
7’ A0 A080 056 NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY MON——ETC F/S 112

fl NC !

~~~~~~1;! cR~~~~jL!ER.
c cDMS T OcK.RRFDSSUM 

ML

END
DATE

FILIIED

2-80
Dot

7~1



1.0 ~ ~~ II~
_ _ _  

L L H 2.2

I I ~ 
b.~ IIOI~(

~1~IJ~11111’ .25 HH ’ 4 UIII~
MICROCOPY RESOLUTION TEST CHART

NATIONAL BURFAU OF STAN DARDS - 1963 -A



‘~~~

NA YEN YPREDRSCN FAC
I CONTRACTOR REPORT

CR 1911

. A USE OF TIME SERIES IN
.~~~~~~~~ IMPROV ING WE ATHER FORECASTING

• ~~ 
Pr epar ed By :

Frank B. Faulkner, Craig Comstock , Robert R. Fossum
• U.S. Naval Psst gr aduats Scull

Usstsrs y, Cal If sr ula 13141

116658619 WR 19064

D D C
- NOVEMBER 1919

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

8 0 1  31 005
_____ 

Pre pared For:
_ _ _ _ _ _ _ _ _ _ _ _ _ _  

NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY
MONTEREY, CALIFORNIA 93940

~~~~~~~~~~~ ~~~~~~~~~ - - - _____



TIII LITIII iTii± ~~~~~~~~

H
.

SUALIFI~~ REQAJESTORS MAY OBTAIN ADDITIONAL COPIES

FROM THE DEFENSE TECHNICAL INFOR MATION CENTER.
ALL OTHERS SHOULD APPLY TO THE NATIONAL TECHNICAL
ItfO~~~TION SERVICE. -

r

~ L ~~~— — — ~~~~~~~~~-—• •—~~ — ———~~~~—-~~~ • .•  -— --~~~ .. ~~~~~~~ •.. ~~~



—~~ -~~~~~~-~~~~~~ -~~ 
—--——- -

~ ~~~~~~~ —--~~~~~

UNCLASSIFIED
$tCuN~ty V%.ASS IFICAVI O N OP ~wlS PAGE (117i ø ILa~a Enlt..d) 

_______________________ -

REPORT DOCUMENTATION PACE U1~~~~~~~~~~~~~~~~~~~~~~~ )KN
E iEPO~~T NUMUCA NAVENVPREDRSCHFAC ~á. GOVV ACCESSION NO 3. A LC IPIENVS CATALQ ( N U M O I M

Contractor Report CR 79-07 ( j 
___________________________

4. 7 SssboSsS.) S. TYP OF REPORT 0 PERIOD COVERED

A Use of Time Series in 9 FIna l r
Improving Weather Forecasting. .. 

~~~~~~~~~~~~~~~~~~~~~ R OUT NUMOER

NOA(.) — S. CONTRAcT OR GRANT NuMbER(.)

D./ Faulkner, cra1g/comstock~~Robert R./Fossw ) N66856 WR79064

L P (RFORMI NG ORG A N (Z A TIO N NAUC ANO AQDAESS 1 .  P R OG R AM . PROJ ~~CT . TASK -•

U. S. Naval Postgrad.mt~ sii~;;;; il / PE 62759N. PN WF52
Monterey, CA 93940~,.” NEPRF WU 6.2

1$ .  C ONTROL L ING OFPICE-4AME AND ADDRESS
Comander, Naval Air Systems Coninand No~~L... 1t79~ 1
Department of the Navy UP PAGES
Wash ington, DC 20361 26
14. MONI~ ORINO AGENCY NAME 0 ADDRESS(SS dJil.tonl trom ConftolSInd Of Sic.) IS. SECURITY CLASS. (of lAS. r.port)

Naval Environmental Prediction Research Facility UNCLASSIFIED
Monterey, CA 93940 

~~.. OCCLASSIPI CATI ON/OOWNGRAOINO
SCHEDULE

IS. DISTRISUTION STATEMENT (of (5,1. R.porl)

Approved for public release; distribution unlimited
. 1

t l. DIST RISUTION STATEMENT (of ft. .b.fr.ct .nt. ,.d In Block 30. Sf dHt.,on t ft... R.p.,t)

IS. SUPPLEMENTARY NOT E S - • -

IS. K EY WORDS (C.nilnu. .n v.v. • .ld. St n.c. ..~~ .id ldw, lf p  Op block n~~sb.,)

Time series
• Regression analysis

Weather prediction improvement

• aof ASSiRACT (Conffiw ~n •v ra~ .id. IV n.c... p aid Jd.nlIS~ Op SI..k non.b.v)

1—4’Glven the assumption that weather can be predicted more effectively by
Integrating the dynamic equation(s) than by examining trends, the question
Investigated here is whether time series can be used in the secondary routine
to effect improvement. The method Is described, the relevant equations are
derived , a program using real meteorological data Is made and run, and a measurt
of effectiveness Is given. Limi ted study shows some definite promise

DO 
~~~~ VJ ~JP 

