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Discussion

I The p—version of the finite elemen t method is a new approach to finite

element analysis which has been demonstrated to lead to significant computa—

I tional savings, often by orders of magnitude (This approach was formerly

I 
called the constraint method; the new term p—version is more descriptive).

Conventional approaches (called the h—version) generally employ low order

polynomials as basis functions. Accuracy is achieved by suitably refining

the approximating mesh. The p—version uses polynomials of arbitrary order

I p ~~
. 2 for problems in plane elasticity where CO continuity is required and

polynomials of order p ?- 5 for problems in plate bending where Cl continuity

is required.

I Hierarchic elements which implement the p—version efficiently are used

together with precomputed arrays of elemental stiffness matrices.

I Major accomplishments during this past year are summarized in the follow-

ing three documents which are enclosed:

1. “Comparative Rates of h— and p— convergence in the Finite element Anal-

ysis of a Model Bar Problem” by I. Norman Katz (abstract), presented

at SLAM 1978 Fall Meeting, October 30, 31, November 1, 1978 in Knoxville,

Tennessee.

2. “The p—Version of the Finite Element Method” by I. Babuska, B. S. Szabo,

and I. Norman Katz (Report, submitted for publication), Report WUICCN— 79/l,

[ May 1979

3. “Hierarchic Families for the p—Version of the Finite Element Method”, by

I. Babuska, I. Norman Katz and B. A. Szabo, Proceedings of the Third

IMACS International Symposium on Computer Methods for Partial Differen—

1 tial Equations , Lehigh University, Bethlehem, PA , June 20 — 22, 1979
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- I. Norman Katz, Washington University, St. Louis,
- . - . Missouri 63130I — -

I Comparative Rates of h— and p-convergence in the
Finite Element Analysis of a Model Bar

I Problem
The conventional approach to finite element stress
analysis of a body defined by a polygonal domain
~2 (in two dimensions) is to triangulate ~2 and toI seek accuracy by letting h , the maximum diameter
of all elements in the triangulation, tend to
zero . This approach , called h—convergence , hasI been the subject of intensive investigation.
Another approach which is being developed at
Washington University is to .iix the .tziangulation

I
. of ~2 and to let P~ the degree of the complete,

conforming, approximating polynomial over each
triangle , tend to infinity. Extensive numerical
tests have shown that the second approach, called
p—convergence, is considerably more accurate than
the first, even in problems whose solutions have
singularities such as cracks or corners.
In order to illustrate the comparative rates of
convergence, a model (one-dimensional) bar prob-
lam is stu4ied. ~syxnptoti c analysis leads to ax-I . pressions for the rates of convergence in the two
approaches , when the solution possesses a singu—
larity which is known a priori. It is demon—

I strated that the order of p—convergence is twice
that of h—convergence, provided that the singular-
ity is located at some node of a finite element.
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1- i.

ABSTRACT

In the p-version of the finite element method the triangulation is

fixed and the degree p of the piecewise polynomial approximation is

progressively increased unti l  some desired level of precision is reached .

In this paper we f irst  establish the basic approximation properties

of some spaces of piecewise polynomials defined on a finite element

t r iangulation.  These properties lead to an a priori estimate of the

asymptotic rate of convergence of the p-version . The estimate shows that

the p-version gives results which are not worse than those obtained by the

conventional finite element method (called the h-version , in which h rep-

resents the maximum diameter of the elements) when quasi-uniform triangula-

tions are employed and the basis for comparison is the number of degrees

of freedom. Furthermore , in the case of a singularity problem we show

(under conditions which are usually satisfied in practice) that the rate of

convergence of the p-version is twice that of the h-version with quasi-uniform

mesh. Inverse approximation theorems which determine the smoothness of a

function based on the rate at which it is approximated by p iecewise poly-

nomials over a fixed tr iangulation are proved both for s ingular  and non-

singular prob l ems .

We present numerical examples which i l lus t ra te  the effectiveness of

the p-version for a simple one dimensional problem and for two problems in

two dimensional elasticity. We also discuss round off error and computa-

tional costs associated with the p-version . Finally we describe some

important features, such as hierarchic bas is functions , which have been

utilized in COMET-X , an experimental computer implementation of the

p-version.
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~ 1. INTRODUCTION

The finite element method , one of the most widely used numerical

I methods for solving certain types of differential equations, is based

on approximating the solution by piecewise smooth functions , speci—

fically polynomials, on convex subdomains such as triangles. In general,

the degree of the polynomials is fixed at some arbitrarily chosen low

I number . No consensus exists at the present time concerning the most

suitable (optimal) degree p of the polynomials.

The mathematical justification o’f the finite element method is

I based on asymptotic analyses in which p is kept bounded and the diameters

of the element subdomains approach zero. However, it has been observed

I by several investigators that the sizes of elements used in practical

com putations are o ft en  outside of the range of asymptotic behavior.

Because the maximum diamete r of f ini te  elements is usually denoted

by h, we shall refer  to this (conventional) approach as the h—version

of the finite element method.

From the theoretical point of view one can justify the finite

element method , also in the asymptotic sense, when the subdomains are

kept constant and the degree of the approximating polynomials tends to

infinity . We shall refer to this method of approximation as the p—version

of the f ini te  element method.

The p—version of the finite element method is similar to the Ritz

method but there is one very important difference: In the p—version of

the finite element method the domain of interest is divided into convex

subdomains and the polynomial approximants are piecewise smooth only

I over individual convex subdomains. In the Ritz method , on the other

II
‘l
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hand, the solution over the entire domain is approximated by smooth

functions. This difference accounts for the greater versatility and

higher rate of convergence of the p—version of the finite element

method over both the Ritz method, and the h—version of the finite

element method, as demonstrated here.

In this paper we analyze the p—version of the finite element

method and its theory, and discuss the implementation characteristics

of the method based on the computer program COMET—X, developed during

the last few years at Washington tlniversity in St. Louis. We also

examine the potential for further development of the p—version. We

remark that, from the computational point of view , and from the point of

view of the architecture of the computer program , there are significant

differences between the p-version when p is in the range of 6,7,8 and the

h-version when p is in the range 1 ,2,3.

We present a proof for the rate of convergence in the p—version

and show that the polynomials are able to “absorb ” singularities,

including e . g . ,  corner singularities, when they are located at the vertices

of t riangles . This does not occur when the corner singularities are

not located at vertices.

Comparison of the asymptotic behavior of the h—version , based on

uniform or quasi—uniform mesh refinement on one hand, and the p—version

on the other, the basis of comparison being the number of degrees of

freedom, shows that the r~ of convergence of the p—version cannot be

slower than the rate of convergence of the h—version and, furthermore,

when corner singularities are present at vertices, the rate of convergence

of the p—version is exactly twice that of the h—version.
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2. BASIC NOTATIONS

Throughout this paper R2 will be the two dimensional Euclidean

space (x1,x2) a x E R
2, ~ C R

2 will be a bounded domain with piecewise

smooth boundary 3ç2~ In particular we will deal with polygonal domains

(We exclude — for technical reasons — the slit domain, although the

results of this paper can be generalized to this case too with some, but

not essential, technical difficulties).

E(~) shall be the space of all real C~ functions on Q, with continuous

extensions of all derivatives on ~~~. ‘All functions of E(~) with compact

support in ~ form a subspace V(c2) C E(?~). As usual, L2(~2) = H0(c~) will

be the space of all square—integrable functions on ~2 with the inner

product.

(u~ v)
Q Q  uvdx , dx dx1dx2

and the corresponding norm . 

~~ 
In addition for any k > 1, integral,

J the Sobolev spaces ~k (q) resp H~ (~ ) will be the completions of E(~)

resp. 17(0) under the norm

2 a 2
J~~UI I k 0 

= HV uft~ ~

where

In!a 
,

a
1 

a
2 

1 2
ax 1 ax 2

11
~~~~~~~~~ ~~~~~~~~~~~~~~~~

-
~~~~~
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~~~~~~~~
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> 0 integral i = 1,2 and jn
~ 

= a
1 

+ a
2
. The inner product in

will be denoted by 
~
•‘•~k0

• For k > 0 nonintegral the spaces

and H~(c2) are defined by usual interpolation. More precisely for k = k
0 

+ 0,

0 < 8 < l,we define Hk (H °, Hk0~~l 8 2 by application of the usual

K—method of interpolation (For more see [7 1) . [Other notations are

H = B 2 2  where is the usual Besov space).

For p > 0 we write

Q(p) = {x1,x2 f x1I < p, jx’2! 
<

Q(p) {x1,x210 < x1 < p, 0 
< x2 < p}

and by EpER(~
(p)) C E(~(p)) we denote the space of all functions with

period 2p and by HpER(Q(P)) its closure in H
k(Q(p)).

We will deal also with Sobolev spaces in one dimension. Analogously

as before we will denote by

1(p) = {x
i~ 

(X
i ! <

and H1~(I(p)), H~ (I( p ) ) ,  H~~~(I(p)) will have the obvious meaning.

Finally we need to introduce the spaces P (0) C E(?~) of all algebraic

polynomials of degree not higher than p and F~ (Q(~)) (resp. F (I(p)) the

space of all trigonometric polynomials of degree at most p and period 2p.

Ii

w 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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3. THE CONCEPT OF P-CONVERGENCE OF THE FINITE EL~~ ENT METHODI
3.1 The model problem

I We will be interested in the model problem

—~u + u f on 0~, f E H0(c2
0), (3.1)

I
ru 0 on 30

0 , (3.2)

I
I 

where is a bounded polygonal domain and ru u or ru = 
~~~~~

. We can

easily generalize our results also to other boundary conditions. As

usual we will interpret the problem (3.1), (3.2) in a weak sense, namely

we seek u0 E H~ (c2
0) resp. u0 E H1(00) so that

I
B(u 0, v) = (f ,v)00 (3.3)

f 
0

for all v H~ (00) resp. v E H 1(0 0 )

where we have used the notation

B(u0,v) (u0,v)
10 (3.4)

j I u
0 satisfying (3.3) obviously exists and is uniquely determined.

3.2 Description of the p—version of the finite element method

Let S be a (fixed) triangu].arization of~~0, S {T~}~ i=  1,.. .

where T
i are (open) triangles such that U T~ — and T

i, T4 i # j
i—I. -I

E
I
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1

have either a counnon (entire) side or a vertex or T . fl T. = ~~~. Denote

now by ~[S] 
(0~) C H

1(00) the subset of all functions u E H
’(00) such

that if U ( T )  is the restriction of u on T1, then we have U ( T )  E P (T.)

i.e. P~~
1 (00) consists of all functions which are piecewise polynomials

of degree at most p and belong to H1(c2 ) Further let P~~~(00)

~[S] 1 0

The concept of the p—version of the finite element method consists of

finding u p = 1,2 u E  P~~~(Q0) (resp. 
p~~~(o0

)) (for the boundary

condition ru = 0 resp. ru = ~~
) so that (3.3) holds for any v E

(resp. p [S)
(0 ))p 0

Study of the p—version of the finite element method was initiated

at the School of Engineering and Applied Science of Washington University

in St. Louis [25] in 1970. It has been implemented there in various

aspects of stress analysis with very good results, particularly in

connection with linear elastic fracture mechanics. Development of the

p—version is continuing at the Center for Computational Mechanics at

Washington University.

3.3 The basic approximation properties of P~~~(00) and

THEOREM 3.1. Let u E H1~(00). Then there exists a sequence z E p [Sl ( 0 )

p = 1,2... such that for any 0 < £ < k (Z,k not necessarily integral)

j( u—z ‘ 1 L 0 < cp °’’
~~I ! u II k ~p ,

~~~ ‘0

where C is independent of u and p (it depends e.g. on £ and k etc.).

