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1. Introduction and Summary

Readiness evaluation is one of the most important problem areas in
the study of complex military systems. Such studies usually encompass a
large number of measurements on the performance of the various subsystems and
then attempt to construct reasonable models that relate the evaluation indices
of the subsystems in a meaningful functional manner. This is indeed very
often a formidable task due to the complexity and multiplicity of variables
and functions. However, it is often the case that many of the measured vari-
ables correlate with each other. These intercorrelations reveal that variables
contain some information on each other. Accordingly, if these intercorrelations
can be utilized in a manner that allows considerable reduction in the number
of factors to be considered, without much loss in the information in the orig-
inal data, a significant step can be taken towards simplification of the prob-
lem. The present paper applies several well-known multivariate statistical
methods to attain this goal. The main objective of the present paper is to
discuss what some of the available multivariate statistical methods can attain
and to show that such methods can be easily implemented by utilizing appropriate

computer packages. In particular, we discuss the methods of principal and
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rotated factor analysis and we apply these methods to simulated data on 21
operational readiness variables related to Navy destroyers. The variables

and the corresponding parameters werc taken from the Institute of Naval Studies
study [9]. This study analyzes actual data collectz2d over several years on 83
< . destroyers. It extends to various aspects of the readiness problem and relates

operational readiness to material readiness. As mentioned in our recent survey

- paper [5], we believe that study [9] is of fundamental importance. It employs
a variety of multivariate statistical procedures in a penetrating manner and
provides a sound analysis of complicated problems. Our intention is not to
duplicate that study but to provide an exposition on the application of the
multivariate methods mentioned above. We have chosen to create data sets by
simulation and not to use actual data since in this way we can generate data
following multivariate normal distributions having specific structures. Thus,
by applying the multivariate methods on different sets of simulated data we can
illustrate the strength of the methods and what can actually be achieved. We
will show that the systems (destroyers) in this example can be classified accord-
ing to the values of two or three factor scores, which relate all 21 variables
in an orthogonal fashion. The factor scores can be graphed and their periodic
determination can provide important follow-up on the state of readiness. Sta-
tistical control charts can be devised to provide early detection of deteriora-
tion in the state of readiness. Similarly, if the data consists of a mixture

of two or more samples from different multivariate populations, the plotting of
factor scores obtained by a factor analysis of the whole data set can reveal the
existence of different clusters. These ideas will be demonstrated in the pre-
sent paper. We start in Section 2 with a description of the simulations and the
structure of the data sets. Section 3 is devoted to principal and rotated factor
analysis. 1In Section 4 we discuss the application of factor analysis to detect-

ing changes in the state of readiness of systems. The mathematical development
is presented in appendixes.

The implementation of multivariate analysis of the type discussed in the
present paper previously required development of computer programs and systems
for data storage and analysis and this hindered its growth and acceptance. Pre-
sently there are several statistical computer packages which are available in

many computing centers and which are easily implementable. The well-known

e r————
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Biomedical Computer Programs (P-Series, 1977) [7], Statistical Packages for
the Social Sciences (SPSS) [11], and the Statistical Analysis System (SAS)
[3] are the most suitable for our purposes. Fortran programs for factor
analysis and other related multivariate techniques can be found in Cooley
and Lohnes [6], Overall and Klett [10] and more specifically for the methods
used in the present paper in our report [4]. In the present paper we apply
the SAS procedures. In the appendixes we discuss and also present the SAS

programs that we have used.

2. Simulating Data Sets

In the present study we construct data sets on the basis of the

operational readiness indices, ORI, of the following 21 variables.

v, Ship control SHC
v, Navigation : NAV
vy Surface operations - CIC SOPS
(Combat Information Center)
vy Battle communications BATC
2 Surface gunnery (non-firing) SGUN
v6 AAW (Anti-air Warfare) - CIC AAWC
v7 AAW - Weapons Control AAWN
Vg Engineering ENG
Vg Setting material condition SMC
Vio Damage control DC
Vi1 NBC (Nuclear, biological, and chemical) NBC
Vio Low-visibility piloting LVP
Vi3 CIC - Assistance in piloting CICAP
Vi CIC - Assistance in ASW CICASW

(Anti-submarine warfare)
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Vis ECM (Electronic coun%ermeasures) ECM
V16 Modified full-power run BFPR
V17 Surface firing : SFIR
Vis AA firing AAF
Vig Gunfire support GUNS
Va0 Communications COMM
v21 ASW operations ASW

The raw scores obtained on these variables by the 83 ships during
training can be obtained in the Institute of Naval Studies [9]. We consider
rather the ORI's which are indices obtained from the raw scores by the
transformation

ORI = 5 + 2 (NSCORE) (2.1)

where NSCORE denotes the standard normal fractile corresponding to the

percentile point of the raw score. More precisely, if «x < eee &

(1) = *(n)

is the order statistic of a sample of n observations on a variable x ,

= ¢~ [ “ A
is z(i) =0 n+l) o I digoongB

where %(z) is the standard normal C.D.F. Theoretically the ORI values, of

the NSCORE corresponding to x(i)

each of the variables vi (i=1,...,21) , are normally distributed with mean

E{vi} =5 (i=1,...21) and variance Varivi} =4 (i=1,...21). 1In addition,

tihe ORI variables, v1 , are not independent. We assume that the vector

e IVI""'VzllT has a multinormal distribution N(&,é) , with mean vector
R 5{ , Where & = [l,...,l]T , and covariance matrix x = 4% where R

denotes the matrix of intercorrelations among the 21 variables v For the

i
purpose of simulating data sets we have used the matrix R given in the

Institute of Naval Studies [9] and presented here in Table 1. The simulation
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20
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1.00
J. 08
0.17
0.26
0.27
2.25
0.04
0.03
2,32
0.4
2.31
2.15
2. 35
a2.11
J2.10
n. 01
J. 3
2.04
J.032
2. 07
.03
0.11
.32
2. 08
2.35
Je.12
0. 05
1.00
0.17
2.15
P -3
D.27
9. 07
J. 03
J.12
J. 03
.05
3.0
.06
3.10