Is OUSCI ETE UNCLASSIFIED

4’O 7 ~ 
.i7 7 SECURITY CLA$SI~~ICATION o’~ TWIS POSI (eon D.la ~~Sa.m

~~~~~~~ — ~~~~~~~~~~~~~~~~~



—

~~ ~~~~~~ ~~~ ~
—

CONTENTS

1. INTRODUCTION . . . . . . . . • . • . . . . 1

2. OUTLINE OF THE PROBLEM . . • • • . . • • . . . 2

3. INTRODUCTORY TIME SERIES, SIMPLIFYING ASSUMPTIONS . . . 3

4. ROUTINE TO DETERMINE THE BEST FILTERED OR
• INITIAL VALUE S FOR PREDICTION. . • . . . . . . . 7

5. TWO SUGG ESTED METHODS FOR IM PROVING PREDICTION
BY THE USE OF A TIME SERIES . . . . . . . . . • 10
5.1 Method 1 • . • . • . . . . . . . . . . 10
5.2 Method 2 . . . . . . . . . . . . . . . 11

6. COMMENTS . . . . . . . . . . . . . . . . 13
• 6.1 Consistency . . . . . . . . . . . . . . 14

6.2 Best Order for the Difference Equation . . . . . 15
6.3 Determining Initial Values . . . . . . . . . 16
6.4 Criteria for Adjusting Terms . . . . . . . . 16
6.5 Crlteria for Improvement . . . . . . . . . 17
6.6 Real Coefficients . . . . . . . . . . . . 18

7. RESULTS . . . . . . . . . . . . . . . . . 18

SYMBOLS: D E F I N I T I O N S , AND PLACES WHERE INTRODUCED . . . . 2 1

REFERENCES . . . . . . . . . * . . . . . . . 2 3

Aoceseion
NTIS GFi~%&I
DDC ThB
Unrnui~unaed
Jti~titication__________

By
_____________________

0 ________________

P~’rt~~bt1tty Codes -

Avail and/or

D7
~ spec1al

____________ — ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~



• •—,- — •- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — •- •- ~~~~~~~~~~~~ .. _,~
_. 

~
- --,-...—.,_ ~~~~~~~~~ • 

