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'ABSTRACT

Distributed programming is charactéfized by high communications costs
and the absence of shared variables and procedures as synchronization tools.
*MOD is a high-level language system which attempts to address these prob-
lems by creating an environment conducive to efficient and reliable network
software construction. The concept of a processor module is introduced as
well as a methodology for distributed data abstraction and process communica-
tion. In addition, a VHLN (virtual, high-level langudge network) is proposed

for system development.
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SIGNIFICANCE AND EXPLANATION

A language (*MOD) for distributed programming is being
designed and implemented at the University of Wisconsin to
facilitate research in network software concepts. Distributed
programming is characterized by the use of multiple hardware
processors to implement an algorithm. The *MOD system also
proposes a convenient methodology for the debugging and develop-
ment of distributed programs. In addition, the language contains
some new approaches in the areas of data abstraction, mutual

exclusion, and synchronization.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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*MOD--A LANGUAGE FOR DISTRIBUTED PROGRAMMING

Robert P. Cook

1. Introduction

*MOD (starmod) is a language, derived from “odulal27], which
is intended for systems programming in the natwork environment.
Tha *MOD project is based on experience with our PDP11/VAX Mvodula
compilar(4) and was 1inspired by Brinch Hansen's "distributed
processas”" concepts{3]. The design strives to addra2ss the sys-
tems programmer's traditional concern for efficiency and includess
the constraint that each language feature should be maximally ex-
tensible. For example, the *MOD user can utilizz the data
abstraction mechanisms to construct 2ither queuc or stack types;
thus, the language attempts to define an appropriate sat of prim-
itives which can be extended to meet programming neads. By giv-
ing each user the freedom to experimant with language constructs
for distributed programming, *MOD is also intended as a mechanism
for research. This papaer discusses the rationala behind the
design of the *MOD system and contrasts the language f2aturzs

chosen with those of the Department of Defz2nse(DoD) ADA

(v
1

language(1l5], Hoare's Communicating Sequantial Process
(CsP)[14], Feldman's PLITS([2,9], and Brinch Hansan's "distributed
processas"[3]. 1In particular, w2 address the distributed pro-

gramming problem areas of interprocessor communication, typ2

v

checking, separate compilation, debugging, and kernel 2fficizancy.
Tha *MOD 1language definition(5] should be consultad for the da-
tails of design dacisions in other arzas such as data abstraction

or synchronization.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and the
Computer Sciences Department University of Wisconsin, Madison.
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2. Systam OQverview

Before proczeding further with a more detailed discussion of
the distributad programming features, we will consider the module
concept of Modula as a focal point for program development. A

modulz encapsulates an environment and defines the r2lationship

between 1itself and tha outside world; therefore, both the
information-hiding properties proposed by Parnas(289] and the
flexibility of the Simula[6] "class" mechanism are maintained.
Each module usually corresponds to a program abstraction and con-
sists of an external interface specification, data structure de-
finitions, procedures, processas, and an optional initialization
part.

A computer system is traditionally[25] viewed as a collec-
tion of processors, processes, and procedures. A processor 2xe-
cutes commands or instructions, a procedure is a seguenca of in-
structions for a processor, and a process is one or more pro-
cedures together with the information necessary to control and to
define the virtual processor on which it runs. *MOD provides
thes2 entities in the forms of a "processor module", procedure
and process declarations, respectively. 1In addition, a "network
module" is required to define system connectivity for the proces-
sors and to daclare any global types or constants. These module

typas can be declarad with the following syntax:




MODULEDECLARATION: =

MODULETYPE; [external; ]
(defina ELEMENT [,ELEMENT ]l...; ]
[export ELEMENT [,ELEMENT J...; ]

(pervasive ELEMENT (,ELEMENT |

[BLOCK ]

end IDENTIFIER

MODULETYPE:=

[intaerface | processor ]| modulz IDENTIFIER]|

network module IDENTIFIER=LINK [,LINK J...
BLOCK:=

[import IDENTIFIER [,IDENTIFIER ]...; |
[DECLARATIONLIST )

begin STATEMENTLIST
LINK:= (PROCESSORID [,PROCESSORID ]...) 1
! ELEMENT:= IDENTIFIER [(PROCEDUREID) ]

The IDENTIFIER names the module and must be matched by the
IDENTIFIER at the 2nd of the BLOCK. The BLOCK consists of de-

clarations for constants, types, variables, modul2s, processes,

or procadures as well as a STATEMENTLIST which can b2 used to in-

itializa the module. The module boundary delineates a closed

laxical scope which can only be supersaded by the explicit

spacification of "define", "export", or "import" lists.

