x] is that

have a solution X ) Y

(n,p)

b o
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the matrices




be equivalent.

Proof: To show equivalence there must exist matrices

A C A O
L 2155
O B O B

The choices of P and Q in Eq (2.133) are

P and Q such that

" .[I(m.m) I(m,n)Y(n,p)] AR [I(m.m) -X(n,p)l(p,q,)J
Y@m (e.p) %(a,m) '@,

Thus Eq (2.133) becomes upon substitution

I IYJ[A CJfI -XI A O
Ll ] o
6 1 e Bl I 0 B

Performing the multiplications reduces Eq (2.134) to

A -AXI+C+IYB A O
= [ (2.135)
0 B 0O B

Using Eq (2.127), Eq (2.130) can be reduced to

ah

which proves necessity. Sufficiency will be proved with the
aid of the idea of regular pencils. Thus Eq (2.132) can be

written as
(A-AI)XI1 - IZY(B-AI) = C (2.136)
The matrices X and Y can also be written as

2 p

52

X=X

et

T




v i A AN 0 0 s

F XA A At 7 s R B ol

PRI

Ao AT A 5l b B M A okt D

and

- 2 P
Y = YooY, aa%Y e, . 40 A

Multiplying out Eq (2.137) and then equating like power of A

yields the following system of A + 2 equations

AXy1, - 1,Y,B =C
AX,I,- IX, 0, - LY;B+ LY, I =0
AL, - I I, - I,Y,B + LY, I =0
: (2.138)
AX I,- IX (I, = I,Y B+ I,Y ,I=0
- IX I o EEER

Multiply each equation of the system in Eq (2.138) by I

2 n+l
I(q.p)(BI)(p.p)’ I(Q.p)(BI) (p,p)***"°? I(Q.p)(m)(p.p)

respectively, then sum the resulting equations and factor

(a,p)’

common terms to yield:

A[xo+x1(31)+xz(31)z+...+xz(31)211(p o)

-1[x0+x1(31)+x2(31)2+...+xn(BI)“](ax(q’p)1 * Clep o)

The next step is to multiply from the right by the identity

matrix I to get

(p,q)

A[x0+x1(nx)+x2(nx)2+...+xn(sx)“]1(p’p)1(p’q)

-1[xo+x1(nr)+x2(31)2+...+xn(31)“1(Br(q’p))r(p‘q)

" Tmp) 0,0 (438

Simplifying Eq (2.134) the result obtained is
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A[x00x1(31)+x2(31)2+...+xn(31)“]11

-Iz[xo*x1(31)+x2(31)2+...+xn(31)“]a =C

This implies that

xo*x1(31)+x2(31)2+...+xn(31)“

is a solution to Eq (2.132), which completes the proof.

Similar results could be achieved if instead of elimin-
ating the Y terms from Eq (2.138), the X terms were eliminated.
This is accomplished by multiplying by I, IAI, I(AI)Z, T
I(AI)n+1 respectively. The solution generated for Eq (2.132)

is
Yo (1A)Y,+(TA) 2Y 0.+ (TAY Y
Example 2.8: A solution is desired to
AXI1 + IZXD = E (2.140)
where

A = [z Z Z] sl Bl -[1 ; 0] -

& 1 1

D=1 1] ,andE - [ 5 -1]

=1 -1

Thus an equation of the type in Eq (2.132) needs to be solved,

and this can be written as

1-x 0 01} 32 X13
[o A o] x21] i [xzz] o [xzs] L o]
31 X32 X33
54
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e el T 75 aind
‘ [ ] Y21 + Y22 + Y23 [[1-a 1] -[ ] (2.141)

P 3 Vg Vs Vss 1 -1

Simplifying this becomes

2
f1-x)(x11+xx12+x x;5) o]
2

2 . 2 X
q rl“)(y11*‘Y1z*‘ Y1) Y Mt Vls] g [ ook
( -

: , ] (2.142)
1-3) (Y21 *A¥22*27Y23)  ¥21*AY22*2 Vs 33

Eq (2.142) can then be written as four equations in six unknowns:

(1-2) (xg 1 4A% ,#A 2% ) = (1-1) (¥, #Ayy 40 Py 5) = O
“A(xg A% 0 xp ) - (1) (Vg1 Ay 2242 Py 23 = BT
. 0110120 ypg) = -1
2

gy *Fae ™ Tagl ¥ <1

The system of equations in Eq (2.143) can then be quickly

solved to get

5 i ot
Y1t h Yy =1 XA atdTxyg = 1

1 2 2.144
| I VNI R R N e 0 B ; ;

1 1
This implies that the solution vectors are X -[1] and Y -[1]

X 4
where x and y are arbitrarily chosen.

Solutions Generated With the
B . Use of Tensor Analysis

This last section attacks the problem of solutions of

equations of the type discussed previously in terms of tensors.
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In so doing, the work of Lancaster (Ref 21) will be generalized.
Before beginning, some basic definitions are needed.

and B are complex matrices,

3 - - : f
Definition I A(m,n) ?,q)

then the tensor product of A and B written A @ B, where A ®

B is a complex matrix, is defined to be the partitioned matrix

[~ ol
allB alzB N alnB

The order of A @ B is mp x nq.

Definition: Let X be a matrix of order m x n; then Xc
is the column vector of order mn x 1, formed by writing all
the elements of X in a columnar fashion starting with X11 and
working across the first row, the second row, and so on until
all xij have been exhausted.

