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Abstract

Solutions of the general linear matrix equation

E A~XB ; • C are obtained and presented In this thesis. Some

special cases do arise like the Liapanov matrix equation .

Necessary conditions and sufficient conditions are established

for the solution of the general linear matrix equation . Other

forms of solutions than those obtained through the use of

similarity transformations that have been considered make use

of the spectral decomposition of matrices and tensor products

of matr ices or Kronecker products. In considering the general

linear matrix equation , linear matrix equations in which two

different variables appear are also stud i ed . Conditions for

the existence of a solution for this type of equation are

given . The theory of the generali:ed inverses of a matrix was

used in obtaining a solution to the general linear matrix equa-

tion . More general forms of the solution are given and cond i-

tions under which these solutions exist have been established .

Solutions to systems of matrix equations were also considered .

As a by-product of this investigation , some aspects of the

model reduction problem may he treated from the point of view

of matrix equations. In particular , a new method of solution

of the matrix equation AX~ + CXD • E which was recently con-

sidered by S.K. Mitra (Siam Journal of Applied Math, 3fl and

others was obtained . Applications of the results of this
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work are of use in the estimation of variance and covariance

components of linear models as treated by C.R. Rao.
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SOLUTIONS OF THE MATRIX EQUATION

AXB + CXD E

I. Introduction

Matrix equations are becoming a more significant part

of the formulation , computat ion and solution of problems in

the engineering and social sciences. The classic engineering

investigations of the Liapanov equation

AX + XB • C (1.11

and the matr ix Ricatti e~uation

XDX + AX + X B + C - 0 (l. 1

are probably the most commonly known. Solutions to these

equations and their more general forms , given by the equation

n
E A1XB1 — C (l.3~i—l

are studied in this thesis.

Solutions to Eq (1.3) are found thr3ugh the application

of various methods of solution . Necessary and sufficient con-

ditions are stated for the case in which n • 2 in Eq (1.3).

These conditions can easily be extended to cover larger values

of n. The conditions given are predominently based upon the

use of similar matrices. With similarity shown , the concept

1
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I
of pencils of matrices is used to generate the actual solution

to the matrix equation.

More complex matrix equations are handled through the

introduction of the concept of spectral decomposition. This

is basically writing a matrix in terms of eigenvalues and

idempotent matrices. After some of the theory of spectral

decomposition is investigated , it is extended by introducing

nilpotent matrices. The theory of solutions is developed for

square matrices first , and then extended to include rectangular

coefficient matrices and also rectangular variable matrices.

Following this is a brief digression to consider equations of

the form

AXB + C Y D - E  (1.4)

Equations of the type in Eq (1.4) are studied from the point

of view of being able to be rewritten into an equation of the

type in Eq (1.3) with n • 2.

Two other methods of solution of the equation AXB +

CXD • E are considered . A brief look is taken at how general-

ized inverses can be used to solve equations . In doing so, it

becomes apparent that more than one solution can exist for an

equation. The theory of how these additional solutions are

generated is developed in Chapter III. The last method of

solution considered is through the use of Tensor Analysis.

The second half of this thesis develops the concepts

of generalized inverses by extending the methods that are

currently being employed to allow a wider class of solution

2
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I
to be possible. This is done by extending the theorems that

exist to include more arbitrary matrices . This then lets the
— ) - 

user have some control over the results and more closely fit

- 
the solution to the problem at hand . Also in this section ,

applications of the theory are made to the area of model

reduction.

The last portion of the thesis recapitulates some of

the ideas of linear modeling and then applies the previous

work to finding the variance and covariance matrices. Another

application is to the concept of the reduced order filter.

3
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II. Solutions of the Matrix Equation

A X B + C X D - E

In this chapter the results of Roth (Ref 38), Rosenblum

(Ref 36), Mitra (Ref 28), Jones (Ref 14), and Lancaster (Ref

21) are extended by use of procedures taken from Rao and Mitra

(Ref 35), Nering (Ref 29), and Browne (Ref 4).

Special cases of the matrix equation

AXB + CXD - E (2.1)

occur if B - C = I or A — D = I , where I denotes the identity

matrix . Thus, Eq (2.1) reduces to the Liapanov equation.

Much attention has been given to solutions of the Liapanov equa-

tion , particularly Gantxnacher (Ref 10), Ma (Ref 26), Rosenbium

(Ref 36), and Ziedan (Ref 46). Many others have also done work

in this area. Leuthauser (Ref 23) had studied Eq (2.1) in the

- cases where the matrices are all taken to be square. The re-

sults presented in the remainder of this chapter mostly pertain

to rectangular matrices. That is, in general the solution matrix

X is an element of a class of matrices that are of dimension

in by n. This will be denoted by X(m fl) The dinensions of the

other matrices are: A(p,m)P B(~ ,q)~ C(p,m)~ 
D(~~q)~ and E(p q)•

- 
Solutions of Eq (2.1) and also of the more general matrix

equation

m
•E A X B Q (2.2)
1—i

4 
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will be found through use of matrix methods , tensor products ,

and spectral decomposition of matrices.

Necessary and Sufficient Conditions
for the Solution of Eq (2.1)

Roth (Ref 38) developed his results for square matrices

by using the concept of similar matrices . Since the equation

now under consideration has rectangular component matrices ,

the restriction that the matrices be similar is relaxed and

all that is required is that the matrices be equivalent.

Definition: A matrix B is said to be equivalent to a

matrix A if there exist nonsingular matrices P and Q such that
B - PAQ .

Theorem 2.1 (Necessary Condition): Let X(m,fl) denote

the matrix solution of AXB + CXD = E where A~ .~~, B~. .~~~,

~p,m, ~n,q,
C(p,m)P D(~~q)~ and E(p q)~ then the fcllowing pair of matrices

1
A (p, m) E(p,q)1 1

A(p,m) °(p~q)~
10 D .1 D J (2.3)(n,m) (n ,q) (n ,m) (n,q)

are equivalent.

Proof: To show that the above matrices are equivalent ,

there must exist two nonsiñgular matrices P and Q such that,

P fA (p, m) E(p ,q)~ 
~ —(p+n,p+n) [ - J ‘~(m+q,m+q)

(n,m) (n,q)
* 

1~~
p , m) °(P,q)

~L0 D J (2.4)
(n,m) (n,q)

5
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Let p - [I
(~~~) Cx cP~

n)J and Q = [I
(m m) ~XB~~~~

J 
(2.5)

°(n ,p) 1 (n,n) °(q m) 1(q,q)

Then by substitution , the resulting equation is

~I (p ,p) •CX (p, m)1 IA (p, m) E (p ,q )]

L0(n ,p) 1(n ,n) J L0~n ,m~ D (n q) j

1I (m ,m) •~XB (m ,q)~ IA cp, m) °(p,q ) 1 H

Lo I I Lo D j (2 .6 )(q, m) (q ,q) .J (m ,n) (n ,q)

Multiplying the first two matrices on the left together yields :

rA(p, m) E~ CXD (p,q)] 
~~~ 

XB (m q)1
L0(fl ,~) D

(~~~q) J L0 (q , m) ‘(q,q) J
IA(p, m) °(p,q )~

D I (2 .7 )
L. (m ,n) (n ,q)J

Now, multiplying the remaining two matrices yields ,

IA (p, m) ~AXB +E~ CXD (p,q )~ A (p , m) 0(p,q) 1
I 

— I (2.8)
L°(n ,m) D (~~,q) J °(m ,n) D(~ ,q)J

Since AXB+CXD-E, then -AXB+E-CXD-0 and Eq (2.8) becomes

IA CP , m) °cP~~)~ fl(p ,m) °(p~q)~
• L0 (fl ,~) D(~ ,q).l L0 (m ,n) D (n q) J (2 .9)

which shows the matrices to be equivalent and completes the

proof.
6
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Theorem 1 shows that a necessary condition for a solu-

tion to exist is that the matrices A and D from Eq (2.1) can

be written in block diagona l form . Similarly, the same result

can be shown for the matrices B and C of Eq (2.1).

Theorem 2.2 (Necessary Condition) : Let X (mfl) denote

the matrix solution of AXB+CXD-E where A( .
~~~, B,. . , C,. ~~p, m, ~n ,q, ~p,m,

D 
~ 
and 13 . , then the following pair of matrices are(n,qj (p,q)

equivalent:

IC (p , m) 13(p,q) 1 IC (p m) 0 (p,q) 1
I • I I ( 2 . 1 0 )
L°(n ,m) B (~~,q) J LO (n ,m) B(~,q)J

Proof: The proof of Theorem 2.2 is identical to the

proof of Theorem 2.1 with the choice of P and Q as follows:

Let P - ~~ ~AX (~~fl)1 and Q r’(m ,m) ~XD (m,q)](2 11)
L0(n ,p) ‘(n,n)J L0(q.,mi 1 (q,q)J

Two other necessary conditions arise if in Eq (2.1)

the matrices A and C are of the same square dimension and the

matrices B and D are also of the same square dimension but

different from A and C. These conditions arise from the study

of pencils.

Definition: Let A anc C be a pair of square matrices

of the same order and let A be an elemen t of the complex num-

bers , then A + AC is called a pencil.

Def inition: A penc il is cons idered to be re gular if
the matrices A and C are square and the determinant A + AC I

7
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is not identically zero. Otherwise , the pencil is singular

(Ref 28:823).

Theorem 2.3: If MAC and B+AD are regular pencils ,

then Eq (2.1) has a solution if and only if the following

pair of matrices

f(C-eAY 1 (C-eA)~~E(B+eDY
’1 f(C-eA )~~ 01

L _ ]_ I I _
~ I (2.12)

0 -D(B+eD) -~ L O -D(B+eD) J

are similar , where there exists an e, a complex scalar , such

that I-eA+C 1 ~ 0 and IB+eDI ~‘ 0.

Proof: Since MAC and B+AD are regular pencils , the

determinants are IA+AC I ~ 0 and IB+ADI jS 0. This implies that

IA+AC I is a polynomial in A and has at most n-zeros. Hence ,

there are at most m values of A for which IA+AC I vanishes.

This is similarly true for B+AD. Choose e not equal to any

value of A for which IMAC I IB~A D I vanishes (Ref 8:824).

Thus e is a scalar such that t-eA+C I ~ 0 and IB+eDI ~ 0, which

imp ’.ies (-eA+C)~~ and (B+eD)~~ both exist. Thus , the following

is true :

A X B + C X D - E  (2.13)

AXB + eAXD - eAXD + CXD - E (2.l3a)

AX(B+eD) + (C-eA)XD - E

(C-eA)~~AX(B+eD) + XD - (C-eA)~~E

(C-eA~~
1AX + XD(B+eDY1 - (C-eA)~~E(B+eD~~~

Eq (2.13) has then been reduced to a Liapanov equation. By

the results of Roth (Ref 38:392), the matrices in Eq (2.12)

are similar which completes the proof.

8 
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Theorem 2.4: If A+AC and B+AD are regular pencils ,

then Eq (2.1) has a solution if and only if the following

pair of matrices

f(A+eC)~~C (A+eC) ’E(D-eBy 1
1 1(A4eC)

~~ 
0

L 0 -D(B+eD)~~J 
‘ L 0 -D(B+eD)~~

are similar , where there exists an e, a complex sca lar , such

that IA+eC I ~ 0 and ID-eB I ~~ 0.

Proof: The proof of Theorem 2.4 is similar to the proof

of Theorem 2.3. The major difference is that in Eq (2.13a) , the

matrix eCXB should be used instead of the matrix eAXD .

Theorem 2.5 (Sufficient Condition): Let

AX + CXB 1D - E (2.14)

where B is a nonsingular matrix , and let

FA~XC El fA+ XC 01
I I I I (2.15)
LO -D+AB J LO -D+AB-J

be a pair of equivalent matrices , where MAC and D+AB are

regular pencils of matrices. Then there exists a solution of

Eq (2.14).

Proof: By the results of Roth (Ref 38:392), and since

the matrices in Eq (2.15) are equivalent with elements in F(A)

where P is a polynomial domain and A is an indeterminant, then

X(A) and Y(A) are matrices with elements belonging to F(A).

Hence Eq (2.14) can be rewritten as

(A+ AC)X(A) - Y ( A ) ( D - A B )  • E (2.16)

9
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Let X (X) X +XX1
+A 2X2

3X3 .~~~
’Xp p rn- i (2.17)

and let

Y (A ) — y0
~~y

1
4~2y2

+~3y3 . 9A ~~q 
q < n-i (2.18)

where p and q denote the number of matrices with 
elements in P.

Since X(A) and Y( A) are of the same dimension, then p • q.

Thus Eq (2.16) can be expressed 
as

(A+XC) (X0+AX 1
+A 2X2

4. . . +xPx~~
(2.19)

~yo+ 1 2Y24~ .+?YY~) (D-AB) E

Equating the coefficients of l
ike powers of A in Eq (2.19) ,

the following p+2 equations can 
be arrived at:

AX0 - Y ol)

AX1 +CX 0
Y1
D + Y OB O

AX ~ CX - Y D + Y B - 0
2 1 2 1.

