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ABSTRACT

Numerical methods are developed for constructing body-fitted
curvilinear coordinate systems for the region surrounding an arbitrary
three~-dimensional body. Finite difference schemes are investigated
for solving the Navier-Stokes equations on body-fitted coordinates.

Solutions are computed for flow about a sphere and a finite wing.
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1. Introduction

The research efforts of the past three years on three~dimensional
laminar flow can be divided into two areas. The first task was the
generation of a body-fitted coordinate system by solving a system of
elliptic equations. The theoretical basis for the coordinate generation
scheme appeared in a paper by Mastin and Thompson [1]. Although the
method was developed for the region about a single body, the capability
exists for generating coordinate systems for nearly any bounded three-
dimensional region. It may be necessary to partition the physical
region into simpler subregions. This partitioning, which is essential
for very complicated regions, has proven to be easily implemented in
the coordinate generation scheme.

The second area of research, which depended on the generation of
a suitable coordinate system, was the numerical solution of the Navier-
Stokes equations for viscous flow about an arbitrary body. Two implicit
methods have been developed. Both are generalizations to curvilinear
coordinates of methods which have been developed for rectangular coordinate
systems. The use of SOR iteration in solving the Navier-Stokes equations
on three-dimensional body-fitted coordinates was first reported by Mastin
and Thompson [2]. More extensive computations and comparisons with known
experimental results for viscous flow about a sphere will appear in the
dissertation by Fu [3].

In an effort to develop a more efficient method on the larger compu-

tational fields needed for high Reynolds number calculations, a fractional
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step method was investigated. The basic algorithm and preliminary
computational results have appeared in a paper by Mastin, Ghosh, and
Thompson [4]. In the problems considered so far, ihe physical region
was partitioned and hence, an iteration process was needed with the
fractional step algorithm so that the equations are satisfied across
the cuts. While this allows the user to handle larger and more complex
rc;ions,‘IE decreased the efficiency of the method. The accuracy of
the fractional step method has been about the same as the SOR method
for flow about a sphere.

The following sections will describe the major accomplishments
of this research project. A more detailed description can be found

by referring to the references given above.

2. Body-Fitted Coordinate System

Curvilinear coordinate systems have been generated about various
three-dimensional bodies. The physical region is truncated at a finite
distance and the region between the surface of the body and the surface
at infinity is partitioned into subregions which can be transformed to
rectangular computational regions. For low Reynolds number problems,
three subregions were used as in Figure 1. For higher Reynolds numbers,
the central section was divided into four smaller subregions to give a
total of six subregions of approximately the same size. The partitioning
of the region served a dual purpose. First of all, it allowed for a
nearly equal distribution of mesh points on the surface of the body.

This would not be the case for a spherical or cylindrical type coordinate
system where mesh points would be clustered along an axis where the

transformation would be singular. Secondly, it allowed for a much larger

2




computational mesh since it was only necessary to keep the data for one
region in the core memory of the computer.
The transformation from the physical xyz-space to the computational

uvé-space was obtained by solving the elliptic system

vzll = f(u,v,&)

vy = g(u,v,€)

V2 = h(u,v,&) (6 B)
The homogeneous equations (f = g = h '_0) give a smooth transformation with
a nonvanishing Jacobian. In some cases a nonzero value of h was used so
that more mesh points were concentrated near the body. The generality
of the transformation method has been verified by constructing coordinate
systems about a multitude of bodies of varying shapes. These include a
sphere, ellipsoids, cylinéers with hemispherical caps, cylinders with
conical caps, finite wings, and a flat plate.

A difficult problem in the generation of coordinate systems for three-
dimensional bodies is the specification of the boundary correspondence for
the system (1). In order to simplify the determination of coordinates for
mes’: points on the body, these mesh points were chosen to lie on cross-
sections of the body. This also aided in the plotting of the flow field
data.

The initial velocity and pressure distribution for the solution of the
Navier-Stokes equations were usually obtained from a potential flow calcu-
lation. The potential function can be easily calculated during the solution

of the system (1) in the computational regions.
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3. SOR Msthods for the Navier-Stokes Equations
Successive overrelaxation (SOR) iterative methods have been successfully

used for solving the Navier-Stokes equations on many two-dimensional regions
for a wide range of Reynolds numbers. A straightforward generalization to
three dimensions has worked equally well although the method has proven
expensive in terms of computer time and storage.

The form of the Navier-Stokes equations most frequently used was

V.v=0 (2a)

3+(’$-v>’$--Vp+%v23 (2b)

vhere v = ul + v] + wk 1is the velocity, p is the pressure, and R is the
Reynolds number. A few calculations were made with the advective terms in
conservation form. The result was a longer run time with no appreciable
difference in the solution. The most efficient manner of differencing the

momentum equation (2b) was

VPl (P + L 1 o™, (3)

wvhere n is the time step index and Vt the step size. In this formulationm,
the viscous and pressure terms are implicit while the advective terms are
explicit. The stability criteria imposed by the explicit terms was quite
mild due to the small velocity components near the body where the mesh
spacing wvas also small. In fact, with a fully implicit scheme which was
also coded, a smaller time step size was needed to maintain SOR convergence
than was required for the stability of the above scheme.