Proof. The proof is a standard one. First we prove it for £ and k

integral. We will construct z E P (0 ) such that (3 .5)  is satisfied.p p 0

~~

. ;

~~~~~~~~~~-w-_-~
__ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-



I
Assume that 0

0C Q(
p
0). Because is a polygon, it is a Lipschitzian

domain and therefore there exists an extension U of u E 1{k (00) on Q(2 p 0)

such that supp UC Q(3/2 p
0) and

I H U I I k Q (2 P ) ~ C I I u H ~~0 (3.6)

with C independent of u. As usual we have U = Tu where T is a linear

mapping of H0(c20) into H°(Q(2p0
)), (see e.g. [24]) (which also maps

I 
H°(c2

0) into

Nov let ~ be the (one to one) mapping of Q(ir/2) onto Q(2p ) determined

by the transformation cf coordinates ~ = 
~~~~~~~ E Q(-i~/ 2) ,  x — (x1,x2) E Q(2p0)

I
• X

1 
2p
0 sin i = 1,2 (3 .7 )

written in the form

= X. (3.8)

Let

- V(~) —

and let

• S
Q — .~~

1
~ (Q(3/2 p0)] C QO~/2)

is the inverse mapping to D). We have

L

~~~~~~~~~~~~~~~~
I
~~~•

-
~~~~~

- 
~~~~~~

—- --- -

~~~~~~~~ ~~~~
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Supp V C Q. (3.9)

Obviously the mapping ~ is a regular analytic one—to—one mapping of Q

onto Q(3/2 p
0). Now V E H~~~(Q(ir)), is syimnetric with respect to the

lines ± v/2 and using (3.6) and (3.9) we obtain

C l !U !!k c ~ 
. (3.10)

• 

•

It is well known that the partia~I. sum t of the Fourier series of V

gives the sequence of trigonometric polynomials t E ~ P (Q ( i r ) )  such that

for k > L
— 

( Iv_t p !! t,Q(~) ~ cP
_ (k_

~
)

! ! v I ! k ,Q(~ )

< Cp~~~~~~ u(! k,0~ 
(3.11)

are obviously symmetric with respect to the lines = ± ~r/2 as V is.

It is readily seen that t (~~) = z~ (~ (~ ))~ where z~, is an algebraic polynomial

of degree not higher than p. Because ~ is a regular, analytic mapping

of Q onto Q(3/2 P
0) (3.11) yields (3.5) for k,~ integral.

Now let us generalize our result to £ , k not integral. Recall that

for given (fixed) p the polynomial z was constructed from a linear map

L , L u  — z , where L is a linear mapping of H0(%) into P (%) satisfying

(3.5) for £,k integral. Applying general interpolation theory we get

(3.5) for all 0 < £ < k.

The proof of the next theorem is more complicated . •
~

-- -~~~~ -~~~~
- 

~~~~ --~-‘w ~ — —
~--~~-‘ - - -~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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THEOREM 3,2. Let u E H1~(o0) fl B~(00). There exists a sequence zE

p = 1,2,... such that for any k > 1 (not necessarily integral) and any

> 0

Hu—z < cp
_ k_ l +c !!~~( (  (3.12)p ,

~~~

where C is independent of 
~ and U (it depends e.g. on tand k).

Remark 1. In contrast to Theorem 3.1 the statement is false if only

P (0 ) instead of ) is considered. This is easy to see ifp,0 0 p,’i 0

is e.g. an L—shaped domain as shown in Fig. 3.1.

_ _ _  

X2 

x l

1

•

~
[
~
-
~ 

1 1

Figure 3.1
An L—shaped domain

In fact any u E P~~0 (00) is zero in (x1,O), 0 < x1 
< 1 and therefore —

because it is a polynomial — has to be zero on the entire line (x1, 0),

—1 < x1 < 1. This of course leads to a contradiction because of Sobolev’s

imbedding theorem of k1~ (%) into I P ( I ( l ) ) .

~ 1
~~.— - -- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~- ~~~~~~~~~W -

~~~~~~ 
-~ 

— 

—
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Remark 2. It is not clear whether the term s in (3.12) can be removed.

Remark 3. The theor em can be stated more generally. We have restricted

ourselves to this case (i.e. 
‘~l 0 ~ 

only because it is sufficient for

our purpose.

Before proving theorem 3.2 we will state a lemma .

Lemma 3.1. Let S be a triangle with vertices A ., and sides s ., , i = 1, 2 ,3

(see Fig. 3.2)

A1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A2

Figure 3.2
The typical general triangle

Let v E P~~0
(s
1). Then there exists V E P

r
(S) such that V 0 on 

~2 
and

93, V = v o n  s1 and

I j v j I~ s < C  ( Iv !  i
~ $ 

(3.13)
, ‘ 1

where C (dependent on S) is independent of v and p.

Remark. By v E P (s  ) we mean of course a polynomial in the varia blep,0 1 
r

so that v — 0 at the end points of s~, the vertices A2 , A3. 
• 

i

~~r.w ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • “-p. ~~ - 

_ _ _ _
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Proof. Without any loss of generality we can assume that S is the

triangle shown in Fig. 3.3 with vertices (0,0) (1,0) (1,1)

At (1 1)

/

S3 S2/ ,
A? A?
10,0) Si ( 1.0 )

Figure 3.3
The Standard Triangle

Thea s1 = (x1, 0) , 0 < x
1 

< 1. Because v(x) is a polynomial and because

v(O) = v(l) = 0 by assumption we have

v(x1) = x
1(l-x1

)v
1

(x
1).

with v
1

(x
1) a polynoimal of degree at most p—2. Define 

• j
1 

_______V(x) — V( x 1, x2 ) — v(x1) 
~1 

(3.14)

I
Obvious i.y. V EP(S), V — 0 on 

~2’ S
3~ 

and V = v o n  S
1,~ Finally because

I ~~~
— is bounded on S we get 

~ Hv 11 1,81
. Writing

1 L
I -

1w~
— -

~~~~~~~~ ~~~~~~~~~~~~~~~~~ “ -‘F- 4~~~~~~~tW v~ ~~~~~~~~~~~~~~ “~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ---~~~~~
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~~~~~ 

~~~~~~~~~ 

dx~dx2 
— J ’~ dx~ f  (3V )2 dx1

we easily get (3.13) when using the obvious inequality v2(x
1) 

< x~ ( v( ~‘1
and the lemma is completely proven.

Now we can prove Theorem 3.2.

Proof of Theorem 3.2. 1) Let k > 2. Applying theorem 3.1 there

exists Z E  P(o0
) such that

(Iu- z ((~~ 
<Cp

~~
”
~~~j I u I! k O  , L < k .  (3.15)p ,

~~~~ ‘0

Let j 1,. ..rn be the set of all vertices of the triangles T.E S

1+ ~belonging to 30. Because H c0O~
, S > 0 is imbedded in the space of

continuous functions, we can obviously modify z to z by subtracting a

polynomial of fixed degree p
0 

< m so that

Hu_z ILe.,~ .~
< c p

_

~~+p

_ _
l
_
~~~ (I uI (k ,c~ 

(3.16)

with c > 0 arbitrary. In fact Z = z~~z* is a polynomial of fixed (inde-

pendent of p) degree in determined by its values at the points ~~~~~~

By theorem 3.1 we have jz~~c~~~)J < Cp k—l)+s
i j ~~j i and so

I J ;l 1~e < ~~~~~~~~~ 
5 for all o < £ < rn. Because obviously

li z Il 0 l I Z ! !  
~ 

for any r m , (3.16) follows readily.
‘0 ‘0 f r I

We see that on every side S C 30 of T ~ S we have u 
— 0 and there— •

f ore l l z *iI~ ~ Hu_z*H2 ~ 
by applying the Sobolev imbedding theorem.

Using lemma 3.1 we can now find z** E p (S] ( 0 )  so that - z* - z * E P~~~(00)

and L

~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

p
~~..-.-’— . 

~~~~~~~ ~~~~ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I— ~~~~~~~~~~~~~~ ~~~~~~ 
-
~:=~~~~~~~~~~~

-‘
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l !u_ z
~~l i 1,0 ~ cHu-z ; H 2 0  ~ 

CP
2
~ I I u i l k O  (3.17)

where C depends on k > 2 but is independent of u. (3.17) can obviously

be written as

-(k-l)(1 -

I l u—z~ ( 
~~~ ~ ( j u l  1 k0 (3.18)

2) Let now R be the orthogonal projection in the scalar product of

of

fl H~ (0~ ) onto

Let z = R u. We obviously havep p

I I z ~—u H 1,0 ~ H u H 10  (3.19)

and from (3.18) for k > 2 we have

-

l iz _
u !(l 0 

< C(k)p k-i 
I j u l i k . (3.20)p ,

~~~~ ‘ 0

For 1 < s < k, let

- 1 k  1M5(Oo) [H0, H (00
) r ~ H0 ) 

!: .~ 2
k—i ‘

We obtain by applying interpolati on theory

H
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~. ~~~~~~~~~~
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j

jj z - ujj ~ 0 < C(k,s) p~~(jujj.. ~ (3.22)
‘0 H(0

0)

with

= (k-l)(l - 

~~~)(~~~) 
= (s-l)(l - 

~~~
) . (3.23)

I

Therefore given C > 0 and s > 1 we can select k0 so that

(s-l)(l -~~
-
~
-
~
) > (s-l) - c ‘ 

• 

(3.24)

and so (3.12) holds when the norm II U I 1
~ k instead of j u jj k ~ , is
H 

~
0o~used.

On the other hand from 13 ) ,  see also 129 ) ,  it follows that when
k 1is a polygon , then the spaces H (os) and H (0

~
) fl H0 are equivalent .

This completes the proof. I
3.4 The inverse approximation theorem

We have proven theorems about approximability properties of the

Spaces

and

Now we will prove the inverse approximation theorem.

THEOREM 3.3. Let yE H
k
(Q(p)) and let there exists a sequence of poly-

nomials z~E P~(Q(~))~ p = 1,2,... such that

I k~~ 1 1 k ,Q(p) ~ 
r > 0 (3.25)

____ ____ 
____ _________________ 

I 

‘
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k > 0 integral. Then v~~ H~~~~~(Q(p*)), p* < p, C > 0 arbitrary and

after restriction of v onto Q(p*)

HVH k+r_C ,Q(P*) < A( p,p * ,k,r,C) [ l i v t l o 
~~~ 

+ K] (3.26)

I
Proof. Let u = (x~

_p 2)l~~
2(x~_p

2
)k42. Then writing v* v~, Z~~4(k÷2)= zW

= v*(~(~ ))

t

~~
4(k+2) (

~

) z*+4 (k+2) (
~~(~~))~~ F

+4(k+2)(Q(lr))

with

x . = p sin ~~~.1 1

we obtain -

• 
l!V*_t +4k+2~~ (I k Q(.T)< 4S~ . (3.27)

Now using theorem 5.-+.l p. 200 of [17] [For a proof using the basic

interpolation theory directly see e.g. [3]] it follows that

L i V * l I k+r_C Q(~) ~ A( ( i V * H k Q(r ) + K]

_ _ _ _ _  ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~
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(More precisely by the mentioned theorems we obtain the norm of V* in

the Nikolsky spaces B~~~(Q(ir) which majorizes the norm ~

Now using the fact that the mapping ~ is a one—to—one analytic

one on Q(p*) and u(x) ~ a 
> 0 on Q(p*) we immediately obtain (3.26).

Inequality (3.25) holds only on Q(p*) and in general is not true on Q(p).

Nevertheless we can prove the next theorem.

kTHEOREM 3.4. Let v E H (Q(p)) and suppose that the other assumptions of

Theorem 3.3 are satisfied, then y E  ~~~~~~~~~~~~~~ and

~ A ( C ) [ t i v l l k Q(p ) + K] (3.28)

The proof of this theorem is a consequence of the above mentioned

theorem 5.4.1 in [17) provided that for integral k > 0 the following

inequality of Bernstein type

2kII Z PHk Q(P) < Cp lI Z 1 0Q( ) (3.29)

holds f or any z E P (Q(p ) )  with C independent of p and z .

Let us remark that in the case of trigonometrical polynomials we

have in (3.29) the term ~k instead ~2k 
We will prove (3.29) in the

next few le~imtas.

Lemma 3.2. Let z (x) , x E  1(1) be a polynomial (in one variable) of

degree p. T ien

~ c(s)~
2
~ Hz~ U0 1  p

‘
~*rW ThuF-~~~~~ ~w’~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ,~~~WI~~.-.’.--- — — -  ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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Proof. By Schmidt ’s inequality we have

+1 4 +1

f_l ~~~~~~~~ 
< ~~~~ f f2(x)dx (3.31)

I when f(x) is a polynomial of degree not higher than N. (See [6]),

(3.31) then yields (3.30) easily.

I The next lemma follows easily from the previous lemma.

Lemma 3.3. Let z (x) E P ( Q ( 1 ) ) .  Then for any integral k > 0

II Z P II k Q(l) ~ C(k)P
2’
~I I z~ i l 0 Q(1) (3.32)

Proof. For every fixed x
2 

we have z ( x 1, x2)~ P (I) and therefore

using Lemma 3.2 we get

£~~~~l 
(x1,x2)1

2dx1 < Cp~~~~z
2(x1,x2)dx1 (3.33)

Integrating (3.33) with respect to x2 we obtain

1 
~~3x1~~0,

Q(l) ~ CP HZ~ H0 Q( 1) (3.34)

I
and analogously for ~~~~~~~~~ By induction we get (3.32) . Obviously (3.32)

is equivalent to (3.29) and therefore Theorem 3.4 is completely proven.

I 3.5 The convergence of the p—version of the finite element method

Theorems 3.1 and 3.2 lead immediately to an a priori estimate of the

I rate of convergence of the p—version of the finite element method.

I .•

I
~~— .—

- ‘~
_-T-ii:

~
- 

~~~~~~ ~~~~
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THEOREM 3.5. Let u
0 ~ H

1
~(00), k > 1 be the exact solution of the problem

(3.1), (3.2) and let u be the finite element approximation then

II u 0-u~l I 1,00 < C(k ,C)p
~~~~~~~~

j Iu o j I k O  (3.35)

when ~~~> 0 is arbitrary. For the boundary condition F = , C can be

set equal to zero.

A polynomial of degree p has N degrees of freedom with N

therefore ~(S] (and pE’~) has dimensi’on N with N~~~p
2 and (3.35) can be

rewritten in the form

— 
(k— i) 

~~
Il u 0-u~li 1 0  ~ C(k~C)N 

2 
lu O ti kO  

. (3.36)

For the conventional finite element (h—version) approach with

quasi—uniform mesh we have

lI u O uh il l,0 ~ C hM II u O II k O  (3.37)

wit h j = mm (k—l, q)

where q is the degree of the complete polynomial used in the elements.

Realizing that in this case the number of degrees of freedom N satisfies

N ~~h
2 we can rewrite (3.3.7) in another form

I IUO
_U

hl 1 10 ~ C N~~~
2

l lu 0I k O  (3.38)

1I

‘

~~~~~~~
‘
~~~~~~~~~~~~~~~~~~~ ‘ 

~~~~~~~~~~~ ‘~~~~~~~~~~1’TIT
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I
and this rate of convergence is an optimal one (possib ly up to ~ > 0

arbitrary) (see [3]). This shows that the p—version gives results which

are (neglecting c > 0) not worse than the conventional h—version with

quasi—uniform mesh if we compare the number of degrees of freedom leading

to the same accuracy. In addition the convergence can be much better

because we do not have the restriction on the convergence rate due to the

degree of the elements as we have in the usual h—version.

