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LEAST-INDEX RESOLUTION OF

DEGENERACY IN LINEAR COMPLEMENTARITY PROBLEMS

by
Yow-Yieh Chang

Department of Operations Research
Stanford University

\ ABSTRACT

}
3y
\

This study centers on the circling phenomenon associated with
degeneracy in linear complementarity problems and presents an easily imple-
mented technique for resolving it. With certain exceptions, the device is |
to use the least-index for selecting the variable to leave the basic set.
The results of this report pertain only to linear complementarity
problems involving P-matrices or positive semi-definite matrices. With
this restriction, it is shown that inclusion of the least-index pivot
selection rule insures finiteness for the principal pivoting method of
Dantzig and Cottle, Lemke's algorithm,and Cottle's parametric principal
pivoting method. It is shown that for circling to occur in the principal

pivoting method, the matrix must have order at least four, and for Lemke's

algorithm it must be at least three. Examples are given showing that these

bounds are sharp. Finally, Murty's version of Bard's method is extended

from P-matrices to the positive semi-definite case.
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PART 1

LEAST-INDEX RESOLUTION OF DEGENERACY IN

THE DANTZIG-COTTLE PRINCIPAL PIVOTING METHOD

1. Introduction

n

X
Given a matrix M € and a vector q € Rn, the linear comple-

mentarity problem (q,M) 1s that of finding a solution to the system

(1 w=gq+ Mz
(2) w>0, z>0
(3 wz=0

(or showing that no solution exists). A pair (w,z) of n-vectors is a

complementary solution of (1) provided

z,w; = o, zsz-O, Y znwn =0 .

A basic set of variables consists of any ordered set of n variables v,

and 2z, such that their coefficient matrix in (1), called a basis, is non-

3
singular. A complementary basic set of variables is one in which exactly

one variable of each complementary pair (wi,zi) is basic. Finally, a basic
solution is the one found by solving for the value of a given set of basic

variables when the nonbasic variables are set equal to zero.

A basic solution of the equation (1) is said to be degenerate if at ﬁ

il g e A

least one of the basic variables equals zero. As in simplicial methods for — g
linear and quadratic programming, degeneracy also causes difficulties in PERRT )
R e | 3
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simplicial methods for the linear complementarity problem (LCP). More pre-
cisely, degeneracy can lead to the phenomenon known as circling: a sequence
of bases which (after finitely many steps) repeats itself. Degeneracy per
se 1s not the problem; but when it is present, circling is a possibility
and must be avoided if the simplicial methods are to work and be finite.
The "degeneracy problem" refers to the difficulties associated with circling.
Except for Murty's scheme [15], the only theoretical techniques
available for handling the degeneracy problem in the LCP have been lexico-
graphic (perturbation) pivot selection rules and random choice rules. We
shall not review them here; they can be found in the work of Zoutendijk [20,
pp. 80-90], Graves [10], Eaves [8] and lemke [12].
In this part, we present a natural least-index pivot selection rule
which, when imposed on the Dantzig-Cottle principal pivoting method [2], [5],
[7] for the LCP, will ensure its finiteness. This rule is also very easy

to implement and does not require extra storage or computation.

2. The PPM with P-matrices

The Dantzig-Cottle principal pivoting method (PPM) was devised to
process (q,M) where M is either a P-matrix or a positive semi-definite
matrix. The matrix M 1s called a P-matrix if the determinants of all its
. principal submatrices are positive. We consider P-matrices in this section
and leave the case of positive semi-definite matrices to Section 3.

In applying the least-index pivot selection rule to resolve the
degeneracy problem in the PPM, we rely on a paper of Murty [15] which also

considers a least-index rule in the framework of a Bard-type algorithm for




the LCP with P-matrices. For the references on the Bard-type algorithm,
see Bard (1, pp. 146-151], Stickney and Watson [18], and Zoutendijk [20,
pp. 80-90]. §

2.1. Murty's scheme for (q,M) where M is a P-matrix

It is well-known that when M is a P-matrix, (q,M) has a unique
solution for every q [16], [17]. Using this fact, Murty [15] proposed ‘

the following finite scheme:

Murty' scheme.

Step 0. Set h = 0. Begin with the system wh = qh + thh where

WO b q0 + Hozo is the given system w = q + Mz.

Step 1. 1If qh 2 0, stop. [wh;zh] = [qh;Ol is the solution. Otherwise

Step 2. Choose k = min{ilq: < 0} and pivot on m:k, i.e., z: is

brought into the basic set in place of w:. Set h = h+l and

return to Step 1.

Murty proves that this scheme solves (q,M). We emphasize that
the finiteness of this scheme is a result of the uniqueness of the solution
to (q,M) where M 1is a P-matrix. It is also interesting to note that

his proof can be applied to show the following:

Proposition. In Murty's scheme, a pivot in row k must be followed by a

pivot in some row with a larger index before another pivot in row k can occur.




2.2. A brief review of the principal pivoting method

There are two versions of the PPM: the symmetric and the asymmetric
versions. They both make use of the invariance of P-matrices under principal
pivoting {7}, [19].

Consider an LCP (q,M) in which M is a P-matrix. In the follow-

h _h Mh h
ing, w, z , and q represent the basic vector, the non-basic vector,

the matrix and the constant column at the h-th interation, respectively.

Symmetric version of the PPM [2], [4], [5], [7].

Step 0. Set h = 0. Begin with the system wh = qh + Mhzh where

wp = q0 + Mozo denotes the given system w = q + Mz.

Step 1. 1If qh > 0, stop. [wh;zh] = [qh;O] is the solution. Otherwise

choose some qt < 0. Call w: the distinguished variable and

h
z, the driving variable.

Step 2. Determine the blocking variable by letting 6 be the largest value

of the driving variable z: such that

wh = qh + mh zh <0
s s ss's —
h h h h h h
vy =g+ “1323-3 o, if 9 20> mo -
h, h h h h
Step 3. If 0 = -qs/msa’ ie., z  is blocked by L then pivot on m
Replace h by h+l and return to Step 1. If -q:/m::s >0
L oalgh h h h
qt/mts for some t where q, 20> m.» 1.e. 2z is blocked

by v:, then pivot on m:t. Replace h by h+l and return to

Step 2.




In this algorithm, each return to Step 1 marks the completion of a
major cycle. Assuming nondegeneracy, Dantzig and Cottle [7] showed that
during a major cycle, the distinguished variable increases to zero in a finite |
number of steps. However, the completion of a major cycle reduces the number
of negative basic variables by at least one. Therefore, no more than n

major cycles are required to obtain a solution of (q,M).

