
AD—AO$O 113 STANFORD UNIV CA DCPT or OPflATIONS RESEARCH flS u nOF OEflNERACY IN LINEAR

i~I~ ~~~o



1.0 :~: ~~ ~~
_ _ _ _  ~~ ~HI~
H ~~ L ~2.O

I~II~~11111’ .25 IIIIl~•~ llIU~
MICROCOPY RESOLUTION TEST CHART

NATI ONAL BUREAU OF STANOA RDS - 1963 -A



• LEAST-INDEX RESOLUTION OF

/
DEGENERACY IN LINEAR COMPLEMENTARITY PROBLEMS .

TECHN I CAL REP~~T.~ 9-14 
—

— ——~
‘ 

~Octob~~ 1~79~ • .

‘L~ ~
-4



~1~1EVEL~DEPARTMENT OF OPERATIONS RESEARCH
Stanfo rd University
Stanford, Call fornia

94305

.LEAST~-INDEX RESOLUTION OF/ DEGENERAC’~ IN LINEAR tOMPLEMENTARITY PROBLEMS ,
- -

by
1’
)  

_
~~~~~~~

:-—••

F •:. L~~~~-Y~ehJChan9

~~~~~~~~~~~~~~~~~ -

~~~~~~ 
;~j f~

~~; j --
_
~~~~

_

~~~~

C)
Research and reproduction of this re1$~t 

t~~~rp jmrtially supported by
the Office of Nava l Researc h ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Science Foundation Grant MCS76-81259 ~U17 ~~~~~-- 

I-,

/ ~-‘A’~~ -•h1(~~’ /é~~6/ ‘~~~I

Reproduction in whole or In part is pe, tedTo~r in~ ~urpoi~i of the
United States Government. This document has been approved for public
release and sale; its distribution Is unlimited.

D D C

I 1



LEAST—INDEX RESOLUTION OF

DEGENERACY IN LINEAR COMPLEMENTARITY PROBLEMS

by

Yow—Yieh thang

Departmen t of Ope rations Research
Stanford University

ABSTRACT

This study centers on the circling phenomenon associated with

degeneracy in linear complementarity problems and presents an easily imple-

mented technique for resolving it. With certain exceptions , the device is

to use the least—index for selecting the variable to leave the basic set.

The results of this report pertain only to linear complementarity

problems involving P—matrices or positive semi—definite matrices. With

this restriction , it is shown that inclusion of the least—index pivot

selection rule insures finiteness for the principal pivoting method of

Dantzi g and Cottle , Lemke’s algorithm, and Cottle ’s parametric principal

pivoting method. It is shown that for circling to occur in the principal

pivoting method, the matrix must have order at least four , and for Lemke ’s

algorithm it must be at least three . Examples are given shoving that these

bounds are sharp. Finally , Murty ’s version of Bard ’s method is extended

from P—ma trices to the positive semi—definite case.
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PART I

LEAST—INDEX RESOLUTION OF DEGENERACY IN

THE DANTZIG—COTTL E PRINCIPAL PIV~~ ING METHOD

1. Introduction

Given a m a t r i x M E E ~~~
1
~ and a vector q E 1(n , the linear comple—

mentarity problem (q, M) is that of finding a solution to the system

(1) w = q + M z

(2) w > O , z > O

(3) wT z _ O

(or showing that no solution exists). A pair (w ,z) of n—vectors is a

complementary solution of (1) provided

zlwl 0, z2w2 — 0 , ... , z~w~ — 0

A basic set of variables consists of any ordered set of n variables

and z such that their coefficient matrix in (1), called a basis, is non—

singular. A complementary basic set of variables is one in which exactly

one variable of each complementary pair (wi,zi) is basic. Finally, a basic

solution is the one found by solving for the value of a given set of basic

variables when the nonbasic variables are aet equal to zero.

A basic solution of the equation 1) is said to be degenerate if at

least one of the basic variables equals zero. As in simplicial. methods for ~~~~~ 0

linear and quadratic programaing, degeneracy also causes difficulties in

ly 
- -.•—

1 D1 Tl1$UTl~ j~YAHA8tU Ty t~IIIS
~~~~~

- 

~~~~~~~~

____ 

__________J. ____

____ — —
.- -
-
--- 

,~~~~~~~
- 

~
4rm

~.Jw - - 
—~~~~~~ —~~~~~~~~~~~~‘-

-—
~ 

— — ~~—--



simplicial. methods for the linear complementarity problem (LCP). More pre-

cisely , degeneracy can lead to the phenomenon known as circliflg: a sequence

of bases which (after  finitely many steps) repeats itself. Degeneracy per

se is not the problem; but when it is presen t , circling is a possibility

and must be avoide d if the simplicial methods are to work and be finite.

The “degeneracy problem” refers to the difficulties associated with circling.

Except for Murty ’s scheme [15], the only theoretical techniques

available for handling the degeneracy problem in the LCP have been lexico-

graphic (perturbation) pivot selection rules and random choice rules. We

shall not review them here ; they can be found in the work of Zoutendijk (20 ,

pp. 80—90], Graves (10], Eaves [8] and Lemke [12].

In this part , we present a natural least—index pivot selection rule

which , when imposed on the Dantzig—Cottle principal pivoting method [2],  [5],

[7] for the LCP , will ensure its finiteness. This rule is also very easy

to implement and does not require extra storage or computation .

2. The PPM with P—matrices

The Dantzig— Cottle principal pivoting method (PPM) was devised to

process (q,M) where M is either a P—matrix or a positive semi—def inite

matrix. The matrix M is cal led a P—matrix if the determinants of all its

• principal submatrices are positive. We consider P—matrices in this section

and leave the case of positive semi—definite matrices to Section 3.

In applying the least—index pivot selection rule to resolve the

degeneracy problem in the PPM, we rely on a paper of Murty [15] which also

considers a least—index rule in the framework of a Bard—type algorithm for

2

_ 114



the LCP with P—matrices. For the references on the Bard—type algorithm,

see Bard [1, pp. 146—151], Stickney and Watson [18), and Zoutendijk [20 ,

pp. 80—90].

2.1. Murty’s scheme for (q,M) where M is a P—matrix

It is well—known that when M is a P—matrix, (q ,M) has a unique

solution for every q [16], [17). Using this fact, Murty [15] proposed

the following finite scheme:

Murty ’ scheme.

Step 0. Set h — 0. Begin with the system ~
h 

— qh 
+ ~~~~ where

w — q + N z is the given system w — q + Mz.

Step 1. If q
h 

> o, stop. [wh;zk~] = [qh;0] is the solution. Otherwise

Step 2. choose k — min{iIq~ < 0) and pivot on m~~, i.e., is

brought into the basic set in place of v~. Set h — h+l and

return to Step 1.

Murty proves that this scheme solves (q,M) . We emphasize that

the finiteness of this scheme is a result of the uniqueness of the solution

to (q,M) where H is a P—matrix. It is also interesting to note that

his proof can be applied to show the following:

Proposition. In Murty’s scheme, a pivot in row k must be followed by a

pivot in some row with a larger index before another pivot in row k can occur.

