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| 4 INTRODUCTION

The purpose of this study is to investigate a use of time
series in improving weather forecasting.

Let us consider a simple model. Let us assume that the
relevant variables, or functions, such as, say, the 500 mb height | !
field, can be expressed in terms of a set of orthogonal basis |

functions, whose coefficients define the field. There is also an

associated numerical integration program which yields predictions

of this variable in the form of predicted coefficients. This method
of forecasting is assumed to be more reliable than any regression
scheme. At regular intervals some observations of the variable

are made and the predicted coefficients are then updated, or
corrected.

These corrections to the coefficients in the forecast are
analyzed forvtrends. The corrections for each (complex) coeffi-
cient of a (complex) eigenfunction or basis function are analyzed
separately. The purpose is to predict the corrections.

The basic approach is to define a best-fitting di fference
equation and a best set of initial conditions, by minimizing
weighted sums of squares of the residuals, and then use the
difference equation and the initial values to predict the correc-
tion. These are used in a secondary routine to improve the forecast.

Testing of the method in the 500 mb field with a simple

non-divergent model due to Bourke (1972) shows skill with some

coefficients.




‘errors, or discrepancies),

2. OUTLINE OF THE PROBLEM

Let Js assume that we have some function, or functions. which

‘*“~*»-um“_~f“__iJj

we are representing in terms of an orthonormal set of basis
functions. In particular, Tet us consider the 500 mb height .
function, or perhaps, the streiu function, expressed on the surface
of the earth in terms of sbhcrical harmonics. These are expressed
as complex trigonometric functions of longitude and Legendre
functions of the sine of the latitude. At time ty the coefficients
of the Spherical harmonics form a vector or column matrix AN; its
components are complex numbers 3 N° k=1, ..., K, if the series
is truncated to K terms. The vectors A”, and each of the components
a N form a time series, or sequence.

The sequence is generated conceptually as follows. Let us

assume that at time t, , we have the matrix A, , of coefficients

_for'the'analyted field. This fs considered to represent the true

field at that time. We have also an integration procedure by which
we can generate predictions AN-I.N’ AN-I,N+I’ «esy for the future é
values A”. A”+1. S as many as we feel are useful or reliable. |
Then at time tys 12 hours later, observations are made. These are
combined with the predictions AN-I.N toyifeld a new analyzed field,

and a new set of coefficients A . The corrections (changes,

Zn s An - A".‘ .np

also define a time series or a sequence. If we could in some way

ne=2,3, ..., N, (2.1)

analyze this sequence, 22. 23. vop Z", and from it predict

Z“+1. Zu+2. vine z”+. reliably then we could predict ahead m steps




reliably. Our purpose is to predict more accurately, or more
.reliably. and perhaps to extend the range of prediction. We shall
sep that there are two ways, at least, that this improvement might
be effected. Both depend on the use of time series as developed

in the next sections. 5

The 2's and/or their'conponents form the data for the analysis.
As such they are called observations (not to be confused with
meteorological 6bservat10ns). The terms component and coefficient
are used interchangeably. Vectors have components and basis
functions have coefficients when they are used in the representation
of another function. The components 'k.n of An' for example, are
the coefficients in the representation of some meteorological
variable. Basis functions are often called modes, particularly in

mechanics.

3. INTRODUCTORY TIME SERIES, SIMPLIFYING ASSUMPTIONS

Let us consider the sequence of corrections, Zn' s 3 s N
The vector Zn has K complex components. There is one complex number
Zy.n for each of the K complex-valued spherical harmonics that is
usedf, To save writing, let Z s rather than zk,n' denote a typical

coefficient; we will analyze each of these sequences individually. j

Part of the ratfonale is that in a linear uncoupled system the
varioqs nodes"pOVQ 1ndependqntly; fn a loosely coupled system we
would expect s%nfian behavior. ‘fhere are other important reasons
which we will take up later. We shall usually consider z to be a

pair of real numbers, a two-by-one matrix.
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Let ‘us now assume that zn can be expressed as a sum of two

terms, described below,
AR RS X (3.1)

Here &n 1s a random variable. Its conponehts each are assumed to
have expected value zero and expected square az. independent of n;
they are also assumed to be uncorrelated. The vector Xn is assumed
to be a solution to a difference equation of the form

