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Preface

In this report, I attempted to determine if it was possible to

design, evaluate , and test a data flow processor within the course of

one Masters Thesis. To this end, I was only partially successful.

There is no quantitative analysis of the effectiveness of data flow.

Qualitatively, the test cases indicate that dataflow processors

constructed from conventional microprocessors may not be practical. The

conclusions section of this report describes several ideas that may

lead to practical data flow microprocessor systems. Hopefully , other

students and researchers can use the tools developed in this effort to

perform quantitative estimates of the utility of data flow processors.

I would like to express my gratitude to the people who made my

wo rk possible. First, Kathy, my wife , who was foolish enough to marry

me while I was working on this thesis, and caring enough not to

divorce me before I finished. Secondly, Dr. Lamont, my advisor , whose

vigilence rescued me from several pitfalls. Finally, the technicians

in the lab who were always very responsive in manufacturing any

equipment I needed to complete my work.

Brian P. Boesch
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Abst ract

Problems associated with performing computation tasks in single

user microprocessor environments are discussed. Data flow methods are

investigated as a means of applying multiprocessors to this envi-

ronment. An event driven simulation of a variable architecture data

flow processor Is developed , using UCSD Pascal(TM). A trial data flow

multiprocessor using 8080 based microprocessors is developed and

tested . Using the simulator and information gathered from the trial

multipr ocessor , several situations typical to single user systems were

tested. Maxima l levels of parallel processing are presented for a

variety of situations.
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DATA FLOW TECHNIQUES IN SINGLE USER

MULTIPROCES SOR SYSTEMS

I. Introduction

Large scale computers have traditionally been considered useful

for many computing tasks . Today however , the cost of large systems is

becoming increasingly prohibitive when compared to the falling cost of

microcomputers. In addition , as language development progressed , it

became more and more practical to use microcomputers to perform

computational tasks , making it desirable to shift from large time shared

machines to small processor systems. Unfortunately , microcomputers have

limited processing speed (Ref 7). This severely limits the types of

tasks which can be aol-ted using such systems. Tasks such as interactive

procedures and time critical calculations often can not be performed by

microcomputers within time constraints.

To solve highly computational tasks usir.g microcomputers, it would

be desirable to have a practical way to increase the power of a

microcomputer system incrementally by adding processors. This has been

done in many large niultiuser systems to increase computational power,

and there have been several proposed large multiprocessing systems

cons truc ted using microprocess ors (Ref 13, 17, 18). But

multiprocessing has rarely been used with small microprocessor

systems.

( The problem of multiprocessing in the typical small microcomputer

1
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system is inherently more complex than the problem of multiprocessing

in large systems . This is due to the way in which the systems are

employed rather than the hardware used to implement them. It is

analogous to putting more than one worker in a manufacturing plant .

Both workers can work in parallel so long as there are two separate

jobs to be done . If the job function cannot be divided between the

workers , then one will stand idle while the the other works. In a

computer system the same relationship holds. If the job can be broken

into independen t tasks, then two or more processors can be employed

effect ively.  If not , then only one processor can be eff ic ient ly  used .

In large systems , there are generally several users simultaneously

using the system. Each of the users ’ work is effect ively independen t

of the others. Therefore , it is a relatively simple mat ter to schedule

these independent tasks in a multiprocessor. Microprocessor systems ,

on the other hand , typically are used in small dedicated applications

where a computer serves one user. To effectively multiprocess, the

computer system must divide the user’s work between processors. That

is often difficult because the typical user considers his work to be

comprised of a sequence of logical tasks done one at a time, not as a

set of actions that may be done in parallel.

Developing effective multiprocessing on a single user

micr oprocessor , therefore , reduces to partitioning the logical tasks

requested by the operator into a set of noninterfering (Ref 8:39)

subtasks.

One method of partitioning is to divide the work Into functional

areas. For example, one processor operates the printer, one the

keyboard, ano ther the scre en, and finally one processor Is the

2
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“computer ” actually pe rforming the intended task. This approach works

nicely In a system that is input/output  bound. If , however , the system

is compute bound , assign ing peripheral functions to other processors

will simply complicate the system with l i t t le or no improvement.

Another method is to allow the user to specify independent program

areas that can be executed simultaneously. This approach has merit in

that it is relatively easily implemented on most computer systems and

it will often provide significant parallelism if the programmer takes

full advantage of the machine. The user, however, will often continue

with obvious inefficiencies in a program simply because he has “always

done it that way ” . Determining if a section of a user task is

independent of another section is a complicated task; systems

programmers whose primary function is to program multi p le independen t

processors often err In determining independence. Therefore, to expect

a general user to partition his work into independent sections is

impractical!

The remaining method of decreasing the primary task execution

time is by allowing the processor to determine those sections of the

users task that can be executed in parallel. One way of representing

this is called data flow processing (Ref 9).  The task is considered as

a directed graph where the arrows represent movement of data and the

nodes represent data transforms . Each transform is completely

Independent of all others because it depends solely on the data on its

inbound arcs. When done with its computation, the node places the

result value on the outbound arcs for transfer to other nodes. This

independence allows the individual transforms to be executed

arbitrarily as soon as all of their inputs are present. Further,

3
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transforms can also be allocated arbitrarily to processors of a

multiprocessor system.

Until recently , data flow has been considered primarily as a

mathematical tool to expand the processing capability of large

processing systems. Compilers , when performing code optimization and

register allocation, often generate graphical representations of the

interdependence of data within a program to take advantage of inherent

parallelism in their computers.

Currently , there is much interest in developing machines that can

directly execute a data flow representation of a problem. Such a

machine would avoid the need to approximate data flow execution on

conventional computers. There have been several designs of large data

flow processors proposed. For example, Rumbaugh has proposed one

architecture that viii execute data flow (Ref 21). Lawrence Livermore

Laboratories has done studies on the practicality of data flow computer

systems that would theoretically be capable of many times the

throughput of large conventional systems (Ref 1).

Though most of the data flow research seems directed at the large

processor, it would appear that data flow concepts could be applied to

the single user scenario described previously. In such a system, the

intent would be to use parallelism to eliminate the higher cost of fast

processors.

Statement of Problem

The purpose of this effort is to investigate data flow techniques

as they apply to the single user multiprocessor system. The goals are

to assess the practicality of developing a single user data flow
(

4
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processor using current technology. Factors bearing on this goal are

cost of the system, flexibility , and ease of use.

Scope

Toward these goals, the specific scope of this investigation shall

be:

I. to investigate current data flow technology and to formulate

ways in which it may be applied to the single user computer

System;

2. to develop a simulation of a data flow processor to allow

evaluation of different architectures and processing speeds;

3. to develop an executing data flow multiprocessor, using

existing technology (Because of the widespread avai1abllity

of micro proces sors , the processor shall be developed using an

8080 based microcomputer development system);

4. to formulate, using information gathered from the above

tasks, an assessment of the practicality of microcomputer

based data flow processors.

Assumptions

The performance of computer systems is difficult to measure,

because it is often more dependent on the user environment than on the

processor design (Ref 14:1—5). To make any statements about the

relative worth of one option over another, it is f irs t necessary to

define the environment in which the system will operate. In this

investigation, the following shall be defined as the operating

environment of the system:

( 1. Single user— To date, multiprocessor systems have been used

5

______  
1.

~~~~~~~~~~~~~~ 
~~~~~~~~~~~V .M 

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~



in a variety of large multi—user and titne shared systems (~ef

5: chapters 22, 36, and 37). Because there are several

distinct tasks happening concurrently in such systems, it is

possible to isolate independent tasks for separate processors

to perform simply by hating processors always execute on

different users’ programs. The intent of this investigation

is to determine ways to separate seemingly indivisible tasks

into independent subtasks; therefore, only one major task

will be allowed to directly operate in the system at any

given time.

2. Small— The size shall be limited to a small system. The

motivation for this investigation is to allow incremental

expansion of microprocessor systems to minimize cost. To

propose the use of large computer systems would defeat this

intent. There are no firm guidelines defining small and

large computer systems! For want of a better criterion, any

relatively low cost computer affordable by a small business

or laboratory shall be considered a small system.

3. Laboratory environment— This requirement is primarily to

define the type of work to be performed. The primary

function of the computer is numerical anlyisis not database

manipulation or text editing. The emphasis on numerical

processing is meaningful in the context of a laboratory where

comp uters are used as “number crunchers” to perform repeated

calculations on the numerical results of experiments.

4. Non real—time — Multiprocessing can often be used to

( advantage in realtime systems, but such sys tems ar e

6
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inherently d i f f e r en t  enough from the thrust  of this

investigation to exclude them from discussion. The intent of

this statement is to prohibit highly time dependent functions

such as radar scheduling or process control. In such

systems, the tasks are usually very time critical. Often ,

there is a deadline time by which a task must be completed.

Rescheduling of tasks, or subtasks, is made extremely

difficult by such deadlines. For example, in a nonrealtime

system, execution time of a series of tasks may be decreased

by delaying one large task. In real—time environments, such

delay of a critical task may be unacceptable even though the

entire workload could complete earlier. Such constraints do

not exist in the normal single user system. The user may

have a desire to have his work done as soon as possible but

there are no specfic task deadlines.

5. Reconfigurable— The number of processors available at any

given time should be hidden from the user. To the user, a

three processor system should simply be “faster” than a two

processor system. The intent here is not so much to allow

rap id rearrang ement of the sys tem as to require progra m

independence from any specific hardware parameters. For

example , a program written for a two processor system should

run, without modification, on bo th a one processor and a ten

processor system.

Standards

The criterion on which the performance of the trial system shall

7
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be judged is cost per unit of performance . The intent is to

investigate data flow as a cost effect ive n~ ans for implementing multi—

microprocessors . If data flow multi— microprocessors cost more per

unit of performance than other techniques , they are not cost

effect ive . At the same time , however , it should be remembered that the

cost of hardware is rapidly decreasing with time. Therefore, though

this investigation will make an assessment on the relative cost of data

flow processors using contemporary technology , results should be

reassessed in light of any significant hardware cost changes.

Order of Presentation

This report will discuss current usage of data flow processing

with par ticular emphasis on multiprocessors , then describe development

of a variable architecture data flow simulator and hardware imp le-

mentation of a data flow processor. Specifically, Section II will

define data flow and discuss its advantages and problems. Section III

will describe the design, development and initial test of a data flow

simulator. Section IV describes the development and implementation of

a data flow multiprocessor. Finally, Sections V and VI show results

obtained and conclusions drawn from this investigation.

(
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II • Da ta Flow~ an Over-tiew

Data flow is a rather simple concept that has been in use since

the early days of electronic computing. As early as 1940, John von

Neumann had formulated the concepts of “neuron nets”. In the past

decade, Carl Adam Petri developed the concept of “Petri Nets” (Ref 19)

which show critical timing relations in both hardware and software

systems. A Petri Net defines a graph of dependent events, but does not

show either control of the events or data movement. Program graphs,

another method of expressing parallel events, allows data and control

separatly to flow through the graph (Ref 15). Data flow(Ref 9), a

further extension, allows only data movement; control can be expressed

in terms of the presence or absence of data. The following paragraphs

will describe the use of data flow and problems associated with them.

What is a data flow program?

A data flow program is a directed graph (digraph). Each node is a

transform. Each arc represents the flow of data from one node to

another. A data flow system may be defined either to allow only one

value to occupy an arc, or it may be defined to allow values to queue

on the inputs to the destination nodes. The transforms at nodes can be

any form of da ta manipula tion from as simple as an integer add to as

complicated as a fast fourier transform. If only one value may occupy

an arc , then a node must have all of its inputs present and all of its

outputs empty to execute. If values may queue, the only requirement

for execution is that the node cannot start processing information

until all of its inputs are present. (Because the intent of this report 

-_
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is to maxize paralle]ism, the first definition will not be conBidered

further as it arbitrarily reduces the number of concurrently executing

functions). When executed, a node consumes the data values on its

input arcs, performs its transform, and then passes the result along

some or all of its output arcs. This concept may be better described

through a simple example of a data flow program.