Lancaster has shown (Ref 21:544) that if A(m,m)’

B I and I where BXI - I,XI = Q, then an
)t 2(n,m) :

equivalent expression is Gx = q, where G = (B ® If) -
(I, ® AT). Note that BXI, - I,XA = Q could just as easily
have been expressed without the use of the matrices I1 and I,.

Example 2.9: Consider the matrix equation

AX - XB = Q (2.145)
where
2 1 1 0 0 I @ 3
A= ] y B=10 2 1| and Q = [ ]
0 3 0 3 4 2 -2
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Eq (2.145) could then be expressed as

where

AXI, - I_XB = Q

1 2

1 9 9 1 0
I1 = 10 1 0] and I, = [ ]
g 0 1 S

Then using Lancaster's results a solution to Eq (2.145) by

solving

(A ©®@ I)) - (I, ® BIX =3 (2.146)

Substituting yields

o
210
L0
1
010
* Lo

o ~ O O =~ O

o
0

1.
09

0

1d

i Multiplying out

Simplification yields

qr -
0 0 [0 07 1 o0 0 xlﬂ 1]
1 of ifo 2 ofofo 2 olfflx,] |2
0 1 @ 1 33 W 1 skl 15l 1an
0 0 1o 0q oo otk e
1 oofl olo 2 of1fo 2 offlk,,]| |2
o 1 3J Lo 1 3dlik..] |2
e T k2sd 2]
1 0 0 1 0 O ilg}‘ﬂ
00 0 0 1 megl | 2
00 0 2 0 of [x,[|4
00 0 0 1 0f |x,]]2
0 0 0 0-1 0f [xp5] f2

Eq (2.148) to form the system of six equations

x11+xz1 = ] 2x21 = 4

Xy, = 2 Xys ¥ 2 (2.149)
X12"Xy3*Xg3 = 3 Xpp = -2
57
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Solving the system expressed in Eq (2.149), the values are
Xy " -1, Xy * an X,y = 2, and "Xy X 3tXyp = 3. Thus our
choices for X120 Xy3» and X,3 can be arbitrary.

From this example another set of solutions could have
been generated through the use of generalized inverses.

The last theorem will take the results of Lancaster and
extend them to the case where the coefficient matrices are
non-square.

Theorem 2.17: Let the matrices A, B, C, D, Q, and X

be complex matrices which have the following dimensions:

Am,n)* Bp,)’ Cmum)’ P(p,a)’ Um,p)’ ™4 X(n,q)r If

nq = mp and ATA ¥ 0, then the matrix equation

AXB + CXD = Q (2 150)
is equivalent to
GX = q (2.151)
where
G =aATA © BBT + ATc ® BD' (2.152)

Proof: This proof utilizes the results of Lancaster
(Ref 21:544) for square matrices. Thus the first operation
is to convert Eq (2.150) to one containing square coefficients.
Eq (2.150) then becomes

AT(AxB)BT+AT (cxD)BT = ATQsT

2.153
(ATa)x(BTy + (ATc) x(DBT) = aTqaT : :

Applying Lancaster, there exists a matrix G defined as
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6=n ® N7+ o) @ (N7
= ATA ® BT + ATc @ BT (2.154)

- e e e e P

Eq (2.154) is the desired result.

Example 2.10: Consider the equation

+ I,XB = Q (2.155)

AXI1 2

where

a=fa 2],11-[: f ! Z],Iz-[l 0]

1 0 1 0
B = ,» and Q
2. 1 31

(=]

[+ 8 -2 4]

To find G, the following are needed:

2 4 1 0 2 0
ATA-[ ],111{-[ ].ATIZ-[ ]
1 g 0 1 1 0

12
and IlBT = [ ]
0 1

Thus G is

T T

T T
G=AA x 1111 + A I2 X IlB (2.156)

Since the equation was changed, the value for Q is also
changed, thus

-12 20
ot [

<6 10

Solving for the G of Eq (2.156) and thus Eq (2.151):
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r P ¥ ]
ZF 0 4F OF ZF ﬂ OF 17 4 4 4 0
0 1 0 1 0 1 0 1 0 4 0 4
G = + =
1 1 0 2 1 2.2 20
1[0 2[0 1 0[
L 1 1) Ll 1 0 1] 0 2 0 2
Eq (2.151) can then be expressed as
4 4 4 O X11 -12
0 4 0 4 ) 20
= 1 (2.157)
22 X51 6
02 0 2§ |x;5] L 10]
which then implies
oy T Egp Xy v
(2.158)

Xyg *Egp = 5

The two equations in Eq (2.158) then imply that any number of
arbitrary solutions can be found to satisfy Eq (2.155).

Generalized inverses could also have been used to solve this

problem.
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III. Generalized Inverses and

Linear Models

Solutions of the equations being discussed can also
be arrived at through the use of generalized inverses.
Theorem 2.11 is a case in point. By using this theorem, a
whole family of solutions can be generated by use of the

general solution

X =ACB + Z - AA"ZBB" £%.1)

where Z is an arbitrary matrix. The first portion of this
chapter will deal with more general solutions than the one
expressed in Eq (3.1). These results will extend the work
of Rao and Mitra (Ref 35).

One advantage that is gained by solving matrix equa-
tions through the use of generalized inverses is that a
complex system of equations may then be broken down and re-
duced to a set of more elementary equations. After solving
this elementary set of equations, the solution gotten are
then joined to find a common solution which is the solution
of the original system.

The second half of this chapter deals with applications
of the methods developed to the study of linear models. The

development begins with a linear model of the form

Y = XB + Ug (3.2)
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where 8 is an unknown parameter and £ is a hypothetical ran-
dom variable with a given dispersion structure but containing
unknown variance and covariance components. These two com-
ponents will then be estimated by use of MINQUE (Minimum Norm
Quadratic Unbiased Estimation). After the initial development,

more complex models will be studied. This second half extends

Rao (Ref 34).

