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Discussion

The p-version of the finite element method is a new approach to finite
element analysis which has been demonstrated to lead to significant computa-
tional savings, often by orders of magnitude (This approach was formerly
called the constraint method; the new term p-version is more descriptive).
Conventional approaches (called the h-version) generally employ low order
polynomials as basis functions. Accuracy is achieved by suitably refianing
the approximating mesh. The p-version uses polynomials of arbitrary order
p > 2 for problems in plane elasticity where CO continuity is required and
polynomials of order p > 5 for problems in plate bending where Cl contimuity
is required. 7

Hierarchic elements which implement the p-version efficiently are used
together with precomputed arrays of elemental stiffness matrices.

Major accomplishments during this past year are summarized in the follow-
ing three documents which are enclosed:

1. ""Comparative Rates of h- and p- convergence in the Finite element Anal-
ysis of a Model Bar Problem" by 1. Norman Katz (abstract), presented

at SIAM 1978 Fall Meeting, October 30, 31, November 1, 1978 in Knoxville,

Tennessee,

2. '"The p-Version of the Finite Element Method" by I. Babuska, B. S. Szabo,
and I. Norman Katz (Report, submitted for publication), Report WU/CCM-79/1,

May 1979
3, "Hierarchic Families for the p-Version of the Finite Element Method", by

I. Babuska, I. Norman Katz and B. A. Szabo, Proceedings of the Third

IMACS International Symposium on Computer Methods for Partial Differen-

tial Equations, Lehigh University, Bethlehem, PA, June 20 - 22, 1979




GEE PN EE Em SEm s

Table of Contents

BEgengatan 1o ST o e e e T e e e e e L B ok
List of Professional Personnel , ol SRl T e RN TS i S e B w2
Papers Presented at MeetIngS . . . . . o v v o o o o 5 o o o 6 5 8 o o o 2

Reports

1. Comparative Rates of h- and p- convergence in the Finite Element
Method (Abstract)

2. The p- version of the finite element method (Report)

3. Hierarchic Families for the p-version of the Finite Element
Method (Reprint) .

Y
s
>
i
5
Q

b S




— gesss wmm BB W B W was e — e 3 - . Come - - e

NI

- h e T i t .

I. Norman Katz, Washington University, St. Louis,
Missouri 63130

Comparative Rates of h~ and p-convergence in the
Finite Element Analysis of a Model Bar

o Lo RECIERRE L e RSN f ey T
The conventional approach to finite element stress
analysis of a body defined by a polygonal domain
Q (in two dimensions) is to triangulate  and to
seek accuracy by letting h, the maximum diameter
of all elements in the triangulation, tend to
zero. This approach, called h-convercgence, has
been the subject of intensive investigation.
Another approach which is being developed at
Washington University is to fix the triangulation
of Q@ and to let p, the degree of the complete,
conforming, approximating polynomial over each
triangle, tend to infinity. EXtensive numerical
tests have shown that the second approach, called
pP-convergence, is considerably more accurate than
the first, even in problems whose solutions have
singularities such as cracks or corners.
In order to illustrate the comparative rates of
convergence, a model (one-dimensional) bar prob-
lem is studied. Asymptotic analysis leads to ex-
oressions for the rates of convergence in the two
approaches, when the solution possesses a singu-
larity which is known a priori. It is demon-
strated that the order of p-~convergence is twice
that of h-convergence, provided that the singular-
ity is located at some node of a finite element.

Lol G e i .
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ABSTRACT

In the p-version of the finite element method the triangulation is
fixed and the degree p of the piecewise polynomial approximation is
progressively increased until some desired level of precision is reached.

In this paper we first establish the basic approximation properties A
of some spaces of piecewise polynomials defined on a finite element
triangulation. These properties lead to an a priori estimate of the
asymptotic rate of convergence of the p-veréion. The estimate shows that
the p-version gives results which are not worse than those obtained by the
conventional finite element method (called the h-version, in which h rep-
resents the maximum diameter of the elements) when quasi-uniform triangula-
tions are employed and the basis for comparison is the number of degrees
of freedom. Furthermore, in the case of a singularity problem we show
(under conditions which are usually satisfied in practice) that the rate of
convergence of the p-version is twice that of the h-version with quasi-uniform
mesh. Inverse approximation theorems which determine the smoothness of a
function based on the rate at which it is approximated by piecewise poly-

nomials over a fixed triangulation are proved both for singular and non-

singular problems.

[———

We present numerical examples which illustrate the effectiveness of

the p-version for a simple one dimensional problem and for two problems in -

| arakana

two dimensional elasticity. We also discuss round off error and computa-
tional costs associated with the p-version. Finally we describe some
important features, such as hierarchic basis functions, which have been

utilized in COMET-X, an experimental computer implementation of the

I p-version.
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1. INTRODUCTION

The finite element method, one of the most widely used numerical
methods for solving certain types of differential equations, is based
on approximating the solution by piecewise smooth functions, speci-
fically polynomials, on convex subdomains such as triangles. In general,
the degree of the polynomials is fixed at some arbitrarily chosen low
number. No consensus exists at the present time concerning the most
suitable (optimal) degree p of the polynomials.

The mathematical justification of the finite element method is
based on asymptotic analyses in which p is kept bounded and the diameters
of the element subdomains approach zero. However, it has been observed
by several investigators that the sizes of elements used in practical
computations are often outside of the range of asymptotic behavior.

Because the maximum diameter of finite elements is usually denoted
by h, we shall refer to this (conventional) approach as the h-version
of the finite element method.

From the theoretical point of view one can justify the finite
element method, also in the asymptotic sense, when the subdomains are
kept constant and the degree of the approximating polynomials tends to
infinity. We shall refer to this method of approximation as the p-version
of the finite element method.

The p-version of the finite element method is similar to the Ritz
method but there is one very important difference: In the p-version of
the finite element method the domain of interest is divided into convex
subdomains and the polynomial approximants are piecewise smooth only

over individual convex subdomains. In the Ritz method, on the other

i
El




hand, the solution over the entire domain is approximated by smooth
functions. This difference accounts for the greater versatility and
higher rate of convergence of the p-version of the finite element
method over both the Ritz method, and the h-version of the finite
element method, as demonstrated here.

In this paper we analyze the p-version of the finite element
method and its theory, and discuss the implementation characteristics
of the method based on the computer program COMET-X, developed during
the last few years at Washington University in St. Louis. We also
examine the potential for further development of the pfye;sion. We
remark that, from the computational point of view, and from the point of
view of the architecture of the computer program, there are significant
differences between the p-version when p is in the range of 6,7,8 and the

h-version when p is in the range 1,2,3.

We present a proof for the rate of convergence in the p-version
and show that the polynomials are able to "absorb" singularities,
including e.g., corner singularities, when they are located at the vertices
of triangles. This does not occur when the corner singularities are
not located at vertices.

Comparison of the asymptotic behavior of the h-version, based on
uniform or quasi-uniform mesh refinement on one hand, and the p-version
on the other, the basis of comparison being the number of degrees of
freedom, shows that the r: of convergence of the p-version cannot be
slower than the rate of convergence of the h-version and, furthermore,

when corner singularities are present at vertices, the rate of convergence

of the p-version is exactly twice that of the h-version.
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2.  BASIC NOTATIONS

Throughout this paper R2 will be the two dimensional Euclidean
space (xl,xz) = xE RZ, Qe R2 will be a bounded domain with piecewise
smooth boundary 3Q2. In particular we will deal with polygonal domains
(We exclude - for technical reasons - the slit domain, although the
results of this paper can be generalized to this case too with some, but
not essential, technical difficulties).

E(R) shall be the space of all real c” functions on Q, with continuous
extensions of all derivatives on Q. ‘All fuﬁctions of E(Q) with compact
support in Q form a subspace D(Q) C E(R). As usual, L, (@) = HO(Q) will
be the space of all square-integrable functions on Q with the inner

product.

(U’V)O,Q =[2‘ uvdx , dx = dx, dx,

and the corresponding norm ||«

|0 ar In addition for amny k > 1, integral,
b
the Sobolev spaces Hk(Q) resp HS(Q) will be the completions of E(R)

resp. D(Q) under the norm

[ O<E<k 12°

2
u| IO,Q i
where

3 5lal
D" = 5 a = (al,az)

o o
2
axl ax2




a2 0 integral i = 1,2 and |a| = a +a,. The inner product in Hk(Q)

will be denoted by (-,-)k Qr For k > 0 nonintegral the spaces Hk(Q)
Ed
and HS(Q) are defined by usual interpolation. More precisely for k = ko
k k0 +1
0 <6 < 1,we define H = [H , Hko ]e 2 by application of the usual

+ 8,

K-method of interpolation (For more see [7]). [Other notations are
k _ ,k k "
H =8 where B is the usual Besov space].
2,2 2,2

For p > 0 we write
Q(p) = {xl’le le! <P, Ile < p} ’

Qp) = {x,,x,[0 < x; <p, 0<x, <p}
and by EPER(Q(p))<: E(Q(p)) we denote the space of all functions with
period 2p and by H;ER(Q(O)) its closure in Hk(Q(p)).
We will deal also with Sobolev spaces in one dimension. Analogously

as before we will denote by
L) = {x;} |x,| < o}

and Hk(I(p)), Hg(I(p)), H;ER(I(Q)) will have the obvious meaning.
Finally we need to introduce the spaces Pp(ﬂ) C E(Q) of all algebraic
polynomials of degree not higher than p and Fp(Q(p)) (resp.Fp(I(p)) the

space of all trigonometric polynomials of degree at most p and period 2p.
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3. THE CONCEPT OF P-CONVERGENCE OF THE FINITE ELEMENT METHOD

3.1 The model problem

We will be interested in the model problem

-tutu=f on a, fe€u’@), (3.1)
Tu =0 on 3Q, , (3.2)
where QO is a bounded polygonal domain and Tu = u or Tu = g—:: We can

easily generalize our results also to other boundary conditions. As
usual we will interpret the problem (3.1), (3.2) in a weak sense, namely

pden | 1
we seek uy € HO(QO) resp. 4 € H (QO) so that

Blugs) = (£.9)g o (3.3)

for all ve Hé(QO) resp. v E Hl(QO)

where we have used the notation

B(uo,v) = (uo,v)l’no L (3.4)

4y satisfying (3.3) obviously exists and is uniquely determined.

3.2 Description of the p-version of the finite element method

Let S be a (fixed) triangularization of 90’ S = {Ti}, L% Loeisl
- ;

where T 4 are (open) triangles such that U T:L = Q_  and Ti’ T
i=1

0 jii‘j




have either a common (entire) side or a vertex or TifW Tj = ¢. Denote l

now by p£S](QO)(: Hl(QO) the subset of all functions u € Hl(QO) such

2 . P
that if u(Ti) is the restriction of u on Ti’ then we have u(Ti) € p(Ti)

i.e. PgS](QO) consists of all functions which are piecewise polynomials

[S] 1
Pp (Qo)fW HO(QO).

of degree at most p and belong to Hl(QO). Further let Pgsg(ao) = '
’
The concept of the p-version of the finite element method consists of ’

finding up g L2, s upEE ngé(ﬂo) (reép Pgsl(ﬂo)) (for the boundary

condition Tu = 0 resp. Tu = %ﬁo so that (3.3) holds for any v GzPé?g(Qo)
(resp. PéS](QO)).

Study of the p-version of the finite element method was initiated
at the School of Engineering and Applied Science of Washington University
in St. Louis [25] in 1970. It has been implemented there'in various
aspects of stress anmalysis with very good results, particularly in
connection with linear elastic fracture mechanics. Development of the

p-version is continuing at the Center for Computational Mechanics at

Washington University.

3.3 The basic approximation properties of PgS](QO) and Pésé(ﬂo).

THEOREM 3.1. Let u € Hk(QO). Then there exists a sequence zp EEP£S](QO)’
p = 1,2... such that for any 0 < £ < k (£,k not necessarily integral)
e B || (3.5)

| |u=z_|| < ¥
P 2,90 k, @

where C is independent of u and p (it depends e.g. on £ and k etc.).