Example Data Flow Prqgram. Consider a data flow processor with the

set of transforms (nodes) shown in Table I. Each node shown in the

table takes the indicated number of inputs, and produces the result by

applying its arithmetic operator to those 
V~~

tPh1t5 Now consider the

following Pascal assignment statement:

A : —  (B/ C) + (C *D)

The corresponding data flow program is shown in Figure 1(a). Note that

the multiply and the divide are dependent only on values generated

outside of this expression. Because they do not directly or indirectly

depend on each other for their results, those two operations can be

done in parallel.

If in this example, the independent variables B, C, and J) were

given the values 9, 11 and 13 respectively, the sequence of events in a

data flow processor would be as follows. Figure 1(b) shows the input

values waiting on the input arcs of the multiply and divide nodes. If

the multiply node execu ted f irs t, it would read its input arcs,

perform the multiply, and send the product down its output arc to the

addition node. The value would then wait on the right input of the

addition node (Figure 1(c)). The add node cannot begin yet because it

( has only one of its two inputs. Next, suppose that the divide node was

10 V
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executed. It would remove the values from its input arcs and put the

integer quotient on the output arc. The value would pass to the left

input of the addition node and wait there for the addition node to

begin execution. The add node would then execute , read its input arcs,

produce the sum , and place it on its output arc.

In this simplified examp le of a data flow program operations were

taken one at a time to allow clear explanation of the steps involved.

In actuality any node which has all of its inputs available can begin

at any time. Therefore, the divide and the multiply could operate

simultaneously. Also, after the multiply and divide finish more inputs

can be introduced at the top of the graph. These inputs will move

V through the graph as nodes become free to process them, thereby setting

up a kind of pipeline.

Existing Data Flow Techniques

Data flow processors can be designed along two drastically

different approaches. In one approach, each node has its own

processor. In the other, all nodes draw on a central pool of

processors, and return the processor to the pool when completed. The

first approach may be practical for solving extremely large problems in

a minimum of time, but it does not meet this investigation’s

requirement of reconfigurability. The second approach shall be used

here.

The multiprocessor pooled approach does meet the requirement of

reconf igurab ility beca use the number of processors does not affec t the

number of nodes poss ible , only the maximum number that may be executing

at one time. For example, if a multiprocessor has nine processors and

12
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there are twelve tasks available to be computed simultaneously, then

all nine processors will begin immediately. The remaining tasks will

begin when a processor is free. On the other hand, in a twenty

processor computer with the same twelve tasks available for simul-

taneous processing, all twelve will begin simultaneously while eight of

the processors wait for task. In each case, data flow allows the

maximum possible parallelism consistant with the hardware and the

program.
A

Clearly , in a physical implementation of a data flow processor

using the pooled processor approach , the operation does not necessarily

take place as soon as all inputs are present. Rather , it takes place as

soon as a processor is available after all inputs are present. There

may be some precedence of operators in a given implementation, or nodes

may be queued as they are available for execution. Independence of

nodes is critical, because a node could be executed after a node

enabled later than it. For example, two nodes could be enabled in

close succession, but when assigned to processors the second to be

enabled might be the first to begin execution. Without independence,

execution out of order could cause problems.

Problems with Data Flow Techniques

Though data flow appears , on the surface , to be the salvation for

the single user parallel processing system, there are problems. Data

flow progra ms may be indeterminate, data structures are poorly handled

by data flow processors , and data flow programs are diff icul t to

understand.

