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NOMENCLATURE 
•

a density ratio 
~m ID, eq 2.2 •

dummy density ratio variable, eq 4.11
I differential operator, eq 7.3
‘p steady wave coord inate, eq 4.3
p densIty
a normal stress
v dynamical constitudve term, eq 2.4
• material constant for snow

frequency

• - •o initial average void radius In wow
• A material constant for Ice

A 1,A2,A 3 coefficients in pressure wave jump equation , eq 7.16
body force

• 81,82, C~ coefficien ts in pressure wave jump equation , eq 7.16
C material coefficient for ice
E1 rate modulus , eq 2.7
E3 acceleration modulus, eq 2.8

secant modulus eq 3.3
tangent moduksi, eq 2.6

f, fl, f2. fs,g functions defined by eq 6.8.6.12
F integeand function, eq 4.12
91 functlon deflned by eq 4.10
/ material coefficient for snow
p pressure
Q dynamical stress term,eq 2.3
So material constant for Ice
t time
v particle velocity
V stress wave speed
x deformed coordinate position of particle
X undeformed coordinate position of particle
II’ angular velocity
Y0 hish-rate yield stress for Ice, eq 2.5
Y coordinate position of stress wave front.

Superscripts
time derivative• derivative with respect to ip

+ value just ehead of wave
- value just behind wave

• I value at time point #j, i.e. i~
• 

• steady value behind steady pressure wave •

Subscd~es
o InitIal value

value at coordinate position #1, I.e. at X1
in matrix material ~~~~~~~•

In x.dlrectlon or x.componsnt.
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AN ANALYSIS OF
• PLASTIC SHOCK WAVES IN SNOW

Robert 1. Brow n

I. INTRODUCTION of these problems, solution of the usual balance prin-
ciples can yield some information; but without an ap~Stress waves in snow are a problem that has not been prop riate constitutive law, such questions concerning

• studied as extensively as other subjects. Practically all stress wave attenuation or alteration of stress wave
of the previous work on the mechanical properties of profile cannot be answered.
snow has been restricted to quasl.statlc conditio ns in At this point some definitions are in orde r. An elastic
which inertial effects are negligible. Napadensky (1964) wave is one in which no internal dissipation takes place.
first investigated the dynam ic properties of snow under The material responds elastically to the stress wave, and
the effects of shock waves. More recently, Johnson no attenuation can be attributed to inelastic deformation

• (1978) considered in detail the propagation of elastic of the material . A p las tk wave is one in wh ich material
sonic waves In snow. Wakahama and Sato (1977), yielding and viscous flow occur. This is often referred
Wisotski and Snyder (1966), and Gubler (1977) all to as a non/meat wave . This is an inexact definition ,
conducted experimental investigations of Stress waves however, since material nonlineari ty can occur in the
in snow. Mellor (1977) reviewed previous work on absence of material yielding and plastic flow. However,
shock waves in snow, as did johnson (1978). But to since at high deformation rates snow remains practically
date virtually no work performed has utilized a material linear up to the point where yielding begins, any dif-
constitutive equation to investigate the propagation ferentia tion between plastic waves and nonlinear waves
of plastic stress waves in snow. This is not surprising, is meaningless.
since a valid constituth’e law far snow has been lacking, In stress waves, the Jump in a variable (such as strain ,
and consequently previous studies have been restricted pressure, and energy) is defined as the difference between
to the use of mass and momentum balance principles, the values of the variable just in front of and behind the
However, once a constit utive law is found to describe wave front. Much of the previous analytical work on
accurately the behavior of snow under rates of loading stress waves has been restricted to the determ ination of
character istic of stress waves, a much more detailed these jumps. A thock weve is a wave In which the dis-• analysis of stress waves can be made. placement of a particl e is continuous across a wave front

A number of prob lems require a detailed knowledge but in wh ich the particle velocity experiences a jump.
of the response of snow to shock waves. The relative An acceleration wil? is one in wh ich the particle velocity
effectiveness of in-snow and airborne explosives for and displacement are continuous across a wave front ,
initiating avalanches is one such example. To date the but in which the acceleration has a jump across the wave.
relative effectiveness of explosives detonated In the air , The surface representing a wave front is often referred
or in snowpack, or on the ground has not been determined , to as a singular surfac e1 since discontinulties in acceleration
Avalanche experts still do not agree on optimum cx- and/or velocity can occur at this surface.

‘ i  plosive speed or charge size. Another case In wh ich A steady weve is defined here as one in which the
-~ 

- stress waves are generated Is projectile impact. A re- wave speed propagates at a constant speed V. One can
lated problem is avalanche Impact on structures. In all show that the wave amplitude remains constant for such

- ~~~