Generalized Inverses

In the evaluation of a matrix equation many solutions
are possible. The problem that arises is that some of these

solutions may be overlooked. To solve the equation

AXB = C (3.3)

which is the conclusion of Theorem 2.11, use is made of the
solution in Eq (3.1). However, even this general form of
solution may omit a vast quantity of solutions. This omission

is corrected in the first theorem.

Theorem 3.1: A necessary and sufficient condition for

Eq (3.3) to have a solution is that
AA"CB'B = C (3.4)
in which case the general solution is
X = ACB +Z-A AZBB +(I-A"A)V(I-MM )+ (I-N"N)W(I-BB) (3.5)

where M, N, V, W, and Z are arbitrary matrices of appropriate
order and I is the identity matrix.

Proof: Let X be an arbitrary matrix such that Eq (3.3)
is satisfied. Then if
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AA"CB'B = AA'CB'B
from Eq (3.4)

AA" (AXB)B'B = AA'CB™B

(AA"A)X(BB'B) = AA'CB'B
i (3.6)

AXB = AA'CB'B

C=AACB B

Sufficiency follows by letting X be as expressed in Eq (3.5).
Multiplying from the left by A and from the right by B yields

AXB = AA'CB B+AZB-AA AZBB B+A(I-ATA)V(I-MM')B
+ A(I-N"N)W(I-BB')B (3.7)
But
AATAZBB B = AZB (3.8)

and

A(I-ATA)V(I-MM')B = (AI-AATA)V(I-MM)B

(A-A)V(I-MM)B (3.9)
=0
which implies similarly that

A(I-N'N)W(I-BB')B = A(I-N'N)W(IB-BB B)
A(I-N'N)W(B-B) (3.10)

= (
Substituting Eq (3.8), (3.9), and (3.10) into Eq (3.7) yields
AXB = AA'CB'B = C (3.11)

which implies that Eq (3.5) is a solution of Eq (3.3).
In the sciences it often occurs that a system of matrix

equations must be solved in such a way as to yield a common
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solution. Thus, if a common solution to the system of
equations

AX = C

XB =D (3.12)

is needed, one can be found through the applications of the

next theorem.

Theorem 3.2 (Rao and Mitra (Ref 35:25)): Let A

(m,n)’
c(m,p)’ B(p,q)' and D(n,q) be given matrices. A necessary

and sufficient condition that the consistent system of equa-

tions expressed in Eq (3.12) have a common solution is that
AD = CB (3.12a)
in which case the general expression for a common solution is
X = AC+DB -ATADB +(I-A"A)Z(I-BB) (3.13)

where Z is an arbitrary matrix.
Proof: Let X be a common solution to the system of

equations in Eq (3.12) then

AX = C and XB = D
which by appropriate multiplications becomes

AXB = CB  and AXB = AD (3.14)

Thus by setting the two equations of Eq (3.14) equal to each
other yields the result wanted in Eq (3.12a).

Sufficiency follows by letting X be expressed as in
Eq (3.13). Thus

AX = C
A[AC+DB -A"ADB +(I-A"A)Z(I-BB )] = C (3.15)
64

e ‘f==========u-------“




AATC+ADB™ -AA ADB +A(I-A"A)Z(I-BB") = C

AA"C+ADB -ADB +(AI-AATA)Z(I-BB') = C
AA™C+(A-A)Z(I-BB™) = C (3.15)

AAC = C

The hypothesis of the theorem states that the equations are
consistent, thus AA'C = C and X is a solution of the first

equation of the system. Similarly,

XB = D
[A"C+DB -A"ADB +(I-A"A)Z(I-BB')]B = D (3.16)
ACB+DB B-A"ADB B+(I-AA)Z(I-BB)B =D

Making use of Eq (3.12) this last equation can be written as

A CB+DB B-A"CBB B+(I-A A)Z(IB-BB B) = D
A'CB+DB B-A CB+(I-A"A)Z(B-B) = D
DB'B =D

Again, since the equations are consistent, DB'B = D which
implies X is a solution of the second equation of the system.
Thus X is the sought-after common solution.

One application of Theorem 3.2 is that it can be used

to solve equations of the type
AX + XB = E (3.17)
To make use of this theorem, the matrix E must first be

expressed as a sum of two other matrices. Thus, if

E=C=+D (3.18)
the matrix equation in Eq (3.17) can be written as the system
in Eq (3.12) and Theorem 3.2 can be applied. This procedure
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can be generalized to solutions of equations of the type

AXB + DXE = G (3.19)

where G = C + F., The method is as in the next theorem.

Theorem 3.3: Let A

t,m)’ Bn,)’ Cp,a)* P(s,m)°

B(n,t)’ and F(s,t) be given matrices. A necessary and suffi-

cient condition for the system of equations

AXB = C
(3.20)
DXE = F
to have a common solution is that
i) C = AACB'B
ii) F = DD FEE (3.21)

iii) ATA(D FE )BB = D D(A'CB )EE~
in which case the general expression for a common solution is
X = ACB +D FE -A A(D FE )BB~
+(I-A"A)V(I-EE )+I-D D)W(I-BB") (3.22)

where V and W are arbitrary matrices.

