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I. Introduction

The problem we consider in this paper is depicted in Figure 1.1. We

have an abj ect that traverses a specif Lad trajectory (n~ Ct) ‘~ 2 Ct) ) over a

planar sur face. Aboard this object is a dynamic system which is affected

by a random field f ~~~~ r%~ ) .  We would like to consider th. statistical des-

cription of the stat e z(t ) of the system in terms of the specified trajectory

and the statistical description of the random field. Problems of this

genera l type arise in app lications such as inertial navigation (1 ,2] where

f represents the •rr ors in our knowledge of the variations in gravity and X Ct )

consists of the errors in an inertia l itavigation system. Since th. inertial

system ’s accelerometers measure actual. acceleration plus gravi ty , an estimate

of gravity , from a gravity map of some sort , must be subtracted from the

acceler ometer outputs . Thus map errors directly drive the dynamics of the

navigation system .

In the next section we develop equations for the evolution of the

‘ovari ance of x Ct ) for a particular class of random fields . For the special

case of a straight inc trajecto ry that reverses on itself, we develop in

Section III a novel Markovian representation for the process x(t ) , and in

Section IV we use this representation , together with recent resu lts on the

rea l-tins updating of smoothed estimates , to solve an estimation problem.

II. Covariance Analysis for Motion Through a Two-Dimensional
Random Field

Let f(r ~ ,~~ 
) be a two-dimensiona l stationary Gaussian rand om field1 2 

.. ,, ~~~~ 1AF S G)
which for simplicity we 

~ ‘*9~ ~o be zero ~~~~ ~, ‘I~~ correlation matrix
I ~~~ O~ 

‘
~ 

. ~~ . 1 I’~d S

for this field is 
~I ut - i ”  ~~ .,... ~~~~~~ ~~~

Dibtt )1tU~ 
t - ’ ~

A. P. 1~~’ •‘
~ L~~~U ~~~
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— R(t ,a) (2. 1)

It is easily seen from (2. 1) that

R (t ,s) — R ’ (—t ,—s ) (2 .2 )

Let (p
1(t) ,fl2 (t)

) be a specified trajectory through the plane and

consider a dynamic system driven by the field along the tr ajecto ry

z (t) — Ax(t ) + f (n 1
(t ) ,~ 2 (t ) )  + w(t )  (2 .3 )

where w (t) is a zero mean white Gaussian process with

E(w (t) w ’ (t )]  Q .S(t —v ) (2.4 )

We ass~~e that the initial condition x(0) is zero mean and Gaussian and

that x (0) , w , and f are mutually independent . We would Lik, to determ ine
V the evolution of

P( t) E(x(t )x ’( t ) l  (2.5)

We wiLl put further restrictions on the field f that , as we will sac ,

lead to P Ct ) being specified by a finite set of matrix differential

equations . Specifica lly we will assi~~c that the covariance R is separa ble

R (t , t) — ~~ (t )R 2
(s) (2.6 )

where we sas~~~ that R1 and P.~ are square and that

R1(t) — Rj (—t ) R2 (s) — R (— s ) (2 .7 )

_ _ _ _ _  .-~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~V V ~~
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and

— K~s~~~c~ , t)O , 1 1.2 (2.S)

From (2.1), (2.6) and (2.7 )  we can also deducc that and R.2 co ute for

any values of their arg~~~nts. This model is the cantinuons-t ins a~aloq

of the model e~~mined by Attasi (3]. Specifically, the 2-D spectr~~ of f

is separable and rational .

As a first step in obtaining the desired equations for P Ct ) , define

Q(t,s) . R (~1
(t)—~1

(s) , n2 (t)—fl 2
(s)) (2 .9 )

Then , wr iting

x (t) • ektx(o) + f  ek(t
~~

) ( f ( n 1(T ,~~~ct ) )~~~(~ ) ] dt (2.10 )

we can obtain and e~~ression for P (t) from (2.5) . Differentiating we

obtain the basic equations

i(t) — AP (t) + P(t)A + L(t) + L’(t) (2.11)

L(t) • Q(t,r)eA (t
~~~dT (2.12 )

The problem then becomes one of determining a set of differential equations

for I. (t). Thi. calculation depends upon the nature of the trajectory .

There axe several cases to be e camined . For simplicity , we will ass~~~
throughout that fl1(O) — n2

(O)— O .

_ _ _  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Case 1 * This is the si~~i1eet case in which we don’t chang. quadrants

in which we’re heading. That i., if we choos. the northeast as the

direction of otion, we have the situation depicted in Figure 2. la wher e

n3(t) — n1(s) ~~0
Vt)s (2 . 3 3)

n3 (t) — n1(s) •~~O

Zn this case, using (2 .6 ) - ( 2 . S)  we find that (2.12 ) can be written as

L(t) J . Ct—a)40

~ 11111(t) 
(2.14)

Differentiating 13(t), we obtain

31(t ) • 1~1
(t)r

3
I
1
(t) + *1A ’ + G1H2G2

~ F1(fl ( t ) — fl  (a) ) F~~(n 2 ( t ) —n .~ (a))
+ ~2 (t) 

~f e 1 1 G1H 2F 2C -

0 (2 . 15)

Mats the F 2 factor in the middl. of the last term of (2.15) . This leads to

the following. Define

B~ (t) ~ e
F1 t )—n 1 ~~~ ~_ 1 F~ ( 2 (t _n

2 (c) ) 1~. (t— c) 40
0 (2.16)

_ _ _  _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— - •.
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We Iwow that there is an int.gsr r and coefficients P0 . . . . p~~1 such that

— Z p~F~ (2 17)
j-0

Then

L(t) — H133 (t)

B~~(t ) — n1(t)r1a~(t) + B~ (t)A’ + f~2
(t)B~~1

(t) + G1H2F~~
1G2

l$j <r-l (2.19 )

— ~1(t)p 1B Ct) + B (t )A ’ + ~2
(t) ZP~_ 1a~(t)

r—1 (2.20 )G1H212 G2

B~ (O) O , j—1,...,r (2.21)

Note that we can obtain analogous equations with the roles of F 1 and F2
reversed if we use the ccemutativity of Ct) and a2 Ct) . Thus in this

case we obtain a finite set of linear matrix differential equations for

L and the re fore for P. Note that if the tra jectory is a straight line

— i.e. ,j1(t).u , Ti
2 
(t)—8 -— then these equations are time-invariant and

are equivalent to one higher-dimensional Lyapunov equation for x and for the

state of a shap ing filt r for f along this Line.

Case 2: In this case , illustrated in Figure 2 .lb , we have a change of

quadrants from northeast to southeast . Clearly the following analysis also

holds for any turn from one quadrant into an adjacent one. Mathematically , 

~~~~~~~~~~~~~~~ V V V~~~~~~~~~~ V~ - - =~~~~~~~~~~-~~~~~~~~~~~ 
V
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— n1(s) > 0 t>s

n2 (t) — n2
(s) > 0 ecs

0
(t) (2.22)

~2(t) - n2
(s) < 0 s’s0(t)

where Ct) is defined in the figure. Here t1 is the time at which our

turn takes us into another quadrant in direction , and t2 is the tins at

which s0(t)—0.