2.05 2.31

2.17

0.17
1.00
0.01

D.22
0.01
0.05
N.13
0.13
J.04
0.93
0. 08
0.14
0.17
0.22
0.03
n. 01
.14
D.20
N.20
0. 04
0,03
0.12
0.183
n.143
n. 04
n.25
D.15
0.0
1.9
0. 97
0.13
0. 02
D.13
0. 09
D.19
0. 03
0. 02
D.93
0.324

0.04 0.35

0.27
2.15
N.22
0.07
1.90
.07
0. 95
0.25
0.13
0.25
0.03
0.17
0.14
2.14
N.22
0.10
.01
.21
0.20
N.17
0.04
0.0
.12
0.23
.14
9.20
0.26
N.29
0. 01
0.13
0.07
1.00
D. 02
.01
.02
.13
D.09
D.09
0.03
9.23
0.13
J.13

TABLE 1

INTERCORRELAT IONS BETWEEN

ORI VARIABLES v

0.07
0. 08
0,02
0. 05
n. 02
1.00
0. 03
0.23
0.10
0.23
0.12
0.13
0.1
0.11
0.17
D.13
0.13
Jg.10
0. 903
0.03
0. 07
d.12
0. 07
0.39
0.11
0. 03
2. 904
0.13
.13
0.2

0.1
0. 03
1.00
0.10
0.00
0. 03
0. 05
0. 03
.34
0.
.23

0.12
n.13
a, 3
J.13
0,23
0.23
0.10
1.00
0.20
0.324
0.13
0.09
.31
0. 03
0.22
J.0%
0. 05
0. 01
0. 02
0.12
0. 04
0. 907
0.907
n. 03
0.03
n. 04
n. 03
0.04
n.14
0.25
.14
.10
0. 00
0.20
1.00
0. 03
0. 11
0,13
D.03
0. 02
.12

]

0.31
0.03
0,03
0,09
0,03
0. 039
0.23
0.03
0.334
0. 03
1.00
n. 03
0.22
.01
0.13
Bal2
0.13
0.0?7
0.03
n. 02
0. 09
N.13
0.03
0. 01
D.22
0.20
0.15
0. 08
0. 25
0. 02
0,17
2,03
0.12
0. 09
0.13
.11
0. 04
1.00
N. 03
D.12
.10
2.03

Ho- %o
0.45 2.10
0.01 0,190
N.14 9,22
0.03 0.13
.14 4,22
0,33 0.13
0.13 9.1
0. 94 2,05
.05 09.03
0.13 0,402
0.239 0.13
0.93 0.10
1.00 0.17
.12 0.03
D.17 1.00
0.07 0.03
0.17 0.03
0.13 0.13
0.93 0,10
0.23 0.13
0.03 0,400
.08 0,13
0.14 0.2
0.23 0.2
0.17 2.40
Bl 0485
.11 0.1
.05 0,09
0.17 0,03
0.34 0.351
0.14 0,10 ¢
0.23 0.13
0.01 0.17
0.24 0.22
D.31 0.83
0.94 0.12
0.01 0.12
.12 0,03
D.12 0.07
1.00 0,03
.03 2,03
.93 1.00

2.96 0,03
0.01 0.20
0.901 0.20
0.13 0,10
20.04 9,01
0.13 2,03
0,17 4,032
D.93 0.19
1.00 0,13
0.13 1.0240
D.13 0.53
2,07 0,08
N.14 0.04
D.04 2,07
D.14 2,20
J.21 0.17
.13 0.03
0,05 0.028
0,07 0,02
0.13 0.29
D.13 0.13
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was performed according to an algorithm described in Appendix I. It is based
onsimulating independent standard normal variates, z , and transforming them

to corresponding vy variates (i=1l,...,21) by a transformation involving

the eigenvalues and eigenvectors of the correlation matrix. An SAS program
for such simulation is given in Appendix III. In Table 2 we present a sample

of n = 50 vectors of six variables (vl, Vs Ver Vs Vios vla) simulated

according to this program. The sample means, standard deviations (STD DEV)
and intercorrelations are provided in Table 3. As illustrated, the sample
statistics are generally deviating to some extent (according to their sampling
distributions) from the parameters used. However, in actual cases the popula-
tion parameters are unknown and the analysis must be based exclusively on the
sample values, with the possible incorporation of some prior information, and

this is what we are doing here.

It should also be remarked that the simulation is based on the matrix
of intercorrelations of the above six variables only. This matrix is, how-
ever, a submatrix of that given in Table 1 and can be obtained by reading
the appropriate rows and columns. In the course of the present study several
different data sets were simulated, employing the same algorithm with only

slight modifications from case to case, as will be explained later.

3. Principal and Rotated Factor Analysis

It is generally difficult to make comprehensive inference of multi-
variate data without further analysis, due to the large number of inter-
correlated variables. Even in the case of only six variables it will be diffi-
cult to discriminate between '"good" and '"bad" systems, just by inspecting the
data sets, or by performing a univariate analysis on each variable separately.
The methods of multivariate analysis are designed to provide the needed
information in cases of many correlated variables. In the present section
we discuss the methods of principal and rotated factor analysis, and show how
they can be applied to the evaluation of the readiness of systems. An outline
of the theory is given in Appendix II. We refer the reader for an extensive
development of the theory and computer programs to the books of Overall and
Klett [10], Cooley and Lohnes [5], Tatsuoka [12], and Van de Geer [13].