Proof: From the definition of a generalized inverse

it is true that for a matrix H, HH' H = H. Thus, if
AXB = C

it follows that

(AA"A)X(BB'B) = C
AA" (AXB)B'B = C (3.23)
AA"CB°B = C
Thus i of Eq (3.21) is shown. A similar argument is used for ii.
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DXE =
(DD D)X(EEE)
DD (DXE)E'E

F
F
(3.24)
F
F

DD FE'E

What has been shown thus far is that for i and ii of Eq (3.21)
each of the equations of the system in Eq (3.20) has an indi-
vidual solution X. Condition iii follows from the application
of Theorem 3.1. A solution for the first equation of the
system in Eq (3.20) is if the arbitrary matrices Z, V and W

are the zero matrix,

X, = A CB (3.25)

1
The solution for the second equation of the system is, if V

and W are the zero matrix,

Xy ® D FE +Z-D DZE'E (3.26)
Let X1 of Eq (3.25) be the Z matrix of Eq (3.26). Thus
X, = D'FE +A'CB"-D' DA'CBEE (3.27)

Now reversing the process, let

X; = ATCB +U-A AUB™B (3.28)

1
and

X, = DFE~ (3.29)

2
Then let Xz of Eq (3.29) be the U matrix of Eq (3.28) to yield

X, " A'CB +D FE -AAD'FE'B'B (3.30)

if the system has a common solution x1 of Eq (3.30) equals xz
of Eq (3.27). Hence, Xl = Xz implies
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Y

= DACB E+DD FE E-DD D(A CE)EE E+D(I-ATA)V(I-EE')E
+D(I-D'D)W(I-BB )E
= DA"CB E+DD FE E-DA CE E+D(I-A"A)V(IE-EEE)
+(DI-DD D)W(I-BB )E ey
= DD FE E+D(I-A A)V(E-E)+(D-D)W(I-BB )E
= DD FE'E
= F
Thus X is also a solution to the second equation of the system
in Eq (3.20). This then implies that X is a common solution.
Other conditions can be developed for the system of
equations in Eq (3.20) to hold simultaneously. One of these

is formalized in the following corollary.

Corollary 3.3.1: A necessary condition for the system

of equations given in Eq (3.20) to have a common solution is
that the matrices A, B, C, D, E, and F be as defined in
Theorem 3.3, i and ii of Eq (3.21) hold and that the matrices
C and F may be also defined as follows:

C = AD FE'B

Ry (3.34)
F=DACBE
Proof: From Theorem 2.11 a solution for AXB = C

exists and is

X, = A'CB +Z-A"AZBB~ (3.35)

1

Also, a solution for DXE = F exists and is

X, = D FE +Y-D DYEE~ (3.36)

2

In Eqs (3.35) and (3.36) the matrices Z and Y are arbitrary.
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A"CB +D'FE -A"AD FE'B'B = D'FE'+A'CB -D'DA'CB'E'E (3.31)
This can be simplified to
ATAD'FE'B'B = DDACB'E'E
which is iii of Eq (3.21).
To show that a common solution for X exists, let X be

as defined in Eq (3.22) and X will be a common solution if it

satisfies both equation of the system in Eq (3.20). #

A[A'CB +D FE -A"A(D FE )BB +(I-A"A)V(I-EE")
+(I-D'D)W(I-BB)]B

AXB

AA"CB B+AD FE B-AA A(D FE )BB B+A(I-A"A)V(I-EE )B

+A(I-D D)W(I-BB )B
(3.32)

AACB B+AD FE B-A(D FE )B+(AI-AA A)V(I-EE7)B
+A(I-D D)W(IB-BB B)

AA"CB B+(A-A)V(I-EE )B+A(I-D D)W(B-B)
AA'CB'B

= C
Thus X is a solution for the first equation of the system.
Similarly,

DXE = D[A'CB +D FE -A"A(D FE )BB +(I-A"A)V(I-EE")
+(I-D'D)W(I-BB)]E

= DA'CB E+DD FE E-DA A(D FE )BB E+D(I-A"A)V(I-EE)E
+D(I-D'D)W{I-BB )E

Using iii of Eq (3.21), the last equation can be written as
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Choose Z = D FE and Y = A'CB™, thus the equations

X, = A"CB +D FE -A"AD FE BB~

and S S R .
Xz = D FE +A CB -D DA CB EE

Since a common solution exists from Theorem 3.3

Xl = Xz
It then follows that
D FE~ and that X, = A'CB~
Let Xl be as defined in Eqs (3.37) and (3.39), then

D'FE = A'CB +D FE -A"AD FE BB~
0 = A'CB -AAD FE BB’

A'CB” = A'AD'FE BB~
AA"CB'B = AAAD FE BB B
C = AD FE'B

In going from the fourth to the fifth line of Eq (3.40), use
was made of i in Eq (3.21) of Theorem 3.3. To show the second

half of Eq (3.34), let x2 be as defined in Eqs (3.37) and

(3.39). Thus

A'CB™ = D'FE +A'CB -D DA'CB EE~
0 = DFE -D DA'CBEE~

D'FE- = D'DA'CB EE’
DD FE'E = DD DA'CB EEE
F = DACBE

become

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

Similarly use was made of ii in Eq (3.21) of Theorem 3.3, and
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the corollary is proved.