~~~~~~~ ~~~~~~~~
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a wave. Even Ii. plastlc waves suchaconditlon can (22)be established, althou gh generally this condition is
short-lived. Steady waves have been studied extensively Pm and p are, respectively, the mass density of ice andsince they are mathematically easy to Investigate. Non- 

~~~ and a superposed dot Impl ies a time der ivative.steady t~uws are simply those waves that lack the So~ 
C,A ,J and b are all material constants, and a~ is• characteristics of steady waves; i.e., their amp V.ides the mean init ial pore radius of the snow. Q and r2 are:may either grow or attenuate.

In Section II , a constitutive law developed by Brown 
= a (ia..i )2!3~~2/3\_ 1&~ 2(1978a), and used througlsout the rest of this report, - /Is briefly discussed. The compatibility laws and jump

equations associated with stress waves are then developed /~~ ~~~~ ~~~~~~~~~~~ 
~ (2 3)in Section II I. These laws are applicable to all stress /waves krespec dve of the material properties. In Section 

2 2/3 ’IV, the governing equations for steady shock waves in = Pm°o / (3(ao-1) ) .  (2.4)
• snow are developed by utilizing the constitutive equation

presen ted in Section II. In Section V, the theory The variable Q is significant at extremely high ra tes of
• present ed in Section IV for steady waves is then corn- deformation and accou nts for the intergranu lar dynami-

pared with existing experimental data and some con- cal effects that must be taken into account for high
clusions are made. Sections V I-VHI are devOted 10 stra in rates such as those generated by shock waves.
nonsteady waves. In Section VI , the governing equations The constitutive law was derived by using a pore
are developed, and a direct numerical solution to these collapse model similar to the one used in powder metal-
equations Is then made and compared with existing 

~~~ lur gy to study porous metals. The matrix material , ice,
In Section VII , jump equations for nonsteady waves is model led as a rate-sensitive viscoplastic materi al, and
are developed that incorporate the constitutive law for the collapse of a spher ical void surrounded by ice under
snow. Section VI I shows that these equations are CX’ pressure is calculated . This solution is then used to
tremely complicated for a material such as snow. Then, describe the behavior of medium-to-hig h density snow,
rn Section V I ll , some simplificat ions of these jump with the fi nal result being eq 2.1 . The constitutive law
equations are made so that they will be more amenable has been compared with the data of Abele and Gow
to solution. No solution is att empted , however , since (1975) and found to represent accurately the behavior
a solution by the finite difference method has already of snow subjected to pressures which result in lar ge
been made In Section VI . However , Section VII I might increases in density. The constitutive law may be con’
form the basis for future work on shock waves . sidered valid for initial densities greater than 300 kg

rn’3 and values of a ranging from -i~ ’~ s
.1 to i0~ s~ .

The material coefficient j  and the material constant ØII. A CONSTITUTIVE LAW FOR SNOW AND must be determined by the snow type and temperature,
BALANCE PRINCIPLES whereas S0, C, and A are fixed by the properties of ice

but are still temperature dependent.
Brown (1978a) formulated a constitutive law for Some simplification (Brown 1978b) is possible at• volumetric defOrmati ons of snow. This formulation high strain rates. This results in

was compar ed with experimental data for strain rates
ranglngfromiO 5 s t to lOs’t and wasfound to
accurately characterize the behavior of snow under • p= ~~~~ ,*. S /Qo) pj~large volumetric deformations. The constitutive law 

25• (Brown 1978a) is given as a relation between the pr.s-
• sure p and the density rat io a: 

~~~~~~~ equation is obviously mathematically• I I . 2’ more tractable than eq 2.1 , and In some situations can• p = ..Lin (.±.. ) 12(SrC)+C In ( (~~~~ J be used. Y0 is a high strain-rate yield stress for poiy-3a a-i ~a (a— 1) , crystalline Ice arni Is therefore fixed by the properties of
I ~ ~2 ~~~ - . polycrystalllne Ice.(2.1) Inth e followlng .sctlons,dlfferentlatlon of eq 2.1
i. 

10, and 2.S wlll be necessary. Thls can be done in terms of
whereals definsd as the moduli:

2

— -
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ET .‘~~~~~~ (a, a, ~) (2.6) Di. COMPATIBILITY LAWS AND J UMP
EQUATIONS FOR STRESS WAVES

Li (2.7) Consider a one-dimensional stress wave propagating
aa through a medium such as snow. We define as a wave

(or wave front) a smooth one-parameter famil y of points
E2 = k. (2.8) Y (a), -

~~~ 
< a < oo, such that V (a) gives the ma~ riaJ

au point (or particle X)  at which the wave is located at
time t. Xis the position of a parti cle in the reference

• ET, E1, and E2 are, respectively, the tan gent , rate , and configuration , which here will be the undeformed con-
• acceleration modu li. The derivatives np/aX and dp/dt figuration. x = x(X, a) is the position of a particle X

then can be shown to have the forms: at time t and is therefore the deformed position. The
intrinsk velocity of the wave is

~~~~~~“ 
~~T ‘E1~~~~~2 ~~~~ — (2.9)ax ax ax 

~~ V=LY(t)  (3.1)

~~~ ~~~~~~~~~~~~ 
(2.10)

dz which is the velocity of propagation relative to the un.
deformed position of the body.

where X isa coordinate variable. Let f be any variable , say density or stress. Assume
Consider now balance laws for stress waves. We use t~X, t) is a function of position X and time t and is of

here strictly a mechanical theory and do not study class C2 in X and r except at X Y, where 1’ has a jump
restrictions invoked by the energy law or the second discontinuity ; i.e., the values off just in front of and
law of thermodynamics. The two laws we consider are behind the wave front (X = Y) have different values.
those of mass balance and momentum balan ce. We denote this jump by the expr ession IfI , or