(
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De ter~~.nacy

Definition of determina~~ in compter 
~~~~~~~~~

A determinate computer program will always produce the same

output given the same input. External events not chancing the

program’s inputs will have no effect on its outputs.

Nondeterminism in data flow. One may think that independence

of operators in data flow totally protects the user from nondeterminism

in programs. It does not! Using the constructs of data flow, namely

arcs and nodes, it is very possible to develop programs that exhibit

nondeterministic behavior.

Examples of nondeterinin ism. The most obvious case of

nondeterminism can be seen in Figure 2. This example shall use the

same operators as the previous example (Table I). Assume that

initially the three inputs: A, B, and C have the values 4, 5, and 7

respectively. The inputs to the conditional cause the true output to be

taken. An input is left “hanging” on the input arc of node 2. That

input cannot be used by its node because the node did not receive its

second input from the conditional. This hanging input will simply wait

on the input arc until at some later time the false conditional output

is exercised. At that time, the hanging input will be confused for the

current input. This case of indeterminacy can be eliminated by good

programming practice. All inputs to any nodes between a conditional

and the corresponding merge node must come through the conditional. If

V s ome inputs needed by the true case are no t needed by the false case

then they should be disposed of after the conditional.

~ C Another case of indeterminacy can be shown in Figure 3(a). In

14
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A B C

1

(2~~+

D

Fig 2. Non—determinism Example One

TABLE I

Set of Transforms for Example Dataflow Processor

Transform In~~~ s Meanin&

+ 2 Add the values of the two
inputs, producing their sum
for output.

— 2 Subtract right input value
from left input value,
giving their difference for
output.

* 2 Multiply the values of the
two inputs, producing their
product for output.

2 Divide the right input value
into the lef t input value,
giving their quotient for
output.

n Compare inputs I and 2 then
pass inputs 3..n to outputs
1,3,5...n—1 for test—true,

( outputs 2,4,6..n for false

15
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this example, we will assume that the second input will come into the

system while the system is still processing the first input. Assume

further, that inputs to a node queue on the input arcs to that node.

The input stream will be 11 and 9. The 11 will go through the

conditional true branch to the multiply, and the 9 will then go th rough

the conditional to the add. If the multiply operator finishes before

the add then the system will appear as shown in Figure 3(b). If the

addition finishes before the multiply then the system will appear as

shown in Figure 3(c). Clearly , when the multiply at node 5 operates on

the data f r om the two cases , the results will be different. In this

example of indeterminacy , the values of the data flow program can be

changed by timing differences when passing through conditionals.

Difficulty of Data Structures

Data st ructur es also can cause problems. Conceptually, if not

physically, the data to be used by a node in a data f low program is

passed directly to the node by the arc. Physically, passing values

through the data flow program is practical with simple data types such

as real and integer numbers, but not in general. Record structures and

arrays are large data structures that cannot be efficiently moved

through the graph. For example, the overhead alone of moving a 50,000

character record from node to node would defeat any possible savings in

multiprocessing speed.

The concept of single use data structures allows some flexibility

(Ref 13). These structures, once created, are never changed. Rather

they are “modified” by replicating the structure with the changes

incorporated. If the structure cannot be changed by nodes to which it

17
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is passed , then the s t ructure may be passed by passing pointers.  In

addition, the same occurrence of the data structure may be passed to

several destination nodes. Though th is te chnique solves many of the

problems of passing large data structures, it does not eliminate them.

For example , using the single use technique , minor changes to a large

structure result in replication of the entire structure .

Difficulty of Understanding

As seen in the examp les , the level of complexity of a data flow

program is significantly higher than that of the corresponding Pascal

program. As more complicated programs are expressed in data flow, the

graphs become even more complex . In addition , programmers are not

familiar with data flow notation because it is a departure from their

programming experience. These factors contribute to make it

substantially harder to write a data flow program than an equivalent

Pascal program.

Impr ovements

Though some of the problems discussed previously are inherent in

data flow, most can be eliminated through one change. Instead of

programming directly in the data flow notation, program in an existing

ROL, and translate the source into data flow notation. It has been

proven that all ALCOL like programs can be mechanically translated to

data flow (Ref 24). This approach will have the following effects:

decreased errors, increased transportability, and increased programmer

acceptance.

Decreased Errors. Data flow is not inherently more error prone

( than other programming practices. However, humans cannot easily
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understand the maze of arcs and operators present in even a simple flow

graph . This inability to understand promotes errors. By hiding the

data flow nature of the processor from the programme r , the u s e  of an

HOL allows the programmer to use a media with which he is familiar.

At the sa me time , determinacy of the data flow program can be

assured by compiling from an HOL . The compiler could be constructed so

that it will only produce deterministic programs from the source code .

This appears feasable as determinacy arrises from the cases described

above . If the compiler specifically avoids the above cases it should

be possible to prove determinacy of the generated data flow programs .

Transp~rtability. There is a wealth of existing software

today , most of it is written in one or another BOL. If a compiler

existed that translated from an HOL to data flow notation , existing

software could be used in data flow processors without costly

rewriting.

Programmer Acceptance. Most programmers of today have been

taught to program using one or more of the standard HOLs, such as

Pascal, ALGOL, or FORTRAN. Data flow is significantly different from

all of these. Though new techniques may be more efficient there is a

strong tendency for programmers to use techniques with which they are

familiar. By hiding the flow nature of the machine, the programmer

will be able to continue programming in a language he is familiar with

while having the advantage of data flow.

Summary

Though there are problems with the use of data flow, it does allow

( 
expression of algorithms so that the system, ra ther than the programmer ,
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can determine where parallel execution is possible. Because the nodes

wait for their inputs and are independent a f te r  all inputs are present ,

it would be relatively simple to develop a multiprocessor based on

curr en t mic rop rocesso r t echnolog y that would be ab le to execute data

flow programs . The remainder of this report investigates the amount of

parallelism possible in such a data flow microprocessor.

(
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III. uu~riot~

To evaluate data flow in the single user scenario it is necessary

to have a data flow processor. Initially, it was felt that a processor

could be designed for evaluation. However, on examination of the number

of design options available it became clear that choice of a specific

set of design options would be arbitrary and have significant effect on

the performance of such a processor. It was decided , therefore, to

first develop an event driven data flow simulator. The simulator would

be designed to allow rapid change of those design constraints, giving a

basis for selection of options on a real data flow processor. To

insure that the simulator could be easily modified , it will be strictly

implemented in software, and written with modularity and modifiability

in m!nd rather than efficiency. The design development and initial

test of the simulator will be described in the following paragraphs.

Des~gD, of the Simulator

In this section, the initial design choices involved in the data

flow simulator will be discussed.

General Design Goals. The simulator is intended to be a test

bed to make the choice of design options in a data flow processor

easier. The purpose here define a set of features that will make the

simulator both simple to design, easy to use, and adaptable to new

methods of implementation as they are developed. The following

represent features desirable in a test be to meet the above goals:

1. Must be easy to modify.

2. Must have convenient means of inputting test data flow program.
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3. Must be heavily instrumented , to allow monitoring of the

internal workings of the test data flow processor (such as

movement of data , transfer of control, and ocurrance of

overheads).

4. Must be realistic. That is , must not place art if icial

restrictions on the system. For examp le , if a data flow

processor can perform additions , then the simulator must

perform additions. In addition , when the same data flow

program is run on the simulator and a real data flow

processor , they should produce identical reaults. Realism in

this context does not mean real time nor that the simulator

will be as fast as an actual data flow processor.

5. Must be responsive. The simulator should provide reasonably

fast response. It should be reliable, in that it will

repeatably produce identical results.

Use of Software Engineering. When trying to meet the above goals,

it is necessary for the designer to define how the system will be used.

Interestingly, the software engineering technique has almost the same

name as the processor: Data Flow Analysis (Ref 12:47—62). In this

technique, the flow of data to and from all elements of a system is

shown. The level of detail is then further defined by expanding the

flows of data and the functions operating on them. Functionally, the

data flow diagrams used in software engineering bear the same

relationship to data flow programs executed by a data flow processor,

as a natural language such as English bears to a programming language

such as Pascal. The data flow diagram (DFD) used in software
(

V engineering is intended to be interpreted by humans. It does not

- 
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(A)

USER (B) TRAN SLATE
NOTAT ION

N (1)

(D) (C) (G)’N
~. N .~~~~ (E)

TRAN SLATE EXECUTE
PARAMET ERS DATAFLOW

(2) F) (F (3)

TIME FILE

Fig 4. Top Level Data Flow Diagram
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TABLE It

Data Dictionary for Simulator DFD

In this table, uppercase words represent data
dictionary elements. Lowercase words are descriptive
of the meaning of data.

Data Element Name Defi n iti on

(A) . NOTATION — (TOKENS)

(B). ERRORS — Errors detected in Parsing

(C). MACHINE PARAMETERS Text machine parameters

(D) .  PROMPT S — Prompt Strings for User

(E).  INIT— STAT E (ENABLED NODES) +
(PROGRAM STEP) +
(VALUES)

(F). PARAMETERS Machine readable parameters

(G). OUTPUTS — Results of the execution

(H). REPORTS Summary of statistics

(I). DISCONNECTED GRAPH — Nodes and inputs (no arcs)

(3). TOKENS — Tokens of the dataf low notation

(K). PROGRAM STEP — One node, its inputs, and its
destinations

(L). ENABLED NODES — Nodes, and time completed

(N). VALUES — Numerical value

(N).  DEST—VALUES — VALUE +
destination

(0). TIMES — Execution time for an operator

I
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(A) PARSE (3) MAKE
GRAPH

(1.1) (1.2)

J) (I)

CONNECT E
GRAPH
(1.3)

Fig 5. Subordinate DFD of TRANSLAT E NOTATION

P~OCRAM(E)\ d \ (F)J
(K) )

INITIALIZE PERFORM (Nh, DISTRIBUTE ~~~~~~~~

PROGRAM OPERATION OUTPUT
(3.1) (3.2) (3.3)

M (0)
CL) (L

(N) (M)

__________ (L) __________ GENERATE ______

EQ IQ REPORTS
(3.4)

(
Fig 6. Subordinate DFD of EXECUTE DATAPLOW
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pretend to be an exact statement of an algorithm; rather it is a guide

describing the movement of data within a system. The data flow program

on the other hand , will be executed by a machine. There can be no room

for  interpretation in the meaning of a data flow program , or the

results would be unpredictable. The following discussion , shows the

general organization of the simulator.

Figure 4 shows the top level of interaction in the data flow

simulator. Table II is the corresponding data dictionary. To read the

diagrams, each node of the DFD corresponds to a function that needs to

be performed either by the human using the system or by the simulator.

Arcs of the DFD represent the flow of data to and from the nodes . Each

arc is numbered; the number corresponds to an entry in the data

dictionary which describes the information following that path .

The DFD shown in Figure 4 alone is not sufficient to describe the

actions taking place within the simulator, therefore, the more

complicated nodes are further divided. Figures 5 and 6 show the

breakdown of the “TRANSLATE NOTATION” and the “EXECUT E DATAFLOW” nodes

respectively. All nodes not further subdivided into other nodes are

then described in structured English (Ref 12:117—214). That means,

described in a clear algorithmic fashon. The following is the

structured English definition of the nodes in Figures 4, 5, and 6:

TRANSLATE PARAMETERS—
Prompt user for old execution times file.
Open and read file.
While not done do

Display operation time values.
Prompt user for parameter.
Read value.

V 
Write new execution times file.
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PARSE—
Repeat

Read a char from f ile
If delimiter then return token and delimeter.

MAKE GRAPH—
For each node:

Allocate space for node.
Link into node chain in alphabetical

sequence.
Determine number of inputs.
Generate linked list of inputs.

CONNECT GRAPH—
For each node :

For each input:
If there is a literal value for this

input then set the input to that
value.

For each destination:
Locate destination node and input .
Add to destination linked list.

INITIALIZE PROGRAM—
Set up user specifyable parameters :

Number of processors , debug optio ns ,
list fi le name s, program file name .

Read in the program.
Set up queue of enabled nodes.

PERFORM OPERATION—
While there are free processors and there are nodes
in the enabled node queue:

Remove one node from enabled node queue .
Calculate completion time of node.
Place in correct time sequence in processor

list.
Remove the next node from the processor list.
Update clock to reflect completion time.
Do the node’s operation.
Keep statistics.

DISTRIBUTE OUTPUT—
For each destination:

Place correct value in input queue.
If the queue was empty then

decriment the destination node’s wait
count.
if the count is zero then queue the node
in the enabled node queue.

27
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GENERATE REPORTS—
Print  out summary reports from statist ics.

Design Choices.

Design Choices. A series of relatively high level decisions must

be made to meet the goals of the system. In the following discussion ,

each of the choices is directly addressed to one of the design goals.

As in all engineering e f fo r t s , th er e is always co mpromise of cost ,

sch edule and performance. The decisions selected here are not

n ecessa ril y the optima l given unlimited funds and support.  They are ,

rather , selected to maximize performance of the system in light of the

practical constraints placed on its development . When , such a non—

optimal decision is selected , the reasons for it will be stated.

Easy to Modify. Use UCSD—Pascal as the high order language to

program the system. To meet the goal of modifyability, the

system must be implemented in an efficient programming

environment. Assembly language is not practical for the main

simulation because the programmer has the burden of direct

machine interface. Relative programming efficiency of Pascal

over assembly is very high. The Pascal supports recursive

programs and sophisticated data structures which are

difficult to implement in assembly. BASIC and FORTRAN were

rejected because neither of them offer the sophistication of

the Pascal programming environment. In addition, BASIC code

is generally difficult to modify because short variable names

cause programmer confusion. FORTRAN would be a minimally

acceptable language even though it does not contain the

programming flexibility desirable for this task. It is a very
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common language which most engineers know. Therefore,

programs written in FORTRAN are likely to be better

understood by a wider audience. However , when this project

began there was no FORTRAN compiler available on the Intel

Single Board Computer (SBC), therefore , th e suit abilit y of

FORTRAN is academic. UCSD—Pascal supports the facilities

mentioned above and has several other advantages . It supports

structured programming. It is widely available on a numbe r of

mini and microcomputers. It contains an excellent

programming development facility including program libraries,

separate module compilation, and an interactive screen

oriented editor for easy program modification .

Responsive . Use Intel single board computer (SBC) as development

system. The primary computer available, the Control Data

CYBER, does not meet the level of convenience needed for this

project. Although a much more powerful computer than the SBC ,

it is a time shared system. During peak load times, the

turnaround time can be excessive. It also has limited

availability during weekends and at nights, and there are

restrictive storage limitations imposed by the number of

users. The SEC, being a dedicated system is available

whenever the user is present. The Intel Multibus allows

multiprocessors to share the same system bus without undue

interferance, and there are several similar systems (The

loboratory has two Intel SEC 80/20s , an Intel Series II which

uses the same instruction set, and a PDP LSI—11 whic also can

execute UCSD Pascal programs) that can be used in the event
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of a hardware failure in the SBC system. A fur ther  benefit

of the small system is that it is a “hands on system” the

user can halt execution of a program at will and resume

execution at a later time, or he can simply observe the

operation of the system under different circumstances.

Easy to Input Programs . Data flow programs are directed graphs.

It is impractical to input a digraph directly into a

computer. Therefore , it is necessary to develop a notation

for expressing data flow programs in machine readable form.

The simplest method to express a graph is a connectivity

table. This is the basis of the notation. It seems likely

that some extensions over a traditional connectivity table

will be necessary but these should be minimized.

Heavily Instrumented and Realistic . Use an event driven

simulation . There are several possible ways to model the data

flow processor. The difference lies chiefly at the level at

which the modeling is to be done. For example, the

simulation could model the actual movement of signals from

gate to gate, or the model could have loosely shown the

system as a whole without attending to the specific tasks

performed by a processor. Because it is the intent of this

study to evaluate the best architecture for data flow

processors (within the constraints listed in assumptions), an

event driven simulation appears best. In such a simulation,

execution of each node of a data flow program would

constitute an event. The simulator will keep records as each

node is processed and update a pseudo clock. The pseudo
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clock will show the amount of elapsed time that the simulator

estimates a real data flow processor would take. The model

contains all of the functional operations of the processor

without necessarily retaining all of its structure. Because

the simulator functionally models a data flow processor,

changing it to represent any specific architecture is

simplified.

Data Flow Notation. The notation developed for the simulator

is intended to be a concise method for expressing the connections

within a data flow program. It is intended to be easy to write and to

unde rsta nd , both for the programmer and for the parser in the

simulator.

To concisely define the syntax of the notation, Bacus Naur Form

(BNF ) will be employed (Ref 3:125—129). The BNP of the data flow

notation is contained in Table III. The notation is blank sensitive,

meaning that, blanks cannot be imbedded within tokens. Otherwise, the

notation is completely free format. Figure 7 gives an example of both a

data flow program in graphical form and in the specified notation.

Note that each node in the flow program is given a distinct name, which

is the same name that will be used for the node in the flow notation.

Each node is completely described by a single statement, a string of

characters ending in a semicolon. The following paragraph def ines the

meaning of fields within the statement:

First, the node name is a string of alphanumeric characters. The

operation type follows; it is a single character with meaning shown in

Table IV. Next come two integers, the first indicates how many inputs

the node will have, the second defines the number of inputs to wait for

31
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TABLE III

Bacus Nauer Form Definition of Data Flow Notation

V
Token De f inition

<flowprog> ::— <null> <dataflow> <flowprog>

<dtatf low> ::= <flohead> <litlist> $ <outdest> ;

<flohead> : :— <floname > <operator> <minputs> <nwait>

<li t l is t> ::= <null I <m um> : <ival> <litlist>

<outdest> ::— <null> <floname> : <m um> <outdest>

<operator> ::— + I _ I * I / I ~~~I < I > I I # I M I
R l C ~~~O~~~I

<m um> : — <p08 integer>
<ninputs>
<nwait>

<ival> = <integer>

<floname> ::= <letter> I <floname> <alphanumeric>

32

- ~~ V~~~ V~~~~~ V~~~~~~~~~~~~ V ~~ -~~~~- ‘

~~~~~ -—~~~--- -~ ~~~~~~~~~~~ —= — ~~~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



6 5

DIV

1

ADD

+

OUT

0

DIV I 2 0 1:6 2:5 $ ADD:1 ;
ADD + 2 1  2~ 1 $ OUT:1 ;
OUT 0 1 1 $ ;

Fig 7. Example of Data Flow Notation

(
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TABLE IV

Operators Defined in the Simulator

Q~~ 
Name Definition

+ add takes 2 inputs and operates
— sub passing result to all outputs
* tnpy
I div

exp

C literal passes literal value to all outputs

> if gt Compare inputs 1 and 2 then
< if it pass inputs 3..n to outputs
# if tie 1,3,5...n—1 for test—true ,
— if eq outputs 2,4,6..n for false

R replicate Pass sole input to all outputs

N merge Wait for all inputs, then pass all to
their respective destinations. Input
1 to output 1, input 2 to output 2, etc.
Note: this is not the same as the merge
operation is usually defined. (Ref 5:93)

I input Read single value from console
output to all destinations

0 output Output all inputs to list device



before beginning execution. If all of the nodes inputs were supplied

by incoming arcs, the two integers would be the same. If one or more

of the inputs were literals, that is constant values permanently

attached to the input of a node, then the wait count is decreased by

one for each literal input. Next, optionally, is the definition of

literal inputs : input number , colon , input value . A dollar sign

separates the input definitions from the output arc definitions.

Lastly, for each output arc: (there may be none) the destination node

name , colon , input number.

Us ing the above notation , any data flow program that can be

expressed graphically may be input into the simulator. The simulator

provides syntax checking during the input of the program to aid in the

proper generation of the program. It also will output the state of the

data flow program including all input values and arcs before execution.

Optionally, the simulator will output diagnostic messages during and

after the execution of the data flow program. The diagnostics include

but are not limited to: state of all nodes, inputs present at nodes,

number of processor s busy, and amount of time used by the simulated

machine.