For t<t~, the analysis of this case is identical to that for Case 1.

Thus , consider t1<t<t2 and let us break up the integra l expression for

L(t) :

L(t) — f i l l  2 2 2 A  (t
~
s)ds

+ •I
t F ~ (t)-~ Cs~ F ’ Cn (s)-n Ct))

s0 (t ) (2.23)

where we have used the fact that a2 (fl2(t)—n 2(5)) — R ( f l 2 (s ) — f l 2 ( t ) ) .  In

dif ferentiating (2.23 ) we will need to calculate i0(t). This can be done

as fellows. By definition

fl2 (s0 Ct) ) a ~2 (t) (2.24 )

Therefore

~~ (s0 Ct ) )~ 0 (t) — f~2 (t) (2.25 )
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or
n (t)

s0 (t) — 
2 (2.26)

fl2 (s0 (t))

Note that if ~ (s0 ( t ) ) — Q , as it is in Figure 2.2 , we wil l have to evaluate

higher derivatives. This causes no conceptual difficulty but it simply

complicates the d.vslopeent. Therefore we will assuse for simplicity that

there are no inflection points in the trajectory over the interval (0 ,t1).

Let

B~ (t) — 10

(t) 
F
l

(fl
l
(t)

~ nl
(s))

j...l
F
2 (n 2

(t)
~ n2

(s))
A

s
(t ,)

(2.27)

Note that if we define (t) —t for t<t
1~ then is precisely the quantity

in equation (2. 16) and thus the initia l condi tion at time t
1 

for B~ in

(2.27 ) is B
~ 

Ct 1) calculated from (2 .19)— (2.2 l ) . If we now differentiate

(2.27 ) and use (2.17) we find

• ~1Ct)F1B~(t) + B~ (t )A ’ + f~2 (t )B~~1(t)

F (F) t t )—q (s Ct))] 
— 

A’ (t— s Ct ) )

fl2 (s0 (t) ) 1 2 2

(2.28)

~r (t ) a fl1(t )F 1B Ct ) + B (t)A ’ + ~ 2
(t) 

j~]. 
P~~1B~ (t)

________ 

F1 (fl 1 ( t )— fl 1(a 0 ( t ) ) ]  A’ (t— s0 (t ) )
+ 

~2
( (t)) e G1H2F2 G e

(2.29 )

LA 
~~~~~~~~~~~~~~ -
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Note that

- (2.30)

since s0 (t2 )— O .

Now let

c~ Ct) — f  llCt )_n
1(s) )

G~~ , 
(F~)~~~e

2 ~~ ~~2 
(t))

H~e
Aa (t_s)

ds 

- 

-

s
0
(t) (2.31)

Then

— ii 1(t)F1c~ (t) + C4 (t)A’ - 1~2
(t)C~~1(t)

~i Ct) F (F) (t)—fl Cs (t))) A’ (t—s Ct))
+ G1G2 (F2

) 1B2 — 
fl2 (s0

(t)) C 
1 0 G G ( F ) H e 0

(2.32)

— Tii (t )F1Cr (t) + Cr (t)A ’ — ~2 (t) 
~~ P~_ 1c~ ct) +

T’II Ct) F (n1(t )—n (s (t))) A’ (t—s Ct ) )
— 

~2 (s0 (t ) )  e 1 1 0 G1G C F
)n l H2e 

0 (2.33)

C~ (t1
)_0 , j —1,...r (2.34)

Then

L( t) — H1(31(t) + C1
(t) ]  t1<t<t2 (2.35)

Note that in the case of a piecewise linear trajectory, such as

_  

1 •
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~1
(t) ~1]~ t<t1 

(2.36 )
a2 t>t1

a 1 
(2.37)( 8 2 t>t 3

~0 (t ) (2 .3 8)

which is negative her, since 6i>o . ~2 <0

We now need only piece together the situation for t>t2 . Zn this case

— I ’ Mte t Q
3C 3 e

2 2 R e ~
’Ct_5 )ds (2.39)

Thus in th is region

L.(t) — H
1C1(t) t>t

2 (2.40)

where C1(t 2 ) is obtai ned from C2.32)— (2.34), and , for t>t 2

— ~1(t)r 1c~ (t) + C 1
(t )& ’ - n2 (t )C~~1(t )

+

j — l , . . .r — l (2 .41)

_ _  ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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C (t) — ~1
(t)F1C Ct) + C (t)A ’ — ~)2

(t) 
~jal

C ~(F~)
r
~~H~ (2 42)

~~~1 2 2  2

Thus in Case 2 , over the time interval (0, t1] we have one set of

equations to calculate L; over the interval (t
1 , 
t2
], white the 

~2 
coordinate

of the trajectory retraces its path over (0 ,t11, we have two sets of equations ,

and for t>t2 we are back to a single equation which is essentially the

equation obtained in Case 1, except here we have a southeasterly traj ectory

as opposed to the northeasterly trajectory of Figure 2 .].a. It should be

clear that we can do this for arbitrary trajectories . Only during the

“transient ” of a turn do we pick up additional equations . In the Appendix

we describe one scamwhat more complex case in which both and 112 coordinates

simultaneously retrace previous values (this does not mean a trajectory that

retraces itself — see Figure A.l) . In that case , there are two additional

sets of equations . From the cases considered in this section and in the

Appendix it is not dif ficult to see that at any time we must include m additional

sets of equations , where a is the total number of previous times in the

trajectory that either the or coordinate of the trajectory equals the

corresponding coordinate at the present time. If A is a stable matrix, then

• the effect on L Ct) (and hence P (t)) of a trajectory turn far in the past becomes