Further as will be seen in the next section (see theorem 4.3) under

some conditions which are usually sat’isfied in practice the factor 1/2 in

(3.36 ) can be removed and then the p—version will be superior in

comparison to the usual (h—version) finite element method with quasi—

uniform mesh.

Let us remark on the other hand that when the usual (h—version)

with the proper refinement of elements is used then in general the

convergence rate can be better than in the case of the p—version with

fixed mesh — see [3]. Although the general theory for a method combining

the h and p version in an obvious manner is not yet developed , we can

expect that the theoretical and practical advantages of both approaches

can be combined.

Let us assume now that the convergence rate of the p—version of the

finite element method is r, i.e. assume that

I Iu 0—u~ I ~~~ ~ K ~—r (3.39 )

I
Then the following theorem holds .

I

I
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THEOREM 3.6. Let u0E 11
1(0) and assume that (3.39) holds. Then

1) u
0 
CE H~

+r5
(O*) where 0* is any domain such that ~~* C Ti,

i — 1,... in where T
i are the triangles of the triangulation S and

< A(0*,r ,c ) ( ( ( u0 ( j 1 0 +K) (3.40)

ii) u
0
E H1

~~
12
~~
(T
~
), i — l,...m

and

II u O !l l÷r,2...c,T~~~~A(Ti,r,c) (llu O ll l,O
+K) (3.41)

Proof. Theorems 3.3 and 3.4 are obviously valid not only for a

rectangle Q but for any parallelogram.

1) From theorem 3.3 we see that (3.42) holds for any Q~’ of the

form of a parallelogram. This is obviously sufficient for (3.40) in

general.

ii) Because any T . can be covered (with overlapping) by a finite

set of parallelograms (3.41) follows directly from Theorem 3.4.

The practical importance of Theorem 3.6 lies in the observation

that the triangulation of 0 has to be made so that the possible singu—

larities are located at the boundaries of T
i. Exactly this was done in

the linear elastic fracture mechanics problems analyzed by Szabo and

Mehta (26] using the p—version of the finite element method.

- ww—z.~~~~ _-_ - - —.—-—-
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4. THE S INGIJLARITY PROBLEM AND THE P-VERSION OF THE FINITE ELEMENT METHOD

4.1 Preliminaries

In this section we will write ~ instead of ~(l)~ ~(p) was defined in

section 2 . Let T
1 be an open triangle with the vertex in the origin and

I T
1CQ (l/3)u(O,O). See figure 4.1.

I Xi

I

X2

4.1 Triangle with vertex at singularity

I 4
Denote the sides of T going through the origin by 5

~ 
and and the remaining

J 
one by 9

3
.

By 3 we denote the mapping (one to one) of Q(~r /2 ) onto Q, defined so that

— x , 
~~l

, 
~~~~~~

I x Z  (xi i x2 )EQ

I
I

~~~~~~~~~~~~~~~ 
L ,~~q~.~~~_,_r,pr~~~~_ ‘r’~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

I
with

. 2
x~~~~sin ~~ 

i l ,2.

By we denote the inverse mapping to ct~. Further let I
~~~ 

;_i 
(T), 5~ ~ —l (s.)

i = 1,2,3.

T~ now will be a curvilinear tri3ngle with smooth sides and positive

angles. In fact the line x
2 

cx1 
(0<c<~’) will be mapped into sin~~2 

= c sin
2
~1

and so

— arcsin c 1/2 k 
~~

Therefore , T~ is a curvilinear triangle and ~~C~~
(p
0
) LI (ü,O), p arcsin0

We see also readily that

sin2~1

sin2~2

is a function bounded from above and below on T~ . 
-

~

Now let v CE 111(T) be given and define 
—

V(~) = v(~(~))~

We prove 
-

Lemma 4.L Let v E H1(T) then V ~ H1(T~) and 
I

c
i IIV (I~~ ~ IIV II 1,T~ ~ C2 VII1T (4.1)

with 0 < c1 
< c

2 
< ~ independent of v.

Proof. First let us show that

I 
•

~~~~~
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av

~ HI 0,T ~ II ~~ OIT~ 
~~. 

C~~ ~ 0,T . 
(4. 2)

We have
3v ax~ ~v

(
~

) = 
~~
— -

~~~~
— = i— (

~
(
~)) sin2~1

.

Therefore ,

sin
22~ 

dx
1 

dx
2

J
.•

~ 
(~

1
)
2 d~1

d~2 
= [(.~!...)

2 
i. sin~ç

T
sin2~1 is a function bounded from above and below, weBecause as we mentioned sin2~2

get (4.2).

Further we have,

V~d~ 
2 ~~l 

dx2

T 
V sin2~1 

sin2~2

[~ ~~2 .f ] h g
v2

~dx p 1 1 q dx
— i LJ~ ~sin2~ 1 sin2~2~

1. (4.3)
p q

Because in the neighborhood of the origin we have 
~~~~~~~~~~ 

x ’2 it follows that

1
sin2~1 

_ 
—1/2 and therefore for p=3 and q 3/2, the second term in (4.3) is

bounded. On the other hand by the Sobolev imbedding theorem we have

J 6 
1/3 2

T 
v dx ~~. CII v

and so we get[ J  2V d~] ~~. c li v 
~1,T. 

(4.4)

Now (4.4) together with (4.2) gives

II vIl 1 T ~ $~ CII 
v i~~~T.

_ _  

_ _  

k
- — • .J - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- —
V
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(4.3) yields also

II VII O T  ~ II V II O T ~

and we easily complete the proof of the inequality (4.1)

Lemma 4.2. Let v(x) be defined on 1(1) (as a function of one variable

0<x<1) and let

f v
2 x~~~d x ÷ f E 2 x d x < A

2 < x . (4.5)

Let S be the triangle with vertices (0,0), (1,0), (1,1) (as in Figure 3.3) and

let

u(x 1, x2) v(x 1
) (1 -

Then

Ii u~J 
~,s 

<CA (4.6)

with C independent of v.

Proof. We have

f  u~~x ~~~~v
2
(x1

)dx
1 ~ —

1 (4.7)

< 2f v
2(x1 dx1 

[x
1 
+ ~~~

. x ]  < CA2

I

Il

w —-V 
- - 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
___..p_, - 

— -
~~

_---

~~~~~~

-. —-— 
~

-- -
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I
Further x

I j (~~_) 2 dx < 
2[J

4
(p_)2 dx

l_f(l_
_i)2dx2 

+~~~~~
2 dxi [_ .~~. dx

2]

I
I < 2 

[f

1

x e a~._)
2
d~ +J’~x1~

’v2 dx
ij 

< CA
2 

(4.8)

1
I 

-
~~~~~ ~~~~~ 

2dx < 

~f v~dx~ :#(l dx 2

I (4.9)

<f~
2
x

_1
d < A 2

Combining (4.7) (4.8) (4.9) we get (4.6) and the lemma is proven .

I Remark. If v is a smooth function (4.5) implies that v(O) = 0. In addition

if v is a polynomial then u is a polynomial (in two variables) too .

4.2 Approximation Properties of the space P (T)

Let us introduce a one parameter family ‘
~‘ (tx) 0<~<L~ (y>O, fixed) of

, 
Y 0

func tions defined on Q. A function u~(x)CE ‘i’~(~) if f

i) u~~E E(Q) (not E(Q))

ii) Supp u~~R , c~ > 1

I where we define
x

(xE Q ( i / 3 ) , _
~2:. <x 2<ax 1

}

iii) I~~
U
A I < C(IkI) ] x (

for ] x (  > t~ and any k E (k1~k2 )~ k~ > 0 integral with :
— miii (x1, x2 )

1 -  (a} — 
a f o r a > O

O f o r a < 0

Ii .- 
4

.

- ____  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
~~~~~~~~~~
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1
iv) l~

’
~
uA I < C( kj) ~ — (Ikl_ i } 

and C(k) is independent of A .

Denote now as before

(
~

) = u~ (‘~(~ ))

and

(A) fuA
(
~

) u~~CE ~1’,~(A)}.
Now we prove the following theorem :

THEOREM 4.1

Let

~ (A)

Then

CE H
k (Q(~T/2)) for any k>O

and

II U~ I k,QOT/2) ~ C (k)A _ 2 2 1
~~~

’2} 
(4.10)

with C independent of A.

First we introduce some auxiliary lemmas.

Lemma 4.3. For 0<t<7r/2, and n > 1. l<k<n , k,n integral define

~~k
(t) =~~~~~~ (1)

k_J
(~) sin

2
~
C_1)

t~~~ sin2~t (4.11)
i—i dt

then

Wk (t)j < C(n) ~
(2k_n} 

(4.12)

Proof . Obviously 
~
Wk (t) is a trigonometric polynomial.. In the neighborhood

of t 0  we have

sin21’t — + 0 (t2~~
2
)

I

~~

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
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and therefore ,

d~sin
2
~
’ 

(t )  < C(n)t{2~
c_
~~. (4.13)

Hence f o r j < k < n 
-

51~
2(1

~
j) 

~ 
. sin2~ ( t )  < C( n )t

2
~~~

j
~ t {2j _n }

< C(n) ~
A1

(k ,J.n)

where

A1
(k ,j,n) = 2(k-j) + ~2j—n}.~ (4.14)

It is easy to check that

A1
(k ,j,n) > {2k—n}

and this yields (4.12).

Lemma. 4.4

Let

U
A
E ‘I’~~ (A)

Then
3 U~ (

~)I < C ( i k ) 1~~ 
-{ k1 21} 

(4.15)
~~ l~~ 2
1 2

1/2for I ~ ( > 6, $—arcsin A

Proof .  We have (see e.g. [9] ,  p. 19)

:~~~~ 
E

ki 

~

_ _

-w.~~
,—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pT _ p UWr JIU 3_ — ~—-.- —~ -~~~ —~~

- ,—
~—

--—— — — -

- —
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and therefore

_ I k IT T k , k , 
~,A 1 k, 3 u —

~ 
k13~ k2 

= 

~~~ ~~~~~~ ~
‘L~~2~j!Z! 

A 
~ ~~~~~ (4.16)

1 2 j—lZ=l 3x1 3x 2

Using lemma 3.3 we get

~ k2~ 
C’k

1
,k2) ~ ~2~~k1

}~~f~~~k1
} ~ +~~~} P

~1 ~2 ~~~ 
1 (4.17)

with
] ~

(
~

) [>  A
Because

> ]
~

(
~) [ > C]~~[

2

(4.17) can be written in the form

k
1 Ic,

A 
k2~ 

< C(k
1
,k2)EE 

2j-k1
}~~~~~-k2

} 
~ ~ 

-2fj+ £-y}

~~ ~~ 
i=i-e.=i (4.18)

with ]~~[ >

and therefore

< C(k
i
,k2)~~~± 

]~[ 
~~~~~~~~~~~~ 

(4.19)

with

A2(j,~ ,k1
,k2,y) = {2j-k

1
} + (2L-k

2
} -2(j+.&-y} (4.20)

Here we used the fact that for ~ CE supp we have

0<  c1 
< C <

2

~~~~~~~~~~ 

“

~~~~~~~~~~

‘

~~~~~~~
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By simple computation we get

A2 
> -[k -2y} - (4.21)

and now (4.15) follows from (4.19) and (4.21).

Now we will prove Theorem 4.1.

Proof of Theorem 4.1. Define

t R~~= 
;_i 

[RI

I Because by as:unption sup: UA_ R
~
, we have

I U ~~~~~~~ flR~ 
+ I UA~~ R~ - Q (8) (4.22)

I Now we will separately estimate the terms in (4.22)~

On Q(S) using (4.16), lemma 4.3, and the property (iv) of ~~

I 2

I -~~~ 

< C( m~ ,
I ~~ ~~2 ~~~~~ 2~2j—in

1
} 2~2~—m2

} —2(j+L—y}
x �_;~: ~~ ~2 

A

j=1 -e=i

Because S < CA we get

I
I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~ - - - —~~~~ ~~~~ 
-

~~
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3 I~ l~ 2

~~ 
I111~~ in~
1 2 O,Q(O)

< C(rn
1
,m
2
) ~~~~~ ~~~~~ 

~~~~~~~~~~ 
+ 1/2[2(2i-m1

} + 2~ 2Z-m2
}] + 1

j=lL=l
m~ A

2
(j,Z,m

1
,m2,y) + 1

< C(m
1
,m
2)2~~~~ 

A

< C(m
1
,m2) A

_{m_2Y}+1
. 

