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NOMENCLATURE

a density ratio p,, /p, eq 2.2
(] dummy density ratio variable, eq 4.11
[} differential operator, eq 7.3
n steady wave coordinate, eq 4.3
[ density
0 normal stress
4 dynamical constitutive term, eq 2.4
¢ material constant for snow
w frequency
a9 initial average void radius in snow
A material constant for ice
Ay,Az A, coefficients in pressure wave jump equation, eq 7.16
bo body force
8y,8,,C, coefficients in pressure wave jump equation, eq 7.16
C material coefficient for ice
E, rate modulus, eq 2.7
E, acceleration modulus, eq 2.8
E, secant modulus, eq 5.3
Ey tangent modulus, eq 2.6

f,f,f5,f3,9  functions defined by eq 6.8-6.12
integrand function, eq 4.12

function defined by eq 4.10

material coefficient for snow

pressure

dynamical stress term, eq 2.3

material constant for ice

time

particle velocity

stress wave speed

deformed coordinate position of particle
undeformed coordinate position of particle
angular velocity

high-rate yield stress for ice, eq 2.5
coordinate position of stress wave front.
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Superscripts

time derivative

derivative with respect to 0

value just ahead of wave

value just behind wave

value at time point #j, i.e. ¢

steady value behind steady pressure wave

&™ & * o

Subscripts

initial value

value at coordinate position #i, i.e. at X
matrix material

in x-direction or x-<component.




AN ANALYSIS OF

PLASTIC SHOCK WAVES IN SNOW

Robert L. Brown

). INTRODUCTION

Stress waves in snow are a problem that has not been
studied as extensively as other subjects. Practically all
of the previous work on the mechanical properties of
snow has been restricted to quasi-static conditions in
which inertial effects are negligible. Napadensky (1964)
first investigated the dynamic properties of snow under
the effects of shock waves. More recently, johnson
(1978) considered in detail the propagation of elastic
sonic waves in snow, Wakahama and Sato (1977),
Wisotski and Snyder (1966), and Gubler (1977) all
conducted experimental investigations of stress waves
in snow. Mellor (1977) reviewed previous work on
shock waves in snow, as did Johnson (1978). But to
date virtually no work performed has utilized a material
constitutive equation to investigate the propagation
of plastic stress waves in snow. This is not surprising,
since a valid constitutive law for snow has been lacking,
and consequently previous studies have been restricted
to the use of mass and momentum balance principles.
However, once a constitutive law is found to describe
accurately the behavior of snow under rates of loading
characteristic of stress waves, a much more detailed
analysis of stress waves can be made.

A number of problems require a detailed knowledge
of the response of snow to shock waves. The relative
effectiveness of in-snow and airborne explosives for
initiating avalanches is one such example. To date the
relative effectiveness of explosives detonated in the air,

or in snowpack, or on the ground has not been determined.

Avalanche experts still do not agree on optimum ex-
plosive speed or charge size. Another case in which
stress waves are generated is projectile impact. A re-
lated problem is avalanche impact on structures. In all

of these problems, solution of the usual balance prin-
ciples can yield some information; but without an ap-
propriate constitutive law, such questions concerning
stress wave attenuation or alteration of stress wave
profile cannot be answered.

At this point some definitions are in order. An elastic
wave is one in which no internal dissipation takes place.
The material responds elastically to the stress wave, and
no attenuation can be attributed to inelastic deformation
of the material. A plastic wave is one in which material
yielding and viscous flow occur. This is often referred
to as a nonlinear wave. This is an inexact definition,
however, since material nonlinearity can occur in the
absence of material yielding and plastic flow. However,
since at high deformation rates snow remains practically
linear up to the point where yielding begins, any dif-
ferentiation between plastic waves and nonlinear waves
is meaningless.

In stress waves, the jump in a variable (such as strain,
pressure, and energy) is defined as the difference between
the values of the variable just in front of and behind the
wave front. Much of the previous analytical work on
stress waves has been restricted to the determination of
these jumps. A shock wave is a wave in which the dis-
placement of a particle is continuous across a wave front
but in which the particle velocity experiences a jump.

An acceleration wave is one in which the particle velocity
and displacement are continuous across a wave front,

but in which the acceleration has a jump across the wave.
The surface representing a wave front is often referred

to as a singular surface, since discontinuities in acceleration
and/or velocity can occur at this surface.

A steady wave is defined here as one in'which the
wave speed propagates at a constant speed V. One can
show that the wave amplitude remains constant for such
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a wave. Even it plastic waves such a condition can
be established, although generally this condition is -
short-lived. Steady waves have been studied extensively
since they are mathematically easy to investigate. Non-
steady waves are simply those waves that lack the
characteristics of steady waves; i.e., their amplitudes
may either grow or attenuate.