Proof. The proof is a standard one. First we prove it for £ and k { |

integral. We will comstruct zp(E Pp(ﬂo) such that (3.5) is satisfied.




e

=T

Assume that QO C Q(po). Because 5'20 is a polygon, it is a Lipschitzian
domain and therefore there exists an extension U of u € Hk(f?.o) on Q(Zpo)

such that supp U C Q(3/2 po) and

vl < clfull (3.6)
k,Q(20) = k.,

with C independent of u. As usual we have U = Tu where T is a linear
mapping of HO(QO) into HO(Q(ZQO )), (see e.g. [24]) (which also maps
1@y iato #7(Q(26,)). '

Now let ¢ be the (ome to one) mapping of Q(w/2) onto Q(Zpo) determined
by the transformation ¢f coordinates £ = (51,52) € Q(n/2), x = (xl,xz) = Q(Zpo)

x; = 290 sin Ei 1 = 0 (3.7)

written in the form

$(g) = x. (3.8)

Let

V(g) = U(2(8))
and let

Q = ot qqas2 pg)] C Q(n/2) 3
(@[-l] is the inverse mapping to 4). We have




Supp V C Q. (3.9)

Obviously the mapping & is a regular analytic one-to-one mapping of 6

onto Q(3/2 po). Now V € H%ER(Q

lines Ei = + 1/2 and using (3.6) and (3.9) we obtain |

(m)), is symmetric with respect to the

A
UV qemy S € Hully g - (3.10)
2o , |
it is well known that the partial sum tp of the Fourier series of V
gives the sequence of trigonometric polynomials thL Pp(Q(n)) such that '
for k > £ '
Ho=ellp,qm < e O 1| e, qm)

(3.11)

1 Shatied 10N

tp are obviously symmetric with respect to the lines Ei =+ /2 as V is.

It is readily seen that tP(E) zp(¢(5)), where zp is an algebraic polynomial
of degree not higher than p. Because ? is a regular, analytic mapping
of 6 onto Q(3/2 po) (3.11) yields (3.5) for k,{ integral.

Now let us generalize our result to £,k not integral. Recall that
for given (fixed) p the polynomial zp was constructed from a linear map
Lp, Lpu = zp, where Lp is a linear mapping of Ho(ﬂo) into Pp(no) satisfying
(3.5) for Z,k integral. Applying general interpolation theory we get

(3.5) for all 0 < £ < k.

The proof of the next theorem is more complicated. ! ;

vy




3
¥
s
¢
¢

k 1 [S] ..
’) Iy
THEOREM 3.2. Let u& H (:20) HO(QO). There exists a sequence sz Pp’o(uo)

p = 1,2,... such that for any k > 1 (not necessarily integral) and any

g >0

-(k-1)+
oz, 1y,q < oo o gy 80l o (3.12)

where C is independent of p and u (it depends e.g. on €and k).

Remark 1. In contrast to Theorem 3.1 the statement is false if only
. [S] : ; P

Pp’o(no) instead of Pp,O(QO) is considered. This is easy to see if

QO is e.g. an L-shaped domain as shown in Fig. 3.1.

A X2

hcsmsan s o -

Figure 3.1
An L-shaped domain

In fact any u € P (2,) is zero in (x,,0),9 < x. < 1 and therefore -
p,0'"0 1 X

because it is a polynomial - has to be zero on the entire line (xl,o),

-1 < x1 < L.

This of course leads to a contradiction because of Sobolev's
imbedding theorem of ué(no) into H(1(1))-
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Remark 2. It is not clear whether the term € in (3.12) can be removed.
Remark 3. The theorem can be stated more generally. We have restricted
ourselves to this case (i.e. ll.,h,Q) only because it is sufficient for
our purpose.

Before proving theorem 3.2 we will state a lemma.
Lemma 3.1. Let S be a triangle with vertices Ai’ and sides S;» 1= 1:2.3

(see Fig. 3.2)

Sy

Figure 3,2
The typical general triangle

Let v € PP o(sl). Then there exists V & Pp(S) such that V = 0 on s2 and
b

53, V=von sl and

Hv”l’s g ”v”l’sl (3.13)

where C (dependent on S) is independent of v and p.
Remark. By v E PP 0(Sl) we mean of course a polynomial in the variable
’

81 so that v = 0 at the end points of sl’ the vertices AZ, A

3.

A




|
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Proof. Without any loss of generality we can assume that S is the

triangle shown in Fig. 3.3 with vertices (0,0) (1,0) (1,1)

A1)
Sa S2
A2 Az
(0,0) S (1.0)

Figure 3.3
The Standard Triangle

Then s; = (xl,O),O < xl < 1. Because v(x) is a polynomial and because

v(0) = v(1) = 0 by assumption we have

v(xl) = xl(l-xl)vl(xl).

with vl(xl) a polynoimal of degree at most p-2. Define

("1"‘2)
V(x) = V(xl,xz) = V(xl) T (3.14)

Obviously VEP (S), V=0on S,, S, and V = v on S.. Finally because
S P 2 3 1

2
;I is bounded on S we get IIVI]O,S < l]v]|l'él. Writing

S




=12=

1§ 1
v .2 v .2
/ E)° dx dx, = f dx f )" d
g amy TR, Ry S

we easily get (3.13) when using the obvious inequality vz(xl) < xll [v] [i - 1
and the lemma is completely proven.
Now we can prove Theorem 3.2. A
Proof of Theorem 3.2. 1) Let k > 2. Applying theorem 3.1 there
exists z P (Q.) such that
o € P,@p)

’

[lomzllg 0 ¢ 0™ llelly o 2k (3.15)

Let {x[J]} j =1,...m be the set of all vertices of the triangles TiE S

1+

&
belonging to 3. Because H (Qo), € > 0 is imbedded in the space of

continuous functions, we can obviously modify zp to z; by subtracting a

polynomial of fixed degree p0 < m so that

()= Ck1-0)y (3.16)

Ilu-z;llz’go = C(p l'k,Qo

— N TN W e

with € > 0 arbitrary. In fact ; = zp-z; is a polynomial of fixed (inde-

pendent of p) degree m determined by its values at the points (x131},

By theorem 3.1 we have Izp(x[j])l < CP-(k-l)+€| lufl, o and so
- . ! **0 |
Hzl |£ g = Cp-(kul)+ €for all 0 < £ < m. Because obviously 1
- 0 - -
|lz] Ir a = |z Im g for any r > m, (3.16) follows readily. |
’ 0 ’ o |

We see that on every side s C 3Q of TS S we have u = 0 and there-
*
fore ||zx|| < | lu-z_]| by applying the Sobolev imbedding theorem.
p''l,s: = P 2,00

[S] 0 - o * [S] [ 4
Using lemma 3.1 we can now find z;* = Pp (90) so that 25 z; zp* € Pp,O(QO)

and




L
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p~ 2|y

le-z2|1, o s cllu-zt]], o <c I (3.17)

where C depends on k > 2 but is independent of u. (3.17) can obviously

be written as

1
~(k=1)(1 - —)
[|u-22|] Cp a8l g (3.18)
2 1,90 k,szo

A

2) Let now Rp be the orthogonal projection in the scalar product of HL

of

Hk(QO) A Hé(ﬂo) ante Pl

p,0 O) E

Let zp = Rpu. We obviously have

Hzp_qu’QO = |IUH1’QO (3.19)

and from (3.18) for k > 2 we have

||z _-u]| (k) E kil [ul] (3.20)
z_=-u < C(k)p u " 3.20
P l,Qo - k,Qo

For 1 < s < k, let

~s 1 k x
H (QO) = [H,, H (rzo)m Hl s-1
k-1

We obtain by applying interpolation theory

RF ittt e




e

[z -u]| < ck,s) p "l full- (3.22) |
p l,Qo HS(Q )
0 |
with 1
- i e SER = TR e e
we= (k=1)Q - D GT (s-1) (1 - 77 - (3.23)
A
Therefore given € > 0 and s > 1 we can select ko so that
1 5 y
(a-13(1 ~p=7) = (=1} — ¢ (3.24)
0
and so (3.12) holds when the norm ||uf[., , instead of ||u[[, , , is
o

Q
used. 0

On the other hand from [3], see also [29], it follows that when QO

1

is a polygon, then the spaces Hk(QO) and Hk(QO){W HO

are equivalent.

This completes the proof.

3.4 The inverse approximation theorem
We have proven theorems about approximability properties of the

spaces

P[S](Q and ptS]

P 0) p,O(Q

0’
Now we will prove the inverse approximation theorem.
k
THEOREM 3.3. Let vE H (Q(p)) and let there exists a sequence of poly-

nomials sz Pp(Q(p)), p=1,2,... such that

K
||v-zp}|k’q(p) < ;; r>0 (3.25)
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k > 0 integral. Then v €& Hk+r-°(Q(p*)), p* < p, € > 0 arbitrary and

after restriction of v onto Q(p%)

livl lk+r-€,Q(P*) = A(p,p*,k,r,£) [I IV[ |0,Q(p) + K] (3.26)

2. k+2

2 20k
Proof. Let w = (xl-p ) 2(x§—p ) . Then writing v* = v, 2z

* =
p+4 (k+2)” ZpY

VE(g) = v*(8(%))
l:il;""&(k+2) @) = z;+4(k+2) (@) e Fp+4 (k+2) Q(m)

with

() = x
X, = p sin ai
we obtain
| IV*'CS+4k+2(£) [ < Bk (3.27)

k,Q(m)— "¢ °
p

Now using theorem 5.4.1 p. 200 of [17] [For a proof using the basic

interpolation theory directly see e.g. [3]] it follows that

HP vz qem < A gy + ©

e
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(More precisely by the mentioned theorems we obtain the norm of V* in
A k+r .

the Nikolsky spaces BZ’N(Q(W) which majorizes the norm ll !lk+r-é,Q(n))'
Now using the fact that the mapping ¢ is a one-to-one analytic

one on Q(P*) and w(x) >a >0 on Q(p*) we immediately obtain (3.26).

Inequality (3.25) holds only on Q(p*) and in general is not true on Q(p).

Nevertheless we can prove the next theorem.

’ THEOREM 3.4. Llet v Elﬁk(Q(p)) and suppose that the other assumptions of

r Theorem 3.3 are satisfied, then vE& Hk+t/2_€(Q(p)) and
A(e + K 3.28
v etera-e,0009 < 2OV gy * ¥ e
! The proof of this theorem is a consequence of the above mentioned

theorem 5.4.1 in [17] provided that for integral k > 0 the following
inequality of Bermstein type
Zki

(3.29)

Wzl a0y 3 €07 12500 900)

holds for any zp E.Pp(Q(p)) with C independent of p and zp.

Let us remark that in the case of trigonometrical polynomials we

have in (3.29) the term pk instead ka. We will prove (3.29) in the

next few lemmas.
Lemma 3.2. Let zp(x), X € I(1l) be a polynomial (in one variable) of

degree p. Tuen

l'd z
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Proof. By Schmidt's inequality we have

-+ 4 +1
f £ (%) 2ax < @;—lLf £2 (x) dx (3.31)
=3 =

when f(x) is a polynomial of degree not higher than N. (See [6]),

(3.31) then yields (3.30) easily.
The next lemma follows easily from the previous lemma.

Lemma 3.3. Let zp(x) (= Pp(Q(l)). Then for any integral k > 0

.

k
He,He oy = 2@ lia s o (3.32)

Proof. For every fixed x, we have zp(xl, xZ)E Pp(I) and therefore

using Lemma 3.2 we get

+1 ,

fﬂfa 2 4 2
£ [axl (xl,xz)] clxl < CpL zp(xl,xz)dxl (3.33)

Integrating (3.33) with respect to x, we obtain

2
22 ‘ 2
ax, | 10,01y < P 11251lg o0 B
9z
and analogously for ap- By induction we get (3.32). Obviously (3.32)
2

is equivalent to (3.29) and therefore Theorem 3.4 is completely proven.