The momentum balance for a plane wave propagating
in the X direction requires [t~ = r—i~ (3.2)

ac, ~., where(2.11)

f limf(X, t)
where b0 Is the body force acting in the X direction and X ~ V
v Is the particle velocity. X < V (3.3)

If the state of stress Is dominated by the pressure p,
and if body forces are negligible, eq 2.1 1 can be red uced = I im f (X, t)
to: x-~v

X >V .  (3.4)
(2.12)

• aX ~t t4 and r represent, respectively, the values off just
in front of and just behind the wave front. For imtance,

The mass balance equati on (or continuity equation) Is in a shock wave we would have I~J * 0, [vJ * 0, and
(xJ =0; i.e., the particle velocity and particle acceleration

- • f.~ k+~ ... -0 (2.13) would undergo a jump across the shock wave, but par-
- • p ~~ g~’ tid e position would not. The above equations were all

defi ned with the assumption that V> 0, so that the
Since a — Pa/P = p~0g/p, we can get wave is propagating in the posItIve coordinate direction. -

~ ~~

Now, consider derivatives of (fJ , since the’~ will be
_ 1 

~~ (2 14) used later in the analysis of shock waves. Assume f ( X, a)
• 

~~~~~

• 

~~~~~ hasajump dlscontlnuity at the wave front , X= Y (t) ,
but otherwise is continuous and differentiable. Thus

as the fo,m of the mass balance equatlon whlch ls used clearty the j ump [fl isafunction of time oflly through
the positIon X — Y(t). The derivative of [1 follows from

• 
• - • the definition of the jump:

3

_ 
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• * (ii — ~ f r r  (a), t) -f(Y’ (t), (P1 = Do V (‘(1 = Po V fri - (3.9)

This equation isa familiar jump equation that relates
• y( Y t)dY~ ~f the pressure j ump across the wave to the jump in the

aX particle velocity and wave speed. A similar procedure
applied to eq 2.14 results in -.

ax ~ (vJ = ± ~(aJ . (3.10)
a0

from which we get
Therefore, we see that the material has a jump in a if the

= V I~J+ (~ I. (3.5) wave isa shock wave, since (vJ is nonzero. Combini ngm I aX J  t~~~I q 3.9 and 3.l0glves

However, if we assume! Is continuous woes the wave
front , then fri = 0, and eq 3.5 gIves (P1 = - (aj (3.11)

a0

V 1.~~J —- . I~ 1. (3.6)tax j (~~t J which isa well known relationship for shock waves
relating pressure jump across a wave to the jump in den-

Equation 3.6 places restrictions on the jumps in the sity ratio.
derivatives offiffi s  continuous at Y. Equation 3.6 is Evaluating eq 2.12 both ahead of and behind the
called Maxwell’s theorem, although both eq 3.5 and wave front, then letting X approach Y(t) and subtracting

L 3.6 are also often referred to collectively as the corn- these two forms of eq 2.12 lead to:
patibility condItions for singular surfaces.

The compatibility equations can now be app lied to F~—J = -P~ - (3.12)the balance laws. Recalllnç that a shock wave generates tax j
jump discontinulties in I’, i~ and av/aX, whereas x itself
is continuous across the wave, Maxwell’s theorem gives EquatIons 3.9 . 3.12 are all widely recognized jump

equations for stress waves and are applicable to both
(v) = —v I.~~..1 (3 7) steady and nonsteady waves.

laX J - We now analyze in detail the propagation of steady
waves before considering the deta ils of nonsteady stress

To calculate the pressure jump across a pressure wave, waves.
integrate eq 2.12 fromn X~ toX0, whereX~~ Y(t)~~Xjp,
to obtain

IV. STEADY SHOCK WAVES IN SNOW
i~~ l ,d / ~p 

~dX-y v’p~ rv v~~ w - To investigate further the properties of steady waves
S we now return to the jump equations, eq 3.9 . 3.11.

Or,by brssklng the Integral on the right-hand side Into t~~7~~ : ~~~~~ S
’

~~;pats, we 
~~ and ~ as the wave passes. Denoting the steady values

~~ 
(
~ 

a) of a and p behind the wave by the asterisk, *, eq 3.12
and 3.9 can be put in the fol lowing respective forms:

f 4yit p0x dX+ .(.
~ 

Po x dx) (3 8) 
- ~O .fL~* (41)

p0V
Now’, tak~~ th. lknftsofX5-. r (t) ,x,-. v (a) ,

aid usIng sq 3.1 and Ls~ nltz’s rule to dlffsrindats the 1 • (4 2)on the rWlt.Oland side, we obtain

4

—~ • --~~~~ •~~ . ~~~~• ~~‘- -÷-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



- ____

From hers on an astsrlsk will denote the value of a since shock waves generally prod uce exceptionally large
~~1ab$e behind the wave, i.e., In the steady condition strain rates. Substitu ting eq 25 into eq 3.T2, we obtainafter the wave has passed. The terms v, a and p refer to
ths valussof the resrective varlables at any polnt ln the V2 2Y ~wave. As indicated earlier, eq 4.1 and 4.2 result stricdy - 

P0 - — i/h i (_Lle / 0
from consIderatIon of the balance principles and do not ~°
involve the material properties In any way. We now in.