In Section I1, a constitutive law developed by Brown
(1978a), and used throughout the rest of this report,
is briefly discussed. The compatibility laws and jump
equations associated with stress waves are then developed
in Section l11. These laws are applicable to all stress
waves irrespective of the material properties. In Section
1V, the governing equations for steady shock waves in
snow are developed by utilizing the constitutive equation
presented in Section {i. in Section V, the theory
presented in Section IV for steady waves is then com-
pared with existing experimental data and some con-
clusions are made. Sections VJ-V1I) are devoted to
nonsteady waves. In Section VI, the governing equations
are developed, and a direct numerical solution to these
equations is then made and compared with existing data.
In Section V||, jump equations for nonsteady waves
are developed that incorporate the constitutive law for
snow. Section VII shows that these equations are ex-
tremely complicated for a material such as snow. Then,
in Section V111, some simplifications of these jump
equations are made so that they will be more amenable
to solution. No solution is attempted, however, since
a solution by the finite difference method has already
been made in Section VI. However, Section VIl might
form the basis for future work on shock waves.

1l. A CONSTITUTIVE LAW FOR SNOW AND
BALANCE PRINCIPLES

Brown (1978a) formulated a constitutive law for
volumetric deformations of snow. This formulation
was compared with experimental data for strain rates
ranging from 105 s’ t0 105! and was found to
accurately characterize the behavior of snow under
large volumetric deformations. The constitutive law
(Brown 1978a) is given as a relation between the pres-

sure p and the density ratio a:
] (-a4)?
” '3-;'“ (;‘:.T) l"soq“ch(;?a-")l
Iexp(-o-‘—)'ff-ﬂ(a.&.&) (2.)
ay) a da

where a is defined as

a= Py /ﬂ (2.2)

Pm and p are, respectively, the mass density of ice and
snow, and g superposed dot implies a time derivative.
S0, C, A, ) and ¢ are all material constants, and g is
the mean initial pore radius of the snow. Q and r2 are:

o=-=;,.;((.._nz/3<.m)-v,a=

((a_,,-ua_a-m ) (23)
2= Pmaozl (3(0!0“)2’3) . (24)

The variable Q is significant at extremely high rates of
deformation and accounts for the intergranular dynami-
cal effects that must be taken into account for high
strain rates such as those generated by shock waves.

The constitutive law was derived by using a pore
collapse model similar to the one used in powder metai-
lurgy to study porous metals. The matrix material, ice,
is modelled as a rate-sensitive viscoplastic material, and
the collapse of a spherical void surrounded by ice under
pressure is calculated. This solution is then used to
describe the behavior of medium-to-high density snow,
with the final result being eq 2.1. The constitutive law
has been compared with the data of Abele and Gow
(1975) and found to represent accurately the behavior
of snow subjected to pressures which result in large
increases in density. The constitutive law may be con-
sidered valid for initial densities greater than 300 kg
m-3 and values of a ranging from -10% s t0 104 5.
The material coefficient / and the material constant ¢
must be determined by the snow type and temperature,
whereas S, C, and A are fixed by the properties of ice
but are still temperature dependent.

Some simplification (Brown 1978b) is possible at
high strain rates. This results in

p= 2;! elsalag) |, (a-g-‘l—)ﬂ’%%(a.i a).
(2.5)

This simplified equation is obviously mathematically
more tractable than eq 2.1, and in some situations can
be used. Y is a high strain-rate yield stress for poly-
crystalline ice and is therefore fixed by the properties of
polycrystalline ice.

In the following sections, differentiation of eq 2.1
and 2.5 will be necessary. This can be done in terms of
the moduli:
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£2=%. (28)

Ey, E,, and E) are, respectively, the tangent, rate, and
acceleration moduli. The derivatives 3p/3.X and dp/dt

then can be shown to have the forms:
¥ - 3,0, % 29
o ' X ‘a 29)
%= -EqatE a+Eqa (2.10)
where X is a coordinate variable.

Consider now balance laws for stress waves. We use
here strictly a mechanical theory and do not study
restrictions invoked by the energy law or the second
law of thermodynamics. The two laws we consider are
those of mass balance and momentum balance.

The momentum balance for a plane wave propagating
in the X direction requires

90, o
Fakat = pp — 2.11
ax *Po bo =20 or ( )

where b is the body force acting in the X direction and
v is the particle velocity.