- =
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TABLE 3

SAMPLE STATISTICS OF THE
SIX VARIABLES IN TABLE 2

1 5 Ve b b Yi4
MEANS 4.860 4.577 4. 64k 4.728 4.993 4.914
STD DEV 1.998 1.897 2.180 2.244 1.916 2.468

CORRELATION MATRIX
1 Vs M3 ¥2 Y12 V14

v,  1.000000 0.535377 0.183915 0.558162 0.399037  0.519481
vy  0.535377 1.000000 0.158194 0.362251  0.238443  0.128076
ve  0.183915  0.158194 1.000000 0.237437  0.192687  -.023431
v,  0.558162  0.362251 0.237437 1.000000 0.492125  0.617677
vi, 0.399037 0.238443 0.192687 0.492125 1.000000 0.239948
vy, 0.519681 0.123076 -.023431 0.617677  0.239948  1.000000

3.1 Principal Factor Analysis

The main objective of principal factor analysis is to provide a small
number, m , of linear combinations of the original variables

vl,...,vp (2<m<p) so that (i) a large proportion of the total variance of

the original variables should be accounted for by the m transformed vari-
ables, and (ii) the transformed variables should be uncorrelated. It is
shown in Appendix II that the solution of this problem is obtained by deter-
mining first the m largest eigenvalues of R and the corresponding eigen-
vectors; followed by determination of factor scores for each system. Let

Al s B Ap > 0 be the eigenvalues of the p x p correlation matrix R -

Since 5 is positive definite, these eigenvalues are all real and positive

i
1~M

e .
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(with probability one). Moreover Al+...+Ap = p . Hence, choose m so

that (A1+...+Am)/p is "close enough" to 1. This ratio is the proportion

of the sum of variances of v1(1=1,...,p) that is accounted for (explained)

by the m factors. These factors are constructed in the following manner.

Let k(j) (j=1,..,m) be the orthonormal eigenvector of R corresponding
to Aj (j=1,...,m) . The m factor-score variables corresponding to
X = [vl,...,vp]T are given by

g
£ /X'j'km&’ 3% b (3.1)

where X = lul,...,up]T is a vector of standard scores corresponding to
X p (-7 uy = (vi_vi)/oi B e LR S vi denotes the sample means of
the ith variable and 81 designates its sample standard deviation. How much

statistical information available in the original vectors of p variables is
retained in the m factor scores of the indivicduals in the sampls? To ans-

wer this question we introduce additional concepts from the theory of factor
analysis. ;

Consider the matrix Q ,» of order p x m , whose m column vectors

are related to the m largest eigenvalues and their corresponding eigen- i

i

vectors, according to the formula:

1/2
A

b VAN i e

R(3) ~ Rapy J=lieem.  (3.2)

This matrix is called the factor pattern (structure) matrix. Obviously, !

Il%j Ilz‘Aj ’j=l’0--,m;and m=p then §=§.§T’°r

P
& = jEl é(j)ﬁ?(j) . This is the spectral decomposition of the correlation

A A

m
matrix R . If m< p we define Em =), §(j)§T(j) and %; -3~ Em >
J=1
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N
It is desirable to choose m so that §m is negligible (or statistically

a,
insignificant). Tests of significance of Km are available (see Cooley and

Lohnes [6,103]. According to the spectral decomposition of & , the proportion
of the ith diagonal element of R given by the corresponding element of

§m is called the communality of the ith variable. It is determined by the

formula

2

1 M DRI L T

n
h, = T X, b
i =1 j
One can say that hj 1is the proportion of the variance of the ith variable

vi explained by the m factors. In Table 4 we present the eigenvalues and

the corresponding eigenvectors of the correlation matrix of Table 3. These

eigenvalues and eigenvectors were obtained by employing a computer library

routine. On the basis of these values, the first three factor scores were }
determined for the 50 simulated vectors of Table 2, according to formula (3.1).

These factor scores are presented in Table 5.

TABLE 4

EIGENVALUES AND EIGENVECTORS OF THE
CORRELATION MATRIX IN TABLE 3

Eigenvalues

A A A Ay As A

2.749232 1.068542 0.850006 0.700426 0.384321  0.239473

At S8 A A R

Eigenvectors

Ry R(2) R(3) Ry R(s) R¢6)
0.503687 -.035982 0.266720 -.115832 0.707698 0.399522
0.360454 0.292523 0.749462 0.026661 -.329692 -.336753
0.192362 0.755713 -.410358 -.440037 0.072605 -.156839
0.514023 -.118198 -.220703 -.067590 -.608214 0.546450
0.385783 0.141075 -.321752 0.812732 0.117372 -.231162
0.407826 ~.555128 -.215730 -.356564 0.038669 -.591894
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TABLE 5

FACTOR SCORES OF DATA IN TABLE 2
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Since (A1+A2+A3)/6 = ,78 , the three factors explain about 80% of the

total variability in the sample. The communalities of the three factors

are

Variable Communality

Vi .7593
Vg .9261
Ve .8551
vy .7827
Vi2 .5184
Vi .8261 .

We see that the three factors explain more than 75% of all variables

excluding Vig Notice that the first factor gives more weight to vy

and vy than to the other variables. We can call it therefore the "Ship

and AAW Control" factor. Similarly, factor f2 emphasizes Ve (AAW-CIC)

and gives a large negative weight to Vig This factor can be labeled

"Radar and Information Communication." The third factor emphasizes Vg

and deemphasizes Vesr Vg3 Vigo and v It can be labeled “Surface

14 °
Gunnery." 1In Figure 1 we present the 50 simulated vectors represented by
their first two factor scores. Such a representation can provide a mean-
ingful device for discriminating between 'good" and '"bad" systems, as

graded along the factor scales (fl,fz). Similar scattergrams can be

easily provided for (fl,f3) and (fz,f3). As will be shown later, such

graphical representation of the systems may reveal trends and clusters of

subsamples.