Xp = €%,y + ... +Cx n=p+2, ..., N\. (3.2)

pn-p’
The coefficients C‘. o cp are unknown two-by-two matrices, and
the order p 1s to be chosen some way. For the present let us take
p = 2, which seems at this time to be a 1ikely value. The C's are
not constants necessarily, but may vary adaptively with N.
To determine the coefficients in (3.2), let us choose the C's
to minimize a residual of the form
] N P 2
R =3 i wn(zn - % Cjzn_J) ; (3.3)
where the w, are positive weight factors to be chosen or determined;
we will discuss this later. To minimize R let us differentiate with

respect to the elements of the C's; we get a system of equations of

the form
N N '
.z "n z"-‘zn.l’ LR Z"_]ln-p cnl - z “n Zn_] Zn
coe eoe oo (3.‘)
(] [} ]
zn-pzn-l’ veonh zn-pzn-p Cp zn-p
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the prime (') indicates the transpose of a matrix. The terms like

n-lz;-p represent two-by-two matrices so that the elements of the

matrices are themselves matrices of order two.

Another problem {is the choice of the weight factors w.. For
a time-independent process we should use equal weightings, which
simplifies several relations. However the fundamental relations
may vary rather rapidly with time sometimes, and these are the very
fines that are most critical. One way to take account of this is
to use exponential weightings in (3.3) and (3.4). After some
starting routine we weight each new observation with a uniform
value w and decrease all earlier weightings then by a factor 1-w.

We do this as follows. Let QN be the matrix of coefficients in

(3.4); it has two-by-two block elements of the form

s " o WaZo qZpoge 1371 oo, ps (3.5)

the right-hand side of (3.4) has elements Q1 0.N° When we get the
observation Zy, we update Qi,j,N-] by the relation

IR L I R AL L AL NI S R (3.6)

We may actually update Q by first shifting each block element
down and to the right one place, dropping out the last row and the
last column. Then we update the first (block) row, using (3.6),
and then the first column by symmetry. The weight of an observa-
tion from time t, for the coefficients calculated at time ty is

w(l-w)"'"; we see that weightings decrease exponentiilly with time.

T R e T 0 U O P AR T i i AT b R T T T T




The bcit choice of w is another problem. If w is too small

?thc system s slow to respond to changes, and if w is too large,
; random errors cause excessive errors in the predicted values.
The abo#e procédure for updating the coefficients in (3.2) is
rather efficient, both fn terms of storage and computation. The

matrix Q 1s always singular until at least 2p observations have

been made. It is usually positive definite after that, but it was
sometimes found to be near singular, especially for the smaller
values of N.

In order to predict the 2's ahead, using:(3.2), we also need p
starting or initial values; we can take these conceptionally as
estimates of xy, x| 15 ... XN-p+1° The determination of these is
taken up in the next section; it requires more storage and more
computation than the above.

In the following section we will generally consider the case
p = 2.

There may be some minor discrepancies in the first index; for
example, when the a's are involved we tend to think of z, as the
first of the 2's, and later, when treating the z's we think of the

first as zZy.




4. ROUTINE TO DETERMINE THE BEST FILTERED OR INITIAL VALUES
FOR PREDICTION

Let us assume that we have found the coefficients cj in the
difference Eq. (3.2). We also need estimates of Xy and x, ., say

i“. RN-]. in order to predict ahead using the difference equation.

We might just use the last two observations, z,, z, ,, but these
involve individual random errors, and we expect smoothed or
filtered values to be more reliable. By using a large value for
the weighting parameter w we can drive the smoothed values close
to the last two observations, if we wish.