insignificant. This can be seen in (2.28) where the driving term goes to zero

exponentially as t—s0 Ct) -
~~~~~ (the matrices F

1 
and F 2 are stable since f is a

stationary process with finite covariance) . Thus in practice we need only

V~ j

-~~~~~~~~~~~~~~~~~~~~~__  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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keep track of turns within a certain number of tins constants of A and

correlation distances of the field (inverses of the magnitudes of the

eigenvalues of F~ and

III . Mark ov-’rype Models for Over-and-Back Traject ories

In the preceding section and in the appendix we perf ormed some

relatively straightforward calculations to obtain sets of differential.

equations for the propagation of the covariance of the state of a dynamic

system moving through a random field. The primary contribution of that

analysis is to provide some understanding of how the geometry of the tra-

j ectory affects the state covariance. While this is of some use, there is

still a great deal left to understand about the fundamental way in which

the uncerta inty in the field affects the stat istics of the process z Ct) .

In this section we will develop a Markov-like description for the special

case of over-and—back trajectories . This not only provides us with further

insight into the evolut ion of xC t) but it also forms a basis for solvir-

estimation problems of this type, a topic which is considered in the next

section .

The case that we will examine in this and in the next section involves

a trajectory consisting of a straight line path followed by a reversal of

direction and a return trajectory over the same path . We also wilt assume

• a constant velocity (normalized to 1) over both segments of the path , but

this assumptions is made only for clarity in our exposition as is our

_ _ _ _ _  _ _ _ _ _ _ _
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assumption that the dynamic system is time-invariant.

It should be clear from our analysis as to how our results can be modified

to account for nonuniform velocity and time-varying sys tens.

Consider the model

~ (t) — Ax (t) + u (t) + v1(t) , 0’(t<2T (3.1)

where w1 is a white noise process with

Etw1
Ct)w~(t)) — s16(t— r) (3.2)

and where

fCt) O<t<T
u (t) — ( 3 • 3 )

(f  (2T—t ) T(t<2T

Here f is a one—dimr~sicna1. process (representing the field along the

track, and we assume the f can be modeled as the output of a finite-

dimensional shap ing filter

~(t) — F~(t) + w2 (t) O <t<T (3.4)

f (t) — H~(t) (3.5)

where w2 is white noise , with

E(w 2 (t)w~ ( r) ]  — S26 (t —r ) ( 3.6)

We assume that all of the processes above are zero mean and Gaussian and

that x(O) , w1, ~C0), and w 2 are mutually independent .



For O<t<? we have the same situation as in Case 1 considered in the

preceding section. Over this time interval, while we are going forward,

the joint proc ess

I~t 1
z2 (t) — I (3.7)1x(t )J

is Markovian , with th. following state equation

I, o~ f W (t) 12 (3 8’x2 (t) — x2 (t) + • ‘

H A w1(t)

- 
O( t<T (forward)

The meaning of the notation (forward) in (3.8) will become clear shortly.

Thus the cov riance ~ Ct ) of z2 Ct) can be obtained from the differential

equation

0 1 IF’ 
~~
‘1 1S2 ° 1

~ Ct) I ~ (t) + ~
(t) I 1+ I I (3.9)

2 L H A j  2 L 0 A’J Lo s1J

As we saw in Case 1, we needed one additional set of equations in order to

calculata the covariance af x It). Hera we see that that set of equations es-

sentially comes about by am~menting th* state x (t) with a shaping filter

model for the field in order to obtain a proces s that is Markovian. Once

that is done , as in (3.8), we can use standard results to write down the

covarianc. equation (3.9).
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The interesting part of this ana lysis occurs over the tim. interval

?<tC2T, m c .  here we are reversing over the same sample path of ~~. Again

our goal is to aug~~nt x Ct) with something in order to obtain a Maxkov model

over this time interval . In order to do this we clearly must consider a

model for F~ that runs in reverse. Using the res ults in (4] we can write a

reverse time model for the augmented process z2 Ct) :

Iv o l  Is o 1 —l 1~2 (t)
—~2 (t) — — + 2 

~ (t) x2 Ct) —
~L~ 

a]  Lo ~~ 
2 L~

1
1Ct)

0<t<T (backward) (3.10 )

Her e (
~~ Ct) , Ct))  is a white noise process backward in time independent of

z CT) • (~~(T),x CT)).* The processes 
~~ 

hay, the same statistics as the

wi. Mote one interesting aspect of this model. If we examine (3.8 )  or

(3.4) we see that ~ is a Markov process by itself forward in time -— i.e.
it is decoupled from x(t). However this is not true in the reverse-tim.

model (3.10 ) since is not block diagonal. Th. reason is that going

forward in time the process ~ drives th . process x. Then , since the reverse

process is a Markovian representation of given its future, we should

expect to see coupling, since the present valu, of ~ is certain ly not independent

• ofthe future of x.

* The use of white noise here makes our derivation somewhat informal . However
• it is conceptually correct. To be precise we should replace w~ by dB~ 

where
the ar e Brownian motion process. forward in time • Then is replac ed by

which is a Brownian motion backward in time , independent of CT) -
CT) — (~

‘ CT) .xj(T)). This process is obtained by subtracting from d81 that
part which is predictable given the future of x2. See (41 for details .

_ _ _ _ _ _  _ _
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If we now let

z3 (t) • x
2
(2?—t), n1(t) — ~(2T~t) (3.11)

we obtain a model forward in time over the time interval T(t~2T:

fv 01 [s2 0 -1 In a Ct) 1
* Ct) — — I 1+ I Ct) x (t) +j

L~ 
aJ 1° ~ 2 Ln 3. t J

T(t <2T Cforward) (3.12 )

The initial condition for this process is x3 CT) — x2 CT) , with covariance

ZCt .

Consider now the following augmented process over the time interval

T<t C2T:

1x3 Ct) 1 1 ~C2T-t) 1
x4 (t) — I — x(2T —t ) I (3.13)Lx (t) J L~c~ J

Then, using (3.1), (3.3), (3.5), and (3.11) we obtain a Markovian re~re—

sentation for the behavior of this augmented state

f —I ( °) + (S2 ;~) Z
’
Ct)( 01 ffl2~~

X4 
•
~~ I z 4 Ct ) ~1 ~l

• 
• I.. (0, if) J \w1(t) (3.14)

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - — —~_ _ _
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where

r~2
(t) 1  ~2 0 0

~ 
n3.(t) 1[fl’ (t)~~ ’ (t) w ’ (t) )] 

0 S3. 0 
~S( t—r )

w1Ct )
J 

0 0

Basically (3.14) describes a method, startin g at t—T , for simultaneously

generating the future Ct>’!) of x(t ) and its past (t(T). In this fashion

we can take into account the fact that the trajectory has reversed its

direction.

We can use (3.14) as th. basis for determining the covariance for x Ct) .

Specifically , define N(t ) as

_~~[F °1~1~2 0 1 ~~~(t)~ 0

~L’ AJ L ° S.j 2 ~N(t) — (3.15 )

(0, 11) A

Then , letting 
~ 

Ct ) denote the covariance of x4 (t ) , we obtai n

0 0

~ Ct) a N(t )~ Ct) + 
~ 

(t )N ’ (t ) + 0 S
1 

0 (3.16 )
4 4 4

0 0 S1

To obtain the initial condition for this equation, note that

1~(T) 1
x4(T) — Ix (T) I (3.3.7)

[x(T) J 