~~~~~ 

‘‘
~~~

‘

~

‘‘
~~~~~~!~~ 

~~~~~~~~~~~

1 . INTRODUCTI ON

The purpose of this study is to Investigate a use of time

series in improving weather forecasting.

Le t us cons i der a s impl e mod el . Let us assume t hat the
relevant variab les , or funct i ons , suc h as , say, the 500 mb height
field, can be expressed in terms of a set of orthogonal basis

functions , whose coefficients define the field. There is also an

associated numerical integration program which yields predictions

of this variable in the form of predict ed coefficients . This method

of forecasting Is assumed to be more reliable than any regression

scheme . At regular i ntervals some observations of the variable

are made and the predicted coefficients are then updated , or

corrected .

These corrections to the coefficients in the forecast are

analyzed for trends . The corrections for each (complex) coeffi-

cient of a (complex) ei genfunct ion or basis function are analyzed

separately. The purpose Is to predict the corrections .

The basic approach Is to define a best -fitting difference

equation and a best set of initial conditions , by mi nimizing

weighted sums of squa res of the residuals , and then use the

di fference equation and the Initia l values to predict the correc-

tion. These are used in a secondary routine to improve the forecast.

Testing of the method in the 500 mb field with a simple

non- divergent model due to Bourke (1972) shows ski l l  wi th  some

coefficients .

I
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2. OUTLINE OF THE PROBLEM

- • 

Let us assume that we have some function , or func tions , which
we are representing in terms of an orthonorma l set of basis

functions . In particular , let us consider the 500 mb height

fuflctlon, or perhaps , the stream function , ex pressed on the sur face
of the earth In terms of spherical harmonics . These are expressed

as compl ex trigonometric functions of longitude and Legendre

functions of the sine of the latitude . At time tN the coefficients

of the sph er i ca l ha rmon ics form a vec tor or co l umn ma tr i x A N ; its

components are complex numbers ak N .  k.1, .. ., K, if the series

Is truncated to K terms . The vectors AN . and each of the components

form a time ser ies , or sequence.
The sequence is generated conceptually as follows . Let us

assume that at time tN_ l we have the matrix A N_ i of coefficients

for the analyzed field. This is considered to represent the true

field at that time . We have also an Integration procedure by which

we can generate pred icti ons A N 1 ,N. A N i  N+l ’ ..., for the future

va l ues AN . AN+l. ..., as ma ny as we feel are useful or reliable.

Then at time tN~ 
12 hours later , observations are made . These are

combined with the predictions A N_ i ,N to yield a new analyzed field ,

an d a new set of coef fic ien ts A N* The corrections (changes ,

errors , or d iscre panc ies) ,

Zn • A~ — A n_ l n~ 
n • 2, 3 , ..., N, (2.1)

also define a time series or a sequence. If we coul d in some way

ana l yze thi s sequence , Z2, Z3, .. , ZN. and from it predict

ZN+J . ZN+2. ~~~~~~~ 
2N’m reliably then we could predict ahead m steps

2
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reliably. Our purpose Is to predict more accurately, or more

reliably, and perhaps to extend the range of prediction . We shall

see that there are two ways , at least , that this Improvement migh t

be effected . Both depend on the use of time series as developed

In the next sections .

The Z s  and/or their components fo rm the data for the analysis.
As such they are called observations (not to be confused with

meteorological observations). The terms component and coefficient

are used Interchangeably. Vectors have components and basis

functions have coefficients when they are used in the representation

of another function. The components ak ~~~~ 
A , for examp le, aren

the coefficients in the representation of some meteorological

variable. Basis functions are often called modes, par ticularly In

mechanics .

3. INTRODUCTORY TIME SERIES , SIMPLIFYING ASSUMPTIONS

Let us consider the sequence of corrections , Z~ , n 2, 3, .. .,  N.

The vector Z~., has K complex compo nents . There is one comp lex number

for each of the K complex-valued spherical harmonics that is

used. To save writing, let z~,, rather than Zk n ~ 
denote a typical

coefficient; we will analyze each of these sequences Individually.

Part of the rationale Is that in a linear uncoupled system the

various modes move Independently; in a loosely coupled system we

woul d expect similar behavior. There are other important reasons

which we will take up later. We shall usually consider Zn to be a

pa i r of rea l num bers , a two-by-one matri x

.3



Let us now assume that Zn can be ex presse d as a sum o f two

terms , described bel ow ,
• ~~ + y .  (3.1)

Here is a random variable. Its componen ts each are assume d to
have ex pected va l ue zero and exp ected square ~2, independent of n;

they are also assume d to be uncorrelated. The vector ~ is assumed

to be a solution to a difference equation of the form

• C1x,~_~ + ... + C pX n_ p o n • p + 2, ... , N. (3.2)

The coefficients C1, ... , ~~ are un known two-by-two matrices , and
• the order p Is to be chosen some way. For the present let us take

p • 2, which seems at this time to be a likely value. The C’s are

not constants necessarily, but may vary adaptively with N.

To determine the coeff icients in (3.2) ,  let us choose the C ’ s

to minimize a residual of the fo rm

N p 2
R • 

~~ 
W n(Zn 

- 

~ 
C~ z~ _~ ) (3.3)

where the ~~ are posit ive weight f ictors to be chosen or determined;

we will discuss this later. To minimize R let us di fferentiate with

respect to the elements of the C’s; we get a system of equations of

the fo rm

N N
z w~ (Zn_i Zi;_i. . :::‘ z n...lz P\1(C~~\ a  Z w

n(zn_ l
’
~\z~ (3.4)

\z f l p/

4

• ~ -,~-. -—-~--.“- .-~•. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ ~~~~~~~~~~~~~~~ • • • ~~~



~~-~~~~-~~—--— “--- 
~~~~~~~~~~~~~~~~~~~~_- -  -

, 

-•

~

--

the prIme ( ‘ )  indicates the transpose of a matrix. The terms like

represent two—by—two matrices so that the elements of the

matr ices are themselves ma tr ice s o f or der two .

• Another problem Is the choice of the weigh t factors w~ . For

a time- independent process we should use equal wei ghtings , w h i c h

• sImpl Ifies several relations . However the fundamental relations

may vary rather rapi dly with time sometimes , and these are the very

times that are most crit ical . One way to take account 0f this is

to use exponential weightings in (3 .3) and (3 .4 ) .  After some

starting routi ne we wei gh t each new observation with a uniform

value w and decrease all earlier wei ghtings then by a factor l-w .