• vsstigate the effect of material propert ies on the momen- I4v2 I&n~a .zturn balance equation. ~~~~ -‘ I1 (4.6)hi a steady wave, the solution to the balance equations
may be expressed in terms of the single variable

or, upon integrating,

‘~=X-Vt. (4.3)

Substituting the constitutive law (eq 2.1) Into eq 3.11 , - 
,~hI2 (a-a0) 

(a2.!!(e+~~~~and changing variables from X and t to t~ by use of eq ~~~ V 2 /
4.3 we find after some algebra

= v212 1Q,2
— f!!_.(o~..a~) = l_e~~~~~0 In ~~~~~~~~~~ 

~~~ a

+ ~~ 
21 

~
‘O In (~L\e~~~

0M 0 de. (4.7)
In ((~4 a’)2 \ e~ 3

\ a(O~1) ,j
In steady waves, =0 and & =0 both ahead of and

~2 i.2 behind the wave; therefore (Q(&, 4 a)J vanishes. Sub-
- ~~ ~~(Q(&, 4 a)). (4.4) stituting eq 3.9 into eq 4.7 for steady waves then gives

The prime denotes differentiation with respect to the 2/V0 J°~ 
In (._!_~ e~~~ /”0 de

variable ip. After integrating the above, we get GO F •

I,2 a 0
p V 2 / a - — -

- (a-tQ 
(

~~2 
T

(
~~

o) 2

, Carrying out the indicated integration results in
~~~~~~~~~ [Q(~~4e}J hh L I n (_ !_ )

~~~

— 

~ 

2 a~ 3 a-i 

(
~~2_ ao (a*4(~~)) 

-1

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~/( ~a(a-1) I (gi (a*)_i’ ~ °° g1 (aG_i) } (4.9)

The above equation describes die density ratio ~~~ 
where

• across the wave, once the wave speed Is known. How-
ever, this Is an Integro-differential equation and would p1 (a*) = -~!(ln (a*) e~~ 

G•1GO..ln (a0) e~~ +~~~~have to be solved by a numerical method or some other 0 / 0
approximate method. I i~~in LA n

In cases where stra in rates are not extrem ely large, ( I n 1+ i; -‘-
~~~
‘
~ 

(Ml _ 1J . (4.10)4 eq 4i would have to be used,since lt makes use of the V I = 1  rY I
more complete constitudve equation, eq 2.1. Such
would be the case for low-frequency, large-amplitude Equations 4.9 and 4.10 give the pressure jump across
waves. the wave Equatlon46can then be used to calculate the

lf one Is considering shock waves, the simplified wave profile , i.e., the variation of the density rat io a
consdtuthe law,eq 2.5,can be used ln place of eq 2.1, insude the stress wave This can be accompllshed by ~

• -
, 

5

• ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~ . _ _~~ .,1 . ~~~~~~~~~ 
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inverting eq 4.6. Figures 1 and 2 give a direct comparison of the theory
and Napaden sky ’s experimental results , and as can be

= (4.11) seen the two compare fairly well. Figure 1 shows the
• 

~~ 
F(fl, 00, 1’) pressure jump across the wave as a fun ction of the den-

• sity jump t~p caused by the wave. Fi gu re 2 shows the
where ‘7 is the variable defined in eq 4.3, and variation of plastic wave velocity V with particle velocity

v . For particle velocities above 20 m s 1, the data and
theory compare nicely, but below that , they deviate

FW,a0, ~~~~ 1 14/Y0~~ 
(

~~j )e~~7~0 dfl’ significantly. The theoretical curve terminates at the
~V 3f(P) G0

point where the wave ceases to be fully plastic.