~~~~~~~~~~~~~~~~~~~~~~~
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Thus , if we write

(~~~
T

)12\
CT) — (3.18 )k (;CT )~ (~2 ~~ )22)

/(~2 T )U  (~2 T) 12  (~2
C
~~)12\

14
(T) 

_ ((Z CT)) 1 (~~~T )  (Z -c T))

) 

(3. 19)

1~~
’!
~)12 (z2 T))22 (z2~~~~)22

Thus we see that , as in Case II, a reversal of motion leads .to an ad—

ditional equation. Also, one can regard the over-and-back e~amp1e as a

degenerate form of Cases b and c which are e~~~{’~ed in the Appendix

(referring to the notation in the Appendix , in the over-and-back case

Ct) — s2 (t) for all t and t — t ) .  Thus the straightforward analysis

of the Appendix will lead to equivalent equations in this case .

Note that based on the understanding gained in this and in the preceding

section , we can see what will happ en for more general over—and—back tra-

jectories . For example , as illustrated in Figure 4. la, consider the cas. in

which we continue the process for t>2T without any further change in course •

It is not difficulty to show that for t>2T we can once again obtain a

Markovian represe ntation for the joint process

I~ tx2 (t) — LxCt )

- . - ii



• - — 20a—

S

4

t=2T~ -
I ~~~~~~

t~o

( b )

FIGIJPE 4.1: Two Over—and-Bask Trajectories.

- -~~~~~~~~~~ ~~~ --___  _______
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where the initial covariance ~ (2’!) f or this process at time 2’! is obtained

f ro. the solution to (3.16)

(Z4 2? )3.3. (Z4 21) 1
C2T) a 

(Z C2T )3.~ (Z4 2 T ) 3 3  
(3.20)

In this case the time period (T ,2T] represents a transient due to the turn ,

whose effective will become negligibl, if A is stab le. In fact in this

case as t~~ , * will achieve the same steady—state covarianc. in thi s situation

as one would from a trajectory that mov s to the left for t>O without 5~~
turns. Similarly , if we consider a second course r v e  real as in Figur e 4. Ib ,

we must obtain a revers e time model for x~ , reverse time once again to

obtain an equation for x5
(t ) — x4

(4T-t) and augment this with x(t )  to obtain

a Markovian model over the time period 2T’tt<3T. Thus in this case w obtain

another additional equation for the covariance evolution.

IV. Over-and-Back Estimation

In this section ws consider the problem of estimating the process

described by ( 3 . l ) — C 3 . 6 )  given measurements . Specifical ly , suppose w assuse L
that the rando. field has been mapped by a previous survey

y1Ct) — C1~ Ct) + v1(t) , 0<t(T ( 4 . 3 . )

I

- 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where E (v1(t ) v1( t ) ] — R~tS (t—t) , so that we have th. smoothed estimates

~~Ct) — E (~(t) I y1(r ) , 0<r<T] (4.2)

Consider now a set of real-ti me measurements

aCt ) — C2x( t) + v2 Ct) , 0ct<2T (4.3)

where E(v2 Ct )v 2 (t ) 1 — R~ 5 (t-t) and v1 and v2 are independ ent . We wish to

consider the problem of using the previously mapped information (4.2), —

together with the new data (4.3) to estimate x Ct) .

As in the preceding section , this problem is best analyzed by considering

the two intervals (0.’!] and (T ,2T] separately . Thus , let

y2
(t) a aCt), t€(0,T], y3(t) a a Ct ) , te (T ,2T3 (4.4)

The problem over the first time interval is a real-time smoothing problem ,

that is , we have smoothed estimates for part of the state (here the ~ part

of x2 as given in (3.7) and (3.8)) from previously taken data , and wish to

incorporate these estimates into an overall state estimate given new real-

tim. data. A real-tim. smoothing problem of this type was solved in (51 .

In order to apply that solution here , define

~2(tIT ,t) — E(x2
(t)~y3.(r), 0<r<T ; y

2
(~), 0<r<t 3 (4.5)

Then

1~ (t)~
~2(tIT ,t) — P2Ct Ct

f
(t) + P;

1
Ct)%ct)I +[ ~ ] (4.6)

—

~

- .---— - 
—

~~~~~
— - -  - - -
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where

— Ff
Ct)q~Ct) + 

[
~~~ 

~ 

+ P~ (t) 
[:~~~l]Y

2Ct (4.7)

qf (0)— 0 (4.8)

—q.,(t) — Fb(t)%(t) + (PbCt) Z
1
(t)—I) [ ~~ (4.9)

%CT) O (4.10)

where 
~2 
(t) is the unconditional covariance of x2 Ce), as calculated from

(3.9 ) . Th. r.aa-i~n {ng quantities in ( 4 .5 ) — (4.10) are deterministic and

axe determined from the .quations

[F o l  [F’ H’ S 0
P Ct) — I I Pf (t) + Pf(t)I + 

2

~H A J  1. 0 A’ O S 1
[• C1R~1C 0 ]

— Pf
Ct) 

~ —l 
IP f (t) (4.11)

I_. o C2R2 C2J

P (0) — ~ (0) (4]j)
f 2

~fr o l  F~2 ° 1 — i
— P Ct ) — — 

~ I 1+ 1 I Z Ct) ~, p (t )
b ( 1.~ A ]  10 s3.

