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ABSTRACT

In this paper we consider dynamic systems that move along specified
trajectories across random fields, where the field acts as a driving
force to the dynamic system. For a specific class of random fields we
develop equations for the evolution of the covariance of the state of
the dynamic system, and in the special case in which the trajectory is
a straight line path followed by a 180° turn (i.e. an "over and back"
trajectory) we develop a Markovian model that involves a change in the
dimension of the state after the turn. For this case we also discuss

the estimation problem using recently developed results on "real~-time
smoothing."
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I. Introduction

The problem we consider in this paper is depicted in Figure l1l.1. We
have an cbject that traverses a specified trajectory (nl (t) Ny (t)) over a
planar surface. Aboard this object is a dynamic system which is affected
by a random field t(nl,nz) . We would like to consider the statistical des-
cription of the state x(t) of the system in terms of the specified trajectory
and the statistical description of the random field. Problems of this
general type arise in applications such as inertial navigation (1,2] where
f represents the errors in our knowledge of the variations in gravity and x(t)
consists of the errors in an inertial navigation system. Since the inertial
system's accelerometers measure actual acceleration plus gravity, an estimate
of gravity, from a gravity map of some sort, must be subtracted from the
accelerometer outputs. Thus map errors directly drive the dynamics of the
navigation system.

In the next section we develop equations for the evolution of the
covariance of x(t) for a particular class of random fields. For the special
case of a straight line trajectory that reverses on itself, we develop in
Section III a novel Markovian representation for the process x(t), and in
Section IV we use this representation, together with recent results on the

real-time updating of smoothed estimates, to solve an estimation problem.

II. Covariance Analysis for Motion Through a Two-Dimensional
Random Field

Let !(nl,nz) be a two-dimensional stationary Gaussian random field
enT1R1e RESEARCH (AFSC)

which for simplicity we assipme &0 be gero meAn. 'ﬁio correlation matrix
. g ’ : : 1 and 18
“ )T 1 g Of vovl( 1 ANl s

for this field is onis teol Nt ARR. 190=22 (7B)e
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E(£(t,s)£'(0,0)] = R(t,s) (2.1)
It is easily seen from (2.1) that

R(to') = R' (-t'-.) (2-2)
Let (nl(e) ,nz(t)) be a specified trajectory through the plane and
consider a dynamic system driven by the field along the trajectory

x(t) = Ax(t) + £(n, (£),n, (£)) + w(t) (2.3)

where w(t) is a zero mean white Gaussian process with

Elw(t)w' (T)] = Q8(t=1) : (2.4)

We assume that the initial condition x(0) is zero mean and Gaussian and
that x(0), w, and f are mutually independent. We would like to determine

the evolution of
P(t) = E(x(t)x'(t)] {2.9)
Ve will put further restrictions on the field f that, as we will sae,
lead to P(t) being specified by a finite set of matrix differential
equations. Specifically we will assume that the covariance R is separable
R(t,T) = Ri(t)llz(l) (2.6)

where we assume that 31 and nz are square and that

RI(e) - &1(-:) ¢ Rz(l) = ».3(--) 2.7)
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and

!‘it
Ri(t) mHe G , 0, iel,2 (2.8)

From (2.1), (2.6) and (2.7) we can alsc deduce that R, and R, commute for
any values of their arguments. This model is the continuocus-time analog
of the model examined by Attasi (3]). Specifically, the 2-D spectrum of f
is separable and rational.

As a first step in obtaining the desired equations for P(t), define

Q(t,s) = n(nl(t)-nl(s). nz(t)-na(s)) (2.9)

Then, writing

t
x(t) = M) + / " aobash (£, (T) 0, (1)) 9w (D) 1At (2.10)
0
Ve can cbtain and expression for P(t) from (2.5). Differentiating we

obtain the basic equations

P(t) = AP(t) + P(R)A' + L(t) + L'(t) (2.11)
. A' (t=-T)
L(t) = _[ Q(t, Te at (2.12)

The problem then becomes one of determining a set of differential equations
for L(t). This calculation depends upon the nature of the trajectory.
There are several cases to be examined. For simplicity, we will assume

throughout that nl(o) =N, (0)=0,




Case 1: This is the simplest case in which we don't change quadrants
in which we're heading. That is, if we choose the northeast as the

direction of motion, we have the situation depicted in Figure 2.la where

Ny (&) = n (s) 20

veds (2.13)
n,(e) = n (8) >0

In this case, using (2.6)-(2.9) we find that (2.12) can be written as

¢
F_(n, (t)=n, (7)) F.(n,(t)=n.(3)) N P
L(t)-f Rel! ! 1 03.2“2 27 g el (800,
1 ' 2
0
i (2.14)
& BB, ()

Differentiating .1 (t), we obtain

- . ‘
nl(e) - “1(‘"1'1 (t) + BjA + 013262

+ N (e)

A G H.F.e i A(t-0)d0

t - -
/ .’1("1(':’ nl(a)) ':(“2(” n, (o)
17272

v (2.15)

4 Note the l‘z factor in the middle of the last term of (2.15). This leads to

the following. Define

b
51“2" 2 * 62

t F (n (t)=n, (3)) -y FL(n (e)=n_(a)) 't
5, _/ . DL Madgl ge1 T3'My1RI=0y A (0)
Y (2.16)
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We know that there is an integer r and coefficients po,...,pr_1 such that

