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ABSTRACT

Numerical method s are developed for construct ing body—fitted
curvilinear coordinate sYstems for the region surround ing an arbi trary
thre e—d imensional body. Finite differen ce schemes are investigated
for solving the Navier—Stoks. equations on body—f itted coord inates .
Solutions are computed for flow abou t a sphere and a finite wing .
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1. Introduction

The research efforts of the past three year s on three—d imensional

laminar flow can be divided into two ar eas. The first task was the

generation of a body—fitted coordinate system by solving a system of

elliptic equa t ions . The theoretical basis for the coordinate generation

scheme appeared in a paper by Nastin and Thompson [1). Although the

method was developed for the region abou t a single body , the capability

exists for generatin g coordinate systems for nearly any bounded three—

dimensional region. It may be necessar y to partition the physical

region into simpler subregions. This partition ing, which is essential

for very complicated regions , has proven to be easily implemented in

the coordinate generation scheme .

The second area of research , which depended on the generation of

a suitable coordinate system , was the numerical solution of the Navier—

Stokes equation s for viscous flow about an arbitra ry body . Two implicit

methods have been developed . Both are generalizations to curvilinear

-. coordinates of methods which have been developed for rectangular coordinate

systems. The use of SOR iteration in solving the Navier—Stokes equations

on three—dimensional body—fitted coordinates was first reported by Mactin

and Thompson [2]. More extensive computations and comparisons with known

experimental results for viscous flow about a sphere will appear in the

dissertation by Pu [3].
U

In an effort to develop a more efficient method on the larger cootpu—

tational fields needed for high Reynolds number calculations, a fractional

1 
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step method was investigat ed. The basic algorithm and prel 1~ f~nary

: computational results have appeared in a paper by Mastin, Ghoih, and

Thompson (41. In the probl ems considered so far , the physical region

was partitioned and hence , an iteration process was needed vith the

frac t ional step algorithm so that the equations are satisfied across

the cuts . While this allows the user to handle larger and more complex

regions,11 decreased the efficiency of the method . The accuracy of

the f ractional step method has been about the same as the SOR method

for flow about a sphere.

The following sections will describe the major accomplishments

of this research proj ect. A more detailed description can be found

by referring to the references given above .

2. Body—Fitted Coordinate System

Curvilinear coordinate systems have been generated about various

- - three—dimensional bodies. The physical region is truncated at a finite

distance and the region between the surface of the body and the surface

at infinity is partitioned into subregions which can be transformed to

• rectangular computational regions. For low Reynolds number problems,

three subregions were used as in Figure 1. For higher Reynolds numbers,

the central section was divided into four smaller subregions to give a

total of six subregions of approximately the same size. The partitioning

of the region served a dual purpose. First of all, it allowed for a

nearly equal distribution of mesh points on the surface of the body.