The Poisson equation used for the pressure calculation was

nt+l d(u,v) A(u,w) agv.wz n l .n n
T =2y Y iae) T atey] Tl - @2 “)
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where D=V - v. It vas necessary to delete some terms in the pressure
equation derived from (3) so that the resulting system of four equations
could be solved by SOR iteration in the transformed regions to obtain values
of V and P at time step n+l.

In all computations a unit free stream velocity was imposed on the
surface at infinity. On the body a no-slip velocity condition was assumed
and a normal derivative condition for the pressure was computed from the
equation

o™ . % y2yrtl (5)

A constant pressure on the surface at infinity was used for most of the
computations. One could argue that the same normal derivative condition
should hold on the surface at infinity. Thus condition was tried and gave
essentially the same pressure distribution on the body. It does, however,
require the determination of the pressure level at infinity in order to
plot the pressure coefficient.

The above scheme gave realistic solutions to fluid flow problems and
the velocity and pressure values compared well with known analytic and
numerical results. The calculated value of D was large near the body where
an impulsive start was used and decreased slowly as time increased. It
was also observed that the velocity values converged much faster than the
pressure when the system was solved by SOR. Consequently, a second SOR

method was developed to solve the Navier-Stokes equations. An auxiliary

vector vﬁl/ . was introduced in two steps.
FHIZ L3P (@ oV - L eietl/2) (62)
3l | ontl/2 _ o gpitl (6b)
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The pressure is computed after the first step by solving the Poisson
equation

As with many splitting techniques, instabilities can arise if correct
boundary values are not chosen for the auxiliary functions computed at the
intermediate steps. For simplicity in programming, the first value used was

;n+1/2 .n
on the boundary. This value worked well in all our calculations with no
indication of instability. Two normal derivative conditions for pressure
were used. Both were obtained by considering the limiting value of the
pressure gradient at the surface of the body. If only the second equation

(6b) is considered we have

i (8)

wvhile if both equations are considered we arive at

vt . % y2mtl/2 9

For this type of splitting, the first alternative (8) has been used by
others in the theoretical analysis of the method and has also been used in
most of our calculations. The normal component of the pressure gradient
in (9) would appear to give a solution in closer agreement with the umsplit
method where (5) is used. However, both boundary conditions gave essentially
the same results in the problems which have been considered in our work.

This two step method was successfully applied and when the results
of both methods were compared, the difference between the two solutions
was less than the overall error in the approximation of the true solution.
The two step method was preferred because it was faster and gave a smaller

value of the divergence D. Unfortunately, neither method was able to
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reduce the maximum absolute value of D below about 10.Vt for most problems.

For high Reynolds number calculations, the two step wethod was used with a
zero normal pressure derivative. The one step method did not work as well
on the highly contracted coordinate systems needed for high Reynolds number
calculations.

4. A Fractional Step Method for the Navier-Stokes Equations

The fractional step method used in this project involved a splitting
of the pressure term from the momentum equations as in the two step method
discussed earlier and a splitting of the remaining terms according to the
derivative direction in computational space. In order to solve the pressure
equation in the same manner, a parabolic pressure equation is needed. Thus
the continuity equation (2a) is replaced by the artificial compressibility
equation.

ept+v-;-0 (10)

It was discovered that better results could be obtained by taking a
variable ¢ which was 0(At2).

The same type of partitioning was used in the physical region as with
the SOR methods. An iteration scheme was introduced at each fractional step
so that all equations are satisfied on the surfaces which partition the
region. In this iteration process the nonlinear coefficients and mixed
derivative terms are also updated so that all terms are treated implicitly.

The splitting of the velocity derivative terms in the momentum equations
according to coordinate directions in the computational regions can be

expressed as

> -+ l 22 -+ -+ >
(v.. Vv R\7v'-AMv+Avv+A€v. (11)




The mixed derivative terms must be included in some fashion. In our
computations one mixed derivative term was included in each term on the
right hand side of (11). A locally one-dimensional (LOD) implicit scheme
for the momentum equations which also incorporates the splitting of the

pressure term can now be formulated as follows.