Structure of the Simulator. Using the software engineering

DFD produced for the simulator, afferent (input) and efferent (output)

sections were isolated. The preliminary structure chart is shown in

Figure 8. From this structure chart the major subareas of the simulator

were defined.

The final structure of the simulator is shown in Figure 9. It can

be seen that there are two afferent branches: one for input of the

simulated machines parameters, and one for input of the data flow

35 



MAIN

READ EXECUT E REPORT S
GRAPH

READ MAKE MAKE OUTPUT
TEXT GRAPH LINES L INES

Fig 8. Preliminary Structure Chart of Simulator
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(

MAIN

READ READ CYCLE LIST
PARAN FLOWDIAG FLOWDIAD

MAKEFLOW CONNECT EVAL FLOW FILL PROC
FLOW

GET TOKEN .

ONE FOR EACH NODE TYPE

GET CHAR MAKE TOKEN

FIG 9. Final Structure Chart of Simulator

•
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program. There are deviations from the traditional efferent  branch

because it is necessary to output signifigant amoun t of diagnostic

messages to the user during operation of the simulator. Because of this

output the e f fe rent  branch becomes muddled with the central transform ,

the simulation itself . There also is a true ef ferent  branch that

produces the final report of the execution of the simulator.

Implementation of the Simulator

The discussion of implementation will be broken into three

sections : data structures, logical organization of the simulator, and

physical organization. The dicotomy between logical and physical

organization is caused by software limits of the UCSD Pascal

implementation (Ref 23:155). In a traditional Pascal program, all

procedures must be internal to the main program. This is both

impractical and impossible on microcomputers. The slow compilation

time and limited central memory forces separate module compilation.

The simulator is therefore divided roughly along functional boundaries

into separately compilable modules (UNITS); this allocation of

procedures to UNITS that is discussed in the section on physical

organization.

Data Structures. Pascal allows the use of a variety of different

data structures in the implementation of a Pascal program. Data

def ined as static in the Wirth Pascal Manual (Ref 25) will not be

discussed here because it is clearly def ined in the data declarations

within the code. Those data structures that are dynamic, by Wrirth’s

definition, are descr ibed here because their use depends on where new

invocations of then are called in the code. There are six major data
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FLOW - RECORD
FLONUM:INTEGER;{sequentlal number of flow)
FLONANE: STRING;{name of this node)
NFLOW: ~FLOW; {pointer to next node

in alphabetical list)
NENABLED : ~FLOW ;{pointer to next enabled

queue, if not enabled then
NENABLED is NIL)

OP :OPERATOR ;
NINPUT:INTEGER ;{number of inputs to this node)
NWAIT :INTEGER;{number of inputs needed to

activate the node)
INS :~~INPUTS ;{pointer to list of inputs)
OUTS :~ OUTPUTS ; (pointer to list of outputs)
END;

INPUTS — RECORD
IQF,IQL: ~INVALS;{pointers to input value queues)
NIN :~~INPUTS ;(pointer to next input of node)
END;

INVALS = RECORD
VFULL:FULLTYPES;{type of value)
VALUE:INTEGER ;{value of this input)
NINVAL : ~tNVALS;{pointer to next queued value)
END;

OUTPUTS — RECORD 
-

FLOW :~i’LOW;(ptr to destination node)
INUM:INTEGER;{number of the destination input)
INPTR:~ INPUTS;{direct pointer to destination)
NOUT : OUTPUTS;{pointer to next output of node)
END;

PROCESSCHAIN — RECORD
NPRO : ~PROCESSCHAtN ;{pointer to next

processchain entry)
PFLO : YLOWPTR;{pointer to executing node)
TIM : REAL;
END;

Figure 10. Connection Between Data Structures
in the Simulator Database
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struc t ures used in the simulator. They are organized as queues ,

stacks , alphabetic lists, or time ordered lists. Figure 10 shows in

general the connections between the various data structures. Each

s t ructure  is described in detail below :

FLOW . This is an alphabetically linked list of nodes in the data

flow program. Each record of the chain contains the node

name , its number(a sequential number assigned in the order

nodes are found in the notation), the operator, the number of

inputs expected and the number remaining before this

activation . It also contains pointers to its list of inputs

and outputs(see INPUTS and OUTPUTS).

PR OCESSCHAIN. This is the time ordered list of currently

executing nodes. The chain cannot be longer than the number

of processors in the simulated system.

INPUTS. This is the chain of inputs for each node. Position in

the chain indicates the input number. Each record contains

pointers to maintain the queue of input values(INVALS) for

that input.

INVALS. This is the queue of input values for each INPUTS

record.

OUTPUTS. This is the chain of outputs for each node. Position

in the chain indicates the output number. The number is

signifigant for some operation types such as conditionals,

which use position in this list to determine if this is a

true or a false branch. Records contain the destination node

pointer, input number, and a direct pointer to the
( corresponding INPUTS record(this is redundant but saves ç
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execution time in the simulator).

ENABLQ. This is the queue of enabled nodes. This is used to

make the next assignment to the PROCESSC HAIN when a processor

become s free .

Dynamic storage recovery. Many of the above data structures are

allocated and deallocated dynamically during the execution of

the simulation . UCSD Pascal does not support the Pascal

DISPOSE statement. Therefore, the Pascal system has no way

to deallocate a structure once created . To meet the dynamic

needs of the simulation a set of stacks of currently unused

structures is maintained. When a type of structure is needed

the stack is f i rs t  checked , if it has a record on it then

that record is given to the requestor. If the stack is empty

then a NEW() element is created. To return a record, it is

simply pushed on the appropriate stack. Most unused record

stack po inters start with the letters FREE then the name of

the stacked record. For example, some stack pointers are:

FREEENABLQ or FREEINVAL.

~~~ical organization of the Simulation. The procedure calling

chart of Table V shows each procedure and all subordinate procedures.

In the table there are two kinds of procedures noted: procedures and

segment procedures. Segment procedures are a feature of UCSD Pascal

which allows the swapping of code to and from disk. The use of segment

procedures is identical to that of conventional procedures, even though

their implementation is different. This feature signifigantly reduces

the core consumption of a program without adding the complexity of

overlays.
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TABLE V

Procedure Call Chart

Procedur e Calls

MAIN HWTEST, CYCLE, READEXTIME,
READFLOWDIAG, LISTFLOWDIAG

HWTEST (SEGMENT ) HWDEBUG
CYCLE (SEGMENT ) GETPROC, RETPROC, FILLPROCESSORS,

EVALFLOW, LISTFLOWD LAG
GETPROC none
RETPROC none
FILLPROC ESSORS OPEXTIME, DEQUEUEENABLEDFLOW
EVALFLOW ARITHGP, LITGP, IFGP, REPGP,
MERGEGP, IOGP
OPEXT IME none
DEQUEUEENkBLEDFLOW none
ARITHGP POPINVAL, SETINPUT , RESETFLOW
LITGP POPINVAL , SETINPUT , RESETFLOW
IFGP POPINVAL , SETIN PUT , RESETFLOW
REPGP POPINVAL , SETINPUT , RESETFLOW
MERGEGP POPINVAL , SETINPUT , RESETFLOW
IOGP POPINVAL, SETINPUT , RESETFLOW
POPINVAL none
SETINPUT QUEUEENABLEDFL0~J, PU SHINVAL
RESETFLOW PEEKINVAL, QUEUEENABLEDFLOW
LISTFLOWDIAG none
READEXTIME none
READFLOWDIAG MAKE FLOW, CONNECTFLOW
MAKEFLOW GETLTOK, FIND INPUT, FINDFLOW ,
LISTFLOWDIAG
CONNECTFLOW GETLTOK, FINDINPUT , FINDFLOW,
LI STFLOWD lAG
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The following is a discussion of the major procedures within the

simulator :

MAIN— The main program body. This section does initialization

of the various queue pointers and record keep ing variables.

It also initializes the files for  input. It sequences the

reading of the data flow program and its execution.

~WTEST— Produces a compressed file containing the data flow

program for  use by the hardware software simulation .

CYCLE— This routine causes one event in the simulator to occur.

One event is the termination of a node and the assignment of

as many processors as is possible within the limits of

precidence relations and number of processors .

GETPROC— Gets a processor activation record from free storage.

RETPROC — Returns a processor activation record to free storage.

YILL PROCESSORS— Attempts to assign a node of the graph to all

unused processors. It then puts the now busy processor

activation records in their proper place in the PBIJSY list,

such that, all records before it in the list represent nodes

that will complete before this one. Note: because the

processors are in fact simulated there is no distinction

between processors here, only count of the number busy.

OPEXTIME— A function used to determine the execution time for a

particular operation type.

DEQIJEUEENABLEDFLOW— Returns the next enabled node on the enabled

node queue.

QUEUEENABLEDFLOW— Puts a node on the enabled node queue.

EVALFLOW— This rE utine causes the actual operation of the node
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to take place. It uses several routines directly: AVRITUGP~

LITGP, IFGP , REPGP , MERGEGP, and IOGP. Each of these

routines corresponds directly to one of the groups of

instructions available in the data flow notat ion.

POPINVAL— Returns the next input value from a particular input

of a particular node. The ~aodule name is misleading because

the inputs are queued not stacked.

PEEKINVAL— Similar to POPINVAL except that PEEKINVAL does not

remove the value from the input. It is used to see if there

is an input queued without altering the value of the input.

PUSHINVAL — Puts a value into the queue of inputs for a

particular input for a particular node.

SETINPUT— Uses PUSHINVAL to queue a value on a nodes input.

Also , if this is the f irst input in the queue , it decrements

the node ’s wait count by one . If the wait count reaches zero

PUSHINVAL then queues the node for execution using

QUEUEENABLEDFLOW.

LISTFLOWDIAG— Traces through the data flow progr~~ listing all

nodes, all arcs , all input values currently on node inputs,

and all enabled nodes.

READEXTINE— Reads in the file of execution times to be used in

calculating the execution times for data flow programs.

READFLOWDIAG— This routine directs the parsing of the data flow

notation. Reading the notation is a two pass process.

MAKEFLOW— Pass one of the notation input. This routine makes

all of the nodes and their inputs.

CONNECTFLOW— Pass two of the notation input. Connects all arcs
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within the data flow program.

GETLTOK— Low level routine . Returns the next token from the

input stream.

FINDINPUT— This routine given the node name and input number

returns a direct pointer. This direct pointer saves

V V ,~ considerable time during execution of the program.

PINDFLOW— This routine given a node name, returns a pointer to

the node.

OPEXTIMES— This is a separate main program. It generates the

file of operation execution times.

Physical Organization. UCSD Pascal allows separate compilation

of procedures in a structure called a UNIT. To make the simulator

practical to compile it was necessary to use a set of UNITS. Code for

each unit should be relatively independent of all other code.

Therefore , the following breakdown of units was chosen:

Main Program— contains the initialization, interf ace to hardware

data flow implementation (discussed in Section III), and high

level control for the simulator.

EXECFLO— contains procedures that perform the actual execution

of the data flow program, record keeping procedures, and

error detection.

DFPROGS— contains the procedures to read the flow notation, make

the linked lists which are the internal machine

representation of the data flow programs, and to list the

internal data flow program representation in printed form.

UTILITIES— contains routines to manipulate text files including

the lexical scanner of the data flow notation.
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Initial Results of Simulation

The simulator was tested using several simple data flow programs.

Initially , the programs were chosen for their ease of data flow

coding . Then the complexity of the programs was increased . The

simulator showed that several processors could be applied to a single

task. The number of tests was limited , but it could be seen that the

application drives the number of processors used by a data flow

program. The question remained: was the effective processing power of

the data flow processor similar to that of a comparable single

processor or was the overhead associated with queueing and dequeueing

tasks and values consuming the additional processing power available.

Summary

The simulator was designed to allow evaluation of data flow; it

does this through an event driven simulation of the execution of a

data flow processor. The simulator can be configured to operate with

an arbitrary number of processors and arbitrary node execution times.

Its design is , also , intended to simplif y changes to the data flow

architecture.

Some speculation at this point provides a basis for the remainder

of this report. During its early testing, the simulation showed that

the use of data flow techniques can, in theory, produce improvements

over conventional processors of similar speeds. Can a data flow

processor be designed using today’s technology, using several micro-

computers, and can that processor compete favorably with conventional

processors using the ~ame technology? Section IV discusses the
( development of a data flow processor using microcomputers.
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IV. Hardware/ Software Implementation

Purpose of a Hardware Implementation

The intent of implementing a data flow processor using a current

single chip computer is to determine if current technology can easily

be adapted toward data flow processing. The simulation provides a

detailed examination of the inner workings of the simulated data flow

processor but it does not provide assurance that such a processor is

physically realizable. In addition , the implementation of a data flow

processor gives significant insignt into the amount of processing

necessary to perform the steps involved in data flow processing. In

that respect, the hardware implementation provided a means of

estimating parameters used in the simulation.

Because the intent is to show feasability and to estimate

execution time, many of the features that would be found in a practical

processor will be omitted in this hardware implementation.

Specifically, the number of operations available at the nodes is

signifigantly decreased. The operations selected were the minimum

necessary to demonstrate a data flow processor. The following

discussion describes the design and implementation of the hardware data

flow processor.

Design of the Data Flow Processor

The discussion of the data flow processor design will be broken

into three sections: the development system, the data structures of the
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simu $~ tor, and the operation of major modules.

Development System. The deve’opment system selected for the

hardware implementation must provide the general features described in

chapter II for the test bed development system and it must provide

multiprocessors. The only system available is a multiprocessor

comprised of Intel Single Board 80/20 series computers. This system

was selected for a number of reasons: it supports multiprocessor access

to a common memory , it supports interlock functions , a single processor

version used in the development of the simulator, and two processors

were available to construct a multiprocessor.

To use the computers in a multiprocessor configuration, relatively

few changes were necessary. There are three types of interference that

can occur between multiple processors: mutual exclusion of the buss,

mutual exclusion of memory, and mutual exclusion of tables. All three

had to be addressed In development of the multiprocessor. The SBC line

of Intel microcumputers was designed to operate with multiple

processors on the same system buss therefore two of the three types of

exclusion are procvided by the hardware. 
V

Buss Exclusion. This means that when one processor needs the

system buss to perform input, output or memory operations,

other processors will be prevented from interfering. The

Intel computers have two means of buss arbitration: parallel

and serial. In the parallel, a processor wanting access to

the buss sends a request to the buss arbiter. The arbiter

determines using its priority scheme which request should be

granted. In the serial method all masters on the buss are

arranged in order of their priority. When a processor wants
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access to the buss checks the buss busy line (BUSY ). If the

buss is not busy then it raises its BPR O line telling all

lower priority masters that the buss is needed then it checks

the next higher master on the buss. If the next higher

master has not requested the buss before the next falling

clock edge then the processor has access to the buss. It then

raises the BUSY line telling all masters that the buss is in

use. Because the serial approach is a daisy chain, there is a

maximum number of masters that can be served at a particular

buss clock rate. If there are too many masters or the clock

rate is too high, the signals will not have time to propagate

through the daisy chain. Though the serial method is limited

in the number of masters , it is simple to use. The number of

masters that can be used in the SBC 80/20 system could be up

to three before the delay in the daisy chain would cause

problems. Because the system used here will have no more

than three masters the serial approach meets its needs.

Memory Exclusion . Memory exclusion here means the ability to

lock other proces sors out of memory for several

instructions. In the Intel system there is a command called

a buss override. This command causes the buss interface

circuit in the SEC 80/20 to gain command of the buss as

described above. When it has command of the buss, however,

the circuit is not to release the buss. All other processors

are therefore locked out of the buss. This command allows a

processor to for example safely access and update common data

structures. No other processor can interfere because none of
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the other processors can access the buss. When the critical

phase is completed the processor can issue a buss release and

allow other processors access to the buss again.

Table Exclusion. Excluding all other processors from memory will

clearly exclude them from the tables, but if one processor

was making a series of updates to a table it would be

wasteful to prevent all other processors from doing anything

during that period. Exclusion at the level of tables can be

simply implemented in software by the following algorithm:

1. Excluding all processors from memory
2. Check a flag indicating if the table is in use.

If it is in use: release memory, wait a while,
and go to 1.
If it is not in use go to 3.

3. Set table busy flag.
4. Release memory .

The table may then be released by simply setting the flag to

not busy.

Structure of the Hardware Flow Processor. The basic structure

of the hardware flow processor is virtually identical to the structure

of the execution section of the simulator. The implementation is quite

different! In the simulation all data structures and module interfaces

were selected to maximize flexibility and minimize the time needed to

modify code for changes to the system. Though flexibility is desirable

in the hardware implementation, it has low priority. There are fewer

node types in the hardware flow processor, data structures are

simplified, and arrays are used instead of linked lists.
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Is~plementation of the Hardware Flow Processor

To visualize the hardware data flow processor, the structure

diagram is shown in Figure 11. The diagram shows the major components

of the system. The implementation of the flow processor may be divided

into the hardware, data structures, and Pascal host software, software

specific to processor 1, software specific to processor 2, the base

data flow processor software , and the memory organization.

Hardware. The flow processor uses two Intel SEC 80/20 computer

boards and a disk controller. The hardware system is a multiprocessor

using two Intel SBC 80/20 computers, a dual floppy disk, and an ADM—3A

terminal. There are some modifications necessary to allow

multiprocessors to share the same buss. Processor 1 is the same

processor as is used in the simulation, processor 2 is added.

There is only one modification to be made to processor 1. The on

board random access memory is reconnected so that it appears in

locations F800H to FFFFR. This is accomplished by jumpering wire wrap

pin 117 to pin 121.

The changes to processor 2 are more substantial, though still

relatively minor. The multibus needs a buss clock and a system clock.

Both SBC 80/20s naturally provide this clock, therefore, the buss clock

on the second processor must be disabled. The modifications are:

Remove jumper from pins 110 to 111. (Buss clock)

Remove jumper from pins 111 to 112. (System clock)

In addition, the standard SEC 80/20 read only monitor(ROM) monitor is

removed from the processor 2. It is replaced by a program to allow the

processor to take commands from processor 1. Figure 12 shows the

( program that is located in processor 2’s ROM. This program
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;THIS PROGRAM RUNS ON THE SECOND PROCESSOR IN
; THE DATA FLOW MULTIPROCESSOR SYSTEM

IT CONTINUALLY CHECKS LOCATION OF7FDH FOR
; A COMMAND TO BEGIN EXECUTION

IT THEN READS THE ADDRESS IN LOCATIONS
; OF7FEH AND OF7FFH AND JUMPS TO IT.

ROM .EQU 0
ASSIGH .EQU OF7FDH ;LOCATION WHERE ASSIGNMENT WILL BE
LOC .EQU OF7FEH ;LOCATION WHERE JUMP ADDRESS IS

.ORC ROM
LD A,128 ;SHORT WAIT LOOP

LOOP
DEC A
JP NZ ,LOOP

LD A, (ASSIGN)
CP 1 ;CHECK THAT ASSIGNMENT IS

;FOR THIS PROCESSOR
JP Z,GOTONE WE HAVE BEEN ASSIGNED
LD A,1O :SMALL WAIT COUNT
JP LOOP

GOTONE
LI) HL,(LOC) GET JUMP ADDR
XOR A ;ZERO ASSIGNMENT TO TELL

;ASSIGNING PROCESSOR WE GOT
; IT.

LD (ASSIGN),A
JP (HL) ;JUMP TO ASSIGNED LOCATION

END

Fig 12. ROM Program in Processor 2

(
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periodically checks location F7FCH. If the location has the value 1

(meaning that auxiliary processor 1 is to receive the message) the

processor reads the address from location F7FDH, sets location F7FCH to

zero, and jumps to the address read. When the task to which processor 2

has been assigned is complete, it simply jumps to location 0 (In the

ROM program), and waits in the loop for another assignment.

This mail box method of processor assignment is used to allow

multiple processors to be present in the system without interferance to

UCSD Pascal or to CPM. The unused processors benignly execute their

wait loops waiting for  a command . When ready to test a multiprocessor

application, the user program must set up a program for the second

processor to execute, and then command it to begin execution.

Data Structures. In the data flow processor, all execution

information is in one large array of 16 bit words. The information Is

essentially identical to the information in the simulation data

structures, except that the data is organized in a convenient format

for retrieval from assembly language. The array is broken into

sections of 32 words each. The first secton is the enabled node queue,

after that each section is either a node or an input queue. The

formats for the queues and the node are shown in Table VI.

A second array is used as a queue for output awaiting the serial

port. Both processors insert information into the queue but only

processor 1 retrieves it to send to the console.

Pascal Host. The Pascal host is a Pascal program, running on

processor 1, which interfaces an assembly or set of assembly programs