This would not be the case for a spherical or cylindrical type coord inate - -

system where mesh points would be clustered along an axis where the

transformation would be singular. Secondly, it allowed for a much larger

2 • •

H 

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~-•-- •-•-— -



—~ -~~ -‘~~~~ ~~~~~~~~ ~~~~~~~
‘-

~~~~~~~~~~ —fl ~— •
~1

computational mesh since it was only necessa ry to keep the data for one

region in the core emory of the computer.

The tran sformation from the physical xyz—space to the computational

w’~—space was obtained by solving the ellipt ic system

V2v •

— h(ii,v,~ ) (1)

The homogeneous equations (f — g — h — 0) give a smooth transformation with

a nonvanishing Jacobian. In some cases a nonzero value of h was used so

that more mesh points were concentrated near the body. The generality

of the transformation method has been verified by constructing coordinate

systems about a multitude of bodies of varying shapes. These include a

sphere, ellipsoids, cylinders with hemispherical caps, cylinders with

conical caps, finite wings, and a flat plate.

A difficult problem in the generation of coordinate systems for three—

dimensional bodies is the specification of the boundary correspondence for

• the system (1) . In order to simplify the determination of coordinates for

mash points on the body, these mesh points were chosen to lie on cross—

s ctions of the body. This also aided in the plotting of the flow field

— 
data.

The initial velocity and pressure distribution for the solut ion of the

Navier—Stokes equations were usually obtained from a potential flow calcu—

lation. The potential function can be easily calculated during the solution

of the system (1) in the computational regions .

3
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3. 501 Nsthods for the *svisr—Stok~~ Squat ions

Successive ov.rrelrntion (501) iterative methods have been successfully
• 

•
~ used for solving the Nsvisr—Sto kes equations on many tvo-d4 .n~ional regions

for a wide ra ng. of Reynolds numbers . A straightforward generalizat ion to

thr.. d~—u’-ions has worked squally wall although the method has proven

expensive in terms of computer time and storage .

The form of the Navier—S tokss squat ions most frequently used was

4.V . v — 0  (2a)

(2b)

where — UI + v3 + is the velocity, p is the pressure , and R is the

Reynolds number . A few calculations were made with the advective terms in

conservation form. The result was a longer run tins with no appreciable

diff.renca in th. solut ion. The most efficient manner of differencing the

momentum equation (2b) was

n+l 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ (3)

where n is the t ime step index and Vt the step size . In this formulation ,

the viscous and pressure terms are implicit while the advective terms are

explicit . Th. stability criteria imposed by the explicit terms was quite

mild due to the small velocity components near the body where the mesh

spacing was also small . In fact , with a fully implicit scheme which was

• also coded, a smaller time step size was needed to maintain SOR convergence

than was required for the stability of the above scheme.

Tb. Poisson qustion used for the pressure calculation was •

V2p1t~~ — 2(
~~~ ’1 + 

~~~ 
+ 

~~~~ 
+ 
* ~ - (t) ~ (4)

-~~~~ - ~~~~~~~ - -_ _ _  I
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where D — V • . It was necessar y to delete s~~~ terms in the pressure

equation derived from (3) so that the resul t ing system of four equat ions

could be solved by 501 iteration in the transformed regions to obtain values
4of v and p at tins step n+l.

In all computations a unit free stream velocity was imposed on the

surface at infinity. On the body a no—slip velocity condition was assumed

and a normal derivative condition for the pressure was computed from the

equation

Vp~~ — ~ V4’~~ (5)

A constant pressure on the surface at infinity was used for most of the

computations . One could arg ue that the same normal derivative condition

should hold on the surface at infinity. Thus condition was tried and gave

essentially th. same pressure distribution on the body. It does, however,

require the determination of the pressure level at infinity in order to

plot the pressure coefficient.

The above schema gave realistic solutions to fluid flow problems and

th. velocity and pressure values compared well with known analytic and

numsrical results. The calculat ed value of D was large near the body where

an impulsive start was used and decreased slowly as time increased . It

was also observed that the velocity values converged much faster than the

• pressure when the system was solved by SOR. Consequently , a second SOR

method was developed to solve the Navier— Stoke8 equations . An auxiliary

vector ~~~~~ vas introduced in two steps. L I
4fl+l/2 

— — Vt ((~~ • v)~~ — A (6a)1

— ~n+l/2 
— Vt Vp’~~ (6b )

S
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The pressure is computed after the first step by solving the Poisson

equation

• 
v2pn$~~_ *V  

n+l/2 
• (7)

• As with many splitting techniques , instabilities can arise if correct

boundary values are not chosen for the auxilia ry functions computed at the

intermediate steps . For simplicity in progra—lng, the first value used was

• on the boundary. This value worked well in all our calculations with no

indication of instability. Two normal derivative conditions for pressure

were used. Both were obtained by considering the limiting value of the

pressure gradient at the surface of the body . If only the second equation

(6b) is considered we have

Vp —  0, (8)

• while if both equations are considered we arive at

Vp~~~ — 
v4hI+]12 (9)

For this type of splitting, the first alternative (8) has been used by

others in the theoretical analysis of the method and has also been used in

most of our calculations. The normal component of the pressure gradient

in (9) would appear to give a solution in closer agreement with the unsplit
r

method where (5) is used. However , both boundary conditions gave essentially

the same results in the problems which have been considered in our work.