If the state of stress is dominated by the pressure p,
and if body forces are negligible, eq 2.11 can be reduced
to:

=po W ;
:aixz po 2. (2.12)

The mass balance equation (or continuity equation) is

PP, - 2.13
p%+3X o
Since @ = p, /p = poag/p, we can get
v .1 % (2.14)
axX ag or

as the form of the mass balance equation which is used
m’

i1l. COMPATIBILITY LAWS AND JUMP
EQUATIONS FOR STRESS WAVES

Consider a one-dimensional stress wave propagating
through a medium such as snow. We define as 2 wave
(or wave front) a smooth one-parameter fami'y of points
Y (1), -0° < t < o, such that Y (t) gives the material
point (or particle X) at which the wave is located at
time 2. X is the position of a particle in the reference
configuration, which here will be the undeformed con-
figuration. x = x(X, t) is the position of a particle X
at time ¢ and is therefore the deformed position. The

Intrinsic velocity of the wave is

=d
v-4 Y () (3.1)

which is the velocity of propagation relative to the un-
deformed position of the body.

Let f be any variable, say density or stress. Assume
(X, t) is a function of position X and time ¢ and is of
class C5 in X and t except at X = Y, where f has a jump
discontinuity; i.e., the values of f just in front of and
behind the wave front (X = Y) have different values.
We denote this jump by the expression [f], or

(A=r-r 3.2)
where

 =limf(X,t)
X=>Y
X<Y (3.3)

M =limf(X,1)
X>Y
X>Y. (3.4)

f* and £~ represent, respectively, the values of f just
in front of and just behind the wave front. For instance,
in a shock wave we would have [v] #0, [v] # 0, and
[x] = 0; i.e., the particle velocity and particle acceleration
would undergo a jump across the shock wave, but par-
ticle position would not. The above equations were all
defined with the assumption that V> 0, so that the
wave is propagating in the positive coordinate direction.
Now, consider derivatives of [f], since thes> will be
used later in the analysis of shock waves. Assume f(X, t)
has a jump discontinuity at the wave front, X = Y (t),
but otherwise is continuous and differentiable. Thus,
clearly the jump [f] is a function of time only through
the position X = Y(t). The derivative of [f] follows from
the definition of the jump:
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X dat
(v v ar
X ar

from which we get

gavfElE e

However, if we assume £ is continuous across the wave
front, then [f] =0, and eq 3.5 gives

Rt

Equation 3.6 places restrictions on the jumps in the
derivatives of f if f is continuous at Y. Equation 3.6 is
called Maxwell’s theorem, although both eq 3.5 and
3.6 are also often referred to collectively as the com-
patibility conditions for singular surfaces.

The compatibility equations can now be applied to
the balance laws. Recalling that a shock wave generates
jump discontinuities in v, ¥ and 3v/aX, whereas x itself
is continuous across the wave, Maxwell’s theorem gives

v] =-v [ g_l . 3.7)

To calculate the pressure jump across a pressure wave,
integrate eq 2.12 from X, to X, where X, < Y(t) € X,,
to obtain

el (x..:)'-% ;"p,ux.

Or, by breaking the integral on the right-hand side into
two parts, we get

"(x' ‘)” ‘x.' ') o

-4- y(t) . x‘ .
z (L p,xdx”;mp,xdx). (3.8)

Now, taking the limits of X, = V=(t), X, = V* (t),
and using eq 3.1 and Leibnitz’s rule to differentiate the
integral on the right-hand side, we obtain

lp] =po V [x] =po V [v]. (3.9)

This equation is a familiar jump equation that relates

the pressure jump across the wave to the jump in the

particle velocity and wave speed. A similar procodure
applied to eq 2.14 results in

vl = ;—o'f [a]. (3.10)

Therefore, we see that the material has a jump in a if the
wave is a shock wave, since [v] is nonzero. Combining
eq 3.9 and 3.10 gives

2
() = -29Y (o] 3.11)

which is a well known relationship for shock waves
relating pressure jump across a wave to the jump in den-
sity ratio.

Evaluating eq 2.12 both ahead of and behind the
wave front, then letting X approach Y(t) and subtsacting
these two forms of eq 2.12 lead to:

[%] = -po V1. (3.12)

Equations 3.9 - 3.12 are all widely recognized jump
equations for stress waves and are applicable to both
steady and nonsteady waves.

We now analyze in detail the propagation of steady
waves before considering the details of nonsteady stress
waves.

IV. STEADY SHOCK WAVES IN SNOW

To investigate further the properties of steady waves
we now return to the jump equations, eq 3.9 - 3.11.
If the material is at rest just prior to the stress wave
arrival, the jumps [p] and [v] equal the values of p
and v as the wave passes. Denoting the steady values
of a and p behind the wave by the asterisk, *, eq 3.12
and 3.9 can be put in the following respective forms:

a* = ag- lp‘ (4.1)
poV?
1
V= _p*, 4,
P 4.2)
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From here on an asterisk will denote the value of a
variable behind the wave, i.c., in the steady condition
after the wave has passed. The terms v, a and p refer to
the values of the respective variables at any point in the
wave. As indicated earlier, eq 4.1 and 4.2 result strictly
from consideration of the balance principles and do not
involve the material properties in any way. We now in-
vestigate the effect of material properties on the momen-
tum balance equation.