Let us resolve the problem as follows. Let us consider

¥ " 2, = X0 =3, i B
- ln 0 (C]Xn_] + czxn_z) . (n . 3, e s oy N)
@ =z, - (LG x5 + Coxp 3] + ColCyxp 3 + Coxp o)
which we may rewrite in the form
o Y A X, - B Xy e i34 o AYs (4.1)

An and B" are defined by this relation. It is easily verified that

they satisfy the relations

; An = C]An_] + CZAn-Z o s A4 24i A oo i Ml

; Ay =0, A, =1, 1
(4.2)

o g e GRS

|
B‘ =1, 32 =0. g
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We can simplify the programming somewhat if we define the

matrices

p" = (A_,B.)
t e (4.3)

B e s mphinoe daw v o gt 08y 18 X910

Xi3 is the i'th component of Xy Then D" satisfies Eq. (3.2) and

has the initial values

0" S et s gt
(4.4)
o' = (0, 1), 0% = (1, 0).
Equation (4.1) now reduces to
n
s g L SR D'U. (4.5)

If we knew the four components of U, we could get starting values
iN. iN_, from Eq. (3.2).
X, = Cyxo 1 *+ Cox 5, (4.6)

and if we select or estimate U in some way we get corresponding
estimates for xy, Xy ;. Of course it would be nicer to determine
these in a more direct way, but there seems to be no way to do
this.

Now, by assumption, the expected value, E e 0. Hence it
seems reasonable that the best choice for U is one which minimizes
a weighted sum of squares for the estimates of Yi» say,

1 N N 2

2 1 n
R=zEwy =3° wn(D v-z) (4.7)

N

To effect this we differentiate with respect to the components of

U; if we call its components uj, the j'th partial derivative yields

N 4 4
n n n n %
Ry ®: & "n[dl,j(§ dy kY - Z1,a) ¢t dz.J(f dy WU - Z2,p)]

- 0, s (4.8)




where dg.k are the components 0. We solve these equations for U,

Preamiiin i bpiei

which defines il’iz' and from these we get our best estimates,
iu_], xy for starting. E

There are several problems. First, the sequence L

n=1,2 ..., N, may be very long, so that computing times and f

errors may be significant. Further the observations z, for small

values of n may not be relevant to today's weather. We also need

W AT ST

to recall many observations. These problems suggest 1imiting the
range of summation in (4.7) to, say, the last ten terms, which we
did.

Another problem needs some explanation. We really just need
iN-I’ i“ to predict ahead. However we cannot get these directly.
It really does not matter whether we find X, , and X, or %, o
and iN_B; we get the former from the latter by use of difference

Eq. (3.2). We might perhaps try to rewrite the difference

equation, to solve for x _, in terms of x_ _, and x_, to avoid
this. However we must invert the matrix C, to effect this, and
there is no reason that it cannot be singular, or nearly so,
randomly.

In the program we have 15 X's actually indexed from 1 to 15.

The first 10 of these are the 10 approximants to the last 10

observations zy g, ..., Zy; the last five are predictions for the

future values zN+], A zN+5.

Lkl e ¢ ar il
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5. THO SUGGESTED METHODS FOR IMPROVING PREDICTION BY THE USE-OF
A TIME SERIES

There are two particular methods which seem feasible for
fmproving the forecast. Each of these seems feasible, but each
poses some problems.
5.1 Method 1
b Let us consider again the matrices for the coefficients in the
analyzed fields, An. n=l1, ..., N; we wish to improve the predictions
of these. Let us assume that we have generated and stored the
following. First, we have stored the last ten corrections

z"-gg e o o 9 ZN.
the matrix Q which defines the coefficients Cj in the difference

We have also stored, for each term in the l's,

equation.

The routine is the following for each companent of Z. As
soon as the new value of Z, Zy» is obtained, we store it and
discard the old ZN-9‘ Then we update the matrix Q and solve for
the coefficients of the difference equation Cj as described in
Section 3. Then we solve for the initial values XN-1° XpN» 2S
described in Sect. 4, and finally we predict ahead to get
XN41° XN420 oo 2"+". as many as we wish. These define the
X's, or X's.

<. Next let us wuse the dynamic equation and integrate ahead one

time step, to get an estimate AN.N+I' of AN+I‘ Then let, say,

Anoner = Anonere

and

Pd

Aner = Ayt * Xya e (5.1)

10
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We get successive values in a similar way. When we have i' N+j
we integrate to obtain A"'+j+‘. a first estimate of A."*j4'.
Then we add XN+J+,. to get

AN.N+3+I ;. Aﬂ,n+j+l . xn+j+|- (5.2)

Hi;h the initial value,i”'" = A”. the sequence of predictions,
or forecasts, is defined.
iln the 1ni£ial part of the study, a simple integration

routine was used for predicting, A' NeN® @ model using the non-

divergent barotropic vorticity equation. When this model is used,

the method qf correcting above, alternately adjusting and
integrating in feasible and practical.