- Y

The asymmetric version is the same as the symmetric version except

that in Step 3, if the distinguished variable is not blocking and, say,

wh is blocking, then one performs the pivot on mh

t ts
with z2+1 = z:, the complement of the exiting basic variable, as the new

and returns to Step 2

driving variable.

NOTE: In the following, we shall use the notation <w to represent

1,zj>

that a pivot on m is performed thereby making 2z, basic in place of w

1j h | 1°

The two versions of the PPM are closely related. In fact, we have

the following:

Theorem 1. Under the same rule to break ties among the blocking variables,
the symmetric and asymmetric versions of a major cycle generate the same

sequence of exiting basic variables.

Proof. Without loss of generality, we may assume that 2z, is the driving

1

. variable at the start of a major cycle. If vy blocks z), there is nothing

k blocks z, for some k ¢ 1. Under the same

to prove. Hence suppose w
rule to break ties, the two versions have the same exiting variable at this . |

step. In particular, the corresponding variables in the two versions have - &

the same values at this step. |




In the symmetric version, we perform the pivot <wk’zk> after which

the system can be written as

% 1 g B
(4) PR P N 5 z
LA T jzl 3”3
e
Mk Dk b "1k k4
(5) =(q -—q)+—w+i(m - )z
T\ Ty %) T g e g0 M e )%

I

for all 1i # k.

In the asymmetric version, we perform <wk,zl\ . After the pivot

z, becomes the new driving variable and the system becomes

q
(6) PR TR e R

(7 wi-(qi-—ji )+L1w

T T ek
@ 322 ("‘13 T Fk'l')zj 2 (“’uc B 'mk_1> %
for all 1 ¢ k.

Now, since z, and z, are the driving variables in the two

versions, respectively, we compare m, - (mikmkl)/mkk, the coefficient

6




of in (5), and my - (milmkk)/mkl' the coefficient of z, in (7).

%y

We can rewrite

m m
o 117%k = Pk (mil - —lkfik) for all 1 # k .

"k e "% Dk

Since Vi blocked z, at the previous step, we have LY < 0. Also
o >0 since M 1s a P-matrix. Therefore m, - (milmkk)/mkl and
m, - (mikmkl)/mkk are of the same sign for all 1 # k. Clearly -mkllmkk’
the coefficient of z, in (4), and -mkk/mkl’ the coefficient of z

in (6), are both positive. Thus the two driving colums at this step have
the same sign configuration. Also note that before the pivots <wk,zk>

and <wk,zl>, the corresponding variables in the two versions have the same
values.

Now, suppose v, is exiting in the symmetric version at the next

step and suppose blocking occurs when z, = 21. Then by (5),

Tek ( “’tk“‘kl) -
(8) 0'"t'(qt'— >+ "cl—-fn;: g |

Also by (4),

% -

L e

Let us consider the system in the asymmetric version when




and

and clearly zy has the value ;1. It follows that, at this step, w

t

is also a blocking variable in the asymmetric version. Furthermore, the
basic variables in the two versions are the same except that 2, is basic
in the symmetric version while z) is basic in the asymmetric version.
Therefore, under the same rule to break ties, v, is also the exiting vari-
able in the asymmetric version.

The pivoting sequence <“k’zl>’ <wt,zk> of the asymmetric version

has the same effect as the pivoting sequence <w ,zk>, <"t'zl>' In the
symmetric version of the corresponding pivoting sequence is <wk,z ¥

<wt,zt>. Thus, the second pivot in each version can be regarded as the

first pivot associated with the corresponding method applied to the principal

8




transform of (q,M) obtained by the principal pivot W 2> Therefore
the argument just given applies and the two versions have the same exiting
basic variable at the following step.

Generally, suppose a sequence of pivots has been performed in
the asymmetric version and the last pivot is on m

1j

sequence has the same effect as a block pivot on some principal submatrix

» this pivoting

MSS followed by a pivot on LR

ing pivoting sequence can be regarded as obtained by performing a block

In the symmetric version, the correspond-

pivot on the principal submatrix followed by a pivot on m Thus,
P s

11°
the last pivot in each version can be regarded as the first pivot associated
with the corresponding method applied to the principal transform of (q,M)
obtained by a block pivot on the principal submatrix MSS' Therefore by

the same argument as before, the two versions have the same exiting basic

variable at the next step. o

Remark. It follows from Theorem 1 that if one version is finite, then so

is the other. Accordingly, we work with the symmetric version only.

2.3. The PPM with the least-index rule

If degeneracy occurs, the PPM may lead to circling. Some circling

examples will be given in Section 4. We consider here a least-index rule

which when imposed in the PPM, will ensure its finiteness.




Least-index rule.

In applying the PPM to solve (q,M) break ties among the block-
ing variables as follows:
(A) If the distinguished variable is blocking, choose it as the exiting
variable (and the major cycle terminates).
(B) Otherwise, choose the blocking variable with the smallest index as

the exiting variable.

In the following, we show that the PPM with this least-index rule
will solve the problem in a finite number of steps. To do so, it suffices
to show that each major cycle is finite. We shall prove this by first

assuming that circling occurs in a major cycle and then deriving a contra-

diction. Without loss of generality, we may assume that V1 is the dis-
tinguished variable in this major cycle. Let
H = {hl’ h2, elal el hm}
h1 h1 h h1
where hj+1 - hj+1 for j=1,2,...,m=1, and w =q  + M "z represents

the system in which a previous basic set is repeated for the first time.
h +1 h +1 h +1 hm+1

h is a positive integer such that the system w B o= q e z

< A, hy B B
1 1 1 h
has the same basic set as that of w ™~ =q +M "z =, Note that v =W

and z? =z for all h = hl""'hm' In the following, the phrase '"during

circling" will mean "during the pivoting steps Hl’ h2, Vv Y hm.

Lemma 1. If circling occurs, then the value of the driving variable z?

is fixed during circling.

10




Proof. Since z? is the driving variable, it is nondecreasing in this

major cycle. If z:

values 21 < zZy. There are only finitely many basic solutions, each of

is not fixed during circling, then it attains two

which corresponds to a unique set of values of the basic variables. Now

since z? increases from ;1 to z,, we can not return to a previously

encountered basis, a contradiction. O

Lemma 2. Assume circling occurs. Let K = {1|w2 becomes nonbasic during

circling}. Then during circling the values of the basic variables w?
are at their lower bounds (zero) for all i € K.
Proof. The set K can be written as K = {kl, k2, slele iy km} where
kj is the index of the variable leaving the basic set at step hj'
h
Since wkl is a blocking variable at the first step of circling, it
1
h1 h h
follows from Lemma 1 that w,~ = 0. Therefore after the pivot < w, ~, z =~ >,
k1 k1 k1

all other basic variables remain fixed.