-1
Pl e

3
2 !2 (2.17)

[o]
jm0 3
Then

} L(t) = nlaltt)

By(€) = N (RIF)B, (6) + B (A" + 7, (6B, (&) + 6,837k,

1<y<r-1 (2.19)
. . r
B_(t) = ) (E)F)B_(t) + B_(L)A' + A, (t) jzlpj_laj(t)

& 3132’2-152 (2.20)
B,(0)=0 ,  3=l,....z (2.21)

Note that we can cbtain analogous equations with the roles of Fl and Fz
reversed if we use the commutativity of Rl(t) and Rz(t). Thus in this

case we obtain a finite set of linear matrix differential equations for

L and therefore for P. Note that if the trajectory is a straight line

== i.e. 1 (t)=a, n,(t)=f -~ then these equations are time-invariant and
are equivalent to one higher-dimensional Lyapunov equation for x and for the

state of a shaping filter for £ along this line.

Case 2: 1In this case, illustrated in Figure 2.lb, we have a change of
quadrants from northeast to southeast. Clearly the following analysis also

holds for any turn from ocne quadrant into an adjacent one. Mathematically,




-8=
n,(e) = n(s) 20 ts
n,(e) = n,(s) >0 a<s, (v) (2.22)
ny(e) - ny(s) <0 828, (t)

where lo(t) is defined in the figure. Here t is the time at which our
turn takes us into another quadrant in direction, and "2 is the time at
which s (t)=0.

For t<t_ , the analysis of this case is identical to that for Case 1.

- 1'
Thus, consider :lf_titz and let us break up the integral expression for
L(t):
s_ (t)
0 F,(n, (t)=n, (s)) F (n, (t)-n_(s))
) dags 1 42 2 A' (t-s)
L(t) = Klo Glnzc Gzo ds
0
t '
F, (n, (t)=-n, (s)) F,(n,(s)-n_(t))
> el ! 1 e G 2 '« _A'(t-s)
+ f 81. G:.Gz‘ Hze ds
8ot (2.23)

where ve have used the fact that R,(n,(t)-n,(s)) = R;(nz(s)-nz(t)). In
differentiating (2.23) we will need to calculate io(t) . This can be done

as follows. By definition

N, (lo (€)) = n, () (2.24)

Therefore

Ny (3, (£))8 (£) = My (t) (2.25)




nz(t)

nz(-°(=)>

ao(t) = (2.26)
Note that if ﬁ(so(t))-O. as it is in Figure 2.2, we will have to evaluate
higher derivatives. This causes no conceptual difficulty but it simply
complicates the development. Therefore we will assume for simplicity that

there are no inflection points in the trajectory over the interval [o,tl).

Let
s_(t)
0 F. (n, (t)=n, (s)) F,(n, (t)=n_(s)) !
o  falle | 1 J=1 "2 '3 2 A (t-s)
Bj (t) f e GIH2F2 e Gze ds
0
I=l; s, (2.27)
Note that if we define so(t)-t for t<t1, then Bj is precisely the quantity
in equation (2.16) and thus the initial condition at time tl for Bj in
(2.27) is Bj(tl) calculated from (2.19)-(2.21). If we now differentiate
(2.27) and use (2.17) we find
sj (t) = nl(t)rlaj t) + Bj(t)A' + ﬁ2(t)8j+1(t)
2 nz(t) .Pllnl(t)-nl(lo(t))lc a Pj-IG.A (t-so(t))
nz(sott)) » g g
j=1,...,r=1 (2.28)
r
. . " - ?
Br(t) = nl(t)PlBt(t) + Br(t)h + nz(t) j‘-_l pj-laj (t)
nz(t) Pltnl(t)-nl(so(t))] gal A'(t-so(t))

+ e GH.F. G.e
) isom) 142 2

(2.29)
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Note that

aj(ez)-o > (2.30)

since so(tz)-o.

Now let
t : .
F,(n, (t)=n, (s)) F_(n,(s)=-n,(t))
3 i Vi Vepty oL, 22 ST EEN L e (eag)
cj(t) e Glcz(rz) e Hze ds
s _(t) (2.31)
0
Then
%w)-MMQ%u)+%wmnwyu%um
n, () F., (n, (£)=-n_(s_(t))) A' (t-s_ ()
A 3 = 2 B i 10 T L3 § 0
+ clcz(rz) H, 527;37373 e GIGZ(Fz) H, e

(2.32)

r
~ b [ [ r-l .
€ (&) = N, (B)F,C (L) + C_(B)A* = n,(E) 1 P,_.C.(t) + GG (F))" 'H

ju1 §=175 1722 2
n, (t) F, (n, (t)=n. (s_(t))) A' (t-s_ (t))
2 1% L 0 ' =1 0
- ﬁz(’o(t)) e Gle(Fz) “2° (2.33)
Cj(tl)-o ; jm=l,...x (2.34)
Then
L(t) = H, (B, (t) + C, (£)] £, <tct, (2.35)