3.5 The convergence of the p-version of the finite element method

Theorems 3.1 and 3.2 lead immediately to an a priori estimate of the

rate of convergence of the p-version of the finite element method.

L
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THEOREM 3.5. Let u, € Hk(QO),k > 1 be the exact solution of the problem

(3.1), (3.2) and let up be the finite element approximation then

-(k—1)+€‘l |

< C(k,©)p (3.35)

Huo_uplll’go uO”k,Q

when € > 0 is arbitrary. For the boundary condition Fu = gﬁ s € can be

set equal to zero.

A polynomial of degree p has N degrees of freedom with N ::pz

2

therefore Pésl (and Pésé) has dimension N with N2 p“ and (3.35) can be

rewritten in the form

i o
2
‘luo‘“plll,ﬂo < C(k, )N lluollk,no ¥ (3.36)

For the conventional finite element (h-version) approach with

quasi-uniform mesh we have
Iluo-uhlll,ﬂo sc h“lluollk,QO (3.37)
with y = min (k-1, q)

where q is the degree of the complete polynomial used in the elements.
Realizing that in this case the number of degrees of freedom N satisfies

N swh™? we can rewrite (3.3.7) in another form

-u/2

llagmeyly,q <€

[ |u (3.38)

ollhsg,




[re—

-y N GES N NS e
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and this rate of convergence is an optimal one (possibly up to € > 0
arbitrary) (see [3]). This shows that the p-version gives results which
are (neglecting € > Q) not worse than the conventional h-version with
quasi-uniform mesh if we compare the number of degrees of freedom leading
to the same accuracy. In addition the convergence can be much better
because we do not have the restriction on the convergence rate due to the
degree of the elements as we have in the usual h-version.

Further as will be seen in the next section (see theorem 4.3) under
some conditions which are usually satisfied'in practice the factor 1/2 in
(3.36) can be removed and then the p-version will be superior in
comparison to the usual (h-version) finite element method with quasi-
uniform mesh.

Let us remark on the other hand that when the usual (h-version)
with the proper refinement of elements is used then in genmeral the
convergence rate can be better thanm in the case of the p-version with
fixed mesh - see [3]. Although the general theory for a method combining
the h and p version in an obvious manner is not yet developed, we can
expect that the theoretical and practical advantages of both approaches

can be combined.

Let us assume now that the convergence rate of the p-version of the

finite element method is r, i.e. assume that

[ugmuplly g s R0 . (3.39)

Then the following theorem holds.

a7 il oL A
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THEOREM 3.6. Let uj € H1(Q) and assume that (3.39) holds. Then

i) uO!E Hl+r'€(ﬂ*) where Q* is any domain such that {* C Ti’

i=1,... m where Ti are the triangles of the triangulation S and

[agll 14pee, qx S 8@ x| ug] |1’Qo+x) (3.40) l
1) 0 8 BONREGy rn sl '

and

Huol |1+r/2-e,ri < A(’I‘i,r,e)(l |u0| 'l'QoH() (3.41)

Proof. Theorems 3.3 and 3.4 are obviously valid not only for a
rectangle Q but for any parallelogram.

i) From theorem 3.3 we see that (3.42) holds for any Q* of the
form of a parallelogram. This is obviously sufficient for (3.40) in
general.

ii) Because any Ti can be covered (with overlapping) by a finite
set of parallelograms (3.41) follows directly from Theorem 3.4.

The practical importance of Theorem 3.6 lies in the observation
that the triangulation of Q has to be made so that the possible singu-~
larities are located at the boundaries of T,. Exactly this was done in

i

the linear elastic fracture mechanics problems analyzed by Szabo and

Mehta [26] using the p-version of the finite element method.
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4. THE SINGULARITY PROBLEM AND THE P-VERSION OF THE FINITE ELEMENT METHOD

4.1 Preliminaries
In this section we will write Q instead of Q(1). O(p) was defined in

section 2 . Let Tl be an open triangle with the vertex in the origin and

TlC:Q (1/3)U(0,0). See figure 4.1.

A X
1
S S3
‘Ta
1

4.1 Triangle with vertex at singularity

Denote the sides of T going through the origin by 81 and s, and the remaining

one by Sy

By $ we denote the mapping (one to onme) of d(w/Z) onto 6, defined so that

#(8) = x, 3

»
|

= (xl ’ x2EQ
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with
= sin2 E 1= 12
e i £
By 81 we denote the inverse mapping to . Further let .
-1 |
= ¢ > =
T (T) Si ) (Si) .
i=1,2.3.

Ténow will be a curvilinear trigngle with smooth sides and positive

angles. In fact the line x,= cx) (0<c<») will be mapped into sin%&z = c sinZE1

and so

1/2

52 = arcsin c sin El-

Therefore, Tq> is a curvilinear triangle and E¢C:a(oo)kJ(0,0),po = arcsin 4

V3 -
We see also readily that !
51n2£1
sinZEz
is a function bounded from above and below on TQ.
Now let v € Hl('r) be given and define
V(E) = v(8(&)).
We prove
1 : el
Lemma 4.1. Let vE H (T) then V € H (T ) and
&) lolly g < 1911 g g2 < cq lvlly g “.1)

with 0 < ¢ < <, < o independent of v.

Proof. First let us show that
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v 3V | v

o 1§l 0,0 < 15E 0,0 £ <2 F 5l 0,1 (4.2)

We have
vV 3x v

v i -

= (&) = 3= 5= = =— (#(§)) sin2E, .

Bii Bxi 351 axi 1
Therefore,

dx dx

7 2 E v 2 2 1 2
f G faea /(ax.) sin"28) Sia7E, Sinlt
TQ ik T 1 i ! 2

31n2£1

in2f
51n2,2

Because as we mentioned is a function bounded from above and below, we

get (4.2),

Further we have,

f Vzd& 3 / 2 dx, dx,
T@ T sinZE1 sin2£2
1
1 1/q
2 ] = [[ B ST e
< v Fdx e =) dx
3 [[ v 51n451 sin2%, ,

gL
=+ == 1. (4.3)
P 4
Because in the neighborhood of the origin we have Eiqg xil/z it follows that
- i Y x—l/2 and therefore for p=3 and q=3/2, the second term in (4.3) is
51n25l i

bounded. On the other hand by the Sobolev imbedding theorem we have

6 1/3 2
DA IR

and so we get
2 1/2
( 8 viagl  <clivily g, (4.4)

Now (4.4) together with (4.2) gives

vl g2 < cll vz,
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(4.3) yields also
ol g p < 9l 40
and we easily complete the proof of the inequality (4.1)

Lemma 4.2. Let v(x) be defined on I(1) (as a function of one variable

0<x<1l) and let

1 ¥
/ Wl / (%)2x dx < Pt (4.5)
0 <Y , ‘
Let S be the triangle with vertices (0,0), (1,0), (1,1) (as in Figure 3.3) and
let
2
u(xy,%,) = v(x) (1 - x—l-)-
Then
lull ;g <ca (4.6)

with C independent of v.

Proof. We have

1
1 X
wdx = voix yae (1 = miy® g
S 1 X xl y

1 (4.7)
< ?/. vix) dx, (x| + 3 s ca’
0




S
Further 3 xl
1 1 2
X X
/(%“—) dx < 2 /i(gv_ 2 dxlf(l-_z)dez +f v dxl[ —= dx,
. 1 1 0 ] 0 X
1
: o 2
< 2 V12, - =l 2
l [/ xl(3 1) dx; +/ x, v odx | <ca (4.8)
0 0

du 2
/(axl) dx
S

A
o\.
=
<
N
(a9
%
—
b—‘
i
=
N
(oW
9
N

(4.9)
_<_ vV X

0
Combining (4.7) (4.8) (4.9) we get (4.6) and the lemma is proven.

Remark. If v is a smooth function (4.5) implies that v(0) = 0. In addition
if v is a polynomial then u is a polynomial (in two variables) too.
4.2 Approximation Properties of the space Pp('r)

Let us introduce a one parameter family Wy(A) 0<A<A0 (y>0, fixed) of
fugctions defined on a A function uA(x)E ‘{’Y(A) iff

1) v, €EQ (not E(Q))

ii) Supp uERa, a> 1
where we define
A Xl
R, = {xEQ(1/3), -3 <x2<ax1}
) |0%,] < cqD pxg UK
for 1x[ > A and any k = (kl,k ) ki > 0 integral with

2;)
]x[ = min (xl, x2)

{a) '» aforazo
0 for a <o




Saen
iv) IDkuA] < c(|k|) A Uikl v} and C(k) is independent of A.

Denote now as before l
Uy (8) = uy (9(2)) |

and
TR i
¥, @) = (v, @ | v € ¥ ()}

Now we prove the following theorem: ’ A

THEOREM 4.1

Let

S

Then
k ~
UA € H™ (Q(m/2)) for any k>0
and {
-{1/2{k-2v}-1/2}
with C independent of A.
First we introduce some auxiliary lemmas.
Lemma 4.3. For 0<t<m/2, and n > 1, 1<k<n, k,n integral define
& k-j k 2(k-3), _d" 2
N (0) =20 DI sl EDe L gin2, (4.11)
j=1 dt
then
"W, )] < cm) s (4.12)

Proof. Obviously an (t) is a trigonometric polynomial. In the neighborhood

of t=0 we have

sinZkt = tzk +0 (t2k+2)

ey -

|
I
b
}
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and therefore, {
n . 2k

, d 'sin

at"

Hence for j < k < n

(€ | < c(nyetZknt (4.13)

n

sinz(k-j) t - sinzj(t) < C(n)tz(k-j) t{Zj-n} !
at" 2 A
l < c@) th k3
where
l A (k,3,n) = 2(k-j) + {2j-n}’ | (4.14)
l It is easy to check that
A (k,j,n) > {2k-n}
' and this yields (4.12).
) Lemma. 4.4 ‘
Let
U, € wi’ )
Then e
Ia_i'k_f!_lj% ©| < c(lkly 1g¢ ~tIkl-2v} (4.15)
& 7%,

/2

for 1£( > 6, 6=arcsin Al

Proof. We have (see e.g. [9], p. 19)

UA kzlk 1 3juA A 1
- LW (8) == = (3(8)) ‘
CRe i - i ax 3

!
|
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and therefore
8]klUA k, koo - aJ+47_ {
—mz— = ti lWJ. (El) (5 )T ———z (‘I’(E)) (4.16) [
95y 9%, j=12=1
Using lemma 3.3 we get ‘ <
Blk'UA | klki {2 k } (20-k } "IJ n_‘/} '
e g ™ R AR 5 A 1! 1o ’
aglklagzkz’ il - =~ (4.17)
with A
128) [> 4.
Because
-c1gt® > 18 [ > clEr?
(4.17) can be written in the form
| BMUA %kz (25m1 ) (22 2{j+ £ =) |
< c(k k ) C’, % l 2 ]6 - J+ _Y; L
laglklagsz 1’72 j=1L=1 1 [ (4.18)
with 1£[ > 9
and therefore
k k. k
K1 ko = C(kl’kz) 1&[ (4.19)
3, T3E, j=1 2=1
with
Ay (3,8, kpskysY) = {25k b+ {28-k,} -2{3+L-v} (4.20)

Here we used the fact that for £ € supp UA we have
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By simple computation we get
A, > -{|k|-2y} -

and now (4.15) follows from (4.19) and (4.21).
Now we will prove Theorem 4.1.
Proof of Theorem 4.1. Define

g 4
Ll B N

)
Because by assumption supp UAC:RQ’ we have

PR 2 -
10y, o2y £ 10N Q@ N2 * oyl R, - Q@

Now we will separately estimate the terms in (4.22),

On Q(8) wusing (4.16), lemma 4.3 ,and the property (iv) of u

A
l Q!mluA ;2
aq (4%
3¢ mlé mz‘ - C(ml’ mZ) .
Ho5y 96y my “my 2(25-m,} 2(28-n)} ~2{j+2~y}
x 2 &1 ) o
j=1 £=1
Because 5 < CAl/2 we get

(4.21)

(4.22)

|
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|m] 2
L

m m
e 25 2|O,Q(65

m m

e .
-2{j+ &-y} + 1/2[2{2]
Cnyam, ) ZZ 8
j=14=1

m m -
C(m, sm )2:25 AAZ(J R
1'™
$u10=1

(A

-a,} + 2(28my}] 4 1

{A

A

-{m-2v}+1 -
C(ml,mz) A y

(4.23)

On Rz - Q(8) using lemma 4.4, we have

2
all”luA |
5 mzt
%1 %% Tlo,g? - @
/2
< C(ml,mz)'/‘g1 51‘2”‘“1‘2'\(} dgl
cal/?