In a steady wave, the solution to the balance equations
may be expressed in terms of the single variable

n=X-Vt. (4.3)

Substituting the constitutive law (eq 2.1) into eq 3.11,
and changing variables from X and ¢ to n by use of eq
4.3 we find after some algebra

ng —(a-ag) = Le"'l"o ln( 1)

[2056-c1+¢ (im_&l))’_) l

V2e d o
-T d—:(o(&. d, a)). 4.4)

The prime denotes differentiation with respect to the
variable 7. After integrating the above, we get

poV? _%
-—,a—o—(c-ao)(a’ -;(m))

02 Jouadh ()

(So-C1C In [LAVE2\{  o/20 4o,
a(a-1) “s

The above equation describes the density ratio jump
across the wave, once the wave speed is known. How-
ever, this is an integro-differential equation and would
have to be solved by a numerical method or some other
approximate method.

in cases where strain rates are not extremely large,
eq 4.5 would have to be used, since it makes use of the
more complete constitutive equation, eq 2.1, Such
would be the case for low-frequency, large-amplitude
waves,

If one is considering shock waves, the simplified
constitutive law, eq 2.5, can be used in place of eq 2.1,

since shock waves generally produce exceptionally large
strain rates. Substituting eq 2.5 into eq 3.12, we obtain

oV’(C-C.) 2Y. l‘ﬂ - .l.o
@y c-l

- Howia) (4.6)

or, upon integrating,

_ V2 (eap) [
T( -..2_(a+ao))

SRR

-- L2 (0,4, o)

e 20
a-

a9 3

') ¢ aleo 40 @4.7)

In steady waves, @ = 0 and & = 0 both ahead of and
behind the wave; therefore [Q(&, d, a)] vanishes. Sub-
stituting eq 3.9 into eq 4.7 for steady waves then gives

(2/ Yo I" In (a—l) e®oleo da)
(a'z-%'i(a*m ))-' : (4.8)

Carrying out the indicated integration results in
p. = ( 0‘02_ % (a.mo)) B

{g, (a%)-e® o0y (a*-n} (4.9)

where

91(a*) = -%(_ln (%) ™ %2041 (ag) e*) d}

(ln ._+'§ o) (:)"-1). 4.10)

Equations 4.9 and 4.10 give the pressure jump across
the wave. Equation 4.6 can then be used to calculate the
wave profile, i.e., the variation of the density ratio a
inside the stress wave. This can be accomplished by

ok,

P




inverting eq 4.6.

n=po—9 (4.11)

ag F(ﬁn aon V)

where 7 is the variable defined in eq 4.3, and

e /Yo .6 P8 /a0
suiddee _,3f(ﬁ) £ol ( -) ”
2 1/2
+ Foen (70|
(4.12)

Setting @ = a* in eq 4.11 then gives n,, the length of the
wave, but this equation can also be used to calculate the
a-n profile during the passing of the wave.

V. COMPARISON OF STEADY-WAVE THEORY
WITH EXPERIMENTAL RESULTS

Napadensky (1964) conducted an extensive testing
program on shock waves in snow at Camp Century.
These experiments involved snow with densities generally
higher than 300 kg m3. The stress waves were generated
by using a low-density explosive to drive a metal plate
into solid cylindrical specimens. By varying the amount
of explosive and the mass of the driver plate, a wide
range of load conditions was achieved. The explosive
technique, however, usually has a considerable amount
of experimental scatter,

A streak camera was used to record the motion of
etch marks on the snow specimen and the driver plate.
In this way, both particle velocity v and wave velocity
V were recorded photographically. Since the speed of
the camera was such that the exposure time was only
about 5 us, fairly good time resolution was achieved.
However, as indicated by Mellor (1977), large errors
were incurred in the experimental program. There was
very poor resolution at the lower pressure levels, and
it is questionable whether or not Napadensky’s reduced
data accurately reflected the actual stress wave para-
meters. However, for the intermediate range of stress
wave pressures, the data appeared reasonable, since the
streak film recordings appeared to have both good time
resolution and ability to record particle displacement.

The material coefficients used in the constitutive

law, eq 2.5, as determined by Brown (1978a, b), are

Yo =300 bar
J=3.07
¢=5.28, (5.1)

Figures 1 and 2 give a direct comparison of the theory
and Napadensky’s experimental results, and as can be
seen the two compare fairly well. Figure 1 shows the
pressure jump across the wave as a function of the den-
sity jump Ap caused by the wave. Figure 2 shows the
variation of plastic wave velocity V with ‘particle velocity
v*. For particle velocities above 20 m s™', the data and
theory compare nicely, but below that, they deviate
significantly. The theoretical curve terminates at the
point where the wave ceases to be fully plastic.