Factor analysis of multivariate data can be easily performed by
employing available statistical computer packages from SAS, SPSS, or BMDP.
We provide in Table 6 the results of an SAS factor analysis procedure per-

formed on 50 simulated vectors from N(&&,&R) » where p = 6 and 5 is

w13 -
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TABLE 6

FACTOR ANALYSIS WITH SIX VARIABLES,
PRODUCED BY SAS PROCEDURE ON 50
SIMULATED VECTORS FROM N(Qk,éR)

DEFINITION OF VARIABLES:

COL1=v, ; COL2=v,_ ; COL3 =v COL 4 = Ve i COL 5 = s COL 6 = v

1 5 6 °* Y532 14 °
MEANS AND STD DEVS
COL 1 COL 2 COL 3 COL 4 COL 5 COL 6
MEAN 3.91766  3.95151  4.49093 4.13207 4.32881  4.06802

STD DEV  1.87219 2.12153 2.02220 2.35387 2.19235 2.18691

CORRELATION MATRIX

o Al A S S T

COL 1 COL 2 COL 3 COL 4 COL 5 COL 6
, COL 1 1.00000 0.65160 0.13557 0.56443 0.28709 0.57545
i COL 2 0.65160 1.00000 0.25144 0.44143  0.21444  0.21628
i COL 3 0.13557 0.25144 1.,00000 0.12219 0.09678 -0.08323
! COL 4 0.56443 0.44143 0.12219 1.00000 0.35855 0.72271
i COL 5 0.28709 0.21444 0.09678 0.35855 1.00000 0.23166
; COL 6 0.57545 0.21628 0.08323 0.72271 0.23166 1.00000
% 1 2 3 4 5 6
i EIGENVALUES 2.802324 1.156822 0.846713 0.685932 0.342444 0.165765
PORTION 0.467 0.193 0.141 0.114 0.057 0.028
CUM PORTION 0.467 0.660 0.801 0.915 0.972 1.000
EIGENVECTORS
i 1 2
! COL 1 0.51049 0.04610
; COL 2 0.41630 0.38367
| COL 3 0.12621 0.78333
! COL 4 0.50975 -=0.17007
| COL 5 0.29683 0.03120
| COL 6 0.44968 -0.45516
FACTOR PATTERN
FACTOR 1 FACTOR 2
COL 1 0.85457 0.04958
; COL 2 0.69688 0.41266
COL 3 0.21127 0.84251
COL & 0.85334 -0.18292
COL 5 0.49690 0.03355
COL 6 0.75277 -0.48956

FINAL COMMUNALITY ESTIMATES:
CoL 1 COL 2 CoL 3 COL 4 COL 5 COL 6
0.732752 0.655935 0.754461 0.761642 0.248036 0.806322
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the sample correlation matrix of Table 3. The results obtained are similar
to those presented earlier. For the purpose of simulating the multivariate
data sets and applying factor analysis on the simulated data, we have found
that the SAS package is most convenient. With the features available on SAS

we could conveniently execute simulation and factor analysis and other statis-

tical procedures in one program (see Appendix III).

3.2 Rotated Factor Analysis

One of the main problems of principal factor analysis is that the m
factor score variables (3.1) are often linear combinations which ascribe high
relative weight to many of the original variables, and no immediate (or direct)
interpretation can be given to the factor scores. In order to obtain factor
scores which depend on a small number of the original variables various rota-
tional methods have been developed (see Harman [8]), which yield vectors of
factors coefficients with a large number of elements close to zero. We con-
sider here orthogonal transformations which reduce the pattern matrix R to

a rotated factor space matrix Q = Q'R » where P is an m x m orthogonal

matrix determined so that the cclumn vectors of A have as many zero entries

as possible. Statistics packages provide various options for orthogonal and
oblique rotation of the factor space. 1In Table 7 we show the result of
EQUAMAX of orthogonal rotation of the factor pattern matrix of Table 6.

This rotation is designed to maximize an adjusted fourth moment of the elements
of the column vectors of the resulting factor pattern matrix & (see Harman
[8, p. 299]. Another commonly applied rotation is called VARIMAX, which maxi-
mizes the fourth moment (unadjusted) of each column of Q . Both methods of
rotation are frequently applied without yielding significant difference in

the results. For a comparison of various orthogonal rotations, including

the VARIMAX and EQUAMAX see Harman [8]. Notice that the factor scores corres-
ponding to the rotated factor analysis are obtained by multiplying the stan-
dardized individual vectors % by the matrix, §A’1K . The "Rotated Factor
Pattern" matrix in Table 7 is the matrix A =8k » where § is the "Factor
Pattern” matrix of Table 6 and |} is the "Orthogonal Transformation Matrix"

- 18 -
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EQUAMAX ROTATION OF FACTOR PATTERN MATRIX
RELATED TO EXAMPLE OF TABLE 6

PROPORTIONSL CONTRIBUTIONS TO COMMON YARIANCES BY ROTAT
FACTORZ
1.233323

FRCTOR1
2.223217

SCARING
FACTAR1
SOl 2.23023
-aLka 2.13723
O3 =0.133433
caus D.33535
caus 2.151390
2als 0.37757
- 16 =

RATATION METHOD: EQUAMAX
ROTATED FACTOR PRATTERN
FRCTOR1 FACTaR2
Cact 0.30337 D3.23003
caLa J.35114 0.33345
Zals =0, 932359 0.357332
ZaLs D.37015 2. 05575
ZOus 3. 35535 0D.1731%2
ZaLs 0.35074 -0.23532
JRTHOSOMAL TRANZFORMATION MATRIX

1 2

1 D.332329 0. 23377

& =0.23377 J2.35333

COSFFICIENT MATRIX

FRCTOR2

0.12733
J. 3413252
2.71373
-0. 05521
0.07313
~-0,3233°7

—

—

I

=
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of Table 7. The "Scoring Coefficient Matrix" of Table 7 is equal to

gé-lg . Its two columns provide the coefficients with which to multiply
the individual vectors é to obtain their factor scores. Inspection of
the scoring coefficients in Table 7 shows that the first (rotated) factor

emphasizes variables Vis Vg and Vig while the second (rotated) factor

emphasizes variables Vg and Ve * Variable Vio does not attain a con-

siderable weight in this representation. We further illustrate the method
of rotated factor analysis by performing such an analysis on all 21 ORI
variables. In Tables 8-10 we present the results of such an analysis with
EQUAMAX rotation. The data set consists of 50 simulated vectors of 21
components following the distribution N(S&,Ag). where R is the

correlation matrix of Table 1.