We do this as follows . Let be the matri x of coefficients in

• (3.4); it has two-by-two block elements of the form
N

• 
~ N • ~ w z 1z ’_ 4 , i , j= l , ..., p; (3.5)

+2 ~ ~

the right-hand side of (3.4)  has elements 
~ j o N ~ 

When we get the

observat ion Z N. we update 
~1 ,j, N-l by the relat ion

+ ‘ ‘ - ‘~ 36‘11 ,j , N 4i ,j,N— l ‘ N—I N—j ‘4i ,j ,N—l

We may actuall y up date Q by first shifting each block el ement

down and to the ri ght one place, dropping out the last row and the

last column . Then we update the f irst (b lock )  row , using (3 .6) ,

and then the f irst column by symmetry . The weight of an observa-

• t ion from time t n for the coeff ic ients ca lcu la ted at time tN is

• w(l_w)I~
lI ; we see that weightings decrease exponenti i~l1y with time .

5
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The bes t cho ice of w Is ano ther pro bl em . If w is too small

the system Is slow to respond to changes , and if w is too large,

random errors cause excessive errors In the predicted values .

The above procedure for updati ng the coefficients in (3.2) Is

rather efficient , both In terms of storage and computation. The

ma tr i x Q Is a l wa ys singular unti l at least 2p observations have

been made . It Is usually positive definite after that, but it was

some ti mes found to be near singular , especially for the smaller

values of N.

In order to predict the z’s ahead , using (3.2), we also need p

starting or initial values ; we can take these concept ional ly as

estimates of X N i X ,~.1, ... , XN_p+ l . The determination of these is

taken up in the next section; It requires more storage and more

computation than the above.

In the fol lowing sect ion we wi l l  generally consider the case

p • 2.

There may be some mino r discrepancie s In the fi rst Index; for

example , when the a ’s are involved we tend to think of z2 as the

first of the z’s, and later , when treating the z ’s we think of the

first as z1.

6
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4. ROUTINE TO DETERMINE THE BEST FILTERED OR INITIAL VALUES

F3R PREDICTION

Let us assume that we have found the coefficients C~ in the
difference Eq. (3.2). We also need estimates of X

N 
and XN_ l, say

X N~ 
2N-l ’ In order to predict ahead using the difference equation.

We mi ght just use the last two observations , ZN. ZN .l , but these

i n v o l v e  I n d i v i d u a l  r andom errors , and we expect smoothed or

f i l tered values to be more re l iable.  By using a large value for

the wei ghting parameter w we can drive the smoothed val ues close

to the last two observat ions , if we w ish .

Let us resolve the problem as follows . Let us consider

- X (n = 1 , ... , N)

- (C 1x~_ 1 + C2x~_2) • (n = 3, . .., N )

~ z~ - (C1 (C 1 x~~2 + C2x~.3] + C2(C 1 x ,.~_ 3 + C2Xn_ 4 ])

which we may rewrite in the form

• z ,~ — A~ x2 — Bnxi (n = 1 , ... . N); (4.1)

A n and B~ are defi ned by this relation. It is easily verified that

they sa t is fy  the relat ions

* ClA n l  + C2A~~2 n = 1 ,2, ..., N,

A 1 • 0, A 2 • I ,
(4.2)

B~ • C1 B~_ 1 + C2Bn_ 2

B1 I, B 2 = 

0 . 7
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We can simpl i fy the programming somewhat if we define the

matrices

D” = (A ,B )n n (4 .3 )
U (xi, xj)’ • (x 12 x22~ x11

• xjj is the i’th component of X j .  Then D” satisfies Eq. (3.2) and

has the Initial values

• C1 D”~ + c2 (4 4)
• (0 , 1), D2 (1 , 0).

Equation (4.1) now reduces to

= z,,, - D’~U. (4 .5 )

If we knew the four com ponents of U , we could get s ta r t ing  values

XNI X N _ 1 from Eq. (3.2).

= C1 x, 1 1  + C 2x n_ 2 . (4 .6)

a n d  if we select or estimate U in some way we get correspond ing

est imates fo r X N~ 
X N.. l . Of course it would be nicer to determine

these In a more direct way, but there seems to be no way to do

th is.