The data in Figure 2 at the lower particle velocities
are questionable. Napadensky shows the plastic wave
velocity decreasing to zero as the wave intensity (as
indicated by v*, the particle velocity) decreases, and
this result defies physical reasoning. For instance, as
the intensity of a shock wave decreases, the severity of
the plastic deformation should also decrease. As the
amount of the plastic deformation becomes less sig-
nificant, the pressure wave should then begin to acquire
characteristics of an elastic wave. Equation 3.11 can be
used to find the wave speed:

y2 =% Bp* (5.2)
po Da*

If Ap*/Aa* does not approach zero as the stress wave
intensity decreases, V2 must remain finite at low plastic
strains. One would expect Ap*/Aa* to acquire a value
close to the elastic modulus. This argument is also
supported by other analytical work, such as that of
Coleman et al. (1964), on the theory of wave propagation
in nonlinear materials. In particular, we note the familiar
equation

=Ep/p0 (5.3)

where for shock waves £ is the instantaneous secant’
modulus, and for acceleration waves Ep is the instan-
taneous tangent modulus. In either stress wave, E P
increases as the degree of plastic deformation decreases,
i.e., as a smaller percentage of the material is deformed
plastically. As a result, Ep approaches £, Young's
modulus of the material, and V thereby increases to a

value close to the elastic wave speed for weak plastic waves.

In the case of strong stress waves that produce com-
plete plastic deformation of the matrix material and
large jumps in density, the work-hardening characteristics
of the material become important in determining the
resulting wave speed. In particular, Ep increases as a
result of densification and work-hardening effects,
thereby resulting in larger values of V as indicated by
eq 5.3. Consequently, a very strong plastic wave has
a large wave speed. The above reasoning justifies the
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Figure 1. Pressure jump across wave as a function
of density jump.
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minimum caiculated value of V shown by the curve in
Figure 2. This minimum is located near the transition
zone between partially plastic and fully plastic waves.
Figures 3 - 5 present results of parametric studies
of stress waves in snow. Figure 3 shows how the den-
sity ratio varies through the front of the stress \" ave.
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Figure 2. Variation of plastic wave velocity with par-
ticle velocity.
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Figure 4. Pressure jump across stress wave as
a function of density jump.

For the less intense wave, a shorter wavelength is required
to generate the acceleration forces necessary to produce

the compaction to decrease a from 3.0 to 2.0.
Figure 4 illustrates the variation of pressure jump
[p] with density jump for a range of initial densities.

Note that as the initial density is increased, the curves
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Figure 5. Variation of plastic wave velocity
with pressure jump across wave.

are translated upward. Figure 5 also gives a very dramatic
demonstration of the effects of work-hardening charac-
teristics of snow. At low pressures, the plastic wave
speeds are as expected; i.c., wave speed increases with
density. But at higher pressures, this relationship is
inverted, since large changes in @ must accompany the
large pressure jumps for snow with initial low densities.
Consequently, there is considerable work-hardening,
which has a stiffening effect, and this results in increased
wave speeds. Snow with high initial densities would

not undergo as much work-hardening.

VI. A NUMERICAL SOLUTION TO THE
NONSTEADY WAVE PROBLEM

If the wave is nonsteady, the wave front profile, am-
plitude and wave speed may all change with time.
Material nonlinearity and internal dissipation mechanisms
are accountable for this. In some cases, the wave am-
plitude may actually grow, although such a situation
is generally short-lived. Coleman et al. (1964) have
studied the properties of nonlinear waves in some detail.
Since that time considerable effort has been devoted to
the study of stress waves in nonlinear or inelastic mate-
rials. More recently, Nunziato and Waish (1978) have
investigated the propagation of waves in uniformly dis-
tributed granular materials. In their paper they indicated
that, in a granular material, the only density change
induced by a shock wave must come from compaction
of the matrix material and not from reduction of void
volume. This rssult contradicts the results of this study
(eq 3.10) and the experimental results of Napadensky
(1964).

We develop now the wave equation for a material
with a volumetric constitutive equation of the form
given by eq 2.5.