Example 3.1: Consider a system of equations as defined

& in Eq (3.20) where

19 8§ 8
s lloc-s o],

i L S & 1 8
D = 5 B ™ [ ] , and F = 8
S T W * 1
To see if a common X is possible, the conditions of Corollary

3.3.1 will be checked. Thus,

A=

b s
[y

1
1

(3.42)

; F = DA'CB'E

| 1 1 1 13,2 1 1 11778 811 11 n1

F = [ 8. 3 Y3 [s 8 [ ](3.43)
1% 3 ¥y 3113 ks s 31 1

Noble (Ref 30:342) states that if all the elements of an m x n

matrix Q are unity, then A~ = (1/mn)AT. Therefore

RS b

AT = (1/12) [} 1 1] and B™ = (1/4) [ ] (3.44)
i 1.1 .
3. 1% ek 3

Thus Eq (3.43) becomes

F= () [1 342 1] r 31 [g g][1 : 1] [8] 3.45)
2@ 3 112 [i } 1] 8 8ll1 1 1 M

1

Checking the other condition

C = ADFE'B

T —
L__mrrr‘""‘w"‘“” o o e L i il gl KRR §z. 48




11
D™ = (1/8) [} %] and E- = (1/2) [1 1]
1 1

yields
1

1 1
T 8 8
3. .3 1 1]f8 |
bl L [i i i][% %][s] [1 1][1 1] [g g]

From Theorem 3.3 the value of the common solution X is

- =

X = A'CB +D FE -A"AD FE BB~ (3.46)

where the arbitrary matrices are zero.

T b e 5 3
Kitord g E 1 %];: e 1) =[i ﬂ R
1 1

1 . E %] (3.48)

1-

[T

DFE” = (9 (P [

e 3.3, (8 1 3 8
A"AD'FE'BB™ = (13) () [% % i 31\] 1
1

3 1
= [i i] (3.49)
3 1

Making the appropriate substitutions from Egs (3.47), (3.48),

-
s
ot
| DRSSCN

and (3.49) in Eq (3.46) the common solution is

1 1 3 4 $d 1 i 1
e T & 3y 13 3 L 11 1
: T | ) S | & & " S
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Some applications of Theorem 3.3 and its corollary are
to the areas of model reduction and filtering theory. The
next example illustrates model reduction.

Example 3.2: Let AXB = C be a model of some phenomenon

in which the matrices A, B, and C are defined as

1 3 g
173] z 2 [11] ,
A= sy B i [ | and C = 3.51)
g e (DR | 2 7 S
7 3
3 7 .
T 7
1 1
7 %

Then a possible choice of solution for AXB = C is axb where
axb = A CB (3.52)

Solving for the generalized inverses of A and B yields
5 2 126 -180
A = (5%) -99 204
73 120 234
(3.53)

; 1 32976 -18072 -23568 -22860
B = ( )
To389" 145720 38640 46260 43920

Thus axb can be written as

= 2 1 -
a%p (73)(I63€§)[ 99 20411, 11145720 38640 46260 43920

126 '13°][1 1][32976 -18072 -23568 -zzsao]
-120 234

2 688176 -1110672 -1225368 -1137240
= (733537) -1338120 2159640 2382660 2211300f (3.54)
-1452816 2344752 2586888 2400840

A reduction of this model could be described by the equation
DXE = F where the matrices D and E are defined as
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1
D=1 1/2 1/3] . E -[%jg] (3.55)
1/4

The matrix F is determined by the equation

F = DA'CB'E (3.56)

Thus, making the appropriate substitutions

1T 46 Rl 32976 -457207 [1]
o= 1 ( 2) -90 204 i1 1 ( 1 ) -18072 38640 1
2\ T30 (120 234| 11 1) ‘T0369°|-23568 46260 L §
1 -22860 43920 1
3 3
1
2 (7]
= [1] (3.57)
The reduced equation DXE = F can then be written as
1
R VR T x[{fg = 1] (3.57)
1/4

To solve Eq (3.57) the generalized inverses of D and E are
needed.

36
- 1 - 1
D = ( )[18] and E = ( ) (144 72 48 36] (3.58)
13 12 205
Solving Eq (3.57) for the matrix X yields

) B £ 1
i (Ig)[ig][l] (sfx) [144 72 48 36 (3.59)

'(15%13) [%592 1296 864 648

5148 2592 1728 1296
1728 864 576 432
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Eq (3.59) is a solution for the reduced equation. If there
existed interest in the common solution, it could be found by
application of Eq (3.22). For purposes of this example, let

the arbitrary matrices V and W be the zero matrix. Thu~. tie

common solution is
X = A'CB +D FE -A"A(D FE")BB~ (3.60)
This could also be expressed as
Xow Ky & - A'AdxeBB' (3.61)

The values of axb and dXe are known for Eqs (3.54) and (3.59).

What needs to be found is the value of

ATA4X BB (3.62)
) 1 1z 6 -6
A= ()| 6 37 36
-6 36 37
and
10116 1248 -438 -900
SR 1248 3844 3636 3210
BB = (15765)| -438 3636 3709 3360] (3.63)
-900 3210 3360 6429

Thus the value of Eq (3.62) is the product of the matrices in
Eq (3.63) and Eq (3.59). The result then is
2592 1296 864 648

: . 1
AA,X BB™ = ( )[1296 643 432 324] = X (3.64)
d%e 100457 | "564 432 288 216) d©

This then implies that the common solution expressed in Eq

(3.61) is
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X = a%p (3.65)

and the value for axb is given in Eq (3.54).

Solutions to system with more equations can also be
solved by applications of the above methods. These solutions
are based upon appropriate choices of the arbitrary matrices.