Note that in the case of a piecewise linear trajectory, such as




-ll=

% ey f
Ay(e) = (2.36) ;
0: t>e1 |
t<t
Ay (e) : % i (2.37)
82 e»l :
. 8
iy(t) Y (2.38)

which is negative here since 81>0. 82<0.
We now need only piece together the situation for t>t2. In this case
t F, (0, (t)=n (s)) Fo(n, (8)=n_(t)) &
L(t) = OO D R S A R R S S (2.39)
1 172 2
0
Thus in this region

L(t) = H,C, (¢) €2t (2.40)

where Cl(tz) is obtained from (2.32)-(2.34), and, for t>e2

Cj(t) - nl(t)l‘lcj(t) * C.(t)&‘ - ha(t)c )

j+1(‘

(] ' j‘ '
+ °1°3('3) 1“2
jel,...r=1 (2.41)




L . = r
C_(t) = n, (£)F,C_(£) + C_(£)A' = A, (t) 321 P4-1 (t)
+ GG (FH) T 1y! (2.42)
s e 2 .

Thus in Case 2, over the time interval [O,tll we have one set of

2
of the trajectoxry retraces its path over [O,tll, we have two sets of equations;

equations to calculate L; over the interval [tl,tzl, while the n_ coordinate

and for t>t2 we are back to a single equation which is essentially the
equation cbtained in Case 1, except here we have a southeasterly trajectory

as opposed to the northeasterly trajectory of Figure 2.la. It should be
clear that we can do this for arbitrary trajectories. Only during the
"transient" of a turn do we pick up additional equations. In the Appendix

we describe one somewhat more complex case in which both ny and n, coordinates
simultanecusly retrace previous values (this does not mean a trajectory that

retraces itself -- see Figure A.l). In that case, there are two additional

sets of equations. From the cases considered in this section and in the

Appendix it is not difficult to see that at any time we must include m additional

sets of equations, where m is the total number of previous times in the
trajectory that either the n1 or n2 coordinate of the trajectory equals the

corresponding coordinate at the present time. If A is a stable matrix, then

the effect on L(t) (and hence P(t)) of a trajectory turn far in the past becomes

insignificant. This can be seen in (2.28) where the driving term goes to zero
exponentially as t:--:lo(t)-“° (the matrices Fl and ?2 are stable since f is a

stationary process with finite covariance). Thus in practice we need only

T N P e e U T T

e gt r———



keep track of turns within-a certain number of time constants of A and
correlation distances of the field (inverses of the magnitudes of the

eigenvalues of F. and Pz).

1

III. Markov-Type Models for Over-and-Back Trajectories

In the preceding section and in the appendix we performed some
relatively straightforward calculations to obtain sets of differential
equations for the propagation of the covariance of the state of a dynamic
system moving through a random field. The primary contribution of that
analysis is to provide some understanding of how the geometry of the tra-
jectory affects the state covariance. While this is of some use, there is
still a great deal left to understand about the fundamental way in which
the uncertainty in the field affects the statistics of the process x(t).
In this section we will develop a Markov-like description for the special
case of over-and-back trajectories. This not only provides us with further
insight into the evolution of x(t) but it also forms a basis for solving
estimation problems of this type, a topic which is considered in the next
section.

The case that we will examine in this and in the next section involves
a trajectory consisting of a straight line path followed by a reversal of
direction and a return trajectory over the same path. We also will assume
a constant velocity (normalized to 1) over both segments of the path, but

this assumptions is made only for clarity in our exposition as is our

-

—

I TR R T 2

e

—
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assumption that the dynamic system is time-invariant.

It should be clear from our analysis as to how our results can be modified
to account for nonuniform velocity and time-varying systems.
Consider the model
x(t) = Ax(t) + u(t) + w, (8, 0<t<2T (3.1)

where v, is a white noise process with

z(wl(t)wi(r>1 - sls(t-r) (3.2)
and where
£(t) 0<t<T
u(t) = (3.3)
£(2T-t) T<E<2T

Here f is a cne-dimensional process (representing the field along the
track, and we assume the f can be modeled as the output of a finite-
dimensional shaping filter
E(t) = FE(L) + w (t) 0<t<T (3.4)
f£(t) = HE(E) ' (3.5)

where v2 is white noise, with

B(vz(t)wi(T)] - SZG(t-T) (3.6)

We assume that all of the processes above are zero mean and Gaussian and

that x(0), Wy £(0), and w, are mutually independent.




For 0<t<T we have the same situation as in Case 1 considared in the
preceding section. Over this time interval, while we are going forward,

the joint process

E(t)
x, (t) = (3.7)
x(t)

is Markovian, with the following state equation

F 0 v, (t)

x. (t) = x, (t) +
2 ) § A 2 wltt)

(3.8)

0%t<T (forward)

The meaning of the notation (forward) in (3.8) will become clear shortly.