3

~~~ _ _ _ _ _  
_ _ _ _ _ _  _ _ _ _ _ _



2.2. A brief review of the principal pivoting method

There are two versions of the PPM: the symmetric and the asymmetric

versions. They both make use of the invariance of P—matrices wider principal

pivoting [73, [193.

Consider an LCP (q,M) in which N is a P—matrix. In the follow-

ing, ~h ~
h M” and qh represent the basic vector, the non—basic vector,

the matrix and the constant coi.unii at the h—tb interation, respectively.

~ymmetric version of the PPM [2], [41, [51, [7] .

Step 0. Set h — 0. Begin with the system ~
h qh 

+ ~~~~ where

0 0 0 0w — q + M z denotes the given system w — q + Mz.

Step 1. If qh > 0, stop. [wh ;z~i] [qh ;Ø] is the solution. Otherwise

choose some < 0 Call w1
~ the distinguished variable and

zh the driving variable.

Step 2. Determine the blocking variable by letting e be the largest value

of the driving variable z~ such that

h h h hv ~~q + m  z < 0
5 5 s s s —

h h h h  h hif ~~~ > O > m ~5

Step 3. If e — —q~/m~8, i.e., is blocked by w~, then pivot on m~~.

Replace ii by h+l and return to Step 1. If _q~ /mh >0

— —q~/m~ for some t where > 0 > ~~~~ i.e. z~ is blocked 
•

by w~, then pivot on ~~~ 
Replace h by h+l and return to

Step 2.

4
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In this algorithm, each return to Step 1 marks the completion of a

major cycle. Assuming nondegeneracy, Dantzig and Cottle [7] shoved that

during a major cycle, the distinguished variable increases to zero in a finite

number of steps. Howeve r , the completion of a major cycle reduces the number

of negat ive basic variables by at least one . Therefore , no more than n

major cycles are required to obtain a solution of (q,M).

The asymmetric version is the same as the symmetric version except

that in Step 3, if the distinguished variable is not blocking and, say ,
h h

V
t 

is blocking, then one performs the pivot on m
~9 

and returns to Step 2

with — z~ , the complement of the exiting basic variable, as the new

driving variable.

NOTE: In the following, we shall use the notation <w
i~
zj> to represent

that a pivot on mjj is performed thereby making basic in place of w~.

The two versions of the PPM are closely related. In fact, we have

the following :

Theorem 1. Under the same rule to break ties among the blocking variables,

the sy~~~tric and asymmetric versions of a major cycle generate the same

sequence of exiting basic variables.

Proof. Without loss of generality, we may assume that z1 is the driving

variable at the start of a major cycle. If w
1 

blocks z1, there is nothing

to prove. Hence suppose W
k 

blocks a
1 for some k ~ 1. Under the same

rule to break ties , the two versions have the same exiting variable at this

step. In particular , the corresponding variables in the two versions have

the same values at this step.

5 
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In the symmetric version , we perform the pivot <w ,Zk
) after which

the system can be written as

q nk 1 1(4) ak m.~ m.~ k - 
~~~~~~~ j -l

j  #k

I m1~ ) m
~k n 

— 

m
ikm.Kf \(5) w1 - ~q1 - — + — Vk + 

~ 
(~~i~ 10kk / Zj

j  ~k

for all i~~~k.

In the asymmetric version, we perform <V
k~
Zl

’
~• 

After the pivot

Zk becomes the new driving variable and the system becomes

q nk 1 1(6) Z
l 

— — + 
~~~ 

— mkl j~ 2 I%JZ
J

m11 ~(7) w1 - — + 

~~~ 

Vk

n ( (mik - m
i ~~a -m  + l m kl l

zkj—2 ~J ilm,~1 j

j #k

for all i # k .

Now, since a1 and zk are the driving variables in the two

versions, respectively, we compare — ( jkmkl)/a~~, the coefficient

6
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of z1 in (5) , and a
~k — (mil~~k)/

~~ l, the coefficient of z.K in (7).

We can rewrite

milm.~k ~~k / mikm.Kl \m — — — im — j  for all i ~ kik 
~~ ~

‘kl ’~~
1 /

Since wk blocked z1 at the previous step, we have mU < 0. Also

mkk > 0 since M is a P— matrix. There fore mjk — (m
~l.k

)/1
~~l 

and

m~1 
— (mikm~l

)/m.Kk are of the same sign for all I ~ k. Clearly —lukl /mkk,
the coefficient of z

1 in (4), and _m
~~

/mkl, the coefficient of

in (6) , are both positive. Thus the two driving coluans at this step have

the same sign configuration. Also note that before the pivots <Wk,Zk>

and <WkIZ1>~ 
the corresponding variables in the two versions have the same

values.

Now, SUppOSe w~ is exiting in the synanetric version at the next

step and suppose blocking occurs when — 
~~~~~

. Then by (5) ,

/ m a ~~(8) 0 - w~ - (qt 
— 
~~~ 

+ ~~~ — ) 
~1

Also by (4) ,

k mkk mkk l

Let us consider the system in the asymmetric version when

r

7
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— - 
~~~~ 

mkl

and

z
2

Z
3

... _ Z
~_l

aW
k = Zk+l =

By (7) and (8) ,

~~ /
= — m

~1 ) + 
~
mth — in

~i —J Zk

~ I mkk\(~~kl\(_= — mtl ~~~ + 
~
m
~k 

— m
~i 

— J ~~~ / \ 
z
1 + —

/ m
~k \ 

_ _ _ _ _1 q — — — q J + I m  — Iz
~~~ t ~~~ k~ \ tl ‘5Lck ’ 1

— o

and clearly z1 has the value z
1. It follows that, at this step,

is also a blocking variable in the asymmetric version. Furthermore, the

basic variables in the two versions are the same except that Z
k 

is basic

in the symmetric version while z1 is basic in the asymmetric version.

Therefore, under the same rule to break ties, w~ is also the exiting van —

able in the asymmetric version .

The pivoting sequence <Vk~
Zl>~ <Wt~

Zk> of the asymmetric version

has the same effect as the pivoting sequen ce <Wk$ Zk
> I <w~,z1

> . In the

symmetric version of the corresponding pivoting sequence is <Vk~
Zk>~

<w~ ,z~>. Thus, the second pivot in each version can be regarded as the

first pivot associated with the correspon ding method applied to the principal

- ~~~~~~~~~~~ . ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ .- ,



I

transform of (q M) obtained by the principal pivot (W
k~~

ZI.c> * Therefore

the arg~~~nt just given applies and the two versions have the same exiting

basic variable at the following step.

Generally, suppose a sequence of pivots has been performed in

the asy~~~tnic version and the last pivot is on m
ii i this pivoting

sequence has the same effect as a block pivot on some principal submatnix

N55 
followed by a pivot on a

11
. In the syimnetric version, the correspond-

ing pivoting sequence can be regarded as obtained by performing a block

pivot on the principal submatrix M~~ followed by a pivot on m11. Thus,

the last pivot in each version can be regarded as the first pivot associated

with the corresponding method applied to the principal t ransform of (q, M)

obtained by a block pivot on the principal submatrix Mss~ Therefore by

the same argument as before, the two versions have the same exiting basic

variable at the next step. ~

Remark. It follows from Theorem 1 that if one version is finite, then so

is the other. Accordingly, we work with the symmetric version only.

2.3. The PPM with the least—index rule

If degeneracy occurs, the PPM may lead to circling. Some circling

examples will be given in Section 4. We consider here a least—index rule

which when imposed in the PPM, will ensure its finiteness.

J
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Least—index rule.

In applying the PPM to solve (q,M) break ties among the block-

ing variables as follows:

(A) If the distinguished variab le is b locking, choose it as the exiting

variable (and the major cycle terminates).

(B) Otherwise, choose the blocking variable with the smallest index as

the exiting variable.

In the following, we show that the PPM with this least—index rule

will solve the problem in a finite number of steps. To do so, it suffices

to show that each major cycle is finite. We shall prove this by first

assuming that circling occurs in a major cycle and then deriving a contra-

diction. Without loss of generality, we may assume that w
1 is the dis-

tinguished variable In this major cycle. Let

H= (h1, h2, ... , h }

h h h
1
h

where h~.,.1 h~+l for j = 1,2,.. .,m—l, and w = q 1 + M z 1 represents

the system in which a previous basic set is repeated for the first tine.
h+l h+l h+l h +l

h is a positive integer such that the system w a q a + M a z
a h h h h  h

has the same basic set as that of w — q + 14 a . Note that w1 
=

and z~ — a
1 

for all h — hi~~~ • i hm~ 
In the following, the phrase “during

circling” will mean “during the pivoting steps ‘

~~~
, h2, ... hm • ”

Lemma 1. If circling occurs, then the value of the driving variable

is fixed during circling.