" When a more accurate and complicated weather prediction
model is used, serious difficulties arise with this method.
Restartihg'a time integration after rather arbitrary adjustments
to one or more variables may generate spurious gravity waves which
degrade the prediction and offset the adjustments. To eliminate
this difficulty a second method may be used, in which a separate
series is generated for each interval of prediction. The appro-
priate term is used for each interval and the adjusted functions i
are never integrated. |
5.2 Method 2

There is another method which gets around the above problem, |
at the expense of increasing the storage and computation by a
factor of roughly M, if we use M different intervals of prediction.
That is, i1f we wish, say to adjust the 12-, 24-, and 36-hour

forecasts we must, generate three time serfes.

n
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Now assume that we wish to predict ahead M steps. At the

time t“ we will have the predictions based on integration,

ANer? ooo0 Ay nem = AN Nemdm=t N (5.3)

For the corrections we will save M sequences Z=

" . A, - A

a m=1, ..., M, n = m+l, AT [

n-m,n’
: (5.4)

Let us consider any particular value of m. To generate the data
for the time series we must store each time the uncorrected

predictions An Then at time tn+m we will obtain and store

,n+tm’
20, from (5.4).

We will thus have M time series to be analyzed. Each is
analyzed as discussed earlier. In this case however we will use
a singlé prediction from each one: from Zg we generate the single
correction for m time steps ahead. If we denote the corrections

by i: the modified values will be

2 m
An,n-m - An.n+u % xn (5‘5)

This method has the advantage that the modified terms are not
integrated. It has the disadvantage that it requires one time
series for each value of m used, which 1eads to larger storage

and computational requirements.

12




6. COMMENTS

The problem here differs from the most common applications of
time series. We have a rather small amount of information which
tends to be masked by a large random element. From this we are
trying to predict transients, or trends, for relatively short
periods, perhaps one to ten time steps. We are not directly
interested in the smoothed values, since we are not concerned with
what has happened, except as our ability to fit it reflects on our
ability to predict. Our feeling is that the variables we are
predicting may change rather rapidly so that the weather two weeks
ago is of 1ittle interest; even the equation which governs the
behavior may well have changed. We cannot really make use of
long-term observations, as for a stable system, which allow more
accurate predictions.

We are trying to predict the short-range behavior of a part
of a non-linear system of high order by solutions to a linear
system of low order. Whether we try to do this by a difference
equation or by Taylor series depends on the type of data, and the
nature of the expected solutions. In our case both the form of
the data and the anticipated periodic properties of the expected
solutions suggest difference equations.

The papers by Jones (1963), (1964) particularly, and (1965)
suggested the general problem here. These treat more the
descriptive and the long-range forecasting problem. The series
are considered to be stationary in the sense that all observations

are weighted equally; several formulas are then simplified.

13
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The references found most useful in this study were Whittle
(1963) and Gelb (1974). Recent developments in the use of spherical
harmonics 1n meteorology (see GARP, 1974) and Fast Fourier Transforms
make the methods appear feasible.

The method 1s clearly that of least squares. It is also a
linear regression method; all of the equations to be solved are
linear. If we were to use, say, our estimates iN_1. iu in a
routine to try to improve the C's, then it would be non linear.

The solutions to the difference equations are basically complex
exponentials, that is, a combination of real exponentials and
trigonometric functions.

There are a number of points that should be discussed or
clarified.

6.1 Consistency

It should be pointed out that even for a stationary system
the solutions are not consistent, as follows. Let us assume that
we have a solution to a difference Eq. (3.1) to which random
uncorrelated terms Yo' each with expected value 0 and expected
square 02 is added. Then Eq. (3.4) will not yield the desired
coefficients in (3.2). The expected elements of the matrix of

coefficients Q in (3.5), from (3.4) will be

N : 2

Qg8 = E Walxpog xp g + 845 0% I5) 1,3=1, ... ps  (6.1)

here 12 is the second-order identity matrix, and § is the Kronecker

§, (=1 when 1=j and 0 when 1£j). That is, the Q matrices have an

2

extra term ¢° on the main diagonal. This suggests that if we have

2

a measure of ¢° we could subtract it from the elements on the main

14




diagonql qf Q, in a sort of negative ridge-regression scheme.