-3n
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An IDENTIFIER specified in an "import" 1list <caus2s a Jda-
claration from a global scopz to ba made accessiblz within the
module. The "export" attribute allows a local declaration to b2
visible at the enclosing lexical level; whilzs "pervasive" makes
the IDENTIFIER known at all lexical levels where the sam2 name is
not already declared. The 1latter option is most useful for
system-wide constant and type definitions. The optional PRO-
CEDUREID can be used to specify automatic initialization for ex-
ported types. The "define" statement is provided as an alterna-
tive to "export". It gives the user the ability to list those
IDENTIFIERs which can be referenced externally, but only by pre-
fixing the reference with the module name as with the Simula
"class" notation. Furthermore, the "define", "export", and "per-
vasive" statements provide implicit read-only protection for any
variable so listed. The ability to specify the external inter-
face for each module is becoming a standard feature of modern
programming as is demonstrated by 1its wuse in Mesa[lD], Eu-
clid(18], Alphard(24], ADA[15], etc.

Each processor LINK specifies a list of processor modules
which can be sent messages. No variabless or shared code are al-
lowed at the network lavel; any procedures used for type imple-
mantations are replicated in the appropriate "processor module"s.
Each "processor module" can represant any number of physical pro-
cessors as long as they all use a sharad memory for instruction
execution. The external interface specification for a “processor
modula” 1lists any message types and procass names which are usz4
for communication. We should also point out that the availabili-
ty of a hardware multiprocessor to implement a particzular "pro-

cassor module" should be regarded as a fortuitous circumstanc:
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and should not ba counted on by the programm2r. An "interfacz

module" is a Modula constructl27], similar to a monitor(l13],

which guarantees mutual exclusion across all the contained pro-

cedures.

L The example in Figure 1 illustrates these <concepts with a
ring network version of Dijkstra's Dining Philosophers(7] prob-
lem. As in the original version, five philosophers are each try-
] ing to eat a plate of special spaghetti which has been placed in
the middle of a round table. 1In our example, each philosopher
can only directly control the right-hand fork; to get the left
fork, the philosopher to the left must be consulted. However,

each philosopher 1is also restricted to conversation with the

right neighbor only; therefore, a message must be sent around the
ring(table) to get permission to use the left-hand fork and to
give it back. The algorithm is basad on an ordered ra2source al- :
location strategy developed by Havender(l12] which prevents
deadlock and starvation.

The "diningroom” network definition specifies the <conn2c-
tivity for the ring network, defines a "semaphore" data type, and
contains the program stubs for the five philosophers. Sinca
"semaphore"s are declared as "pervasive", they will app=zar as
builtin types in all processors in which "semaphore" is not rede-
clared. The five processors are specified only in terms of their

external interfaces (termed a program stub ). Th2 keyword

Aok

"external" indicates that the processor definitions are part of 2

separate compilation. The binding process for separate <compila- ﬂ

tions will be discussed in Section 4.
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Figure 1

natwork modulz diningroom=(phild,phill),(phill,phil2),(phil2,phil3),
(phil3,phild),(phild4,phild); (*ring network*)
interface modulzs semaphoredef; (*Boolean semaphore abstraction*)
pervasive semaphore(init) ,P,V; (*available to all processors*)

type semaphore = record taken: boolean;
free : signal;
end record;
procedure P(var s: semaphore);
begin
1f s.taken then wait(s.free) end if;
s.taken:=true
gnd P;
procedure V(var s: semaphore);
bagin
s.taken:=false; send(s.free)
end V;
procedure init(var s: semaphore);
begin s.taken:=false
end init;
2nd semaphoredef;
processor module phil3; external;

define get,put,got; (*program stub for philosopher zaro,
process get(who,fork: integer); (*get "fork" for "who" *)
process put(fork: integer); (*give "fork" back *)
process got(who: integer); (*tell "who" the naws *)

(*referenced externally as philf.get, 2tc. *)
end phil4d;

processor module phil4; external;
and phil4;
eand diningroom.
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3. Language Concepts

From the *MOD viewpoint, a computer network can be charac-
terized as an arbitrary collection of processors with fixed com-
munication paths for interprocessor message transfer. Messages
are assumad to range from no content(signal or interrupt) to ar-
bitrary data structures. Furthermore, we require strong type
checking both within and across processors to maintain system
consistancy. Finally, any mechanisms presented should be effi-
cient and should not constrain the options of the systems pro-
grammer. For these reasons, we developed a process-orianted com-
munication methodology which eliminated the need for additional
statements to handle messages. In the naxt sections, the *MOD

design will be presented along with a detailad discussion of the

alternatives, advantages and disadvantages.