< C@y, my) i Sy L IR -2

(4.24)
(4.23) and (4.24) yield (4.10) .

THEOREM 4.2. Let uA‘E WY(A), be continuous on Q, uA(O’O) =0, and u = 0 on the side
Sy of T.

Then there exists zpéi P _(T) such. that for any k > 2y+l, k integral
i). 2

: k-2 -1/2 {k-2y}-1/2

(4.25)

pasamed

ii)

zp = (0 on the side Sy o T




————
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1/2

et 2 -1
iii) f (ay= 2% 8,7 a8, +/ (f- (uA--»z-p))z,si ds

S,
1 s

-(k=2) ,=1/2{k-2y}+1/2 . (4.26)

< C®)p A =1,2

where we denote by Ai the length parameter of the side S5 measured from the origin.
Proof. By theorem 4.1 the function UA satisfies (4.10). Therefore there exists
a sequence of trigonometrical polynomials with period 1 and symmetric with respect

to the lines £, = £ /2, & =0, §, = £ 1/2, § = 0 such that for 0 <m < k

~ -(k-m) ,-1/2{k-2v}+ 1/2 (4.27)
= z v
log-ell o Qeazzy & Cmidp A
Recalling that UA = 0 at the vertices of Tq> we can modify tp so that t_ = 0 at
these vertices and (4.27) holds for all m > 1 + ¢, In addition using the trace

theorem we have

-(k-2) A—l/Z{k-Zy}+1/2 (4.28)

[ltp—UA]h Q< cp i=1,2,3.
|

Defining zp ®()) = tp(i), z, is an algebraic polynomial of degree p. Using lemma
4.1 we get (4.25). .By assumption tp = (0 and UA = 0 at the vertices of T¢ and there-
fore zp = 0 at the vertices of T. Further we have

1
|uy-t (af) | ¢ ¢ (4?) - [ t

-u, |, .o
P p A l,si

where we have denoted the length parameter of sf, i =1, 2 measured from the origin

we get for 1 = 1,2

by 4¢. Therefore forz _(4,) on s
i Pk

i
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2 -1 2, 6-2 ¢ o
- . <C oL
f(zp W ey ds, /@‘(tp UDTB) s dsy

i si
2, 0.1 .0
< -
._CA (t-Up @™ &
i
2
<c et Go (4.29)

S, .
At
Further,

it =t o 2 N 2.0 .9
/ (aéi(ZP up))T 8y s, < C,/;,( 3 (tp-UA)) >y

8 7
i 45 i

A

2
o Ul sf (4.30)

and therefore cambining (4.29),(4.30) and (4.28) we get (4.26).

Il e

~

Realizing that on Sy the mapping & is an analytic one we can use lemma (3.1) and
achieve zp =0 on Sj- So theorem 4.2 1s completely proven.
Remark to theorem 4.2, We have assumed'that triangle T is situated
as in Fig. 4.1. It is easy to seethata linear transformation of the coordinates
does not make any change in the theorem. Therefore, theorem 4.2 is true for
any triangle T with vertex at the origin.
4.3. A concrete family WY(A).
First denote by X.(x) 0<x<® a function with all continuous derivatives
such that X(x) = 0 for 0 < x < 1/2, and X (x) = 1 for 1<x<w=, Further let

X
Xp(x) = XG5

e ———

-
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A

Let now u € Q

u = p(r) 0(4) (4.31)
be given with r, ¢ being the polar coordinates and ©0(¢) be a function with

all continuous derivatives. Further assume that u has support in i& and u = 0

on s5. In addition let p(r) be continuous p(0) = 0 and
dnp -n
=2l <« ota) with y > 0 (4.32)
dr :

.

Now let DA= )(A(r)o(r) and uA=pAO(¢). Then obviously u,= 0 on S, and has compact

support in Ecx for all A.

Let us show now that Up is a Wy(A) family of functions. Obviously, parts
i) and. ii ) of definition of LFY(A) are satisfied.

Further '

kA i an NS k
—F] < ¢ M i il -3 ~k+ o
e s Ao Cjz(:) A O R

because of (4.32) and the fact that Xq =0 for r < A/2,

alklua k) 3%y o
'__._._I <C A 1
k ky' — 4 l 7
3x]_ laxz s £=0 or r kl

and

kL & aij Bt-jp 1
LC Z laj Hag__jl [k[-Z
£=03=0 r r r

cc Y avt ol oot (4.34)

so property iv) of the ‘{’Y(A) family 1is satisfied.




s

Because XA(r) =1 for r > A, (4.31) yields the property iii) of the WY(A)
family.
Let us now show another property of up in our concrete case.
Lemma 4.5. Let u be given by (4.31) with p and O satisfying the conditions spelled

out above and let uy = Xu (r)o(r)o(d). Then

3 ~ Y
lwuylly, g €2 (4.35)

with C independent of A.

Proof. We have v = u - uy = (l-xA)Q(r)®(¢5 and therefore we have using (4.32)

c (4.36)

and v = 0 for r > A. Therefore

A
/(aL)z dx < C f e2 par < c o (4.37)
A ax b

We have also

/lvlzdx < c/ e 4 < ¢ 42742 (4.38)
Q

Combining (4.37) and (4.38) we get (4.35).
Y
From the point of view of applications the function p(r)=r 0 g(|Lgr|) is of impor-

P

tance especially with g(x) = x* or g(x) = cos x etc. Then (4.32) is satisfied with

Y = YO- €, € > 0 arbitrary.

4.4 The Convergence Rate of the p-Version of the Finite Element Method
Returning to our model problem (3.1) (3.2) we can assume (see e.g.[10], [15] that

its solution uO can be written in the form
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n
4 =W+ > v, (4.39)
S

with w € Hk(Qo)n Hé (Qo) for the boundary condition 'u = u and w~e Hk (SZO) for

the boundary condition Tu = £ and

on
v, =ap (r,) 0, (6,) € H (@) (4.40)
1, s Ui (0 1 i 0 0 i
(resp- Hl(ﬂo)) where ri,¢i are the polar coordinates with respect to the vertices Ai
of the polygon QO and a_ are constants with
i
o, (1) =% g (| Ler |) (4.41)
i i i i
with ;
3Jgi(X) P 3
——a;cj—-[ < Ci(J)K +Di:0<X<°° Pi’jiO;J’l,z’--

and Oi is a function with all continuous and bounded derivatives. The coefficient
Yi is closely related to the angle in the boundary of 2 at the vertex Ai' Without
any loss of a generality we can assume that Gi are smooth periodic functions with f
period 27 so that the function v, is defined in the entire Rz. This form occurs in

i
all elliptic problems e.g., elasticity, see [15].

Let now S be a triangularization of Qo such that all vertices of QO are
vertices of the triangulation. Obviously, we can assume that the support of

pi(r) is arbitrarily small and vy has support in an open cone K, (with angle < m)

3

so that the triangle Tj lies inside such a cone. See Fig. 4.2.
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Figure 4.2
Triangles and enclosing cones

Denote now

n n
Va 32 ¥: X8 Z Vi,
i=1 i=1
where xi A is the function introduced in section 4.3 with respect to the origin
(denoted by index i) of the polar coordinates of vy Now we are able to prove the

major theorem of this section.
THEOREM 4.3. Let U, be the exact solution of the problem (3.1) and (3.2) which
can be written in the form of (4.39), (4.40), (4.41) and let up be the finite

element approximation. Then for k > 1

5 -0+ € ‘
Il vy upll 1.Q c(e) p llfllk’g’ €>0 arbitrary (4.42)

M = min (k-1, 2Yi] (4.43)

where Yy £~ and a, is the angle of 9 at the vertex A
i

i -
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a7

Proof. The exact solution u_ can be written in the form (4.39) with

0
k+2-€ i :
€ H () and Yi = T o See [15]. It is sufficient to show that functions

1 (S]

w and v, can be approximated by z £ P
i PP Yy p= p,0

w

resp. zp s PP[S] (for boundary
conditions ['u = u respectively [u = g%) preserving the estimate (4.42).

Using theorems 3.2 and 3.1 we see that the function @ is approximable 1in the

desired way and we have to concentrate only on approximation of the functions

b -y

1 1 . L .
vy = HO(QO) resp. H (5'20). It is easy to see that v, A € HO(QO) iE

)

vi = Hg(Qo) and using lemma 4.5 we see that

oy s <ol g % L e KB}
’ ¢ L 0

In addition using theorem 4.2 and the remark to it, there exist polynomials

such that for any ki = ZYi + 1

, - (k,-2) , -1/2{k =2y} + U2
Fzp, 574, al L1, - DL £ s

and zp j satisfies also the condition (4.26) on the sides of 'rj. The
’

polynomials zp j' are not in general continuous through the sides of the triangles
’

'I‘J,, nevertheless because of condition (4.26) the function zp’jl - zp,j2 Selivad on

DRS—

the common sides of T and TJ. satisfies the condition (4.26) too, it is
1 %
a polynomial of degree p,and is zero at the end points of the side s. Using

lemma 4.2 we can add a polynomial Z of degree p on T so that the continuity

P»J 3y
through the side s is accomplished and preserving the estimate

=(k,=2) -l/2{ki-27i} +1/2

Il zpi-vi,Alll,Qo: Clep 1 77 (4.46)

l_ In addition if Yen™ 0 on a side lCBQo, then Ep = 0 on this side also and so if

1 1 (S]
€ H ) then v (= eE 7P
vy O(Qo 1,4 HO(QO) and zpi P o (9]

o
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Combining now (4.44) and (4.46) we see that

Al S AT TP AR
i (1<i 2) A 1/2{ki zvi; + 1/2

- + ¢
Nz, -vill, o < cl& & C(k,)p
i 0
Select now
= > +
ki ko? ko __Zyi 3
such that
-2 + kO
TR S ————— I —— > s
\ WA 2 e
and
A% '
A= pi

Then we have

k
0
2y, + € kg + 2 -y, M+ M= -1/2}

<
Hzpi vyl g 2 ceny + Clkyp
- ! - "
X e gl 5 N
i i
i C(e)p-ZYi + € (4-47)

and so (4.47) yields immediately (4.42)(4.43).

So far we have analyzed the rate of convergence for the model problem (3.1)
(3.2). It is obvious that the model problem was not an essential one. It was
essential only to analyze the approximation behavior in Hl(QO)'reSP-

1
HO (QO)-

Combining the main result of the theorem 4.3 and Theorem 3.6 we see that

(up to g) the estimate (4.42),(4.43) is a best possible.
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5. NUMERICAL EXAMPLES \

In order to illustrate the results of the theorems and in order to show ‘
the efficiency of p-version of the finite element, we now present several 1
examples. The first example is a simple bar problem in one dimension and the

numerical results are based on a computer program written specifically for this

problem. The other examples are two dimensional and the numerical results are y
based on COMET-X, an experimental prototype for a general purpose finite ele-
ment computer program developed at Washington University which implements the
p-version of the finite element method [ 2].