This 1is very risky procedure however, since it drives the matrix
of coefficients toward singularity. nifficulty has been
encounteéed several times because this matrix Q was singular, and
the danger is aggravated when exponential weighting with a large
decay rate is used.

6.2 Best Order for the Difference Equation

We have suggested that we use a second-order difference
equation, p = 2. Some of the reasons follow. Let us consider a
system which is time independent, and assume that have found the
correct order p and the true coefficients C in the difference
equations. In this case the residuals yield an estimate for oz.

Now consider the residual

N P z
R = pi] Un{Xn + .Yn = % cj(xn-j + ‘yl\-j)}

2
= I “n(yn - I ijn_j) s

since the x's satisfy (3.2). The expected value of the residual

is then
E(R) = (zw,) (2+1c] 1) o2

‘where the last term in the parenthese denotes the sum of the
squares of all of the components of all of the C's.

Now i1f we try to fit the solutions to a second-order system
by a third-order dffference equatfon, in the absence of noise, the
matrix of coefficients is singular, since the solutions satisfy

many third-order difference equations. If we have a little noise

15
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we may have a noar—singuldr matrix and have large values for the
ci.J.k‘ in this case we get a large expected value in (6.1) for

the residual. Limited numerical checks make the second-order

‘equation appear satisfactory.

6.3 Deternin{E] Initial Values

There was no particular reason for choosing ten values to fit
when we determine the starting values for prediction. It was felt
that six would be the smallest number to be considered, that fewer
would make the methods vulnerable to random errors in the last
terms. Many more than ten could cause roundoff errors.

6.4 Criterfa for Adjusting Terms

We do not expect to adjust or correct all of the coefficients.
For some the errors may be too small to warrant the time and
trouble. Other coefficients may contain such random elements and
change so unpredictably that trends are effectively obscured. The
decision to adjust or correct will probably depend on an analysis
of similar sequences in the past. There are two basic ways to do
this, 6ne based on a long sequence of past data (that is, on
climatology), and the other on recent data (corresponding to recent
weather).

We may analyze a long sequence for a coefficient, perhaps over
a perfod of years, and from this make a decision, beforehand
always . to correct, or never, in the program.

An alternate way is to see how well the smoothed values fit
the last ten corrections. We generate these values naturally in
determining the starting values for prediction, so this entails

1{ttle computation. We may consider, for example, the ratio

16
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V25D w2y qgun = R)T/T WoZy ygan
if this is much less than one we have fitted the past ten values
well, and if it exceeds one we have no skill in fitting the
observations. The factor 1.25 adjusts for the fact that we could
fit two terms exactly with the initial conditions. We might
correct or not accordingly as this number was below or above some
criterion, say, .75. The philosophy is that if we can fit a
sequence of observations well, then we can predict well. (More
logical is the converse;if we cannot fit the observed values, then
we cannot predict well.) It is probably not worthwhile to use
this criterion unless we usually correct.

6.5 Criteria for Improvement

In the numerical study we used two principal criteria for
improvement. Both of these compared in some way the magnitude of
the errors in prediction with adjustment with the errors generated
without the adjustment. In the first criterion, the error in the
predicted values(s) was compared with the rms value of the last
ten corrections (without adjustment). This figure was calculated
as the predictions were under way. For the second criterion, a
long sequence of adjustments were calculated. Then the rms values
of the errors fn prediction after adjustment was compared with the

rms value of the error in prediction without adjustment:

a 12 2
tlz, - X [“/e|z,|%s

n
the rlngé of summation of n is over each term for which a correc-
tion to 2z was made. These measures are easily made in the machine,

and they define a simple norm for the error relation.

17




It is not clear these norms are good ones from a meteorological
point of view. Very likely the ultimate test will rest on maps and
criteria for judging them. :

6.6 Real Coefficients

Most of the coefficients are complex. fhe one associated with
the modes that are independent of longitude (meridianal) are real
and hence one dimensional. The routines developed then involve
scalar equations, rather-than two-dimensional vectors. The
corresponding spherical harmonics are the Legendre polynomials,

the simplest of the Legendre functions.