Differentiating eq 2.14 with respect to time, and then
substituting the equation of motion eq 2.12, yield

Y il i o e T T T
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;;ix_:_:% 2. (6.1)

Then, substituting eq 2.5 directly in the above equation,
we get, after some rearranging,

E .32_°+.aﬁ.a£=.ﬂ.a.2_a
Tax2 XX ag o2

+ 0 g da . da 6.2
= B (6.2)

In order to solve this equation, a finite difference solution
can be used. This equation is extremely nonlinear, since
Ey, E,, and E, are all functions of a, a, and a. There-
fore, convergence and stability problems are difficult to
handle. A central differencing technique is used. At
position X; and time ¢;, let a have the value a}. Then

the difference forms of the time and spacial derivatives

of a become

i+ _ j-1
e e (6.3)
24t
1 i vai=!
b i (6.4)
(ar)?
%} o}l (6.5)
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(6.6)

The form shown in eq 6.6 is used for the second order
derivative, since this averaged derivative results in im-
proved stability characteristics of the finite difference
solution, as indicated by Ames (1965).

In solving the problem, a double modulus was em-
ployed. During pressure buildup, eq 2.6 gives the ap-
propriate tangent modulus, which becomes

2Y/e /0% (q) 2y
- (]
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where
1 [ a ;
f, (c_‘)+(1 “G_O) In ( a_') (6.8)
fz = ‘3‘3)_-0-%19). (5.9)
2.1 A :
f3 = T a7,3+ pic (6.10)
g=(a-1)*Po™B (6.11)
f=(a~1)"1P o8, (6.12)

However, once a maximum pressure is reached, and un-
loading begins, the static part of £; must decrease in
order to avoid a large elastic rebound in the finite dif-
ference solution. This rebound produces an artificial
oscillation in the solution and is a common problem
with finite difference methods. Various methods have
been used to reduce this form of instability. The easiest
way to facilitate this is to decrease f; by a factor of 1/2
when a becomes negative. A factor of 1/2 is somewhat
arbitrary, but this value was found to be sufficient to
avoid any significant volumetric rebound.

in order to demonstrate the solution, we consider
the particular problem of an air blast directly over a
snow covered ground surface. We assume the blast
produces an overburden pressure of the form

p=%P‘ (1<cosWt) O<Wt<2n

p=0 Wt>2n (6.13)

and calculate the attenuation of the wave as it propagates
into the snowpack. The frequency w = W/2n js deter-
mined by the speed of the explosion, and the overburden
pressure p* is determined by explosive size and proximity
to the snowpack surface. Of particular interest is the
response of a snowpack to an overburden pressure of
about 20 bar since this is what the SLUFAE (surface-
launched unit fuel air explosive) weapon system gen-
erates.”

Figures 6 - 11 show results of the finite difference
solution of the nonsteady wave problem just described.
Figures 6 and 7 illustrate how the wave form is altered
asit prop?m into snow with an initial density of
350 kg m™. The surface loading has a frequency of
w = 5000 Hz and an amplitude of p* = 12 bar. Figure

*D,R, Farrell, USACRREL, Private communication.

6 shows the temporal variation of the density change
for points at 0, 1, 2, 5, and 8 cm into the snowpack.
Figure 7 demonstrates the density profile for various
times. Note how the wave spreads and the density rates
p decrease as the wave propagates further into the snow-
pack.

Figures 8 and 9 make a direct comparison of three
different pressures. Figure 8 compares wave attenuation
in terms of density jump and Figure 9 shows the pressure
attenuation. As can readily be seen, the advantage of
the higher pressures is largely eliminated within the
first 10 cm. This merely points out the substantial
energy absorbing capability of snow.

As expected, the highly dissipative characteristics of
snow rapidly change the stress wave as it propagates
through snow. For pressure waves with a magnitude in
excess of 5 bar, the pressure amplitude reduced to a
small fraction within 10 cm. This result is to some
extent verified by Wisotski and Snyder (1966). In the
tests reported by Wisotski and Snyder, one-pound
spherical Penolite charges were detonated in deep mid-
season snowpack. Piezoelectric gages were used to
record arrival times and pressures to within 0.15 m of
the charge. These transducers apparently had a broad,
flat frequency range, so that the recorded results should
be meaningful. They also observed that the wave speed
close to the charge was significantly slower than further
from the charge. However, there was a great deal of
scatter in measurement of arrival times, so no precise
measurements were made. But the pressure readings
for a 6-bar pressure wave showed good agreement with
the results shown in Figure 9.

Figure 10 shows the variation of the stress wave speed
as the wave propagates into the snow. Initially the 21-
bar wave travels at a significantly higher speed, but this
situation quickly changes. The variation in stress wave
speed is due to a combination of factors. The wave
speeds initially decrease as the waves attenuate and work-
hardening effects become less significant. However, once
the wave intensity is reduced to a critical value, dissipative
effects likewise become less significant, and the wave
speed begins to increase. These results are in close agree-
ment with those shown in Figure 4 for steady waves.