]2 p b

- Pb Ct) 
[ H’ 

+ Z
1
(t) [ 2  

0 P + [s
2 0

10 A’ 2 10 s~]~ 10 s1

— Pb (t ) [ci~~
lci 

: ] PbCt) (4.13)

- - ~~~~~~~~~_ :~~~~~~ _ _ _  
~~~~~~~

- - - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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p (‘r) — ~ CT) (4.14)

p~~(t) - :;
1(t) + P;

3.(t) - Z
1

(t) (4.15)

IF ol IC ’R 1C 0
Ff Ct) —

~~ ~~

— P~ (t )~ (4.16)
L

0 A j  L o  c i ç1c2

Fb(t) - -[: :] {:2 :~] 
~~~ - Pb Ct) [c

~c
1C1 : ] (4.17)

Let us briefly interpret these equations. For a detailed discussion,
we refer the reader to (5]. Here Pf(t) is the estimation error covariance

for x2(t) given y1(t) and y2(t), t<t -— i.e. the causal estimate of x2 Ct)

using only causal information from the previously collected data y3. and the

new data y2 . Similarly , Pb (t )  is the estimation error for a reverse—time

filter which estimates x2 (t) given only y1Ct ), t<r <T .  The set of information

used in these two estimates comprise all the information used in computing

~2 ( t I T , t ) .  The forward filter (resulting in an es~-imate with covar iance

Pf
(t ) ) is the usual Kalman filter and has the form

ill

z Ct) — F (t)~ Ct) + P (t)1 C’a~~ 0 y (C) 1f f f i 1 I (4.18)

• L ~ c;R;
1 y2 (t ) j

Similarly the backward Kalman filte r , wi th estimation error covari ance

Ct), has the form

___________________ 
~~~~~~ --~~~~~-~~~~~ -- 



-25-

C?~~ 0 y 3.
(t )

% (t ) — Fb (t ) % (t) + Pb (t ) (4 19 )
0 0 0

The estimation error covariance for x2 (t lT t) is P2 Ct) • and the

expression for it in (4.15) is taken from Wall (6] . In fact, using the

smoothing equations in (61 and the result of ( 5 3 ,  ~2(t~t,T) can be written

as

A A —l A

x2 (t I T , t) — P 2 (t) (P f Ct) xf Ct ) + 
~b 

(t)%(t)] (4.20)

The fact that (t ) is subtracted on the right—hand side of (4.15 ) reflects

the fact that the estimates *f Ct) and ~~ (t ) of the state are correlated, as

they both use th. a priori information which has an uncertainty specified by

the unconditional statisti cs of *2 (t ) .

Finally , (4.6 )— (4. 1O ) are obtained from (4 . 18) - C 4. l9 ) by scme isanipula—

tiorm aimed at replacing y 3. (t ) in (4 .18) ,  (4.19 ) by th. previousl y d.tø rm ined

map 
~ 

(t ) . The details of these calcula tion s in a somewhat more general

context can be found in 15]. Note that only qf Ct) is driven by the new , real-

time data y2 Ct ) , while ~~ (t ) is a functional only of the smoothed map C5 (t)~ ind

in princip al can b pr.coaput.d . In prac tice , what this means is that onc

the one—dimensional trajecto ry has been char t ed , we can integrate (4.9)

backward along this traj ectory store the result , and combine it with the

stored map F~5(t) and qf Ct) through (4.6) in order to determin e ~2 (t I t ,t ) .

Cons ider now the estimation problem over the time interval (‘!,2T] .

This is ~~~~~ a real-time smoothing problem, thanks to our augmented 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A
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Markovian model (3.13) , (3.14) . Specifica lly using the data (y 1(T) , y2 (t ) }

we have computed

~3
(t) — $(x3 (t)~y1(r) ,y2 (r), O<t<T]

— E(x2 (2T_t)I yl (r ) , y2(T), 0<r<T ] — ~2
(2T—t) (4 .21)

The quantity that we wish to compute is

~4 Ct I T ,T ,t) — £(x 4 (t ) 1y 1(T) , 0<r<T , y2 (t ) , O<r < T , y3 (t ) , T<T <t ]

— E(x 4 (t) 1y 1(T) , O < r<T , z ( r ) , 0<r<t] (4.22 )

Using the real-time smoothing formulas of (5] , we can express

~4 (t I T ,T,t) in tsrm. of and y
3 for t€(T,2T]. However , there is one

complication caused by the fact that 
~ 

(T) is not invertible (see (3.19)) .

This is due to the fact that x(2 T— t )— x (t )  for C—’!. In order to make the

necessary modifications , it is convenient to change basis. Let

fx3
t) 1 1~~

2T_t) 1 1’ 0 01
p(t) —

~ J —
~~ 
x(2T—t) —

~ 
0 I 0 x4 Ct ) (4 .23 )

Lx (t)_ *(2T_t)J [xCt) (2T-t) J [0 -
~~~

(see (3.18)). Also, define

T( t) — 
° 

] 
+ [5

2 0 

] 
f
1~~~ 

— 
[T11Ct) T12 (t) 

]- 
L~ 

A 0 S1 ~ T21Ct) T22
(t)  (4.24 )
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Then , from (3.14) , (4 .23) , and (4.24)

[ T(t) 0 1  fl2(t)
p (t) — 

[_ T 21 t . ~~A-T22
(t ) )  

A ]  
+ 

[n
Ct) 

]
w 1(t) ~1

(t)

D (t )p (t )  + 8(t) (4.25)

and the unconditional covariance , V Ct ) ,  of p Ct) is given by

V( t ) — 

~ : : ~~(t) 
~~ : -~~~ (4.26)

0 — I  I 0 0  1

Thus , from (3.1.9 )

(!2 CT 

~ 
(1 (T) )12

V(T) — 

:

CT) 

~ 
:~

‘!

~ 

~22 : (4.27 )

Further, 1.t us ass~~e that x(t ) as defined in (3.1) is controllable from

the noise w1(t), i.e. that (A ,S1
) is a completely controllable pair. In

this case it is not difficult to see that for ~~~ t>T , V (t ) ) 0. Then ,

defining 

—~~~ -—.- -.-: 
______________ - —~~~~- ~~~~~~~~ — —- -~~~~~— --



~(tIT,T,t) — ~ 
z4(tIT ,Tt) (4.28)

0 —I I

we can adapt the results in (5] to obtain

~(tIT,T,t) — E(t)[14(t)r
f

(t) + M
~

(t)rb (t)] +[~~s(t)] (4 29)

rf (t) — Gf
(t)r f (t) + 

[_ T 2i Ct~~~~A T 22 Ct~~
] 

~3s (t) +Mf
(
t)[ :~R;1JY

3Ct)

(4.30 )

rf (T) .0 (4.31)