In the present analysis we display only the first three principal
factors and their orthogonal rotation. As seen in Table 8, the first three
principal factors account for only 38.77% of the total variability. In order
to account for 80% of the variability we have to retain ten principal fac-
tors. This is not surprising, in light of the rather small intercorrelations
between many of the 21 ORI variables (see Table 1). It is very difficult
to ascribe meaning to the principal factors without rotation (see Table 9).
However, after an EQUAMAX rotation we obtain factor-scores coefficients
which can provide relevant interpretation to the factors (Table 10),
although this interpretation is different from the one obtained by analyzing
six variables only. Thus, (rotated) factor 1 emphasizes variables

vl3, le, v16 and to some extent also vz, v3, \" Most of these

19% Y20
variables relate to different aspects of navigation, piloting, and anti-

submarine warfare. (Rotated) factor 2 emphasizes and

bR I | e T

deemphasizes Voo (anti-air warfare), engineering, and damage control.

(Rotated) factor 3 emphasizes v9, v15, and v21 , which relate to electronic

operations and setting material conditions. As explained earlier, not all
the aspects of the operational readiness are represented by the three
rotated factors. One needs about ten rotated factors to account for a large

portion of the variability in 21 variables.
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TABLE 8

EIGENVALUES AND EIGENVECTORS OF
CORRELATION MATRIX IN TABLE 1

1 2 3 4 5 6
EIGENVALUES  3.794984 2.415706 1.915619 1.732022 1.520571 1.319101
PORT1ON 0.181 0.115 0.091 0.082 0.072 0.063
CUM PORTION 0.181 0.296 0.387 0.469 0.542 0.6GC5
7 8 9 10 11 12
EIGENVALUES 1.285502 1.212352 0.955083 0.833270 0.756898 0.633716
PORTION 0.061 0.058 0.045 0.040 0.036 0.030
CUM PORTION 0.666 0.724 0.769 0.809 0.845 0.875
13 14 15 16 17 18
EIGENVALUES 0.597649 0.460369 0.414631 0.361732 0.289878 0.193707
PORTION 0.023 0.022 0.020 0.017 0.014 0.009
CUM PORTION 0.903 0.925 0.945 0.962 0.976 0.985
19 20 21
EIGENVALUES  0.147695 0.115658 0.043856
PORTION 0.007 0.006 0.002
CUM PORTION 0.992 0.998 1.000
EIGENVECTORS
1 2 3
COL 1 0.19064 -0.02192 0.00061
coL 2 0.31186 -0.00371 -0.07639
CoL 3 0.34164 -0.01266 0.00310
COL 4 0.22031 -0.23721 0.18299
COL 5 0.25561 0.15462  -0.00189
COL 6 0.14146  -0.26245 0.23932
COL 7 0.13558 -0.28916 0.06381
coL 8 0.31212 0.04438 0.17556
COoL 9 0.20694 0.22207 0.34169

coL 10 0.21507 -0.07917 0.27990
CoL 11  0.17075 -0.25016 0.26444
COL 12  0.25605 0.24543 ~-0.01065
COL 13 0.24580 -0.17586 -0.26415
COL 14 0.22924 -0.13077 -0.32797
coL 15 0.02812 0.36811 0.17200
CoL 16  0.31317 0.04039 -0.34390
COL 17  0.10458 0.29794  -0.03943
COL 18 0.23165 0.08198 ~-0.03293
coL 19 0.16118 -0.16203 -0.16226
CoL 20 0.07772 0.33043 -0.41069
COL 21  0.08802 0.41257 0.28378
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0.132032

CoL3

0.433502
20L1s
2.337011

-aLe
0.330234
zaL3
0.950523a5
cacis
0.502679

caLt
coL2
caLs
ZaL4
ZOLS
ZaLs
coL?
ZaLs
caLs3
coLion
coLit
e ) B
ot @ [0 B
Hote D B
Zacis
~aLis
caL1z?
-aLis
-aL1s’
cOL20
caL2t

TABLE 9

COMMUNALITIES, FACTOR PATTERN MATRIX, AND TRANSFORMATICN
MATRIX FOR FACTOR ANALYSTS OF TABLE 1

STINAL COMMUNALITY ESTIMATES:

T-412

0.50732
2.55553

~0. 00577
-0, 01353

0.42317 -0,.353673
0. 343735 J.24032
0.,279357 -0.40721

0.20412
D.50303
D.30313
0.341333
2.33254
0. 33331

-0. 334343
N. 05337
0.33515

-0.12309

-0,33332
0.33148

0, 47334 -0.273324
0.344853 -0.20325
0. 23473 2.537214

D2.51007

2. 05273

aL3 a4 SOLS Z0Ls
0.443340  0.334256  0.30S702 0. 352044
COL10 coL11 caLie cOL13
0.340764  0.335733  0.334545  0.437572
cOL17 COL13 QL3 aL2o
0.258913 0.221350 0.212452 0.50973%
FACTOR PATTERN
FACTOR1  FACTOR2  FACTORS
0.3713% -0.03407  D.0003S

-0. 19572
0. 00423
0.295327

-0, 20282
0.33123
G. 03332
0. 24239
D.37232
0.33740
Q.305600

-0.014749

-1, 353551

-0, 45333
0.23305

=0, 37537

2.20372 2. 46307 -0, 03453
J.35137 2.12742 -0.04553
D.31400 -0.235133 -0.224583
2.15140 0.51357 -0.55343
D.17147 D.54124 0.33277

JRTHOSONRL TRANSFORMATION MATRIX

(PN YN

pta iy
2.279543
-OoL14
D.3435733
coLel
2.5943549

1 = 3
2.73535 0.43153 0. 43235
-N.14324 -0.81353 D. 77075
~0.33773 2.25557 0. 30433
PROPORTIONAL CONTRIBUTIONS TO COMMON VARIANCES BY ROTATED FACTORS
FACTOR1 FRACTOR2 FRCTOR3
3.00032% 2.457702 2.883277




TABLE 10

ROTATED FACTOR MATRIX AND FACTOR-SCORES COEFFICIENTS

FOR FACTOR ANALYSIS OF TABLE 1

ROTATED FACTOR PATTERN

FRACTOR1 FRCTOR2 FRCTOR3

0. 23523 n.1213: 0.13533
0.32743 2. 14w4’ 0.25131
0.30323 g.30224 0,31429
0.21733 0.5?9?2 0. 02355
D.33242 2. 00423 n.342333

23472
13054

0.953334 -0.