Now the algorithm tries to increase 212 again. (Note that

h
zll = zl2 = zl.) However, Lemma 1 implies that it can not be increased.
h
Thus wkz = 0. Since each wz is involved in a pivot during circling,
2

the argument just given applies and the proof is complete. a

Lemma 3. If circling occurs, then at each step of circling m:1 <0

for some k € K.

Proof. By the definition of the set K, at each setp of circling, wt
becomes nonbasic for some k € K. This implies that wE is a blocking

variable at this step. However, since zh is the driving variable, this

1

can happen only when m&l < 0. o




Now we come to our result.

Theorem 2. In the PPM with the least-index rule applied to (q,M) where

M is a P-matrix, every major cycle consists of a finite number of pivots.

Proof. Suppose circling occurs in a major cycle in which zh is the

1
driving variable. Lemmas 2 and 3 impl, st, during circling, the algorithm

looks for the index j where

j = min{in? =0 and mg < 0}

and then performs <w§, zh>. Therefore, during circling, the PPM with the

3

h, h
least index rule is merely Murty's scheme on the LCP (Mxi,MKi) where K
is as defined in Lemma 2. However, Murty's scheme is finite. This implies
that after a finite number of steps M;l 20 for some h, in contradiction

to Lemma 3. D

Corollary. The PPM with the least-index rule applied to the LCP (q,M),
where M 18 a P-matrix, will find the solution in a finite number of

steps.

Proof. The completion of each major cycle reduces the number of negative
basic variables by at least one, and by Theorem 2 each major cycle is

finite. o

12
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Remark. If an algorithm just changes the basis and leaves the values of
all variables fixed during some consecutive steps, we say that stalling
occurs in these steps. The proof of Theorem 2 and the Proposition in
Section 2.1 show that during stalling a pivot in row k must be followed
by a pivot in some row with a larger index before another pivot in row k

can occur.

3. The PPM with positive semi-definite matrices

3.1. Statement of the method

When the system w = q + Mz, w > 0, z > 0, has a solution, we
say that (q,M) 1is feasible, otherwise it is infeasible. It is well-known
that when M 1s positive semi-definite, (q,M) has a solution whenever it
is feasible. With some modifications, the PPM as stated in Section 2.2 can
be applied to find a solution of (q,M) or to detect its infeasibility.
Similar to the case of P-matrices, all variables whose current value is
non-negative are bounded below by zero. Moreover, those variables whose
current value is negative will be bounded below by a fixed negative number
B (the same one for all such variables). For example, B can be chosen
as any neg *ive number such that B < min{qi} if q } 0. Accordingly, we
modify our notion of a basic solution ti allow nonbasic variables to assume
the value 0 or B. The value B arises from the situation where a basic
variable decreases to B, thereby blocking the driving variabie. The

method will make that blocking variable nonbasic at value B. This device

is necessary. For example, if




and wl 1

solution. We shall also change the definition of a nondegenerate solution

is distinguished, then 2z, 1is unblocked. Yet the problem has a

to be one in which at most n of the 2n variables equal 0 or B.

Notation.
As before, the superscript h denotes the iteration number. Since
the nonbasic variables may attain the negative value B, we use

wg(zg,..., ;:) to denote the value of the basic variable w? when the
nonbasic variables z?,..., z: have the values 22,..., ;:.

Symmetric version of the method [2], [4], [5], [7]

(Note: Nondegeneracy is assumed here.)

Step 0. Set h = 0. Begin with the system wh = qh + Mhzh and the
solution [;h; ;h] = [qh; 0], where wo = q0 + Mpzo denotes

the given system w = q + Mz.

Step 1. 1If qh‘2 0, stop. [Gh; ;h] = [qh;O] is a solution. If neither
qh nor [;h; 21 is nonnegative, choose some ;2 <0 or
h

<h
z, =B. Call W, the distinguished variable and z: the driving

variable.




=
[}

Step 2. Let Oh be the largest value of 2z_> z: satisfying the

following conditions:

(W 2h <o 1f z =8

=h -h h <=h - -h
(11) v:(zl,..., Z__10 Zgs Zgyps tee oo z:).i 0 if v <0
h -=h -<h h <=h =h -h
(1i1) wi(z seees Zg 10 Zos Zoi1s cee s zn) 20 1if wi.2 0
h <h ...h h _h _h _h
(Av) wi(Zgseees 20 15 205 Z s v 5 2) 2B 1f w, <0

h

Step 3. If 6 = o, i.e. the driving variable 22 is unblocked, stop.

No feasible solution exists. If eh = 0, i.e. the driving

variable z: blocks itself, then put E:+l =0, ;:+1 = E:
=h+1 h -h =h <h =h
for 1 #s and w =w (zl, cee s 21 0, 2410 cee o zn).

Return to Step 1 with h replaced by h+l. If 0 < 0P < o,
let t be the unique index determined by the conditions (ii),

(i1i) and (iv) of Step 2.

Step 4. 1If m:t> 0 and t = s, pivot (wg, z:> and return to Step 1
with h replaced by h+l.
If m:t >0 and t # s, pivot <w2, z:> and return to Step 2
with h replaced by h+l.
If m:t = 0, perform a block pivot of order 2 on the principal
submatrix Hgs. where S = {s,t}, and return to Step 2 with h

replaced by h+l.

| In this algorithm, each return to Step 1 marks the completion {

s

of a major cycle. Under the assumption of nondegeneracy, the driving |

variable and the distinguished variable are always increasing while their

15
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sum is strictly increasing [4]. Thus after finitely many pivots within a
major cycle, the negative distinguished variable increases to zero, or else
it is detected that the problem has no feasible solution. Furthermore,

the end of a major cycle reduces the number of negative components in

(w,z) by at least one. Therefore the method is finite.

There is an asymmetric version of the above method. It uses simple

pivots at each step to exchange the blocking variable with the driving vari-
able and takes the complement of the blocking variable as the new driving
variable. By a proof similar to that of Theorem 1, it can be shown that,
under the same tie-breaking rules, the two versions have the same sequence
of exiting basic variables in a major cycle. (Except that when termination
of this major cycle occurs, the initial driving variable may be the exiting
variable in the symmetric version while its complement is exiting in the

symmetric version.) Accordingly, we work with the symmetric version only.

3.2. The least-index rule

When degeneracy occurs, the above method may circle. In this
section we show that with the least-index rule of Section 2, the symmetric
version of the PPM will process (q,M), where M 1is positive semi-definite,
in a finite number of steps. In other words, it will either find a solution
or detect the infeasibility of the problem. Again, it suffices to show
that each major cycle is finite.