Theorem 3.4: Let the matrices A, B, C, D, E, F, G, H,
and K be of appropriate dimension. A necessary and sufficient

condition that the system of equations

AXB = C
DXE = F (3.66)
GXH = K

to have a common solution is that
i) C = AA'CB'B
ii) F = DD FEE
iii) K = GG'KH H (3.67)
iv) C = AD FE'B
v) G KH = AAG'KH BB = D FE~
in which case the general expression for a common solution is
X = A'CB +D FE +G KH -AA(D FE +G KH )BB~ (3.68)
Proof: The proof of i and ii follow from Eqs (3.23)

(3.24). To show iii, let GXH = K. Then from the definitica

of generalized inverse it follows that




(GG G)X(HHH) = K
GG (GXH)H'H = K (3.69)
GG XH'H = K
This then proves iii. Section iv of Eq (3.67) follows as in
Eq (3.40) of the Corollary to Theorem 3.3. Part v of Eq
(3.67) follows from an application of Theorem 3.3. A solution

for DXE = F and GXH = K exists and is

X, = G KH +D FE~ (3.70)

1

where the arbitrary matrices are taken as the zero matrix.

From Theorem 2.11 a solution for AXB = C exists and is

X, = A CB +Q-A AQBB~ (3.71)

2

Let the Q of Eq (3.71) be the value of X, from Eq (3.70).

1
Then

X, = A"CB +D FE +G KH -A"A(D FE +G KH )BB~ (3.72)

Eq (3.72) is the common solution of the system in Eq (3.66)
if it exists, and Xl = XZ which implies that XZ is a solution
of DXZE = F,

DX,E = DA CB E+DD FE E+DG KH E-DA A(D FE +G KH )BB &

= DA'CB E+F+DG KH E-DA AD FE BB E-DA AG KH BB E
AN b 2 BN Lo S AL (3.73)
= DA'CB E+F+DG KH E-DA'CB E-DA AG KH BB E
= F+DG KH E-DA AG KH BB E
But DXZE = F, thus Eq (3.73) becomes

F = F+DG KH E-DA'AG KH BB E
which implies




DG KHE = DAAG KH BB E
g RO (3.74)
i | G KH = A"AG KH BB

Also, since Eq (3.72) is a common solution GXZH = K. Thus

K = G[A'CB +D FE +G KH -A"A(D FE +G KH )BB ]H !f

= GA"CB H+GD FE H+GG KH H-GA AD FE BB H-GA AG KH BB™H i;

_ = GA CB H+GD FE H+K-GA CB H-GA AG KH BB H ?
E 0 = GD FE H-GA™AG KH BB'H e 1

GD'FE'H = GA"AG KH BB H
D'FE = A"AG KH BB~

I —

The conclusions from Eqs (3.74) and (3.75) then imply v of
Eq (3.67). The proof of sufficiency follows by letting X as

" defined in Eq (3.68) be a common solution for the system of

equations in Eq (3.66). Thus X must satisfy each of these

equations.

AXB = A[A'CB +D FE +G KH -A"A(D FE +G KH )BB ]B

AA"CB B+AD FE B+AG KH B-AA AD FE BB B-AA AG KH BB B .

AA"CB B+AD FE B+AG KH B-AD FE B-AG KH B (3.76)
AA"CB'B
= C

This last statement is from hypothesis i, Eq (3.67). X is,
therefore, a solution to the first equation of the system.

Solving the second equation of the system is next.
DXE = D [A"CB +D FE +G KH -A"A(D FE +G KH )BB ]E
= DA CB E+DD FE E+DG KH E-DA AD FE BB E-DA AG KH BB E |
Making use of hypothesis ii, iv, and v of Eq (3.67) yields
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DXE = DA'CB E+F+DG KH E-DA"CB E-DG KH'E = F

Following a similar line of reasoning, it can easily be shown
that
GXH = G[A"CB +D FE +G KH -A”A(D FE +G KH )BB JH i
= GA CB H+GD FE H+GG KH H-GA AD FE BB H-GA AG KH BBH
Making use of hypothesis iii, iv and v of Eq (3.67) yields

GXH = GA CB H+GD FE H+K-GA"CB H-GD FE'H
= K

Thus X is a common solution and the theorem is proved.

Corollary 3.4.1: Let the matrices A,B,C,D,E,F,G,H, and

K be of appropriate dimension. A necessary and sufficient con-
dition that the system of equations given in Eq (3.66) have a

common solution is that items i, ii, iii of Eq (3.67) hold and

that
vi) F = DG KH'E
N L B (3.77)
vii) G KH = D'DA'CB EE” = ACB
are also true. A common solution then exists and is
X = ACB"+D FE +G KH -D ' D(ACB +G KH )EE~ (3.78)

Proof: The proof is identical to that of the theorem '
with only variable name changes.

Corollary 3.4.2: Let the matrices A,B,C,D,E,F,G,H,

and K be of appropriate dimension. A necessary and sufficient

condition that the system of equations given in Ea (3.66) have

a common solution is that item i, ii, iii of Eq (3.67) hold
and that
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viii) K = GA'CB'H

PN o R e b (3.79)
ix) DFE =G GD FEHH = A CB
|
are also true. A common solution then exists and is i
X = A'CB +D FE +G KH -G G(A"CB +D FE )HH" (3.80)

Proof: A proof is identical to that of the theorem
with only variable name changes.

Example 3.3: Solve for the common solution of the

system of equations as given in Eq (3.66) where A, B, C, D,

E, and F are as given in Eq (3.42). Let G, H, and K be defined

8
8
8](3'82)

8

as follows

|

To see if a common solution is possible, the conditions of

8

{ R -
BN , and K =|3
g

3

-
=
=
00 00 00 GO

the theorem must be checked. First find the necessary

generalized inverses. A and B  are as given in Eq (3.45)
and the other inverses will be found by using the method of i
{

Noble (Ref 30:342), therefore

) EI | 1
D = (%—)[} ﬂ E = (P 11,6 = (Fy [}
1 1

ey

i 3
and H™ = (%) [i i] (3.83)

Condition 1i.