Thus the covariance 22 (t) of x, (t) can be obtained from the differential
equation

F O F* R S 0

Jw + L) + (3.9)
0+ Lol

I (t) =
2 ‘
A 0 Sl

R A
As ve saw in Case 1, we needed one additional set of equations in order to
calculate the covariance af x (t| Here we see that that set of equations es-
uneil‘uy comes about by augmenting the state x(t) with a shaping filter
model for the field in order to obtain a process that is Markovian. Once
that is done, as in (3.8), we can use standard results to write down the

covariance equation (3.9).
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The interesting part of this analysis occurs over the time interval
T<t<2T, since here we are reversing over the same sample path of {. Again
our goal is to augment x(t) with something in order to obtain a Markov model
over this time interval. 1In order to do this we clearly must consider a '
model for £ that runs in reverse. Using the results in [4] we can write a i

reverse time model for the augmented process X, (t):

1
; F o0 s, 0 -1 i e |
-x,(t) = = + I @) x (&) - H
: 2 2 w_(t) t
H A (o} Sl 1l }

0<t<T (backward) (3.10)

Here (55 (t), ii(t)) is a white noise process backward in time independent of

xi () = ('(D),x'(T))." The processes W, have the same statistics as the

i
w, - Note one interesting aspect of this model. If we examine (3.8) or

(3.4) we see that § is a Markov process by itself forward in time -- i.e.

it is decoupled from x(t). However this is not true in the reverse-time

model (3.10) since Z; is not block'd.i.aqoml. The reason is that going

forward in time the process { drives the process x. Then, since the reverse ‘
process is a Markovian representation of X, given its future, we should

expect to see coupling, since the present value of §{ is certainly not independent

of the future of x.

* The use of white noise here makes our derivation somewhat informal. However
it is conceptually correct. To be precise we should replace w, by clel where

the Bi. are Brownian motion processe forward in time. Then W, is replaced by

i

déi which is a Brownian motion backward in time, independent of xé (T) =
%, (T) = (E'(T),x](T)). This process is cbtained by subtracting from d8, that
part which is predictable given the future of X, See (4] for details.




If we now let

xa(t) - xz(z'l‘-t), "1(") = vi(z'l‘-t) (3.11)

we obtain a model forward in time over the time interval T<t<2T:

: F O .“‘2 0 2_1 Ny (t)
X, (t) = = + (t)( x, (t) +
3 2 3
H A 0 sl nl(t)
T<t<2T (forward) (3.12)

The initial condition for this process is xa('r) -x, (T), with covariance

(t).
Z2

Consider now the following augmented process over the time interval

T<<2T:
x, (t) E(27-¢)
x‘ (t) = - x(2T-t) (3.13)
el x(t)

Then, using (3.1), (3.3), (3.5), and (3.11) we obtain a Markovian repre-

sentation for the behavior of this augmented state

-1 ,
-g(’ °) +(sz ’ ) 7wl v o n, (¢)
BEA . B w9 )
kg = ' x 8) +| ™
: wl(t) (3.14)
©, B Y

it ——————




o

ﬂz(t) S2 0
ﬂl(t)

E
0

o
0

[ L] [} 0 0
[n2 ()0} (1) v} (D) )} - 1 §(t-1)
'1 (e)

Basically (3.14) describes a method, starting at t=T, for simultaneously
generating the future (t>T) of x(t) and its past (t<T). In this fashion
we can take into account the fact that the trajectory has reversed its
direction.

We can use (3.14) as the basis for determining the covariance for x(t).
Specifically, define N(t) as

Ry

N(t) = (3.15)

(0, H) A
b .

Then, letting 24(C) denote the covariance of x‘(t). we obtain

£ v .0
i () = N(E)] (&) + ] (0)N'(e) + [0 s, O (3.16)
4 4 4
¢ ¢ 8

To obtain the initial condition for this equation, note that

E£(T)
!‘(T) - x(T) (3.17)
x(T)

g e e g M =

-
. oo -

P >~ v g

g ST



Thus, if we write

(Xz m )u (22 e )12

Zz (1) = (3.18)

(22 (™ )u (22 (m )22
(Zz () )u (22 (D )12 (22 ('r))12

I = (sz)u' (sz)zz (sz>22 (3.19)

22 (! ); (22 (r?)zz (Zz ('r))22

Thus we see that, as in Case II, a reversal of motion leads to an ad-
ditional equation. Also, one can regard the over-and-back example as a
degenerate form of Cases b and c which are examined in the Appendix
(referring to the notation in the Appendix, in the over-and-back case
sl(t) = sz(t) for all t and tx = ty). Thus the straightforward analysis
of the Appendix will lead to equivalent equations in this case.

Note that based on the understanding gained in this and in the preceding
section, we can see what will happen for more general over-and-back tra-

jectories. For example, as illustrated in Figure 4.la, consider the case in

which we continue the process for t>2T without any further change in course. -

It is not difficulty to show that for t>2T we can once again cbtain a

Markovian representation for the joint process

[e(t)]
x2“') d x(t)




———

tf-2T

(a)

t=2T——= 5t=T

t=0

(b)

FIGURE 4.1: Two Over-and-Bask Trajectories.




where the initial covariance Z‘ (2T) for this process at time 2T is abtained

from the solution to (3.16)

(X EL) )11 (Z % (z'r)) #

(2T) = ) ' (3.20)
z: (Z‘(z'r) ks (Z‘(zr))u

In this case the time period (T,2T] represents a transient due to the turn,
whose effective will become negligible if A is stable. 1In fact in this

case as t~», x will achieve the same steady-state covariance in this situation
as one would from a trajectory that moves to the left for t>0 without any
turns. Similarly, if we consider a second course reversal as in Figu:e 4.1b,
we must aobtain a reverse time model for Xy reverse time once again to
obtain an equation for xs(t) - x‘(u*-t) and augment this with x(t) to obtain
a Markovian model over the time period 2T<t<3T. Thus in this case we aobtain

..

another additional equation for the covariance evolution.