Suppose circling occurs in a major cycle in which w, 1s the

1
distinguished variable. Then, as in the case when M 1s a P-matrix,

since v and z, are monotonically increasing, both vy and z, are

16




fixed during circling. However, the algorithm tries to increase z,

or w, 1in this major cycle. Therefore, as in the case wvhen M 1is a

1
P-matrix, stalling occurs in these steps. Accordingly, if we delete all
the variables that are not involved in the pivoting during circling,

the PPM with the least-index rule merely looks for the index i, where

i= min{jlm:I < 0}

h
and then the PPM pivots on m:i (if my # 0) or it pivots on

h h
b s R .
(1f mgy = 0) .
R
M1 Py

Without loss of generality we may assume that all the variables are involved
in the pivoting during circling. Then, during circling, the PPM with the J
least-index rule performs the same pivoting sequence as the following

scheme does.

Scheme

h
Step 0. Start with the system wh =q + l(hzh, h = 0, where wo = qo + Mozo

is the initial system. (In the following, Hh represents the

i
colum of Hh corresponding to the nonbasic variable z: at the
h
iteration h. Similarly, Hh represents the row of M correspond-

i
ing to the basic variable w:.)

NERIR e g PRy Y P




Step 1. 1If M?I.Z 0, stop. The driving variable z? can be increased strictly.

Otherwise, let k = min{ilnql < 0}.

PSS — =

Step. 2. If mtk > 0, perform a pivot on m:k and return to Step 1 with
h replaced by h+l. Otherwise, perform a block pivot of order 2 ‘

on the principal submatrix

h h
i "
h h
L " R

and return to Step 1 with h replaced by h+l.

If we can show that Myl.l 0 after a finite number of pivots in the
above scheme, then, since the driving variable z? can be increased strictly
at this step, we obtain a contradiction to the assumption that circling

occurs in a major cycle (in which w, 1is the distinguished variable) of

1
the PPM with the least-index rule.

Lemma 4. In the above scheme, a pivot in row k, where 2 £ k < n, must be

followed by a pivot in some row with a larger index before another pivot

in row k can occur.

Proof. We will prove this by induction. If the matrix M 1is of order 1
or 2, the lemma is trivial. Suppose the lemma holds when the order of M
is less than n and now consider the case when M is of order n.

Let us examine the situation where two pivots occur in row k

and 2 { k { n~1. If between these two pivots, there is no pivot in some £

18
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row with a larger index, then by deleting M.n and Mn., a contradiction
to the inductive hypothesis will be derived. Therefore, it suffices to
show that there is at most one pivot in row n.

Suppose a pivot occurs in row n at iteration hl' Let (T1) be

the corresponding schema at this iteration.

1 zl S zn
b Y ™M1 ®In

(T1) 3 5 £ :
¥n T 94 a1 ' Tnn

By the choice of the pivot row, m 20 for all i < n-1 and m, <0

in (T1). Note that Wis e, W oare the basic variables in (T1).

Suppose the next occurrence of a pivot in row n is at iteration

h2' When this occurs, z, must be the exiting basic variable and vy

is either basic (Case I) or nonbasic (Case II).

Case 1. w is a basic variable at iteration h,.

1 2
Let S be the set of indices i such that w, is nonbasic at
iteration h2' Note that 1 ¢ S. Let M denote the principal transform

of M at this iteration. Clearly M can be obtained from M by performing

& -1
a block pivot on the principal submatrix MSS' Thus MSI = - SSMSI

(since 1 £ S) and therefore

T - T -1 ,
s1Ms1 = “MgiMssMsy £ O 1

M




since M;; is positive semi-definite. However, since oy 20,
B, 20 forall 1<n and m, <0, &, <0, ve have M M >0 |

(since n € S), a contradiction. {

Case 1I. "1 is a nonbasic variable at iteration h2. l
We shall use the same notation as Case I. Note that 1 € S in 1
this case. Since M 1is positive semi-definite, 511 >0 or 511 = 0.

Case II.1. > 0.

i
By performing a pivot on ;11’ vy becomes a basic variable and
the sign configuration of i'l is unchanged. In other words, 511 >0

for all 1 { n-1 and ;hl < 0. Since w1 is a basic variable now, as

in Case I, a contradiction can be derived.

Case II.2. m, = 0.
Case I11.2.1. m,, > 0.

11

By performing a pivot on m g in schema (T1), v becomes a non-
basic variable and the sign configuration of M.l is unchanged. Therefore,

as in Case I, a contradiction can be derived.

20




Case II.2.2. my = 0.

Let us denote the schema at Step h2 as (T2)

1 w z
S S

z.=| q M M 1
s A

(T2) S SS SS

vos|a | M 1M

S S SS SS

By

where ; = {1,...,n}\\~s. Note that (T2) can be considered as obtained
from (T1l) by performing a block pivot on the principal submatrix MSS'
(Recall that 1 € S in this case.)
If we enlarge the schema (T1l) to (Tl*) by adding one row and one
o ol By ven 50 BT

column such that Mh = (1, Oy «os 40, 1) and M @

+1. +1

and 94y 2O arbitrary number, the enlarged matrix of order n+l is still

positive semidefinite.

1 z) .2 zZ 4
wl = ql m11 Ry mln -1
0
(T1%*) . < v ‘ .
L = 9, L v mnn 0 '
Vasy * U4 I © e 0 1

By performing a block pivot on the principal submatrix HSS in (T1¥%),
a schema (T2%*) is obtained which has the same entries Ei, ;ij as the schema

(T2) for all 1, j £ n.
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S [ n+l
q M M. M
S SS SS S,n+l
w. =| q. M. M.. M.
(T2*%) S S SS SS S,n+l
w =| q M M e M
el whi n+l,S nt+l,S n+l,n+1] J

Also, (T2*) has the same basic variables as (T2) does. Therefore (T2%)

is also an enlargement of the schema (T2). By pivotal algebra

i "R s Ya

g1
n

(1,0,...,0) * M

s1

e |

=0 .

Furthermore, by performing a block pivot on the principal submatrix

™y % ot 0 -1

"r1,1  "ntl,n+l A

the schema (T1*) becomes the following schema (T2**) in which v and

Vol are nonbasic while all other wi's are still basic.




n nt+l
= : = = = =

g Rl b § b ™n 1,0+l

2" 1% " ®as vl M Ty, o+l
(T2%*) 4 : : e . :

e PG 9n a1 Mh2 ®an mn,n+1

ol T |91 "orl,1 Pmrl,2 0 Unkl,n Tndl,ntl
Since m = 0, my 20 for all 2<1i<n, mnl < 0 and mn+1,1 =1,
it can easily be seen that m, = 155 m, 20 for all 2 < 1< n, m <0
and mn+1,1 = -1

Now since both (T2*) and (T2**) are principal transforms of the
schema (T1*), (T2**) is a principal transform of (T2*). In fact, if
we denote R = (S\\{1}) U {nt+l}, then (T2**) can be obtained by performing
a block pivot on the principal submatrix ﬁR.R in (T2%*). Therefore
ﬁm = - ﬁ;RLﬁnl’ and thus ﬁ‘zlikl = —ﬁ';lil-mlﬁkl Since ﬁ.;; is positive
semi-definite, -ﬁzlﬁ;nlﬁkl < 0. However, since n € R, ntl € R and

anl <o, ;ln+1,1 = 0, ;nl <0, m -1 while for other 1i ¢ R, m ) 20,

n+l,1 z
= -T =
my > 0; therefore MRlMRl > 0, a contradiction. O

Lemma 5. In the above schema, M.1 2 0 after a finite number of iteratioms.