P g A e LR (120)
u
»> >
P2 g p P2 L LIS (12b)
vr3lh 4 ae A€$“+3/“ - e (12¢)
L PR g gttt (124)

when the derivatives are approximated by finite differences, the first
three equations require the solution of a tridiagonal system. For the
physical regions which have been considered, the body and surface at
infinity were £ = constant surfaces. Thus no intermediate boundary values

n+l/4 ;n+1/2

were needed for v . In other problems where it might be

and
necessary to impose physical boundary conditions on 4 = constant or

v = constant surfaces, one could resort to the more complex ADI or approximate
factorization splitting techniques. The question of appropriate boundary
values for ;n+3/4 was handled in the same manner as the two step SOR method

in the previous section with similar results. The parabolic pressure
equation derived from (2b) and (10) is approximated using a similar LOD

formulation. The Laplacian of the pressure function is written in terms

of derivatives with respect to the computational variables as
V2p = + + :
PEBD BT Db

The splitting ¢ t.e pressure equation can be expressed as follows.

n+l/3 _

f:(p“ﬂ/3 - pn) - (at)? Bup 0 (13a)

?rﬁg'l,-'i.l X




R TE I Vi NI ,v,,n+2/3 -0 (13b)

w1 _ m42/3 n+3/4

e(p pnﬂ

3
The divergence term has been included in the last equation for simplicity.

) + At(V.V) - (at)2 B -0 (13¢)

As with the two step SOR scheme, there are two possible boundary conditions
for the body pressure which can be derived by considering (12d) alone or
by summing (12a)-(12d). The above equations (13a)-(13c) are solved by a
tridiagonal algorithm in an iterative sequence which is used to assure that
all equations are satisfied on the surfaces which partition the region.

The pressure boundary condition is also applied in the iterative solution
of (13c). Even for a single computational region with no partitioning it
may be necessary to implement the normal derivative condition for the
pressure function iteratively to avoid stability problems.

This scheme has been used to compute viscous flow about a sphere at
low and intermediate Reynolds numbers. It is comparable to the SOR
methods in both accuracy and computer time used. However, the full
potential of the method has not been realized in the present configuration
with the partitioned regions. A direct implementation of the method,
with no iterations, would be an order of magnitude faster. The fractional
step method also has an advantage when core storage is considered. At
each fractional step only one third of the derivative coefficients of the
transformed equations are required for the computations. The main difficulty
has been the choice of a proper value for the parameter ¢. A value of ¢
which is too large leaves the pressure practically unchanged and the
velocity divergence becomes large. On the other hand, a value of ¢ which
is too small causes the solution to become unbounded after very few time

steps.
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5. Computational Results
The principle objective of this research has been algorithm development

rather than the development of production codes. Thus most of the Navier-
Stokes solutions have been computed for flow about a sphere where valid
experimental and numerical results are available for comparison. The
present methods worked best for the intermediate Reynolds numbers between
40 and 1,000, however, solutions were obtained for Reynolds numbers
between 0.5 and 100,000.

The coordinate system about a sphere was constructed using the scheme
described in Section 2. Figures 2 and 3 contain plots of a crossection of
the coordinte surfaces and a perspective plot of one coordinate surface
surrounding the sphere. For viscous flow about a sphere, drag calculations
compared well with experimental results as can be seen in Figure 4. Both
the SOR and fractional step schemes gave clearly formed vortices at the
rear of the sphere. A crossection of the steady-state velocity field for
the SOR computation at a Reynolds number of 40 appears in Figure 5. The
corresponding pressure coefficient is plotted in Figure 6. As the Reynolds
number increases, the velocity in the vortex region increases. This can be
seen by examining Figure 7 which shows the same crossection with a Reynolds
number of 290. The vectors have been scaled to one-fourth their actual
length. The drop in pressure at the forward stagnation point can be noted
from Figure 8. This second solution was computed using the fractional step
method. .

The practical application of body-fitted coordinate systems has not
been ignored in our research. Flow about finite wings have been computed
for wings having various lengths, cord to thickness ratios, camber, and
tapering. Some of the large scale characteristics of the flow can be

observed even though the wake region was not properly modeled due to the
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relatively small number of mesh points downstream of the wing. For example,
consider the wing in Figure 9 which is perpendicular to the free stream and
at a 10 degree angle of attack. An SOR scheme was used with a Reynolds
number of 40. A rear view of the velocity near the trailing edge, illustrated
in Pigure 10, indicates a vortex formed at the wing tip and downwash
immediately behind the wing. Due to symmetry, only half the wing was

plotted.

6. Conclusions

Body-fitted coordinate systems have proven to be a valuable tool for
solving the Navier-Stokes equations for viscons flow about arbitrary bodies.
Both SOR and fractional step methods have been implemented on body-fitted
coordinates. Thus the programs for solving the Navier-Stokes equations are
essentially independent of the coordinate system even if several rectangular
computational regions are used. The accuracy of the methods has been tested
by computing viscous flow about a sphere for a wide range of Reynolds numbers.
Despite the ability to use relatively large time steps, the solution of the
Navier-Stokes equations starting with p_otential flow and marching to the
steady-state solution has required large amounts of computer time. However,
realistic solutions of viscous flow problems about a variety of body shapes

and a wide range of Reynolds numbers can be computed by the methods developed

under this project.
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Figure 1, Transformation from Physical to Computational Regions.




Figure 2. CrolsfSection of Coordinate Surfaces About a Sphere.




Perspective Plot of a Coordinate Surface Surrounding a Sphere.

Figure 3.
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Figure 5. Velocity on Cross-Section, Re = 40.
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Figure 7. Velocity on Cross-Section, Re = 290.
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Figure 9. Tapered Wing,
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