IV. Over-and-Back Estimation
In this section we consider the problem of estimating the process
described by (3.1)=(3.6) given measurements. Specifically, suppose we assume

that the random field has been mapped by a previous survey

y (&) = CE(8) + v (), 0<t<T (4.1)




-22-

where E[vl(t)vl(t)] = Riﬁ(t-r), so that we have the smoothed estimates

g, (8) = EtE(e) | v, (), ogtem (4.2)

Consider now a set of real-time measurements
z2(t) = czx(t) + vz(t). o<t<2T (4.3)

where E[vz(t)vz(t)] = Rad(t-T) and A2 and v, are independent. We wish to
consider the problem of using the previously mapped information (4.2),
together with the new data (4.3) to estimate x(t).

As in the preceding section, this problem is best analyzed by considering

the two intervals (0.T] and [T,2T] separately. Thus, let

yz(t) = Z(t)p tG[O.T]p Y3(t) - Z(t)p te[T.Z'I'] (4-4)

The problem over the first time interval is a real-time smoothing problem,
that is, we have smoothed estimates for part of the state (here the § part
of x, as given in (3.7) and (3.8)) from previously taken data, and wish to
incorporate these estimates into an overall state estimate given new real-
time data. A real-time smoothing problem of this type was solved in [5].

In order to apply that solution here, define

Qz(e|'r,t‘) = Elx, (t)] y, (1), 0<T<Ty ¥, (1), OLt<t] (4.5)

Then

E_(¢)
S
A -1 -1
xz(tlr,t) =P, (t) (P, (t)q (e) + P "(t)q (£)] + o (4.6)




o]. 0
3 (t) = F_(t)q_(t) + £ (t) + P_(t) y. (t) (4.7)
U £t s £ '3;1 2
2

H c |
{

qt(O)-O (4.8) 1
3 -1 £ i
-q, (&) = F, (t)q (t) + (P, (t) Zz (€)-I) [° ]Es(t) (4.9) :
H §

g (T)=0 (4.10) .

where zz(t) is the unconditiocnal covariance of xz(t), as calculated from
(3.9). The remaining quantities in (4.5)-(4.10) are deterministic and

are determined from the equations

: F O A s, 0
p!(t) - Pf(‘) + Pf(t) +
H A 0 Al Q S

- P_(t) Pt(t) (4.11) |

T ORI e T

ORI

P,(0) = 22(0) (4.12)

i ([r o [szo]-,_ | 5
=P (t) = - () (P (%) |
o lﬂA+0 5122 J ™ i

{

' ' i -!

- pb(t)‘ iy + 2-1&) T ]l+ [sz ] ] i
l 0 A’ - o s, 1o s, |

-1
[~ C 0
- 7 (v) 1M Q P, (t) (4.13)

0 0




P (T) = Zz(r) (4.14)

-1 -1 -1 -1
P, (&) = P U(E) + B V(L) 22 (t) (4.15)
F O ciRI1°1 0
Tgle) = - P (t) (4.16)
H A 0 cl ‘lc
2f2 C;
F O s, 0 4% cinzlcl 0
F _(t) = - - 1) - e (t) (4.17)
& H A 0 s 2 s
3 0 0

Let us briefly interpret these equations. For a detailed discussion,
we refer the reader to (5]. Here Pf(t) is the estimation error covariance
for xz(t) given yl(T) and yz(t), T<t -- i.e. the causal estimate of xz(t)
using only causal information from the previously collected data ¥y and the
new data Ype Similarly, Pb(t) is the estimation error for a reverse-time
filter which estimates xz(t) given only yl(r), t<t<T. The set of information
used in these two estimates comprise all the information used in computing
iz(cIT,c). The forward filter (resulting in an estimate with covariance

Pf(t)) is the usual Kalman filter and has the form

A (] D
xf(t) - rc(t)xt(t) + Pf(t) CR 0 yl(t)

o'l
0 C,R ¥, (€)

(4.18)

Similarly the backward Kalman filter, with estimation error covariance

Pb(t), has the form




Sl il

rmmv«v—
-

e - .
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. -1
g : S Ry 0 ¥, (&)
-x, (&) = P (e)x () + P (t) (4.19)
0 0 0

The estimation error covariance for ;2(t|T.t) is P, (t), and the
expression for it in (4.15) is taken from Wall [6]. In fact, using the

smoothing equations in (6] and the result of (5], X,(t[t,T) can be written

A -1 A -1 A
xz(tlr,t) = P, (t) [P, (B)X (t) + P "(t)x (¢)] (4,20)

The fact that Z;l(t) is subtracted on the right-hand side of (4.15) reflects
the fact that the estimates it(t) and ;b(t) of the state are correlated, as
they both use the a priori information which has an uncertainty specified by
the unconditional statistics of xz(t).