Proof. For j > 1, let v(j) be the number of pivots that occur in

row j. In the proof of Lemma 4, we have shown that v(n) < 1.

Furthermore, it follows from Lemma 4 that




n

v < v +1.
i=§+41

In other words,

v(n-1) <v(n) +1< 2

v(n-2) < 22

W) €2+ 2% 4 vee 2 P pa -t

Therefore, the above scheme will terminate after a finite number of

iterations. o

Theorem 3. In the positive semi-definite case, every major cycle of the

PPM with least-index rule consists of a finite number of pivots.

Proof. Suppose circling occurs in a major cycle in which w, is the dis-

1

tinguished variable. Then, as in the case when M is a P-matrix, since
vy and z, are monotonically increasing, both vy and z, are fixed

during circling. However, it follows from Lemma 5 that M., > 0 after

1
a finite number of steps. Therefore either w, or z; can be strictly
increased after a finite number of steps, in contradiction to the assumption

that circling occurs. o

Corollary. In the positive semi-definite case, the PPM with least-index

rule will process the problem in a finite number of steps.

|




Proof. Since each major cycle reduces the number of negative components

in (w,z) by at least one, the result follows from Theorem 3. o

Remark 1. As in the case when M 1is a P-matrix, Lemma 4 implies that if
stalling occurs in the PPM with least-index rule for (q,M) where M 1is
positive semi-definite, then during stalling, a pivot in row k (except

the row corresponding to the distinguished variable) must be followed by
a pivot in some row with a larger index before another pivot in row k can

occur.

Remark 2. The least-index rule states that if the distinguished variable
is blocking, then it is chosen as the exiting basic variable even if there
is a blocking basic variable with a smaller index. This is essential in
the interpretation of the rule. The following is an example which has a
solution, but if the least-index rule is incorrectly applied, the driving
variable will be unblocked and hence give the false impression that the

problem is infeasible.

Example. Consider (q,M) where q = (1, -1, -l)T and
1 -1 0
M= -1 1
0 O

Clearly, M 1is positive-semi-definite and (w3;z) = (0, O, O; O, 1, 1)

is a solution. Consider the major cycle in which v, is the distinguished

variable.




wl = 1 1 1 0
v, = -1] -1 1 0
wy = -1 0 0 1

When the driving variable 2z, increases to 1, both w. and w, are

2 1 2
blocking. If our least-index rule is imposed, then the pivot <w2,z >

2
is performed since v, is the distinguished variable. However, if the

least-index rule is incorrectly applied, w, 1is chosen as the exiting

1
basic variable, and then the pivot <w1,zl> is performed.

1 wl 22 ? z

3
z, = -1 1 1 0
v, = 0 -1 0 0
v; = -1 0 0 1

Now, since w, 1s still the distinguished variable, the driving vari-

2

able is still z, and its column is nonnegative, hence is unblocked.

-3
Therefore, according to Step 3 of the statement of the PPM in Section 3.1,

one gets the mistaken impression that the problem is infeasible.

4. Circling examples of minimal dimension.

In this section, we give a circling example for the PPM on '(q,M)
where M 1s a positive definite matrix of order four (hence M 1is a
P-matrix as well as a positive semi-definite matrix). We will also show
that four is the sharp lower bound on the order of M for the circling

to occur.
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Example 1. Consider the initial schema in which w, 1is the distinguished

1
variable
: 5 % o 2
w = -1 1 -0.3 -92108 173608
v, = 0 0.3 0.00001 0.5 -2
vy = 0 92108 -0.5 23840 ~44932
v, = 0 -173608 2 -44932 84688

Since m = -m

14 for all 1 # j except for i =4, j =3 and

31
! [ my, My, ] & [ 23840 -44932 ]
my o W, -44932 84688

is positive definite, M is positive definite. After the six pivots
<"4’24>’ <w3,23>, <w2,22>, <24,w4>, <z3,w3> and <zz,w2>, one returns
to the initial schema.

Example 1 is a circling example in which M 1is of order four.
Next we show that, in fact, four is the least dimension in which circling

can occur.

Theorem 4. For circling to occur in the PPM applied to (q,M) where
M 4is either a P-matrix or a positive semi-definite matrix, the order of

M must be at least four.

27




Proof. Without loss of generality, we can assume that wl is the dis-

tinghished variable of the major cycle in which circling occurs. Let

K= {il1 # 1, w, becomes nonbasic during circling}. In Section 2 and

i
Section 3 it has been shown that, during circling, the algorithm merely

chooses some k € K such that o < 0 and then pivots on L (if

L > 0) or on

(if L 0)

If the order of M 1is less than four, then since 1 ¢ K, the cardinality
of K is at most two. Since akl’ the pivotal transform of mkl’ is

positive. Ei < 0 for at most one i € K during circling. Thus by default

1

this negative m has the smallest index among all m,, < 0 where j € K.

il ji
It follows that the least-index rule is implicitly imposed thereby making

circling impossible, and the theorem follows. 0o
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PART II

LEAST-INDEX RESOLUTION OF DEGENERACY IN

LEMKE'S ALGORITHM AND COTTLE'S ALGORITHM

1. Introduction.

Another, more robust, method for the LCP is due to Lemke [12],
[14]. Since Lemke's algorithm is also a pivotal method, it is not surprising
that it may circle when degeneracy occurs. Some circling examples will be
given later.
l In this Part, we impost a least-index rule on Lemke's algorithm
and prove its finiteness when the matrix is either a P-matrix or a positive
semi-definite matrix. We also show that Cottle's algorithm [3] for the

parametric LCP is finite when the least-index rule is imposed.

2. Lemke's algorithm for (q,M).

2.1. A brief review of the algorithm.

Consider the auxiliary LCP

(1) w=gq+ zge + Mz
(2) (w, 2z, zo) 20
3) wiz = 0
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where e € Rtx e >0 and z is an artificial variable. A solution of

this system with z, = 0 is necessarily a solution of (q,M). If ey >0

0

for all i such that ay £ 0, then for z =0 and 2z, suitably large,

0
w > 0, and (2), (3) hold. Lemke's algorithm starts with such a z and

0 and performs a sequence of pivots to achieve the condition zy = 0.