— Gb (t)rb (t )+(Zlb (t)vt (t )_ I)  0

C-? (t) ,a+A—T Ct) )21 22 (4.32)

rb
(2 1r).o (4.33)

where Mf . Nb. E, Gf . and are given by

14
f

(t) — D(t) 14f (t ) + Mf
(t)D ’ Ct) + S2 0

0

• 0 —S
1 

2S
1

• Cj Rj C1 0 0

o 2c;a
1c2 c;içtc2 M

f(t)

o c;R~~c2 c;R~~c2

(4.34) .

~~~~~~~~
-- - -

~~~~~~~~~~~~~~~~~~ - ----~~~~
---

~~~~- - - - - -- - li.i_ 
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Mf
(T) — V(T) (4.35)

— _ {DCt +
[:2 ~~ 

:~] 
V
t
(t)1 Nb (t)

— 

0 
~
S
i

2S
i

~ 
[52 . 0 o l  [~ 2 0

Nb (t) D (t )+V (t)1 0 S
i 

_s
l~~~io  s1 —s

1

Lo —Si. 
2S1J Lc —Si 2S]~

fc~ç1c1 0 0

~ I 0 C’R ’C 0
i 2 2 (4.3 6)
L o  o 0

— V4(2T) (4.37)

EtCt) — 4(t) + M~Ct) 
- vt (t) (4.38)

Gf Ct) — D (C) — Mf Ct ) Cja1
1c1 0 0

o 2c;R;1c2 2a 2 (4.39 )

0 C R 2
1C2 C?2

1
C2

• %Ct) — -0(t) 
[~

2 
0 0 

1 V
t
(t)_Nb (t) [CI.RIJ~ Ci 

0 0 1
10 S

i
_S

i 1  I 0 C R ~~C2 0

10 _S
1~~~1J 0 i

(4.40)

k _ 
_ _  _ _ _  _ _  

-
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The various quantities here play analogous roles to those played by the

corrssp~1Il&1ng quantities in (4.6 )— (4.17) . For example, ECt ) is the error

covariance associated with the estimate a Ct IT,?, t). The only difference

in this case is the use of pseudo- inverses for Mf~ Nb ’ v~ and E. These

all represent covariances of p, and thus from (4.23) at time T they are all

singular . Mowever because of our noise-controllabi lity assumption , all of

these quantities are positive definite for t>T. Furthermore , it is not

difficult to check that the estimate p at time T, as defined by (4.29) does

have its last block-component equal to zero.

Finally , let us comesnt on the issue of computing X~~~ Ct) or , equivalently

X2s Ct) , as defined in (4.2 1) . Recall that what we ‘ alculated over the

interval (0 ,?] was the real-tim. smoothing estimate x2 CC I T ,t ) ,  as defined

by (4.5), and using results f rom (5] we displayed an algorithm for performing

this calculation in ter m. of the new data y2 and the previous smoothed estimate

traj ectory ~~~~~ . The problem we. wish to solve now is the calculation of the

smoothed estimate Ct) using 
~2 and F~~. This is a problem in the updating of

smoothed estimates , which is also examined in ( 5 3 .  Using those results , we
find that

- p
25 (t) [P;

li (t)qf (t) + p;1CC)c(t) I + [~:
(ti (4.41)

where Pf .  and q~ are as bsfore , and

—l ° A 
0

— F~ (t)q~(t) + (P
~ Ct)I Ct)_I][~ 

]
~.t + P (t ) [ i ] Y 2 Ct)

(4.42)

(4 .43)

- - ~~
--

~~~ - - - - - - --—~ -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~---- --~~~~ - -~ _ _ _
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and 
~r’ ~2s and Fr are defined by

r
(t) _ {(: °) + [ :~ 

S1
I Z 2

1
t~~~

p
r t)

~~‘ ~~‘ — l 
[s2 011 [~ 

o 1
a’ F 12 

Ct) [ s1j~ [o s ]

1— P (t) 
lP (t) (4.44)

L 0 c~R;
lc2

p CT ) — 

~ 
Ct) (4.45)r 2

— P~’Ct) + P;
1(t) — 1 (t) (4.46 )