- 

(4.23 )

On R — Q(S) using lemma 4.4, ~:e hava

3 l m I U 1
2

3~~~i3~2
m2 

~~~ 
- Q(8)

~r/ 2

< C(m
i~
m2)f~, ~~~

2fImH2I} d~1
C

< C(m1, 
~~~~~ 

(A h/2
)
{2 mi 2

~~~
2} 

(4.24)

(4.23) and (4.24) yield (4.10)

THEOREM 4.2. Let uA
E ~

!$
~ (A)~ be continuous on Q, u

A
(O ,O) — 0, and u = 0 on the side

9
3 
of T. Then there exists z € P (T) such . that for any k > 2y+l, k integral

1)- II uA Z P II 1,T 
~~
. 

C(k) P~~~~
2) 

A~
112 Ck—2y}—112 (4.25) J

ii) z Oon the side s3
o fT

I ~
‘
~~~w ~~~~~~~ ~~~~ — -

~~
-- - — 

~~~~~~~~~~~~ ~ —
~~~

—— ——

~~~~~ 
—
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(
~~ (u~~~) )~~

iii) [f (uA
_ z ) 2 

~~~ ~~

I O~ 2) —l/2{k—2y}+1/2 2 (4.26)C(k)p A i—I,

where we denote by 4. the length parameter of the side s. measured from the origin.1 1I Proof. By theorem 4.1 the function U
A satisfies (4.10). Therefore there exists

a sequence of trigonometrical polynomials with period iT and symmetric with respect

0 ~to the lines = ± ir/2, 
‘ 2 - /2, = 0 such that for 0 < in < k

I 
-
~

U u -tA p in, Q (ir/2) ~ C(m ,k)p A l/’2 _21
~~ 

1/2 (4.27)

I Recalling that UA = 0 at the vertices of we can modify t so that t = 0 atp p

these vertices and (4. ~~i )  hold s for all in > 1 + c. In add ition using the trace

theorem we have

I II t -u ~ < C (k)p~~~~
2
~ A /2 _ 2

~~+l/ 2 1=1,2 , 3. (4.28)
p A 1, s

i

I Defining z. (~(~) )  t(~ ) ,  z is an algebraic polynomial of degree p. Using lemma

4.1 we get (4.25). -By assumption t~ = 0 and U
A O a t  the vertices of T~ and there—

fore z = 0 at the vertices of T. Further we havep

I t — u l l  c~
[ 

lu —t (4~ ) I < C (~~)1/2A p i i p

where we have denoted the length parameter of s~ , 1 = 1, 2 measured from the origin

by 4~
’. Therefore for z (4 ) on s~ we get for i = 1,2
1 p 1

I’L ;

I.

‘~~~~ ~-J- - -. . -

1 -
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I

•f(zp
_u)2 4j~

l 
d4~ ~ C f  (tP_uA)2(4~)_2 4~ d 4

2.

< C J (t
P
_:

A
)2(4)

1 ~~~

C tp U~l1]• s~ . 
(4.29)

Further , -

f  (
~~~~

(z _u
A

) ) 2 4~ d4. < C f  (—
~~ 

(tp
_u

A))
2 c

II t~,—U~II~, s~ (4.30)

and therefore ccmbining (4.29),(4.30) and (4.28) we get (4.26). 
-

Realizing that on s3 
the mapping ~ is an analytic one we can use lemma (3.1) and

achieve z = 0 on 5
3• So theorem 4.2 is completely proven.

Remark to theorem 4.2~ We -have assumed that triangle T is situated

as in Fig. 4.1. It is easy to seethata linear transformation of the coordinates

does not make any change in the theorem. Therefore, theorem 4.2 is true for

any triangle T with vertex at the origin.

4.3. A concrete family ~I’~(A).

First denote by X (x) 0<x<~ a function with All continuous derivatives

such that X (x) = 0 for 0 < x < 1/2 , and X (x) = 1 for l<x<~~. Fu rther let

X A X = X (-~). 
I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

11L
~~~T ~~~~~~~~~~~~~ — --~-‘~~~~~ - -‘p- ~~~~~~~~~~~~~ T’~ ~~~~ 

- ._ -
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I
I

Let now u CE Q

I u p( r) 0(~) (4.31)

be given with r, ~ being the polar coordinates and 0(~) be a function with

all continuous derivatives. Further assume that u has support in R and u = 0

on s
3
. In addition let p(r) be continuous p(O) 0 and

n

I iL2. < r C(n ) with ‘~ 
> 0 (4.32)

dr -

Now let 
~A 

XA
(r)P(r) and u

A PA
O(P

~
). Then obviously u

A 0 on 5
3 
and has compact

—

support in R for all A.

I Let us show now that is a ‘1’~ (A) family of functions. Obviously , parts

1) and. ii) of definition of ~Y.~(A) are satisfied .

I Further
k

I ..... A
1 < c ~~ 3k-jo 

ka u

k—j — CE A
1 A’~

’
~~~

i<c(k)AY~
k (4.33)k

j O  3r1 3r —

I because of (4.32) and the fact that XA = 0 for r < A12 ,

and
~~~~

II I k l k Z H. c XA Q 1
-e j~ j —e3x

1 3x 2 £—o 3r r

I ~e. 3 X A 3 P  
____________ 1

< c  E r 3 z—~
I IkI— ~er r—

I ~cE ~~ ~~. ~(ki) H’~ (4.34)

so property iv) of the *V~(A) family is satisfied.

I
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -~~~~~~~~~~~
-
~~~~~ ~~~~~~~~~~~~~~~~ 

-
~~~

- -

~~~~ 
-
~~~~~ 

- ft
___
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Because XA (r) 1 fo r  r > A , (4.31) yields the property iii) of the ‘f’~ (A)

family.

Let us now show another property of uA In our concrete case.

Lemma 4.5. Let u be given by (4.31) with p and S satisfying the conditions spelled

out above and let u
A 

— Xu (r)p(r)e(q). Then

II U U~ II~, Q I C (4.35)

with C independent of A. -

Proof. We have v = u — uA — (l_ x~)~~r)® (~) and therefore we have using (4.32)

< r
’
~~ C (4.36)

and v 0 for r > A. Therefore

f (~~)~ dx < C f r2~~
2 r dr < C (4.37)

We have also

j I v I
2

dx < Cf r
2
~~~dr < C A2~~

2 
(4.38)

Combining (4.37) and (4.38) we get (4.35).

From the point of view of applications the function p (r)=r
Y0 

g(J~egr~) is of impor-

tance especially with g(x) — x1’ or g(x) = cos x etc. Then (4.32) is satisfied with

a C, C > 0 arbitrary.

4.4 The Convergence Rate of the p—Version of the Finite Element Method

Returning to our model problem (3.1) (3.2) we can assume (see e.g. [lO.1,~[]5 1 that

its solution u
0 
can be written in the form

_____________________________________________________________________ — --- .-~~~~~---—
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I
u0 

= w + v
1 (4.39)

i=l

with t~ ~ H
k(c2

0
) ~ H~ (~~) for the boundary condition ru u and w~~ H

k (~~) for

the boundary condition I’u = and

= a1
pi(r~

) S~ (~~) CE }1~ (~i~) (4.40)

(resp. H1(~0
)) where rji4~ 

are the polar coordinates with respect to the vertices A
i

of the polygon and a are constants with

(r) r~~ s~(I £gr~ j) (4.41)

with
33g.(x) p.

I I C~(i) x 
1,3 + D~ 1 0 < x < > 0, j 1,2,.

and is a function with all continuous and bounded derivatives. The coefficient

y. is closely related to the angle in the boundary of ~ at the vertex A .. Without

any loss of a generality we can assume that are smooth periodic functions with

period 271 so that the function v~ is defined in the entire R
2
. This form occurs in

all elliptic problems e.g., elasticity, see [151.

Let now .5 be a triangularization of such that all vertices of are

vertices of the triangulation. Obviously , we Can assume that the support of

p~(r) is arbitrarily small and vi has support in an open cone K3 
(with angle < 71)

so that the triangle T
1 
lies inside such a cone. See Fig. 4.2.

i 
I~

I
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Cone Ki Cone Kz

_

Uj

Tz

~~~~~~~~~~~~~~~~~~~~~~~~~

. !

Figure 4.2
Triangles and enclosing cones

Denote now

V
A ~~~~~~~~ 

Vi ~~~ 
= V

i A
i—i i—i

where Xi,A is the function introduced in section 4.3 with respect to the origin

(denoted by index i) of the polar coordinates of v~. Now we are able to prove the

major theorem of this section.

THEOREM 4.3. Let u
0 be the exact solution of the problem (3.1) and (3.2) which

can be written in the form of (4.39), (4.40), (4.41) and let u~ be the finite

element approximation. Then for k > 1

II u0—u~Ii ~ ~~. 
C(C) P~~ 

+ ~ II f I h~,~, C>0 arbitrary (4.42)

— miii [k—i , 2~~ J 
- 

(4.43)

where y
1 

= -
~~

— and is the angle of~~2at the vertex Ai
.

i

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ :::~~~~~~~~~~~~-~
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Proof. The exact solution u
0 
can be written in the form (4.39) with

I w € H~~
2
~~(c2) and = i— - See [15]. It is suff ic ient  to show that functions

w and v~ can be approximated by z~~€ ~~~0
[ resp . z E ~~[S] (for boundary

I conditions Fu = u respectively Fu = ~~) preserving the estimate ~4.42).

I Using gheorei~ 3.2 and 3.1 we see that the function to is approximable in the

desired way and we have to concentrate only on approximation of the functions

I v . CE H~ (c~0
) resp. H1(~0

). It is easy to see that v~ A CE H~ (~20) if

v CE a1(c~ ) and using 1e~na 4.5 we see that

I i 0 0

—v < CA~~~
C - (4.44)

i,A i ’ l, 
~~~~ 

-

I In addition using theorem 4.2 and the remark to it r there exist polynomials

I z~~~
such that for any k. > 2y + 1

1—  i

II ~~~~~~~~~ l,T I C(k~ )P  ~C
2
~ 

_1/2~k~~2-f~ } + V2 (4.45)

I and z . satisfies also the condition (4.26) on the sides of T - Thep,J I
Polynomials ~~~ are not in general continuous through the sides of the triangles

T~. nevertheless because of condition (4.26) the function Zp j  
— Z

p j  defined on

the common sides of T and T. satisfies the condition (4.26) too , it is

a polynomial of degree p,and is zero at the end points of the side s. Using

lemma 4.2 we can add a polynomial ~ of degree p on T so that the continuity

through the side s is accomplished and preservifig the estimate

II ~P
_v

I A IIl~ I C(k 1)p~~~ i 2
~ A 

_ l /2 {k ~_2Y~ } + 1/2 
(4.46)

In addition if v 0 on a side aC3~2 , then ~ — 0 on this side also and so ifI; V i CE H~ (ç~ ) then Vi A GH ~0
) and Z~~~CE ~~~~ % . 

~

, 

~~~

,

I
I Ia

~~w ~~~~~~~~~~~~ 

.,_
~~~~

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
I__ 

~~~~ ~~~~~~ — ---
_ _ _ _ _ _ _ _ _ _ _
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Combining now (4.44) and (4.46) we see that 
I

It z~~-v~ tl i,~~ I 
C(C) A 1 

+ C(k
1

)p k~~2) ~-l/2{k1-2y1} + 1/2

Select now

= k
0
, k0 >2i~+ 1

such that

-2 + k
A = ( l/ 2 )k 0- (l/ 2) > 2-~

and

—x
A = P i

Then we have 
k

!z~ vIII 
~~~ 
I C(c)~~~

2
~i 

+ C + C(k
0

)p k0 + 2 -y~A+ A{4 -1/2}

I C(C)p 2ui + ~ + C(k
0

)p 2
~ i 

+ C

I C(C)p 
2y
~ 
+ C (4.47)

and so (4.47) yields immediately (4.42)(4.43).

So far we have analyzed the rate of convergence for the model problem (3.1)

(3.2). It is obvious that the model problem was not an essential one. It was

essential only to analyze the approximation behavior in H1(~0
) -resp .

H~ (%) .
Combining the main result of the theorem 4.3 and theorem 3.6 we see that

(up to C) the estimate (4.42),(4.43) is a best possible.

-~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~
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I
5. NUMERICAL EXAMPLES

I In order to illustrate the results of the theorems and in order to show

I the efficiency of p—version of the finite element, we now present several

examples. The first example is a simple bar problem in one dimension and the

$ numerical results are based on a computer program written specifically for this

problem. The other examples are two dimensional and the numerical results are

$ based on COMET—X, an experimental prototype for a general purpose finite ele—

I 

ment computer program developed at Washington University which implements the

p—version of the finite element method (.21. 
-

5.1. A One Dimensional (Bar) Problem

We consider the problem: ‘ = = (—1,1)

— —q (x) for x c ~) (5.1)

I where the (loading) function q(x) and the (Dirichlet) boundary conditions will

be specified later. The energy inner product is

B(u,v) (u,v)
E .f’ u’(x)v ’(x)dx. . (5.2)

We seek a solution u c }I~(c~) which satisfies

(u ,v)
~ 

u ’(x)v’ (x)dx q(x)v(x) dx for all v c

(5.3)

We choose as basis functions

where P1(t) is the Legendre polynomial of degree i. Observe that

*~ (x)~ i ].,2,... form an orthogonal family with respect to the energy inner

F product i.e. i ’~’j~ E - f  P
1
(x)P

3
(x).dx - 

~~~~ ~~~

F
~~~~~~~~~~~~ 

‘_
~P —  ~~~~~~~~~~~~~~~~~~~~~~ 

. -
~~~

.- — — — -
~~~ 

.
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In this one dimensional case it is possible to prove the direct and

inverse approximation theorems by using the weighted Soboiev (respectively

Besov) spaces associated with the Legendre differential equation :

d 2du— r - [(l—x )-
~
--] = n(n+l)u

once we realize that the Legendre polynomials are eigenfunctions of the

equation. Using this approach c does not appear in the expressions for the

rate of convergence, e.g. in (3.35) and (4.42). It is not clear how to

generalize this idea to the two dimensional case. Our proof for two -

dimensions was therefore quite different.

First we consider convergence when ~2 is not divided i.e. we use only

one interval.

The finite element solution u r p[S](~) satisfies
p p,0

(u ,
~ j
)
E 

q(x)~~~(x) dx i 1 ,2,...p. (5.4)

Writing

u (x) u(-l) + u(l)  + ~~~ a~~~ (x)
i—i

it follows that

a~ ~~~~ j~ 
q(x)q,~ (x)dx i=1,2,...p. (5.5)

Also, denoting the error by

e~~(x) — u(x) — u (x) (5.6)

it follows that in the energy norm Ie~I j 2 = (e ,e )

- Iiu-u~i I~ ~Iu II ~ - i iE  a1~~(x)If ~

E a2 ~~~~~~~~~~ (5.7)
i—p+l I 21+1

! J
— ~~~~~~~~~~~~~~~~~~~~~~ w — — ~~~~~~~~~~~~~~~~~~~ -

~~~~ 

- — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
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I
I 

If we let U = ! I u i l ~ denote the strain energy then U—U = H e  
2

P ’ 1 E is the error
in strain energy.