-0,
0. 43073

-0, 04305 0.55573
Q. a372ET n.2e311
0. 97555 0.01210
0.32338 ; 0.53355
0.535:52 23 ~l. 12375
D.55715 2110 -0.12035

=0, 13328 - i 0.5:421
f. faads - a3 0. 13523
0. 12015 - 23473 1.333514
0.33123 D. 03333 1. 20135
0. 41733 D.14433 0 -0.132032
n.40031  -0.252353 D. 24052

-0.215%2 -0, 06333 2. T3ATHD

COEFFICIENT MATRIX
FRZCTOR2 FACTOR3

SCORING
FRACTOR1

0. 07573 2.03127 0. 03743
0.15355 0.02433 0. 194585
013233 0. 33220 0. 03037
0.2237> D0.23009 -0, 00343

14073
02347
03043
Iq.- 1.:'

0. 03530
=0, 939335
0.93073 a.
2.03532 2.13351 2.

-0, 003531 0.
24333 -0,
17554 -0,

-0. 03333 0.11915  0.25228
-0.03737  0.21173  0.09533
0. 03173 0.25232 -0, 00354

—
i
|.'_,J
L7y
—

J. 22035
0.23335 .
D.23254
~0.10345
0.27511 -0.10961
3.03933
L A3724
0 13275
0.13733
-0.13535

d.
0.
-':'o
U

40534
02345
20304 J. 05351
91037 0.30373
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4. Detecting Deterioration in
Readiness and Subgroups

MG P R

We have seen in the previous section that the readiness of systems

; can be represented by principal factors or rotated factors. This is a com-

; bined measurement of readiness, which transforms the basic ORI scores and
reduces them to a small number of orthogonal factor scores. This represen-
tation of the readiness of systems is particularly useful for control pur-
poses. Suppose that we wish to follow the state of readiness of a particular

3 ; system. We can periodically make observations on the ORI variables and pre-

sent the corresponding factor scores on the scattergrams similar to the one

in Figure 1. Significant deterioration in readiness will be detected by

the location of these points in the scattergram. Moreover, if a whole group

of points cluster on the scattergram on the negative side of a factor there

may be an indication that this group originates from a different population
and further analysis should follow. Such a case is illustrated in Figure 2,
in which the factor scores obtained by a rotated factor analysis of the 6

ORI variables, when the sample of 50 systems consisted of 25 units from the

distribution N(S&,AE) and 25 units from the distribution NQ%,Q&). The

points in Figure 2 corresponding to the units in the first subsample are

labeled "1" and the others are labeled '2". It is seen that most of the

second subsample points are concentrated at the negative part of fl s

There is a strong indication of a significant difference between the two

subsamples. The capability of rotated factor analysis to separate such sub-
samples in the new factor space is not surprising. It can be given precise
algebraic and geometric interpretations. We do not dwell on this here to
any further degree but only remark that if such separation of two natural
subsamples (as two different subfleets) is indicated then one should rein-
force the analysis by performing another method of multivariate analysis,
which is designed for discrimination between subgroups and classification

of the individual units to various readiness groups according to their dis-
tances from the centroids of these groups. For the theory and explanation

of these methods see Tatsuoka [12], Afifi and Azen [1], and Van De Geer [13].
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For the application of a stepwise Discriminant Analysis procedure,

employing an SPSS program on the simulated data with 21 ORI variables,
see our report [4].
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Scattergram of f2 versus
f1 in mixed samples.
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APPENDIX I

SIMULATING MULTINORMAL VECTORS i

In the present appendix we discuss use of the SAS computer package
for simulation of p-dimensional multinormal vectors. PROCEDURE MATRIX of
SAS provides the possibility of computing the eigenvalues and an ortho-
normal matrix of eigenvectors of the correlation matrix 5 . This means
that the simulation can be based on the following result from the theory

of multinormal distributions.

Let k be an orthonormal matrix of the eigenvectors of a correlation i
matrix, 5 , and let Q be a diagonal matrix whose elements are the eigen- !
values of 5 . Assume that R is of full rank. We can write E = %QQT :

Accordingly, let £ %Allz and let & be a p-dimensional vector of
independent standard normal random variables, that is, % QY N(Q,%) , then

the distribution of R= Eﬁ is N(Q,&) . Finally, £- u& + 2& is dis-
tributed like N(u&,ég) . The SAS program given in Table 1, Appendix III
simulates 50 independent 2l1-dimensional multinormal vectors with mean vector
5} and covariance matrix 45 » Where & is the correlation matrix of Table 1
and it then performs the rotated factor analysis. The program is based on

the following algorithm:
Step 1. Read & i

Step 2. Generate N = 50 vectors of 21 independent
standard normal random variables;

Step 3. Determine the eigenvalues and normalized
eignvectors of & -

Step 4. Arrange the eigenvalues in a diagonal matrix R
and the eigenvectors in a matrix R 3

Step L Determine ﬁ - Qllz and g = E.Q :

Step 6. Arrange the data generated in Step 2 in a 50 x 21
matrix Y ;

- 26 =
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Step 7. Make the transformation W = 2°Y°CT 3

Step 8. Determine the matrix M = 5+ » where N is
a 50 x 21 matrix of l's;

Step 9. Compute )\(‘*-)g +i-.
The matrix é* consists of 50 i.i.d. row vectors, each of which is distributed
like N(S,}'.AX\‘) .