C=AACB'B
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i 11!
L 111

1
8 8
= |8 8
8 8
Condition ii.
F = DD FEE
R |
- @} 1
2 B 1 1 1ila
1

Condition iii.

K = GG KH H
S S W L T
3 1) 13 1 3
16/ 11 1 1 11
1 1 1449

]
gaooooo

Co 0O 0o OO
©o ©o 0o oo
—_—)

Condition iv.

C = AD FE'B

-
-2 ¢]

Condition v,
G KH = DFE~

e
[y
ol ]
—d

1
Bo vk da
1
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D FE~ was evaluated in Eq (3.48) and is equal to

et et s
Pttt

7 1 1 % 8 8
A e e 1
GKH = (1)1 1 1 1f|s 8 s [{ }] (3
3 1 1 8 8 8
1 3
o
-3 ! (3.84)
1

Thus all the conditions of the theorem are met and the common

solution is given by Eq (3.68). Making substitutions from

Eqs (3.47), (3.48), and (3.84) yields

1 1 5% 1
c g 13 TR 1 o
X 13kt h 8tk
1 1) 1 1 1
| ¥ 0 5
C 1)r1 1 E i } i 1 £ -3 [1 1] 1 1] )
12711 1 1 101 01 ur o+ fr o o1 [1 1] ‘¥
1 1 1)U St 11
'3 3 3.3 3 3 7
- 13 8. sl 303 32 2 [2 2]
3 3 Wz 3 3 3|2 2|z 2
3 3 s 5 s sliz 32
'3 3] 2 2 1 3
s18 9 b7 3l Wi
3 3 2 2 1 1 (3.85)
s 3 2 2 t 1

Thus a common solution exists and is equal to the last matrix

of Eq (3.85).

Linear Modeling

The theory developed in the section on generalized in-

verses will be used to help in the estimation of some of the
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components of linear models. Variance and estimation error
have been studied with regard to Reduced Order Filters by
Asher (Ref 1) and the estimation of both variance and co-
variance have been considered by Rao (Ref 34).

A linear model is one that can be expressed as
Y = XB + Ulgl L i 5 ngk (3.86)

where Y is an n-vector of random variables, X is a given

n x m matrix, B is an m-vector of unknown parameters, the

Ui's are given n x < matrices, and the Ei is a cl-vector

of uncorrelated random variables with a zero mean value and

2

o DO
1ci

a dispersion matrix o i=1,...k where the variances arc
unknown.

An alternate method of expressing Eq (3.86) is as
Y = XB + Ug (3.87)
T o I T
where U = (Ul; Uz; v Uk) and £ = (51; 52; PR Ek).
To estimate the variance components of the linear

function

ploi * e t pkoi (3.88)

the quadratic function YT

AY of the random variable Y in Eq
(3.86) or (3.87) will be used. To find this matrix A, some
criteria will need to be developed. First the translation of
the B parameter should be invariant. Thus consider Eq (3.87)

which can be written as

Y = XBO = XB - XBO + UE (3.89)
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Let X8 - Xso = Xy, then the estimator of Eq (3.88) becomes
(¥ - x8p)TACY - X8) (3.90)

Since the variance should be as close to zero as possible,

Eq (3.90) should be set equal to zero. Expanding yields

T ¢ )

Y AX - (XBO)TAX =0  (3.91)

T
AY - (XBO) AY - Y 0

If B is to remain invariant under translation, then from
Eq (3.91) AX = 0.

A second criteria is that the estimate be unbiased.
Using the restriction that AX = 0, the estimate can be ex-
pressed as

T

YTAY = £TuTaug (3.92)

which is an expression in terms of the hypothetical vector
variable §. If Eq (3.92) is unbiased for Eq (3.88), for
all oi. then

k k

ECETUTAUE) = T

o tr UTAU, (3.93)
i=1 i

Tyek - 3
E(§jU;AU85) 4y 1
However Eq (3.93) is another expression for Eq (3.88). Thus
this implies that

T =
tr UiAUi P; (3.94)

for all i = 1, ..., k.
The third criteria is that of minimum norm. This says
that if the hypothetical variable ¢ were known, then a natural

estimator of Eq (3.88) is
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T
(P/€1)618; + +ov * (Pley)EE, =€TD (3.95)
where D is an arbitrary diagonal matrix. Thus there presently
exists two estimators, the estimator of Eq (3.92) and the

estimator of Eq (3.95). Taking the difference yields
eTuTavg - £Tpg = eTv'au - Dye (3.96)

This difference can then be made small, in some sense, by

taking the norm of the matrix
T
[lu"AU - DJ| (3.97)

The norm of Eq (3.97) can be any acceptable norm that satis-
fies the properties of a norm (Ref 14:198). One choice of

norm is the Euclidean norm defined as
luTau - DIP = tr uTAU - D) (UTuA - D) (3.98)

Thus the problem of finding the Minimum Norm Quadratic Unbiased
Estimator (MINQUE) of Eq (3.95) is one of finding a matrix A

such that Eq (3.98) is a minimum subject to the conditions

AX = 0
; (3.99)
tr AVi By k" lyeee K

T
iui.