(2 .20 )

AXh + CXh..j~ YhD + Yh 1 B - 0

CX + Y B  - 0

Multiplying each of the equations 
of Eq (2.20) by I, B~~D,

(B 1D)2, ~~~~~~~~~~ (B D)~~~ respectively 
yields :

AX0 — E

AX1(B~~D) + CX0(8
1D) - 0 (2.21)

AX 2(B~~D) 2 + cX1(B 1D) Z - 0

10

r:

~ 

~5... ’ - - — —.————.-.—•-———- — -— - .--



• ~~~-——- - -
~~~~~~~~~~~~~~~~~~~~~~ --—- - _ 

+ cxh l u
]D)h •

(2.21)
CX~ (B 1D)~~

1 
- 0

Adding the equations of Eq (2.21) and factoring yields :

A(X 0+X1(B D)+X2(B D) 2+...+X~ (B~~D)~ 1 +

C ( X 0(B ’D)+X1( B D )2+X2(B ’D) 3+...+X~(B~~D)~~’] — E (2.22)

which implies

A [X 0+X1(B D)+X2(B D) 2+...+X~ (B~~D)I’~ +

C[X 0+X1(B ’
~ D)+X2(B ’D) 2 + ... +X~ (B D) 1’I(B~~D) - E (2.23)

Hence , a solution of

A X + CXB ’D - E  (2.24)

exists and the theorem is complete.

Conditions for the Solution
n

of the Matrix Equation E A.XB .-C
i—i 1 1

Conditions that are necessary and sufficient for solu-

tions of the general linear matrix equation

n
£ A.XB 1 

— C (2.25)
i—i 1

will be based upon the ideas of a spectral decomposition of a

matrix into a representation that uses idempotent and nil-

potent matrices,

~ 

_ _ _
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Definition: Let N be a square matrix with elements in

a field F. If N2 - N, N is said to be idempotent.

Definition: Let N be a square matrix with elements in

a field F. If there exists a positive integer m such that

Nm — 0, N is said to be niipotent.

Definition: Let A and B be two idempotent matrices.

Then if AB - BA - 0, A and B are said to be orthogonally idem-
potent.

Orthogonally idempotent matrices are generated by

spectrally decomposing a matrix. Matrices that are associated

with different eigenvalues are orthogonal.
n

Definition: Let A = Z X.E.. The representation of

A where each A
~ 

is an eigenvalue of A and each E1 is an idem-

potent matrix associated with the A 1 is called a spectral

decomposition. 
-

From a theorem of Rosenbium (Ref 36:268), there exists

the property that the sum of the orthogonal idempotent matrices

equals the identity matrix, I.

As stated earlier , a considerable amount of work has
been done to find the solution of equations of the type

BX - XA — Q (2.26)

Most of this effort has been directed towards those cases in

which the matrices A and B have been square and of the same

dimension. Rosenbium (Ref 36) has derived both necessary and

sufficient conditions for this case. The next theorem extends

• his work to the case where the matrices are of different

- - - -_—-~~~~--—— —~~~~~ ~L:T~~~::~~~~~~~~~L.-_---~ —
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Theorem 2.6: Let A be a square matrix of dimension in,

such that A - E a.E. and B is a square matrix of dimension n,

n
such that B a 

~ b1,F1,, where the E. ’s and Ft’s each form dis-
1%

tiact sets of orthogonal idempotent matrices. A necessary and

sufficient condition that the matrix equation Eq (2.26) have a

solution X,. . is that whenever for some pair of indices s and

r, a5 - br~ 
that is the characteristic roots are equal, then

FrQE5 —

Proof: To show necessity , suppose X(n,m) is a solution
of Eq (2.26) such that a5 — br• Then Eq (2.26) implies

n m
E (b~F~)X - X( £ a.E.) — Q (2.27)

k—I

which can be rewritten as

n in
E bkFkX - E a .XE . - 0 (2.28)

k—i j u l 3 ~

Multiplying from the left in a termwise fashion by Fr and at

the same time multiplying from the right in a terinwise fashion

by E5 yields:

brFrXEs - asFrXEs - PQE (2.29)

since the E5 s and Fr’s are orthogonally idempotent. Factoring

Eq (2.29) yields:

(br~as)PrXEs - FrQE5 (2.30)

But by hypothesis br - a5, thus the left side of Eq (2.30)

13

- _ _



5-- - 
5---- - -- - . ~~~~-~~~~~~~~~~~~~~~~~~~~~~~

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~ 
-

~~~~~~~~~~~~~~~~
:‘

- —

becomes °(n m)~ 
Th is then impl ies

FQE - 0r $ (n,m)

To show suffic iency , the following convention will be used .
If a5 - br~ then FrQEs 0 and • 0 - 0. Thus the expression

bk-aJ~
k
~~J 

(2.31)

has meaning for all j and k. Next let V be defined as follows :

V - Z 
b -a FkQE. (2.32)

k—l j—l k j

If V is a solution of Eq (2.26), replacing X by V should result

in Q. Hence,

in n m n
By-VA - B E E b ~a 

FkQE. 
- I I b ~a 

FkQE. Ak— i j— l k j ~ k 1  j l  k j -~ J
- 

rn n (BFkQE~ - FkQEJ
A

k—l j—i k-aj

— ~ A~~i ~~~~~~~~~~~ 
- 

k j  
~i—l~~~~

k—i j-i bk 
-

in n bkPkQE4 - a FkQE.— I £
k—i j—l k~

9j

in n
— £ £

k—l J— l k j -

in n
— ( I 

~~~ 
C I E~)k—i j.l -‘

- Q
14 
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Therefore V is a solution of Eq (2.26) and the proof is corn-

piete.

Example 2.1: The technique derived in Theorem 2.6

will now be used to solve for the matrix X in the following

equation :

12 il Ii 0 ol 11 2 31
I Ix  - x 1° 2 ii — I I (2.33)
L0 3J L0 0 3J L~ 

2 - 2J

The representation of A is

A — a1E1 + a2E2 + a3E3

and B is

B — b 1F1 + b 2F2

In terms of the values from Eq (2.33), these become

ri 0 oi rO 0 o~ r o 0 0~
A — 1 10 0 0 + 2 10 -1 -l + 3 1 0 0 1

Lo 0 0J Lo o oJ Lo o ii
— Ii - ii  10 ii

B — 2 [~ oj~ ~ [o ij  (2.34 )

From Theorem 2.6 the solution will look like Eq (2.32), thus

2 3 FkQEJ : 1- 
k-i J.lbk-aJ

- 
P1QE1 + 

F1QE 3 + 
F2QE1 + 

F2QE.,
b1-a1 b1-a3 b.~-a1 b2-a2

-

n

15
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Ii -11 1]. 2 3111 0 01 ri -1111 2 3110 0 01
I I I  110 0 O I l  II  110 0 11

x — 10 0.1 14 2 -2 .110 0 0J ,~10 0.11.4 2 -2.1 1.0 0 li~
2-i 2-3

10 il fi  2 3111 0 01 10 llfl 2 31r0 0 0
I I  11 0 0 01 I II 11 0 1 -i

10 li14 2 - l iL .O 0 oi~1o lJL4 2 -1.110 0 0
3-1 3-2

r-3 0 01 fO 0 51 14 0 0~ 10 2 -2
x —  I I - I  1+ 41 l~l

L~ 0 oi 10 o oi 14 0 0.1 10 2 -2

f- i 2 -7x .  I
12 2 -2

To extend the results of Theorem 2.6 use will be made

of the fact that if two matrices commute , then the associated

idempotent representation will also commute. The extended

theorem is as follows.

Theorem 2.7: Let A and C be square matrices of dimen-

sion in , such that A and C can each be expressed as a sum of

products of eigenvalues and orthogonal idempotent matrices.

Let B and D be square matrices of dimension n , such that B

and D can each be expressed as a sum of product of eigenvaiue
and orthogonal idempotent matrices. Also , let AC - CA and

BD - DB. Then a necessary and sufficient condition that the

matrix equation

BXC + DX.A - Q (2.35)

has a solution X is that whenever for some set of(n ,m)
indices {r ,s,v,p) the following holds : csbv+ardp - 0~ that

the products of the characteristic roots sum to zero , then

16
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HpFvQGsEr~ 0(n m) (2.36)

Proof: To show necessity , suppose X (n m) is a solution

of Eq (2.35) such that csbv+ardp - 0, thea Eq (2.35) implies

n in n in
( £ bkFk)X( I c.G.)+( £ d1H1)X( I a.E.)- Q
k—i j—l ~ 1—1 i— i 1 1

Multiplying from the left by F
~ 

in a terinwise fashion and also

multiplying from the right by G5 in a termwise fashion yields :

csbvFvXGs + F
~
(E d iHl)X(za~

E
~)G5 — FV QG ( 2 . 3 7 )

Using the fact that if two matrices commute , then their idem-

potent matrices commute , Eq (2 .3 7 )  can be written as

c5b~
F
~

XG 5 + E d 1H1 F~XG5 Z a
~
E1 - FVQG

Now multiply from the left by H~ in a termwise fashion and

multiply from the right by Er in a termwise fashion which

results in

CsbvHpFvXGsEr + ardpHpFvXGsEr - HpFvQG sEr (2.38)

Eq (2.38) then implies

(csbv+ardp)H pFvXG 5Er - HpFvQG 5Er (2.39)

By hypothesis csby+ardp~ 
0(n ,m) and thus the left hand side

of Eq (2.39) is equal to 0(n m) ’ which implies that

HpFvQG3Er - °(n ,m)

17
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To show suff iciency, use will be made of the convention that - 
-

whenever c5b~ - •a
~
d
~~ 

then HpFvXG5Er • 0 and .0 - 0, thus

the expression

c
J
bk+ald~~

l
~
k
~~J

13i

will have meaning . Define

in n in n H1FkQG.E.V — I I I £ b + d (2.40)
i—i k—i j— 1 ~~~~~~~ 

c~ k a1 1

and let V be a solution of Eq (2.35). Thus substituting the

spectral representation for the matrices A ,B ,C , and D yields :

n in n m n H F Q G . E .  in
BVC+DVA I b F  I I I I 1 k  ~~ Z c G  +

A-i A A~111 k— i j— i 1—1 c~
bk+a~

dl ~~ 
u u

n m n in n HF QG .E . in
r d H  1 1 1 k  j i  —

a 1  a1 1  k— i 3—]. 1—1 C
3 k 

a1 ~ •~ i

in n in n ( Eb A F~
Hi Fi..QG.E.( ~ C G )

I I I I A—i ~~~~~~~~~~~~ +i—i k—i i_i 1—1 c
~
bk+a~

dl

~ (
a~i

daHd l  ~E1( Ia ~E)~~ 
(2.41)

i—i k—i j— l i—i C~j k a~ ~

Using the properties of orthogonal idempotent matrices and

conunutat ivi ty , Eq (2.41) simplifies to

in n m n c.bkHlFkQG.E.— £ £ £ I 3 1  
+

i— i k—i 3— 1 1—1 Cjbk+ a1d1

a d H F Q G .E .

i—i k—i j— l 1—1 C
~
bk +

18
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in n m n (cjbk + a

~
dl)H].FkQGJ

E.

i— i k—i j— l i—i C
J k 

a1 ~
in n in n

- I I I I H 1PkQ G .E ii—i k—i j—1 1—i

in n in n
— I H, I F~~Q I C. 1 13.

k—i j—l ~ i—l ‘

- Q

Hence V is a solution of Eq (2.3~) and the theorem is proved.

In the more general case , solutions of equations of the

type

n
I A 1XB 1 

— Q ( 2 . 4 2)
i—I.

where the matrices A and B are square and of different dimen-

sion can be found. To solve this type of equation the

following restrictions would have to hold:

i) {A
~
} would have to be a commutative set ,

ii) {B1} would have to be a commutat ive  set , and

iii) ii in
I I a.h . — 0

i—i j— 1 1 3

If these three restrictions hold , then the implication is that

n in
( I E.) Q ( I F.) = 0

i — i  1 j=l ~

Example 2.2: As an example of Theorem 2.7, consider

the equation

BXA + BXA — Q (2.43)

where the B and A matrices are as defined in Example 2.1. Let

19
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fl 0 0
Q “I

~.2 0 0

Then the solution for X would be:

3 2 3 2 H1FkQG.E.— 
i~i k—i j~ i l~l 

c
J
bk+aIdl

The summation would then involve summing 32 terms. This

process could easily be adapted for a computer solution .

Not all matrices may be decomposed into a representa-

tion that involves only idempotent matrices. However , a

matrix of this type may still be decomposed by using both

idempotent matrices and nilpotent matrices. If E is an idem-

potent matrix , then let ~ be its associated nilpotent matrix.

Two properties of nhlpotent matrices are :

-
j 

1) E
~
t’
~ — —

ii) E1~~ — — 0 (i ,‘ j )  ( 2 . 4 4 )

Generalizing Theorem ‘
~.6 to this more inclusive case

results in Theorem 2.8.

Theorem 2.8: Let A be a square matrix of dimension m ,
m<m

such that A - 
~ 

a
~
E
~
+!. and let B be a square matrix of

i—i 1

n<n
dimens ion n, such that B - ! b 3 F.+r.. The sets {E~}, (F.)

f 3— 1 3 3

are complete sets of principal idempotent matrices and the

sets {E~}, {PJ
} are complete sets of nilpotent matrices

associated with A and B respectively. If Q~~. - ~~Q and

20 
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for all i and 3 ,  then a necessary and sufficient
condition that BX - XA - Q has a solution X (fl,m) is tha t for

some pair of integers r and s , a~ — br~ 
then BrQA 5 -

Proof: To show necessity , let X (fl m) be a solution of

BX - XA • Q (2.26)

such that a5 ~
br~ 

then Eq (2.26) implies

n(n <in
~ ~~

‘ (b 4F.+r4fl X - X f t (5iEi+~ .)] - Q
i—i J 3 J i’]. 1

fl<n n<n i~<m ii~<m
Y b ,~F.X + ! F.X - ! a1XE . 

. Y XE~ - Qj— i -‘ j—i -‘ 1

Recalling the properties of nilpotent matrices that are stated

in Eq (2.44) and multiplying from the left by Fr in a termwise

fashion yields

i~km
b F X + ~~~X - 

~~

‘ a.F XE 1 - ! - F Qr r  r i r  i 1  r r

Multiplying from the right by E5 in a termwise fashion vieWs

b F X E  + 
~~~~ 

- S5FrXE5 - FrXE - FrQEs 
(2.45)

Regrouping and simplifying Eq (2.45) becomes

(br~ 
a5)F~

XE3 + Fr(~r
X - X 135 ) E . - FQ E (2.46)