F (t) — — 
[F 

0 

][5

2 

~Z~
’
(t) — P ( t ) 

~~~~~~~~ 0 1I R A  0 S
1 

2 I 0 C2R2 C2

(4.47)

Comparing (4.4 1)—(4 .47) to (4 .6 )—(4. l7)  we see that the only change in

computing the full smoothed estimate Ct) versus the real-t ime smoothed

estimate 
~2 (t IT ,t) is the incorporation of the new data (y2 ) into the

reverse-tim. processor (4.42) ,  (4.47) and into the corresponding reverse-

time error covariance P and the overall smoothed error covari ance P25 .

~ - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~-— - -—-~~ 
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V. Conclusions

In this paper vs have ~~~~ ned th . effect of a random field on a

linear dynamic system moving through the field . We have developed a

methodology for calculating the covariance of the state of the dynamic

system along any trajectory . Th. evolution of this covari ance is clearly

dependent upon the nature of the trajectory , and our results indicate

explicitly how this dependence is reflected in the differential equations

that must be solved to dete rmine the covariance.

In the case of one-dimensiona l motion we have gone several steps farther

in our understanding and analysis of over-and-back tra jectories. Specifically,

with the use of the technique for constructing backwards Markovian models

we have developed Mar kov models over each separate undirectional segment

of the trajectory . The dimension of these models decreases when the

trajectory goes beyond the region covered in previous segments and increa ses

when there is a turn. Using this model and results on real -time smoothing

we then were able to solve an over-and-back estimation problem.

Several directions for further work suggest themselves. The first is

th. detailed investigation of the estimation problem discussed in Section

IV. While we have described the solution to this problems we have not

exploited its structure as fully as is possible, eithet in terms of obtaining

efficient on—line solutions or of gaining insight. For example, it is clear

that the measur ements of the state x of the dynamic system provide information

about the field F~. How is this information incorporated in the solution

of the real-time smoothing problem? This is potentially important in

_ _ _  
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problems in which we wish to use the dynamic system to estimate the random

field. Gravity mapping using inertial instruments is a potential application.

A more significant extension of our work is the developeent of

Markov-type models and the corresponding estimation algorithms for more

general 2-0 trajectories. This will involve a significant extension of the

notion of a backwards Markov process.

Finally , an important generalization of the problems considered in

this paper are to systems moving along traj ectories which are random

themselves. Specifically , referring to our general model, suppose that

Ct) ,ri2 
(t) ) are in fact components of x. This is in fact a more realistic

model in some applications. While our results - do not address this problem,

they may be of value in the case in which the trajectory is only slightly

disturbed from some nominal. In that situation our analysis might form

the basis for a perturbation analysis of the random trajectory problem.

~

_ -

~ 

r rt~
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APPEEDIX

We consider one final cas. of the traje ctory-covaziance problem of

Section II. In contrast to Case 2 in which the turn takes us into a

neighboring quadrant, we now consider a trajectory that has a sharp angle

and takes us into the opposite quadrant — i.e. northeast (NE ) to south-

west (SW) . Three cases of this will be considered , and these are 
•

illustrated in Figure A.].. As can be seen, these cases represent suc-

cessively sharper turns • In each, t1 is the time when the direction of

the dire ction of the trajectory changes from NE to SE, and t3 is the time

we change from SE to SW. Also t denotes the time at which the trajectory

crosses the fl2 axis in the southwesterly direction . This corresponds to the

time at which the Ti1 coordinate of the trajectory has evolved from 0 to its

maximum value Ti. Ct ) and has decreased back to zero. The time t is
1 . 3

defined in an analogous fashion.

The distinguishing characteristics of these three trajectories are

as follows : in trajectory (a) only one of the coordinates at a time

retraces past values -— first Ti2 Ct) and then fl1 Ct) ; in trajectories (b) and

Cc) both coordinates retrace past values over a c~~~on portion of the

trajectory ; in case (b) Ti2 Ct) completes its retracing before n1 Ct), while

exactly the opposite is true in case Cc) . As we mentioned in Section II ,

we will. se. that at any time we get one sat of additional equations for

each component that is retracing past values . Thus in case (a) , we will

have one additional set of equations beginning at t
1 

and ending at ~~

_ _ _ _  - ~~~~- - - - 
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A differe nt single set of equations b gins at t 3 and end at t~ . In case

(b) we have an add itional set of equations beginning at t
1, a second set

is added at time t 3 , the first set ends at tx,, leaving us with the second

set which ends at t~ . In case Cc) the only differences are that there is

a change in the equati ons at time t~ , and also the second set of equations

ends first (t
~ 
< t). This verbal description , together with the following

analy sis, should make clear the approach that can be taken in analyzing a

general trajectory .

Case a: Referring to Figure 2. lb and Figure A. la , we see that the present

case is identical to Case 2 considered in Section II up to time t
3
. That

is , for 0<t<t1 we use the equations of Case 1, with L(t) — H
181(t) (see

(2. 18)— ( 2.2].)) .  For t1<t<t 2 , L ( t) — M1(B1(t) + C1(t )]  (equations (2.28)—

(2.3 5 ) ) ,  while for t~~t<t~. L (t ) — H1C1(t) ((2.40)-(2.42)). For t
~~
t<t

x

— ri1(s)> 0 for 0<s<s1
(t)

— fl1(s) < 0 for s1(t)<s<t (A.])

— ~2 (s)~ , 0 for 0<s<t

Comparing (A.]) to (2.22 ) we see that this is quite similar to Case 2,

except hers we are turning from SE to SW. Thus , in analogy with Case 2

we can write

_ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~--~~~~~~~~~~~~~~~ -—
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s Ct)

L(t) — H1e 2 1 1 G1G e 2 2 2 H e ~ 
(t

~
s) ds

q/ •

t 

G , e u l M G e 2 2 A e A ( t 5) ds
s (t)

1.
or 

L(t) — H1C1(t) + G~D1Ct) ~~~ 
(A .3)

where

C~(t3
) — values calculated using (2 .40)— (2 .42 )

(A.4)
D~~(t 3

) — 0

and

. . 4

C~ (t) — n1.
(t)v

1C~~(t) + C
3
Ct)A’ — Ti2 (t)C~~1(t)

i~ Ct) !‘(fl Cs (t))—fl (t)) A Ct—s Ct))
+ 

1 C ~~~~~~~~ 2 2 1. 2 H ’s 1
f~1(s1.Ct ) ) 1. 2 2 2

CA.5)

r
- I ~r (t) — ~l1

(t)p’
1

C (t) + C (t)h’ — 

~i2Ct) 
~~~ 

P~,.1C~Ct)

4 fl Ct) “(Ti  (5 (t))—~ Ct)) A’ Ct s Ct ) )
- 

+ fI (s (t) ) G1G (F~)~~~ e 
2 2 1 2 1 (A.6) 

_ j
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Note that C
~
(t
~
)mO. Also

— _1
~11
(t)r~D~(t) + D~ (t )A~ — ~l2(t)D~~1Ct) +

________ • ~~~~~— 

fl1(s1
(t) ) B1G2(F2) e 2

(A. 7)

— _f
~1

(t)FiDr (t) + Dr
(t)A ’ — f~2 (t)~~ Pj ..iDr Ct) +

_______  ~ 
F~ (fl2

(s
1
(t))—fl

2
(t)) A’ Ct—51

(t) )
— f~1(s1(t) ) H~G~ (F~ )~~ e H~e (A.8)

Then , for t>t— x

t F’(fl (s)—y~ Ct) ) F ’ Cii2 (s)—n Ct ))
L(t ) — f  G~e ~ 

l H.jG e 2 2 H~e ’ (t
~
s) ds (A.9)

0~

Thus

L(t) — G~D~ (t) (A. l0)

where Di(t
~

) is obtained from (A. 7) ,  (A.8) , and for t)t

• 
Ct) — -fl

1 
Ce) F~D~ (C) + D~ (C) A ’ — ~~~ CC) + Hj G (7;) ~~1H ! (A. U)

• ~r
(t) — _fl

i(t)FjDr
(t) + Dr (t )A ’ — i%2(t) ~~P~..1D~(t) + jG (F )~~

1
H~

- (A.l2)

1;

L. _ 
_ _
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Case bz As in Case a , th is case is the same as Case 2 up ~mtil time C3,
using equations (2 .28)-(2 .35) to provide us with initia l, conditi ons ,
at time t o n S  a n d C .  For t <t<t

L(t) j2 

Ct) 
:‘l 

c~1 (t )_ fl
1(I ))

Gili2e
F2 (flu (t )— ~2 G2s

A (t
~

s) ds

+ 

s1(t) 

Hle h u i G G e
F 2 (t fl

a , A ~

52 (t)

+ I. Gje h h h
HjG e 2~~2 (5 2 (t )

eA ( t s) de
s1(t) 