Once zy = 0, a solution to (q,M) 1is obtained since during the process,

z

(2) and (3) are always preserved.

Lemke's algorithm.

Step 0. Start with the basic solution (w;zo;z) = (q;0;0) and the
matrix M = [e,M].

Step 1. If q > O, stop. A solution (w;z) = (q;0) is obtained.
Otherwise, define k by —qk/ek = maxk{- qi/ei} and then

,z,>. Let (q, M) denote the updated tableau and

pivot <(w 0

k
designate Zys the complement of Wys as the driving variable.

Step 2. If the driving variable =z is unblocked, stop. Otherwise

k
define j by

‘aj/ﬁjk = min{-qi/miklt-n1k <0} .

Step 3. If z, is the blocking variable, stop. A solution is at hand.

Otherwise, perform the pivot (wj,zk> and let zj, the comple-
ment of wj, be the new driving variable. Return to Step 2 with

the updated tableau.

In the nondegenerate case, Lemke's algorithm is finite [5], [12].

1f z) is unblocked in Step 2, we say that the algorithm terminates on
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a secondary ray. When this happens, some results can be derived from the

following theorem which is proved in [5].

Theorem 1. If Lemke's algorithm applied to (q,M) terminates on a ray,

there exists a nonzero, nonnegative vector u such that

(4) ui(_Mu):l <0 for 1w 1.2 cces B

In the case when M 1is a P-matrix, (4) cannot have a nonzero solu-
tion and consequently Lemke's algorithm will solve this problem. When M
is positive semi-definite or, more generally, copositive-plus, termina-
tion on a ray implies that (q,M) 1is infeasible [12]. It is also well
known that Lemke's algorithm can be applied to other classes of linear com-
plementarity problems. Some detailed discussions can be found in [8],

[9], and [13].

As mentioned above, Lemke's algorithm may circle when degeneracy
occurs. Let us define the length of a circle to be the number of distinct
basic sets in this circle. Kostreva [11] has shown that the minimum length
of a circle in Lemke's algorithm for a general (q,M) 1is four. Moreover,
he gives an example to illustrate that circling can occur when M 1is
of order two.

Kosteva's circling example of order two, Example 2 of [11], uses
an uncommon artifical vector e. Usually, e should be nonnegative (in
order to initiate the process from a ray). If we always let the artificial

vector e be nonnegative, his proof can still be applied to show that
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the minimum length of a circle is four. But we will show that for circling
to occur, M must be of order at least three. From the following example,

it can be seen that Kostreva's bound on the length of circling is sharp. ‘

Example 1. Apply Lemke's algorithm to (q,M) where i

0 -1 -1 1 J

Since q; = 0 and q, <0, 9, <0, we let e = (0,1,1)T. The initial

schema is
1 z, z, z, 2z
w = 00 -1 -1 1
w, = =211 1 1 0
wy = -3]1 1 1 1

After the pivots <w3,zo>, <w2,z3>, we have the schema

1 w3 z1 z2 wz

v, = 1 1 -1 -1 -1

(*) w3 = 1 1 0 0 -1
zo = 2 0 -1 -1 1 \

After further pivots <w1,zz>, <zz,zl>, <zl,w2> and <w2,w1>, we return

to (*) and a circle of length four is obtained.
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Next we show that the matrix M in Example 1 has the least possible

order for circling to occur.

Proposition. If M is of order two, Lemke's algorithm applied to (q,M)

will terminate in a finite number of pivots for any q.

Proof. If q > 0, there is nothing to prove. Hence assume that 9 < 0.

Let (ej,e,) = (L))" where e,>0 (e, >0 if 1, < 0).

11 12

Without loss of generality, we can assume that L blocks z, when Zy

decreases to =q; - Then the pivot <w1,zo> is performed. After the pivot,

1
- l = 5
%= | Y 1! s
]
i Y .
b ezi a1 a2

Now z, is the new driving variable. If z, blocks z,, terminate.
Otherwise, vy blocks z, and the pivot <w2,zl> is performed. After

the pivot, ;2 >0 and z, is the new driving variable.
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1 wl wz z2
= = : = =
L S Bl 5 5 b & R 1
|
- = : = =
e 93 | € ! B "
If z, blocks Z,, terminate. Otherwise, zy is blocking and A
the pivot <zl,zz> is performed.
1 wl w2 z1
|
) B 5 i Ry By
5
. e W | & | DY)

Now w, is the next driving variable. However, %2 > 0. Hence v, 1s

either blocked by z, and a solution is obtained, or else vy is un-

0

blocked and the algorithm terminates on a ray. o

2.2. Lemke's algorithm with the least-index rule.

Even when M is a P-matrix, Lemke's algorithm applied to (q,M)
may circle; e.g., see Example 1 of [11]. However, we show in this section
that when M 1is a P-matrix or a positive semi-definite matrix, Lemke's.
algorithm with the least-index rule will process (q,M) in a finite number

of steps. We say that the least-index rule is imposed in Lemke's algorithm

-
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if, when there is a tie in choosing the exiting basic variable, we always
choose the one with the least index as the exiting basic variable. Note
that the index of the artificial variable z is less than all other

indices, hence it will be chosen if it is involved in a tie.

Theorem 2. When M 1is a P-matrix or a positive semi-definite matrix,
Lemke's algorithm with the least-index rule will process (q,M) 1in a

finite number of steps.

Proof. It is clear that when M 1is positive semi-definite, then so is

the matrix M where

for some real number u > 0. It is also clear that when M 1is a P-matrix,
then so is the matrix M4 if y 1is suitably large.

Lemke's algorithm starts with the system (1) where 2z = 0 and z,

large enough so that w > 0, and then performs a sequence of pivots to

achieve the condition z, = 0 (or else it goes off on a ray). Let ;0 >0

be the smallest value of Z, such that a 1= q + Eoe 2 0. We can rewrite

(1) as follows:

w=gq+ ze + Mz

0
= q + a(-e) + Mz

where
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Note that a 20 and a increases from 0 at the first step of Lemke's

= 0 if and only if o = z,.

algorithm. Furthermore, z 0

0
Therefore, by denoting

where yu 1s sufficiently large and 9, < 0 such that the absolute value
of 9y is sufficiently larger than yu, Lemke's algorithm on (q,M) <an
be regarded as a major cycle of the principal pivoting method on (y.)

in which ¢ 1is the initial driving variable (a can be regarded as having

the same index as does, namely 0).