. . i_ . .~~ ~~~~~~~ ~~~ • 
.~ Jr~~. ] : ‘i. j .. -. .. . .:;•~ ~~~~~~~ •.~I~• I.~ ..~ 
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Proof. Since is the driving variable, it is nondecreasing in this

major cycle . If 4 is not fixed during circling, then it attains two

values < 
~~~

. There are only finitely many basic solutions , each of

which corresponds to a unique set of values of the basic variables. Now
h — —since z1 increases from z1 to a1, we can not return to a previously

encountered basis, a contradiction. D

Lemma 2. Assume circling occurs. Let K - (iIw~ becomes nonbasic during

circling}. Then during circling the values of the basic variables

are at their lower bounds (zero) for all i E K.

Proof. The set K can be written as K = (k1, k2, ... , k }  where

k is the index of the variable leaving the basic set at step h
K,

Since wk
’ is a blocking variable at the first step of circling, it
1

ii h h
follows from Lemma 1 that W

k
1 

0. Therefore after the pivot < w~~, Zk
1 >,

1 1
all other basic variables remain fixed.

h 2Now the algorithm tries to increase z1 again . (Note that
Ii h2
z 1 — z1 — z 1.) However , Lemma 1 implies that it can not be increased.
1 A

Thus w~
2 

— 0. Since each w~ is involved in a pivot during circling,
‘2

the argument just given applies and the proof is complete. a

Lemma 3. If circling occurs, then at each step of circling m~~ < 0

for some k E K .

Proof. By the definition of the set K , at each setp of circling,

becomes nonbasic for some ir. ( K. This implies that v~ is a blocking

variable at this step. However, since 4 is the driving variable , this

can happen only when m~ < 0. a

11
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Now we come to our result.

Theorem 2. In the PPM with the least—index rule applied to (q,M) where

N is a P—matrix, every major cycle consists of a finite number of pivots.

Proof. Suppose circling occurs in a major cycle in which 4 is the

driving variable. Lemmas 2 and 3 impl~ ~t, during circling, the algorithm

looks for the index j where

j=min{i (w~~= O  and m~~<0}

and then performs <w~, z~>. Therefore, during circling, the PPM with the

least index rule is merely Murty’s scheme on the LCP ~~~~~~~~ where K

is as defined in Lemma 2. However, Murty’s scheme is finite. This implies

that after a finite number of steps M~~ 
) 0 for some h, in contradiction

to Lemma 3. a

Corollary. The PPM with the least—index rule applied to the LCP (q,M),

where M is a P—matrix will find the solution in a finite number of

steps .

Proof. The completion of each major cycle reduces the number of negative

basic variables by at least one , and by Theorem 2 each major cycle is

finite. a

12



Remark. If an algorithm just changes the basis and leaves the values of

all variables fixed during some consecutive steps , we say that stalli~~

occurs in these steps. The proof of Theorem 2 and the Proposition in

Section 2.1 show that during stalling a pivot in row k must be followed

by a pivot in some row with a larger index before another pivot in row k

can occur.

3. The PPM with positive semi—definite matrices

3.1. Statement of the method

When the system w — q + Ma , w > 0, a > 0, has a solution, we

• say that (q,M) is feasible, otherwise it is infeasible. It is well—known

that when N is positive semi—definite, (q,M) has a solution whenever it

is feasible. With some modifications, the PPM as stated in Section 2.2 can

be applied to find a solution of (q,M) or to detect its infeasibility.

Similar to the case of P—matrices, all variables whose current value is

non—negative are bounded below by zero. Moreover, those variables whose

current value is negative will be bounded below by a fixed negative number

B (the same one for all such variables). For example, 8 can be chosen

as any ne1~~~ve number such that 8 < min{q~} if q L 0. Accordingly, we

modify our notion of a basic solution to allow nonbasic variables to assume

the value 0 or 8. The value B arises from the situation where a basic

variable decreases to 8 , thereby blocking the driving variable. The

method will make that blocking variable nonbasic at value 8. This device

is necessary . For example , if

13
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/-l \ / 0 1
q — (  J ,

\-2 / \-l 1

and w
1 is distinguished, then a

1 is unblocked. Yet the problem has a

solution . We shall also change the definition of a nondegenerate solution

to be one in which at most n of the 2n variables equal 0 or 8.

Notation.

As bef ore, the superscript h~ denotes the iteration number. Since

the nonbasic variables may attain the negative value B , we use

~~~~~~~~~~ ~~ to denote the value of the basic variable w~ when the

nonbasic variables 4,..., z~’ have the values ~~~~~ ,.. ., ~~~~~.

Symmetric version of the method [2], [4], [5], [7]

(Note: Nondegeneracy is assumed here.)

Step 0. Set h — 0. Begin with the system ~
h 

q
h 

+ and the
—h —h h 0 0 0 0solution [w ; a I — Eq ; 0], where w - q + M a denotes

the given system w - q + Ma.

Step 1. If qh > 0, stop . [~~~; ;
h

J — [q
h ;0] is a solution . If neither

qh nor 1;h ; ~h
1 is nonnegat ive , choose some < 0 or

— 8. Call the distinguished variable and the driving

variable.

14
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Step 2. Let 0~
’ be the largest value of > satisfying the

following conditions:
h -h

(I) a < 0  if a
5 —  8

h —h —h h —h -h -h(ii) w ( z 1,..., 
~~~l’ 

a , z5~1, ... , a) < 0 if v < 0

(iii) ~~~~~~~~~ Z li ~
h , 

~~~~~~~~~~~ 
, ~~) > 0  if

h -h -h h -h -h -h(iv) wi(z i, . . .,  z .~, a , z~~~ , a )  > 8 if v1 < 0

Step 3. If ~~ — ~~~, i.e. the driving variable z1~ is unblocked, stop.

No feasible solution exists. If 0h 
— 0, i.e. the driving

variable z~ blocks itself , then put — 0, —

-h+l h —h -h —h -hfor I # s and w — w (z1, ... , z5_1, 0, z5~1, ... , z).

Return to Step 1 with h replaced by h+l. If o < 0h < ,,

let t be the unique index determined by the conditions (ii),

(iii) and (iv) of Step 2.

Step 4. If m
~~ > 0 and t — a, pivot <w

h
, z~ > and return to Step 1

with Ii replaced by h+1.