to the UCSD Pascal P—machine. In this case the host: reads in the

compressed data flow notation made by the simulator, makes the 32 word
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TABLE VI

Data Structure for Hardware Implementation

ENABLEQ

Byte Meaning

0—i Pointer to next free space in queue

2—3 Pointer to next node pointer

4—64 Pointers to enabled nodes

NODE

Byte Meanj~g.

0—1 Number of inputs needed for  this node
to be enabled

2—3 Number of inputs needed minus those
already present

4 Operator

8—35 List of addressed of input queues

36—63 List of output destinations

INQUEUE

Byte 1~eanin~

0—1 Pointer to node

2—3 Next empty location in queue

4—5 Next value to be removed

6—63 Queued values

(
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sections (representing queues and nodes), assigns processor 2 to the

data flow program , then jumps to the routine which puts the flow

processor software into processor l’s RAM, and begins execution of the

data flow multiprocessor.

Software Specific to Processor 1. The intent in developing the

data flow processor was to have the processors be totally autonomous.

That goal is not totally achievable using the SBC 80/20 series

computers. The serial output ports are physically associated to

specific processors. Therefore , for all of the systems output to be

sent to the console terminal, all output functions had to be

consolidated on one processor. Processor 1 has one routine not found

in processor 2; that routine is DUMPB’JF. It is executed once for each

dataflow executed. It checks the output queue and the serial port. If

there are characters to be written and the port is ready to receive

another character, then it sends the next queued character to the port.

Software Specific to Processor 2. In the actual execution of

data flow programs, software in processor 2 is identical to software in

processor 1 with the ommission of the DUMPBUF routine described above.

To use processor 2, however, it is necessary to assign it using the

mailbox assignment scheme described previously. The routine FLOW2, when

called by processor 1 from the Pascal host program, ass igns processor 2

to the execution of the data flow processor software. FLOW2 also

contains the code which allows processor 2 to copy the data flow

processor program into its RAN.

Base Data Flow Processor. This is the software that executed

the nodes of the flow program. When called by the processor specific

software, the routines that comprise the base data flow processor
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retrieve the next enabled node from the enabled flow queue and execute

it. All memory and table interlocks are performed in this section to

assure that, when executing critical sections of code, that all other

processors are locked out. Routines that comprise the base data flow

processor are:

OUTCHAR— This routine puts one character in the output queue .

It performs buss and memory exclusion to prevent

interference by other processors, but it does not interlock

the queue to prevent other processors from inserting

characters between successive OUTCHAR calls.

INTERP— This is the top level procedure of the data flow

processor. It takes a pointer to an enabled node and

executes it.

All of the routines whose name s end in “OP” actually perform the

operation indicated. Operations are identical to those of the

simulator (Table III).

ADDOP— Performs the “+“ operator.

SUBOP— Performs the “—“ operator.

NULOP, DIVO P, GTOP, NEOP, INOP— Stubs for node operator types

that have not been implemented in this version.

COP, ROP— Perform the “C” and “R” operators. Though the usage

of the constant operator and the repeat operator are

different, their implementation is identical.

LTOP— Performs the “c ’ operator.

EQOP— Performs the “—“ operator.

MOP— Performs the “M” operator.

OUTOP— Performs the “0” operator.
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DISTSAME— This routine distributes outputs where all destination

nodes receive the same value. It uses the current nodes

output list to distribute the outputs.

DISTCOND — This routine is used to distribute outputs from a

conditional. If the conditional is true it sends inputs

3,4,5 .. n+2 to destination nodes 1,3,5 .. n /2

respectively. If the conditional is false it sends the

inputs to destinations 2,4,6 .. n/2+1 respectively.
PRWORD— Prints one 16 bit word in hexadecimal in the output

queue. Uses PRBYTE. Assumes that the word to be printed is

in the ilL register pair.

PRBYTE— Prints one 8 bit byte in hexadecimal in the output

queue. Uses PRNIBBLE. It assumes that the byte in in the A

register.

PRNIBBLE— Prints one four bit hexadecimal digit in the output

queue. Assumes that the nibble to be printed is in the low

four bits of the A register.

PRMSG— Prints an ASCII message in the output queue. It assumes

the message follows the call and is terminated by a null

character (OH). It returns control to the instruction

following the message.

BLOCKIO— Waits for the output buffer to be free. When the

buffer is free, BLOCKIO se ts the buffer busy flag to assure

that no other processor can gain access to the output

buffer.

FREEIO— Releases control of the output buffer.

CETIN— This routine, when called, retrieves the queued value
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(if any) of the pointed to input. It updated the pointer to

point to the next input. It also maintains a count of

inputs that still have queued values; if all inputs have

queued values even after removing the needed inputs, then

the node may be reenabled at once.

PUTOUT— This routine places a value in the input queue of a

node ; if the input queue was empty, it decrements the nodes

wait count; and if the node’s wait count reaches zero PUTOUT

enables the node and queues it n the enabled node queue.

POPEQ— Retrieves the pointer to the next enabled node from the

enabled node queue .

PUSHEQ— Puts a node in the enabled node queue .

POPIQ— Retrieves a value from an input queue.

PUSHIQ— Places a value in an input queue.

PEEKIQ— Returns the next value (if any) in an input queue, but

does not remove the value from the queue .

Memory Organization. To ease implementation of the hardware

data flow processor, memory is divided into functional areas . This can

be seen in Table VII which shows the allocation of funcional blocks of

memory to physical addresses. Note that most of the memory is common

to both processors, but there are some areas that belong to one or the

other processor alone. Specifically, each processor has its own RPM

memory from locations F800H to FFFFH . This is where the machine code

of the data flow processor resides. Puting the code into the

individual processors’ RAN has two major advantages over using thc.

common memory: it minimizes buss traffic, because access es to internal

RAN does not require access to the system buss; and it allows the
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TABLE VII

Memory Organization of Hardware Implementation

ADDRESS PROCESSOR 1 PROCESSOR 2

O—OFFFH Switchable boot ROM Program A
ROM (see Fig 12)

1000H—DDOOH Pascal System not used

DDOOII—DDFFH Shared Output buffer for both processors

DEOOH—DFFFH not used not used

E000R—F7FCR Shared Data Flow Program Memory

F7FDH—F7FFI( Shared Processor assignment mailbox

F800H—FFFFH Processor 1 Processor 2
Dataflow Processor Dataf low Processor
Code Code

— V~~V ~~~~~~~~~~~~~~~~~~~~ 
V . - V ~~V



processors’ code to occupy the same address space without having to be

reentrant code.

Initial Hardware Implementation Results

The processor was demonstrated on a data flow program similar to

the looping program of Figure 13 (the only change was to replace

multiplies nodes with addition nodes). The processor could be run in

either a single or dual processor mode. Execution time for the program

could not accurately be measured because the program was largely output

bound. But when a debug option was enabled to indicate the processor

that executed a particular node, neither processor appeared to be

preferred . On subsequent executions of the program, the processor that

performed a particular node changed, while the program results remained

the same. This indicates that the processors performed the first node

that became enabled.

The results described above are not intended to prove the correct

operation of the hardware data flow processor, rather, they are

intended to show that the basic functions of the processor have been

implemented and operate.

Summary

The hardware implementation was intended to provide assurance that

development of a data flow processor from existing microprocessors was

possible and to estimate the amounts of overhead associated with

executing data flow programs. Though it met those initial goals, it is

useful only to demonstrate data flow, because its design was not

optimized for efficient performance. In Section IV the lengths of some

of the processor’s routines will be used as an estimate of the

execution times for those functions.
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V. Results

The results documented in this Section were gathered by executing

the simulation in a variety of configurations using parameters

estimated from existing conventional processors, and from the hardware

implementation . The purpose of this section is to compare the

performance of the simulated data flow processor with that of a

conventional processor of similar instruction speed. To that end, the

following sections will discuss the processor against which the data

flow processor will be compared , the execution times of data flow

nodes, overheads associated with transfer of data, and the performance

of both the data flow processor and the conventional processor in three

trial programs .

Comparison of Dataf low against Conventional Processors

A Basis for Comparison. To be able to discuss specific cases,

it is necessary to describe the way the tests were run. A hypothetical

computer based on the UCSD P—machine was developed as the basis against

which the performance of the data flow simulation could be judged. The

computers execution times were selected by empiracly determining the

execution time of UCSD Pascal running on an 8080 based microcomputer .

This was done by executing a simple looping program with the operator

whose time was to be measured, performed in the loop. The execution

time of the operator is:

E • (TO—TL)/R
Where:

E — time of the operator
TO. time to execute the loop with the operator
TL— time to execute the loop without the operator
R — the number of loops performed
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The execution times of the hypothetical processor is then compared with

the simulated results.

The following is a summary of the execution times derived from

observing the execution of IJCSD Pascal :

multiply,divide — 1.900 msec
add ,subtract,
all compares • 0.450 msec
assignment — 0.350 msec
input,output 1.000 msec

Execution Times for the Dataflow Processor.

The data flow processor has a slightly different se t of

instructions than the hypothetical processor. It, for example, has no

assignment operation. But, it does have overhead associated with both

reading and queueing inputs and outputs. In addition, it has merge and

literal operations which have no direct correspondence to a

conventional processor. These two operators do nothing more than relay

values. Thus almost all of their execution time can be expressed in

terms of the input and output overheads associated with them. In each,

however, there in still a small amount of overhead associated with

decoding the instruction. The following was selected as an estimate of

the time to decode the instruction. Execution times follow:

merge — 0.050 msec

constant — 0.050 macc

The execution times for all other operations above were chosen to be

identical with that of the UCSD Pascal system, with the exception of

the assignment operator, because that function is not envoked

explicitly in dataflow. This is because each operator implicitly
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specifies the destinations of its results. Because the assignment is

handled implicitly as part of each operation, there must be an

additional parameter in the execution time of a node in addition to the

time to perform the operation.

The additional overhead is associated with every queueing and

dequeueing of an input. The hardware implementation was used to

estimate these overheads. The times to store a value into a queue or to

remove a value from a queue were estimated by counting the number of

instructions used in that section of the harware implementation, and

multiplying by an estimated 8080 instruction execution time of 3

microseconds. Using that technique, the time to input a value into a

queue or to remove a value from a queue is 200 microseconds.

V 
Example Program Executions

The following three examples were chosen to be representative of

the types of problems that will occur in a laboratory computer

system. They were not selected to show all of the features of the

data flow processor nor were they intended to be an exhaustive set of

possible applications.

Comparison 1: Simple Looping Program. Figures 13,14, and 15

respectively, show this program in Pascal, graphical data flow, and

notation form. Basically, the program takes the numbers between 1 and

20 and performs a few simple arithmetic operations on each. In so

simple a Pascal program one would tend to think that there is no

parallelism possible. That is not the case! The simulation was run on

this program with one to five processors; results are shown in Table

VIII. Also shown, an estimated execution time for the base
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10 20

( Pig 13. Com psrlaonl:Loop (Graphical)
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FOR I — 1  TO 2O DO
BEGIN
J :— 1*10;
K :— 1*1;
IF J < K THEN L :— K DIV 3

ELSE L :— K;
WRITELN(I , J,K,L);
END;

Fig 14. Comparison 1: Loop (Pascal)

LIT1 C 1 0 1:0 $ P2:2;
P2 + 2 1 1:1 $ LT3:1 LT3:3 146:1 M6:2 145:1 09:1;
LT3 < 3 2 2:20 $ P2:2 04:1;
04 0 1 1
145 * 2 1 2:10 $ GT7:1 09:2;
146 * 2 2 $ GT7:2 GT7:3 09:3;
GT7 > 3 3 $ D8:1 09:4;
D8 / 2 1 2:3 $ 09:4;
09 0 4 4

Fig 15. Comparison 1:Loop (Notation)

TABLE VIII

Simulated Execution Times for Loop Program

Number of Processors Execution Time

5 or more 80.1 msec
4 83.6 msec
3 100.0 msec
2 143.1 msec
1 281.1 msec

Comparable Conventional 189.0 msec
Processor

I (
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conventional processor developed above. As can be seen the

conventional processor outperforme d the single processor data flow

machine. However, as the number of processors increased the data flow

processor surpassed the performance of the conventional processor.

Note also, that there is a diminishing return on the number of

processors. En this case, although there was some performance increase

up to the limit of the number of processors that could be used in the

application, when the fourth and fifth processors were added there was

negligable improvement.

Comparison 2: Ordinary Differential Equation. This program

evaluates a simple ordinary differential equation of the form:

X = A * X  +B

The Pascal code and the corresponding data flow notation to perform V

this function are shown in Figures 16 and 17 respectively. When

executed, the results shown in Table IX were produced. Again the

estimated time for a conventional single processor is shown for

comparison. The single processor was outperformed by the dual processor

data flow machine but not by the single processor. Note again, that

there is a diminishing return on the number of processors effectively

used.

Comparison 3: Equation Evaluation. In this example, processing

of a simple fifth order polynomial is compared. Several different

methods of connecting the graph were explored. The Pascal at the top

of the figures shows the different order of evaluation. In the

notation, this is represented by different connections between parts of

the graph. Figure 18 A,E,C,D, and E show the equation (parenthesized to

show order of evaluation) and the corresponding data flow notation.
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CONST
DT— 1;
K ! —  1;
K 2— 2;
B2— 1;
M l—  4;
N2 3;

VAR
I: INTEGER ;
OFILE: INTERACTIVE;
TIME,X1 ,X2,X1D,X2D,X 1PD,X2DD:INTEGER ;

BEG IN
R EWRITE (OFILE , ‘PRINTER :’);

Xl := 5000 ;
X2 :— 4000;
XID :— 0;
X2D :— 0;
TIME :— 0;

WHILE TINE< 100 DO
BEGIN
FOR. I :— I. TO 10 00

BEGIN
TINE :— TINE + DT;
X1DD :— (_X1*K1_ (X1_X2)*K2) DIV Ml;
X2DD :— (_ (X2_X1)*K2_X2D*B2) DIV 142;
XID :- X1D + X1DD*DT DIV 10;
X2D :— X2D + X2DD*DT DIV 10;
Xl :- Xl + X1D *DT DIV 10;
X2 :— X2 + X20 *DT DIV 10;
END;

WRITELN(OFILE,’TIME— ’,TIME: 5,’ X1—’,Xl: 5,
‘ X2— ’,X2:5,’ X1D— ’,X1D:5,
X2D—’ ,X2D:5,’ X100—’,X 1DD :5,
X2DD—’,X2DD:5);

END;
END.

Fig 16. Comparison 2: Differential Equation (Pascal)
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XlO R 1 1 $ Xl :i T1:1 M1 :i;
X100 B. 1 1 $ X1D:1;
X20 R 1 1 $ Ml:2 X2:1;
X2DO R 1 1 $ T2:1 X2D:l;
Ti * 2 1 2:—! $ P1:1;
P1 + 2 2 $ X1DD:1;
T4 * 2 1 2:1 $ DIVIOI:1;
T6 * 2 1 2:1 $ DIV 1O2: i ;
Ml — 2 2 $ T3:1;
T3 * 2 1 2:—2 $ P1:2 142:2;
T2 * 2 1 2:—i $ M2:l;
142 — 2 2 $ X200:1;
T5 * 2 1 2:1 $ DIV1O3:1;
Ti * 2 1 2:1 $ DIV1O4:l;
DIV1O1 / 2 1 2:10 $ X1D:2;
DIV1O2 / 2 1 2:10 $ Xl:2;
DIVIO3 / 2 1 2:10 $ X2D:2;
DIV1O4 / 2 1 2:10 $ X2:2;
X 1DD I 2 1 2:4 $ T4:1 IF 1:7;
X1D + 2 2 $ T6:1 IF 1:6;
Xl + 2 2 $ IF1:5;
X2DD / 2 1 2:3 $ T5:1 IF1:lO;
X2D + 2 2 $ Ti:! IF1:9;
X2 + 2 2 $ IF1:8;
TO + 2 1 2:1 $ IF 1:3;
tO + 2 1 2:1 $ IF1:1 IF1:4;

INIT R 1 0 1:0 $ TO:1 10:1 X1DO:1 X2DO:l;
INIT1 C 2 0 1:5000 2:4000 $ X1O:1 X20:l;
K 0 0 2 0 0 0 0 $ ;

IF1 < 10 9 2:10 $ TO:1 RTO:l 10:1 K:0 X1O:l
RX1O:1 XiDO:1 RX1DO:1 K:0 RX1000:1
X20:1 RX2O:l X2DO:1 RX2DO:l K:O RX2DDO:i;

1F2 < 8 6 2:100 4:0 $ TO:1 K:O 10:1 K:0 XlO:1
K:0 X100:1 K:0 X20:1 K:0 X2DO:l K:0;

RTO R 1 1 $ 1F2:1 1F2:3 OUT:i;
RX1O R 1 1 $ 1F2:5 OUT:2;
RX1DO B. 1 1 $ 1P2:6 OUT:3;
RX1000 R 1 1 $ OUT:4;
RX2O R 1 1 $ IF2:7 OUT:5;
RX2DO R 1 1 $ IF2:8 OTJT:6;
RX2DDO R 1 1 $ OUT:7;

OUT 0 7 7 $ ;
I

( Fig 17. Comparison 2: Differential Equation (Notation)

_  V 

69 