5.1. A One Dimensional (Bar) Problem

We consider the problem: ' = d—:l:- s Q= (-1,1)

u" = —q(x) for x e Q (5.1)

where the (loading) function q(x) and the (Dirichlet) boundary conditions will

7 be specified later. The energy inner product is

B(u,v) = (u,v)E -f u' (x)v'(x)dx. . (52}
1

We seek a solution u ¢ H,])'(Q) which satisfies

1
(u,v)E -f u' (x)v'(x)dx -/ q(x)v(x)dx for all v ¢ H(l)(ﬂ) .
-1 -1

(5.3)

We choose as basis functions

wi(x) -[ Pi(t)dt >3

i where Pi(t) is the Legendre polynomial of degree i. Observe that

"’1 (x), 1=1,2,... form an orthogonal family with respect to the energy inner

o 1
: ‘ product 1i.e. (wi,wj)g = f Pi(x)Pj(x).dx p—
S

2041 044
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In this one dimensional case it is possible to prove the direct and
inverse approximation theorems by using the weighted Sobolev (respectively
Besov) spaces associated with the Legendre differential equation:

2, du

)E;] = n(n+l)u

d
- gRl(1-x

once we realize that the Legendre polynomials are eigenfunctions of the
equation. Using this approach € does not appear in the expressions for the J
rate of convergence, e.g. in (3.35) and (4.42). It is not clear how to
generalize this idea to the two dimensional case. Our proof for two
dimensions was therefore quite différen(. |

First we consider convergence when Q is not divided i.e. we use only
one interval.

The finite element solution up € PgS%(Q) satisfies
’

L
(up,d)i)E =.Z: q(x)wi(x)dx f=1 2 oo+ Dis (3.4) |
Writing

P
1-x 1+
300 = 3w + 5 @) + F a0

it follows that

2i+
ai = ——2—1. ._/1‘1 q(x)wi(x)dx =L 2560 sPs (5.5)

Also, denoting the error by

ep (x) = u(x) - up(x) (5.6)

2=
it follows that in the energy norm |]ep]|E (ep,ep)E

ety = Tumu 112 = {112 - 1 [12= 1] 2 :
E e a.v (X)H
P p''E E p''E qapay i1 E

- ]EI 2 _2 (5.7)

{=ptl %1 2041
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If we let U = []u[[; denote the strain energy then U-Up = Ilepf{é is the error

in strain energy.
Case A du _ 2 el 2
o Vl X 5, q(x) del X

In this case u(x) = (x dl—x2 + sin-lx) and the boundary conditions are

S ERSI

u(-=1) = - 7, u() =

Also the energy is

1
[ u] lf: = £ (1-x2)dx =-[31 P

The coefficients a; in (5.5) can be evaluated explicitly. First (5.5) becomes
a, = 214l ‘/‘1Vl—x2 P, (x)dx (5.8)
i 2 /1 i

Now a, = 0 for i odd, and using the recurrence relation for derivatives of

Legendre polynomials [1]
] e ’ = (
Pi+1(x) Pi*l<x) (21+1)Pi‘x)

for i=2m m=1,2,... we obtain

L il
SV e, oax = - L [ o, @ - e
= T T ®omy (= D S
-1 -1 12
=X
™

1
ey 0 cos 9 (P2m+l(cos e)-sz_l(cos 8))des (5.9)

From [1], page 785 formula (22.13.7) we have

m
s 2m |(2m+2
_/; (c08 )Py (o8 914 = Ly P, ). (5.10)
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Substituting (5.9) and (5.10) into (5.8) we obtain through straightfor-

ward caluclation

_ 202m+l T (Zm)2
an 4 ATl ,
/
Using Stirling's formula it follows that
1
(Zm)- 4B
m /—m—i
so that
o, = 0[] asm+e, (5.11)
2m m2 :

Therefore, the square of energy of the error in (5.7) is given by

l[e.pl[é= ¥ afﬁ?ﬁ =o(z is) =o(—1z)=o(N—14> (5.12)

i=p+l i=p+l i P

where N denotes the number of degrees freedom (pzN is one dimension).

On the other hand, in order to study the convergence of the (usual)

h-version with N linear uniformly distributed elements, let X = -1+ &

N
i=0,1,2,...N and let uh(x) denote the corresponding finite element solution.

Then,

uh(xi) = u(xi) 1i=0,1,2,...N

and we can compute the norm of the error eh =u(x) - uh(x)
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Case B u(x) = |x|

&3
We get (for linear elements)
1 112 g
0(;9_')118N| < Heh.);‘)(\‘—z)ille (5.13)

For quadratic and higher elements we get
T . 1
0(—2) £ fle bl = 0(—2) (5.14)

(In this respect see [3])

Figure 5.1 shows in the log scale the behavior of the square of the energy
error. We see that in the case of the p-version the rate is practically 4
as follows from the asymptotic analysis. In the case of the h-version the

asymptotic range is not achieved and we see the rate about 1.81 instead 2

2
3/2 413 (IXIB/Z (l_xz))
dx

The boundary conditions are u(~1l) = u(l) = 0. The only qualitative difference

(l-xz) ’ q(x) = ~

between this case and case A is that the square root singularity in u'(x)
now occurs in the interior of Q@ instead of at its boundary.
We again consider one interval using the same basis functions as before.

(5.5) now becomes

_ 2i4

1
d 3/2 2
a, 5 !; a—(lx[ (1-x7))P, (x)dx

1
il e
21;1 __/; x| 1/2 (% -7 %) (sign x)P, (x)dx

0 if i is even

1
21—;1-./(; xl/2 (3—7x2)Pi(x)dx if i is odd (5:15)
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From [1], page 786, formula 22.13.9 we have

4 1@+ 2 -dHra +d
/ X Py (¥)dx = : xz 1 AZ
Q0 2T'(m + 2 +E)I'(-2--E)

so that after a straightforward calculation we obtain

1
1/2 2
‘/O-X (3-7x )PZm-l-l(x)dx
3 L35 7 Sard
BPINC  le  Be L
I'(m + %)I‘(%) I'(m + —123-)I‘(- %)
I = =306 (Zrel) (k)
- (y™* 2" G ;

13 3
V& — - .
Substituting in (5.15) this yields

pr T(@ = D) Qo) (wh)

a

= (-l) -
2mrtl 13 3
I'(m + T)T(— z)

A > =2




A

Using Stirling's formula it follows that for i odd

a, =0 ($-) as i +» =,
i i

Therefore, the square of the energy of the error is now given by

eyl g = 2 a0 X g b <p_12)= (

ZNI._,
SN—

which ‘has the same rate of convergence (up to iog term) as the square of the

error lleh!lé for the h-version. This illustrates the importance of the state-

ment made at the end of section- 4 that in order to get the full power of the

‘ p-version, singularities must be located at vertices of the finite element mesh.
To illustrate this point further, we plot in figures 5.2, “eh1‘§ and

}lep‘|§ for case B, using one, two and three equal intervals for the p-version

of the finite element solution. The results are summarized in Table 5.1. The

1
convergence of the h-version remains the same (||e = 0(-5 lg N) for both
N

nllg
cases A and B. In case A the convergence of the p-version remains the same
regardless of the number of intervals ([IellE = 0(-§§)) whereas in Case B, the
order is 2 for two intervals, whereas it is only 1 for both one and three
intervals. This is, of course, because in case B for two intervals the singu-
larity is at a vertex of the mesh whereas for one and three intervals it is in

the interior of elements of the mesh, with the consequent degrading of rate of

convergence. In case A the singularity is always at a vertex of a mesh. We

mentioned here only the case of the h-version with uniform mesh spacing. It can
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TABLE 5.1
Rates of Convergence for the h-Version (Linear Elements) and the p-Version of

the Finite Element Method in a Bar Problem

h-VERSION p-VERSION
ONE INTERVAL TWO INTERVALS THREE INTERVALS
2
I e | 2 2 2
ik ag | Nl | ag | lel o | leylf
1 1 1 1 1 1 1
CASE A = |1n N| = = = P = -
N N w N N N N
1 1 1 1 1 1 i | ~
=5 |1in N| = =5 == = = =
CASE B w2 N 2 N2 e N ¥2 i

3
4
|
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that when an optimal nonuniform mesh spacing for elements of degree p(fixed)

is used then lleh!lé =0 (;%).where function 0 is independent of N, but depends
on p. In this very special case, it is possible, of course, to analyze in
more detail the combined h-p-version, but we shall not go into that.

5.2. Two Dimensional Problems - An Edge Cracked Panel and a Paravolically

Loaded Panel

We now consider two problems taken from two-dimensional linear elasticity.
One is an edge cracked rectangular panel, showﬁ in Figure 5.3, the other is the
parabolically loaded square panel, shown in Figure 5.4. In both bases the
displacement field is of the form u = rfg(e), where r and 6 are polar coordinates
and ?.is a smooth function. In the case of the edge cracked panel a = % when
r is measured from the crack tip; in the case of the parabolically loaded panel
a = 2.74 when r is measured from the corner of the panel (See {27].). The
computations were performed with the computer program COMET-X which allows the
polynomial order p to be varied between 1 and 8. We wish to illustrate the

following points:

(a) As claimed by the theoretical results, the rate of convergence is

B=0 = . (5.16)
(when neglecting ¢ and the fact that the edge cracked panel is not a Lipschitzian
domain). In Figure 5.5 we plotted U - Up vs N-l on log - log scale for the
edge cracked panel for two x/a ratios. U is an estimate of the exact strain

energy value (of the half panel) obtained by extrapolation from the following

!
t
z
a
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Edge cracked rectangular panel. Estimated error
in strain energy vs. reciprocal of the number of
degrees of freedom
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expression:

UN. - U.N
iy 2 TL o37amesse 22E (5.17)
o<t i g

in which the subscripts indicate polynomial orders, o is the applied stress,
t is the panel thickness, E is the modulus of elasticity. Poisson's ratio
was 0.3 in all computations. It is seen that the slopes of the log(U - Upf
curves rapidly approach 2o = 1. Significantly, the asymptotic range is
entered at low, computable p values. This has been utilized in practical
computations [26]. A similar behaviour is observea for the parabolically
loaded square panel in Figure 5.6. Here the slope of log(U - Up) approaches
20 = 5.?8. For this problem a series solution is available and U can be
computed to arbitrary precision [8 ].

(b) When the singularity is not located at a vertex, the rate of con-
vergence decreases, To illustrate this feature, we varied the parameter x for
the edge cracked panel (Figure 5.5) and computed 2q in (5.16) from the 7th and

8th order approximations:

U-U
log U"§
—U7
20.7_8 = ———T (5.18)
log N
8

for various‘f ratios. The results are plotted in Figure 5.7. It is seen that
2“7-8 decreases as the interelement boundary approaches the crack tip C.

It was found that aspect ratios as high as 300 could be employed without

encountering numerical instability.
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5.3. Round-off error

When high order polynomials are used, the choice of basis functions
becomes important from the point of view of round-off error. It is pos-
sible to design stable basis functions on the basis of theory developed mainly
by Mikhlin - see [1¢, Chapter 2] and [4, Chapter 4,7]. Of course, the choice of
basis functions is also influenced by programming considerations and the range
of p for which the program is written. In general, it is desirable that the
basis functions be hierarchic, as described in Section 6.1., and computation of
elemental stiffness matrices and load vectors be as simple as possible.

The basis functions currently in COMET-X were chosen primarily on the
basis of programming considerations and they are not optimal from the point
of view of round-off error. Experience with the code has not indicated signifi-
cant accumulation of round-off error, however, in double precision computations
within the range of p allowed by COMET-X (1 to 8).

To study the characteristics of these basis functions, from the point of
view of round-off error, the assembly and elimination procedures were executed
in both double and single precision (7 resp. 15 decimals on the DEC System 20
computer) for the two problems described in Section 5.2. All other computations

were performed in double precision only. (COMET-X employs a modified version

of Irons' frontal solver [11] to carry out assembly and elimination). The results,

given in Table 5.2 indicate that for p < 8 the round-off error is not critical but

if significantly higher p is to be used then it will be necessary to exercise

caution in selecting the basis functions.

i
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6. COMPUTER IMPLEMENTATION OF THE P-VERSION: COMET-X

In order to implement the p-version efficiently it is necessary to
have available a family of finite elements of arbitrary polynomial degree
having certain properties. The family should allow, for example, as much
information to be carried over as possible when increasing the degree from
p to p+l. The present version of COMET-X contains a family of triangular
finite elements which enforce C° continuity across interelement boundaries
for problems which require solutions in Hé(Q) (planar elasticity). We now

describe some of the salient features of COMET-X.