Figure 11 shows the effect of wave frequency on
attenuation. One can readily see that higher frequency
waves do attenuate more quickly, but this effect is not
all that great. Of the three waves shown, the difference
in pressure jump by the 5-cm position is only about 20%.
The frequency difference is partly erased by wave spreading,
and probably the higher frequency waves spread more
quickly and therefore experience a quicker reduction
in frequency content.

It is also possible to study the growth and decay of
shock waves by considering the jump equations. These
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Figure 6. Variation of density jump with time due to
surface induced shock wave.

Figure 8. Density change due to surface loading of
snowpack.
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Figure 9. Variation of peak pressure with
distance from snowpack surface.
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Figure 10. Variation of shock wave speed with dis-
tance below surface.

equations cannot give as much information as the direct
approach just discussed, since stress wave profile and
wave length cannot be calculated from the jump equations.
However, the direct approach using the finite-difference
technique is computationally a time-consuming and
expensive means of solving the problem. If wave at-
tenuation is sought, there should be more convenient
means of doing this. z

Vil. JUMP EQUATIONS FOR NONSTEADY
SHOCK WAVES

For nonsteady waves, the rate of change of the wave
amplitude must be calculated to properly characterize
the wave. The amplitude of a shock wave can be de-
scribed in terms of either [p] or [a], since both of these

give 2 measure of the wave intensity. First, we investigate
the variation of [p]. Lettingf=p ineq 3.5,

:-;bl = V [3p/aX]+{dp/at]. (1)
Then using eq 2.9 and 2.10, we get
goi-- (e e (] 0

where 8/8¢ is the differential operator

Figure 11. Effect of explosive speed on attenuation
of shock wave.

6 V.a_+ a
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Equation 7.2 gives the growth of the pressure wave in
terms of the three moduli and the derivatives of aa
and a. Unlike elastic waves, the condition for growth
or decay of the wave is a complex function of the
three moduli and the spatial and temporal variation of
@, @ and & behind the wave.

Now, assume that the stress wave is entering an un-
deformed medium, such that p*, v*, 3p*/aX are all
zero; then [p] is just

] =p° (7.4)

Similar relations hold for v* and 3p°/aX. In this case, !
the jump of a product, [ab], is equal toa’ &', i.c., the ‘
product of the values behind the wave. Using this result,

we see that eq 7.2 becomes

& (3) "E-(s: E’(s ) e

Equation 7.5 indicates that if conditions behind the wave
are steady, i.c., a is constant, dp ~/dt vanishes, and the

wave amplitude does not change with time. This is not e
the case with nonsteady waves. Eg

Now, develop a jump relation for {a]. Equation 3.10, i
eq3.Swithf=aand f=v,eq3.11,and eq 2.14 can be o

combined to yield, after considerable algebra, she relation
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We now eliminate dV/dt and [3p/aX] from eq 7.6 so
that the equation can be used to describe the wave decay
rate d{a] /dt.

We first consider V. From eq 3.11, the wave speed has
the form

2=kl
20 la)
Differentiating this gives
5.9 /1 d
12 % po@ﬂfl# [a]) (1.7)

Since [p) =p" =p (0" a" @), d [p] /dt can be expressed
in the following form:

2= () o (B 10
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which can in turn be written in terms of the moduli
defined ineq 2.6 - 2.7:
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Then, substituting eq 7.8 into eq 7.7 gives
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where £ is the secant modulus, le)/lal.
Calwlaunowmexpmdon for [ap/aX] ineq 7.6.
From eq 2.9, [ap/aX) can be expressed as

- e
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Then eq 7.6 becomes
2 4 o). fel y- (*r v2 >[ax]
[axl [ax] (7.11)

where V is given by eq 7.9.
The compatibility condition can be used to derive
the two equations:

[ax] gl dlaxl o az] e
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Although not shown, an equation for [32a/aX?] can
also be developed by using the compatibility conditions
presented in Section lll.
If we substitute for [92a/aX?) and [3a/dX] ineq
7.13, we can then get:

£ [aa) .52 0 ). v|de
po 10X o 9t Yot |ax | ax2
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Equation 7.11 then becomes, after substituting for
(3a/aX] and (da/ax],

2V d[a+ u'*_z a.
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Equation 7.9 can be substituted into eq 7.15 to eliminate
V; and this results in an equation which contains the
terms d{a] /dt and d[a] /dt. Again, the compatibility
equations can be used to eliminate these terms. For the
sake of brevity, this will not be done here. Eventually
we can arrive at an equation of the following form:

> Lo "[u]"’dlax]“ = [ax]

where A,, 8,, and C; are all functions of (a], €7, £7,
E3,and V. The above holds for any shock wave propa-
gating in a material for which the constitutive law has
p as a function of a, @ and a.