Finally, (4.6)-(4.10) are obtained from (4.18)-(4.19) by some manipula-
tions aimed at replacing yl(t) in (4.18), (4.19) by the previously determined
map es(t)' The details of these calculations in a somewhat more general
context can be found in (S]. Note that only qf(t) is driven by the new, real-
time data yz(t), while qb(t) is a functional only of the smoothed map E‘(t)and
in principal can be precomputed. In practice, what this means is that once
the one~dimensional trajectory has been charted, we can integrate (4.9)
backward along this trajectory, store the result, and combine it with the
stored map E'(t) and qg(t) through (4.6) in order to determine §2(t|T,t).

Consider now the estimation problem over the time interval (T,aT).

This is again a real-time smoothing problem, thanks to our augmented

T I —



we have computed

X,q (&) = Elx,y(t) |y, (T) ¥ (1), O<t<m)

- B(xz (27-t) Yl(ﬂ' yz(r), 0<T<T] = X,q (27-t) (4.21)

The quantity that we wish to compute is

24(t|r,r,:) = Elx,(t) |y, (T), ogter, ¥, (T, OZI<T, y, (1), T<rst]

= Elx,(t) |y, (1), ogt<T, 2(1), Ogrst] (4.22)

Using the real-time smoothing formulas of (5], we can express
24(t|T,T,t) in terms of 23. and y, for t€(T,2T]. However, there is one
complication caused by the fact that Z4(T) is not invertible (see (3.19)).
This is due to the fact that x(2T-t)=x(t) for t=T. In order to make the

necessary modifications, it is convenient to change basis. Let

‘3“’ £(2T=-t) I 0 o
plt) = =| x(2T-t) =[0 1 of x(t) (4.23)
x(t)=-x(2T=t)
x(t)=-x(2T-¢) 0 =I
4 (see (3.18)). Also, define
1 F O s, O -1 Tler 2.0
T(E) - - +] 4 3 (c)l « ] ™ -
o Sy ’ T.(0)  r..(t) | (4.2

21 22

Markovian model (3.13), (3.14). Specifically using the data {yltr), yz(r)}

I EIITIII=~,
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Then, from (3.14), (4.23), and (4.24)

T(t) v 0 n, (€)
ple) = ' ot) +
v . : n, (t)
( Tzl(t), H+A Tzz(ﬁ)) : A 1
wl(t)-nl(t)
& pierote) + Bee) (4.28)

and the unconditional covariance, V(t), of p(t) is given by

I ¢ O I 0 ©

weh el . Z‘(t) 5 % «& (4.26)
@ =& & o 0 I

Thus, from (3.19)

(L,m),, (22(w>)12 0

v(T) - '
(Lm), (Lm), 0 (4.27)

0 0 0

Further, let us assume that x(t) as defined in (3.1) is controllable from
the noise wl(t) , L.e. ‘t'.hnt (A.sl) is a completely controllable pair. 1In
this case it is not difficult to see that for any t>T, V(t)>0. Then,

defining

A A s e




T 0 0o
o(t|T,T,t) = R X, (¢|T,7,8) (4.28)
0 -r I

We can adapt the results in [5] to cbtain

plt|T,T,t) = z(e)[nf(e):f(e) + ub(e):b(e)] + (4.29)
0
Y O A~ o
r (t) = G, (t)r_(t) + X, (t)+M_(t) v.(t)
£ g ity & 3s £ v =113
(=T, (&) BeA=T,, (t)) C,R,
(4.30)
:g('r)-o (4.31)
-5, (€) = G (e)r, (&) + M (VT (&)-1) 0 e
3s
(=T, (t) ,H+A=-T._ (t))
21 2 (4.32)
r, (2T)=0 (4.33)
where Mf, “b' E, Gf, and Gb are given by
" £ y 3
Mg () = D(EIM () + M (€)D" (t) + s, 0 o
W e
Y % 281
f'clnlc1 0 0
0 20! Rt el le
Mg (£) 2R C2 2R ©; Mg (t)
1o=1 ' -1
8 CRy G CaRy Gy
(4.34).
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ut('r) = V(T) (4.35)
r : 5, o 0 +
i -uh(t) = =JD(t) + v (t) Hb(t)
i 5 B -8
E N
} o -, 3
s s
iL : W e Y e
-M_(t) )D'(t) + V' (t) 3 + ¢
% o s -8 o s, -8
[0 -5, 28, ¢ -8, 25,
crrCt 0 0
1h S
-M (t)
" 0 céx:.zlc2 0
(4.36)
0 0 0
} M, (27) = v, (2T) (4.37)
i
"i B = uie) + M) - v (4.38)
3
3 G (t) = D(t) - M_(t) -c' ~1e 0 0 W
« £ £ 1™ "
(] '1 (] ‘1
o 2c'R.C C!R.C
i 2"2 %2 (4.39)
0 c'r le c'R e
2% C; 2R 6
S, 0 o + c'r lc 0 0
G (t) = -D(t) -| "2 v'(e)-n (t) L 3
0 S -S (] "1
St | 0 CoRyC, O
0 =S. 3=

0
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The various quantities here play analogous roles to those played by the
corresponding quantities in (4.6)-(4.17). For example, E(t) is the error

covariance associated with the estimate p(t|T,T,t). The only difference

|
{
l
in this case is the use of pseudo-inverses for “t' Mb, V, and E. These l
all represent covariances of p, and thus from (4.23) at time T they are all !
singular. However because of our noise-controllability assumption, all of i
these quantities are positive definite for t>T. Furthermore, it is not é

difficult to check that the estimate p at time T, as defined by (4.29) does

YA N

I
§
5
13
:
v

have its last block-component equal to zero.