I Case ~ ~~~~ ~Il~x 2 
, q(x) — —  1—xdx dx

I In this case u(x) = 
~ 

(x~~1_x
2 + sin~~x) and the boundary conditions are

I u(—l) = — ~~ , u(l) =

Also the energy is

1I 2I ui E 
= f  (1—x 2 )dx = . - 

-

1

The coefficients a
1 in (5.5) can be evaluated explicitly. First (5.5) becomes

2i

i a. = —~~~~~~ J~~/i_x 2 
P.(x)dx (5.8)

Now a
1 

= 0 for i odd, and using the recurrence relation for derivatives of

Legendre polynomials (11

I P~~1
(x) — P~41(x) = (2i+l)P ~ (x)

for i=2m m 1 ,2,... we obtainI
1 __ 1.I P 2m (x)dx -~~ f x  (P

2~~1
(x) - E’2 1 (x))dx

I
71

I 
- ~~~~~[cos 8 (P

2~~1(cos 8)—P2 1
(cos ~))d9 (5.9)

From (1], page 785 formula (22.13.7) we have

)d — 
71 (2m\(2m+2 ’f  (cog 8)P2~~1

(cos ~ 
425*1 m)\-~~ l 

) (5.10)1 0

4 
p

4 ~~

~ ~~

. 

‘

‘p1W ~~~~~~~~~~~~~ ‘~~~~~~~~~~~
P , —

~~ 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

Substituting (5.9) and (5.10) into (5.8) we obtain through straightfor-

ward caluclation I
a = 

2(2m)+l IT 
(2m)

2

2m 2 42m2(~~l)(2m_i) 
m

1

Using Stirling’s formula it follows that

(2rn).. l m 
. 

-

so that

a2 
= 0 (—i ) 

as m (5.11)

Therefore, the square of energy of the error in (5.7) is given by

I je. ! ~ = 

~ 
a~ ~i~r 

= ° ~~~ -4) 
= o (_

~ 
) = 0 (

~~~) 
(5.12)

where N denotes the number of degrees freedom (pzN is one dimension).

On the other hand, in order to study the convergence of the (usual)

h—version with N linear uniformly distributed elements, let x~ = —l +

i 0 ,1,2,...N and let u
h (x) denote the corresponding finite element solution.

Then,

u
h
(x
i
) — u(x

1
) i 0 ,l ,2 , . . .N

and we can compute the norm of the error e
h ~

u(x) — 

%
(x)

-~~ -.-
. p 

— ~~~~~~~~~~~~~~
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We get (for linear elements)

I o (
~ )~

ig~ i ~ kh! ~ 0 
(~~~)I1~

NI (5.13)

For quadratic and higher elep~ents we get

I o (_ 4 ) < He~~ 
= o (~4) (5.14)

I (In this respect see [3]) -

$ 
Figure 5.1 shows in the log scale the behavior of the square of the energy

error. We see that in the case of the p—version the rate is practically 4

as follows from the asymptotic analysis. In the case of the h—version the

asymptotic range is not achieved and we see the rate about 1.81 instead 2

I Case B u(x) = x1
3/2 

(l—x
2
), q(x) = - (Ix 1

3/2 (l-x 2))

‘ 

The boundary conditions are u(—l) = u(l) = 0. The only qualitative difference

between this case and case A is that the square root singularity in u’ (x)

now occurs in the interior of ~2 instead of at its boundary.

We again consider one interval using the same basis functions as before .

1 (5.5) now becomes

— .ai±~J ...
~
... (IxI

3
~
’2 
(l—x

2
))P.(x)dx

- 
2i+lf1 !xI~~

2 (~ 
- f x

2
) (sign x)P~(x)dx

0 if I is even
- 

~
f 1 

x1~~ (3_7x
2)P~ (x)dx if i is odd (5.15)

Ii
I

,-
. ~~~~~ _~~~~~~_~~~~~ r_-_ — ~~-,- 

_ _ _ _ _ _ _ _ _ _  —
~~~~~ —- - ~~~
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I

I 2

~ .2
-
~~~~~ I .~~ .0

S
.0 5

-~~~~~~ 
‘— S

~~~~~~~~~~~~~~~~~

I -~~

I I I I
Q (0 Q (0 (0

C..i c.~I I I I —4 Cl
0

Lu 4..
0.

3 ~ 
‘.4

d1311 6d1
C., 4..
I-

~ ~~~~ 
6o~

.- 

[1
~~~~~ ~~~~~~~~~ — .  

~~~ ~i~~
j “ r  ~~
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I

From [1], page 786, formula 22.13.9 we have

(-l)mr(m + - ~)r(l +f  x P
2~~1

(z)dx - 

2r(m + 2 + X l  
- 

A 
A > -2

so that after a straightforward calculation we obtain

I

i 
J x

1/2 (3_ 7x 2 )P 25*1 x d x  
-

I 
= (_l)m 

111’(m + -~
.)r(*) 

— 

fF(m —

[ r ( m + *) r(.~.) r (m +~~ )r (-~~)

I 
5*ikm 

-

= (—1) I— 13 3L F (m+-~-)F(-~~)

Substituting in (5.15) this yields

5*1 F (m — 
.
~

-) F (i.) (2m41)2 (5*1)
a
25*1 

= (—1) 
F(m + ~ -)r(— ~

‘ I

~~riT ii~~ii~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Using Stirling’s formula it follows that for i odd

a. o(.~~) as i -~ =.

Therefore, the square of the energy of the error is now given by

Jl e~ I t ~~ = ~~~~~~ = O (  
~~ 

-4) = 0  ( -4 ) = ° ( -4 )
i p+l i. p N

which -has the same rate of convergence (Sup to log term) as the square of the

error II e h II E for the h—version. This illustrates the importance of the state-

ment made at the end of section- 4 that in order to get the full power of the

p—version, singularities must be located at vertices of the finite element mesh.

To illustrate this point further, we plot in figures 5.2, 1 t%t 1~ and
I I e~ I ~ 

for case B, using one, two and three equal intervals for the p—version

of the finite element solution. The results are summarized in Table 5.1. The

convergence of the h—version remains the same (II e h I I~ = oc4 lg N) for both

cases A and B. In case A the convergence of the p—version remains the same

regardless of the number of intervals ( Il e l l E 
= 0(-~~)) whereas in Case B, the

order is 2 for two intervals, whereas it is only 1 for both one and three

intervals. This is, of course, because In case B for two intervals the singu-

larity is at a vertex of the mesh whereas for one and three intervals it is in

the interior of elements of the mesh, with the consequent degrading of rate of

convergence. In case A the singularity is always at a vertex of a mesh. We

mentioned here only the case of the h—version with uniform mesh spacing. It can

-‘—~:;—~~~~~~~~~ -w.,--- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~ T1TT~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ii~:~:-~ ~~~~~~~~~~~ -~~



1 -47-

I
I 

-

1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  0
1 I I I I I I I 4.’

S
Sa 0

I - ... .0

- 

j~
e
~ 

6o,

~

I
r_ 

--~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~TT~ ~~~~~~~ ~~~~~~~~~ ~~~-:---T



—48—

TABLE 5.1

Rates of Convergence for the h-Version (Linear Elements) and the p—Version of

the Finite Element Method in a Bar Problem

h-VERSION p—VERSION 
-

ONE INTERVAL TWO INTERVALS THREE INTERVALS

l I e  L~ 2 2 2h t a
N e J ~ a

N 
e~~~ a

N Ii ~p II~
1 1 1 1 1 1 1

~ASE A —~~~lnN 
—

~~ 
—

~~~ 
—

~~
- —

~~~ 
—

~~~ —

N N N N N N N

CASE B 
N
2 I la N j

I

1
1~

Ii
— 
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I
I that when an optimal nonuniform mesh spacing for elements of degree p(fixed)

is used then I e~I I~ 
= 0 (_i~)~

where function 0 is independent of N, but depends 
-

on p. In this very special case, it is possible, of course, to analyze in

more detail the combin ed h—p—version , but we shall not go into that.

5.2. Two Dimensional Problems — An Edge Cracked Panel and a Para~o1ically

I Loaded Pane l

I We now consider two problems taken from two—dimensional linear elasticity.

- One is an edge cracked rectangular panel’, shown in Figure 5.3, the other is the

I parabolically loaded square panel, shown in Figure 5.4. In both bases the

displacement f ield is of the form u — r~~ (8) ,  where r and 0 are polar coordinates

and ~ is a smooth function. In the case of the edge cracked panel a — when

I 
r is measured from the crack tip; in the case of the parabolically loaded panel

a 2.74 when r is measured from the corner of the panel (See ( 2 7 ] . ) .  The

‘ 

computations were performed with the computer program COMET —X which allows the

polynomial order p to be varied between 1 and 8. We wish to illustrate tLl e

3 following points:

(a) As claimed by the theoretical results, the rate of convergence is

— ~~—2cz (5.16)p

(when neglecting c and the fact that the edge cracked pane l is not a Lipschitzian

S domain) . In Figure 5.5 we plotted U — U~ vs on log — log scale for the

edge cracked panel for two x/a ratios . U is an estimate of the exact strain

- energy value (of the ha ff panel) obtaine d by extrapolation from the following

p 
4

I

I
- ~~~—-,- —w- -—
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expression:

UN - U N  2 2
U max 8 8 7 7  

= 17.385486 o a t 
(5.17)

o<~
<4 N

8 — N 7 E

in which the subscripts indicate poiynomiai orders, o is the applied stress,

t is the panel thickness, E is the modulus of elasticity. Poisson ’s ra tio

was 0.3 in all computations. It is seen that the slopes of the log(U — U~)

curves rapidly approach 2ct = 1. Significantly, the asymptotic range is

entered at low, computable p values. This has been utilized in practical

computations (26]. A similar behaviour is observed for the parabolically

loaded square panel in Figure 5.6. Here the slope of log(1J — U~) approaches

2a = 5.48. For this problem a series solution is available and U can be

computed to arbitrary precision [8 ].

(b) When the singularity is not located at a vertex, the rate of con-

vergence decreases. To illustrate this feature, we varied the parameter x for

the edge cracked panel (Figure 5.5) and computed 2a in (5.16) from the 7th and

8th order approximations :

U—U8log 
~—jy—

(5.18)
78 N7log ~~

—

8

for various ratios. The results are plotted in Figure 5.7. It is seen that

2cz7 , 8  decreases as the interelement boundary approaches the crack tip C.

It was found that aspect ratios as high as 300 could be employed without - 
- -

encoun tering numerical instability.

1)
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I
5.3. Round—off error

I 
When high order polynomials are used, the choice of basis functions

becsmes important from the point of view of round—off error. It is pos—

I sible to design stable basis functions on the basis of theory developed mainly

by Mikhlin — see [16, Chapter 2] and [4 , Chap ter 4,7 1. Of course , the choice of

basis functions is also influenced by programming considerations and the range

~ of p for which the program is written. In general, it is desirable that the

basis functions be hierarchic, as descr~.bed in Section 6.1., and computation of

elemental stiffness matrices and load vectors be as simple as possible.

The basis functions currently in COMET—X were chosen primarily on the

basis of programming considerations and they are not optimal from the point

of view of round—off error. Experience with the code has not indicated signif i—

I cant accumulation of round—off error, however , in double precision computations

within the range of p allowed by CO~~T—X (1 to 8).

To study the characteristics of these basis functions, from the poin t of

view of round—off error, the assembly and elimination procedures were executed

in both double and single precision (7 resp. 15 decimals on the DEC System 20

computer) for the two problems described in Section 5.2. All other computations

were performed in double precision only. (COMET—X employs a modified version

I of Irons’ frontal solver [11) to carry out assembly and elimination). The results,

given in Table 5.2 indicate that for p < 8 the round—off error is not critical but

if significantly higher p is to be used then it will be necessary to exercise

I caution in selecting the basis functions.
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6. COMPUTER IMPLENENTATIO~ OF THE P—VERSION: COMET—X

In order to implement the p—version eff ic ient ly it is necessary to

have availab le a family of f inite elements of arbitrary polynomial degree

having certain properties . The family should allow, for example, as much

information to be carried over as possible when increasing the degree from

p to p+l. The present version of COMET—X contains a family of triangular

finite elements which enforce C° continuity across interelement boundaries

f or problems which require solutions in H~(~) (planar elasticity). We now

describe some of the salient feature,s of COMET—X.

6.1 Hierarchic Property of Basis Functions

The basis functions corresponding to an approximation of degree p

constitute a subset of those corresponding to an approximation of degree p+1.

Therefore, the stiffness matrix of the element of degree p is embedded in the

stiffness matrix of the element of degree p+1. All calculations performed

in generating the pth order elemental stiffness matrices and load vectors

can be saved for use in the (p+l)st degree calculation. We call this the

hierarchic property of the family.

As an illustration of the difference between conventional and hierarchic

basis fuL.:~ions , consider linear and quadratic C° basis functions for a

triangle (given in natural coordinates (L
1
, L2, L3); see (20) for a discussion

of natural coordinates). The linear function which is one at vertex i and

zero at the other two vertices is i*l,2,3 and it is the basis function

for the nodal variable u(i) i 1,2,3. In defining quadratic approximations ,

_______________________________ ______________________ - i— — - —
~~
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conventional approaches use the nodal variables u(i), u(i’) i,i’ = 1, 2 , 3

where i’ is the midpoint of side i (opposite vertex I). It is clear that

the basis functions corresponding to u(i) i = 1,2,3 change from the linear I
to the quadratic approximation. In the hierarchic approach, the nodal

variables used for the quadratic approximation are u(i), u 9(i’) where the I

subscript s denotes the differentation in the direction of a side. For

p > 3, the external nodal variables used to enforce C° continuity are jth

ordcr derivatives at the midpoint of each side in the direction of the -

s :de 3 < j < p. Other nodal varia1~les (called internal nodal variables) are

used to complete the polynomial to one of degree p. See [12 ,13,l4,l9,20,21,22].

6. 2 Preconiputed Arrays

It is possible to compute certain elemental stiffness submatrices (cor-

responding to a standard triangle [14)) once and for all, and then to use these

standard submatrices in order to calculate the element stiffness matrices in

a given problem . Precomputed arrays based on hierarchic families permi t

convenient use of elements of different polynomial degrees in the same mesh

because two elements of different degree are easily matched along an interelement

boundary. The precomputed standard submatrices are also hierarchic in character so

that one version of these arrays, corresponding to the maximum polynomial

degree that will be used, can be easily stored on a permanent file. Precom—

puted arrays are described in [23] and have been incorporated into CONET—X.

6.3 Computational Cost

There are three main phases in the computational process of the finite

element method:

a) Input phase; which includes the computations of elemental stiffness

matrices and load vectors;