With these concepts in mind, consider the model given

where Vi = U

in Eq (3.86), where X is a given m x n matrix and B is an

m-vector of unknown parameter. &,

i is a q-vector such that

E(6;) = 0, E(E465) = S , Cov(E;,E;) = 0, idj  (3.100)

85




e bt AT

The problem that is now considered is one of estimating the
q(q+1)/2 components of the symmetric matrix S given in Eq
(3.100) or one of estimating the linear function of S when
the vector is unknown. The dispersion of Eq (3.86) is
given by

3 T T
D(Y) = U SU; +...+ U, SUL

1 (3.101)

The problem of estimating the given linear function of the

elements in S, which can be written as
tr SQ, (3.102)

where Q is an arbitrary symmetric matrix, can be solved by
letting YTAY be an unbiased quadratic estimate of Eq (3.102)

with the restriction that AX = 0. Thus

E(YTAY) = tr AD(Y) = tr S(UIAU + ... + UAU)  (3.103)

Comparing Eqs (3.102) and (3.103), it is obvious that

Q = UTAU, + ... + UTAU

1AY LN (3.104)

If the 51, % i g Ek are known, then a natural choice for esti-
mator of S is
(1/k) (ETg, + + §16.) (3.105)
1°1 e k>k 3

and a natural choice for the estimator of tr SQ is

Ctr (1/K)(EJE) *+..o* E6)Q = (1/K)(E1Q) +...+61Q;)  (3.106)

Now the estimator that was initially proposed is

YTAY = (U6, +oov ULE)TAUE, *oiie UEY  (3.107)
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Considering the estimators in Eqs (3.106) and (3.107) as
quadratic expressions in &, then what remains is to minimize
the norm of their difference. Finally, the problem is one

of minimizing
T
|U”Au|| (3.108)

subject to the conditions

AX = 0

k
T U
i=1

T
iAUi = Q (3.109)
The preceding development is due to Rao (Ref 34). The methods
of the preceding section are utilized in the finding of the
matrix A in Eqs (3.108) and (3.109).

Example 3.4: Consider a linear model of the type in

Eq (3.87) where Y is an n-vector of random variables, B is
an m-vector of unknown parameters, and the matrices X, U, and
g are defined as follows
ik (TR N | o i Dt (R fesstis SR R ) [ |
X -[1 I 1 1] U =tg ¢ 0 0 1 0 0 1L 0
n (R I (e | 3 00 L2 001 1 0 &

efefi 0 0 0 108 o 13 (3.110)

The matrix U can be expressed as

1 0 1
U= [U1 s U2 : US] = [g 2 .

and
FEl c gl ion 0 0) OO Y
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The problem at hand is to solve Eq (3.108) subject to the con-

ditions of Eq (3.109). Thus the equations to be solved are

19 &b
A [1 11 1l=o (3.111)
¥1 .11
and
, 3 |
r T UTAU = Q
| i=1

Since Q is an arbitrarily chosen matrix, let Q be defined as

=3 2 <3 i
Q=12 -2 2 |
=2 2 =3 2

The procedures of the last section will be employed to solve
the above system of equations. From Penrose (Ref 31) the

equation AX = 0 can be solved by use of the formula

A=cX + WQXX -1I) (3.112)

where ¢ is a constant matrix and W is arbitrary.
Again applying Noble (Ref 30:342) to find the inverse

of X, the generalized inverse of X is

e N
X" = (fﬁ) [i 3 i} (3.113)
1 11

Solving Eq (3.112) yields

I 11 13 g S
- 111 1 1 1 9 90
A.=0x" +wil1 1 1 1 s
x ([1 11 1] <rz)[1 1 1] {0 1 O]
3 1 1 ¢ 0 1
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( W B 1 & 8
(el iy-p ey
1% % 0 0 1

2 Ay Rl
= v [ [ % -i %] (3.114)

Since W is arbitrary, let W be the identity. Thus A is
1 -2 1 1
Ax = (3) M 1 (3.115)
: S SR

The next step is to solve
3
I UAU = Q (3.116)

Since each of the Ui are the same, the equation above could
be written as

3uTAU = Q (3.117)

Applying Theorem 2.11 to solve for A yields

A= (/3T T + z - vTuTzur (3.118)
Notice that U = UT, thus U = UT" and this value is
sty 1 9 1
U =Ut e q1/8) [0 4 0 (3.119)
i 0 1

In Eq (3.118), since the end result is a common solution, let

the arbitrary matrix Z equal Ax' Solving Eq (3.118) yields
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In Eq (3.120) the quantity

63)

=2 2-2M1 0 1 1.[F2 11
2 2110 4 0} + (3) i-2 1
-2 2 -23L1 0 1 1 1 -2

112 9 2
-2 1] 0 4 0 (3.120)
1 =23%2 0 2

2 @ 2
[0 4 0]
e 0 2

is the product of T uT - uu-. Eq (3.120) simplifies to

A= (i%o [is

e

A=

8
8

-8
16
L-8

=2
1

L 1

16
-32
16

16
-32
16

1
=g
1

-8 1 'Z 1 1

16] + (3) : G 1

-8 1 P =2

-8

lg (3.121)

1
1
-2

Thus a common solution has been arrived at. With the value

of A now known, it is a simple matter to minimize the

quantity ||UTAU||.
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IV. Conclusions and Recommendations

The increasing use of matrix equations in the engineer-
ing sciences has stimulated a rapidly growing interest in how

to best solve these equations. The techniques developed in

this thesis can, depending on the equation, be tedious to do
by hand, but all can be coded for computer application.
Several different methods of solution have also been presented

so that if one method fails to yield acceptable results,

another way may be implemented that will in turn be satisfac-
tory.

Additional attention can be paid to the area of quad-
ratic matrix equations. Some of the techniques that have
been discussed may prove to be of value in the solution of

this type equation.
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