1/ 2 
The data in Figure 2 at the lower particle velocities

+ 
290 V

2 

~~~ (0
2 00 (0+00)

) 
are questionable. Napa densk y shows the plastic wave
velocity dec reasing to zero as the wave intensity (as• 3a0f($)

(4.12) indicated by v~, the particle velocity) decreases, and
this result defies physical reasoning. For instance , as

Setting a = a~ in eq 4.11 then gives ,~~~, the length of the the intensit y of a shock wa ve decreases , the severity of
wave , but this equation can also be used to calculate the the plastic deformation should also decrease . As the
a-si profile during the passing of the wave , amount of the plastic deformation becomes less sig-

nificant , the pressure wave should then begin to acquire
charac teristics of an elastic wave. Equation 3.11 can be

V. COMPARISON OF STEADY-WAVE THEORY used to find the wave speed
WITH EXPERIME NTAL RESU LTS

V2 =~~~~~~~. (5.2)
Napadensky (1964) conducted an extensive testing P0 ~~°~

‘

program on shock waves in snow at Camp Century.
These experiments involved snow with densities generally If t.~p~/&r’ does not approac h zero as the stress wave
higher than 300 kg m 3. The stress waves were generated intensity decreases, V2 must remain finite at low plastic
by using a low-density explosive to drive a metal plate strains. One would expect Ap*/&1* to acquire a value
into solid cylindrical specimens. By va rying the amount close to the elastic modulus. This argument is al so
of explosive and the mass of the driver plate , a wi de supp orted by other analyti cal work , such as that of
range of load conditions was achieved. The explosive Coleman et al . (1964), on the theory of wave propaga tion
technique , however, usually has a considerable amount in nonlinear materials. In particular , we note the familiar
of experimental scatter . equation

• A streak camera was used to record the motion of
etch marks on the snow specimen and the driver plate. 

= E~/p0 (5.3)In this way, both particle velocity v and wave velocity
V were recorded photographically. Since the speed of
the camera was such that the exposure time was only where for shoc k waves E~ is the instantaneous secant
about 5 ps, fairly good time resolution was achieved , modulus , and for acceleration waves E~ is the instan-
However , as ind icated by Mellor (1977), large errors taneous tangent modulus. In either stress wave , E~
were incurred in the experimental program. There was increases as the degree of plastic deformation decreases ,
very poor resolution at the lower pressure levels, and i.e ., as a smaller percentag e of the material is deformed
it is questionable whether or not Napadensky ’s red uced plastica ll y. As a result , E1, approaches E, Young ’s
data accurately reflected the actual stress wave para- modulus of the material , and V thereby increases to a
meters. However, for the intermediate range of stress value close to the elastic wave speed for weak plastic waves.
wave pressures, the data appeared reasonable, since the In the case of strong stress waves that produce com-

• streak film recordings appeared to have both good time plete plastic deformation of the matrix material and
resolution and ability to record part icle displac ement. large lumps in density, the work-hardening characteristics

The material coefficients used in the constitutive of the material become important in determining the
law, eq 2.5, as determined by Brown (1978a, b), are resulting wave speed. In particular , E~ increases as a

result of densifica t ion and work-hardening effects ,
-

- 

- V0 300 bar thereby resulting in larger values of V as indicated by
/ = 3.07 eq 5.3. Consequently, a very strong plastic wave has

~- ~~
-

= 5.28. (5.1) a large wave speed . The above reasoning justifies the
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Figure 1. Pressure Jump across weve as a function F igure 2 Variation of plastic s4vve velocity with par-
• of density Jump. tic/a velocity.
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• FIgure 3. a-p flles forpla tks tressbwves, Figure 4. Pressure/umpacross stress wave as
p.’ 0.300 Mg in3, t~a”- l.O. a function of density Jump.

• minimum calculated value of V shown by the curve In For the less intense wave, a shorter wavelength is required
• Figure 2. This minimum Is located near the transition to generate the acceleration forces necessary to produce

zone betwee n partially plastic and fully plastic waves, the compaction to decrease a from 3.0 to 2.0.
Figures 3 .5 prese nt results of parametric studies FIgure 4 illustrates the variation of pressure jump

of stress waves in snow. FIgure 3 shows how the den- (p )  with densit y jump for a range of initial densities. •

sity ratio varies through the front of tb’ str ess v we. Note that as the initial density Is increased, the curves
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~~iei J±~ .~~~~~~ . =J..LQ. (6.1)p
~ 

ax ax 00

~~ ‘~~4 Then, substituting eq 2.5 directly in the above equation,

• • 

we get, after some rearranging, 

2
E ~~~~~~~~~~~~~~~T 2 ax ax 00at2

0 10 20 30 40
p (bor) + E .~~—+E k. . (6.2)ax ax 2 ax

FIgw’e S. Variation of plastic i.uve velocity
~ lhpresswe Jump across sveve. In order to solve this equation, a finite difference solution

can be used. This equation Is extremely nonlinear, since
ac translated upward. Figure 5 also gives a very dramatic ET, E1, and E2 are all functions of a, a, and a. There-
demonstration of the effects of work-hardeni ng charac - fore, convergence and stability problem s are difficult to
teristics of snow. At low pressures, the plastic wave handle. A central differencing technique is used . At
speeds areas expected ; i.e., wave speed increases with position x1 and time t1, let a have the value 4 Then

• density. But at higher pressures, this relationsh ip is the difference forms of the time and spacia l der ivatives
inverted , since large changes in a must accompany the of a become
large pressure jumps for snow with initia l low densities.
Consequently, there is considerable work-hardening, . ai~ -a~~

1
which has a stiffenin g effect, and this results in increased a~ = (6.3)
wave speeds. Snow with high initial densities would 7At
not undergo as much work-hardening.

= 
a~ -‘~~~r’ (6.4)

r VI. A NUMERICAL SOLUTION TO THE ( t)
NONSTEADY WAVE PROBLEM

— ~~~~~~~~~~~~~~~ 6 5’If the wave is nonsteady, the wave front profile , am- ,j~x -

plitude and wave speed may all change with time.
Mater ial nonlinearity and internal dissipation mechanisms 2 1 1 1 ~ 1 1are accountable for this. In some cases, the wave am- a ~4 = 

akl +rxI,.l -2 a~ ~~l 1Ql~1 ~~~~~~

plitude may actually sow, althoug h such a situation ~~2 2 (~.x) 2
is generally short-lived. Coleman et al. (1964) have (6.6)studied the properties of nonlinear waves in some detail.
Slnce that tlme conslderable effort has been devoted to The form shown in eq 6.6 is used for the second orderthe study of stress waves in nonlinear or inelastic mate- derivative, since this averaged derivative results in im-dais. More recently, Nunzlato and WalSh (1978) have proved stabili ty characteristi cs of the finite differencelewestipted the propagation of waves in uniformly dis- solution, as indicated by Ames (1965).irlbuted ~ anuIar materials . In their paper they Indicated In solving the problem, a double modulus was em-that, In a yanular material, the only density change ployed. During pressure buildup, eq 2.6 gives the ap-Induced by a shock wave must come from compaction proprlate tangent modulus , which becomesof th. matrix material and not from reduction of void
volume. This r,sult contradicts the results of thIs study
(eq 3.10) and the experimental results of Napadensky E = 

2V0/e °f1(a)~~~~(1964) 1 0
• We develop now the wave equation for a material

with a volumetric constitutive equation of the form
yeq 2-5. f2(a)~-f3(a)~~ (6.7)• Dlffsrentisdng eq 2i4 wlth respect to dme1and then

-• substitutIng the equation of motion eq 2,12, yIeld
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where 6 shows the temporal variation of the density change
for poInts at 0, 1, 2, 5, and 8cm into the snowpack.

1 ‘ a~ I a i ‘~ 8~ 
Figure 7 demonstrates the densi ty profile for various

~i 
R 7..~~~11+~~_) In (~ y) times. Note how the wave spreads and the density ratesj decrease as the wave prop agates further into the snow-

pack.
12 2 I L + ~1!~ (6.9) Figures 8 and 9 make a direc t comparison of three

different pressu res. Figure 8 compares wave attenuation
in terms of density jump and Figure 9 shows the pressure

.j . 1 — J......+ 11!) (6.10) attenuation. As can readily be seen, the advantage of
~~ (a-i )713 