If 
~~~ 

> 0 and t ~ s, pivot <w~, z~ > and return to Step 2

with h replaced by h+l.

If in~~ — 0, perform a block pivot of order 2 on the principal

submatrix M~~, where S — {s ,t}, and return to Step 2 with h

replaced by h+l.

In this algorithm, each return to Step 1 marks the completion

of a major cycle. Ikider the assumption of nondegeneracy, the driving

variable and the distinguished variable are always increasing while their

15



sum is strictly increasing [4]. Thus after finitely many pivots within a

major cycle, the negative distinguished variable increases to zero, or else

it is detected that the problem has no feasible solution. Furthermore,

the end of a major cycle reduces the number of negative components in

(w ,z) by at least one. Therefore the method is finite.

There is an asymmetric version of the above method. It uses simple

pivots at each step to exchange the blocking variable with the driving vari-

able and takes the complement of the blocking variable as the new driving

variable. By a proof similar to that of Theorem 1, it can be shown that ,

under the same tie—breaking rules, the two versions have the same sequence

of exiting basic variables in a major cycle. (Except that when termination

of this major cycle occurs, the initial driving variable may be the exiting

variable in the symmetric version while its complement is exiting in the

symmetric version.) Accordingly, we work with the symmetric version only.

3 2 .  The least—index rule

When degeneracy occurs , the above method may circle. In this

section we show that with the least—index rule of Section 2 , the symmetric

version of the PPM will process (q,M), where N is positive semi—definite,

in a finite number of steps. In other words , it will either find a solution

or detect the infeasibility of the problem. Again, it suffices to show

that each major cycle is finite.

Suppose circling occurs in a major cycle in which w
1 is the

distinguished variable. Then, as in the case when N is a P—matrix,

since and a1 are monotonically increasing, both w1 and a1 are

16



fixed during circling. However, the algorithm tries to increase a
1

or w
1 

in this major cycle. Therefore, as in the case when N is a

P—matrix, stalling occurs in these steps. Accordingly, if we delete all

the variables that are not involved in the pivoting during circling,

the PPM with the least—index rule merely looks for the index i, where

i — min{jIm~1 < 0)

and then the PPM pivots on m~1 (if 14i ~ 0) or it pivots on

h h
a11 mli 

h(if m
u 

0)
h h
m~1 m

u

Without loss of generality we may assume that all the variables are involved

in the pivoting during circling. Then, during circling, the PPM with the

least—index rule performs the same pivoting sequence as the following

scheme does.

Scheme

Step 0. Start with the system ~
h 

— q
h 

+ Mhz~ h — 0, where v° — + ll0z°

is the initial system. (In the following, M~~ represents the

coluan of Mb corresponding to the nonbasic variable 4 at the

iteration h. Similarly, M~. represents the row of M
h 

correspond—

leg to the basic variable 4.)
p.

17
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Step 1. If Mb1 > 0, stop. The driving variable 4 can be increased strictly.

Otherwise, let k — min{i141 < 0).

Step. 2. [f 5 k > 0, perform a pivot on and return to Step 1 with

h replaced by h+l. Otherwise, perform a block pivot of order 2

on the principal submatrix

h
J m ll a1k

l b  h ]L m kl mkk

and return to Step 1 with h replaced by h+l.

If we can show that Mb1 > ~ after a finite number of pivots in the

above scheme, then, since the driving var iable z~ can be increased strictly

at this step, we obtain a contradiction to the assumption that circling

occurs in a major cycle (in which w1 is the distinguished variable) of

the PPM with the least—index rule.

Lemma 4. In the above scheme, a pivot in row k, where 2 < k < n, must be

followed by a pivot in some row with a larger index before another pivot

in row k can occur.

Proof. We will prove this by induction. If the matrix M is of order 1

or 2 , the lemma is trivial. Suppose the lemma holds when the order of N

is less than n and now consider the case when H is of order n.

Let us examine the situation where two pivots occur in row k

and 2 ~ k < n—i. If between these two pivots, there is no pivot in some
—
. I —
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row with a larger index, then by deleting M. and M . ,  a cont radiction

to the inductive hypothesis will be derived. Therefore, it suffices to

show that there is at most one pivot in row n.

Suppose a pivot occurs in row n at iteration h
1
. Let (Ti) be

the corresponding schema at this iteration.

1 z ... z
1 n

w1 = q1 a1l ~~~~~

(Ti) : :

V = ci a ... an it nl nn

By the choice of the pivot row , m~~ > 0 for all I < n—i and m~1 < 0

in (Ti). Note that w
1
, ... , w are the basic variables in (Tl) .

Suppose the next occurrence of a pivot in row n is at iteration

h2. When this occur s , a must be the exiting basic variable and

is either basic (Case I) or nonbasic (Case [1).

Case I. w1 is a basic variable at iteration h2.

Let S be the set of indices i such that V
1 

is nonbasic at

iteration h2 . Note that 1 f S. Let M denote the principal transform

of N at this iteration. Clearly 11 can be obtained from N by perf orming

a block pivot on the principal submatrix Mss~ Thus ~
:1Sl — _M

s~Ms1
(since 1 ~ S) and therefore

— —M~1M~~M51 < 0 
;

19
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since M~~ is positive semi—definite. However, since mu -~~ 0 ,

rni1 > 0 for all i < n and m~1 < ~ < 0, we have > 0

(since n E 5), a contradiction.

Case II. w1 is a nonbasic variable at iteration h2.

We shall use the same notation as Case I. Note that 1 ( S in

this case. Since M is positive semi—definite, a11 > 0 or — 0.

Case 11.1. rn11 > 0.

By performing a pivot on rn11, w1 becomes a basic variable and

the sign configuration of 
~~ 

is unchanged. In other words, rn~~ > 0

for all i < n—i. and < 0. SInce w
1 is a basic variable now, as

in Case I, a contradiction can be derived.

Case 11.2. = 0

Case 11.2.1. m11 > 0.

By performing a pivot on m
11 in schema (Ti), w

1 becomes a non-

basic variable and the sign configuration of 14.1 Is unchanged. Therefore,

as in Case I, a contradiction can be derived.

20
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Case 11.2.2. a11 
= 0.

Let us denote the schema at Step h2 as (T 2 )

1 w Z

— S _ _ _

q M

(T2) ~ L

w~~= k. ~L.
S S SS~~ SS

where S = (1,... ,n}\S. Note that (T2) can be considered as obtained

from (Ti) by performing a block pivot on the principal submatrix N55.

(Recall that 1 E S in this case.)

If we enlarge the schema (Ti) to (Tl*) by adding one row and one

colunsi such that Mn+l. = (]~ 0, ... , 0, 1) and M +l — (—1 , 0, ... , 0,

and an arbitrary number , the enlarged matrix of order n+l is still

positive semide finite.

1 Z
1 

Z
n 

Z~~~l

V
1 

= q
1 

a11 ... m
1~

0

(T1*) : :
V — 

~ 
... an 0

w~+i — ~~~~~ 
1 0 ... 0 1

By performing a block pivot on the principal submatrix M~~ in (T1*),

a schema (T2*) is obtained which has the same entries 
~~~~~
, ~~ as the schema

(T2) for all i, j < a. 
21
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1 w a.
_____ 

S S n+1

as - i.i
S SS SS S,n+i.

- ~.. ~i. ~L. L
(T2*) S S SS SS S ,n+l

V - q M M Nn+l n+i n+l S n+l , S n+l , n+

Also, (T2*) has the same basic variables as (T2) does. Therefore (T2*)

is also an enlargement of the schema (T2). By pivotal algebra

rn - Mn+l,l n+l,S Si

— (l ,0,..., 0) 
~si

11

— 0 .