This two step method was successfully applied and when the results

of both methods were compared , the difference between the two solut ions • 
•

was less than the overall error in the approximation of the true solution.

The two step method was preferred because it was faster and gave a smaller

value of the divergence D. Unfortunately , neither method was able to

6
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reduce the maximum absolute value of D below about lO .Vt for moat problems .

For high Reynolds number calculations , the two step method was used with a

• zero normal pressure derivative . The one step method did not work as well

• on the highly contracted coordinat e systems needed for high Reynolds number

• calculations.

4. A Fractional Step Method for the Navier—Stokes Equatiotis

The fractional step method used in this project involved a splitting

of the pre3sure term from the momentum equations as in the two step method

discussed earlier and a splitting of the remaining terms according to the

derivative direction in computational apace. In order to solve the pressure

equation in the same manner, a parabolic pressure equation is needed. Thus

the continuity equation (2a) is replaced by the artificial compressibility

squat ion.

cp~~+V ~~~~~~~~~~~~~~ (10)

It was discovered that better results could be obtained by taking a

• variable € which was O(~t
2).

The same type of partitioning was used in the physical region as with

the SOR methods. An iteration scheme was introduced at each fractional step

so that all equations are satisfied on the surfaces which partition the

region. In this iteration process the nonlinear coefficients and mixed

derivative terms are also updated so that all terms are treated implicitly.

The splitting of the velocity derivative terms in the momentum equations

according to coordinate directions in the computational regions can be

expressed as

( V) - ~ . 
v4 - A + + ~~~ (11)

7 -
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The mixed derivative terms must be included in some fashion. In our

computations one mixed derivative term was included in each term on the

right hand side of (11). A locally one—dimensional (LOD) implicit scheme

for the momentum equations which also incorporates the splitting of the

• pressure term can now be formulated as follows.

n+l/4 + ~~ A~~~~ ’
14 

— 
(l2a)

+ ~t ~~~~~~~~ — ~+l/4 (l2b)

-‘n+3/4 + ~~ A~~
’
~~’~ — 

In+l/2 (l2c)

-‘n+l -~ +3/4 n+l
v — v  —~~tVp 

(12d)

When the derivatives are approximated by finite differences, the first

three equations require the solution of a tridiagonal system. For the

physical regions which have been considered, the body and surface at

infinity were E — constant surfaces. Thus no intermediate boundary values

were needed for v and v . In other problems where it might be

necessary to impose physical boundary conditions on ii — constant or

v — constant surfaces, one could resort to the more complex ADI or approximate

• factorization splitting techniques. The question of appropriate boundary

values for was handled in the same manner as the two step SOR method

in the previous section with similar results. The parabolic pressure

equation derived from (2b) and (10) is approximated using a similar LOD

formulation. The Laplacian of the pressure function is written in terms

• of derivatives with respect to the computational variables as

V 2p — S p + B p + B P .
V

The splitting c. ~~ pressure equation can be expressed as follows.

(
fl+l/3 

— 
n) — (~t)

2 B p ~
•113 

— 0 (l3a)

L _________
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F~(p
1z+2I3 

— pfl4~/3) — (At)2 B~p~~
2’3 

— 0 (l3b)

— p1~+2~3) + A~(V.;)~~
314 

— (At)2 B~p~~~ — 0 (13c)

The divergence ter m has been included in the last equation for simplicity.

As with the two step SOR scheme , there are two possible boundary conditions

f or the body pressure which can be derived by considering (12d) alone or

• by eii (ng (12a)—( 12d) . The above equations (l3a)—(13c) are solved by a

• tridi agonal algorithm in an iterative sequence which is used to assure that

all equations are satisfied on the surfaces which partition the region.