~~~ 602 the higher pressures Is largely eliminated within the
first 10cm. This merely points out the subst antial

— , -4/3 -413 
~6 11 energy absorbing capability of snow.g — ta l, ‘~~~ • 

As expected , the highly dissipative characteristics of
snow rapidly change the stress wave as it propagatesf (a~i) ” 113..a’1/~. (6.12) throug h snow. For pressure waves with a magnitude in
excess of 5 bar , the pressure ampli tude reduced to a

However , once a maximum pressure is reached , and un- small fraction within 10cm. This result is to some
loading begins, the static part of E1 must decrease in extent verified by Wisotski and Snyder (1966). In the
order to avoid a large elastic rebound in the finite dif- tests reported by Wiso iski and Snyder , one-poundference solution. This rebound produces an artificial spherical Penolite charges were detonated in deep mid-
oscillation in the solution and is a common problem season snowpack. Piezoelectric gages were used towith finite difference methods. Various methods have record arrival times and pre ssures to within 0.15 m of
been used to reduce this form of instability. The easiest the charge. These transducers apparently had a broad ,

• way to facilitate this is to decrease f~ by a factor of 1/2 flat frequency range , so that the recorded results should
when a becomes negat ive. A factor of 1/2 is somewhat be meaningful. They also observed that the wave speed
arbitrary, but this value was found to be sufficient to close to the charge was significantl y slower than further
avoid any significant volumetric rebound. from the charge. However , there was a great deaf of

In order to demonstrate the solution, we consider scatter in measurement of arrival times, so no precise
the particular problem of an air blast direc tly over a measuremen ts were made. But the pressure readingssnow covered ground surface. We assume the blast for a 6.bar pressure wave showed good agreement with
produces an overburden pressure of the form the results shown in Figure 9.

Figure 10 shows the variation’ of the stress wave speed
p =!p. (1-cosWt) 0 i(Wt~~ 2w as the wave propag ates into the snow. Initially the 21-

2 bar wave travels at a significantly higher speed, but this
situation quickl y changes. The variation in stress wave

p = 0 Wt > 2w (6.13) speed is due to a combination of factors. The wave
speeds initially decrease as the waves attenuate and work-

and calculate the attenuation of the wave as it propagates hardening effects become less significant. However, once
Into the snowpack. The frequency co = W/2w Is deter - the wave intensi ty is reduced to a critical value, dissipativemined by the speed of the explosion, and the overburden effects likewise become less significant, and the wave• pressure p° is determined by explosive size and proximity speed begins to increase. These results are In close agree-to the snowpack surface. Of particular interest is the ment with those shown in Figure 4 for steady waves.
response of a snowpack to an overburden pressure of F~~ re 11 shows the effect of wave frequency onabout 20 bar since this is what the SLUFAE (surface - attenuation. One can readil y see that higher frequency
launched unit fuel air explosive) vmapon SY$tW~ ~~~~~~~ waves do attenuate more quickly, but this effect Is not
uates.° all that great Of the three waves Shown, the difference - ,~ -Figures 6.11 show results of the finite difference in pressure ‘ump by the 5.cm position Is only about 20%.
solution of the nonsteady wave problem just described . The frequency difference is partly erased by wave spreadIng, ~~~~~~Figures 6 and 7 Illustrate how the wave form Is altered and probably the higher frequency waves spread more
as It prop4ates Into snow with an Initial density of quickly and therefore experience a quicker reduction