~~~~~~~V V_VV V V V
~~~~~~~~~~~~~~~~ i,V ~~~~~~~~~ ~ V V 4 ”  ~~~~ -~

~~~~~~~~~~~~ 
---

~~~
.

~~~~~~~~~
‘ ~~ w-~

-
~-— ~~~~~~~~~~~~~~~~~~~~~ ~_ 

~~9~~~~I — 
—_~~~~~~~~~~~~~~~~~ — 

~~~~~~~~~~~ W 
____________________



TABLE IX

Simulated Execution Times for ODE Program

Number of Processors Execution Time

7 or more 2705.8 msec
6 2705.8 msec
5 2707.8 msec
4 2735.0 msec
3 2797.0 msec
2 3005.8 msec
1 5257.8 msec

Comparable Conventional 3406.2 msec
Processor

C
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Pascal:

X2 := X*X;
X3 :— X*X2;
X4 := X2*X2;
X5 := X*X4;
ANS := ((((X*A)+(X2*B))+ (X3*C))+((X4*D)+(X5*E)));

Notation:

INIT C 7 0 1:3 2:3 3:—2 4:2 5:—S 6:1 7:3 $
X: 1 SO1:1 A 1X:2  A2X2:2  A3X3:2 A4X4:2 A5X5:2;

X B. 1 1 $ X2:1 X2:2 X3:2 X5:2 A1X :1 OUT:1;
X2 * 2 2 $ X3:1 X4:1 X4:2 A2X2:l;
X3 * 2 2 $ A3X3:1;
X4 * 2 2 $ X5: 1 A4X4: 1;
X5 * 2 2 $ A5X5:l;

A1X * 2 2 $ S01:2;
A2X2 * 2 2 $ S0 12:2;
A3X3 * 2 2 $ S0123:2;
A4X4 * 2 2  $ S45 1;
A5XS * 2 2  ~~S45 2;

SOl + 2 2 $ S012:l;
S012 + 2 2 $ S0123:1;
S0123 + 2 2 $ S012345:1;
S45 + 2 2 $ S012345:2;
S012345 + 2 2 $ OUT:2;

OUT 0 22

Fig 18(A). Comparison 3: Expression Evaluation
(Order of Evaluation #1)
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Pascal: V

X2 :— X*X;
X3 X*X2;
X4 := X2*X2;
X5 :— X*X4;
ANS := ((((((X*A)+(X2*B))+(X 3*C))+(X4*D))+(X5*E)));

Notation :

INIT C 7 0 1:3 2:3 3:—2 4:2 5:—S 6:1 7:3 $
X:1 SO1:1 A1X :2 A2X2:2 A3X3:2 A4X4:2 A5X5:2;

X R 1 1 $ X2:l X2:2 X3;2 X5:2 A1X:1 OUT:1;
X2 * 2 2 $ X3:1 X4:1 X4:2 A2X2:1;
X3 * 2 2 $ A3X3:1;
X4 * 2 2 $ X5:1 A4X4:1;
X5 * 2 2  $ A5X5:1;

AIX * 2 2 $ S01:2;
A2X2 * 2 2 $ S012:2;
A3X3 * 2 2 $ S0123:2;

V A4X4 * 2 2 $
A5X5 * 2 2 $ S012345:2;

SO! + 2 2 $ S012:1;
S012 + 2 2 $ S0123:l;
S0123 + 2 2 $ S01234:l;
S01234 + 2 2 $ S012345:l;
S0l2345 + 2 2 $ OUT:2;

OUT 0 22

Fig 18(B). Comparison 3: Expression Evaluation
(Order of Evaluation #2)

(
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Pascal:

X2 :~ X*X;
X3 :— X*X2;
X4 :— X*X3;
X5 :—  X*X4;
ANS :— ((((X*A)+(X2*B))+(X3*C))+((X4*D)+(X 5*E)));

Notation:

INIT C 7 0 1:3 2:3 3:—2 4:2 5:—S 6:1 7:3 $
V X:1 S01:1 A 1X:2 A2X2:2  A3X3:2 A4X4:2 A5X5:2;

X R 1 1 $ X2:1 X2:2 X3:2 X4:2 X5:2 A1X:1 OUT:1;
X2 * 2 2 $ X3:1 A2X2:1 ;
X3 * 2 2 $ X4:1 A3X3:1 ;
X4 * 2 2 $ X5:1 A4X4:1;
X5 * 2 2  $ A5X5 :1;

A iX * 2 2 $ SOi:2;
A2X2 * 2 2 $ S012:2; V

A3X3 * 2 2 $ S0123:2;
A4X4 * 2 2 $ S45: 1;
A5XS * 2 2 $ S45 :2;

SOl + 2 2 $ S012:i;
S012 + 2 2 $ S0123:1 ;
S0123 + 2 2 $ S012345:1;
S45 + 2 2 $ S012345:2;
S012345 + 2 2 $ OUT:2;

OUT 0 2 2  $ ;

Fig 18(C). Comparison 3: Expression Evaluation
(Order of Evaluation #3)
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Pascal:

X2 :— X*X;
X3 :~ X*X2;
X4 :~ X*X3;
X5 := X*X4;
ANS := ((((((X*A)+(X2*B))+(X3*C))+(X4*D))+(X5*E)));

Notation:

INIT C 7 0 1:3 2:3 3:—2 4:2 5:— 5 6:! 7:3 $
X:1 501:1 A1X:2 A2X2:2 A3X3:2 A4X4:2 ASX5:2;

X R 1 1 $ X2:1 X2:2 X3:2 X4:2 X5:2 AiX: ! OUT:!;
X2 * 2 2 $ X3: 1 A2X2: 1;
X3 * 2 2 $ X4:1 A3X3:1;
X4 * 2 2 $ X5:i A4X4:1;
XS * 2 2 $ A5XS:1;

AiX * 2 2 $ S0i:2;
A2X2 * 2 2 $ S012:2;
A3X3 * 2 2 $ S0123:2;
A4X4 * 2 2 $ S01234:2;
A5X5 * 2 2 $ S012345:2;

SOl + 2 2 $ S012:1;
S012 + 2 2 $ S0123:1;
S0123 + 2 2 $ S01234:1;
S01234 + 2 2 $ S012345:1;
S012345 + 2 2 $ OUT:2;

OUT 0 2 2

Fig 18(D). Comparison 3: Expression Evaluation
(Order of Evaluation #4)
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Pascal :

X2 :— X*X;
X3 :— X*X2;
X4 :— X2*X2;
X5 := X2*X3;
ANS :=

Notation: 
V

INIT C 7 0 1:3 2:3 3:—2 4:2 5:—5 6:1 7:3 $
X:l S01:1 A1X:2 A2X2 :2 A3X3:2 A4X4 :2 A5X5 :2;

X R 1 1 $ X2:i X2:2 X3:2 A1X:1 OUT:1;
X2 * 2 2 $ X3:i X4:i X4:2 X5:1 A2X2 :i;
X3 * 2 2 $ X5:2 A3X3 :i;
X4 * 2 2 $ A4X4:1;
X5 * 2 2 $ ASX5:1;

A iX * 2 2 $ SO1:2;
A2X2 * 2 2 $ S012:2;
A3X3 * 2 2 $ S0123:2;
A4X4 * 2 2 $ S01234-2;
A5X5 * 2 2 $ S012345:2;

SO1 + 2 2 $ S012:1;
S012 + 2 2 $ S0123: 1;
S0123 + 2 2 $ S01234:1;
501234 + 2 2 $ S012345:l;
S012345 + 2 2 $ OUT:2;

OUT 0 2 2  $ ;

Fig 18(E). Comparison 3: Expression Evaluation
(Order of Evaluation #5)
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Table X shows the execution times for each of the connectivities and

also the performance of a conventional processor.

The order of execution has a distinct effect on the execution

times of the multiprocessor data flow processors. As can be seen there

is a 20 percent difference in processing times between the fastest and

slowest of the four processor configurations. In fact, cases C and D

could not use all four processors, the maximum parallelism achieved for

them was three processors.

In this example , the conventional processor was considerably more

eff icient  than the single or double processor data flow processor.

This can be at t r ibuted largely to startup and finish delays in the data

flow processor. This effect is quite similar to Inefficiencies caused

when pipeline processors are starting up or shutting down . Consider

F another case of Figure 18(B), executed four times in succession, with

all input values present at the start of execution. The execution

times are shown in Table XI. Here the data flow processor can begin to

increase the multiprocessing level. The maximum number of processors

used at any time was 12.

Parallelism Achieved

Theoretical Parallelism. During execution of a data flow program,

the simulator keeps a record of the maximum number of processors used

at one time, by giving the simulated processor a large number of

processors, the data flow program will use as many processors as it

can. After execution, the maximum number of processors used will be

determined by the data flow program. In each of the examples

previously discussed, the highest number of processors shown on the
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TABLE X

Simulated Execution Times for Expression Evaluation

4.

Number pj F~ceç~~ io~ time jinmsec)
Processors A B C D E

4 18.5 17.5 N/A N/A 17.5
3 18.5 17.9 21.0 20.0 17.9
2 21.5 20.5 22.1 21.0 20.6
1 34.2 34.2 34.2 34.2 34.2

Comparable Conventional 20.7 msec
Processor

TABLE XI

Simulated Execution Times for Expression Evaluation
with Multiple Inputs

Number of Processors Execution Time

12 or more 27.6 asec
11 27.6 msec
10 27.8 msec
9 28.2 macc
8 28.9 msec
7 30.0 meec
6 32.1 macc
5 35.0 msec
4 40.9 msec
3 50.5 msec
2 71.6 msec
1 138.4 msec

Comparable Conventional 80.0 msec
Processor
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execution table is the maximum number of processors usable by the

program. The examples show that many processors can be brought to bear

on what would normally be considered a single processing task. En the

case of the multiple evaluation of the equation, as many as 12

processors were working at one time.
S.

Practical Parallelism. This nebulous term shall be defined as

the actual effect of parallelism during execution of a program.

Practical parallelism of one would mean executing a program in the same

time as the hypothetical processor. Parallelism of three would mean

execution in one third the time. To allow a meaningful comparison, the

unit of comparison shall be the the hypothetical processor defined

above.

From the examples, (Tables VIII, IX, X, and XI) it can be seen

that though the maximum number of processors usable was generally very

high (5 to 12 processors), the effective parallelism in the cases shown

was relatively low (0.58 to 2.9). There appear to be two causes for

this: first, the algorithms often did not allow a significant amount of

actual parallel execution; and second, there is significant overhead

associated with queueing and dequeueing information in the data flow

system.

The algorithms used in the examples were selected to represent

typical types of operations carried out within a laboratory computer.

One of the prime constraints in this investigation is that it consider

a typical laboratory workload. Therefore, the inability of the

processor to achieve high paralleliem appears to represent a potential

problem with the processor, not the algorithms tested.

The overhead caused by the queuetug and dequeueing values does
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significantly effect the performance of the processor. In the

examples , the data flow processor was generally slower than the

conventional processor until two or three processors was added. Table

XII shows the dataflow processor execution times for comparison 2, ODE

evaluation, with the assumption that there is no overhead for queueing

and dequeueing. The table also has a percentage column Indicating the

percentage of increase achieved by eliminating the overhead. By

reducing the overhead of the data flow processor, a single processor

data flow processor has similar execution time to a conventional

processor. The addition of the second and third processor immediately

give the data flow processor faster execution time.

In the examples tested , the net performance increase as more than

four processors were added was not significant. Reducing the overhead

V 

allowed the second and third processors to net a significant

performance increase over the couventiottal processor , rather than

merely catching up.

Cost Effectiveness of Data Flow

The cost effectiveness of this approach cannot accurately be

determined. In the hardware implementation, the cost of a two

processor system was approximately twelve percent higher than a single

processor system. On the other hand, there are a significant number of

intangables that must be considered:

Code density— Data flow notation takes signifigantly more of the

machine memory to store than a corresponding conventional

processor instruction.

Interpreter size— The interpreter of the hardware implementation
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TABLE XII

Simulated Execution Times for ODE Program
(no overhead)

Number of Processors Execution time Improvement

7 or more 1397.0 msec 48.4%
6 1397.0 msec 48.4%
5 1400.0 msec 48.3%
4 1440.5 msec 47.3%
3 1442.3 msec 48.4%
2 1581.7 msec 47.2%
I 2962.0 macc 43.7%
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was relatively small (less than one thousand bytes) but the

implementation did not include many functions necessary for a

useable (rather than a demonstration) system. For example:

floating point operations, procedure calls, structures, input—

output other than simple terminal operations were not

installed. If those functions were added the interpreter

size would increase dramatically.

Data flow startup/shutdown delays— As seen previously

(comparison 3), a data flow processor does best under

circumstances where values may be pipelined through a set of

calculations. Many tasks are not structured well for such an

environment. For example, iterative operations have limited

parallelism, if the loop is short, as can be seen in example

1 (Loop), and short independent calculations such as example

3 (Equation evaluation) spend the majority of time starting

up and shutting down. These problems can be minimized by

grouping together a set of equations which may be executed

in parallel, or by evaluating the same equation for multiple

inputs at the same time (example 3 multiple inputs).

Difficulty with structures— Many tasks need to use data

structures such as tables. Data flow processors cannot

efficiently operate on such structures. Other than the

potential solution described in Section II, specifically:

single use structures, there does not appear to be any

practical way to deal with structures.

tnterprocessor interferance— Using two 8080 processors sharing

an intel Multibus there was virtually no interferance. This
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can be concluded because the buss access time for a memory

access is approximately 500ns, while the processors are

accessing the buss only rarely (Remember that the code for

the data flow processors is executing from on board memory)

to fetch the next data flow node or data value. Assuming one

operation on shared memory every 15 instructions, each

processor is imposing a 1% load on the buss. As the number

of processors increase, however, there will be increased buss

contention. This contention will slowly result in decreased

benefit from additional processors.

The intangables just discussed make it impossible to

quantitatively assess the cost effectiveness of the data flow processor

at this time. Qualitatively, however, it appears that a data flow

processor constructed using an existing microcomputer does not seem to

be practical. Because of the high overheads associated with queueing

and dequeueing values and maintaining the data flwo structures, the

data flow microprocessor is significantly slower than its conventional

counterpart. This results in the amount of processing speed increase

to ‘be expected per additional processor is minimal. While the cost of

the system rises as the number of processors is increased.

Rather than using a conventional microprocessor, a special

purpose processor that performs the data flow operations in microcode

would very likely be quite practical . The concept of generating a

processor for a specialized application is not new. Western Digital

V Corporation recently released a microcoded three chip processor that

directly implements UCSD P—code. The savings in execution time from an

( interpreted P—machine to the Microengine is reported by Western Digital
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as being approximately a factor of 20. If such a technique were used

to implement a data flow processor, most of the overheads associated

with data flow processing could be eliminated.

( .~

V I  

_ _ _ _ _ _ _  
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VI. Conclusions and Recommendations

Background

The purpose of this e f fo r t  was investigation of data flow

techniques as they apply to the single user multiprocessor system. The

goals were to assess the practicality of developing a single user data

flow processor using current technology. Factors bearing on this goal

are ccist of the system, flexibility , and ease of use.

Today , there is much interest In generating a machine that can

directly execute a data flow representation of a problem. Because this

approach saves the need to approximate data flow parallelism on

conventional computers , such a system would theoretically be capable of

many times the throughput of conventional systems.

This report described an effort to determine the usefulness of a

small single user data flow processor. The constraints placed on the

system were that it be reconfigurable, non—realtime, small, single user

and operate in the laboratory environment. An adaptable simulator to

model dataf low processors was developed, then a hardware implementation

of a data flow processor was developed to provide insight into the

functions needed in a data flow processor. It also provided a means of

determining the delays occurring when an input or output is transmitted

from node to node.

Summary of Important Findings

The simulator was found to be a useful tool for evaluating the use

of data flow in a computer system. It allowed the parameters of the

data flow processor to be easily varied. This flexibility made it
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possible to determine the number of processors that could be used by a

particular algorithm, while it assessed the effects of varying the

execution and overhead times.

The hardware implementation showed that a dual microprocessor can

be used to construct a data flow processor. It was also useful as a

means of determining the amount of overhead to be expected in data flow

execution. It was not intended to be a practical data flow processor.

As such, the design was not intended to optimize performance, ra ther ,

it was intended to permit evaluation of overhead and delays resulting

from queueing and dequeueing of data.

Using the overhead values derived from the hardware implementation

and as set of sample execution rates, derived from a conventional

processor, three comparisons between data flow processing and

conventional processors were performed using the simulator. A data

flow single—processor was significantly slower than a conventional

processor with the same instruction execution times. When a second

processor was added to the data flow processor, it became more

competative . Additional processors produced more improvement , however ,

there was a limit to this improvement, where additional processors

produced little or no improvement.

Conclusions

The initial intent of this investigation was to produce a

quantitative analysis of data flow performance versus that of a

conventional processor. This could not be totally accomplished. The

need to develop tools by which an arbitrary data flow processor could

be tested (the simulator) and the need to gain actual experience in the
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overhead that is incurred in the execution of a data flow program (the

hardware implementation) occupied a large portion of the time

allocated.

A qualitative assessment of data flow performance in that

environment was, however, completed. The results tend to show that

building data flow processors using current microprocessor

architectures is impractical. The overheads associated with

manipulating the queues of data and enabled nodes is simply too great

to allow practical competition with conventional processor

architectures. For example, a data flow multiprocessor using two to

three microprocessors would be necessary simply to be of comparable

speed to a conventional processor.

One reason for this is that a large portion of the time to

execute a node is spent performing overhead functions such as queue

management and distribution of outputs. Making a data flow processor

more efficient could be accomplished in either of two ways:

Increase the proportion of time performing operations.

If the time spent executing the function of the node is

increased by increasing the complexity of the node ’s

function, the processor will spend a larger part of its time

doing work rather than overhead. This can be accomplished by

raising the complexity of th~ functions at the nodes. For

example, a processor whose nodes coula perform trigonometric

and hyperbolic functions rather than simple arithmetic

functions could decrease the number of nodes used in some

functions. This would in turn decrease the amount of overhead

(overhead is related to the number of nodes and their
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outputs) and increase the program’s efficiency. Such

functions could be implemented in software if the data flow

processor is interpreted (as was the hardware imp lemen tation

discussed in Section IV) or in microcode (by adding the

additional functions to the processors instruction set).

Directly decrease the overhead needed to ~~rform a

node. Current microprocessors have no intrinsic facilities

for queue management , table exclusion or distribution of the

outputs as is needed in data flow processing. If a special

microprocessor chip or chip set could be built to directly

execute data flow (perform the operations in hardware or in

microcode), the overhead could be greatly reduced . Such a

processor would have built—in capabilities to interface with

other processors, and it would automatically exclude other

processors from critical areas of the system when necessary.

It would also have the capability to easily enter or remove

elements of a queue . In Section IV , the performance of a

data flow processor without overheads was discussed. A

special purpose dataflow processor would clearly fall closer

in performance to those figures than to the figures of a

dataflow processor with overhead. The concept of generating a

processor for a specialized application is not new. Western

Digital Corporation recently released a microcoded three chip

processor that directly implements UCSD P—code. The savings

in execution time from an interpreted P—machine to the

Microengine is reported by Western Digital as being
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approximately a factor of 20. If such a technique were used

to implement a data flow processor, most of the overheads

associated with data flow processing could be eliminated.

Recommendations

This area has a significant potential for further study. Three

areas seem most promising: development of features to allow easy

programming in dataflow notation, further enhancements to the

simulator, and design of a microprocessor architecture to directly

execute dataflow notation.

Language Development. Development of data flow programs is

limited by the programmer’s ability to express graphical information.

There appear to be two approaches possible to simplifying the

programmer’s task: first, an interactive graphical programming system

that would allow the programmer to express any well formed data flow

program visually on a screen ; or secondly, to develop a translator from

a block structured language, such as Pascal, to a data flow program.

Further Enhancements to the Simulator. To make the

simulation more realistic the following features must be added :

Change Conditional Branching. Using the conditionals as

defined in this report, determinate programs are diff icult

to write. if the conditionals and marge operator as defined

by Denning (Ref 9:93) were implemented, da ta flow programs

could easily be assured deterministic.

More Data Types. Real, string and general scalar types should

be added.

Procedures. Use of procedures to simplify programs has been
; (
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used in virtually all programming languages. Ruinbaugh (Ref

21) describes the features of a data flow processor with the

capability to use recursive procedures.

Data Structures. Because data structures are difficult to

manipulate within a data flow machine this would be very

useful. It would give the system designer the ability to

test different structure manipulation techniques.

Input/Output. The simulator, as implemented, has a very simple

input/output capability. It can query the user for a value,

and it can output a set of values to the user. A system of

file I/O would make evaluation of programs that access stored

data possible.

Desigfl of a Data Flow Microprocessor. As discussed previously,

a special purpose data flow microprocessor could be the most practical

method of implementing a data flow processor. To be practical, such a

microprocessor should be capable of manipulating queues directly,

rapidly distributing outputs, and be capable of interfacing with

several other processors.

‘
C
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