— But by hypothesis 
~~~~ 

XEç which implies 13q (.~.46) is

(br ~
as)FrXEs — FQ E (2.47)

Again , by hypothesis br - a~ and hence the left side of
21
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Eq (2.47) is 0(n,m) which implies that

FrQE5 — °(m,n)

To show sufficiency the convention will be used that whenever

- br~ 
then FrQEs - 0 and • 0 - 0. Thus the expression

will have meaning for all values of j and k.

- :- Let V be a solution of Eq (2.26) where

m<m n<n
V - ‘ F~QE. (2.48)

i—l k—l k a
~ 

1

Then the left side of Eq (2.26) is

ii~<m i~<n F QE. i~i<m i~<n F QE.
BV - VA - B( ‘

~~

‘ !~ b - a~~ 
- 

k ‘)A
i—i k—i k I i— i k— i k a1

iii<m i~<n BF QE . i~<m ff<n F QE A- b 
- ~ r ~ (2.49)

i—i k—i k *j  i— i k— l k 5i

In Eq (2.49) substitute the spectral decompositions for A and

B to get

i~i<m —
i%i<m ~~~ A- i A A A K I  ~~~ ~~~ ~

‘ (aUEU
+E.~)Fk

QEj
-~~~ ~

. - r  r
i—i k—i k-a i k—l i—i k-a l

iii<m iicn (bkFk+Fk)QE I - 
iii<m ii<n FkQ(alEj+E j)

i— i k—i bk-a l i-i k-l

Adding and then factoring out the common terms yields:

- - 
22
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- 
iii<ni i~<n (bkFk+Fk)~

E -FkQ(a IEj+E)~~
i—i k—i

Expanding the numerator of Eq (2.50) changes the equation to

i~i<m 1i<n bL.FkQE. +FkQEI - a. FkQEi - FkQE.— .~ 1 1 
(2.51)

i—i k—i °k a1

Apply ing the hypothesis and the properties of idempotent and

nilpotent matrices to Eq (2.Sl), this equation simplifies to:

i~km ii<n bkFkQEl~a~FkQE~
i—i k—i k~~i

- 
i~ m ii<n (bk~

aj)FkQE i
i—i k—i bk-a l

m’qn n<n
• r F~QE.i—i k.]. ~ 1

ii<n m<m
- r F1 Q !~ E.k— i j_

~ 
1

Q

Hence V is a solution of BX-XA—Q , and the theorem is complete.

Example: As an example of the procedures demonstrated

in Theorem 2.8, let the matrices of Eq (2.26) be as follows :

j  
A -L

~ 
~ ~2] (Ref 4:186) and B • [

~ 
~]
(Ref 29:277) (2.52)

Ii 2 -2
— 

12 1 -1

Thus Eq (2.26) becomes
23 
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fi fl f2 -i 11 fl 2 -21
I I x - x 13 3 -21—1 I (2.53)
12 lJ 14 1 OJ 12 1 -iJ

The decompositions of A and B are:

A — a1E1 + + a~E2 + E2

B - b1F1 + b2F2 (2.54)

In terms of the specific A and B of Eq (2.52)

~ 2 2 -21~ 11 0 0 0) 12 -2 2)
A — 1 

~~~ 
5 -1 11 + *1 10 10 -10 1 + 3 ~.Ii -l 1 1 0

1-3 3 u I  110 10 -iOJ 13 -3 3.1

- ‘(4 1-f ‘] )~ ~(4L ‘]) (2.55)

From Theorem 2.8 the value of X that is being sought can be

represented as Eq (2.48) as follows

1<2 0<2 FI.QE .x — b -  (2.56)
i—l k— l k 51

Expanding Eq (2.56) implies

FQ E E Q E  F Q E
X — b - a  + b - a  + b - a  (2.57)

1 1  1 2  2 1

For all other choices of i and k the difference bk~
aj goes

to zero and , hence , by the convention in Theorem 2.8 the
— 

quantity goes to zero. Making the substitutions into Eq (2.57)

24 
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1 1 -liii 2 .2 1 1  2 2 - 2)
x — (4) (-~

.)(
~) I II Il-i 5 -l

1- ]. 1.112 1 -]J1- 3 3 1

r 1 -1111 2 2112 -2 2
+ (-~)(~)(~)I II Il~l -l 1

1-]. lJL2 1 -lJ’.3 .3 3

Ii l)fl 2 -211 2 2 -21
+ (~)(-~

)(
~ )I II Il -i 5 -i i (2.58)

Li i JL2 1 ..1JL3 3 ii

fO 0 01 f -4  4 -4 1 112 12 -12
— I 

~~~~~~~~ 
I I 

~~~10 0 OJ ‘- 4 -4 4J ‘.12 12 -12

17 5 - 5
x - ~~ I

15 7 -7

The last theorem in this section generalizes the results

of Theorem 2.7.

Theorem 2.9: Let A and C be square matrices of dimen-
iiiA(m

sion m, such that A - !~ a.E.+!. and C - r c.G.+~ ., and let1 j— l ~~

n<n —
B and D be square matrices of dimention n, such that B • r bkFk+Fkk- 1

n<n
and D - Y d1H1+H1, where the sets tE,}, {G,~} , {F~.} , and

1—1 £ £ £ £ J

{H1} are complete collections of principal idempotent matrices

and the sets {!i} { ‘
~~~

) 
~ 

{~~~~ } , and 
~
11
~~ 

are complete collec-

tions of niipotent matrices . Then a necessary and sufficient

condition that the matrix equation

BXC + DXA — Q (2.35)

have a so lution X (n,m) is that whenever for some set of in’

dices (r,s,v,p} where HvFr and G3E~ form nons ingular matrices ,

25
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+ b~Q~5 + a
~

ff
~
Q + 

~~~~ 
+ 

~ r~~~s 
+ 
~v~~p 

• 0

implies that X is also a solution of

~~~~~~~~~~~~~~~~~~~ + X rCs~
1vEp) + rr~~s

+ 
~v~~p 

- Q

Proof: Let X(n,m) be a soiution of Eq (2.35) such that

n<n 1km
Q - 

~~

‘ (b~F~+~~) x r (c.G.+C~.)k—i j—l ~ ~

n<n rn<m
+ ~ (d1H1 +fl1) X ! (a.E.+~ .) (2.59)

1—1 £ £ i—i 1 1 1

Expanding Eq (2.59) yields

- 

Ij (n ‘ 1km n<n ni<m
Q .1trb kFk }X !c G )+ tb kFk X r

~~
.

k—i j—l ~ k—i 3— i ~

fl < fl I ,n<m n<n iii<m
+ r r j x  rc .G )+ ~~ x r~~.

k—i k 3— 1 ~ k—i k 3— 1 -~

(2.60)
n<n 1km n<n m<m

+ ! d H ~ a.E. ) + Y d H X Y
1—1 ~ i—i 3. i 

~~~~~~~~ 

1 1 1

1km ~ 1kn 1km
+ fl~~ X !aE )+ !~fl’ X ~~~~~~~~~~

1—1 1 ~~~~~ 
i ~ 1—1 i—i 1

Multiplying on the left by Fr and H~ 
in that order in a term-

wise fashion and then multiplying on the right by G5 and

in that order in a termwise fashion making use of commutativitv

and the idempote~t properties of these matrices yields from

Eq (2.60)

26 
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HvFrQG5Ep - brcsHvFrXGsEp + brHvFrX~s
Ep 

- -

+ CsHvP~r
XGsEp+ HvrrX~SEP 

+ dvapHvFrXGsEp (2.61)

-~ 
+ dvHvFrXGs~p + ap}TvFrXGsEp + 

~~~~~~~~

Using the properties of nilpotent matrices and factoring ,

Eq (2.61) can be reduced to

HvFrQG5Ep - HvFr~brcs+dvap+cs~
’
r+aptTv)X

+ XC br~
’
s ~~~~~~~ 

+ 
~r~~s 

+ 
~~~~~~~~ 

13p (2.62)

Since HvFr and G5E~ are nonsingular matrices , then their in-

verses exist and Eq (2.62) can be reduced to

Q - (brcs+dvap+csrr+apTTv)X+X(b r~s+dv!p)+rrXC~s
+T:TvX!p

Which implies X is also a solution of this equation and

- necessity has been shown. To show sufficiency the convention

will be used that whenever brcs + d
~
a
~ 

- 0, then HvFrXGsEp - 0

and • 0 - 0, then the expression

H F XG Ey r  s p
b c + d ar s  V P

will be well defined. Let V be a solution to Eq (2.63) where

1km 1km ikn 1kn H F QG E
V - r r ~ b c + d a  (2.64)

p l v—l r—l s—i r s v p

Then

27
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i<m 1km 1kn ii~< n H F Q G E
BVC + DVA _ f  

k-i 
r~) f r  v~

’
l r~l s~i 

b
~
c5+d~

a
~

1km 1kn
• Y (c G 

~~~~~~ 
+ ~ (d1H14T1)j—i H 3

~~~

1km 1km 1kn 1kn H F QG E ~ 1km• r r r r b 
r
+d

s P Y (a.E. +E.)I (2.65)
p 1 v—i i—i 5—]. rCs v~p i 1  1 1 1

Simplifying Eq (2.65) by multiplying and making use of the

properties of idempotent and nilpotent matrices yields :

BVC + DVA - 
1kn 

~
<n
~
csbr+dva~

) HvFrQGs~p
p 1  v—i r-l s-i brCs ~~~

HvFr(csFrQ+brQGs+apHvQ+d1Ep+F~QGs+H1QEp)GsEp~
b c + d a C .
r s  V p

Utilizing the convention , Eq (2.66) simplifies to

m<m m<ni n<n n<n
- Y ! 

~~

‘ Y H F rQGsEp i  v—l r—l s—i “

Which completes the proof of this theorem .

Generalizing these results to equations of the type

n
I A.XB . — Q (2.67)

i—u 1 1

where

m in
A~ — E ( a jjA~3

+
~ i3 ) and B

~ — E ( b
~~3

B
13

+B
13

)
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with (A 13
) , {B

13 } forming sets of complete idempotent matrices

and {A~3 ) 
, (~~~} forming comp lete sets of nilpotent matrices.

A necessary and sufficient condition that the Eq (2.67) have

a solution X ., is that whenever for some set of indices the(n ,m~,
n in n in n in
II II A.3 and 1! II B.. have inverses and I I b. .X13Qi—i j—i ‘-‘ i—i j.~ 

13 i—l j— i ‘~ ‘

n in
+ I I ~~~. .QL . - 0, then X ,. .

~ 
is also a solution of

i— i j—i 13 i~ ~n,mj

n in n in 
— 

n in 
—

( 1  11 a..b 1 + I I b~ A..)X + X( I I a..B..)
i—i j—i 13 i 

~~ j—u ~ ‘~ i—i j—1 ~ 13

in in n in
+ I I ( 11 11 A1.XL .) — Q.

i—i 3— 1 i— i 3— 1 ~

An alternate solution to Eq (2.35) exists if either pair of

matrices B,C or A ,D are nonsingu]ar . If this condition exists

then the equation to be solved is

X + B 1DXA C ’ - B 1QC 1 
-

or 

D~
1BXCA~

1 
+ X - D 1QA 1

Spectral Decomposition of
Rectangular Matrices

In this section , the results of the last section will

be generalized to solutions of matrix equations in which the

coefficients are rectangular matrices. In solving these equa-

— 
tions use will be made of the foilowing theorem .

Theorem 2.10: (Rao and Mitra (Ref 14:38)) Any in x n

matrix A can be written as:

29
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m
A — I cz1U~, (2.68)i— u

where ci~~, i 1 , 2, ... , u are the distinct nonnull eigenvalues

of A*A and the matrices

U~ - a A[I.(A*A. I)((A*A.a~ I) 2)(A*A.cs~I)] (2.69)

satisfy - -

u
~~urJ1

— U
~vi

~~~ • 0 , U~U — O V i  
~ 3 (2.70)

(aj is taken to be the positive square root of which is

real and positive since A*A is hermitian and non-negative

definite.)

For a proof of the above theorem , the reader is directed

to the source cited . The notation used above is defined as

follows : a matrix denoted by A* is the conjugate transpose

of the matrix A ; and a matrix A is the generalized inverse

of the matrix A.

Example 2.3: As an example of Theorem 2.10 consider

A(2,3) — [~ ~ fl (2.71)

Il 11
First the nonnuii eigenvalues must be found, thus A* 1i ii

11 ii
and the product

[1 11 fl 1 11 f2 2 2)
A*A — Ji 11 .1 1— 1 2 2 2 1 (2.72)

1]. ii Li 1 ii 12 2 2-i

Therefore ,

30
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f2 2 21 Il 0 0
A*A - Al — 1 2 2 2 1 -A l O 1 0

12 2 2.1 10 0 1

12-A 2 2 1
—1 2 2-A 2 I
12 2 2-A (2.73)

— -A 3 + 6A 2 
H

— A 2(A-6)

Setting this last equation equal to zero and solving implies

A — 0  or A — 6

Since the are the nonnuil values of A , the only A that can

be set equal to is the value of 6. Thus - 6 and hence

A — 6U1 (2.74)

To find the matrix U1, Eq (2.69) must be solved. Making the

substitution for cs~ yields

— _
~
5k[I_ (A*A_oI) (A*A_6I) Zr (A*A_61)] (2.75)

1 2 2 2 1 16 0 01 1-4 2 21
A*A .61 — 1 2 2 2 1-10 6 ° ‘ — L 2 -

~~~ 2j (2.76)
‘.2 2 2J ‘-0 0 6-~ 2 2 -4

and

1 24 -12 -121
(A*A_61) 2 1-12 24 -12 1 (2.77)

L-u2 -12 24-i

with

- f 1/6 -1/12 -1/121
{(A*A_61)2} — 1-1 /12 1/6 -1/12 1 (2.78)

1-1/12 -1/12 1/6 ‘‘

Substituting Eqs (2.76),(2.77) and (2.78) into Eq (2.75)

31
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fl 1 1
U - -~~~ I

~ ° 1]. 1 1

ku 0 01 fF4 2 2)f 1/6 -1/12 -1/1211- 4 2 211
• 11 0 1 01- 11 2 -4 2 11-1/12 1/6 -1/12 I I  2 -4 211

~Lo 0 ii LL2 2 -4JL-1/ l2 -1/12 1/6 i -’.  2 2 ~4Jj
fl 1 11 11 0 0 1 1 6  -3 -3

1 110 1. 0 1.1 - 3 6 -3
7~~Li 1 1.110 1) ii 1-3 -3 6

i fl 1 11 1-5 3 3
1 1 3 - 5  3

Ii 1 1.1 13 3 .5

•
-1

Thus A can be decomposed into a summation of products of

scalers times matrices , where the scalers are determined by

the eigenvalues of A*A .