~~~~~~~~~~~~~~~~~~~~~ -~~~~~-~~~~~~~~ 
_ _ _ _



59 -

b) Solution Phase; which comprises the assembly and elimination

processes;

c) Output phase , which includes the computation of displacements ,

st resses , etc.

When the number of degrees of freedom is progressively increased, the

= major variable cost occurs in the solution phase. In a number of numerical

experiments performed with COMET—X it was found that the CPU time for the

solution phase can be closely approximated by an expression of the form

a + bN8; 2 < ~ < 2.4, a and b constants. Thus, although the stiffness

matrix tends to be more fully populated in the p—version than in the h—version ,

sparse matrix solution techniques have provided substantial reduction in the

number of operations as compared with solvers which do not account for 
-

sparsity (~=3). As has been already noted , the solution technique in COMET—~(

is similar to Irons ’ frontal solver technique.

) Solution time information is given in FIg . 6.1 for the edge cracked

rectangular panel (x/a 3). The computations were performed in double

- 
precision on a DEC—20 computer , (DEC System 2040, 128K 36 bit word memory,

TOPS-20 operating system) . The time for the frontal solver includes both
1 the assembly and elimination procedures . The time is given in both CPU

I seconds and in Equivalent Time Units. (ETU). As in [23), an ETU is the

time required for squaring a full 18 x 18 matrix by means of the subroutine

GMPRD (double precision) of the IBM Subroutine Package. On the DEC-20

computer this operation requires approximately 0.33 seconds .

The total time accounts for all three phases of the computation, including

I 
computation of the displacement vector and stress tensor at six points per

element.
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I
I 6.4 The h and p versions of the finite element method

I 
Let us compare the h and p versions of the finite element method on

the basis of the present state of theory and experience.

I
l) Asymptotic rate of convergence (in energy) with respect to the number

of degrees of freedom:

a) For smooth solutions -the rate of convergence of the p—version is not

limited by fixed polynomial degree , as in the h—version.

I b) In the case of nonsmooth solutions, the p—version has at least

the same rate of convergence as the h—version (when the h—version

is based on quasiuniforin mesh refinement) but in practical cases,

I 

for example when the singularity is caused by corners, the rate of

convergence of the p—version is twice that of the h—version . -

I c) The h—version, coupled with optimal mesh design, results in

higher convergence rate; however, the p—version can also be used

in conjunction with optimally designed meshes. In this regard , the

mesh design seems to be much less critical for the p—version than

for the h—version.

2) Input: Because relatively few elements are used in the p—version , the

volume of input data is smaller for the p—version than for the h—version .

3) Round—off : In practical cases the round—off problem does not appear to

- 
be more critical for the p—version than for the h—version.

1’ ~~ Flexibility: From the practical , rather than the theoretical point of

- view , the flexibility of the p—version is somewhat restricted by the fact

- that constan t coefficients are assumed over large finite element domains .

At the present there is insufficient experience with curvilinear and other

numerically integrated elements in connection with the p—version.
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I

I
5) Solution time: The available experience indicates that for a given

number of degrees of freedom the solution time for the p—version is

about the same as for the h—version. 1
6) Adaptivity : Development of adaptive finite element procedures has

now been recognized as an importan t area for research. (See , for I
example, [l~ ). From the point of view of implementation , adaptivity

based on the p—version appears to be simpler. Adaptivity based on the

h—version poses difficult data management problems . See, for example C

(5 ,28]. In principle, it is pdssible to base adaptivity on a combination

of the h— and p—versions but such an approach would again pose difficult

data management problems . A more promising approach is to employ mesh

grading on a prior basis, either manually or with standard mesh generators,

and then to make adaptive changes by means of adjusting p.
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Sumsary Ritz method the solution is app roximated on the entir e
domain by polynom_ial s (or other smooth functions)

The p—version of the finite element method La a whereas in the p—version of the f inite element meth od
new approac h to finite element analysis in which the it is approx imated only over each convex subdomain by
partition of the domain is held fixed while the degree a polynomi*l and globally the app rox imate is required
p of app roximating piecewise polynomials is increas ed, to be in Ca . This difference leads to a rate of con—
In this paper , tvo theorems are presented which des— vergenca for the p—version vhich is higher than tha tcrib, the approx imat ion proper ties of the p—version . of both the Ritz method and the h—versio n, and also to
In par ticular , for the singularity problem, the p—ve r— ocher computationa l advantages. - -
sion has asymptotica ll y as p -~ twice the order of -

conver gence of the standard version of the fini te  d c —  11. A Sample Problem
menc method , if the number of degrees of fre edom is
used as a measure of converg ence. Various hierarhi c Zn order to illustrate the application of the p—
f amilies of finite elements , ciesigoed for computation— vers ion of the finite element method to a practical
ally efficien t computer implementatio n of the p—ver— situation , we consider a sample problem, called Lock—
sion, are describ ed . These families include conf orm— heed test Problem No. 2 , which has been used as a test
ing C0 and C1 tr iangular families , and conform ing C0 ca se for various finite element prugrains.1 It con—
families or rectang les and Cet rahed r a sists of a circular cylindrical shell with symmetrica l-

ly Loaded cutouts and subje cted to a uniform axial end
Introduction shortening of known amoun t (Figure 1).

In the finite element method the solution to a
certain type of partial different ial equation is ~UC~$UD ?13V ~~OS.~M ‘.2

tional. appro ach. the solution is then approxi mated over
the given domain by functions which are piecewise

formulated as a variational problem. In the conven—

polynomials on convex subdomains (such as triang les or

n depends upon th. order of the pa rtial differential 

~~
rectangles) and which are globally in Cn , n > 0, whe re

polynomials are fixed (usua lly at some low number such ,~ •• 7_

equation . The degree s of the approx imating piecewise

increased by allc’ving h , the maximum diameter of the _______

finite elements , to go to zero. We refer to this

as 2 or 3) and the accu racy of the app r oximation is 

~~~~

‘

approach as the h—version of the finite element method . -

The h—ve rsion has been studied extensively and asymp — 
~~~~~~~~~

tot ic error bounds a~ h — 0 are well known for its
race of conv.r genc~~ 4In a new app*o~ch developed at the Cent er of Com-
putational Mechan ics at Wash ington Univer sity a dif-
ferent point of view is adop t ed. Th , given domain is ~~~~~ “
partition ed into convex s*abdoma ins which are kept
fixed , and the solution is again approx imated by func-
tions which a re globa lly in C’~, n > 0, and which are The shall is made of a homogeneous isotropic linearly

elastic materia l and has constant thickness. u , i, andpolynomials over each co nvex subdomain , Now, however ,
accuracy is increased by allowin g the degree p of the w represent the longitudinal , circu mferential , and
piecewise polynomials to go to infinity . W~ cal]. normal displacements , respective ly. The boundary con-

ditions at tne ends of the shell arethis approach the p—version of the finite element
machod . The p—version is reminis cent of the classica l

0 LO~~ inchesRitz method but with one importan t differenc e. In the w • v — ~~— — ‘a — constant — 0.2 a
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finite element method. Then, we describe several new
families of finite elements designed to implement the
p—ve rsion on computers. These families have a hierar—

0 tO tO chic property whit h leads to computational savings2 (I.~.I) when using the p—version.
0~~~~~~

2. Theoreti cal Sackground and Illust rations/-

~~~~~~~ 

Let 0 be a bounded oolygonal domain in ~~~ _ d~~~n—

2.1. Theoretical 3ackgrouaid

-~~~~~~ ~~~~~~~~~~~~~~ 
~~
°
° j all real ~~ functions on 0 with continuous deriva tives

siona]. Eucl-Ldean space R~ , let E~.l2) be the space of

of all orders on ~T, let D(0)CE(~) be the subspace of— •-‘~ t 0
0 0 0 ~• i .—‘r’ l

functions with compact support in 0, let
— m-.4~.S1 ., with the inner product
- -— ‘S’-’ ~~~T-CT

0 T~~~(. __________m., ~, (u ,v) 0 0  uvdx~ dx - dx,~dx2 .q

~~eie.~ ~ ct~cti uc ~.eu I—” For k > 1 1~ tegr al let 9k (3)  rasp . H~~0) be the comple-
tions ~f E(Q) resp . 0(0) under the norm

The 10—elemen t triangulation used to solve this problem
is shown in Figur e 2 , together with the normal dis-
placement along the canter line of the shell. The ~~~~ 

2 
— E ii 2

k ,~2
he rs 4—4— 4 , 3—5—6 , 6—6— 7 refer to the degrees of the —

polynomials used to approximate u ,v , and w. In this0problem the approximations to u and v are globally C , 4lere D t 
—

, 

P laj~Px 
m 1 n2 n — (a 1,n2 ) ,  n~ > 0

and the appr oximation to w is globally C1. In Figure 3 integral , i l,2 ,tn l — ni + a2. The inner product in
a comparison is given of the numbers of element s and H k(0) will be denoted by t- , )k ~~. For k > 0 nonin—
degrees of freedom used in the applicatio n of several tegrai. the space 9k(0) and are defined by
computer programs to this problem. The name COMET—CF interpolation.
refers to an early experi mental implementation of the Conside r the following model problem
2—version of the f inite elemen t machod .2

— i n + u . f  o n O . f t H 0 (0) ( 2.1)

~cuR~ 4NCER CF ~CGPES CF Cu - 0 on 30 (2.2)

04EU. 3 W .2211M. A?0~4ic. ~7S V~57
n’c. wher e 0 is a bounded polygonal doma in and C’a u or

~7~GS LOCn,IC -~X 22 L25 ~so 3~2 i~37 Cu — - Pu/ 3n. We seek a Solution in. the weak sense i.e.S?*4* Cod?.

~~~~~ .oCm,iC q~ 2scLj~ Al’s 2141 ~~~~~ 
u0tR 0(0) such that

2P*c$ Cod? .