6.1 Hierarchic Property of Basis Functions

The basis functions corresponding to an approximation of degree p
constitute a subset of those corresponding to an approximation of degree p+l.
Therefore, the stiffness matrix of the element of degree p is embedded in the
stiffness matrix of the element of degree p+l. All calculations performed
in generating the pth order elemental stiffness matrices and load vectors
can be saved for use in the (p+l)st degree calculation. We call this the
hierarchic property of the family.

As an illustration of the difference between conventional and hierarchic
basis functions, consider linear and quadratic C° basis functions for a
triangle (given in natural coordinates (Ll, LZ’ L3); see [20] for a discussion
of natural coordinates). The linear function which is one at vertex i and

zero at the other two vertices is I.i i=1,2,3 and it is the basis function

for the nodal variable u(i) i = 1,2,3. In defining quadratic approximations,




|
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conventional approaches use the nodal variables u(i), u(i') i,i' = 1,2,3 ’ i
where i' is the midpoint of side i (opposite vertex i). It is clear that

the basis functions corresponding to u(i) i = 1,2,3 change from the linear {
to the quadratic approximation. In the hierarchic approach, the nodal

variables used for the quadratic approximation are u(i), uss(i') where the

subscript s denotes the differentation in the direction of a side. For

P > 3, the external nodal variables used to enforce C° continuity are jth
order derivatives at the midpoint of each side in the direction of the’
side 3 < 3 < p. Other nodal variaBles (c;lled internal nodal variables) are
used to complete the polynomial to one of degree p. See [12,13,14,19,20,21,22].
6.2 Precomputed Arrays

It is possible to compute certain elemental stiffness submatrices (cor-
responding to a standard triangle[l&]) once and for all, and then to use these

standard submatrices in order to calculate the element stiffness matrices in

a given problem. Precomputed arrays based on hierarchic families permit

convenient use of elements of different polynomial degrees in the same mesh

because two elements of different degree are easily matched along an interelement

boundary. The precomputed standard submatrices are also hierarchic in character so

that one version of these arrays, corresponding to the maximum polynomial

degree that will be used, can be easily stored on a permanent file. Precom-

puted arrays are described in [23] and have been incorporated into COMET-X.

6.3 Computational Cost ;
There are three main phases in the computational process of the finite

element method:

a) Input phase; which includes the computations of elemental stiffness

matrices and load vectors;
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b) Solution Phase; which comprises the assembly and elimination

processes;

c) Output phase, which includes the computation of displacements,

stresses, etc.

When the number of degrees of freedom is progressively increased, the
major variable cost occurs in the solution phase. In a number of numerical
experiments performed with COMET-X it was found that the CPU time for the
solution phase can be closely approximated by an expression of the form.

a + bNB; 2<B< 2.4, aand b const;nts. Thus, although the stiffness

matrix tends to be more fully populated in the p-version than in the h-version,
sparse matrix solution techniques have provided substantial reduction in the
number of operations as compared with solvers which do not account for

sparsity (B=3). As has been already noted, the solution technique in COMET-X
is similar to Irons' frontal solver technique.

Solution time information is given in Fig. 6.1 for the edge cracked
rectangular panel (x/a = 3). The computations were performed in double
precision on a DEC-20 computer, (DFC System_2940, 128K 36 bit word memory,
TOPS-20 operating system). The time for the frontal solver includes both
the assembly and elimination procedures. The time is given in both CPU
seconds and in Equivalent Time Units. (ETU). As in [23], an ETU is the
time required for squaring a full 18 x 18 matrix by means of the subroutine
GMPRD (double precision) of the IBM Subroutine Package. On the DEC-20
computer this operation requires approximately 0.33 seconds.

The total time accounts for all three phases of the computation, including
computation of the displacement vector and stress tensor at six points per

element.

R
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6.4 The h and p versions of the finite element method
Let us compare the h and p versions of the finite element method on
the basis of the present state of theory and experience.

1) Asymptotic rate of convergence (in energy) with respect to the number

of degrees of freedom:

a) For smooth solutions the rate of convergence of the p-version is not

limited by fixed polynomial degree, as in the h-version.

b) 1In the case of nonsmooth solutions, the p-version has at least

the same rate of convergence as the h-version (when the h-version
is based on quasiuniform mesh refinement) but in practical cases,

for example when the singularity is caused by corners, the rate of

convergence of the p-version is twice that of the h-version.
! c) The h-version, coupled with optimal mesh design, results in
higher convergence rate; however, the p~version can also be used
in conjunction with optimally designed meshes. In this regard, the
mesh design seems to be much less critical for the p-version than
| for the h-version.
\ ; 2) Input: Because relatively few elements are used in the p-version, the
volume of input data is smaller for the p~version than for the h-version.
t 1 3) Round-off: 1In practical cases the round-off problem does not appear to
be more critical for the p-version than for the h~-version.
] 4) Flexibility: From the practical, rather than the theoretical point of
i view, the flexibility of the p-version is somewhat restricted by the fact
that constant coefficients are assumed over large finite element domains.

At the present there is insufficient experience with curvilinear and other

numerically integrated elements in connection with the p-version.

B
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5) Solution time: The available experience indicates that for a given
number of degrees of freedom the solution time for the p-version is
about the same as for the h—version:

6) Adaptivity: Development of adaptive finite element procedures has
now been recognized as an important area for research. (See, for

example, [18). From the point of view of implementation, adaptivity

~— TR O ME WRE e

based on the p-version appears to be simpler. Adaptivity based on the
h-version poses difficult data management problems. See, for exaﬁple

: [5,28]. 1In principle, it is possible to base adaptivity on a combination
of the h- and p-versions but such an approach would again pose difficult
data management problems. A more promising approach is to employ mesh

grading on a prior basis, either manually or with standard mesh generators,

and then to make adaptive changes by means of adjusting p.
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Summary

The p-version of the finite element method is a
new approach to finite element analysis ia which the
partition of the domain is held fixed while the degree
p of approximating piecewise polymomials is increased.
In chis paper, two theorems are presented which des~
cribe the approximation properties of the p-versioa.
In particular, for the singularity problem, the p-ver-
sion has asymptotically as p - = twice the order of
convergence of the standard version of the finite ele-
ment method, if the number of degrees of freedom is
used as a measure of coavergence. Various hierarhic
families of finite elements, designed for computation=
ally efficient computer implementation of the p-ver-
sion, are described. These families include conform=
ing 9 and cl triangular families, and conforming
families of rectangles and tetrahedra.

Incroduction

Ia the finite element method the solution to a
certain type of partial differential equation is
formulated as a variactional problem. In the conven~
tional approach.the solution is then approximated over
the given domain by functions which are piecewise
polynomials on convex subdomains (such as triangles or
rectangles) and which are globally in C%, n > 0, where
n depends upon the order of the partial differencial
equation. The degrees of the approximating piecewise
polynomials are fixec (usually at some low number such
as 2 or 3) and the accuracy of the approximation is
increased by allcwing h, the maximum diameter of the
finite elements, to go to zero. We refer to this
approach as the h-version of the finite slement method.
The h-version has been studied extensively and asymp~-
totic arror bounds as- h -+ 0 are well known for its
rate of convergencev - )

In a new appsoach developed at the Center of Com=
putational Mechanics at Washington University a dif-
ferent point of view is adopted. The given domain is
partitioned into coanvex subdomains which are kept
fixed, and the solution is again approximated by func-
tions which are zlobally ia C?, n 2 0, and which are
polynomials over each convex subdomain, Now, however,
accuracy is increased by allowing the degree p of the
plecewise polynomials to go to infinity. We call
this approach the p-version of the finite element
mechod. The p-version is reminiscent of the classical
Ritz method but with one important difference. In the

* Sponsored by the Department of Energy under Con~
tract E(40-1)3443

** Sponsored by the U.S. Air Force Office of
Scientific Research under grant number
AFOSR 77-3122

*#*#% Sponsored by the Electric Power Research Insti-
tute under Contract RP 1242-2

and Professor of Applied
Mathematics and Systems Science Professor of Civil Eangineering
Washington University

Sg. Louis, Missouri

and A.P. Greensfelder

Washington University
St. Louis, Missouri

Ritz method the solution is approximated on the entire
domain by polynomials (or other smooch functioms)
whereas in the p-version of the finite element method
it is approximated only over each convex subdomain by
a polynomial and globally the approximate is required
to be in C®, This difference leads to a rate of con-
vergence for the p-version which is higher thanm that
of both the Ritz method and the h-versiom, and also to
other computational advantages.

121, A Sample Problem

In order to illustrate the application of the p-
version of the finite element method to a practical
situation, we consider a sample problem, called Lock-
heed Test Problem No. 2, which has been used as a test
case for various finite element prograns.l It con-
sists of a circular cylindrical shell with symmetrical-
ly loaded cutouts and subjected to a uniform axial end
shortening of known amount (Figure 1).

LOCKMEED TEST PROBLEM Ne.2

[ 1
| 1
1
’ -m;-no rro

The shell is made of a homogeneous isotropic linearly
elastic material and has constant thickness. u, v, and
w represent the longitudinal, circumferential, and
normal displacemencs, respectively. The bouandary con-
ditions at tne ends of the shell are

wWeys= %i =0 u = constaat = 0.2 » 10-3 inches
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The 10-element triangulation used to solve this problem
is showm in Figure 2, togecther with the normal dis-

placement along the center line of the shell.
5=5=6, 6=6~7 refer to the degrees of the

bers 4~4-4,

polynomials used to approximate u,v, and w.

The num~

In this

problam the approximations to u and v are globally C,

and the approximation to w is zlobally Cl.

In Figure 3

a comparison is given of the numbers of elements and
degrees of freedom used in the application of several

computer programs to this problem.

The name COMET-CT

refers to an early experimental implementation of the
s~version of the finite element method.
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SHELL 3 732' SENERAL ATOMIC, 478 2457
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AE(3AT LOCKMEED NISSILES AND PLIS Approy 1125
sPact came.

TRISAL NATIONAL AERONAUTICAL 100 537
SSTARLLSHRENT, CAMAGA

COMET-CT  #ASHINGTON UNIVERSITY o SGl

(§=8-7-casg)
FIGURE 3: COMPARISON OF SOME COMPUTATIONAL PARAMETERS

We remark that the accuracies of
solutions may vary in any given norm.
the coansidered opinion of independent
groups that the accuracy of each solution is adequate.
There is a substantial reduction in the anumber of
finite elements which were required when using the p-
version of the finite element method, to saolve this

problem.

problem are given by Rossow et al.
In this paper we consider the uniform (or quasi-

uniform) h-version and the uniform p-version of the
finite element method i.e. the partition of the domain
is refined uniformly (or quasi-uniformly) while the
degree p of approximating piecewise polynomials is

held fixed (in the h-version), whereas the partition is
held fixed while the degree p is increased (in the p-

version).

A general

the tabulated
However, it is
engineering

Additional details on the solution of this

theory for combining both the h-

and p-versions in a simple manner i{s not yet developed.
Early results on the convergence of the p-version
of the finite element were empirical based largely on

numerical experiments 2»3:%4,5,6,

Recently

5, a firm

mathematical foundation was provided for the p-versionm,
in ' which basic approximation properties were derived.
We first state two theorems proved in 9 which esta-
blish cthe rate of convergence of the p-version of the

finite element method. Then, we describe several new
families of finite elements designed to implement the
p-version on computers. These families have a hierar-
chic property which leads to computational savings
when using the p-version.