Now , by assumption, the expected va lue , E y 1 = 0. Hence it

- 
. seems reasonable that t h e  bes t  c h o i c e  for  U is  on e  w h i c h  m i n i m i z e s

a w ei ghted sum o f squares for the est imates of y1, say ,

N N 2
R • z w~y~ = 

~ w~ (D ”U — z~ ) (4. 7)

To effect thi s we di fferentiate with respect to the components of

U; if we call its com ponents u3, the j ‘th part ial der iva t ive  yields

R~ E w~ (d~ ,j9 d
~~ k uk — z 1 ~

) + d~~3
(~ d

~~k
uk —

— 0 ,  8 (4 . 8)

_____  I
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where d
~~k 

are the components D~ . We solve these equations for U,

which defines i1,~2, and from these we get our best estimates ,

xN l ~ 
X~ for starting.

There are several problems . First, the sequence Z n~
n = 1 , 2 ..., N , may be very long, so that computing times and

errors may be significant . Further the observations z~, for small
values of n may not be relevant to today ’s weather. We also need

to recall many observations . These probl ems suggest limiting the

range of  summation in (4.7) to, say, the last ten terms , which we

did.

Another problem needs some explanation. We really just need

XN 1 I  X~ to predict ahead. However we cannot get these directly.

It really does not matter whether we find ~~~ and 
~N’ 

Or

and we get the former from the latter by use of difference

Eq. (3.2). We migh t perhaps try to rewrite the difference

equation, to solve for X n_2 In terms of x~_ 1 and x~ , to avoid

this. However we must invert the matrix C2 to effect this , and

there Is no reason that it cannot be singular , or nearly so ,

randomly.

In the program we have 15 ~‘s actually indexed from 1 to 15.

The f i rs t  10 of these are the 10 appr oximants to the last  10

observations ZN_ g~ 
..., ZN; the last five are predictions for the

fl 

future value -s ‘N+l ’ ... , ZN.15.

9
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5. TWO SUGGESTED MITNOOS FOR IMPROVING PREDICTION BY THE USE- OF
A TIME SE RIES

There are two particular methods whi ch seem feasible for
improving the forecast. Each of these seems feasible , but each
poses some problems .

5.1 Method 1

- Let us consider again the matric es for the coefficients in the

analyzed fiel ds , A,~, n=l , ..., N; we wish to impro v e the  pr ed i c t i o ns

of these. Let us assume that we have generated and stored the

following. First , we have store d the last ten corrections

... , ZN . We have also stored , for each term in the Z’s ,

the matrix Q which defines the coeff ic ients C,~ in the difference
equation. -

The routine is the following for each component of Z. As

soon as the new va l ue o f Z , is obtained , we store It and

discard the old ZN9 . Then we update the matrix Q and solve for

the coefficients of the di fference equation C~ as described In

Section 3. Then we solve for the init ial val ues 
~
N 1 ,  ~~ 

as
described in Sect .  4, and finally we predict ahead to get
X
N+l~~ 

xN+2, 
~~~~~~~~ ~~~~ as many as we wish. These define the

: i’s , or X ’ s.

~~~~~~
, Next let us use the dynamic equation and integrate ah ea d one 

-

time step, to get an estimate A N N+l, of A N+l. Then l.t , say ,

A N N +1
and

+ 
~N+1• 

(5.1)

10 
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We g.t successive values in a sImi lar way . When we have