Furthermore, by performing a block pivot on the principal subaatrix

m
1~~~1 1=1° —l

L m
~+1,1 m~~.1~~+1 i L 1

the schema (Tl*) becomes the following schema (T2**) in which w1 and

are nonbasic while all other w
i
’s are still basic.

22
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1 V
1 

Z
2 

a

= S S = S

z — in a in in1 1 11 12 in l,n+l

V
2 

=

(T2**) : :
= S = = S

v q in in in an n ni n2 nn n,n+1

Z~~~1 
= 

~~~ 
m
~+1,i m

~+1,2 ~~~~~ tnn+l n+l

Since a11 0, a11 > 0 for all 2 < I < n, a
1 

< 0 and =

it can easily be seen that ~ > 0 for all 2 < i < n, < 0

and m
~+i,i 

—l

Now since both (T2*) and (T2**) are principal transforms of the

schema (Ti*), (T2**) is a principal transform of (T2*). In fact, if

we denote R (SN{l}) U {n+l}, then (T2**) can be obtained by performing

a block pivot on the principal submatrix M~~ in (T2*) . Therefore

— ~~~ and thus — ~~~~~~ Since is positive

semi—definite , —~~~N~~~~~ < 0. However , since n E R , n+l E R and

< 0, m. + ll  — 0, in 1 < 0, m +11 — —i while for other i t R , a11 > 0,

rn~~ > 0; therefore ~~~~~ > 0, a contradiction. ~

Lemma 5. In the above schema, N.1 > 0 after a finite number of iterations.

Proof. For j > 1, let v(j) be the number of pivots that occur in

row j .  In the proof of Lemma 4, we have shown that v(n) ( 1.

Furthermore, it follows from Lemma 4 that

~~~~~~ 
_ _ _ _
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n
v( j )  < ~ ‘v(i) + 1

i=j +l

In other words ,

v(n—l) <v (n )  + 1 < 2

v(n—2) < 22

v (n—1) < ~~~ + 2
i_2 

+ •.. + 2 + 20 + 1

Therefore, the above scheme will terminate aster a finite number of

iterations. 0

Theorem 3. In the positive semi—definite case, every major cycle of the

PPM with least—index rule consists of a finite number of pivots.

Proof. Suppose circling occurs in a major cycle in which w
1 

is the dis-

tinguished variable. Then, as in the case when N is a P—matrix , since

w1 
and a

1 are monotonicaily increasing, both w1 and a1 are fixed

during circling. However, it follows from Lemma 5 that N . 1 > 0 after

a finite number of steps. Therefore either w
1 or a1 can be strictly

increased af ter a finite number of steps , in contrad iction to the assumption

that circling occurs. a

Corollary. In the positive semi—definite case, the PPM with least—index

rule will process the problem in a finite number of steps.
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Proof. Since each major cycle reduces the number of negative components

in (w,z) by at least one, the result follows from Theorem 3. a

Remark 1. As in the case when N is a P—matrix, Lemma 4 implies that if

stalling occurs in the PPM with least—index rule for (q,N) where 14 is

positive semi—definite , then during stalling, a pivot itt row k (except

the row correspond ing to the distinguished variable) must be followed by

a pivot in some row with a lar~~r index before another pivot in row k can

occur.

Remark 2. The least—index rule states that if the distinguished variable

is blocking, then it is chosen as the exiting basic variable even if there

is a blocking basic variable with a smaller index. This is essential in

the interpretation of the rule. The following is an example which has a

solution, but if the least—index rule is incorrectly applied, the driving

variable will be unblocked and hence give the false impression that the

problem is infeasible.

Example. Consider (q,M) where q — (1, —1 , _1)T and

1 —l 0

M —  ( —l 1 0

L 0 0 1

Clearly, M is positive—semi—definite and (w;a) — (0, 0, 0; 0, 1, 1)

is a solution . Consider the major cycle in which w2 is the distinguished

variable.

t 25
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2

1 
~1 

z2 f z 3
V
1 

S j
~ 1 —l 0

— -.1 — 1 1 0

w3 
S —1 0 0 1

When the driving variable z2 increases to 1, both w1 and w2 are

blocking. If our least—index rule is imposed , then the pivot <v2, z2>

is performed since w2 is the distinguished variable. However, if the

least—index rule is incorrectly applied, w1 
is chosen as the exiting

basic variable, and then the pivot <w1,z1> is performed.

i w1 z2 f z 3
a
1 — —l 1 1 0

w2 — 0 .-l 0 0

= —l 0 0 1

Now, since w
2 

is still the distinguished variable, the driving vari-

able is still a2 and its column is nonnegative, hence z2 is unblocked.

Therefore, according to Step 3 of the statement of the PPM in Section 3.1,

one gets the mistaken impression that the problem is infeasible.

4. Circling examples of minimal dimension.

In this sec tion, we give a circling example for the PPM on (q,M)

where M is a positive definite matrix of order four (hence N is a

P—matrix as well as a positive semi—definite matrix). We will also show

that four is the sharp lower bound on the order of H for the circling

to occur.

26
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Example 1. Consider the initial schema in which is the distinguished

variable

1 a2 a
3 z4 

-

w1 — —1 1 —0.3 —92108 173608

— 0 0.3 0.00001 0.5 —2

w3 — 0 92108 —0.5 23840 —44932

w4 
0 —173608 2 —44932 84688

Since — —mjj~ for all i ~ j except for I = 4, j — 3 and

~ 
a33 m

3~ 1 l~ 
23840 —44932

F L m43 m~~ J L —44932 84688

~1
is positive definite, 14 is positive definite . After  the six pivots

<w4,z4>, <w3,z3>, <w2,z2>, <z4,w4>, <z3,w3> and <z2,w2>, one returns

to the initial schema.

Example 1 is a circling example in which N is of order four.

Next we show that, in fact, four is the least dimension in which circling

can occur.

Theorem 4. For circling to occur in the PPM applied to (q,M) where

14 is either a P—matrix or a positive semi—definite matrix, the order of

H anat be at least four.

27
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Proof. Without loss of generality, we can assume that is the dis—

tinghished variable of the major cycle in which circling occurs. Let

K = (iii # 1, w~ becomes nonbasic during circling). In Section 2 and

Section 3 it has been shown that, during circling, the algorithm merely

chooses some k E K such that m,~1 < 0 and then pivots on mkk (if

m
kk

> O )  or on

a11 
mlk l

I (if m. = 0).
mkl ~~kJ 

Kk

If the order of N is less than four, then since 1 1 K, the cardinality

of K is at most two. Since m.d, the pivotal transform of inkl~ ~~

positive. < 0 for at most one i E K during circling. Thus by default

this negative il has the smallest index among all < 0 where j E K.

It follows that the least—index rule is implicitly imposed thereby making

circling impossible, and the theorem follows. a
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PART II

LEAST—INDEX RESOLUTION OF DEGENERACY IN

LEMKE ’ S ALGORITHM AND COTTLE ‘S ALGORITHM

1. Introduction.

Another, more robust, method for the LCP is due to Leake [12],

[14]. Since Lenike ’s algorithm is also a pivotal method, it is not surprising

that it may circle when degeneracy occurs. Some circling examples will be

given later.

F In this Part, we impost a least—index rule on Lemke’s algorithm

and prove its finiteness when the matrix is either a P—matrix or a positive

semi—definite matrix. We also show that Cottle’s algorithm [3] for the

parametric LCP is finite when the least—index rule is imposed .