(A.l3)

-

~~~~~~~~~~ Thus

L(t) — M1f11(t) + C1(t) 1 + G~D1(t) (A. l4)

where the 8~ sati sfy (2.28), (2.29 ) with s0 (t ) replaced by s2
(t). Note

that 3~ Ct~)—O . Also the D~ satis fy (A.7) , (A .8) with D~ (t 3)—0 . The only
new equation is for the C~ over the tims inter val t3 ~~~~~~

~~ (t) — ~1(t)r1c~Ct + C~ (t)A’ —

+ s~ (~)) 
G1G;(F;)

i-1.2~~2 
(s

~ 
(t ) ) -v~2 (t )) k, ( t s 1(t) )

ii (C) F Cfl (t ) -fl Cs (C) ) A Ct—s Ct))2 1. 1 1 2 
G G ’ (7~~~ 

l14,~ 2 (A lS)~‘2 (s2 (tF) 1 2  2 2

~1
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r
— 11

(t)7
1
C (C) + C (t )A’ - 

~2
(t) Z P11

C
1

(t)

+ 

~~:~Ct)) 
G1G2 CF)~~

’1’ .
F T i 2 (h 1(t

2 (t
H;e~~~

t
~~l

Ct
~~

~i (C) F (Ti (t )— ~ Cs Ct) ) A’ (t—s (t) ) —

— 
1~2
(s
2
(t)) 

2 G1G; cF;)~~
1H;. 2 (A.16 )

For t <t<t , L(t) — H1C1
(t) + G~D1

(t) and the equations for C~ and

are as in Case 3c - i.e. (A. 5) — (A.8) , and C~ C t )  —0. Also, for t>t ,

L (t ) — G~D1Ct) . and the D
1 are calculated from (A.ll) and (A.12) .

Case C: Up witil t3 we are in Case 2 , and thus use (2 .28 )— (2 35) .  Over

the inte rval t3 <t<t we have the same situat ion as in Case b , and

equations (2.28) , (2.29) (with s0 (t) replaced by s2 (t) ) , (A.7) , CA.8) ,

and CA. 14)—( A. l6) apply . At time t~ , since s1Ct0
) — s2 (t ) ,  C

1
Ct0)—O

(see (A.1.3)) , while Bj (ta ) and D
1 

(ta) take on values calculated from the

previ ously mentioned equations.

Now consider the tim. interval t <t(t . Note that for t<tc — a x  c
while for t>t~ , s1Ct) cs2 Ct) .  Thus

- L(t) — 

11Ct) 

N e . h 1 G E e 2 2  Ct)_fl 2 ( S) )
G2eA* (t—s )de

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

s1
(t)

C F ’ (fl (s)— ~ (C )) F ’ ( ~ ( 1)— fl Ct ))
+ f ’ G~e 1 1 1 H~G~e 2 2 2 a3e~ 

Ct_s)
ds 

- - -~~~~~~~~~~~~~
--~~~~
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or

L(t ) — !1a1(t) + G~ (D1Ct)+E 1Ct ) ]  (1.18)

where 

— fl1(t)r1a1Ct) + B
1

(t )A’ + ~2(t)a1~1
Ct)

~~ (t) 
~~~~~ 

F2 (fl2 C t )— ~2 (s1(t ) )  A’ (t—s 1(t ))
+ ij~~~~~~~ ) G1~272 • C2e (1.19)

- ~1(C)F
1a (C) + Br (t )A ’ + ~2 (t) 

~ 
p1,1B

1
Ct)

A Ct— s Ct ) )

+ 
n1(t) 

C H r—]. ~2 (ii2 
(t )— ~2 (C) )G

2e 
1

T11(s1(t)) 1 2 2 a

*~ (t) — fl1(t)F~E1
(t) + E

1
(t)A’ + ~l2 (t )E

1~ 1(t)

Ti Ct) F ’ (TL (s ( t ) ) — ~ (C )) A C t-s Ct))
+ 

2 
• 1 1. 2 ~ H’H F~~

1G e  2
fi2 (s2 Ct ))  1 2 2 2

Ti1Ct) 
~~~~~~~ 

F2 (fl2 (t)—12
(s
1
(t)) A’ (t—i 1

(t ) )
— ç

~ 
(C) ) h11~2~ 2 e G2e1 CA.21)

— 
_
~i

Ct)FiE~
(t) + E Ct )A ’ + ~2 Ct) 

11L 
P~ ,1E1

(t)

Ct) ?‘(fl. (s ( t ) ) — ~ Ct)) A C t—s Ct))
_ _ _ _  

l~~. 2 I. • r— 1 2+ 
~~( (t)) e E11272 C2.

ñ1(t) F (~2Ct)—~ Cs Ct)) A’(t—s1Ct))— 

~i~T.1t~ 
R~H2?~~

’ • 
2 2 1 G2e

• (A.2 2) 
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E
1
Ct0)0 j—t . . ., r (A.23)

— ~I~1Ct)P~D1
Ct) + D

1Ct)A ’ — fl2 t D1~~~t +

v (Tl Cs (t) ) —fl Ct)) A (t—e (t) )
— 

~~~~~~~~ 
~ 

1 1 2 1 ajG’ r 1
~~ E’e 2

D Ct) — 
~~~ 

(t)?~D (t) + 0 (t)A ’ - 
~~~~~~ , 

p1_103 
Ct) + 0iS ~~~~~

_ _ _ _ _ _ _  

Fj CTilCs 2 (t ))_ fll(t) ) R ,G . (y ,) r_1H , e
A t t 52 (t

~~
fi~ (s2 (t) ) a 1 2 2 2 (1.25)

Note that B Ct )0.j  a N
- Now consider the interval t <t (t • In this casex — — y H

s2 (t)

L(t) — J Gje h l  l H~ H2e 2 2 2 G2e& (t
~
s) ds

+ f G~e h h l
NjG e

2 2 2 H~e
A (t

~
s)ds

s2
(t) (1.26)

Here

- 

L(t) — G~[D1Ct) + E1
(t )3 (1.27)

where 0
1

(t) sat isfies (1.24) , (A.25) , with D
1 

(C5
) given by the previous

step. Similarly , B
1 
Ct
5
) is given by the preceding step, but then over the

interval t <t<t5 — — I
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I 
11

(t)  — ~~~(t)F~E1
Ct) + !

1
(t )A ’ +

+ f-12(: Ct ) )  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(1.28)

~r
Ct) — ~fl1Ct)r~E CC) + Er Ct)A’ + ~~Ct) p1_1E1

Ct)

+ fi~ C.2 (t )) 

F~ (r % 1 (5 2 (t ) ) — f l1(t )) 1 A’ (t— 52 (t) ) 
(A. 29)

Note that (t )—0 . Then , for Vt , L Ct) — G~D1 
Ce), whs~s D

j 
Ct
1
) is

obta ined from the preceding equations , and for t>t
1 

the D
1 

satisfy
- (A.U) ,(A.12).

T