Definition (Ref 35:20): Let A be an m x n matrix of

arbitrary rank. A generalized inverse of A is an n x m matrix

G such that ~ - G~ is a solution of A~ ~ for any y which

makes the equation consistent. One of the important properties

of generalized inverses is found in the next lemma.

Lemma 2.1 (Rao and Mitra (Ref 35:20)): A exist if and

only if A A A  - A.

Example 2.4: Let A be given as in Eq (2.71). To find

- the generalized inverse of A the procedure outlined by Noble

(Ref 30:339-341) will be followed. Let A be partitioned as

fo llows :
ri: 1 11

A 1 ’  I (2.79)
1 1
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then

A11 — [1.] , A12 — [1 1] , A21 — (1] , and A22 — [1 11 (2.80)

From the matrices in Eq (2.80), the matrices Q, B, and C can

be generated .

Q — A~~A12 — [1][l 1] [i 1]

IA 1 ru
B •[A

11 I — I I (2.81)
12-i lii

C — [I QI — (1 1 11

A formulation of the generalized inverse is then given by the

equation

- CT CCTY
1 BTBY1BT (2.82)

where the superscript T indicates the transpose matrix.

Making the appropriate substitutions

A — [~]((u 1 1] ~ 
([1 1] [1 11

Ill
A — I l l  (1/3) (1/2) [1 1]

LlJ

- 11 11
A — 4- ~l i f  (2 .83)

‘~ Li li

Theorem 2.11 (Rao and Mitra (Ref 35:24): A necessary

and sufficient condition for the equation AXB - C to have a

solution is that

AA CB B — C (2.84)
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in which case the general solution is

X A CB +Z-A AZBB (2.85)

where Z is an arbitrary matrix.

Proof: Let there exist a matrix X such that AXB = C..

Then:

AA CB B = AA AXBB B

- AXB

- C  -

Thus necessity follows. Sufficiency is obvious since ACB

is clearly a solution.

Example 2.5: Let AXB C where A(2,3)~ B(3,4) and

4) are defined as follows:

Il 1 11 Ii 1 0 -1.1 13 2 - 1  0
I , B =12 3 - 1 -41, and C = I

Il 1 ii ‘.3 4- l -5~ 14 0 1 1

then solve for the matrix X.

According to Theorem 2.11, all that is required to

solve for X is to set X equal to the result of Eq (2.85).

Doing this will generate a family of solutions dependent on

the choice of the matrix Z. For purposes of this example,

let Z be equal to the zero matrix , then X = A C B . A is as

found in Example 2 .4 , Eq (2. 83) .

To find the generalized inverse of B, the same proce-

dure will be followed. Checking the rank of B , it is easily

shown that p(B) - 2, and thus the partition of B is

34.
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11 ~: 0 -1)
B — 12 3 ‘ -1 -4 1 (2.86)

I —
L) 4 ’ -  -

There fore

B11 — [
~ ~1’ B12 — [

~~ 
:fl ~ 

B21 — [3 41 , and B 22 — [-1 -51

The intermediate matrices Q, B’ , and C’ are

Q — [B~~][B12] — [..
~ ~1[~ :fl— [~ .Jj

lB 1 ii 11
B’ — 1B~~i— 12 3f (2.87)

3 4J

and

C’ — (I Q] — .J~ -n

Thus

B - C~
T (C~C~

T
) l (Bt TB t)~~ Bt T

ri 01 r ri 01~- l
Jo 1~~ fl 0 1 illo 1 1 f1 2 31 f’~~~I [1 2 3

L~ ~J 
1 -1 2

~L~ :~i 
u ~ ~~~ 4j 1.’ 3 4

B - (l/9)[~ 

~~ 
-

~~ ~~~~~

6
— B — (u/9)[~ :~ (2.88)

5 - 4  1

Returning to the solution of X and making the appropriate

substitutions from Eqs (2.83) and (2.88) yields

X - A C B
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— (<~i~f~ fl ’j u  ~ 

-

~~ (
1/9
[! ~i f

l)
which when simplified yields :

fl2 6 4
X— (i/9) 112 6 4

112 6 4

The next theorem generalizes the conclusions of the last

theorem .

Theorem 2.12: A necessary and sufficient condition for

the equation

AXC + DXB Q (2.89)

to have a solution is that RR*WL* L - W , where W - RR*QL*L

and R and L are spectrally decomposed matrices multiplied

from the right and left respectively. Then a general solution

of Eq (2.89) is

RWL +Z-R RZLL

where 2 is an arbitrary matrix. This solution exists provided

at least one of the following statements holds , but not both

i and ii at the same time :

i) U.U~D - 0 or BW
~
Wk - 0

(2.90)
ii) Y1YtA — 0 or CV~VJ 

• 0

where the decomposition of the matrices A , B, C , and D are as

follows :

e f g
A (m,n)~ 1

E
1
ci~U~ B(p,q) = 

J
Z,BJV J C(p,q)~ k=l k k
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Proof: If Eq (2.89) is a true statement , then

e g h I f
I 

~~i
tL X I YkGk 

+ I tS
1
Y~~JX  I $.V. - Q

i—i ~ k—i 1—1 j—i ~

Multiplying on the left by U1t.J~ and from the right by GkG~
yields

UiXGk + (U 1U~ i~1 
61Y1) x 

~~~ 
Bj V) G~ Gk ) - UiU~

QG
~
Gk

which can be simplified to

UiXGk + U iU iDXBG~ Gk - UiUtQG~
Gk

But by hypothesis (i) either U1U~D - 0 or/and BG~
Gk - 0,

then the last equation reduces to

U iXG k - UIUtQG~
Gk

Then this is a form of Theorem 2.11 and the proof of the

theorem is complete.

Note that if the multiplication had been by 
~t~1 

and

V~V~ respectively, then the results would have been

.5
183

Y1XV
3 

— Y 19QV~V
J 

(2 .91)

and either Y 1YtA • 0 or CV~V~ - 0 would have to be true for

the theorem to hold. Thus there exists four distinc t ways

for this theorem to hold.

Example 2.6: Consider the equation ,
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ri 1 1) Fl 1) 1 1 0 -1) 11 ii 11 3)
- I I x I o  01+ 1 lx i i. l i—I I (2.92)

11 1 ii Li ii 1-1 0 13 Ii 13 12 -13

Ii ii
which corresponds to Eq (2.89). Then A* ~~l 1 j and from

11 1.1
11 1

Eq (2.88) A — (1/6)11 1
11 1

Decomposing A yields

A — ci1U. — (/~) ( l/~/~)[~ ~ 
(2.93)

which implies

— /~ and U
~ 

— (i/ I6) [~ ~
and

LJ’J~ — (1/2) [~: ~j (2.94)

Following the same procedure for the matrix D implies

ri 0 11 11 0 1
D* — i I and D — (1/4)1

11 0 ii 11 0 1

Decomposing D yields

Ii 11
D — 6k~

’
k — (2)Cl/2)I0 0! (2.95)

11 1.1

which implies

11 11
• 2 and Y1, • (1/2)10 0~Li ii

thus
y*y — (1/2) [

~ ~:} (2.96)

Substituting the decompositions of A and D from Eqs (2.93)

and (2.95) respectively into Eq (2.92) yields 

- 
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11 1 ii ri 11 r 1 0 -1) ri l~ ~l 3
(v’&)( i/ v’~) f  fX (2)(1/2)I0 01+1 lxii l i —I

1] 1 ii 11 13 1-i 0 ii 11 13 12 -1

Multiplying on the left by UU* from Eq (2.94) and on the

right by ~~~~ from Eq (2.96) yields

11 1111 1 1) ri 1)11 1
(1/2) 1 II I x (1/2)10 o i l

Li. liii 1 13 11 1311 1

ri h r  1 0 -11 ri 1111 11
+ (1/2)1 11 IX (1/2)11 111 I

11 131- 1 0 ii Li jiLl 13

— (1/2)(1/2)[~ ~
][

~ ~
][

~ fl (2.97)

In simplifying this last equation (2.97), the second term on

the left goes to zero , thus allowing the use of Theorem 2.12.

The simplified form of Eq (2.97) is then

11 1 11 11 11 11 11
I lx Io 01+ 0 — (5/4)1 I (2.98)
1]. 1 ii 11 i-i Ii i~

Utilizing Theorem 2.12 the solution is

11 1 iifi 1111 1 
-

I I  I t o  0
11 1 11 11 1311 1

11 1 l) 1l 1 11 ri l)fi ii
+ Z - l  i 12 10 011 0 0! (2.99)

L 1 1 1 J L1 1 13 LI i_i ll ji

In Eq (2.99), letting Z — 0 implies

Ii 0 1
X — (5/24)11 0 1

Ii. 0 1

rl 2 11
and if 2 — I 3 4 -2 !, then the X is Eq (2.99) becomes

1-1 -3 li
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f 1 7 48 17
X — (1/24) 65 96 -55

Lr3]. 79 17

Solution of the Matrix Equation
AXU + CYD-E

In this section equations of the type

AXB + CYD - E

will be considered . The theorems to follow will be proved

for cases in which the variable matrices are the same. After

the proof is complete , those changes that are necessary for a

proof of the two variable case will be given.

Returning to the work of Roth (Ref 38), it should be

noted that his results are all stated for cases in which the

variable matrices are square. In the next four theorems these

results will be extended to the more general case in which the

variable matrices are rectangular.

Theorem 2.13: A necessary and sufficient condition

that the matrix equation

AXI1 - I2XB — C (2.100)

where Ij and 12 are identity matrices and A and 12 are square

matrices of dimension m and B and I~ are square matrices of

dimens ion n, all with elements in the field F, is that the

matrices

[
~ ~

} and [
~ ~

} (2.101)

be similar.

Proof: To show similarity , there must exist matrices P
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p [~ ~]p~~ — [
~ ~

] (2.102)

Let ~ 
_ [(fl%,m) IX (m fl)1 and ~~ _ J ’ (m,m) X1 (m,n)
L0(n,m) I (n,n)] L0(n i m) ‘(n,n)

Substituting the choice for P and P~
1
~ into Eq (2.102) yields

II(m ,m) IX (m,n)1 IA (m m) C(m.n)1II (m ,m) XI (m ,n)1 IA 0
10(n,m) ‘(n ,n) JL °(n,m) B (n n) JLO(n m) 1 (n,n)~ 

10 B

IIAI - IAXI+ICI+IXBI1 fA ol
I I—I I (2.103)
L0 IBIJ L0 Bj

But from Eq (2.100) -IAXI+ICI+IXB I is equal to 0. Therefore,

Eq (2.103) can be rewritten as

IA ol fA O
~Lo Bi le Bj

To show sufficiency, reliance is made on the fact that

since the matrices in Eq (2.101) are similar , then the follow-

ing pair of matrices

IA -X I C~ I A - A l  01
I l and I I ( 2 . 1 0 4 )
10 B-Au 1.0 B-A l- i

whose elements are in F(x ]  wil l  also be similar. From Roth’s

Lemma (Ref 38 :392) there exists matrices X and Y such that

X — X0 + AX 1 + 12X2 + + A~X~

Y — Y 0
+ A Y 1 + A 2Y2 + ... + A nX

and

• (A A l 2) X - Y (B - A l1) — C (2.105)

41



Substituting the values for X and Y into Eq (2.105) yields

(A-Al 2) (X0+1X1+X
2X2

+.. .+A”X~)I1
-12 (Y0+AY1+X

2Y2
+...+A h1Y~)(B_ AI1) — C (2.106)

After multiplying out Eq (2.106) and then equating like powers

of A , the following set of A+2 equations is generated .

AX011 -12Y0B = C

AX111 + 12X011 12Y1B + 12Y011 — 0

AX211 + 12X111 -12Y2B + 12Y111 = 0 (2.107)

:

~~n
’l + I2Xfl_ 1I1 -I2Y~B + I 

~n-1
1i = 0

I2Xfl I1 + = a

All of the I~ and 12 in Eq (2.107) are square and thus can be

dropped from the equation without loss of generality . Now

multiply each row of Eq (2.107) by I , B, B2, B3, ..., B”~~
respectively and sum the members of the resulting equations.

After factoring the result is

A(X 0+X1B+X2B
2+...+X~B’~) - (X0+X1B+X2B

2+...+XB ~)B = C (2.108)

Multiplying from the right and left by 12 and I~ respectively

yields

A(X 0+X1B+X2B
2+. . .+X~B~)I1-I2(X0+X1B+X2B

2+. . .+X~B”)B — C

which therefore implies that a solution of Eq (2.100) exists

42
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and is
X — X~+X1B + X2B

2 
+ X3B

3 
+ ... + X~B~

By an entirely similar argument it can be shown that

A(Y 0+Y iB+Y 2 B 2 + • • • +YnB~ )I 1
_ I

2 (Y o +Y iB+Y 2 B2 +
~ • • +YnB~ )B — C

also implies that a solution of Eq (2 . 100) exists and is

X - + Y1B + Y2B
2 

+ Y3B
3 + + YnB

n

If Eq (2.100) had been

AXI1 - I2YB — C

then the proof of the theorem would have been identical except

that the matrices in Eq (2.101) would be equivalent , with

matrices P and Q being defined as

II Yl fI -XI
P - f l and Q - I

LO li 10 I

The next theorem extends the last result by changing

one of the identity matrices into a matrix that is not an

identity .

Theorem 2.14: A necessary and sufficient condition

that the equation

AX - DXB — C (2.109)

where A and D are m x m matrices and B is an n x n matrix with

elements in F, have a solution X with elements in F is that

the pair of matrices
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IA C) IA 0)I M 1 (2.110)
10 Bi LO Si

be equivalent.

Proof. Since the matrices of Eq (2.110) are to be

equivalent , then there must exist matrices P and Q such that

IA C) ~A 01
P I IQ — I 1 (2.111)

10 Bi 10 BJ

Therefore let

II -DX) ~‘ x
P - I  I a n d Q - f

10 I i  10 I

L which transforms Eq (2.111) into

L I  II -DX)IA C)fI ~
) fA 0) 

- -

II II I I I (2.112)
10 1310 BJLO Ii 10 Si

Upon s impl i f icat i on , this becomes

fIAI IAX+ICI-DXSI) fA 01
I I— I (2.113)
LO IBJ LO Bi

Since the identity matrices in Eq (2.113) are all square, no

changes occur during multipl icat ion , thus , for example, IAI-A
Also making use of Eq (2 . 109) , it should be noted that

AX + C - DXB — 0. Hence Eq (2.113) becomes

c: ;-c~ ~Since the necessary condition has been established , the matr ix

pair
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fA- AD C) fA-AD 01I I and I I (2.114)
10 B-A u LO B -Al - i

will also be equivalent with elements in F[x].

Following the same procedure as in Theorem 2.14,

Roth’s Lemma (Ref 38:392) states that there exists matrices

X and Y such that

X — X0+XX 1+A
2X2

+ ...+X ’~X~

and
Y — Y 0+X Y 1+A 2Y 2 + .. ~~~~~ (2.115)

Thus Eq (2.109) becomes

(A-AD) (X0+XX 1
+X 2X2+. . •+A~X )

- D(Y 0+AY 1+A
2Y2+ .. •~

A
~
Yn

)(B_AI ) — C (2.116)

Upon expansion and equating terms with like powers of A the

following system of A + 2 equations is formed.

AX 0 -DY 0B - C

AX 1 - DX 0 - DY 1B + Y01 - 0

AX 2 - DX 1 - DY 2B + Y 1I - 0
(2.1 17)

AXn 
- DX~~1 - DY~S + ‘

~
‘n- i 1 - 0

~~
DXn + y r  - o

Upon multiplying the system in Eq (2.117) by I , B , 32, ~~
respectively, then add ing columnwise and factoring out

like terms yields

2 2A(X 0+X1B+X2B + .. .+X~B”)-D(X0+X1B+X2B + . . .+X~ Bn )B - C
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This then implies that

X0+X1B+X 2B
2+X 3B

3+.. .

is a solution of Eq (2.109) , which completes the proof.

By similar arguments it can be shown that necessary

and sufficient conditions exist for a solution of the equation

AXE - XB — C (2.118)

In showing these conditions exist , the matrix pair

fA-Al C) fA-A l 0
I l and i
10 B-XEJ 10 B-XE

are seen to be equivalent and the system of equations to be

solved is

AX0E - Y 0B - C

AX1E - IX0E - Y1B + Y 0E - 0-

AX 2E - IX 1E - Y2B + Y 1E - 0

~2.ll9)
AX~E - IX~~1E - Y~B + Y~~~1E - 0

- IX nE + Y nE •0

The A + 2 equations of Eq (2.119) are then multiplied from

the right by I , A , A2,..., An4
~ respectively . The result is

that Y0+AY 1A
2Y2+A

3Y3+ ... +AhlY~ is also a solution of Eq (2.118) .

If Eq (2.119) had been expressed as

A X - D Y B - C

then the method of solution and the proof of Theorem 2.14

would still be valid . To show equivalence , the matrix P
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would have to be changed to

II -DY
P -I

10 I

and the remainder of the proof follows in a similar fashion .

Theorem 2.15: A necessary and sufficient condition that

AXE - D X B = C  (2.120)

where A and D are square matrices of dimension m and B and

E are square matrices of dimension n, all with elements in F,

have a solution X with elements in F is that the matrix pair

IA C) fA 0)
I I and I (2.121)
LO BJ 10 B-i

be equivalent and that either

i) E be nonsingular and BE = EB

or ii) D be nonsingular and AD = DA

Proof: To show equivalence there must exist matrices
P and Q such that

IA C) fA 0)
P I I Q and l I (2.122)
10 Si LO BJ

Let

fI DX1 II -XE
L and Q 1

10 I i 10 I

then Eq (2.122) becomes

II DX)fA CifI -XE) rA 0)
II II I — I 1 (2.123)

10 IJLO Bib IJ 10 B- i
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Simp li fying and realizing that multiplication by an identity

matrix leaves the orig inal matrix unchanged yields

- AXE + C + DXB1 ~A 0)I I — I (2.124)
10 B I IO BJ

Using Eq (2.120), Eq (2.124) can be s imp l i f i ed  to

fA 0) fA 0
I I — I
to 33 10 B

To show sufficiency , reliance will be made upon what has just

been proved . Since the matrices of Eq (2.121) are equivalent ,

then the matrix pair of Eq (2.125) will also be equivalent.

fA-A D C~ fA -AD B)
I — I (2 .12 5 )

10 B-XE J 10 B-XEJ

U t i li z i n g  Roth’s Lemma (Ref 38:392), there exists matrices

X and Y .~here X and Y are as expressed in Eq (2.115). Making

appropriate substitutions in Eq (2 .1 2 0)  yields the equivalen t

equation

(A-AD) (X0+AX 1+A
2X2+..

-D(Y0+AY 1+A
2Y2+ ... +X ”Y~)(B-AE) • C (2.126)

Multiplying out Eq (2.126) and then equating coefficients of

like powers of A yields the system of equations

AX 0E - D Y 0B - C

AX 1E - DX0E - DY1B + DYQE - 0

AX 2E - DX1E DY 2B + DY1E - 0 (2.127)
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AXnE - DX~~1E - DY~B + DYn 1E - 0

- DX~E + DYNE - 0

Next multiply each of the A + 2 equations of Eq (2.127 by

I, E~~ B , (E~~ B) 2 , (E~~ B) 3, ... (E -l B)n l  respectively and

then sum columnwise to get as a result

A [X0+X 1E~~B+X 2(E
1B)2+. ..+X~(E~~B)~ )E

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- C

= which implies that

X0+X 1E~~B+X 2(E~~B)
2+.. .+Xn(E~

lB)n

- 

is also a solution of AXE - DXB - C which completes the proof.

Similar  results  hold when Eq (2.127) is multiplied by

I , AD 1, (AD 1) 2 , (AD~~ ) 3 , ... , (AD~ ’) ” re spect ively  to yield

the equation

-D(Y0+Y1AD
’+Y2(AD

’)2+...+Y~ (AD~~)”]B

+A(Y0+Y1AD~~+Y2(AD~~)
2+ . . .+Y~(AD

1)~ ]E - C (2.128)

Eq (2.128) can then be arranged to be in the form of Eq (2.120)

which then implies that a second set of solutions can be

generated by

Y 0+Y 1AD~
1+Y 2 (AD~~ ) 2 + . . ~+Yn(AD

l)~
L

The following example incorporates the technique used

in the three previous theorems. To fit this example to any

of the individual theorems , appropriate matrices would need

to be deleted.
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Stating Eq (2.120) as

AXE - DYB - C

only has minor effects upon the method of proof given in

Theorem 2.15. The matrices can be shown to be equivalent if

P is changed to

fI DY
P - I

10 1

and the rest of the proof follows as discussed in the theorem .

Example 2.7: Consider the equation AXI 1 
- I2YD - E,

where

fl. 01 fl 01 rO -1
A — I f, I~ — [1 01, I, I~ 

D — [1 1] , and E —10 0J ‘ 10 U 1-1 -l

Thus the equation of the form expressed in Eq (2.126) is

(A-Al) (X)I1 
- 12 (Y)(D-A I) — E (2.129)

After making appropriate substitutions , the resulting equa-

tion is

fl-A °if~11 fl o~ry 1 f 0 -l
I II I [1 0)-I ii i{~-x 1] — 1 -1 -l
L~ _ x J Lx 2j 10 1-1 -l

which simplifies to

1(l-A)x1 ol ry1( l -A ) y11 ro -1]I - I 
— I I — I I (2.130)

(-Ax 2 0J 
~~~~~~ 