Finally, let us comment on the issue of computing ;:3. (t) or, equivalently
;2, (t), as defined in (4.21). Recall that what we zalculated over the
interval (0,T] was the real-time smoothing estimate X, (t|T,t), as defined

by (4.5), and using results from (S5S] we displayed an algorithm for performing

this calculation in terms of the new data Y, and the previous smoothed estimate
trajectory E.. The problem we. wish to solve now is the calculation of the

smoothed estimate x .(t) using Yy and E'. This is a problem in the updating of

2
smoothed estimates, which is also examined in (5]. Using those results, we

|
5
{
f
t
find that L

s -1 -1 ] &)

R0 =y (0)[2; (g (1) + 2] maq ()| ¢ : (4.41) ?
where P!, and qf are as before, and :'
+

" ‘1 0 A 0 ;
-q!(t) = !‘r(t)qr(t) + (1"*1'(t)22 (t)-1) H E.(t) + Pr(t) ool yz(t) gi
C.R }

4 e i

14

(4.42) J

i

qrm-o (4.43)




and Pr' st’ and r: are defined by

- F O 32 (o] =1
-P_(t) = - ) + I @ e (¢
E A o s, ]2 ®

e G s, o s, ©
-p_(t) + 7 (e * .
0 a 2 o s, o s,
S | 3
CIRC 0
i B
- . P_(t) (4.44) :
v =1
0 C.R, C,
P_(T) = Zz(t) (4.45)
-1 -1 -1 ‘
Pyg(E) = Bo(t) + B _"(t) - Zz (t) (4.46)
S 0 -1
F O 2 =3 (o] 0
F_(t) = - -[ ]Z (o) = esl} YT 2
B Aajlo sl > 4
0 C,Ry C,

|

(4.47) [
1

Comparing (4.41)-(4.47) to (4.6)-(4.17) we see that the only change in ‘f

Y

computing the full smoothed estimate st (t) versus the real-time smoothed

reverse-time processor (4.42), (4.47) and into the corresponding reverse-

time error covariance Pr and the overall smoothed error covariance P

4
estimate Qz (t|T,t) is the incorporation of the new data (yz) into the t
|
2s :
|

G Teees—" e ———
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V. Conclusions

In this paper we have examined the effect of a random field on a
linear dynamic system moving through the field. We have developed a
methodology for calculating the covariance of the state of the dynamic
system along any trajectory. The evolution of this covariance is clearly

dependent upon the nature of the trajectory, and our results indicate

explicitly how this dependence is reflected in the differential equations
that must be solved to determine the covariance.

In the case of one-dimensional motion we have gone several steps farther

ST

in our understanding and analysis of over-and-back trajectories. Specifically,
with the use of the technique for constructing backwards Markovian models
we have developed Markov models over each separate undirectional segment
of the trajectory. The dimension of these models decreases when the
trajectory goes beyond the region covered in previous segments and increases
when there is a turn. Using this model and results on real-time smoothing
we then were able to solve an over-and-back estimation problem.

Several directions for further work suggest themselves. The first is
the detailed investigation of the estimation problem discussed in Section
IV. While we have described the solution to this problems we have not

exploited its structure as fully as is possible, either in terms of obtaining

efficient on-line solutions or of gaining insight. For example, it is clear
that the measurements of the state x of the dynamic system provide information
about the field £. How is this information incorporated in the solution

of the real-time smoothing problem? This is potentially important in




problems in which we wish to use the dynamic system to estimate the randam
field. Gravity mapping using inertial instruments is a potential application.

A more significant extension of our work is the development of
Markov-type models and the corresponding estimation algorithms for more
general 2-D trajectories. This will involve a significant extension of the
notion of a backwards Markov process.

Finally, an important generalization of the problems considered in
this paper are to systems moving along trajectories which are random
themselves. Specifically, referring to our general model, suppose that
(nl (t),nz(t)) are in fact components of x. This is in fact a more realistic
model in some applications. While our results do not address this problem,
they may be of value in the case in which the trajectory is only slightly
disturbed from scme noninal.' In that situation our analysis might form

the basis for a perturbation analysis of the random trajectory problem.
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APPENDIX

We consider one final case of the trajectory-covariance problem of
Section II. In contrast to Case 2 in which the turn takes us into a
neighboring quadrant, we now consider a trajectory that has a sharp angle
and takes us into the opposite quadrant -- i.e. northeast (NE) to south-
west (SW). Three cases of this will be considered, and these are,
illustrated in Figure A.l. As can be seen, these cases represent suc-

cessively sharper turns. In each, t, is the time when the direction of

1
the direction of the trajectory changes from NE to SE, and t3 is the time
we change from SE to SW. Also tx denotes the time at which the trajectory
crosses the r)2 axis in the southwesterly direction. This corresponds to the

time at which the n, coordinate of the trajectory has evolved from 0 to its

1
maximum value n (t3) and has decreased back to zero. The time tY is
defined in an analogous fashion.