The pressure bounda ry condition is also applied in the iterative solution

of (l3c) . Even for a single computat ional region with no partitioning it

may be necessa ry to implement the normal derivative condition for the

pressure function iterat ively to avoid stability proble ms .

This scheme has been used to compute viscous flow about a sphere at

low and intermediate Reynolds numbers. It is comparable to the SOR

methods in both accuracy and computer tine used. However, the full

potential of the method has not been realized in the present configuration

with the partitioned regions. A direct implementation of the method,

with no iterations, would be an order of magnitude faster. The fractional

step method also has an advantage when core storage is cons idered . At

each fractional step only one third of the derivative coefficients of the

transformed equations are required for the computations. The main difficulty

baa been the choice of a proper value for the parameter e. A value of c

which is too large leaves the pressure practically unchanged and the

velocity divergence becomes large. On the other hand, a value of c which

is too small causes the solution to become unbounded after very few time

steps
9 1
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5. Co~~utational Results

Tb. principle objective of this research has been algorithm development

rather than th. development of production codes • Thus most of the Navier-

Stokes solutions have bem computed for flow about a sphere where valid

experimental and numerical results are available for comparison. The

present methods worked best for the intermediate Reynolds numbers between

40 and 1,000, howsver, solutions were obtained for Reynolds numbers

betveen 0.5 and 100,000.

The coordinate system about a sphere was constructed using the scheme

described in Section 2. Figures 2 and 3 contain plots of a crossection of

the coordinte surfaces and a perspective plot of one coordinate surface

surrounding the sphere . For viscous flow about a sphere , drag calculations

compared veil with experimental results as can be seen in Figur e 4. Both

the $01 and fractional step schemes gave clearly formed vortices at the

rear of the sphere. A crossection of the steady—state velocity field for

the SOR computation at a Reynolds number of 40 appears in Figure 5. The

corre sponding pressure coefficient is plotted in Figure 6. As the Reynolds

number increases, the velocity in the vortex region increases. This can be

seen by exe 1ning Figure 7 which shows the am crossection with a Reynolds

number of 290. The vectors have been scaled to one— fourth their actual

length . The dr op in pressure at the forward stagnation point can be noted

from Figure 8. This second solution was computed using the fractional step

method.

The practical application of body—fitted coordinate systems has not

• beam ignored in our research . Flow about finite wings have been computed

for wings having various lengths, cord to thickness ratios, camber , and

tapering. Some of th. large scale characteristics of the flow can be ____

observed even though the wake region was not properly modeled due to the

10
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relatively small number of mesh points downstream of the wing. For example,

consider the wing in Figure 9 which is perpendicular to the free stream and

at a 10 degree angle of attack. An SOR scheme was used with a Reynolds

number of 40. A rear view of the velocity near the trailing edge, illustrated

in Figure 10, indicates a vortex formed at the wing tip and downwaah

• l adiately behind the wing. Due to symsetry, only half the wing was

• plotted .

6. Conclusions

Body—fitted coordinate systems have proven to be a valuable tool for

solving the Navier—Stokes equations for viscons flow about arbitrary bodies.

• Both SOR and fractional step methods have been implemented on body—fitted

coordinates. Thus the programs for solving the Navier—Stokea equations are

• essentially independent of the coordinate system even if several rectangular

computational regions are used. The accuracy of the methods has been tes ted

by computing viscous flow about a sphere for a wide range of Reynolds numbers. •

Despite the ability to use relatively large time steps , the solution of the

Navier—Stckes equations starting with potential flow and marching to the

steady—state solution has required lar ge amounts of computer tine. However ,

realistic solutions of viscous flow proble ms about a variety of body shapes

and a wide range of Reyno lds number , can be computed by the methods developed

under this project.

11
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Figure 1. Transformat ion from Physical to Computational Regions.
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Figure 3. Perspective Plot of a Coordinate Surface Surrounding a Sphere.
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Figure 5. Velocity on Cross—Section, Re — 40.
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Figure 8. Pressure Coefficient, Re 290
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