we Integrat, to obtaIn AN,N+3+1. a first estimate of

Then we add ~~~~~~ to get ~~

• 
A N ,N+j+1 ~~~N , N+j+1 1 

~~~~~~ 
(5.2)

• Wi th the initial value A N N  - A N~ 
the sequenc e of predictIons ,

or forecas ts , Is defined .
• 

- i i

In the initial part of the study , a simpl e Integration

routi ne was used for predicting, A N N.,M~ 
a model using the non-

divergent barotropic vorticity equation. When this model is used ,

the method of correctIng above , alternately adj usti ng and

integrating in feasible and practical

When a more accurate and complicated weather prediction

model is used , serious di fficulties arise with this method .

Restarting a time Integration after rather arbitrary adjustments

to one or more variables may generate spurious gravity waves which

degrade the prediction and offset the adjustments . To eliminate

this di fficul ty a second method may be used , in which a separate

series Is generated for each i nterval of prediction. The appro—

• priate term Is used for each Interval and the adjusted functions

• are never integrated .

5.2 Method 2

There Is another method which gets around the above problem .

at the expense of inc reasing the storage and computation by a

factor of roughly N, if we use N di fferent Intervals of prediction.

Tha t Is , If we wish , say to adjust the 12- , 24- , and 36—hour

fo recasts we must , gene rate three time series .

11
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Now assume that we wish to predict ahead N steps . At the

time t~ we will have the predictions based on i ntegration ,

AN ,N+1 , ~~~~~~~ 
A~ ,p~+1~ • {A N,N+m }m_ l ,M (5 .3)

For the corrections we will save N sequences

— A ,,~ 
— A n_m ,n i m — 1, ... , N, n m+l , ... , N.

(5.4)

Let us consider any particular value of m. To generate the data

for the time series we must store each time the uncorrected

H predictions A . Then at time ~ +m w e w i l l o b t a i n  a n d  s tore

Z:+m from (5.4). 
m n

We will thus have N time series to be ana lyzed . Each is

analyzed as discussed earlier. In this case however we will use

a singl e prediction from each one: from Z~ we generate the single

correction for m time steps ahead. If we denote the corrections

by X the modified values will be

A n,n+m * A n ,n+m + X (5 .5)

This , method has the advantage that the modi fied terms are not

integrated. It has the disadvantage that it requires one time

ser ies for eac h va l ue of m use d, which leads to larger storage

and computational requirements .

I

12 
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6. COMMENTS

The problem here di ffers froa the most common applications of

time series . We ha v e a rather small amount of Information w)IIch

tends to be masked by a large random element . From this we are

trying to~predIct transients , or trends , for relatively short

periods , perhaps one to ten time steps . We are not dIrectly

interested in the smoothed values , since we are not concerned with

what has happened, except as our ability to fit it refl ects on our

ability to predict. Our feeling is that the variables we are

predicting may change rather rapidly so that the weather two weeks

ago is of little interest; even the equation which governs the

behavior may wel l have changed . We cannot really make use of

long-term observations , as for a stable system , which allow more

accurate predictions . 
-

We are trying to predict the short- range behavior of a part

of a non-li-near system of high order by solutions to a linear

system of low order. Whether we try to do this by a di fference

equation or by -Taylor series depends on the type of data, and the

nature of the expected solutions . In our case both the form of

the data and the anticipated periodic properties of the expected

solutions suggest differe nce equations .

The papers by Jones (1963), (1964) particularly, and (1965)
A r

suggested the general problem here . These treat mo re the

descriptive and the long-range forecasting problem. The series

are considered to be stationary in the sense that all observations

are weighted equally; several formulas are then simpl i fied.

13 
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The re ferences found most useful in this study were Whi tt le

(1963) and Gelb (1974). Recent developments in the use of spherical

harmonics in meteorology (see GARP , 1974) and Fas t Four ier Trans forms
make the methods appear feasible. - - -

The method is clearly that of least squares . It is also a

linear regression method; all of the equations to be solved are

l inear. If we were to use , sa y, our estimates 
~N l ’  XN In  a

routine to try to improve the Ct s, then it woul d be non linear.

The solutions to the di fference equations are basically complex

— e x p o n e n t i a l s , that is , a combination of real exponentials and

trigonometric functions .

There are a number of points that shoul d be discussed or
• clari fied .

6.1 Consistency

It should be pointed out that even for a stationary system

the solutions are not consistent , as follows . Let us assume that

we have a sOlution to a difference Eq. (3.1) to which random

uncorre la ted terms y~, each with expected value 0 and expected

square 0 2 is added . Then Eq. (3.4) will not yield the desIred

coefficients In (3.2). The expected elements of the matrix of

coefficients Q in (3.5), from (3.4) will be

N

~i,j ,N — E W n(X n_ i x~ _j  + ~
2 12) i ,i—l ...

~~ ~; (6. 1)

here 12 is the second-order identi ty matri x , and 6 is the Kronecker

6, (—1 when I— j and 0 when 1$j). That is , th e Q ma tr ices have an

ex tra’ term ~2 on the main diagonal . This suggests that if we have

a measure 0~ ~
2 we coul d subtract it from the elements on the main

14
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diagona l of Q, I n  a sort of  negative ridge -regression scheme .

This is very risky procedure however , since it drives the ma trix

of coefficien ts toward singularity . Difficul ty -ha s been
encountered several times because this ma trix Q was singular , and

the dang er Is aggravated when exponential wei ghting with a larg e
• 

‘ decay rate is used.
‘~~~ • fi

6.2 Best Order for the Difference Equation

We have suggested that we use a second-order d i f f e rence

equation , p - 2. Some of the reasons follow . Let us consIder a

system which is time independent , and assume that have found the

correct order p and the true coefficients C in the difference

equations . In this case the residuals yield an estimate for ~
2.

Now consider the residual

N p 2
R • Z w {x + y - z C 4 (x  + y ~

)}
+1 n n n n ,

• E w~ (y~ — ~ Cjin.j)
2 

~

since the x ’s satisfy (3.2). The expected val ue of the residual

is then

E (R )  • (z w~) (2 + £ C
~~~k j ) ~

2,

where the last term in the parenthese denotes the sum of the

squares of all of the components of all of the C’s.