1f a SAS package is not available one can perform'the simulation by
another method which does not require the determination of eigenvalues and
eigenvectors but only the solution of linear equations. A FORTRAN program of

such a procedure, based on a recursive algorithm, is given in our report [4].
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APPENDIX II

PRINCIPAL AND ROTATED FACTOR ANALYSIS

Let R v N(Q,E) be a standard multivariate normal vector. The

T e
distribution of & B is like that of L(O,& %&) . Let Al > AZ 2 eee 2 Ap >0
be the eigenvalues of R . We wish to determine a vector (functional) & z
with length ||&|| = 1 , which maximizes the variance of &T¥ . The
Lagrangian is
T T
f(&,l) =4 5& - A(& &-1) (A.2.1)

Differentiating f(&,A) with respect to & yields the eigenstructure equation
o (o}
5& = Ar% (A.2.2)

Notice that

Thus, &(1) is an eigenvector of R » of unit length, corresponding
to the largest eigenvalue of E , namely to Al which is the variance of
(T

' Ao B

Similarly, let &(2)
of R , corresponding to Az,...,Ap . Notice that the variance of

,...,&‘p) be the eigenvectors of unit length

Q%(i)) g is A (i=1l,...,p) and that
cov(&(i)T &(j)T S, afiy. s

(i)T

Indeed, if R, = A2‘"p = 1,...,p , then the spectral

decomposition of R 1is

R= I X (A.2.3)
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Furthermore, for any i # j

cov(t DTy | DT,y o DT

(A.2.4)
P

OT, ()

: kil R o

Let R = (&(1),...,&(p)) be an orthogonal matrix with columns which
are the eigenvectors of & . The distribution of

£= 5T, @.2.5)
is like that of N(Q,}) ; where } = diag(Al,...,Ap) . Indeed,

Q?& ~ N(Q,QTae) . But ETEk = Q . The components of { are called the

principal factor scores, corresponding to g The orthogonal transformation

of u , given by (A.2.5) yields independent standard normal random variables.

P
Since trace 5 = trace Q )
i=1

is the proportion of the total variance of X accounted for by

Ai = p , the ratio Ai/p (i=1,...,p)

fi (i=1l,...,p) . If we choose only the first m (1gm<p) eigenvectors of
R » corresponding to A, 2...> A, and define By ® 2 (1),.._’&(m)] $

1/2

Q(m) = diag(A;,...,A ) , the transformation sz) E(m) R yields the first

m components of { . The concepts of communality and the nature of rotated

factor analysis was explained in Section 3.




APPENDIX III

COMPUTER PROGRAMS

In the present appendix we present two SAS programs. The program
in Table III.1 performs simulation of 50 independent multinormal vectors
of 21 components, haviné the common distribution N(S&,&&) . A rotated
factor analysis is then performed on the simulated data set with an EQUAMAX
rotation. In Table III.2 we present a program according to which a scatter-
gram of the factor scores, corresponding to the simulated data set, can be
obtained. This program is designed to present the scattergram of f2

versus f; in the case of two subsamples of size n = 25 from N(4&,4k)

N(Z.S&,A&) , respectibely. Figure 2 was obtained by a similar program, with

two subsamples from N(S&,hk) and N(%,hﬁ) . The points from the two
subsamples are labeled "1" and '"2", respectively. The first part of the
program simulates 50 6-dimensional normal vectors from these two distributions.
The factor weights, to obtain fl and f2 are read into the program as a
data set ("DATA FSCORE"). These weights can be obtained by performing the

factor analysis program in Table III.1.
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TABLE 111.1

SAS PROGRAM FOR SIMULATING 50 N(S,{,lo,{{’) VECTORS AND
PERFORMING ROTATED FACTOR ANALYSIS ON 21 VARIABLES

OPTIONT L3=303
. DATA CORR:
| LINPUT C1-0213
. TITLE FACTOR ANALYSIS FOR READINESSS
CARDS: |
1.90 0.17 0.27 0.04 9.33 0.31 0.45 0.10 9.05 0.03 0.03 0.32 0.35 !
0.95 0.17 0.15 0.07 9.12 0.93 0.01 0,19 |
0.17 1.00 0.22 0.05 0.13 0.03 0.13 0,22 0.91 0.20 9.94 9.12 0.14
9.256 0.01 0.07 0.02 0.09 0.93 0.03 .13
0.27 0.22 1.00 0.05 0.13 0.03 0.14 0.22 0.01 9.20 0.4 0.12 0.19
0.25 D.01 D.07 0,02 0.03 0.0 0,93 0.13
9.04 0.05 0.05 1.00 0.23 0.23 0.13 9.11 9.13 0,10 2,03 9.12 0.35
9.03 9.19 0.25 9.03 0.10 0.03 0.04 2,08
9.33 0.13 0.13 0.23 1.00 0.34 02,05 9.03 0.94 0.01 0.12 0.07 0.03
2.04 0.04 0.25 9.10 0.20 0.03 0.13 0,02
9.31 9.03 9.03 0.23 0.34 1.90 9.23 0.13 9.13 0.03 0,05 0.93 0.22
0.15 0.06 0.17 9.12 0.13 0.04 0,93 9.10 _
9.45 0.14 0.14 0.13 0.05 0.29 1.00 0.17 0.17 0.03 0.0% 0.14 0.17
9.11 9.17 0.14 0.01 90.31 0.01 0.12 9,03
0.10 0,22 0.22 0.11 0.03 0.13 0,17 1.90 9.09 0.10 0.00 2.21 0.40
D.01 0,93 0,10 9.17 0.23 0.12 0.907 0.03
0.95 9.01 9.01 0.13 0.04 0.13 0,17 9.09 1.90 0.13 0.1% 0.07 0.14
0.04 0.14 0.21 0.1% 0,05 0.07 0.13 0.13
3.03 0.20 .20 9.10 0.01 0.03 0.03 0.10 9.13 1.00 0.53 2.05 0,04
0.07 9.20 0.17 0.03 0.02 0.02 0.2% .13
3.03 0.04 0.04 0.03 0.12 0.95 0.9% 0.00 0.1% 2.53 1.00 .11 0,02
2.11 0.03 0.09 0.07 0.04 0,12 0,05 0.13
9.32 0.12 0.12 0.12 0.07 0.93 0.14 0.21 0.07 0.05 0.11 1.00 0.00
9.05 0.13 0.25 9.07 0.07 0.01 0.23 .21
9.35 0.14 0.14 0.35 0.03 0.22 0.17 0.40 0.14 0.04 .02 0.00 1.00
9.12 0.04 0.20 0.11 0.03 3.20 0.17 2.05
0.05 0.26 0.26 0.03 0.04 0,15 0.11 0.01 0.04 0.97 0.11 0.05 0,12
1.00 2.16 0.29 0.04 0.93 0,05 0.05 .95
9.17 0.01 0.01 9.17 0.04 0.05 0.17 0.03 0.14 0.20 0.03 0.13 0.04
0.15 1.90 0.13 0.14 9.14 0,22 0.34 0.51
0.15 9.07 0.07 0.25 0.25 0.17 0.14 0,10 9.21 0.17 2.0% 0.35 0.20
9.2% 0.13 1.00 0.01 D.14 0.03 0.23 0,13
0.07 0.02 0.02 0.03 0.19 0.12 2.01 9.17 0.1% 0.93 0.07 0.07 0.11
9.04 0.14 0.01 1.00 0.00 0.05 0.24 0.23
9.42 0.0% 0.09 0.10 0.20 0.13 0.31 0.23 0.05 0.02 0.04 0.07 0.03
9.03 0.14 0,14 9.00 1.00 0.11 0.04 0,12
0.03 0.07 0.09 0.03 0.903 0.04 0.01 9.12 0.07 0.92 0.13 0.01 0.29
9.06 0.02 0.09 0,35 0.11 1.00 9.12 9.93
9.01 0.03 0.03 0.04 0.13 0.03 0.12 0.07 0.13 0.2% 0.05 0.23 0.17
9.06 0.34 0.23 0.24 0,04 0.12 1.00 0.03
0.10 0.13 0,13 0.06 0.02 0.10 0.03 0.03 9.13 0.13 2.13 0.21 0,05
2.05 0.51 2.13 0.23 0.12 0.03 0.03 1.20
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TABLE III.1 (Cont'd)