%9

-e M

€
[}
Qi

Since zy = 0 whenever a = ;O’ in addition to the termination
rules for the principal pivoting method, we terminate this major cycle
when o = ;0 and in this case, a solution to (q,M) 1is obtained. However,

it has been shown in Part I that each major cycle of the PPM with the

least-index rule is finite, thus the result follows. 0O

Remark 1. From the above proof, it can also be seen that in Lemke's

algorithm, the artificial variable 2z, 1is always monotonically decreasing

0
when M 18 a P-matrix or a positive semi-definite matrix, Cottle [2].
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Remark 2. Since the self-dual method [6] for linear programming is a
special case of Lemke's algorithm, the least-index rule can be applied

there also.

Corollary. The minimum length of a circle in the Lemke's algorithm without
the least index rule applied to (q,M), where M 1is a P-matrix or a positive

semi-definite matrix, is six. Furthermore, the bound is sharp.

Proof. The above proof shows that Lemke's algorithm can be regarded as
part of a major cycle of PPM. Thus it follows from Theorem 4 of Part I
that the minimum length of a circle is larger than or equal to six.

Example 1 of Kostreva [11] illustrates that six is tha sharp
bound for the P-matrix case. In the case of positive semi-definite matrix,
let M be obtained from Example 1 of Part I by performing a pivot on Maqs

= = = =T
then Hll <0 for i=2,3,4. Thus by considering e -(MZI’ M31, "41) A
Example 1 of Part I and the proof for the above theorem show that the

bound is sharp.

Theorem 2 shows that, when M 1is a P-matrix or a positive semi-
definite matrix, Lemke's algorithm with the least-index rule will process

the problem in a finite number of steps. Unfortunately, this is not

true for a general matrix, even for a copositive-plus matrix. Example 2

below illustrates this.
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Example 2. Consider the LCP (q,M) where

-10 29 % 2
-10 2 2 2 3
$«*) a6 ] * Bl g a3 i
-8 §.h 12

Clearly M is strictly copositive, and hence copositive - plus. Start-

ing with the schema

1 2y 2 %, Z3 0z,
v = -10 1 2 3 3 2
w, = -10 1 2 2 2 3
vy = -10 1 2 3 3 1
v, = -8 1 1 1 1 2

Lemke's algorithm with the least-index rule generates the pivoting sequence

<v1,zo>, <w4,zl>, <w3,24> and obtains the schema

b W TR z3.*"3
g.* b6 =31 2 1 2

w, = 0 2 o -1 -1 -1
K%
(**) z, = 0 1 0 0 0o -1
z, = 2 1 (-1 =2 =2 0

After the further pivots <w2,z > <z3,zz>, schema (**) becomes

3
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0
z, = 0 2 QL =1 -1 -1
(k)
z, = 0 1 0 0 0 -1
z; =| 2 =3 =1 0 2 2

If the least-index rule is applied, then, after two more pivots <z,,w. >,

2303

<w3,w2>, schema (**) reappears and thus circling occurs.

However, if (instead of (zz,w3>, <w3,w2>) the pivot <za,w3> is

performed in (%***), then after the further pivots <z1,w4>, <w4,w1>, <w b 2

3°%4
<22,23> and (zo,w2>, a solution

w-(‘]?',l-sﬁ,o,()), z = (0, O,

12 14
3 T

is obtained.

In this circling example, the artificial varlable 2z, remains

0

constant during circling. This is not true in general. For example, if

q = =10 1is replaced by 93 = =9.5 in Example 2, then Lemke's algorithm

with the least-index rule generates the same circling sequence as above.
However, during circling, the artificial variable 2 no longer remains
constant. The reason why the least-index rule works in P-matrix and

positive semi-definite matrix cases but not in general remains to be found.
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3. Cottle's algorithm for the parametric LCP.

By applying Grave's lexicographic principal pivoting method [10]
for LCP, Cottle [3] developed a finite algorithm for checking the mono-
tonicity of the solutions to the parametric LCP {(q + ap,M)|a > 0, q > 0}
in which M is a P-matrix or a positive semi-definite matrix. If the
monotonicity check is deropped in this algorithm, we obtain an algorithm
for solving the PLCP which we call Cottle's algorithm for PLCP. Without
taking some (lexicographic) precautions for the constant column of [3],
Cottle's algorithm may circle. For example, if q; = -1 1is replaced by
q, =1 in Example 1 of Part I and p = (1, 0.3, 92108, -173608)", then
circling occurs. However, we shall show here that Cottle's algorithm

with the least-index rule is finite.

3.1. A brief review of the method.

Consider a PLCP {(q + ap,M)|lq > 0,a > 0} where M 1is either
a P-matrix or a positive semi-definite matrix. Let Q be a matrix having
linearly independent lexicographically positive rows and q as its first
column (q # 0). The lexicography is used as a cure for the degeneracy

problem, not as a means to achieve greater generality.

Statement of Cottle's algorithm for PLCP

Step 0. Initialization. Start with a at the "critical value" a=0
and set z = 0.
Step 1. If p > 0, stop. (w;z) = (q + ap;0) is a solution for all -

a > 0. Otherwise
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Step 2. Determine the critical index r by the condition
-Qr/Pr = lexico min{-Qi/Pi|Pi < 0}. Set a equal to the
new critical value a = qr/-pr.

Step 3. Change of basis.

Case 1. m_ > 0, then pivot on o and return to Step 1 with transformed

tableau.

Case 2. m__ = 0.
If M. >0, stop. The problem is infeasible for all a > a.

Otherwise, define the index s by

-(Qs - QrPs/Pr)/msr = lexico mih{-(Qi - Qrpilpr)/mirlmir < 0}

and pivot on

Return to Step 1 with the transformed tableau.
It can be shown that this algorithm is finite [3], [10]. This
algorithm is also closely related to the Dantzig-Cottle principal pivoting

method. In fact, we have the following:

Theorem 3. Suppose that M 1is a P-matrix or a posictive semi-definite

matrix. Let u > 0 be large enough such that
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is a P-matrix whenever M 1is. Assume 9 << 0; then the execution of
Cottle's PLCP algorithm is just a major cycle of the Dantzig-Cottle PPM

on (r,M) where

Proof. It is clear that if M 1s positive semi-definite, then so is

the matrix M. Let (Tl) be the initial schema of the PPM in which Yo

is the distinguished variable and zo is the driving variable. Let

(T1*) be the initial schema of Cottle's PLCP algorithm.