Now if we try to fit the solutions to a second-order system

by a third-order difference equation, in the absence  of noise , the

matrix of coefficients Is singul ar, since the solutions satisfy

ma ny third-or der di fference equations . If we have a little noise

lb
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we may have a near-singular matrix and have large values for the

ci ,J,k. in this case we get a large expected value In (6.1) for

the residual . Limited numerical checks make the second—order

equation appear satisfactory .

6.3 Determining Initial Values

There was no particular reason for choosing ten values to fit

when we determine the starting values for prediction. It was fel t

that six woul d be the smallest number to be considered , that fewer

woul d make the methods vulnerable to random errors in the last

terms . Many more than ten could cause roundoff errors .

6.4 Criteria for Adjusting Terms

We do not expect to adjust or correct all of the coefficients.

For some the errors may be too small to warrant the time and
- • 

trouble. Other coefficients may contain such random el ements and

change so unpredictably that trends are ef fect ively obscured. The

decision to adjust or correct will probably depend on an analysis

of similar sequences in the past. There are two basic ways to do

this , one based on a long sequence of past data (that is, on

climatology), and the other on recent data (corresponding to recent

weather).

We ma y ana ly ze a lon g se q uence for a coefficient , perhaps over

a period of years , and from this make a decision , beforehand

always to correct , or never , in the program.