2. Theoretical Background and Illustrations

2.1. Theoretical Background

Let 2 be a bounded lygonal domain in two dimen-
sional Euclidean space R4, let E(Q) be the space of
all real C® functions on 1 with_continuous derivatives
of all orders oun 2, let D(Q)C E(Q) be the SublplCI of
functions with compact support in 2, let HO (Q)=Ly(R)
with the inner product

.-/Q‘ uvdx, dx = dxldx .

For k > 1 integral lec H (1) resp. HOLQ) be the comple-
tions of E(Q) resp. 0(Q) under the aorm

(u, V)

nuui,,, - o<E|

2
1 0%l
- 1%l g,q

where D = a|°,/ax laxz » o = (ay,a7), a; 2 0
integral, 1 = 1,2 1 | = ay + a . The innef product in
Hk(Q) will be denoted by For k > 0 noanin-
tegral the space H(Q) and a&(n} are defined by
interpolation.

Consider the following model problem

e £ e ')

on Q, (@s1)

fu =0 on 3G (2.2)

where 2 is a bounded polygonal domain and Tu = u or

Fu = 3u/3n. We seek a solution in the weak sense i.e.
oaﬁo(ﬂ) such that

Blagsw) = (£,v)  for all vedly (D)

(resp. usHl(Q)) (2.3)

where we define

B(ug,v) = (‘.\c,,v)]"ﬂ (2.6)

The concept of convergence in the p-version of the
finite element method is now formulated as follows:
Le: S be a (fixed) triangulation of R, S = (T,}
i=21,...,m where Tt are open triangles such :én:
UT{ = T and Ti, Ty 1#1 hlvl either a common entire
g or a I-rtcx or T, N = 3. Denote by
E‘ (XS B*(Q) che sugltt of all functions ucal(n) such
t if u is :htsiestriccion of u to Ty thea
ucr, yePp( 1’ i.e. P5°(Q) consists of 3ll functionms
which are picc-wise polynonials of degree at most o and
? ich belong to HL(Q). lFurthct, let
P SZ (@ = P{ST (@)NHG(R). The p-version of the finite
e &ment method consif§1 of finding p=1,2,... where
c*é*d (Q) fresp. P (Q)) (for ::? boundary condi-
tions’ [- Q cesp. xu = Egu/an) so that (2.3) holds for
all veP, J (Q) (resp. P Q). 3
A bound for the rabe of convergence in the p=ver-
sion of the finite element is given by the following.
theorenm: !
Theorem: Let ueHX(Q), k > 1, be the exact solu=-
tion of the problem (2.1), (2.2) and let up be the
finite element approximation, then

. ~NENLE.
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where = >0 is arbitrary. For the boundary coundition
Tu = (3u/3n)s€ can be set to zero.

Now, a polyuomial of degree p h’s N degr of
freedom with N 3 p s Tgnrefore, and (P ) has
dimension, ¥ with N and (2.3) can be rewrltten in
the form

o {k=l) 4o
Iiv\.l.o - uPHl,Q < C(k,e)N \‘“o“k’go (2.6)

On the other hand, for the h-version of the fin-
ite element method with quasi-uniform mesh we have

llug = wylly g s @liggll, o, - » = wate-lia)

(2.7)

where q i{s the degree of the approximating polynomial
used in the elements. Recalling that in this case,

N = h=2 we can rewrite (2.7) in the form
g
By =il o €68 2 fpal (2.8)
19 =~ Yyily,0 = %l q, )

This rate of convergence is optimal (possibly up to

¢ >0). Comparing (2.7) and (2.8) we see that the
p=version gives results which are (neglecting = >0)
not worse than the h-version with quasi-uniform mesh
if we compare the number of degrees of freedom lead-
ing to the same rate of coanvergence, Also the convers-
gence rate can be much better because in the p-version
we do not have the restriction due to the degree of
the elements as we have in the h-~version. Further,
ina many practical situations, the factor 2 ia (2.6)
can be removed, and then the p-version will Le super=-
ior to the h-version with quasi-uniform mesh.

More specifically we consider the p-version when
used to solve a singularity problem. Assume that the
solucion uy to our model problem (2.1), (2.2) can be
written in the form

2.9)

with ueﬂ (1)(\H0(1) for che boundary condition [u=u
and ,eH*(Q) for the boundary condition Tu = (3u/3m),

v = a ()R, (5)C n‘;(m (resp. 8E(2)) (2.10)

where ri,@% are polar coordinates with respect to the

vertices of the polygon Q and a4 are constaats, and
where
A
oi(l‘) =Tt 8 (|log til) (2.11)

wi:hl

3gy (x)|

‘ 5, |6 @ x ety 0szne

Pi'1 >0 ® 1,250

and 44 is a function with all derivatives continuous

and bounded. Let S be a triangulation of Q such that
all vertices of Q are vertices of the triangulation.

We now give the rate of convergence of the p-version
of the finite element method for this situationm.
Theorem: Suppose ug, the exact solution to che
problem (2.1) (2.2) can be writtem in the form (2.9),
(2.10) (2.11) and let up be the finite element ap-

proximation. Then, for k > 1
+ =
(lug = wpll) g 2 C@p™ "7 %, o0, arbitrary  (2.12)
B min(k—l,Zvi) (2.13)

It can also be shown that the estimace (2.12) (2.13)
is the best possible.. Although the considerations which
lead to this estimate are only for the model problem,
they apply more generally to the analysis of the be-
havior of approximacions to any function in Hj(q)
resp. gl Q).

Thus, in terms of the number of degrees of free-
dom N, the p-version solution of the singularity pro-
blem leads..to the estimate

-l
CN

[]uo - uplll.n < ¢ > 0, arbitrary

o - uin(k—l,ZyL)
whereas- in the h-version we have the estimace
-

4
Huo‘uhlll’ﬂf.cx J

that is, the uniform p-version has twice the order of
convergence of the uniform h-version. Let us remark,
however, that when a suitable refinement of the
elements is used in the h-version then its convergence
rate is, in general, better than in the case of the
p-version with fixed mesh. A general theory for com~
bining che theoretical and practical order advantages
of both the h~ and p-versions is aot yet fully devel-
oped.

2.2. Illustracions

In order to illustrate the results of the theorems .
we present two examples. The first is a simple bar
problem in one dimension and the numerical results.are
based on a computer program written specifically for
this problem. The second is a problem in two dimension-
al linear elasticity involving the analysis of a cen-
trally cracked panel. This problem was solved using
COMET-X (COmstraint METhod-eXperimental) a general pur-
pose finite element computer program developed at Wash-
ington University which implements the p-=version of the
finite element mechod.

2.2.1. A One Dimensional (bar) Problem. Consider
the problem: &’ Q= (=1,1)

u" = -q(x) for xeq
where the (loading)
boundary conuicions will be specified
energy inner product is

function q(x) and the (Dirichlet)
later. The

1
B(u,v) = (uyv)p = fl u'(x)v'(x)dx

n‘puﬂ!‘ p
ae 1S 3F3T QUALITY
caRLoRmD TO
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The weak solution ueﬂé(ﬂ) satisfies

L 1
(u,v) "[u'(x)v'(x)dx- f q(x)v(x)dx
E -1 ~1

for all v:ﬂé(ﬂ)

First. we consider convergence when Q is not parti-
tioned, i.e. we use only one interval. We choose as
basis functions 1,x and

by(x) = Fri(c)d: bl gL

=1

where P, (t) is the Legendre polynomial of degree i.
1f we wiite

p
up(x) = LE—‘ u(-1) +l—?- u(l) + ) ;v (%)

i=1

p21

it follows from the orthogonality of Lagendre poly=-
nomials that

L
a - 24 fq(x)w (x)dx 18 3,3 0e458
i 2 4 {2

Also, denoting the error by ep(x) = u(x) = u?(x).
it follows that

| PN - 2 o e 2 _n.nt
e 12 =l =wliZ = llulld = llull}
2
i=p+l
2: 2.2
= 4, m—
1ap+l L 23%1
If we let U = 5&“?‘% denote the strain energy then

U= U= ||ep|lf is che error in strain energy. e
consider two cases:

Case A sy, ql—xz, q(x) = - d—i—(ql-xz),

u
dx

u(=1) = =u(l) -,;l

3/2 2
Case 3 u(x) = x| (1-x"),
d2 3/2 2
a(x) = = =, (|x| (1=x%)), u(=~1) = u(l) = 0
dx

The qualitative difference between the two cases is
that in case A the square root singularity ia u' is
at end points of Q, whereas in case B3 it is in its
{acterior. It has been shown® that if N denotes the
number of degrees of freedom (N=p+l) then as N + =

ta Case A w-o(;‘;), TONE _0(;;%>

eprii
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. pgrenwn 7O ODE

& ev ¥

in Case B aN-O(%), }]eiié.o(_l.)

This illustrates the importance of locating the sin~
gularities at vertices of the finite element mesh in

order to obtain the maximal rate of convergence in the
p-version, as stated in the second theorem. In order

to illustrate this point further and to compare the

rates of convergence of the (uniform) h- and p-versions

of the finite element method, we plot in Figure 4
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}}ep}]é using one, two and,three equal intervals for
the p-version, and {[eh|!§ where we have used the
notation eh(x) = u(x) = uy(x). Linear approximations
were used on equ;& Lntccval% in the h-version. It is
known that |{enll§ 3 0((L/¥8){la N| for linear ele-
menfs. and  ||ey||p = 0(1/N2) for quadratic and
higher elements. Figure 4 shows in the log scale
that the square of the energy error in the case of
the p-version has an exponent that is practically 4.
In the h-version the asymptotic range has not yet
been reached and the rate is about 1.81 instead of 2,
where ¥, the number of degrees of freedom,.is denoted
by NDF. The results are summarized in Figure 5.
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Ia case A the rate of convergence in the p-version
remains the same regardless of the aumber of inter-
vals Decause the singularity is always at ao end-
2oint of an iaterval. In case 8 wnen the siangularity
is at an and point of an interval (i.e.when thers are
=40 intarvals) the maximal rate of convergence in the
p-version is achieved, whereas when the singularicy

is in the interior of an interval (i.e. when these are
either one or three intervals) the rate of convergence
deteriorates.

2.2.1. A Centrally Cracked Panel. Consider the
centrally cracked panel shown in Figure 6.
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FIGURE 5. CENTPALLY CRACKED 4NEL

The displacements have singular behavior in the
aeighborhood of rhe crack tip (by symmetry oaly a
quarter of the panel needs to analyzed) in the form
T » £’%(3) where r,3 ,are polar coordinaces with re-
pect to the tip, v = ¥, and T is a smooth function.
Two finite element triangulations were used, the
eight 2lement mesh and the three slement mesh shown
‘ in Figure 6, In the eight element mesh the polyncm=
| ial degrees were distributed in two ways: uniformly
‘ and non-uniformly. In the non-uniform or graded
| distribucion the polynomial degrees were greater than
| p=3 only in crack tip elements (numbered 1,3,4) and
the polynomial degree was held constant ac p=3 {a the
remoce elements (numbered 5,6,3) and the transition
‘ clements (aumber 2,7), For this problem since v = 3
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In Figure 7 the computed strain energy U, (normalized)
is plotted again N"! and the convergence paths are
seen to be nearly linear for all p > 4. Additiomal
details are given for a centrally cracked panel by
Szabo? and by Szabo and Mehca*®, In 1 comparative
plots of convergence in the p~- and h-versions are
presented for the case of an edge-cracked pane..