- ‘ 350 kg rn” . The surface loading has a frequency of in frequency content.
wzs000 Hz and an amplltude of p* 1 2  bar. Figure 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
shock waves by considering the jump equations. These

‘DR. Farrell , USACRREL, Pri vat , communIcat ion.
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equations cannot give as much Information as the dIrect 1= vL+ A - 73approach just discussed, since stress wave profile and 6t &K at -

wave length cannot be calculated from the jump equations.
However, the direct approach using the finite-difference Equation 7.2 gives the growth of the pressure wave In
technique Is computatlonally a time-consuming and terms of the three modu ll and the derivatives of a,
expensive means of solving the problem. If wave at- and a. Unlike elastic waves, the condition for growth
tenuation is sough t, there should be more convenient or decay of the wave is a complex functIon of the
means of doing this. three moduli and the spatial and temporal variation of

e,aand a behind the waye.
Now, assume that the stress wave is entering an un-

VU. J UMP EQUATIONS FOR NO STEADY deformed medium , such thatp~, v1, ap 4 f w (  are aft
~~~~~~ WAVES zero; then j ;;J is just

For nonsteady waves, the rate of change of the wave IPI = P (7.4)
ampllusde must be calculated to property characterize ,

the wave. The amplitude of a shock wave can be de- Similar relati ons hold for v and apiaX, In this case,
scrlbed ln tsrms of sither (pJ or (aI , slnce both of these the iurnp ofaproduct, (obJ, ls equal t o ,b -,~ e., the
give a mmeure of th. wave Intensity. First, we Investigate prodii t of the values behind the wave. Using this result,
the variation of ’PJ . Lstting f ~ p in .q 3.S, we see that eq 7.2 becomes

f(PJ V (a,/aXI+(a,/atj. (7.1) fir ’ ~ET (~!.) 4 Ei’ 
(~~~j’+Ei (~!.) . (7.5)

Then using eq 2.9 and 2.10, we get Equation 73 IndIcates that If conditions behind the wave
are steady, Le., a Is constant, dp ’/dt vanishes, and the

d I,I .... IE ~~
1+1E~~~

1+’E ~~~ (72~ 
wave amplltude doesnotchange wlthtlm.. Thls ls not

I ‘atI I 1111 1 2 g~ j ~~‘ the case wlth nonsteady waves.
Now, develop a jump relation for faJ. Equation 3.70,

ediers1/1sIsthe~~~~,s&l operstor eq 3.5wIth f~ a and f~ v, eq 3.11,and eq 2.l4can be
combined to yield, after considerable algebra, the relation

• •
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2 ~ dv 1.1.j~j dV 1, 1 I,~~j~~V2 lasi vk.ereE lsthesecantmodulus,LPIILaI.
no a0 0’t P~ I ax I a0 LaX J - Calculate now an expression for (ap / aXI in eq 7.6.

(7.6) From eq 2.9, f~ r/&%’J can be expressed as

We now elIminate dV/dt and ~p / 3X) from eq 7,6 so 1 ~~~ E~ ian i E~ (~~that the equation can be used to describe the wave decay ‘- = 

~~~~~ Ii~1 
‘
~~~~ t~~ratedl.I/dt

We first consider V From eq 3.1 1, the wave speed has
ths forin Ejia~ ‘710)

P o lal Then eq l.6 becomes

Dlffsrsntiatlng lhls glves 
~~~~~~~~~~~~~~~~~~~~~no d: a0 \P o  no/ t ax i

2V ‘a~~~~~ 
1 

~Ie.L-JeL —t faJ ~~. (7.7)a ~~ i i 2 dt j - ,._ -.Ii 
/ +~ii~~J+~~!. (.~~ .J (711)

p 0 tax i Po tax i
Sn ) p ” p ( a . a ) , d tpI/dtcan be expressed
In thef owIl~~form: where I~’ls given by eq 7.9.

The compatibility condition can be used to derive

f lu ~ (.~~) f ( ai+ (~ ) - d (~J the two equations:

!i I.~!J =!i AJ.~.1-!!v 1~!.t1 (7.12)

+(~~i.) f t m~1 Po taxi Po ~ ~axj p
~ [ax2J

~$ilch can in turn be wrItten in terms of the moduli 
~~~ L~J = ~i ,i. L.~J _ !i v Fill. (7.13)

deflned ln eq 2.6-2.7: Po tax i p,1,dt l&X J Po [ax2 J

1I€~La~ -E.~ -f-ta ) +Ej .-~~. j~) +E~ i. (~ J .  (7.8) Althou gh not shown, an equation for (a2èiax2) can
also be developed by using the compatibility conditions
presented in Section III ,

Then, substituting eq 7J into eq 7.7 gIves If we substitute for (a2
~/aX2I and (an/ax) In eq

7.13, we can then get:

2Vl ’~f LIE1.-L[a) + no E~iLai -

P0 1,12 a pot’] a 
~~~~~~~~~ ~~~~~~~~ •