An alternate way is to see how well the smoothed values fit

the-last ten corrections . We generate these values naturally in

determining -the starting values for predict ion , so this entails

li ttle computation. We may consider, for exam ple , the ratio

16
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10 2 10
- ~~~~~ 1.25 z w fl(-ZN.1o+fl — J~~ ) /~ WnZ~_iO+n

If this Is much less than one we have fi tted the past ten val ues

wel l , and if it exceeds one we have no skill i n  f it t i n g  the

observations . The factor 1.25 adjusts for the fact that we coul d

fit two terms exactly with the initial conditions . We mi ght

correct or not accordingl y as this number wa.s below or above some

criterion, say , .75. The philos ophy is that If we c~n fit a

sequence of observa tions we ll , then we can predic t wel l . (More

logical is the converse;if we cannot fit the observed values, then

we canno t predict well.) It is probably not worth while to use

this criterion unless we usually correct.

6.5 Criteria for Improvement

In the~numer1cal study we used two princ i pal criteria for

improvement. Both of these compared In some way the magnItude of

the errors in prediction with adjustment with the errors generated

without the adjustment. In the first criterion , the error in the

predicted values(s) was compared with the m s  value of the last

ten corrections (without adjustment). This figure was calculated

as the predictions were under way. For the second criterion, a

- long sequence of adjustments were calculated . Then the m s  values

of the errors In prediction after adjustment was compared with the

rms va lue of  the error in prediction without adjustment~

£IZ n — ~~~f
2

/ E (z ~~J
2 ;

the range of summation of n is over each term for which a correc-

tion to z was made . These measures are easily made in the machine ,

and they define a simple norm for the erro r relation.

17 
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I t Is not clear these norms are good ones from a me teo ro l o gi ca l

point of view . Very likely the ultimate test will rest on maps and

criteria fOr judging them . 
-

6.6 Real Coefficients

Most of the coefficients are complex. The one associated with

the modes that are Independent of longi tude (meridianal) are real

an d hence one d imens ional . The rou ti nes deve loped  then  i n v o l v e

scalar  equa ti ons , rather than two-dimensional vectors. The

corresponding spherical harmon ics are the Legendre polynomials,

the simplest of the Legendre functions .

7. RESULTS

The procedure for analyzing the time series was checked on
several sets of mad e-up data , and on two coefficients a2 and a4
(o f P~ an d P~), using a difference equation of second order, p - 2.
For data made up of solutions to a difference equation , with

random noise added , the solution could be recovered if the noise

was not too large, but the routine did not perform very well when

the energy in the noise (m s value) was larger than in the solution.

For meteorological data, on a string of 60 paIrs of correc-

tions , the predictions x11 to x55 led to a definite improvement for

one coefficient. The best value for the weighting w of the new

v a l u e s  seemed rather small: the values .025, .05 and .1 gave

similar resul ts and were better than larger values . The numbers

below were decermi ned as follows . We considered the coefficient

of P~. A set of 10 data points were used at the start to get

coefficients for the best difference equation and the initial

18
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values . Five values were predicted , corresponding to the 12-hour

correc ti on to be ma de in 12 hours , 24 hours , ..., 60 hours . The

error In predicting thes. was then calculated and normalized by

dividing by the rms of the 10 origInal data . Then the time Index

was advance d by~one and the operation repeated .

The num bers i n row one are th e rms va l ue s o f a~ .,1 - a n,n+l ,

normalIzed by the m s  val ues of z,~_ 9 ,  Z n_8~ 
Z~~• The numbers

In row m denote the rms value of an+m - a n+m_l n+m ’ n o r m a l i z e d  by

the rms value of z~_ 9, ... , z,~. Each is then a correction to be

applied after integrating one time step . Each entry comes from

the sum of 46 terms .

No. of
Time Steps Weight w .025 .05 .1 .2 .4

1 .6239 .6257 .61 31 .6404 .81 38
2 .6370 .6401 .6312 .6629 .8640
3 .6670 .6751 .6834 .7599 1 .3095
4 .6573 .6698 .6960 .8314 1 .5523
5 .6513 .6636 .6880 .8496 1 .9109

There are several interesting points about the data . Fi rst,

the results from the smal l values of w , from .025 to .1 are all

compa rable. This indicates a stabl e trend: when w = .025 the

first of the 10 data points had a weighting almost .8 of the last;

they are weighted nearly equally. For w • .10 the relative c
weighti ng is about .39. A surprising feature is that all five of

the prediction s are so similar. This is further indication of a I 

-
•

stable trend, a large “ran dom ” el emen t, and a satisfactory value

of p, and suggests longer predictions are feasible.

‘l”
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The corrections to the fourth coefficient were not predicted

successfully; the error in the predicted values was consistentl y

a little large than the corrections . However various features of

the solutions are quite similar to the other solutions ; the

smaller values of w give better predictions and all f ive predicted

values are similar In s ize ,  with later predictions often anoma lously

having smaller error than the first.
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SYMBOLS: DEFINITIONS , AND PLACES WHERE INTRODUCED

Section 2

t,~, t~ time N is usuall y associated with the last
or next-to- last observat ion.

A n the matri x , or vector , of coefficients for
the analyzed field at time tn •

ak ,n the k’th el ement of A,1-, k—i , ... , K. Most
of the ak,fl 

are com pl ex num be rs ~nd are
treated like two-dimensional -sectors .

K the number of spherical harmonics used to
represent a function .

afl(a k,fl
) a typical element of ~~ written without

index k to save wr i t ing .

A the va lue predicted for A at time t .Ill “

Zna&n~
A n_ l ,~~ 

This represents the discre pancy between the
analyzed field at t,~ and the value predicted
for It at time tn_ i . Also called a correction .

Section 3

a typical element of Z n•
- the com ponent of z,~ that is assumed to be

rand om . -

X n the component of Zn that  i s  a s s u m e d  to s a t i s fy

• a difference equation (see be low ) .

• C~ two by two matr ices in the difference equation
= ClX n_ l +~~~ • •+  ~~~~~

• R wei ghted sum of residual errors.

w wei ghting of new terms .

w~ the weight ing of term assoc ia ted  w i th  t ,~, at
ti me N>n;w decreases wi th  N for a f ixed
value of n:w~ — w ( l -w )  ‘~.

2 1
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Section 3 (continued)

a best approx imation for x~,, made at some

• definite time tN. (It mi ght also have been
desi gnated by Xk N
the vector ,  or matr ix , of 

~n ’
~~

•

Section 4

A~ B~ matr ices defined in Eq. (4 . 2 ) ,  used in
fi nding x n

1 s.

D~ — (A n~
Bn) (see Eqs . ( 4 . 3 ) ,  (4 . 4) ).

Xjj the I ‘th component of I ,j1 2.

U • (x 12 x22,x11 ,x12 ) ’

Section 5

A N, N+m an optimal predictor for A N+m~ 
made at tN •

A N ,N+m a temporary  est i ma te of ~~~~~~~ used  i n

obtai ning A N,N +m •
• Zm _ A  - An n n-m ,n

z~ typical elements of Z~~.

R a ge neral symbol for a quadrat ic residual
to be minimized .

22
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