~~f$fl4 MATTONdI. AVOMAUITCS. 100 ~37 S(u0,v) — (f ,v) for all

~u5LMTCN ul’lVd?oLrY 10
(54-7—ua*] (reap. utH1(Q)) (2.3)

~:msE 1: 3102N1S05 :~ SOlE C~’.’S!JTATT.’NM4. “SMIETERS
where we define

is remark tha t the accuracies of the tabulated B (u0,v) — (u3,v)1 0  (2.4)
solutions nay vary in any given norm. However, it is
the considered opinion of independent engineering The concept of convergence in the p—version of thegroups that the accuracy of each solution is adequate . finite element method is now formul ated as follows :There is a substantial reduction in the number of Let S be a (fix*d ) triangulation of 12, 5 — CTfinite elements which were required when using the 

~
— i .~~ 1, . . . ,m where T~ are open triangles such tkerversion of the finite element method, to solve this U Ti. — 12 and tj, Tj i~i have either a co~~~n entireproblem. Additional details on the solution of this 

~~~ or a yerrex or T (~Tj — 9. Denote byproblem are given by Rossow cc al.2 
~(~~Cg (Q) the sj set f all, functions u€01(13) suchIn this paper we consider the uniform (or quasi—

uniform) h—version and the uniform p—version of the tna t if uç~~) i: ~~~ 1e5t~~c~~0ui of u to Ti then
finite element method i.e. the par tition of the domain u(T~)r Po( . . (o) consists of aJJ. functions
is refined uniformly (or quasi—unifor mly) while the whi cn are piecevise9pol ynomials of degr ee at most n and
degree p of approximat ing piecewise polynomials is vbich belong to 91(~)~ Further , let
held fixed (in the h—version) , whereas the partition is ~~~~~ (0) — p~S1 (fl)f’~R~(0) . The p—vers a.on of the finite
held fixid while the degree p is increa sed (in the p— e~&msnt meth d consi;~ g of finding ~~ p • 1,2 , . . .  where
v.rs iou) . A general theo ry for combining both the h— u

?
C P

~~~ 
(12) ~resp. P~ (a)) (for the boundary condi—

U — 0 rasp . Cu • (Pu/3m .) so that (2 .3)  holds forand p—version s in a simp le manner is not yet developed , 
all viP~

5
~ (12) (rasp. P~S] (o)).Early results on the convergence of the p—version 

A ~~und for the rate o~ convergence in the p—var— -of the finite element were empiric a
numerical experiments 2 ,3,4 ,5,6 , 1 

1 based Lar gely on
Recently 8, a firm sion of the finite element is given by the following.

mathematical founda t ion was provided for the p—version, theorem :
in - which basic approximation properties were derived. Theoreint Let uaH k (12) , k 1, be the exact solu—
We fir st state two theorems proved in 8 which esta— tion of the problem (2.lX , (2.2) and let Up be the
blish the rate of convergence of the p-version of the finite element approxi mation , then

— —  
~~~~~~~~~~ 

- ‘ . .#kuIP p ,, ,.p .~~~. - ~~~~~~~~~~~~~~~~~~~~~~~~~~ — - --- _ - — — 
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— u H < C(k ,r ) p  ~~~~~ f l u 0 H It (2.5) and bounded. Let S be a triangulation of 0 such that0 P -. “ all vertices of 0 are vertices of the triangulation.
We now give the rate of convergence of the p—version
of th. finite element method for this situation.

where r > 0 is arbitrary . For the boundary condition Theorem: Suppose u0, the exact solution to the
‘u • (3u/3n) .,~ can be set to zero, problem (2.1) (2.2) can be written in the form (2 .9 ) ,

Now, a polynomial or degree p h4s N d.gr~g.~ of (2.10) (2.11) and let Up be the finite element ap—
freedom with N ; p2 . Therefore , p t 5 i  and (

~?6 
) has proximation. Then , for It 1

dimension N with N ~ p2 and (2.3)~can be rewritten in 
— + -the fo rm H u 0 — ~~~ 1,12 ~~ C( a)p U ‘.

, E>0, arbitrary (2. 12)

-

— u~H 1 1 2  ~~C(k ,c) N  U u O U k ,120 (2.6) — min(k_ 1,Z y~) (2.13)

On the ocher hand, for the h—version of the fin— It can also be shown that the estimate (2.12) (2.1.3)
it. element method with quasi—uniform mesh we have is the best possible.. Although the considerations which

lead to this estimate are only Lor the model problem.
— < Ch’~ — min ’k—l they apply more generall y to the analysis of the be—

l ’ 0 Uh - 
~~~~~ 

— 
U

0 k,12’ 
- havior of approximations to any function in

‘2 7) re ap.
Thus, in terme of the number of degree s of free—

where q is the degree of the approxima t ing polynomial dom N , the p—version solution of the singularity pro—
used in the elements. Recalling that in this case , blea leads to the estimate
N u h—2 we can rewrite (2 .7)  in the form . 

— +2
— -~~ l u 0 — u~l j < C N > 0 , arbitrary

II U~ — u.~I! 1,0 ~. c ~i 
2 H UQ H 

~~~~ 
(2.8)

u mizt(k— l,2y 1)
This rats of conve rgence is optimal (possibly up to

> 0 ) . Comparing (2 .7)  and (2.8) we see that the whereas-in the h—version we have the estimate
p—ve rsion gives results which are (neglecting >0) 

-not worse than the h—version with quasi—uniform mesh — 4
i~ we comp are the number of degrees of freed om lead— u0 u,~~j 1 < C N
ing to the same rate of convergence., also the cotwet
geoce rate can be much better because in the p—versio n
we do not have the restriction due to the degree of that is, the uniform p—version has twice the order of
the elements as we have in the h—version. Further , convergence of the uniform h—version. Let us remark,
in many practical situat ionS , the facto r 2 in (2.5) however , that when a suitable refinement of the
can be removed , and then the p—version will be super— elements is used in the h—version thea its convergence
ior to the h—version with quasi—uniform mesh, rate is, in general , better than in the case of the

Nore specifically we consider the p—version when p—version with f ixed mash. A general theory for con—
used to solve a singularity problem. Assume tha t the bining the theoretical and practical order advantage s
aolucioa u0 to our model problem (2.1) , (2.2) can be of both the li— and p—versions is not yet fully devel—
written in the form oped.

• A + (2.9) 2.2. Illustrations
t l  In order to illustrate the results of the theorems -

It 1 we present two examples . The first is a simple bar -
with -4C ~ (0) f lH 0 (0) for the boundary condition ‘u u  problem in one dimension and the numerical results-are
and .~rH

t(12) for the boundary condition :‘~ • (au/3m) , based on a computer program wr itten specifica lly for
this problem. The second is a problem in two dimension—

1 1 al linear elasticity involving the analysis of a can—
— a1~~ (r~)f j (U i)C Ii (12) (resp .}j (12)) (2.10) trally cracked panel. Thia problem was solved using

CO~ T-X (COnstraint METhod—e.Xpertmentaj,) a general pur-
pose finite element computer program developed at Wash—

where r4 , ~j are polar coordinates with respect to the ingt on University which implements the p—version of the
vertices of the polygo n 12 and aj are constants , and finite element method.
where

2,2.1. A One Dimensional (bar) Problem. Consider
O i(r) • r~ &~(l1og r11) (2.11) the prob lem: ‘ •~~~~~ 1 2 —  (— 1 ,1)

U” — —q(x) for xc12

with where the (loading) function q(x ) and the (DirichIec)
3g1 ( x) $ p~ boundary conu...ciona will be specified later , The

x ‘~~ + D~ , 0 < x  < ene r gy inner product is
j 

1.1
— 3(u ,v) (u , v)~ J u ’(x) v ’( x)dx

> 0  — 1,2 ,... —l

and ‘si, is * function with ~13, derivatives continuous

u

, ~~~~~~~~~~~~~~~~~~~~~ — -~~--~ .,-r -. - 1,. —
~~
r 

~~~~~~~~~~~~~~~~~ ~~~~~
— 

~~~
‘- — —



I 1’l. in Case 3 a~~~~O
The weak solution u€H~(0) satisfies 

(1) e N  — o 
~~(u.v)1 

• f u ’( x)v ’ (x) dz - J q(x)v(z)dx
— —l

This illustrates the importance of locating the sin—
for all vcH~ (12) gularities at vertices of the finite element mesh in

order to obtain the m~v{~al rate of convergence in the
p—version , as stat ed in the second theorem. In order

Fir *t , we consider convergenc e when 12 is not parti— to illustrate this point further and to compare the
tioned, i.e.  we use onl~r one interval. We choose as rates of convergenc e of the (uniform) h— and p— version s
basis functions l ,x and of the finite element method , we p lot in Figure 4

4i~ (x) — f~~i( t ) d t  i ~ 1. 

-

where P ( t )  is the Legendre polynomial of degree i. -
If we whte -p

I—au (x) .
~~i~~

u(
~

l) +~~~~~u( 1) + ~~~ a2q,~ (x) -

i l

I

~2 :1p > l  - i
Iit follows from the ortho gonality of Leg.ndre poly— a

nomj als that

2i+l a . T l i à  -—
a~ — —j— J’~~(x)0 j (x)dx — l,2 ,...,p

— 

U~ ,uj & b.x )
Also , denotin g the error by e~(x) — u (x)  — up (X) .
it follows that

l i e I~ 
— 

2 -- 2 2
• ~~~~~~ — -

p ~ p z

II E aj~ i (x ) ( I ~~ 

- 

- 

-

,

i p +l

I
• E a~ yj~ ‘ - a 

/

i p+l

If we let U — 2~~;u~ I~~denote the strain energy then __ 1~.
N,,

— • ~~ ~ is tne error in strain energy . ~e ,,~~~ ,, ,,, ,,,, ~,,, , ~~consider two cases: 
—

2du •~IT:?’, q(x) — — ~ ( I 7), It e~ t i ~ using one , two and ,three equal intervals forCase A
the p—version , and I eh I I where we have used the
notation eh (x) • u(x) — U

h (X) . Linear approximations
u(— l) — — u( l ) Z were used on equa~ intervals in the h—version . It is

Itnow-n that leh il a !‘ 0((1/N2 ) I l n  N I for linear .1.—
3/2 aenr~~. and 11 e ~~~1~ • 0(1/N 2) for quadratic end

Cass 3 u (x) • x$ (l—x 2
), higher elements. FIgure 4 shows in the log scale

tha t the square of the energy error in the case of

a 3/a the p—version has an exponen t tha t is practically 4.

q(x )  — — —
~ 

(lxi (l-’x 2 )), u (— l)  — u(l)  — 0 In the h—version the asymptotic range has not yet
dx been reached and the rate is about 1.81 instead of 2 ,

where 71, the number of degrees of freedom ,.. is denoted
by ND!’. The results are sumearized in Figure 5.

The qualitative differenc e between the two cases is
tha t in case A the square root singularity in u’ is
at end points of 12, whereas in case 3 it is in its
interior. It has been shown8 that if N denotes the
number of degrees of freedom (71 p+l) then as N

ciin Case A ~~ — o(.4), ( e ~~;j  — 0  (~)

~ 
., ~ ~~~~

- rc-~ ~~~

- ~~~~~~~~~~~~~~ -~~~~~
-
~~~ 

--- . —
~::: 1.~~

(
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V

, j i the theory predicts that the error in Strain energy
is

- — -. 1 1  
— - - 2 -4v -

~~ - C- - l u u 1 1 -2 ’ Cp - C ?P P
- 

if ye neglect the r in the second theorem and the fac t

~
w -~vuu-. -4 irnv.u —Au :v~~v.u that the crackad panel is not a Lipschitzian domain.

The comparable result ~or the h—version is‘-‘ - C  I, .~~~ ~5, .
~

________________________________ - C N:; ~:: : 
~ 
-

ir ~ -‘wev~cz ~,, •4 •..~‘S1O, ~ eAa t_n~ w1, ~~ ~~~~~~~—e -—‘in ~ue.r e- -.~ -‘ u. .~ aa’I
;

~~~~

-

Cn :ase A :le rate of convergence in the p—version — ~~~~.

I 
rema ins the sane regardless of the numbet of inter— 

-- vals because the singularity Is always at an end— 
- _______________________________________poin t -of an interval. In case S -.rnen th~ singularity A • a a , • a

N is at an end poin t of art interval (i.a. when there are “U ’.
two inte r ’,als) the maximal rate of convergence in the A • v € AST~~~T’ 

~~~~ 5
~CL”3A

p—version is achieved , wherea s when the singularity 
~~~~~~~ 

, 
~~ 
.,,,

~~~~,,, ,, ~~~~,,
‘~2~~~? . n,u u! OJCAn ..~~

is in the interior of an interval (i.e. when these are
either one or three iat~ rvals) the rate of convergence
deteriorates.

2.C.l. A Cantrally Cracked Panel. Consider the
:entrai .-J cracked panel shown in Figure 6.

I n Figure 7 the com~uted strain ener gy rJ,,, (normalized)is plotted again N” and the convergence paths are

______________ _______________

details are given for a centrally cracked panel by
seen to ~e nearly Linear for all p ‘ 4 . Additional

Szabo 9 and by Szabo and Nehta10. ~ 10 comparative

[I
~~~
}

~~ ~~~~~~ 

- plots of convergence in the p— and h—versions arm
-
~ 

- 

presented for the case of an edge—cracked ~~~~~

3. Hierarchic Families~ ‘

~~

‘ L~ -x”i L
£ 0 In order to i lenent the p—version of the finite

element machod , it is necessary to have ava ilable a
- C A
____________ 

family of f inite elements of arbitrary polynomial- degree p. Although suc h families of f inite elementsC , )  ( 3 )  1 : 1  have heart const~~cted (by Kratochvjj. et al ,1-1 for
~‘~ 311i’ tEcrsrr:ms £‘.L”CST 4~S1) 3 ZLE3V(1 