y2J L-l -1J

Eq (2.130) gives rise to the solution of four equations in

four unknowns. These equations are:

so
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(l-x)x1 
- — 0

- 

~
‘l —

(2.131)
- A X

2 
- Y2 (l-A) — -l

-y 2 — - 1

This system of equations then quickly reduces to

x1 — y 1 , y1 — l  , y2 — l

and upon further simplification , the result x2 - 1 is achieved .

Thus the solution to this equation is

x - [ f l  and ~~- [•fl

The next theorem generalizes the last results to cases

in which the coefficient matrices are non-square . In addition ,

the variable matrices will also be non-square . In this

theorem the proof will be in terms of two variable matrices

X and Y , but with minor changes the theorem is applicable to

equations in which the variables are the same.

Theorem 2.16: Let A (m fl)~ 
12(m,n)’ B(p,q) i and C(m,q)

be matrices with elements in the polynomial domain F[xl of a

field and let I~ and 12 be identity matrices. A necessary

and sufficient condition that the matrix equation

AXI 1 - I2YB — C (2.132)

have a solution X (n ,p)~ 
Y(~ ,p) with elements in F[x] is that

• the matrices
I

fA C) fA 01• 
[ j

and
i J

~
_ - - -~~- _ -.-_ 

~~~~~~~~~~~~~~~~~~~~~~~
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be equivalent.

Proof: To show equivalence there must exist matrices

P and Q such that

IA C) IA 01P 1  1 Q 1 1 (2.133)
10 Bi 10 B-i

The choices of P and Q in Eq (2.133) are

~ ~~~~~~~~~ 
I (m ,n)

~
(n ,p)1 and Q - II m m  Xcn ,p)I(p,q,)~

L°(p, rn) I(p,p)J LO(q, n) ‘(q,q) J
Thus Eq (2.133) becomes upon substitution

fI IY1fA C1II -XI) IA 0)I II II I = I I (2.134)
10 I JLO Bib IJ 10 Bi

Performing the multiplications reduces Eq (2.134) to

fA -AXI+C+IYB 1 IA 01I I = I I (2.135)
10 BI 10 BJ

Using Eq (2.127), Eq (2.130) can be reduced to

IA 0) IA 0
I I — ILo B J Lo B

which proves necessity. Sufficiency will be proved with the

aid of the idea of regular pencils. Thus Eq (2.132) can be

written as

(A- AI)X11 
- 12Y ( B - A I )  — C (2.136)

The matrices X and Y can also be written as

X — X0+AX 1+A
2X2+...+A~X~
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and

Y — Y0~XY 1+A
2Y2

+...+X~Y~

Multiplying out Eq (2.137) and then equating like power of A

yields the following system of A + 2 equations

AXQ I1 - I2YQB — C

AX 111- 1X011 
- I2Y1B + 12Y01 - 0

AX 211- IX111 
- 12Y2B + 12Y11 — 0

(2.138)

AXnIi~ IX~~1I1 - I2Y~B + 12’~n-l
1 — 0

- IXnI + j
2~~~ j  — 0

Multiply each equation of the system in Eq (2. 138) by 1( q p ) ’

(q,p) C I) (p p) ‘(q,p) (BI) (p,p) ‘~ • 1(q,p) (SI) (p,p) - •

respectively, then sum the resulting equations and factor

common terms to yield:

A[X 0+X1(BI)-+ X2(BI)
2+.. .+X 2(B I ) 2] I (p,p)

~I[X 0+Xj(BI)+X 2(BI) 2+ •~~+X fl(BI)~ ](BI (q,p)1 — CI (m,p)

The next step is to mult iply from the right by the identity

matrix 1(p,q) to get (
A[x0+x1(BI)+x 2(BI) 2+...+x

fl
(BI)nJI (p,p)u (p,q)

~
ItX O+Xl(BI)+X 2(BI) 2+ •~ •+Xn(BI)

~
](BI (q p) )I(p q)

— CI (m ,p) I(p,q) (2.139)

Simplifying Eq (2.134) the result obtained is
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A(X 0+X1(BI)+X 2(BI) 2+.. .+X~CBI)n1I 1
I2 (X0~X1(BI)~x2(BI)2+...4x (BI)~ ]B — C

- 
. This implies that

X0+X1(BI)+X 2(Bl) 2+. .

is a solution to Eq (2.132), which completes the proof.

Similar results could be achieved if instead of elimin- —

ating the Y terms from Eq (2.138) , the X terms were eliminated .

This is accomplished by multiplying by I, IAI, I(AI) 2, ... ,

I(AI)n l  respectively. The solution generated for Eq (2.132)

is 

Y 0+( IA)Y 1+( IA) 2Y 2 + . . .+( IA) ny

Example 2.8: A solution is desired to

AXI 1 + I2XD — E (2.140)

where

~l 0 01 ri 0 01
A _ [  

J~~~
I2 [1 0

~~~~
Il — [0 0 0  0 1 1

r O -1)
D — [l i] , a n d E — I  I

1-1 -ii

Thus an equation of the type in Eq (2.132) needs to be solved ,

and this can be written as

• Il-A 0 01 ~ll ~l2 ~l3

L0 -A OJ 
[21] 

+ A [ ]  + A 2 

[~23] 11 0]
31 X32

_ _ _ _ _  _ _ _  _ _ _  — 5 -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
____________________
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I
y y y

- I~ 21 + + ~23 I [~- -x ii — (2.141)
S 10 1 OiLy31 y32 y33_ 1-1 -ii

Simp li fying this becomes

1 i l xl2~~
2
~
dl3) °1

L -A Cx 214xx 22 4A 2x23 a]

- 
~ l -A) (y 11+Ay 12 +A 2y 13) y11~ Ay 12 +A 2y

131 - [ 
0 ~l] (2.142)

~ l - A ) (y 21+Ay 22 +X 
“23~ 

y21
+Ay 22+A ~23J 11 -l

Eq (2.142) can then be written as four equations in six unknowns:

(l-A) (x11+Ax 12+A
2x13)-(l-X)(y 11+Ay 12+A

2y13) — 0

- A (x +Ax +X 2x )-(l-A)(y +Xy +A 2y ) — -l

- (y11+Ay12+A y13) — -l

- (y21”Ay 22~A 2y23) — -l

The system of equations in Eq (2.143) can then be quickly

solved to get

— 1 x11+Ax 12+A
2x13 — 1

- 1 x21+Ax 22+A2~ - l  (2.14:)

This implies that the solution vectors are X -[11 and Y -[~1Lx i Lyl
where x and y are arbitrarily chosen.