2. Lemke’s algorithm for (q,M).

2.1. A brief review of the algorithm.

Consider the auxiliary LCP

(1) w q + z 0e + M z

(2) (v , a , a0) > 0

(3)

29



where e E R~~, e > 0 and z0 is an artificial variable. A solution of

this system with z0 
— 0 is necessarily a solution of (q,M). If e1 > 0

for all i such that ( 0, then for z 0 and a
0 

suitably large,

w >  0, and (2), (3) hold. Lemke’s algorithm starts with such a a and

and performs a sequence of pivots to achieve the condition = 0.

Once z0 
= 0, a solution to (q,M) is obtained since during the process,

(2) and (3) are always preserved .

Lemke’s algorithm.

Step 0. Start with the basic solution (w;z
0
;z) — (q;0 ;0) and the

matrix M [e,M].

Step 1. If q > 0, stop. A solution (w;z) = (q;0) is obtained .

Otherwise, define k by —~~/e~ — max.~f— q1/e1
} and then

pivot <wk,ZO>. Let (
~ , i~) denote the updated tableau and

designate Zk, the complement of as the driving variable.

Step 2. If the driving variable Z
k 

is unblocked , stop. Otherwise

define j by

~clj /mj k 
min{_

~i/iIk I Ik < 0}

Step 3. If a0 is the blocking variable, stop. A solution is at hand.

Otherwise, perform the pivot <wj~
zk> and let Z

j
~~ the comple-

ment of W
j~ 

be the new driving variable. Return to Step 2 with

the updated tableau.

In the nondegenerate case, Lemke’s algorithm is finite [5], [12].

If ak is unblocked in Step 2, we say that the algorithm terminates on

-- ~~~~~~~~~~~~~~ --- --— 

30



~ .. — —

a secondary ray. When this happens, some results can be derived from the

following theorem which is proved in [5].

Theorem 1. If Leuake ’s algorithm applied to (q,M) terminates on a ray,

there exists a nonzero, nonnegative vec tor u such that

(4) u1(Mu)1 < 0 for i — 1,2 ,..., n.

In the case when 14 is a P—matrix , (4) cannot have a nonzero solu-

tion and consequently Lemke ’s algorithm will solve this problem . When H

is positive semi-definite or, more generally, copositive—plus, termina-

tion on a ray implies that (q,M) is infeasible [121. It is also well

known that Lemke’s algorithm can be applied to other classes of linear corn—

plenientarity problems. Some detailed discussions can be found in [8], {
[9], and (13].

As mentioned above, Lemke’s algorithm may circle when degeneracy

occurs. Let us define the length of a circle to be the number of distinct

basic sets in this circle. Kostreva [11] has shown that the minimum length

of a circle in Lemke ’s algorithm for a general (q, M) is four . Moreover ,

he gives an example to illustrate that circling can occur when N is

of order two .

Kosteva’s circling example of order two, Example 2 of [11], uses

an uncomm on artifical vector e. Usually, e should be nonnegative (in

order to initiate the process from a ray). If we always let the artificial

vector e be nonnegative, his proof can still be applied to show that

31
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the minimum length of a circle is four. But we will show that for circling

to occur , M must be of order at least three. From the following example,

it can be seen that Kostreva’s bound on the length of circling is sharp .

Example 1. Apply Leake’s algorithm to (q,N) where

lol —l —l 1
I I

q I _ 2 1 N~~ 1 1 0

L—3J 1 1

Since q1 
= 0 and q2 

< 0, q
3 

< 0, we let e — (Q ,1,1)T~ The initial

schema is

__~t~.
z0 zi a2 z3

w1 
0 0 —l —l 1

w2 — —2 1 1 1 0

w3
= —3 1 1 1 1

After the pivots <w
3
,z0>, 

<w2, z3>, we have the schema

1 w3 
z1 z

2 
v
2

1 1 —l —l —l

(*) w
3 — 1 1 0 0 —l

a0 — 2 0 —l —l 1

Af ter further pivots <w1, z2>, <a2,z1>, <z1,w2> and <v2,w1>, we return

to (*) and a circle of length four is obtained.

32

l
T~~~~~~~~

I
~ T-’_ 

T~~~ 
-_ 

-



Next we show that the matrix N in Example 1 has the least possible

order for circling to occur.

Proposition. If 14 is of order two , Leake’s algorithm applied to (q,M)

will, terminate in a finite number of pivots for any q.

Proof. If q > 0, there is nothing to prove . Hence assume that q1 < 0.

Let (e1,e2) = (l,e2)
T where e

2 > 0 (e
2 > 0 if ( 0).

1 a0 z1 z2

V

i

— nil1 nil2

w2 — q2 e2 a21 m22

Without loss of generality, we can assume that w1 blocks z0 when a0
decreases to —q1. Then the pivot <w1, z0> is performed. After the pivot,

) 0

1 V
1 

Z
1 

z
2

z
o

_ 

~1[1~ 
in

~~ 
rn12

V
2 = ~2~~ e2 rn21 in22

Now a1 is the new driving variable . If a0 blocks a1, terminate.

Otherwise, w2 blocks a
1 and the pivot <w2,z1> is performed. After

the pivot, e
2 > 0 and z

2 is the new driving variable.

I- iI ’
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1 w1 w2 z2

q1 e1 rn11 ni12

q 2 e2 m21 m22

If z
0 

blocks z2, terminate. Otherwise, z1 
is blocking and

the pivot <z1,z2> is performed.

1 w1 
V
2

~~]. ~l
’ 

~ll ~l2

q2 ê2 rn21 th22

Now w1 is the next driving variable . However , e2 > 0. Hence w1 is

either blocked by a0 and a solution is obtained, or else w1 is un-

blocked and the algorithm terminates on a ray. o

2.2. Lemke’s algorithm with the least—index rule.

Even when 14 is a P—matrix, Leinke’s algorithm applied to (q,M)

may circle; e.g., see Example 1 of [11]. However, we show in this section

that when M is a P—matrix or a positive semi-definite matrix, Lenike’s

algorithm with the least—index rule will process (q,M) in a finite number

of steps. We say that the least—index rule is imposed in Lemke’s algorithm

34



if , when there is a tie in choosing the exiting basic variable, we always

choose the one with the least index as the exiting basic variable. Note

that the index of the artificial variable z0 is less than all other

indices, hence it will be chosen if it is involved in a tie.

Theorem 2. When N is a P—matrix or a positive semi—definite matrix,

Leake’s algorithm with the least—index rule will process (q,M) in a

finite number of steps.

Proof. It is clear that when H is positive semi—definite , then so is

the matrix M where

r T ie

1-c N

for some real number ~ > 0. It is also clear that when M is a P—matrix ,

then so is the matrix M if p is suitably large.

Lemke ’s algorithm starts with the system (1) where z = 0 and z
0

large enough so that w > 0, and then performs a sequence of pivots to

achieve the condition a
0 — 0 (or else it goes off on a ray). Let > 0

be the smallest value of z0 such that q : q + ~0
e > 0. We can rewrite

(1) as follows:
w .q + a

0e + M z

where

o : z 0 — z 0 
- 

V
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Note that q > 0 and cm increases from 0 at the first step of Lemke’s

algorithm. Furthermore, z0 
— 0 if and only if c~ 

=

Therefore, by denoting

T
j  O~ p e

y ( ) and M =

- e M

where p is sufficiently large and q0 
< 0 such that the absolute value

of q0 
is sufficiently larger than p, Lemke’s algorithm on (q,N) ~an

be regarded as a major cycle of the principal pivoting method on (y,M )

in which ~ is the initial driving variable (cm can be regarded as having

the same index as a
0 

does, namely 0).