~ example) , we wish to present a new family who.cn
the property that when increasing the degree of t n~E aT PAtL~ •~5CUD 

~~~~~ approximating polynomial f ton p to p40. as much of the
computation as possib le is saved from the pth degree
approximation. This is clearly a desirable property
for efficient computation when using the p-version of
th e finite element method . ~!ore s~ec~fitally , in this
family, basis functions corresponding to an approxi ma—

The displacements have singular behavior in the tion of degree p are a subaet of those corresponding
to an approximatio n of degree p-I. Therefore , theneighborhood of rhe crack tip (by symeetry only a 
stiffness matrix of the elseent of degree p is a sub—quarter of the panel needs to analyzed) in the form matrix of the stif fness matrix of the element of degreer’~3’(~ ) where r ,3 1ar e polar coor din ates with re— p4~l and when increa sing the degree of approximationp5c c to the t in ,  — 

t~~
and T is a smooth function, from p to p-I only the adde d rows and coluan a of theIwo finite element tr gulations were used , the new stiffness matrix have to be computed. Ce call aeight element mesh and the three element mesh shown family poesesiag this prop ert y a hierar chic f amil7.N in Figure 6. In the eight element mesh the polyucn— COMET—X , the current experimental implementation ofial degrees were dist ributed La two ways: uniformly 

the p—version of the finite element method , developedand oon—uniforml~ . In the non—uniform or graded at Washington TJniverstcs~ is based on two hierarchicdistribution the polynomial degrees were greater than families of conforning triangular finite elementsp.3 only in crack tip elements (numbered 1,3,4) and for the an alysis of two dimensiona~ problems in linearthe polynomial degree was held constant at p 3  in the elascicir y. One family enforces C continuity acrossre mote elements (numbered 5,6,3) and the t ransi tion 1 j nt er ,j ement boundaries for problems which requi reelements (number 2 ,7). Fot this prob lem since — solutions in H~y (C) (planar elasticity) , and the other

r~u 
p~~r L~. !t ~3T ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~1-’ 4~~~’.i 

i ._ 1 - ! •:‘
~~

- .~~ .O

-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ,,3 +~ ~~~~~ ~~~~~~~~~~~~~~~~ 
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~
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enfor teO C1 continuity across interelement boundaries, approximation Li(2L — 1) is the basis function for
fo r problems which require solutions in H~(~l) (plate - u(i) i — 1,2 ,3 and ~LjLi÷i is the basis function for
bend ing) . u( i ’)  i • 1,2 ,3. Thus , the basis function for .~ i)

0 changes when increasing the degree of the approxima—
3.1. Hierarchic C Family of Triangular Ilements ting polynomial from linear to quadrat ic. For

hierarchic elements, however , in the linear approxima—
This family consists of complete polynomials tiott Lj  is the basis f unction for u(i)  i — 1, 2 .3 in

of degr ee p ~ 2 defined either in terms of noda.L ~~~~ the linear and quadratic approximations and
va riables or ‘nodeless) basis functions . The nodal (L / 2 ) L jLj+j . is the basis fu nction for u52(~ ’) in the
variables are divided into two classes: external quadratic approximation. Therefore, the ~basic fun c—
nodal variables used to e~iorce global C0 continuity tions for the Linear approximation are unchanged when
and internal nodal variables which are added to tom— increasing the degree of approxi mation to quadratic.
plate the polynomial. of degree p. It follows then tha t the stifirt ese matrix correspond—

Let u denote the approximation to the displace— ing to the linear approximation is a aubmatrix of the
ment field, and let usi denote the deviative of u in stiffness matrix correspondina to the quadratic approx—
direction of side i. The external nodal variables imat ion for the hierarchic family.
for each p > 2 are: u(i), u3~j 

(j t )  j , i’ • 1,2,3, It is also possible to tonstrnct hierarchic hasia
• 2,3,...p where i denotes vertex i, i’ denotes functions which do not correspond to nodal variables.

the midpoint of side i (opposite vertex i ),  and u 5 ~ 
In this case the external nodes used to enforce global

denotes the jth derivative of u in direction of i c° continuity are:
aide i (see Figure 8).

1,1k L2, L3 corresponding to vertices 1,2, 3
respectively

/ 
- L1(-L 2)i , ~~ L3 - L2(-L3)~ , L~L1 -

corresponding to sides 1,2 , 3, respect—

-a A

J,~ .,00.aL ‘~‘~~~ ‘~~~ ~‘ir~~~ — 1 2- ~ IACLM*.E5 ‘geM. ‘ ‘. ‘‘‘ 

The internal basis functions are (j -2) independent- nst ~ ~ t5A5CL. . ,CAnim,ua cu.’esy . polynomials each of which contains factor L1L2 L3(so
that they vanish on the boundary of the triangle),
fat  j  — 3, ..,p (aCe Peano 13,14)

3, 2 .- Hierarchic C~ Family of Triangular Ilements

In this case the situation is more complicated .
1 The hierarchic trian gular C° f amily described above

For each p > 2 , 
~ (p —l ) (p— 2) internal nodal variables enforces global CO continuity (and no more than C0

defined as dertv~tj ves of order j, j • ~~~~~~ evalu— . cortt inuity , even at vertices) . The term Constraint
aced at one vertex, are added to give a complete poly— Method , in C0~~T—X, is in fact derived from the pro—normal of degree p12 • ~~ basis fonctions for these perty that it constrains the approximating solution
external nodal variables expressed in natural (tn — to satisfy the degree of smoothness and no more than
angular) coordinates T j, 1.2, 1.3 (see Peano13, for the degree of smoothness reauired by the form ulation
e3canple, for the definition) are, for vertex 1 and of the problem . In the Lockheed test Problem, (Fig—
side 1 une 1-) art early version of COMET— X called the Cort’-

straint Method was used with trre excellent results
— 1.1 shown in Figures 2 and 3. It is the property that the

constraint method does not enforce more then C1 con—
/ 1. ‘~ L \i tinuity even at the re—entrant corner that contributed
I rr!~-~- )  ((L — 1- ~ — ~ 

).1J to the good results. Although it is oossjble to con—2 3 2 ~ struct a hierarchic C1 triangular family, it was ptoved
- 

if ;. is even by Peano 13, 14, that in order to enforce global C~
(1’) \ continuity and no more than global C~ continuity even

J ~~, at vertices, certain additional constraint equation s
~~ (1,

2 
— L3)N ~-~”~~ if j is odd ~u$t be satisfied. Consici,-— , for example, a vertex of

\ a triangular element e and je t  
~i 

and s2 be coordinates
along the two sides which meet at the vertex (see

~ is the Length of •ide I.. The expressions for Figure 9).
:‘ . , tha& vertices and sides are obtained by cyclic -

~ erm tation.
- order to illustrate the difference between
. - I r : i i :  and hierarchic finite elements, let us

- ,~~~I 
- e two ihen 7-2. For non—hierarchic finite

.--  . ~ re ~o~ai -‘en ables for the Linear approxirea—
- . -

~~ 
, ( 1  • :, 2 , 3 , and for the quadratic

— -is oocsj. variab les u(i’) i • 1,2,3
• eels functions for these nodal van —

- •— .0 - -q ~ioear approximation
- . - a ,...nds :o 3 ( i) ;  in the quadratic

‘-
~~~~~ 

-
~~~~~~ - — ,_ 5_l~~~~~~d~~~~ I ~~~ $- ~mre! ”.’ r—~~ ~ - e : ~~—~rr-~~.~~~~ 

-- ‘-L.’ 
-



(1) A specially devised global assembly process
which reduces the assembly of elements to a stan-
dard finite element assembly procedure 14 ,15,
(2) Creation of super elements (or macro ele-
ments) of arbitrary degree p ‘ 5. In these macro
elements constraints are satisfied within the

the boundary to be freely assembled 14, 13,
(3) Adding newly constructed corrective rational

macro element leaving externa l nodal varia bles on

functions to the basis 13 , 14 , These rational
functions modify the smoothness of the app roxima-
tions at vertices (while preserving Cl continuity)

~1 but permit a free assembly without enforcing
3 ~CAG~4S ~cs ctnSt~A :Nt constraints • A method has been devised for inte-

grating these rational functions over triangles
directly without recourse to numerical quadra—
tive 16,

- - 3.3. Hierarchic C0 Family of aectan gular Elementi

Again we choose as nodal variables the values of

Let (3/3nj) i — 1,2 , be the derivative in the direction 

the approximation u at vertices and higher tan gential
derivatives of degree j ,  2 < j < p at midside nodes.
Fi rst observe tha t the polynomialnormal to side i Then irt order for the approximation

w :o be in Cl at the vertex ’: the following constraint

I 
must hold: 1 2

2 23 w cos ~+ sin ~ Q~(~) - 
$ (~ 

- 1) j  > 2 , even

~ ~ 3, odd
3s~,

2 23 w  3
— —“--i cos 

~~ ~~~~~ 

sin ~~ , (3.1) satisfies

~~

2
Q

1
(~ 1) — 0 Q (i)(0) — 0 i — 2, ...,j—lConstraints of the form (3.1) ~~st be satisfied at all

vertices of the triangulation. (
The hierarchic C1 family of triangular elements Q~~~(O) — 1. 

-

of order p > 5 , uses for external nodal variables
values of w, its first derivatives and its second
tangential and mixed (normal—tangential) derivatives sow, consider the square of side 2 shown in Figure 11.at vertices, and derivatives or order.> 5 at midside

~

odes12 (See Figure 10) for the quinti~
’ hierarchic

C~- element). For each 6 j < p, the j t h  order
tangential derivatives at mid ’ides, and a mixed
order derivative U—l tangential derivatives, one nor—

_ _ _ _ _ _ _ _ _ _ _ _ _

~

T .I}

-ial derivative) at midsides are used to enforce C1

J continuity . ( - A . l ) _____________

laIi* ~f I,e 3lWlacr*,c ~,ec-t’fan 
_________________ I

V — i I tFf rlt * d.r3*at~,. I

9 
~~~

/
/

‘ 
\\~ 

~~~ ~~~~ ~,

fr lt / 35f 1 at, . (.I ,- t )  I - I )

4~ER*RO~ C ~IJ3ORAT C

~.c,,a ~~~ larttat ~~~~~~ 

C SO*J*SE tLD~~~T

u3E -
~ ~a~scs c c~ 

. —

Basis functions Nu(j) corresponding to the nodal:lJ : :l~ :c ~t~~~~~ a 
~~~

‘ 
t I f ~~A -r ,,.a ,ar ~1 aT 3.rl,l e -fv • 

variables u (i) i — 1,2 , 3 ,4 are

~u(1) 
— ~~ (l— ~ )( L—~) 

~u(3) — 1(l+~
) (14-n)

(3.2)

- 
iasis function s for these external n*dal values as well ~u (2 )  • (1+~) ( L — ~ ) N (4) —

r

as for i~cernal nodes all of which contain a factor(L1L2L3) are given in 13, 14, Several procedures are
avai able to enforce the constraint equations (3.1): and it is easily seen that these basi s functions span

I

~A 3 L  L S ~i’3T t~UMa1fl ~~~~~~~~~~~~
~~~~ ~~~ 1’~) L43C 4

~~~w ~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ J V ’W~~~~~+-



the same space as ~~~~~~~ i .e.  they contain the con— —________ ______________________________
pIec e linear polynomial. Also these nodal variables 

-

‘I— l~enforce C0 continuity across sides . Now denoting by a 1a.t — .. ,I fa
( i j)  the midpoint of side i~, basis functions corre—

u~~ (34) , unn (4l) are
sponding to the nodal variabLee u~~ (12), fl* I 4~C , la  U fl n,,U*S.

N (12) — Q2 (
~

) (l n) ~~~~ ( 34) • Q2 (— ~)(l +n) r ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ •~ — •— ~~- -

~~ II •, Li&~. L,&V •,,
(3.3)

1* 110 1 ,  II~ fl J.,.fl~ of -_ S SSIfl S ‘aS, U, ISIS,
‘I’,-

N (23) • (I+~)Q2(n) H (41) — (l— ~)Q 2 (— n) ‘“ -~
‘.-~ 

- -
~~~

‘ - •~ ~~~ 
- ‘,o,’, - ., - ~,k , -

• L ,(10r ¶, - L ,I 1&,. S,, - I~&,S,. • - ~~
and these basis functions added to the ones in (3.2) s —.~a , .  ,,, a. us~.a, ~e e a. ~~~ m
span the same space as ~~~~~~~~~~~~~~~~~~~~~ i.e. ~~~~~~~~ .,, - * ,k, -~,*,°
they contain a complete quadratic and they enforce C°
continuity along sides. The basis functious (3.2) are ,. - ,,, ~~ 

~~~~ .,• ~~~ , , o , ’~o, . . ~~~~ ‘~ Itaken for the hierarchic rectangular & linear element , ~,, ‘-‘i ’~~- •., ~,
‘-~‘,- ~. 

-

and those in (3.2) and (3 ,3 )  for the quadratic element. ‘~~ ~~~
‘

•1~F o r j > 3 ,we have 
—

N (12) • Q (~)(1—q) ~ (34) • Q ( ~~~~~ 
Using the hierarchic rectangular C

0 elements, it
u.j j 

— is possible to construct hierarchic C0 brick elements,
and using both the hierarchic C° rectangular and - C0
triangular elements it is possible to coij~truct hier—N (23) (1+~)Q~

(n) N,1 (4 1) (l”~~ Q~ (~~ ) archic C° triangular prismatic elements.
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
• - Comparative Rates of ii— and p—convergence in the

- - - - - 
Finite Element Analysis of a Model Bar

- — - - • Problem 
—

- , - .  - - - . . The conventional approach to finite element stress~
analysis of a body defined by a. polygonal domain

• 
- - - - - • ,, ~ (in two dimensions) is to triangulate ~ and toseek accuracy by letting h , the maximum diameter

of all e Lemertts in the triangulation, tend to
zero. This approach, called h—convergence, has
been the subject of intensive investigation.
Another approach which is being developed at

- - - - - Washington University is to .Lix the tziang-ulation
of (2 and to let-p, the degree of the complete,

• -~ - ;  

- conformir~’g, approximating polynomial over each
triangle, tend to infinity. Extensive ntunerical

- tests have shown that the second approach, called
-~~ 

p—convergence, is considerably more accurate than
- - - the first, even in problems whose solutions have

- - singularities such as cracks or corners.
- - In order to illustrate the comparative rates of

- convergence , a model (one—dimensional) bar prob—
• lem is studied. Asymptotic analysis leads to ex-

pressions for the rates of convergence in the two
approaches, when the solution possesses a singu—
larity which is known a priori. It is demon-
strated that the order of p—convergence is twice

• - that of h—convergence , provided that the singular~
ity-is located at some node of a finite element.

• 
- • - - • -
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