The distinguishing characteristics of these three trajectories are
as follows: in trajectory (a) only one of the coordinates at a time
retraces past values -- first nz (t) and then Ny (t); in trajectories (b) and
(c) both coordinates :ef.:.nce past values over a common portion of the
trajectory; in case (b) N, (t) completes its retracing before ny (t), while
exactly the opposite is true in case (c). as we' mentioned in Section II,
we will see that at any time we get one set of additional equations for

each camponent that is retracing past values. Thus in case (a), we will

have one additional set of equations beginning at tl and ending at ty.
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(a)
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(c)

FIGURE A.l: The Three Cases Considered in the Appendix.
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A different single set of equations beginsat t_ and end at tx' In case

3
(b) we have an additional set of equations beginning at t,ra second set
is added at time t3, the first set ends at ty, leaving us with the second
set which ends at t.: In case (c) the only differences are that there is
a change in the equations at time tc' and also the second set of equations
ends first (t x<ty) . This verbal description, together with the following
analysis, should make clear the approach that can be taken in analyzing a

general trajectory.

Case a: Referring to Figure 2.lb and Figure A.la, we see that the present
case is identical to Case 2 considered in Section II up to time e3. That
is, for 0<t<t, we use the equations of Case 1, with L(t) = Hlsl(t) (see

(2.18)-(2.21)). For £ St<t,, L(t) = H (B, (t) + C,(t)] (equations (2.28)-
(2.35)), while for t

pSt<t,. L(t) = H,C, (t) ((2.40)-(2.42)). For v stst
n () - n(s)>0 for 0<s<s, (t)
n, (&) = n,(s)<0 for s, (t)<s<t (a.1)
n,(t) - n,(s)<0 for 0<s<t

Comparing (A.l) to (2.22) we see that this is quite similar to Case 2,
except here we are turning from SE to SW. Thus, in analogy with Case 2

we can write

e

AT (O R i B




ll(t)

F, (n, (t)=n, (s) F.(n,(s)=n,(t)) finic:
L(t) = f Rl s R R (&

F: (n, (s)=n, (t)) F)(n, (s)=-n,(t)) e
.1 1 1 H'G'.z 2 2 A;.A (¢ l)d'

G 1%2

+J S
s, (t)

L(t) = llcl(t) + Glbl(t) t>t

where

cj (ta) = values calculated using (2.40)-(2.42)

Dj (ts) =0

and

Cj (t) = nl(t)rlcj (t) + Cj (C)A' - ﬂz(t)cj+1(t)

n, (t) Fo(n.(s, (£))=n_(t)) A'(t-s, (t))
1 ety "l 2721 2 ' 1
t R G e GGy (Fp)" e Hye

j‘l...opl
. . . r
€ (t) = n (B)F C () + C_(R)IA* = n,(t) 321 Pyo1Cy(®)

. " ‘ &
nl(e) =1 !z(nz(ll(t))-nz(t)) . A'(t sl(t))

+ m—l N ) 6162 (!’5) e Hzo

-)d'

(A.2)

(A.3)

(A.4)

(A.S)

(A.6)




Note that Cj (tx)-O. Also

o - -‘ (] 2 i [ ] (] j‘l '
Dj () nl(t)rlbj (e) + Dj (t)a’ “2(t)Dj+1(t) + nlcz(rz) nz
f, (&) s P, (n, (s, (£))-n, &)y, N (€01 (ED)
T A e En BG,(B)" " e :
j'l'o-.':.l (Ao7)
. . = ' r-1
D_(t) = =h (E)F,D_(£) + D_(L)A' - f, (t-.)jg1 P4 P (®) * BiG, (B 8y
n, () FL(n. (s, (£))=n.(t)) A'(t-s, (t))
1 EOREN T e - 2 . 1
- ﬁlTl(t—” Hle (Fz) e Hze (a.8)
Then, for t>t
X
t F. (n, (8)=-n, (t)) F.(n,(s)=-n_(t))
et Sl 1 R b 2 ' A (t-8)
L(t) = f G,e 8 Gje H,e ds (A.9)
>
Thus
L(t) = G;D (t) (a.10)

where Dl(tx) is obtained from (A.7), (A.8), and for t>tx

. o ° [ ] j-
B, (&) = =7, (£)RID, (£) + D, ()A' = fi, (DD, (&) + HyG; (F)) 1n5 (A.11)

3 173 3 3
(3 ° ' ' ° % 1l =1
D_(t) = =R, (£)FID_(t) + D_(L)A' - A, (t) jzlpj_lbj(t) + BG, ()" THY

(A.u)




Case b: As in Case a, this case is the same as Case 2 up until time t:'
using equations (2.28)-(2.35) to provide us with initial conditions,

at t.on B, and C,. For t_ <t<t
time 3 i 3 3 =%

s_(t)

2 F.(n, (t)=n. (s)) F,(n,(t)=n_(s)) e
j :.(t)-f Hel ! 1 6182022 27 TGN (e
2
0
S (t) "
: i F. (n, (t)=n, (s)) F.(n,(s)=n.(t))
1'% 1 Whad - 2 ' A (t-g)
d: + / Hlo Glcz. Hze ds
sz(t)
t
F! M, (s)=n, (t)) F, (M, (s)-n, (t)) s
L f gt mate 22 WO e een,
2 2
s ® (A.13)