Solutions Generated With the
Use of Tensor Analysis

This last section attacks the problem of solutions of

equations of the type discussed previously in terms of tensors.

55

--—--- 5- —-- ~~~~~~~~~~~~~~ ——- — • — - 5 -~~- -.-5-5- -~~ —



_ _  -_

~~

- 
- -

~~~~~~~~~~~~~~~~~~~ L —

In so doing, the work of Lancaster (Ref 21) will be generalized .

Before beginning , some basic definitions are needed .

Definition: If A (m,n) and B (p ,q) are complex matrices ,

then the tensor product of A and B written A 0 B, where A 0

B is a complex matrix , is defined to be the partitioned matrix

a115 a12B ... a 1~ B

A ~~ B - 
a 218 a22 B ... a2~B

am1B am2 B ... amnB

The order of A ~~ B is mp x nq.

Definition: Let X be a matrix of order m x n , then X~
is the column vector of order mn x 1, formed by writing all

the elements of X in a columnar fashion s ta r t ing  wi th  x 11 and

~orking across the first row , the second row , and so on until

all x~~ have been exhausted .

Lancaster has shown (Ref 21:544) that if A (m,m)~
B(~ ~~~~~~~~ 

I~ , and 12 where BXI - 12X1 - Q , then an
‘ ‘ ‘ (m,m) (n ,n)

equivalent expression is G~ - ~, where G - (B 0 I~) -

~~ AT). Note that BXI1 
- I2XA - Q could just as easily

have been expressed without the use of the matrices I~ and I,.
Example 2.9: Consider the matrix equation

AX - XB — Q (2.145)

where

f2 1) 11 0 0) ri 2 31
A 1  I , B - I 0  2 l( a n d Q — (

10 3i 1.0 0 31 14 2 -2
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Eq (2.145) could then be expressed as H-

AXI1 
- I2XB - Q

where

fI  0 0) fi  0)
I
~ 

— 10 1 01 and I~ — I I
10 0 11 ‘ 10 13

Then using Lancaster ’s results a solution to Eq (2.145) by

solving

((A 0 I~) 
- (1 2 ~J 

B)~~ — (2.146)

Substituting yields

r i o  01 1 1 0  °1 1 1 0  01 0) X
fl• 

1
210 1 0 1 1 1 0 1 °l ljo 2 0 1 0 1 0  2 O

~ 
x12 2

LO O i J L O O i J  L 0 1 3 J 1 0 1 3 J X 313 — (2.147)
ci °°i r ’ ° °  r ’ ° ° l r’ ° °l ~2l ~“

) J 0  1 0 1 3 1 0  1 0 o l D 2 0 1 1 1 0  2 ° I  ~22 2

Lo o lJ La o 1 .Lo i 3J Lo 1 3J 
23 2

Simplification yields

~ 0 0 1 0 0 1
0 0 0 0 1 0 x12 2
0 -l -l 0 0 1 x13 ~ (2.148)
0 0 0 2 0 0 x21 4
0 0 0 0 1 0 x22 2
0 0 0 0 -l 0 21 2

Multiplying out Eq (2.148) to form the system of six equations

x11+x21 - 1 2x21 - 4

x 22 — 2 x22 — 2 (2.149)

-x12-x 13+x23 — 3 -x 22 — -2
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Solving the system expressed in Eq (2.149) , the values are

x11 — -1 , x21 — 2, x 22 — 2, and -x12-x13+x23 — 3. Thus our

cho ices for x12, x13, and x 23 can be arbitrary .

Prom this example another set of solutions could have

been generated through the use of generalized inverses.

The last theorem will take the results of Lancaster and

extend them to the case where the coefficient matrices are

non-square.

Theorem 2.17: Let the matrices A , B , C, D, Q, and X

be complex matrices which have the following dimensions :

A (m ,n)~ B(pq )P C (m n)~ D(p q)~ ~(m p)’ and X(~ ,q)• If

nq - mp and ATA ~ 0, then the matrix equation

AXB + C XD -Q (2 150)

is equivalent to

+ 4
Gx — q (2.151)

where

G - ATA 0 BB~ + ATC 0 BDT (2.152)

Proof: This proof utilizes the results of Lancaster

(Ref 21:544) for square matrices. Thus the first operation

is to convert Eq (2.150) to one containing square coefficients.

Eq (2.150) then becomes

AT(AXB)BT+AT (CXD)ST - ATQBT

T T I T T (2.153)
(A A)X(BB )+(A C)X(DB ) - A QBT

Applying Lancaster, there exists a matrix G defined as
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G - (ATA) 0 (BBT)T + (ATC) ~~ (DB
T)T

- ATA 0 BBT + ATC 0 BD
T (2.154)

Eq (2.154) is the desired result.

Example 2.10: Consider the equation

AXI 1 + I2XB — Q (2.155)

where

fl 0 0 0)
A — [i 2] I

~ 
— 
L 1 0 

— {i a]

Il 0 1 01
B — I I , and Q — [-4 8 -2

12 1 1 li

To find G , the following are needed :

f2 4) T f]. 01 1 f2 0)
A A — I I I~ I~ — I I , A I, — I IL~ 21 A A 

~~~ 
‘ 11 01

1 11 2 1
and I 1B I

10 1

Thus G is

G — ATA x I lI~ 
+ ATI2 x I 1B

T (2.156)

Since the equation was changed , the value for Q is also

changed , thus

T T 1-12 20
A Q B  - I

~ -6 10

Solving for the G of Eq (2.156) and thus Eq (2.151):

59

- - — - - - 5   - 5 -  - ~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ — - -~~~~~~-



__________ —------55 —5- —-
~~~

--.—-- - 
‘~~~~~~~~~~ -

2(1 0)4(1 0) 211 z] o[1 
~)

1(1 2) 0(1
1

Eq (2.151) can then be expressed as

4 4 4 0 x1~ -12
0 4 0 4 x12 20

2 2 2 2 x21 
= 

-6  
(2.157)

2 0 2 
~ 22. - 

lQ

which then implies

j 
x11 + x12 + x21 = 

(2.158)
x12 + x 22 = S

The two equations in Eq (2.158) then imply that any number of

arbitrary solutions can be found to satisfy Eq (2.155).

Generalized inverses could also have been used to solve this

problem .
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III. Generalized Inverses and

Linear Models

Solutions of the equations being discussed can also

be arrived at through the use of generalized inverses.

Theorem 2.11 is a case in point. By using this theorem , a

whole family of solutions can be generated by use of the

general solution

X = A CB + Z - AA ZBB (3.1)

where Z is an arbitrary matrix . The first portion of this

chapter will deal with more general solutions than the one

expressed in Eq (3.1). These results will extend the work

of Rao and Mitra (Ref 35).

One advantage that is gained by solving matrix equa-

tions through the use of generalized inverses is that a

complex system of equations may then be broken down and re-

duced to a set of more elementary equations. After solving

this elementary set of equations , the solution gotten are

then joined to find a common solution which is the solution

of the original system .

The second half of this chapter deals with applications

of the methods developed to the study of linear models. The

• development begins with a linear model of the form

Y - X8 + UF (3.2)
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where ~ is an unknown parameter and ~ is a hypothetical ran-

dom variable with a given dispersion structure but containing

unknown variance and covariance components. These two com-

ponents will then be estimated by use of MINQUE (Minimum Norm

Quadratic Unbiased Estimation) . After the initial development ,

more complex models will be studied. This second half extends

Rao (Ref 34).

Generalized Inverses

In the evaluation of a matrix equation many solutions —

are possible. The problem that arises is that some of these

solutions may be overlooked. To solve the equation

AXR - C (3.3)

which i~ the conclusion of Theorem 2.11 , use is made of the

‘.olutlon in Eq (3.1). Uowever , even this general form of

solution may omit a vast quantity of solutions. This omission

is corrected In the first theorem .

Theorem 3.1: A necessary and s u f f i c i e n t  c o n d i t i o n  for

Eq (3 .3 )  to have a so lu t ion  is that

AA CB B - C (3.4)

In which case the general solution is

X - A C B +Z-A AZBB + (I-A A)V (I-MM )+ (I-N N)W (I-B8 ) (3.5 )

where M , N , V , W , and are arbitrary matrices of appropriate

order and I Is the identity matrix.

Proof: Let X he an arbitrary matrix such that Eq (3.3)

is satisfied . Then if

4 -’
U ’
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AA CB B - &A CB B

from Eq (3.4)

AA (AXB)B B - AA CB B

(AA A)X(BB B) — AA CB B
( 3 . 6 )

AXB - AA CB B

C - AA CB B

Sufficiency follows by letting X be as expressed in Eq (3.5).

Multiplying from the left by A and from the right by B yields

AXB - CB B+AZB-AA AZBB B+A (I-A A)v (I-M!4)B

+ A(I-N N)W (I-8B )3 (3.7)

But

AA AZBB B - AZB (3.8)

and

A(I-A A)V(I-MM )B — (AI-AA A)V(I-MM )B

(A-A)V(I-M1 ()B (3.9)

— 0

whi ch implies similarly that

A( I - N N)W(I - -3 B )B - A ( I - N N ) W ( I B - B B B)

A(I-N N)W(B-B) (3.10)

— O

Substituting Eq (3.8), (3.9), and (3.10) into Eq (3.7) yields

AXB - AA CB B - C (3.11)

which implies that Eq (3.5) is a solution of Eq (3.3).

In the sciences it often occurs that a system of matrix

equations must be solved in such a way as to yield a common
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solution. Thus, if a common solution to the system of

equations

A X - C

XB — D (3.12)

is needed , one can be found through the applications of the

next theorem .

Theorem 3.2 (Rao and Mitra (Ref 3S:25)): Let A (m,n)~
C(~ ,p)~ B(p,q)~ and D (n ,q) be given matrices. A necessary

and sufficient condition that the consistent system of equa-

tions expressed in Eq (3.12) have a common solution is that

AD CB (3.12a)

in which case the general expression for a common solution is

X - A C+DB -A AD + (1-A~~)Z(1-BB ) (3.13)

where Z is an arbitrary matrix.

Proof: Let X be a common solution to the system of

• equations in Eq (3.12) then

A X - C and X B - D

wh ich by appropriate multiplications becomes

AXB - CB and AXB - AD (3.14)

Thus by setting the two equations of Eq (3.14) equal to each

other yields the result wanted in Eq (3.l2a).

Suff iciency follows by letting X be expressed as in
Eq (3.13). Thus

A X - C

A [A C+DB -A ADB + (I-A A)Z(I-BB )J — C (3.15)
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AA C+ADB -AA ADB +A(I-A A)Z(I-BB ) - C

AA C+ADB -ADB + (AI-AA A)Z(I-BB ) - C

AA C+ (A-A)Z(I-BB ) — C (3.15)

A A C - C

The hypothesis of the theorem states that the equations are

consistent, thus A A C  - C and X is a solution of the first

equation of the system . Similarly,

X B - D

(A C+DB - A ADB + (I-A A)Z(I-BB )]B - D (3.16)

A CB+DB B-A ADB B+ (I-A A)Z(I-BB )B - D

Making use of Eq (3.12) this last equation can be wri t ten as

A CB+DB B-A CBB B+ (I-A A)Z (IB-BB B) - D

A CB+DB B-A CB+ (I-A A)Z(B-B) D

D B B  — D

Again , since the equations are consistent , D B B  - D which

implies X is a solution of the second equation of the system .

Thus X is the sought-after common solution .

One application of Theorem 3.2 is that it can be used

to solve equations of the type

ftJ( + XB — E (3.17)

To make use of this theorem , the matrix E must first be

expressed as a sum of two other matrices . Thus, if

E — C + D (3.18)

the matrix equation in Eq (3.17) can be written as the system

in Eq (3.12) and Theorem 3.2 can be applied . This procedure
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can be generalized to solutions of equations of the type

• AXB + D X E - G  (3.19)

where G - C + F. The method is as in the next theorem.

Theorem 3.3: Let A(~~~)~ B(~ ,q)~ C(p,q)) D(s,m)P
E .~~, and F be given matrices. A necessary and suffi-(n , , (s , )
cient condition for the system of equations

A X B — C
(3.20)

DX E - F

to have a common solution is that

i) C — A A CB B

ii) F — DD FE E (3.21)

iii ) A A (DFE )BB - D D(A CB )EE

in which case the general expression for a common solution is

X - A C B +D FE -A A(D FE )B8

(3.22)

where V and W are arbitrary matrices.

Proof: From the definition of a generalized inverse
I-

it is true that for a matrix H, 1111 H - H. Thus, if

AX B C

it follows that

(AA A)X(BB B) — C

A (AXB)B B - C (3.23)

AA CB B • C

Thus i of Eq (3.21) is shown . A similar argument is used for ii. 
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DXE - F

(DDTh)X(EE E) • F
(3 .24)

DD (DXE)E E - F

DD FE E - F -

What has been shown thus far is that for i and ii of Eq (3.21)

each of the equations of the system in Eq (3.20) has an m di-

vidual solution X. Condition iii follows from the application

of Theorem 3.1. A solution for the first equation of the

system in Eq (3.20) is if the arbitrary matrices Z, V and W

are the zero matrix ,

X1 — A C B  (3.25)

The solution for the second equation of the system is, if V

and W are the zero matrix,

X2 — DFE +Z-D DZE E (3.26)

Let X1 of Eq (3.25) be the Z matrix of Eq (3.26). Thus

X
2 
- 0FE +A CB -D DA C B E E  (3.27)

Now revers ing the process , let

X
1 

- ACB +U-A AUB B (3.28)
-

• and

X
2 

— DFE (3.29)

Then let X2 of Eq (3.29) be the U matrix of Eq (3.28) to yield

X1 • A C B +D FE -A A I f FE B B  (3.30)

if the system has a common solution X1 of Eq (3.30) equals X2
of Eq (3.27). Hence, X1 

• X
2 

implies
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- DA CB E+DD FE E-DD D(A CE’~E E+D(I-A A)V(I-EE )E

+D(I-D D)W(I-B3)E

- DA CB E+DD FE E-DA CE E + D (I -A A ) V ( I E- E E E)
(3.33)

+(DI-DD D)W (I-BB )E

- 
- - DD FE E+D(1-A A)V(E-E)+(D-D)W (I-BB )E

— DD FE E
— F

Thus X is also a solution to the second equation of the system

in Eq (3.20). This then implies that X is a common solution .

Other conditions can be developed for the system of

equations in Eq (3.20) to hold simultaneously . One of these

is formalized in the following corollary .

Corollary 3.3.1: A necessary condition for the system

of equations given in Eq (3.20) to have a common solution is

that the matrices A , B, C , D, E, and F be as defined in 
- 

-

Theorem 3.3, i and ii of Eq (3.21) hold and that the matrices

C and F may be also defined as follows :

C - AD FE B
- 

(3.34)
F - D A CB E

Proof: From Theorem 2.11 a solution for AXB - C

exists and is

X1 • A C B +Z-A AZBB (3.35) 4-

Also , a solution for DXE • F ex ists and is

X2 — DFE +Y-D DYEE (3.36)

In Eqs (3.35) and (3.36) the matrices Z and Y are arbitrary .
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ACB +D FE -A AD F E B B  - DFE +A CB -D DA C B E E  (3.31)

This can be simplified to

A A D F E B B  - D D A C B E E

which is iii of Eq (3.21).

To show that a common solution for X exists , let X be

as defined in Eq (3.22) and X will be a common solution if it

satisfies both equation of the system in Eq (3.20).

AXB - A[A CB +D FE -A A(D FE )BB + (I-A A)V (I-EE )

+( I - D T h ) W ( I - B B ) ] B

- CB B+AD FE B-AA A(D FE )BB B+A(I-A A)V(I-EE )B

+A (I-DTh)W (I-BB )B
(3.32)

— AA CB B+AD FE B-A (D FE )B+ (AI-AA A)V(I-EE )B

+A ( I - D T h ) W ( I B - B B T h )

— AA CB B+ (A-A)V(I-EE )B+A(I-D D)W(B-B)

- AA CB B

- C

Thus X is a solution for the first equation of the system .

Similarly ,

DXE — D(A CB +D FE -A A(D FE )BB + (I-A A)V(I-EE )

+ (I-DTh)W(I-BB )]E

— DA CB E+DD FE E-DA A(D FE )BB E+D(I-A A)V(I-EE )E

+D (I-D D)W~I-BB )E

Using iii of Eq (3.21), the last equation can be written as
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Choose Z - D F E  and Y - A C B , thus the equations become

X - ACB +D FE -A AD FE BB1 (3.37)
and

X2 - DFE +A CB -DThA CB EE

Since a common solution exists from - Theorem 3.3

X1 — X2 (3.38)

It then follows that

- DFE and that X2 - A C B  (3.39)

Let X1 be as defined in Eqs (3.37) and (3.39), then

DFE - A C B +D FE -A AD E BB

0 — ACB -A AD FE BB

A C B  - A A D ?E BB (3.40)

AA CB B AD FE BB B

C - AD F E B

In going from the fourth to the fifth line of Eq (3.40), use

was made of i in Eq (3.21) of Theorem 3.3. To show the second

half of Eq (3.34), let X2 be as defined in Eqs (3.37) and

(3.39). Thus

- 
- 

A C8 - DFE +A CB -D DA CB EE

0 - DFE -D DA CB EE

DFE - DDA CB EE (3.41)

DD FE E - DD DA CB EE E
F - DA CB E

Similarly use was made of ii in Eq (3.21) of Theorem 3.3, and
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the corollary is proved.

Example 3.1: Consider a system of equations as defined

in Eq (3.20) where

fl 1 1 ]
~ ri 11 ~8 81

A • Il 1 1 i~ , B — 
11 1J ‘ C — 18 81

11 1 1 LI 18 8i

rl 1 1 11 r f 1 (3.42)
D — I I E — , and F —

11 1 1 ii Lii [UJ

To see if a common X is possible, the conditions of Corollary

3.3.1 will be checked. Thus,

F - DA CB E
fl 1 1 l1~1 1 1 l1 18 8111 fl rhF — Il l 1 1 1

~ 18 811 I I 1(3.43)
11 1 1 lJLl 1 1 lJ 18 8JL1 ii LlJ

Noble (Ref 30:342) states that if all the elements of an m x n

matrix Q are unity, then A - (l/mn)AT. Therefore

rl 1 11
A — (1/12) 

~ 
and 8 — (1/4) [

~ 
] (3.44)

1 1 1  1

Thus Eq (3.43) becomes

1 1 11 1 1 l)~-l 1 11r8 8111 1 1~ 181F — (ft) (
~
.) I I l l  1 1 1 1 8  8 11 I — I 1 (3 .45)
‘ Li 1 1 1111 1 111.8 8JL]. 1 lJ 181

Li. 1 i-i

Checking the other condition

C - AD FE B

where
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1 1
= (1/ 8) [

~ ~
] and E — (1/2) {l 1}

1 1

4 yields

= c-~-~ (~~
.) h ~ ~ dL~ ~][:I 

[1 ‘1 [~i ~1 
— [~ ~I

From Theorem 3.3 the value of the common solution X is

X = A C B +D FE -A AD FE BB (3.46)

where the arbitrary matrices are zero.

A C B = (~~~~
.) (-

~~
.) 

~ ~][8 8J[~ ~] 
— [
~ ~

] (3.47)
i. 1 1 8 8 1 1

DPE — 
~~~~~~ 