1 cx z
Tw0 q0 p e

w q -e N

Since z0 — 0 whenever cm in addition to the termination

rules for the principal pivoting method, we terminate this major cycle

when cm and in this case , a solution to (q,M) is obtained . However,

it has been shown in Part I that each major cycle of the PPM with the

least—index rule is finite, thus the result follows. a

Remark 1. From the above proof, it can also be seen that in Leake’s

algor ithm, the ar tif icial var iable z
0 

is always monotonically decreasing

when N is a P—matrix or a positive semi-definite matrix, Cottle [2].
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Remark 2. Since the self—d~ma1 method (63 for linear programeing is a

special case of Leake ’s algorithm, the least—index r ile can be applied

there also .

Corollary. The minimum length of a circle in the Lemke’s algorithm without

the least index rule applied to (q, N) ,  where N is a P—matrix or a positive

semi—definite matrix , is six. Furthermore, the bound is sharp .

Proof. The above proof shows that Lemke’s algorithm can be regarded as

part of a major cycle of PPM. Thus it follows from Theorem 4 of Part I

that the minimum length of a circle is larger than or equal to six.

Example 1 of Kostreva [11] illustrates tha t six is tha sharp

bound for the P—matrix case. In the case of positive semi—definite matrix,

let R be obtained from Example 1 of Part I by performing a pivot on m33,

then N
11 
( 0 for i — 2,3,4. Thus by’ considering e — —(N 21, N31, ~~~)

T

Example 1 of Part I and the proof for the above theorem show that the

bound is sharp .

Theorem 2 shows that, when N is a P—matrix or a positive semi—

definite matrix, Lenike’s algorithm with the least—index rule will process

the problem in a finite number of steps. Unfortunately, this is not

true for a general matrix, even for a copositive—plus matrix. Example 2

below illustrates this.
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Example 2. Consider the LCP (q,M) where

—10 2 3 3 2

—10 2 2 2 3
q —10 N =  2 3 3 1

—8 1 1 1 2

Clearly M is strictly copositive, and hence copositive — plus. Start-

ing with the schema

1 z0 z1 z2 a3 z4

—10 i i 2 3 3 2

w2 —10 1 2 2 2 3

—10 1 2 3 3 1

—8 1 1 1 1 2

Lemke’s algorithm with the least—index rule generates the pivoting sequence

<w1,z0>, <w4, z1>, <w3,z4> and obtains the schema

1 w 1 
w
4 

a2 
z
3j’ 

w
3

6 —3 2 1 1 2

w2 0 2 0 —l —l —l

(**) 0 1 0 0 0 —l

z1 — 2 1 —l —2 —2 0

After the further pivots <w2, z3>, <z3, z2), schema (**) becomes

I
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1 w1 V
4 

Z

3 

w2 w3t

a
0

— 6 —1 2 0 —l 1

0 2 0 —l —l —l

(***)
0 1 0 0 0 —l

2 —3 —l 0 2 2

If the least—index rule is ap?lied, then, after two more pivots

schema (**) reappears and thus circling occurs.

However , if (instead of <z 2, w3> , <w3,w2>) the pivot <z4,w3> is

performed in (***), then after the further pivots <z1,w4>, <w4,w1>, <w3,a4>,

<z 2, z3> and <z 0,v2>, a solution

14 16 12 14w — (-s— , -i-- , 0, 0), z — (0, 0, -i-, -i—)

is obtained.

In this circling example, the artificial varIable a
0 remains

constant during circling. This is not true in general. For example, if

— —10 is replaced by q3 — —9.5 in Example 2, then Lemke’s algorithm

with the least—index rule generates the same circling sequence as above.

However, during circling, the artificial variable z0 no longer remains

constant . The reason why the least—index rule works in P—matrix and

positive semi—definite matrix cases but not in general remains to be found .
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3. Cottle’s algorithm for the parametric LCP.

By applying Grave ’s lexicographic pr incipal pivoting method [10]

for LCP, Cottle [3] developed a finite algorithm for checking the mono—

tonicity of the solutions to the parametric LCP {(q + ap, M ) l a  > 0, q > 01

in which N is a P—matrix or a positive semi—definite matrix. If the

monotonicity check Is deropped in this algorithm, we obtain an algorithm

for solving the PLCP which we call Cottle’s algorithm for PLCP. Without

taking some (lexicographic) precautions for the constant column of [3],

Cottle’s algorithm may circle. Vor example, if q
1 

= —l is replaced by

q1 — 1 in Example 1 of Part I and p — (1, 0.3 , 92108, _173608)T, then

circling occurs. However, we shall show here that Cottle’s algorithm

with the least—index rule is finite.

3.1. A brief review of the method.

Consider a PLCP {(q + ap,M)lq > 0,cz > 0} where M is either

a P—matrix or a positive semi—definite matrix . Let Q be a matrix having

linearly independent lexicographically positive rows and q as its first

column (q ~ 0). The lexicography is used as a cure for the degeneracy

problem, not as a means to achieve greater generality .

Statement of Cottle’s algorithm for PLCP

Step 0. Initialization. Start with a at the “critical value” ~ — 0

and set z— 0 .

Step 1. If p > 0, stop. (w;z) — (q + ap;O) is a solution for all

a > 0. Otherwise
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Step 2. DetermIne the critical index r by the condition

— lexico min(_Q
i/PiJP1 

< 01. Set a equal to the

new critical value a — q /—p .

Step 3. Change of basis.

Case 1. mrr > 0, then pivot on ni r and return to Step 1 with transformed

tableau.

Case 2. a 0.rr

If H.~ > 0, stop. The problem is infeasible for all a > a.

Otherwise, define the index s by

- 9r
P
s~~r
)
~
’msr — lexico miix {—(Q 1 — QrPS~’r~ ’

mirtmir < O}

and pivot on

a
I rr rs

msr inss

Return to Step 1 with tae transformed tableau.

It can be shown that this algorithm is finite (31, [10]. This

algorithm is also closely related to the Dantzig—Cottle principal pivoting

method. In fact, we have the following:

Theorem 3. Suppose that N is a P—matrix or a positive semi—definite

matrix. Let p > 0 be large enough such that
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M

L~
is a P—matrix whenever N is. Assume q0 

<< 0; then the execution of

Cottle ’s PLCP algorithm is just a major cycle of the Dantzig—Cottle PPM

on ( r ,M) where

f ~o
r — (

Proof. It is clear that if M is positive semi—definite, then so is

the matrix N. Let (Tl) be the initial schema of the PPM in which

is the distinguished variable and a
0 

is the driving variable. Let

(Tl*) be the initial schema of Cottle ’s PLCP algorithm.

1 a0tz1 ... a~ ...  a . . .  a

u — p  —p p —p
0 ‘0 1 r s n

V

1 

— q1 p1 a11 ... m
1~ “‘is

w — q p a ... m ... a ... ar r r rl ri is rn
(Ti)

w — q p a ... m ... a ... a
a a a sl si as an

V q p a ... m ... a ... a
fl u n nl nr ns nn

I
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1 a ... a ... a ... a1 r a n

— q
1 

p
1 

m11 ... a1~ ... a
1 

... a
1

v — q p m m ar r r ri ii is rn

(T1*) . . . . .

w — q p a .. .  in . . .  m .. .  as s a sl si as an

w — q p a . . .  a . . .  in . ..  an n n nl ni ns mx

If p > 0, then both PPM and Cottle’s PLCP algorithm terminate at this step.