7. RESULTS
The procedure for analyzing the time series was checked on
several sets of made-up data, and on two coefficients a, and a
(of P} and Pg). using a difference equation of second order, p -.2.
For data made up of solutions to a difference equation, with
random noise added, the solution could be recovered if the noise
was not too large, but the routine did not perform very well when
the energy in the noise (rms value) was larger than in the solution.
For meteorological data, on a string of 60 pairs of correc-
tions, the predictions X1 to Xgg led to a definite improvement for
one coefficient. The best value for the weighting w of the new
values seemed rather small: the values .025, .05 and .1 gave
similar results and were better than larger values. The numbers
below were deCermined as follows. We considered the coefficient
of P:. A set of 10 data points were used at the start to get

coefficients for the best difference equation and the inftial
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values. Fiye values were predicted, corresponding to the 12-hour
correction to be made in 12 hours, 24 hours, ..., 60 hours. The
error in predicting these was then calculated and normalized by
dividing by the rms of the 10 original data. Then the time index
was advanced by one and the operation repeated.

The numbers in row one are the rms values of a - a

n+l n,n+l’
normalized by the rms values of Z,.9* Z,.g* +--» Z,- The numbers
in row m denote the rms value of a - 3, +m-1,n+m® MOTmalized by

the rms value of z o, ..., z . Each is then a correction to be
applied after integrating one time step. Each entry comes from

the sum of 46 terms.

No. of

Time Steps Weight w .025 .05 A b .4
1 .6239 .6257 .6131 .6404 .8138
2 .6370 .6401 .6312 .6629 .8640
3 .6670 .6751 .6834 .7599 1.3095
4 .6573 .6698 .6960 .8314 1.5523
5 .6513 .6636 .6880 .8496 1.9109

There are several interesting points about the data. First,
the results from the small values of w, from .025 to .1 are all
comparable. This indicates a stable trend: when w = ,025 the
first of the 10 data points had a weighting almost .8 of the last;
they are weighted nearly equally. For w = .10 the relative
weighting is about .39. A surprising feature is that all five of
the predictions are so similar. This is further indication of a
stable trend, a large "random”" element, and a satisfactory value

of p, and suggests longer predictions are feasible.
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The corrections to the fourth coefficient were not predicted

successfully; the error in the predicted values was consistently

a little large than the corrections. However various features of
the solutions are quite similar to the other solutions; the

smaller values of w give better predictions and all five predicted
values are similar in size, with later predictions often anomalously

having smaller error than the first.
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Section 2

tn. tn

'k,n

SYMBOLS: DEFINITIONS, AND PLACES WHERE INTRODUCED

time N is usually associated with the last
or next-to-last observation.

the matrix, or vector, of coefficients for
the analyzed field at time t,-
the k'th element of A". k=1, ..., K. Most
of the a, , are complex numbers and are

treated 1ike two-dimensional vectors.

the number of spherical harmonics used to
represent a function,

a typical element of An’ written without
index k to save writing.

the value predicted for An] at time tn.

This represents the discrepancy between the
analyzed field at t" and the value predicted
for it at time t _,. Also called a correction,

a typical element of Zn.

‘the component of zn that is assumed to be

random.

the component of z, that is assumed to satisfy
a difference equation (see below).

two by two matrices in the difference equation
i " C‘xn_] $oeed cpxn-p ‘

weighted sum of residual errors.

weighting of new terms.

the weighting of term associated with tn’ at
time N>n;w, decreases with N for a fixed
value of mw_ = w(l-w)"'".
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4

Section 3 (continued)

X
n

X

Section 4

A, B

p" = (A,.B,)

a best approximation for Xos made at some

definite time ty- (It might also have been
designated by ik Non)

the vector, or matrix, of in's.

matrices defined in Eq. (4.2), used in
finding xn's.

(see Eqs. (4.3), (4.4)).
the i'th component of xj’ 1o, 3=1 2

U = (xg5:%,00%170%p5)"

Section 5

>

N,N+m

>

N,N+m

~N
3 33

oK, =4

an optimal predictor for AN+m’ made at ty-

a temporary estimate of AN , used in

obtaining A

,N+m
N,N+m "

n-m,n

typical elements of Zx.

a general symbol for a quadratic residual
to be minimized.
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