JOATA RANDS
EEP X1-X213
“JaP:N+13
A1=NORMAL <01 § {2=NORMAL <0 § X3=NORMAL <0 ; X4=NORMAL <07 3 XS=NORMAL ¢ 01 X5=NORMAL ¢ 0> 3
A7=NORMAL <> $ X3=NORMAL (0 s XI=NORMAL <0 5 X1 0=NORMAL <0}
X1 1=NORMAL <03 s X12=NORMRAL <07 § X1 3=NORMAL <0 5 X14=NORMAL 0> X15=NORMAL 01 3
$15=NORMAL <0» §X17=NORMAL (D> X1 3=NORMAL (D> :X13=NORMAL (0 X2 0=HORMAL (0>}
“21=NORMAL (01 3
QuUTPUTS
IF N < S50 THEN 50 TO LOOPS
PROC MATRIXS
FETCH R DATA=CORR}
EIGEN M E RS
D=DIRAGM» 3
S=SART <D 3
B=Ee®33
FETCH % DATA=RANDS
W=feB" 3
W=2els
IA=1:S05W1=CIRs®I SMULI=1C(5Ds21+50 %
W=l +Mu1 s
JUTRUT W JUT=DISC(KEEP=COL1-COL2125
PROC FACTOR NFACT=3 OUT=FACT1 METHOD=PRIN ROTATE=ERJAMAX EISENYECTORS SCORE:
YRR COL1-COL215 |
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TABLE III.2

SIMULATING MULTINORMAL VECTORS WITH SIX COMPONENTS FROM TWO
DISTRIBUTIONS AND PLOTTING THEIR FACTOR SCORES

ARPTIONS 333218
YATH CORRS

INPUT T1-258
TITLE FACTOR ANARLYSIT FOR READINEZES
CRARDSS

1.9000 2.5354 0.1339 0.5532 0.3320 0.3135
0.5354 1.90000 0.1532 2.3323 2.2334 0.1231
0.133% 0.1532 1.90000 0.2374 0.1327 -.0234
0.5932 2.3533 0.2374 1.0000 2.4321 0,.5177
0.23330 2.2334 00,1327 0.4%21 1.0000 02,2392
0.519S5 0.1231 -.90234 09.5177 92.2393% 1.0000
DATA RANDS
HKEEP H1-153

~JdOP N+

AL =HIRMAC D FH=NIRMAL (D SHBNARMAL 0 4 4=40RMAL €00 45 =NIRMAL <O 1 45=NIRMAL (2 3

QUTPUTS
I7 4 ¢ 50 THEN 50 TO LOOR:

DATA F3ICORE; INPUT F1-F23CARDSS

9.49379 -. 014725

9.32570 -. 24933

2.21200  9.43125

9.14143  .27133

- 13325 0.50503

0.17949 9.17795

PROC MATRING

FETZH R DATA=CORR3

EISEN M & R}

D=DIAG (M §

3=30RT (00

B=E#3;

FETCH ¢ DATA=RAND;

W= eB” 3

W=2els

1A=1:255W1=0 (1A 3 SMW1=0(25, 51 43 3

W=l M1

IB=25: 503 W2=1 (1Bs 3 s MU= (251 55 2. 57 § W2=WR+MW23
=1/ 25

ID31¢505 $13=0¢50, 50, 1) § 3=, 020033

B=1D-135 D=Bowsi =1y ¢} Y=DIAG (37 § S=IART (V) sU=INY (31 3 2=Doll; ¢
FETCH F DATA=FSCORE; SC=2eF}

QUTPUT 3C OUT=3COR (KEEP=COL1-COL2)}

DATA 3COR}3ET 3CORS

IF _N_ LE 25 THEN 5P=131IF _N_ 5T 25 THEN GP=2;
PROC PLOTSPLOT COL2eCOL1=GP3
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