Therefore, assume p 0.

Suppose that r is the critical index in (Tl*) and the critical

value at this step is a — 
~~~I—P~ 

. Clearly V
r 

is also a blocking

variable in (Ti) when increases to

If mr > 0, both PPM and Cottle’s PLOP algorithm pivot on 
~~~

After the pivot, the basic variables of PPM are identical to the basic vari-

ables of Cottle’s PLOP algorithm except that PPM still has one more basic

variable w0. Furthermore, the comeon basic variables have the same values

at this step, and the driving columns are still the same. It follows that

the next blocking variables in these two algorithms will be identical.

Now suppose 
~~ 

— 0. The PPM performs a block pivot of order 2

on the principal submatrix

I ~
~~~ 

0
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After the pivot, schema (Ti) becomes the following schema (T2):

1 V
0 

Z
1 

... Zr_i V a~~1 
. ..  z . ..

— 
~0 ~~ ~~ ~~r—1 ~~ ~

‘r+l ~~ ~s

V — Il p1 “1 1

V
1 

— 
~~~~~~~~~ 

pr—i.

(T2) Z
r 

—

Vr+1 - ~~~~~ ~r+1 
M

w — q p
5 S 5

V — q pn n n

where, for i — 1,2,..., n and i #

_
-~~~~~~~

r
(5)

— 1 m1~~~1A
q1 — 1 ~~~~~~~~~~~~~~~~~~ 

r

Since V
r 

is the blocking variable in (Ti), Pr < 0. Hence p

has the same sign configuration as that of M.
~
. It follows that if

M
~r ~ 

0, then both PPM and Cottle’s PLCP algorithm terminate at this step.

Assume therefore that L 0 and
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(6) —(q5 — q~ p5/p~~)Ia,~ — ain{—(q~ 
— ~~~~~~~~~~~~~~ < 01

Then Cottle’s PLCP algorithm pivots on

0

[ a~~ ~~~

After the pivot, (Tl*) becomes

1 cm a1 ... Zr_i Vr
Z
~~l 

Z8_1 W
8

Z~~,1 a

— p1

w — q p
i—i r—l r—i

a — q pr r r

— qr+i r+l r
~~~i

- N
— %—i ~

‘s—1

a — q p
B 8 5

— 
~~~ P,~.1

w — q pn fl a

Note that (6) Implies that in (Ti), (TIC), when - 
-

Z

r 

— — (q5 
— ~11,P5/P~)/m,~ ~

and

for sil i # r , 0 ,
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we have

w
0
_ ;

0
:_ q

0
_
~~~~j+ !.! (q8

_~~~”s),

(7) w 0 ,

v~ > 0, for all I # a, 0

Now, consider the schema (T2) in which a
1 

= — Zr_l — Vr —

Z +l — — a — 0. When w0 increases to 
~~~~~

, then by (5) and (7) :

in1 i sr r
T k P~~8 + m q

0 
— P5~~ 

— _________

a I q p i q p
si I r r i is— —  iq — — 1~ 

+— i q — —
~r 

L °  ~r ~ ~ ~

— 0 .

It can also be easily checked that w > 0 at this step. Therefore, w5

is a blocking variable in (T2). In schema (T2), we have

a2

rn m + _.!! ~
58 58 2

r

It follows from (6) that m
5~ ~ 

0 and hence a > 0. Therefore, the

PPM performs a pivot on and after the pivot (T2) becomes
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i V

0 

Z
1 
... Z5_1 V Z~~ 1 

... Z~~~
_1 

V Z~~~~~
1 

2

— — — — — — — — —a0 
— q

0 ii —p
1 
...—P5_1 

~~~~~~~~~~~~~~~~~~~~~~~~ 
pn

—V — ~t1 ‘1 9

::_1
: 
:

‘ I:’
w~~1 

- 
~~~~~ ~s+l —(T3) : M

—
V —
r—l ‘i—i “r—l

—a — q pr r r

— —V — 11‘1r+1 rT+l

—w — q pn n n

(T2*) and (T3) have the same set of basic variables except that

a0 is a basic variable in (T3) and a is a parameter in (T2*) . Hence ,

(T2*) can be regarded as a subschema obtained by performing a pivot on

in (T3) . It follows that p — / and the corresponding variables of

(T2*) and (T3) have the same values. Therefore the next blocking variables

in the PPM and Cottie’s PLCP algorithm viii be identical.

By repeating the above argument, it follows that the execution of

Cottie ’s PLCP algorithm is just a majo: cycie of the PPM on (r , N ). 0

1 .



3.2. Cottle’s PLCP algorithm with the least—index rule.

In this section, we shall give a modification of Cottle’s algorithm

and prove its finiteness without recourse to a lexicopositive matrix Q.

To accomplish this, we introduce a refinement of Cottle’s algorithm which

imposes the following least—index rule:

(i) In Step 2, determine the critical index r by

r = min (klpk 
( 0, —~~/P~ — min(~q~/p~Ip~ < o}}

(ii) In the Case 2 of Step 3, define a by

s — mIn{kI~~ < 0, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ < 0}}

In (I) and (ii) ,  M.k represents the column of N corresponding to the

current nonbasic variable Z

k~~ 
Similarly, ~~~ ~k’ ~~~ 

represents the

row of the schema corresponding to the current basic variable wk.

Theorem 4. Cottle’s PLCP algorithm with the least—index rule will

terminate in a finite number of steps.

Proof. Theorem 3 shows that the execution of Cottle’s PLCP algorithm is

just a major cycle of the Dantzig—Cottle PPM. Therefore , the result . ‘ - -

folioVs from Theorem 2 and Theorem 3 of Part 1. o
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4. An extension of Murty’s scheme for (q,M) .

Murty’s scheme [15] can be applied to (q,M) only when M is

a P—matrix. In this section we give an extension of Nurty’s scheme to

solve (q,M) in which N is a positive semi—definite matrix. In the

following, M is either a P—matrix or a positive semi—definite matrix.

Statement of a direct scheme for (q,M)

Step 0. Set h — 0. Begin with the system ~
h 

— q
h 

+ M
h
Zh where

— q° + M°z° is the given system w — q + Ma . The nonbasic

vector always assumes value 0.

Step 1. If qh > o, stop. (w~;z
Fhj — [qh;01 is a solution. Otherwise,

choose y — min{I1w~ < 0}.

Step 2. Change of basis.

Case ~ m~
’ > 0, then pivot on m~~. Set h — h+l and return

to Step 1.

hCase 2. a — 0 .

> 0, stop. The problem is infeasible.

Otherwise, choose

s — min (iIm~~ 
< 0}

and pivot on

h ha arr is

h h
in aSi 95

Set h — h+l and return to Step 1.

H
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Theorem 5. When M is either a P—matrix or a positive semi—definite

matrix, the above scheme will process (q,M) in a finite number of

pivots.

Proof. The above scheme generates the same pivoting sequence as that

generated by Cottl&s algorithm with the least—index rule for the PLCP

((0 + ctq,M)Ic& > 0) where 0 is a zero vector. Therefore, the result follows

from Theorem 4. o
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