• -:
P0 tax i p

~ 
di 1dt tax i

c0E1 d .j .0E2 d •

~~p0(nJ dl p0(a) - a  
~~~~~~~~~~~~~~ (7 14)

Po ~~~ ~ax2J lax3lc.-r- ; or
Equat lonlllthen becomes, aftef substiwtln$ tor

2V
~~

_
,~~,J e;4Ec)~~

.(a) (a~/aXj and (aa1aX1,

- ~~i(aj +J 1~L+!2b~!.1tV
~~~~~~~~~~~~~~~ fidi (7.9) P0 dt k a o Po lax 2Jj
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then simplifies the mathematics and gready facilitates
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the solution of the problem. This type of wave we refer
0 ~Vf 0 to as a ~mi-steady ~uve. This type of wave should give

a better approximation than assuming the wave to be

+!i d2 iaa l, EjV [a2al steady.
Po ~ti.r’~ ’~ 

EquatIon 715 reduces to the following form :

_ _L._ [___]+ [__] (715) !! ~fiai ~~~~~~~~~~~~~~~ (8.2)

~‘ 
- 

From eq 7.7, we can getEquation 7.9 can be substituted into eq 7.1 to eliminate
V; and this results in an equation wh ich contains the
terms d (aj ld tand d (aJ / dt.  Again, die compatibility V v~~r 1 (E —Ef l ~~[aj . (8.3)
equations can be used to eliminate these terms. For the 2 poiej dr
sake of brevity, this wil l not be done here. Eventually
we can arrive at an equation of the following form: Then eq 8.2 becomes

— 

f(aJ A~ Ift 1+A2f Eft I +A 3~ Ift1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~ft~- (8.4)

r , 1 2 1 r ~ 1 Equation 8.4 could be solved rather than eq 6.2. This
+8~ j~~~ - I ”~2 -‘~~

- I~
_! l ’Ci I -~~

--
~~

- I (7.16) latter formulation would give a computationally much
P”2 J a 

~~
2 j ~ax3 j  more efficient solution , but some information would

be lost. For instance, no knowledg e of the stress wave
profile as dio~in in Figures 6 and 7 can be obtained by

where A 1, B~, and C1 are all fu nctions of (aJ, Ef, £j , solution of eq 8.6. This equation is primarily useful for
E~, and V. The above holds for any shock wave propa- evaluation of stress wave attenua tion in terms of the
gatin g In a material for which the constitutive law has 

~~ iable [aJ
p as a function of a, a and a.

In die present form, eq 7.16 is quite compliCated and
therefore not very amenable to solution. We now ccii- DISCUSSION AND CONCLUSIONSsider some approximations , wh ich put the formulation
In a simpler form. The foregoing sections have considered the problem of

a plane pressure wave propa gating throug h unstressed
VII I . REDUCED J UM P EQUATIONS medium-to-high density snow. By fi rst assuming the

pressure wave to be steady, some information concerning
We consider now a simplified form of the jump equa. the properties of plastic stress waves can be obtained.

don gisen by eq 7.15. We flrst define the wavelength By not assuming the wave to be steady, a falrly precise
- . to be such that higher order derivatives In a become determination of pressure wave attenuation and profile

neglIgIble behind the wave. ThIs means that behInd Ø~ ~f 18C can .~~

wave front, the following conditions hold: For steady waves, a measure of pressure jump, density
change and wave speed can be readily found at a poInt

d ‘an ’ 
in the medium. AIso, a measure of the pressure profi(e

~~a~’ I — J  *0 within the wave can be made. As was demonstrated,
~8 1 ~ the wave speed varies strongly with the wave intensity.

r 1 2 
• Plastic waves are generally considerably slower thant ~ I .~! I, .L (a), etc =0 elastic waves, and for the most part , wave speed tends[~.2J ~ 2 to increase with wave intensity for pressuresabove 10

bar.
In this way, we study the condItIons behInd the wave A good deal more Information can be obtained by

where the motion has stabilized so that hIgher order not assuming the stress wave to be steady and solving
derivatives are no longer significant. Th Is assumption the equations of motion and mass conservation directly

13
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Such a solution was done by the finite difference method,
since the field equations were nonlinear . LITERATURE CITED
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fectiveness of the SLUFAE system for clearing snow Wisoteki , j. and W. Snyder (1966) A study of the effects of
covered mine fields may be severely impelred by a OV~~~~ IS PUTISWs. Uffl Y
shallow snowpack. A 6-in, snowpack could attenuate
most of the 21 .bar pressure generated by the air blast
of the SLUFAE ballistic. FIgure 9 shows that within 3
In. the pressure Is reduced to about 2 bar, and another
3 in. of snowpack would attenuate this even further.

Figure 9 also indicates that increasing the overburden
pressure from 6 bar to 21 bar does not produce a cci-
respondIng Increase In effectiveness. By 3 In. into the
snowpack, most of the pressure advantage of the 21
bar surface pressure is lost This result may Indicate
that a smaller system generating a lower overburden
pressure will work as well for either Initiating avalanches

— or clearing wow-covered mine fields.
In plastic waves, frequency apparently does not play

a dominan t factor In determinIng wave attenuation rates.
Th Is Is not so for elastic waves, where high frequency
waves tend to dissipate more rapidly than lower frequen-
cy waves. -The word elastic isa misnomer here, since
some sort of Internal dissipation mechanism must be
responsible for she difference In attenuation rates. These
low Intensity waves are elastic In the sense that no ap-
parent plastic deformation Is assocIated with these waves. -:
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