1 onzl zt zs zn
Yo "| 9 U 2 e -pt 5o ps “o® P,
wl =l 99| P o,y eee Wy see Wy el Lo
Ve T WY | Py mrl b mrr ey 1 ®rn
(T1)
ws =l 9. | P, ms]. e - R m_
'n 1, pn -nl ves -nr .o Iln. e m o
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FETY
P8

Sgegmep ey

r 8 n
v = 9 P, L R see Wy cee Wy
Ve ¥ L2 Py 1 rr Brs Brn

(Tl*) . . . . . . .
w = ag Py By, e s b s
" - a, P, B e B ocee B ... omo

If p > 0, then both PPM and Cottle's PLCP algorithm terminate at this step.
Therefore, assume p } 0.

Suppose that r 1is the critical index in (T1l*) and the critical
value at this step is as= qr/-pr . Clearly v, is also a blocking

variable in (T1) when 2z, increases to qr/-pr.

0
If - > 0, both PPM and Cottle's PLCP algorithm pivot on m__.

rr
After the pivot, the basic variables of PPM are identical to the basic vari-
ables of Cottle's PLCP algorithm exceﬁt that PPM still has one more basic
variable Yo Furthermore, the common basic variables have the same values
at this step, and the driving columns are still the same. It follows that
the next blocking variables in these two algorithms will be identical.

Now suppose m__ = 0. The PPM performs a block pivot of order 2

Ir
[: 0 ] g
T
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After the pivot, schema (T1l) becomes the following schema (T2):

1 wo ? zl it zr_1 "r zl_+1 see Z oeee zn
2z, = |aq, u =Py c+e Py P Py -- Pg +++ P
w 1% 51
: : 5 /
Ye-1 i L | Pr1
(T2) L M 1 Pr
e+l T | 941 | P i
Yo T Y% Pg
Y« T 1% Py

where, for 1 = 1,2,..., n and 1 ¢ r,

I.’ % mit
i “Py

i ln:l.rq::u )

r
Since w_ 1s the blocking variable in (T1), p_ < 0. Hence P
has the same sign configuration as that of M. .. It follows that if

H.r > 0, then both PPM and Cottle's PLCP algorithm terminate at this step.

Assume therefore that M. } 0 and




(6) -(ql & qrps/pr)/n'r s -1“{'(qi B qr’ilpr)/nirlmir < 0

Then Cottle's PLCP algorithm pivots on *

0 m..

m
ST -88

A

After the pivot, (T1l*) becomes

1 o zl cee 2 v, zr+1 cee Zo g wi zs+1 sivte zn
b Wt P
Vel ® [ Y-1| Praa
zr o qr pr
el © |9 | Pril
(T2%) s i M
Vg1 © -1 ps-l
Zs " 1% Pg
Ve+1 = | Ys41| Pen1
Yao "% P
Note that (6) implies that in (T1), (T1*), when . |°
SRR
% 2, = ~(q, - 9P /P ) /my,
B and
z, = 0, for all i ¢r, O,
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we have

=]

P q_P
- r r r's
Mo mOg, mq = o= o e (q - )’
0 0 0 P, m, s P,
(7) . =0
s
wy >0, for all 1i# s, 0.
Now, consider the schema (T2) in which z, = s - AR
zr+1 = sse m z = 0. When wo increases to w,, then by (5) and (7):
Vs T g i Ps"o
1 msrqru )
P, (prqs Psrdo T Py P,
by q P, q_P
3 _;— 9 ~ P L m_ \9%~ P
r r sr r
=0 .

It can also be easily checked that w > 0 at this step. Therefore, L

is a blocking variable in (T2). In schema (T2), we have

It follows from (6) that m_ # 0 and hence ;ss > 0. Therefore, the

PPM performs a pivot on ;ss’ and after the pivot (T2) becomes
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(T2*) and (T3) have the same set of basic variables except that
zq is a basic variable in (T3) and @ 1is a parameter in (T2*). Hence,
(T2*) can be regarded as a subschema obtained by performing a pivot on u
in (T3). It follows that ; = ;/; and the corresponding variables of
(T2*) and (T3) have the same values. Therefore the next blocking variables ]
in the PPM and Cottle's PLCP algorithm will be identical.
By repeating the above argument, it follows that the execution of

i }
Cottle's PLCP algorithm is just a major cycle of the PPM on (r, ¥ ). © é ;
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3.2. Cottle's PLCP algorithm with the least-index rule.

In this section, we shall give a modification of Cottle's algorithm
and prove its finiteness without recourse to a lexicopositive matrix Q.
To accomplish this, we introduce a refinement of Cottle's algorithm which
imposes the following least-index rule:

(1) In Step 2, determine the critical index r by

r = m;n{klpk <0, -qk/pk = min{-qi/pilpi < 0}}

(i1) 1In the Case 2 of Step 3, define s by

s = min{klm <0, -(q -qp,/p )/m _=min{-(q; -qp,/p )/m lu < 0}}

In (1) and (ii), M'k represents the column of M corresponding to the
current nonbasic variable zkf Similarly, (qk, Pys Mk.) represents the
row of the schema corresponding to the current basic variable Wi
Theorem 4. Cottle's PLCP algorithm with the least-index rule will

terminate in a finite number of steps.

Proof. Theorem 3 shows that the execution of Cottle's PLCP algorithm is
just a major cycle of the Dantzig-Cottle PPM. Therefore, the result.

follows from Theorem 2 and Theorem 3 of Part 1.
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4. An extension of Murty's scheme for (q,M).

Murty's scheme [15] can be applied to (q,M) only when M is
a P-matrix. In this section we give an extension of Murty's scheme to
solve (q,M) 1in which M 1is a positive semi-definite matrix. In the

following, M 1is either a P-matrix or a positive semi-definite matrix.

Statement of a direct scheme for (q,M)

Step 0. Set h = 0. Begin with the system wh = qh + Mhzh where
W= qo + Mozo is the given system w = q + Mz. The nonbasic
vector zh always assumes value 0. "

h h. _h h

Step 1. If q > 0, stop. [w ;2] = [q ;0] 1is a solution. Otherwise,
choose y = min{ilwg < 0}.

Step 2. Change of basis.

Case 1. m:r > 0, then pivot on m:r. Set h = h+l and return

to Step 1.
Case 2. mh = 0.
rr

If Mbr 2 0, stop. The problem is infeasible.

Otherwise, choose
h
s = min{ilmir < 0}

and pivot on

h h

Ber Mrs
L]

h h

Msr  "ss

Set h = h+l and return to Step 1. ﬁ




Theorem 5. When M 1is either a P-matrix or a positive semi-definite

matrix, the above scheme will process (q,M) in a finite number of 1
pivots. 1

Proof. The above scheme generates the same pivoting sequence as that

generated by Cottle's algorithm with the least-index rule for the PLCP

t
!
{(0 + aq,M)Ia 2 0} where 0 is a zero vector. Therefore, the result follows J
from Theorem 4. o J

1
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