~~ 

~ = E~ ~
] (3.48)

A A D FE BB - (~~.)(~41 1 1 

~ ~ flft
— [
~ ~J (3.49)
1 1

Making the appropriate substitutions from Eqs (3.47), (3.48),

and (3.49) in Eq (3.46) the common solution is

ri l~ ri l~ rl 11 rl fl
x — + - — (3.50)

1 1  1 1  1 1  L i i
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Some applications of Theorem 3.3 and its corollary are

to the areas of model reduction and filtering theory. The

next example illustrates model reduction.

Example 3.2: Let AXB - C be a model of some phenomenon

in which the matrices A , B, and C are def ined as

ri 1 -
~~~I-’- ~ 
‘. 

~l li
A =[
~
, ~ 

B — 1 and C = [1 ~] 
(3.51)

1 1

Then a possible choice of solution for AXB = C is aXb where

aXb = ACB (3.52)

Solving for the generalized inverses of A and B yields

F -I

- ~, 1 126 -180
A — (~~~) I -99 204

E120 234

(3. 53)
1 132976 -18072 -23568 -22860

B 
~l0369~ 

I
[-45720 38640 46260 43920

Thus aXb can be written as

2 1 f 126 _l8Olfi 11132976 -18072 -23568 -228601
aXb ~lo369~ [_~~~ ~~~i11 

l,~ft4Sl2O 38640 46260 43920J

1688176 -1110672 -1225368 -11372401
— (~~~~~~~~) 1-1338120 2159640 2382660 22113001 (3.54)

I~~~V~~.)f L-1452816 2344752 2586888 2400840J

A reduction of this model could be described by the equation

DXE - F where the matrices D and E are defined as
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r h
D — (1 1/2 1/3] , E 

~~~~~~ 
(3.55)

L1/4J

The matrix F is determined by the equation

F - DA CB E (3.56)

Thus , making the appropriate substitutions

1 T 26 18 r 32976 457201T 1
F — ~ (7

?3.) 

L~
0 204

1 [~ ~
] c 1o369 L:23568 46260] ~-1 0 234j -22860 43920 1

1

— (756937)(378468.51 -

— (1] (3.57)

The reduced equation DXE = F can then be written as

I l l
[1 1/2 1/3] (1) (3.57)

L114J

To solve Eq (3.57) the generalized inverses of D and E are
needed *

f3 61
D — (~ g.) [18j and E — (-~~

.
~~~~ ) (144 72 48 36] (3.58)

12

Solving Eq (3.57) for the matrix X yields

1 f361
dXe — 

[~~~~~
lI 

~~~~~ 
(144 72 48 36) (3.59)

15148 2592 1728 1296
(j~~45) 12592 1296 864 648

Ll728 864 576 432
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Eq (3.59) is a solution for the reduced equation. If there

existed interest in the common solution, it could be found by

application of Eq (3.22). For purposes of this example, let

the arbitrary matrices V and W be the zero matrix . Thu~ • tiie

common solution is

X = A C B +D FE -A A (D FE )BB (3.60)

This could also be expressed as

X aXb + dXe 
- A A dXBB (3.61)

The values of aXb and dXe are known for Eqs (3.54) and (3.59).

What needs to be found is the value of

A A dX B B  (3.62)

172 6 -6
A A  = (

~~— ) I  6 37 36
~ L-6 36 37

and

110116 1248 -438 -900
BD ( 1 .j 1248 3844 3636 3210

~1036~~I -438 3636 3709 3360
L -900 3210 3360 6429

Thus the value of Eq (3.62) is the product of the matrices in

Eq (3.63) and Eq (3.59). The result then is

- 12592 1296 864 648~A A~X BB — (1fl~~A -~)Il296 643 432 324 1 = ~,X (3.64)
~ e 1. 864 432 288 2161 ~ e

This then implies that the common solution expressed in Eq

(3.61) is
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X a X b + dX~~~~d
X

X — aXb (3.65)

and the value for aXb is given in Eq (3.54).

Solutions to system with more equations can also be

solved by applications of the above methods . These solutions

are based upon appropriate choices of the arbitrary matrices .

Theorem 3.4: Let the matrices A , B , C , D , E , F , G, H,

and K be of appropriate dimension . A necessary and sufficient

condition that the system of equations

.kXB~~~C

DXE - F (3.66)

GXH - K

to have a common solution is that

i) C - AA CB B

ii) F — DD FE E

iii) K — GG KH H (3.67)

iv) C - AD FE B

v) GKH - A A G KH BB - D F E

in which case the general expression for a common solution is

X • AC 8 +D FE +G KH -A A(D FE +G KH )8B (3.68)

Proof: The proof of i and ii follow from Eqs (3.23)

(3.24). To show iii , let GXH — K. Then from the definitic -”t

of generalized inverse it follows that
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(GG G)X (HHTh) - K

GG (GXH)H H - K (3.69)

GG XWH - K

This then proves iii. Section iv of Eq (3.67) follows as in

Eq (3.40) of the Corollary to Theorem 3.3. Part v of Eq

(3.67) follows from an application of Theorem 3.3. A solution

for DXE - F and GXH • K exists and is

X 1 — G KW +D FE (3.70)

where the arbitrary matrices are taken as the zero matrix.

From Theorem 2.11 a solution for AXB - C exists and is

X2 • A C B +Q-A AQBB (3.71)

Let the Q of Eq (3.71) be the value of X1 from Eq (3.70).

Then

X2 - A C B
+D FE +G KH -A A (D FE +G KH )B8 (3.72)

Eq (3.72) is the common solution of the system in Eq (.3.66)

if it exists , and X1 - X
2 
which implies that X, is a solution

of DX 2E - F.

DX 2E - DA CB E+DD FE E+DG KH E-DA A (D FE +G K!-()BBTh

- DA CB E+F+DG KU E-DA AD FE BB E-DA AG KU BB E
(3 .73)

- DA CBTh+F+DG KI(E-DA CBTh-DAThG KI-IBB E

— - F+DG KH E-DA AG KF(BB E

But DX 2E - F, thus Eq (3.73) becomes

F • F+DG KWE-DA AG KH BB E

which implies
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DG KH E - DA AG KH BB E
(3.74)

GKH - A A G KH BB

Also , since Eq (3.72) is a common solution GX2H - K. Thus

K - G[A CB +D FE +G KH -A A(D FE +G KH )BB 111

- GA CB H~GD FE H+GG KH H-GA AD FE BB H-GA AG KH BB H

- GA CB H+GD FE H+K-GA CB H-GA AG KHThB H
- - - - (3.75)

0 - GD FE H-GA AG KH BB H

GD FE H - GA AG KH BB H
DFE - A A G KFIBB

The conclusions from Eqs (3.74) and (3.75) then imply v of

Eq (3.67). The proof of sufficiency follows by letting X as

defined in Eq (3.68) be a common solution for the sys tem of

equations in Eq (3.66). Thus X must satisfy each of these
Lequations .

AXB - A[A CB +D FE +G KH -A A(D FE +G KH )BB ]B

- AA CB B+AD FE B+AG KH B-AA AD FE BB B-AA AG KH BB B

- CB B+AD FE B+AG KI-IB-AD FE B-AG KFIB (3.76)

- AA CB B

— C

This last statement is from hypothesis i, Eq (3.67). X is,

therefore, a solution to the first equation of the system.

Solving the second equation of the system is next.

DXE - D [A CB +D FE +G KH -A A(D FE +G KH )BB ]E

- DA CB E+DD FE E+DG KH E-DA AD FE BB E-DA AG KH BB E

Making use of hypothesis ii , iv , and v of Eq (3.67) yields
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DXE - DA CB E+F+DG KH E-DA CB E-DG KH E - F

Following a similar line of reasoning , it can easily be shown

that

GXH - CIA CB +D FE +G KH -A A (D FE +G KH )BB JR

- GA CB H+GD FE H+GG KH H-GA AD FE BB H-GA AG KU BB H

Making use of hypothesis iii , iv and v of Eq (3.67) yields

GXH - GA CB H+GD FE H+K-GA CB H-GD FE H

- K

Thus X is a common solution and the theorem is proved .