3. Hierarchic Families

In order to implement the p-version of the finite
element method, it is necessary to have available a
family of finice elements of arbitrary polynomial
degree p. Although such families of finite alements
have been constructed (by Kratochvil at al;~ for
example), we wish to present a new family whicn
the property that when increasing the degree of tne
approximating polynomial from p to p*l as much of che
computation as possible is saved from the pth degree
approximation. This is cleaarly a desirable property
for afficient computation when using the p=version of
the finite element method. lfore specifically, ia this
family, basis funcczions corresponding to an approxima-
tion of degree p are a subset of those corresponding
to an approximation of degree p+l. Therefore, the
stiffness matrix of the slement of degree p is a sub=-
matrix of the stiffness matrix of the alement of degree
p*l, and when increasing the degree of approximation
from p to p+l only the added rows and columns of the
aew stiffness macrix have to be computed. We call a
family possesing this propertv a hierarchic family,
COMET-X, the current experimental implementation of
the p-version of the finite slement method, developed
at Washington "niversity, is based on two hierarchic
families of conforming triangular finite alements
for the analysis of two dimcnstonaé problems in linear
elasticity. One family enforces C continuity across
interelement boundaries for oroblems which require
solutions in Hé(:) (planar elasticity), and the other
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enforces ¢t continuity across interelement boundaries
for problems which require solutions in Ha(ﬁ) (place
bending) .

3.1. Hierarchic C0 Family of Triangular Elements

This family consists of complete polynomials
of degree p > 2 defined either in terms of nodal
variables or {nodeless) basis functions. The nodal
variables are divided into two classes: external
nodal variables used to enforce global co continuity
and internal nodal variables which are added to com=—
plete the polynomial of degree p.

Let u denote the approximation to the displace~
ment field, and let ug; denote the deviative of u in
direction of side i. The external nodal variables
for each p > 2 are: u(i), ug.3fi') 1, L' = 1,2,3,

j = 2,3,...p where i denotes vertex i, i' denmotes
the midpoint of side i (opposite vertex 1), and u

s
denctes the jth derivative of u in direction of 1d
side i.(see Figure 8).
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FIGURE 3: HIZRARCHIZ (0 “RIAMGILAR ELEMENT, 3 > 2

For each p > 2, % (p=1) (p~2) internal nodal variables
defined as derivatives of order j, j = 3,.,.,p evalu-
aced at one vertex, are added to give a complete poly=-
normal of degree pl . The basis functions for these
external nodal variables expressed ia natural (tri-
angular) coordinates Ly, Ly, Lq (see Peano~~, for
exzmple, for the definition) are, for vertex l and
side 1

By " M1

2, \J
L (4
3":‘(7) [y = 1303 = @y +1y)d

if i 1is even
£ f3eky
7 @ - L3>Nli if j is odd

where [/, is the length of <¢ide L. The expressions for
the other vertices and sides are obtained by cyclic
\ndex permutation.
in order to illustrate the difference between
wn-nierarchic and hierarchic finite elements, let us
Mmpare the two Jhen p*2, For non-hierarchic finite
s amsnts the nodal variables for the linear approxima=-
wos are w(l), £ = 1,23, and for the quadratic
woronimation the nodal variables u(i') 1L = 1,2,3
» sdded e Sasis functions for these nodal vari~
% are then in the linear approximaction
' serasponds o u(i); in the quadratic

- " e

approximacion L4(2Ly - 1)is the basis function for
u(i) 1 = 1,2,3 and 2L1L1+1 is the basis function for
u(i') L = 1,2,3, Thus, the basis functiom for (i)
changes when increasing the degree of the approxima~
ting polynomial from linear to quadracic. For
hierarchic elements, however, in the linear approxima-
tion Ly is the basis function for u(i) { = 1,2,3 in
both the linear and quadratic approximactions and
(1/2)LiLy4] is the basis function for ug2(i') in the
quadratic approximation. Therefore, Ehe Easic func~
tions for the linear approximation are unchanged when
increasing the degree of approximation to quadratic.
It follows then that the stiffness matrix correspond-
ing to the linear approximation is a submatrix of the
stiffness matrix corresponding to the quadratic approx-
imation for the hierarchic family.

It is also possible to construct hierarchic basis
functions which do not correspond to nodal variables.
In this case the external nodes used to enforce global
co continuity are:

Ll' Lz, L3 corresponding to vertices 1,2,3
respectively

- = = A R R o
L{LZ ‘Ll( Lz)j, L,LLB Ly(-Ly)d, L, = L=ty

corresponding to sides 1,2,3, respect~
ively

I =L,2,...50

The internal basis functions are (j -2) independent

polynomials each of which contains factor LjLyL3(so
that they vanish on the boundary of the triingld),

far i = 3,...,p (see Peano 13.14),

3.2.. Hierarchic Cl Family of Triangular Elements

In this case the situaction is more complicated.
The hierarchic triangular CO family described above
enforces global CO continuity (and no more than C

.continuity, even at vertices). The term Comstraiat

Method, in COMET-X, is in fact derived from the pro-
perty that it constrains the approximacing solution

to satisfy the degree of smoothness and no more than
the degree of smoothness required by the formulation
of the problem. In the Lockheed Test Problem, (Fig-
ure 1) an early version of COMET-X called the Con=
straint Method was used with cthe excellent results
shown in Figures 2 and 3. It is the property that the
constraint method does not eaforce more than CL con-
tinuity even at the re-entrant corner that coatributed
to the good results., Although it is possible to con-
struct a hierarchic Cl triangular family, it was pIoved
by Peano 13, 14, thae in order to enforce global C
continuity and no more than global C+ continuity even
at vertices, certain additional comstraint equations
must be satisfied. Consiavr, for example, a vertex of
a triangular element e and let S and Sy be coordinates
along the two sides which meet at the vertex (see
Figure 9).
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FIGURE 3: O[AGRAM FQR CONSTRAINT
ZQUATION

Let (3/5ni) i = 1,2, be the derivative in the direction
aormal to side i. Then in order for the approximation
w to be in Cl at che vertex:the follawing comstraint

' must hold:

32w 329
—= CcO0S ¢+ 3 sin
332 g
3!
2 2
-3—42"cos "53_;?31“ b (2.1)
asz 272

Constraints of the form (3.1) must be satisfied at all
vertices of the triangulacionm.

The hierarchic Cl family of triangular elements
of order p > 3, uses for external nodal variables
values of w, its first derivatives and its second
tangential and mixed (normal-tangential) derivatives
at vertices, and derivatives or order.> 5 at midside
"mdes]-2 (See Figure 10) for the quincic nierarchic
cl element). For each 6 < 3 £p, the jth order
tangential derivatives at midsidqs, and a mixed ith
order derivative (j-1 tangential derivatives, one nor-
mal derivative) at midsides are used to enforce C
conctinuicty.

‘alue of the disolacement function

First x derivative

First y derivative
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Basis functions for these axternal nodal values as well
as for internal nodes all of which contain a factor
(LyLyLg)“ are given in 13, 14, several procedures are
l available to enforce the constraint equatioms (3.1):

(1) A specially devised global assembly process
which reduces the assembly of elements to a stan-
dard finite element assembly procedure 14,15,

(2) Creation of super elements (or macro ele-
ments) of arbitrary degree p > 5. In these macro
elements comstraints are satisfied within the
macro element leaving external nodal variables on
the boundary to be freely assembled 14,

(3) Adding newly constructed corrective rational
functions to the basis 13» These rational
functions modify the smoothness of the approxima-
tions at vertices (while preserving cl continuity)
but permit a free assembly without enforcing
constraints. A method has been devised for inte-
grating these rational functions over triangles
direc:%y without recourse to numerical quadra-
tive o

3.3. Hierarchic CO Family of Rectangular Elements

Again we chaoose as nodal variables the values of
the approximation u at vertices and higher tangential
derivatives of degree j, 2 < j < p at midside nodes.
First observe that the polyunomial

’ 3% (et = n i > 2, even
Qj(E) = .
3’ l(i) iz 3, odd
satisfies

Q (1) = 0 q.gi)(m -0

5 1= 2,0ee53-1

3oy = 1.
a7

Yow, consider the square of side 2 shown in Figure l1.

(<1,1) 1,1)
@ Q
@ )]
(«1,-1) 11,1}
FIGURE 11: H[ERARCHIC QUADRATIC

9 square sLaMent

Basis functions Nu(i) corresponding to the nodal
variables u(i) 1 = 1,2,3,4 are
.-L - - L
Nu(l) % (1-§) (1=n) Nu(J) - 6(1+E)(l*n)
: y (3.2)
Nu(z) . (1+£) (1=n) Nu(é) - Z(l-i)(l*n)

and it is easily seen that these basis functions span
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the same space as l,Z,n,in i.e. they contain the com-
plece linear ‘polynomial. Also these nodal variables
anforce ¢O continuity across sides. Now denoting by
(1j) the midpoint of side ij, basis functions corre-
sponding to the nodal variables u55(12), unn(23),
ugz(34), upn(4l) are

3“55(12) - Qz(i) (1=n) N“EE(JI.) = QZ(-E) (1+n)

(3.3)

Nunn(23) = (1+£)Q,(n) Nuhn(4l) = (1-5)Q, (=)

and these basis functions added to the ones ia (3.2)
span the same space as 1,§,n,&%,8n,n%,52,602, Lee. |
they contain a complete quadratic and they enforce C
continuity along sides. The basis functioms (3.2) are
taken for the hierarchic rectangular linear element,
and those in (3.2) and (3.3) for the quadratic element.

For j > 3, we have

N 12) = 1= N 34) = =&) (1+n)
a0 = GO 8, (36 = QD
X, (23) = (1#9)Q

(n)
3 3

: N“hi(‘l) = (-8, (-n)

as the basis function for jth order tangential deriva-
tives at midsides, and for J > 4 we add the intermal
modes
2 2, . j=4=
-2 a-diertt a0,

These basis functious span the same space as a com
plete polynomial of degree and the two monomials of
degree j+1, £dn,5nd. 0

Thus. the hjierarchic C° square element of degree
P > 2 has (1/2)(p+l)(p+2)+2 basis functions, two more
cthan the dimension of the complete polynomial of
degree p. The two extra terms correspond to $°n,ZnP,
8y scaling the sides of the squara the elements are
easily transformed intco rectangular onmes.

3.4, dierarchic Co Solid Elements

Using the hierarchic co triangular and rectangu-
lar =lements, we can comstruct hierarchic CO three
dimensional elements of various shapes. For exmaple,
using only triangular elements we construct tetrahedral
CY elements in natural (tectrahedral) coordinaces (sae
~/, for example, for a definition)., The basis func-
tions corresponding to vertices of all triangular faces
of the tetrahedron are retained, as well-as those cor-
responding to sides of triangles which now correspond
to edges of che tetrahedron. Those :orresponding tao
internal nodes of triangles now correspond to face
modes, and internal modes of the tetrahedron all con-
cain the factor LyLjLsly i.e. they vanish on all faces
of the tetrahedron (see Figure 12, for the first four
hierarchic tetrahedral CO elements).
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Using cthe hierarchic rectangular C0 alements, it
is possible to comstruct hierarchic C~ brick elements,
and using both the hierarchic rectangular aand.C?
triangular alements it is possible to coqg:ruc: hier-
archic ¢ triaogular prismatic elements.”
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Comparative Rates of h- and p-convergence in the
Finite Element Analysis of a Model Bar
Problem :

/The conventional approach to finite element stress

analysis of a body defined by a polygonal domain

, R (in two dimensions) is to triangulate Q and to

'seek accuracy by letting h, the maximum diameter

‘of all elements in the triangulation, tend to

zero. This approach, called h-convergence, has

been the subject of intensive investigation.

Another approach which is being developed at

Washington University is to fix the triangulation

of @ and to let.p, the degree of the complete,

conforminfg, approximating polynomial over each
triangle, tend to infinity. ExXxtensive numerical
tests have shown that the second approach, called
p-convergence, is considerably more accurate than
the first, even in problems whose solutions have
singularities such as cracks or corners.

In order to illustrate the comparative rates of

convergence, a model (one-dimensional) bar prob-

lem is studied. Asymptotic analysis leads to ex- |
pressions for the rates of convergence in the two
approaches, when the solution possesses a singu-

- larity which is known a priori. It is demon-
strated that the order of p-convergence is twice !
that of h-convergence, provided that the singular-
ity.is located at some node of a finite element.