In the present form, eq 7.16 is quite complicated and
therefore not very amenable to solution. We now con-
sider some approximations, which put the formulation
in a simpler form,

Viil. REDUCED JUMP EQUATIONS

We consider now a simplified form of the jump equa-
tion given by eq 7.15. We first define the wavelength
to be such that higher order derivatives in @ become
negligible behind the wave. This means that behind the
wave front, the following conditions hold:

A da] £o
al']'lcx]

al 41 etc.=0.
ox?| o

In this way, we study the conditions behind the wave
where the motion has stabilized so that higher order
derivatives are no longer significant. This assumption

(8.1)

then simplifies the mathematics and greatly facilitates
the solution of the problem. This type of wave we refer
to as a semi-steady wave. This type of wave should give
a better approximation than assuming the wave to be
steady.

Equation 7.15 reduces to the following form:

2V d, = Ex,v2\[ 3
4 2 o] = l&.j.w(po %)[37]. (8.2)
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From eq 7.7, we can get

V= Ve (] (8.3)

Fogay €D Zlal.
Then eq 8.2 becomes
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Equation 8.4 could be solved rather than eq 6.2. This
latter formulation would give a computationally much
more efficient solution, but some information would .
be lost. For instance, no knowledge of the stress wave 3
profile as shown in Figures 6 and 7 can be obtained by _ £
solution of eq 8.6. This equation is primarily useful for i ‘f

evaluation of stress wave attenuation in terms of the
variable [a].

DISCUSSION AND CONCLUSIONS

The foregoing sections have considered the problem of
a plane pressure wave propagating through unstressed
medium-to-high density snow. By first assuming the !
pressure wave to be steady, some information concerning :
the properties of plastic stress waves can be obtained. !
By not assuming the wave to be steady, a fairly precise
determination of pressure wave attenuation and profile
change can be made.

For steady waves, a measure of pressure jump, density
change and wave speed can be readily found at a point
in the medium. Also, a measure of the pressure profile
within the wave can be made. As was demonstrated,
the wave speed varies strongly with the wave intensity.
Plastic waves are generally considerably slower than b
elastic waves; and for the most part, wave speed tends 3
to increase with wave intensity for pressures above 10
bar.

A good deal more information can be obtained by
not assuming the stress wave to be steady and solving
the equations of motion and mass conservation directly.




Such a solution was done by the finite difference method,
since the field equations were nonlinear.

Wisotski and Snyder (1966) observed, as did Gubler
(1977), that charges detonated over the snowpack
produced much larger pressures within the snowpack than
did a charge placed in the pack. Apparently much of
the charge energy is dissipated in the snowpack by melting
and vaporization in the immediate charge neighborhood.
Such thermodynamic processes have tremendous potential
for absorbing energy. This would not occur for an air-
detonated charge. An additional reason for the relative
effectiveness of air-detonated charges is the significant
difference in the wave-attenuating capabilities of air
and snow. A pressure wave propagating several meters
in snow would go through several orders of magnitude
more attenuation in snow than in air, since air reacts
elastically to pressure waves.

The superiority of air-detonated explosions could be
put to good use for initiating avalanches. The present-
day practice consists of placing the charge in the snow-
pack, which apparently is a very inefficient method.
Quite possibly a smaller, more economical, version of
the Army’s SLUF AE system could be developed for
avalanche control. Now that the 1035-mm recoilless
rifle is being replaced by howitzers in many ski areas,
such a system might be adapted to the howitzers.
Economics, however, might be a limiting factor.

The results of this study also indicate that the ef-
fectiveness of the SLUF AE system for clearing snow
covered mine fields may be severely impaired by a
shallow snowpack. A 6-in. snowpack could attenuate
most of the 21-bar pressure generated by the air blast
of the SLUFAE ballistic. Figure 9 shows that within 3
in. the pressure is reduced to about 2 bar, and another
3 in. of snowpack would attenuate this even further.

Figure 9 also indicates that increasing the overburden
pressure from 6 bar to 21 bar does not produce a cor-
responding increase in effectiveness. By 3 in. into the
snowpack, most of the pressure advantage of the 21
bar surface pressure is lost. This result may indicate
that a smaller system generating a lower overburden
pressure will work as well for either initiating avalanches
or clearing snow-covered mine fields.

In plastic waves, frequency apparently does not play
a dominant factor in determining wave attenuation rates.
This is not so for elastic waves, where high frequency
waves tend to dissipate more rapidly than lower frequen-
cy waves. ‘The word elastic is a misnomer here, since
some sort of internal dissipation mechanism must be
responsible for the difference in attenuation rates. These
fow intensity waves are elastic in the sense that no ap-
parent plastic deformation is associated with these waves.
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