Corollary 3.4.1: Let the matrices A ,B ,C ,D ,E ,F ,G ,H , and

K be of appropriate dimension . A necessary and sufficient con-

dition that the system of equations given in Eq (3.66) have a

common solution is that items i , ii , iii of Eq (3.67) hold and

that

vi) F - DG KW E
- 

(3.77)
vii) G K H  - D D A CB EE - A C B

are also true. A common solution then exists and is

X • ACB +D FE +G KH -D D(A CB +G KH )EE (3.78)

Proof: The proof is identical to that of the theorem

with only variable name changes.

Corollary 3.4.2: Let the matrices A ,B,C ,D,E ,F,G ,H,

and K be of appropriate dimension . A necessary and sufficient

condition that the system of equations given in Eq (3.66) have

a common solution is that item i , ii , iii of Eq (3.67) hold

and that
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viii) K — GA CB H
(3.79)

ix) D E E  G G D FE HH A C B

are also true. A common solution then exists and is

X - ACB +D FE +G KH -G G(A CB +D FE )HH (3.80)

Proof: A proof is identical to that of the theorem

with only variable name changes .

Example 3.3: Solve for the common solution of the

system of equations as given in Eq (3.66) where A , B , C , D ,

E, and F are as given in Eq (3.42). Let G, H, and K be def ined

as follows

ri 1 1 11 1 1 r8 8 81

~ ~
j
~~~H [ ~ 

11 
and K =U  ~ ~j(3.82)

1 1 1 1  1 8 8

To see if a common solution is possible , the conditions of

the theorem must be checked. First find the necessary

generalized inverses. A and B are as given in Eq (3.45)

and the other inverses will be found by using the method of

Noble (Ref 30:342), therefore

rh l~ Il 1 1 1
— (i)[1 

~j 
E — (~)[1 1] ~ G = ~~1 1  1 1 1 1

11 11
and H - (i.) ~i 11 (3.83)

LI. hi

Condition i.

C - AA CB B
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1 
1 1 1 1 1 1  1 1 1 8 8 1 1

-
.

— [8  8

18 8

Condition ii.

F - DD FE E

— (i
~
) (‘~ ~ ~ ~][~ fl[:] 

[1 1] U1TI t~~ — Cl]
Condition iii.

K - GG IC}IH

rh 1 1 l1~l 1 1 1118 8 81
— ~~~~~~ )1 1 1 ifli 1 1 111 8 8 8 )11 1•fl

~’ ~
~T6’ I1 1 1 1 1 1 1  1 1 1 1 1 8 8 811

1 
L J L

LI h l l J L l l l  Ij ~~ 8 8 j l 1 1 1

18 8 8
_ 1 8  8 8

18 8 8
L 8 8 8

Condition iv.

C — AD FE B

• (~~) [1 1 1 

~I[~ i]~ 
(1 1] ~} (-i)

—[8 81
18 81

Condition v.

G KIf • DFE
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1

1

DFE was evaluated in Eq (3.48) and is equal to ~
l i i

ri 1 1 1118 8 8

~ ~II~ ~ ~ ~~11 1 1 IJ L8 8 8 1

11 11
— (3.84)

Li ii
Thus all the conditions of the theorem are met and the common

solution is given by Eq (3.68). Making substitutions from

Eqs (3.47), (3.48), and (3.84) yields

1 1 ri 11 11 11

— 1 1 + ‘1 ii + I i  1
4’ 1 1 Il ii Il 1 

-

1 1 11 ii 11 1

1 1 1 r ,,1l 1 1 l~1 1 1 ~~~~~~~~ 
1 1 l

iEu i. i ii~ r~ ll fl 11 1
1 1 1 

~ ~l(~i 1 + 1 111 1.1 1J I1 hi (4~)
1 1  l L  J,Ij. 1 1 lJ!

3 3  3 3 3 3 1 2 2
3 3 1 3 3 3 31 2 2 f2 2— 3 3 

- 

~~IT~~ 3 3 3 31 2 2 12 2
3 3  3 3 3  3 J 2 2

r3 31 ~2 2 1 1
— 13 31 - 12 2 — 1 1 (3 8513 31 1 2 2  1 1
13 3J 12 2 1 1

Thus a common solution exists and is equal to the last matrix

of Eq (3.85).

Linear Modeling

The theory developed in the section on generalized in-

verses will be used to help in the estimation of some of the
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components of linear models. Variance and estimation error

have been studied with regard to Reduced Order Filters by

Asher (Ref 1) and the estimation of both variance and co-

variance have been considered by Rao (Ref 34).

A linear model is one that can be expressed as

Y — X6 + U1~1 + ... + Uk~k 
(3.86)

where Y is an n-vector of random variables, X is a given

- i n x m matrix, ~ is an rn-vector of unknown parameters , the

U1’s are given n x c~ matrices , and the is a c1-vector

of uncorrelated random variables with a zero mean value and

a dispersion matrix 
~~~~~ 

i = l,...k where the variances arc’

unknown .

An alternate method of expressing Eq (3.86) is as

Y — + U~ (3.87)

where U — (U 1; U2; . ..;  U~) and ~T — ~~T. ~T ;

To estimate the variance components of the linear

function

p1a~ + ... + 
~~k~~k 

(3.88)

the quadratic function YTAY of the random variable Y in Eq

(3.86) or (3.87) will be used. To find this matrix A , some

criteria will need to be developed . First the translation of

the $ parameter should be invariant. Thus consider Eq (3.87)

which can be written as

Y - X80 — X8 - X~ 0 
+ U~ (3.89)
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Let XB - X8
0 

— Xy, then the estimator of Eq (3.88) becomes

(Y - X8
0
)
TA(Y - X80) (3.90)

Since the variance should be as close to zero as possible ,

Eq (3.90) should be set equal to zero. Expanding yields

Y
TAY - (XB )TAY - Y

TAX 
0 

- (X80)
TAX 0 - 0 (3.91)

If B is to remain invariant under translation , then from

Eq (3.91) AX — 0.

A second criteria is that the estimate be unbiased .

Using the restriction that AX - 0, the estimate can be ex-

pressed as

YTAY - ~TUTAU~ (3.92)

which is an expression in terms of the hypothetical vector

variable ~~. If Eq (3.92) is unbiased for Eq (3.88), for

all o~~, then

k k
E(~TUTAU~) - 

~ E 
TUTAU E tr UTAIJ . (3.93)

i—h ~~i i i~ i~ j—j 1 1 1

However Eq (3.93) is another expression for Eq (3.88). Thus

this implies that

tr U~AU~ - p~ 
(3.94)

for all i — i , ..., k.

The third criteria is that of minimum norm . This says

that if the hypothetical variable ~ were known, then a natural
estimator of Eq (3.88) is
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(p1/c1)4~1 + ... + Cpk/ck)~~~k ~~
TD (3.95)

where D is an arbitrary diagonal matrix . Thus there presently

exists two estimators, the estimator of Eq (3.92) and the

estimator of Eq (3.95). Taking the difference yields

~
TUTAU~ - ~

TD~ = ~
T(UTAU - D)~ (3.96)

This difference can then be made small, in some sense, by

taking the norm of the matrix

I I U
T

AU - DII (3.97)

The norm of Eq (3.97) can be any acceptable norm that satis-

fies the properties of a norm (Ref 14:198). One choice of

norm is the Euclidean norm defined as

~ 
UTAU - D 112 = tr (UTAU - D) (UTUA - D) (3. 98)

Thus the problem of finding the Minimum Norm Quadratic Unbiased

Estimator (MINQUE) of Eq (3.95) is one of finding a matrix A

such that Eq (3.98) is a minimum subject to the conditions

AX = 0
(3.99)

tr AV
~ 

p
~ 

, i — 1,... k

where V
~ 

- ~~~~
With these concepts in mind , consider the model given

in Eq (3.86), where X is a given m x n matrix and B is an

rn-vector of unknown parameter. 
~~ 

is a q-vector such that

E(
~~~
) — 0 , E(

~~4) 
— S , 

~~~~~~~~~ 
— 0, i~’j ( 3. 100)
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The problem that is now considered is one of estimating the

q(q+l)/2 components of the symmetric matrix S given in Eq

(3.100) or one of estimating the linear function of S when

the vector is unknown. The dispersion of Eq (3.86) is

given by

D(Y) — U1SU~ + ...+ UkSU~ (3.101)

The problem of estimating the given linear function of the

elements in S, which can be written as

tr SQ, (3.102)

where 
~ 

is an arbitrary symmetric matrix , can be solved by

letting YTAY be an unbiased quadratic estimate of Eq (3.102)

with the restriction that AX = 0. Thus

E(YTAY) - tr AD(Y) = tr S(UIAU 1+ ... + U~AU~) (3.103)

Comparing Eqs (3.102) and (3.103) , it is obvious that

Q = U~AU~ + + U
~
AUk (3.104)

If the E~~, ~~~ 
are known, then a natural choice for esti-

mator of S is

(l/k) (~~~~~1 + ~~~ + 
~~~~~~ 

(3.105)

and a natural choice for the estimator of tr SQ is

- 

tr (h /k) (~~~1 +
~~~~~

• + 
~~~1~)Q — (h/k)(~~Q1 ~~~~~~~~~ 

(3.106)

Now the estimator that was initially proposed is

YTAY — (U 1~1 + ... + U
k~~k

) A (U
1~~1 

+...+ U
~~k
) (3.107)
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Considering the estimators in Eqs (3.106) and (3.107) as

quadratic express ions in ~, then what remains is to minimize

the norm of their difference. Finally , the problem is one

of minimizing

I I U
T
AUII (3.108)

subject to the conditions

AX = 0

k
TE U.AU~ = Q (3.109)

i—i 1

The preceding development is due to Rao (Ref 34). The methods

of the preceding section are utilized in the finding of the

matrix A in Eqs (3.108) and (3.109).

Example 3.4: Consider a linear model of the type in

Eq (3.87) where Y is an n-vector of random variables , B is

an rn-vector of unknown parameters , and the matrices X , U, and

~ are defined as follows

1 1 1 1 1 1  1 1 0 1 1 0 1 1 0 1
X — t l l l l I , U = I 0  1 0  0 1 0  0 1 0

1 1 1 1 1 1  1 1 0 1 1  0 1 1 0 1

0 0 0 1 0 0 0 l~ (3.110)

The matrix U can be expressed as

fl 0 1 1 0 1 1 0 1
1 0 : 0  1 0 : 0  1 0

11 0 1 1 0 1 1 0 1

and

— [~~ : : — [(1 0 0)T : (0 1 0)T : (0 0 1) T]
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The problem at hand is to solve Eq (3.108) subject to the con-

ditions of Eq (3.109). Thus the equations to be solved are

fl 1 1 11A Il 1 1 fl — 0 (3.111)
11 1 1 ii

and

TZ U A U = Q
i=l

Since Q is an arbitrarily chosen matrix , let Q be defined as

f-2 2 -2
Q 1 2  -2 2

L-2 2 -2

The procedures of the last section will be employed to solve

the above system of equations . From Penrose (Ref 31) the

equation AX = 0 can be solved by use of the formula

A = cX + W(XX - I) (3.112)

where c is a constant matrix and W is arbitrary .

Again applying Noble (Ref 30:342) to find the inverse

of X, the generalized inverse of X is

~i 1 l~
= 

~~~ 
~ 

(3.113)
1 1 ] .

Solving Eq (3.112) yields

A
~ 
• Of + 

~ 
I I] - 

~~
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— pi (<4> U ~ ~
= W (4) { 1 -2 11 (3.114)

11 1 -2J

Since W is arbitrary , let W be the identity. Thus A is

1-2  1 11
A = (1) I 1 -2 1 (3.115)x 3 L i  1 -2J

The next step is to solve

TE U AU = Q (3.116)
i=i

Since each of the U~ are the same , the equation above could

be written as

3UTAU = Q (3.117)

Applying Theorem 2.11 to solve for A yields

A — ( l/ 3)UT QIJT + z - uTmTzuu (3.118)

Notice that u = uT, thus U~ uT and this value is

fl 0 11u uT (1/4) 1 0  4 01 (3.119)
Li 0 ii

In Eq (3.118), since the end result is a common solution , let

the arbitrary matrix Z equal A
~~
. Solving Eq (3.118) yields
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11 0 lir-2 2. -2111 0 11 i 1-2 1 1
A — (~)(~)(~)IO 4 0ff 2 -2 2110 4 Of + (

~ ) 1 -2 1
Li 0 1.11-2 2 -2iLl 0 ii Li 1 -2

12 0 211-2 1 1112 0 21
- (~‘)(~) C~) I0 4 O I l  1 -2 111 0 4 o f (3.120)

12 0 2.11 1 1 -2.112 0 2i

In Eq (3.120) the quantity

~ f2 0 21
(i.) 10 4 01

12 0 2.1

is the product of uT uT a UT1. Eq (3.120) simplifies to

I I A a ~ (~f !! ~ 
+ 

‘~~ 
f-f ..

~

- (
~~ ) [16 -32 161 (3.121)

1-8 16 -8J

A (
~ ) [- f - ~ 11 1 -2.1

Thus a common solution has been arrived at. With the value

of A now known, it is a simple matter to minimize the
quantity IIU

TAUII.
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IV. Conclusions and Recommendations

The increasing use of matrix equations in the engineer-

ing sciences has stimulated a rapidly growing interest in how

to best solve these equations. The techniques developed in

this thesis can, depending on the equation, be tedious to do
by hand, but all can be coded for computer application .

Several different methods of solution have also been presented

so that if one method fails to yield acceptable results ,

another way may be implemented that will in turn be satisfac-

tory.

Additional attention can be paid to the area of quad-

ratic matrix equations. Some of the techniques that have

been discussed may prove to be of value in the solution of

this type equation.
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