3.1 Processes and Signals

Each "processor module" consists of one or more concurrent

processas declared as follows:
PROCESSDECLARATION: =

process IDENTIFIER [ (FORMALS) )
[ "['EXPRESSION']* ] (:TYPEID];
BLOCK

2nd IDENTIFIER
PROCESSREFERENCE: =

PROCESSID [ (ARGUMENTLIST) |




Except for the ka2yword "process" and the optional priority EX-
PRESSION, the declaration 1is identical to that of a procedure;
however, the semantics are differant since a process can exacut=
independently of its creator. Each instance of a process is
created by a PROCESSREFERENCE which must spz2cify a list of argu-
ments corresponding exactly 1in type and number to the FORMALS.
At this point, storage space 1is obtained for the activation
record and the process control block, both of which remain allo-
cated until the process terminates. The returned value for a
functional process is set by assignment to the process identifier
and must match the specified TYPEID. When a functional process
exits, the returned value is copiad from its activation record to
the address space of the caller. The use of a functional process

corresponds to sending a message and then waiting for a reply

while a reference to a non-functional process implies parallel

execution. Wz will frequently use the term message as a synonym
for the racord containing the arguments to or result from a pro-
cess.

The optional EXPRESSION must evaluate to a compile-time con-
stant which specifies the initial(default zero) priority of tha
process. Each process' priority can be modified by assignmant to
the variable "priority" which is used to control context switches
among processas. The genaral rule is that a process 1loses con-
trol of the hardware processor if it lowers its priority below
that of another "ready" process or if a higher priority process
changes to the "ready” state. The other builtin process

identifier("origin") is a time stamp which indicates the cr2ation

order relative to all other processas in the same proc2ssor




modula. The 2xample in Figure 2 completes the Dining Philoso-
phers network by defining the actions of 2ach processor and
serves as an illustration of the preceding definitions.

Each philosopher is required to request the forks 1in a
specific order and must have obtained the first fork before ra-
questing the second. The "get" process accepts fork requests and
either passes the request to the right in the ring or else gets
control of the fork and sends an acknowledgment to the "who" phi-
losopher. The "got" process uses its highar priority to spesed
the acknowla2dgments to the appropriate philosophers. Finally, it
should be noted that multiple activations of each process can
coexist; for instance, three independent copies of the "get" pro-
cess could be handling requests simultaneously.

The signal construct embodies a message capability that is
evan simpler than a process call in that its arrival represents
the only content. "signal" can be used as a basic type in *40D
to declare variables which can only be manipulated by the follow-

ing procedures:

send (SIGNALID) wait (SIGNALID, RANK)

awaited (SIGNALID)

The interpratation of these procedures is identical both within
and across processors. A "wait" delays the executing proc=zss in
a local priority queue specific to SIGNALID. The QJueusa is or-
dered first by tha RANK attribute and secondly by the longesst
wait time.. The "awaited" function raturns a Boolean value which
reflects the status of the "wait" queue(true=not =mpty) for SIG-
NALID. The "send" statement unlinks the process at the head of

SIGNALID's Qqueue and sets the process' status to "ready". 1I1f no

-0-




Figur2 2

processor modul2 phil., (*ALiga*)
define get,put,goé; (*n=i+1 mod 5, right neighbor¥*)
import Ph11n7. e
const first=min(i,i+4 mod 5)
second=max(i,i+4 mod 5
var myfcrk,gotit: semaphor
process get(who,fork: integer); (*get fork for who*)
begin (*calls who on success¥*)
if fork <> i then phil .get(who,fork);
2lse P(my?ork): got (who);

end if;
end get;
3 process put(fork: integer); (*give "fork" back*)
begin (*wake up anyone waiting*)

if fork <> i then phil .put(€fork);
2lse V(myfork);

end if;
and put;
process got(who: integer) f1]; (*1lat "who" usz2 "fork*)
begin

if who <> i then phil .got(who);
2lse V(gogit);
cndiniEs;

end got;

procedure getfork(fork: integer); (*philosopher waits for "fork"*)
begin get(i,forkl; P(gotit);
end getfork;

begin loop
(*think*) getfork(first); getfork(sacond);
(*eat*) put(first); put(second);
and loop;

2nd phil

=1Q=
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process is waiting for the signal, the "send" 1is ignored. The
semaphorz example in Figure 1 uses both the message and delay
capabilities of signals to build a synchronization primitive.

For interprocessor communication, the "import" processor can
only perform "send" operations on a signal while the
"export/define" processor is unrestricted. Thus, a signal can be
thought of as a means of generating a name for a processor which
also embodies a communication capability. The capability is also
revocable in the sense that if the defining processor never
"wait"s for the signal, the signal will always be ignored by de-
finition.

3.2 Design Decisions

One of the major differences of opinion in distributad pro-
gramming language design occurs over the use of process-oriented
versus message-~oriented communication. The DoD ADA language is a
typical 2xample of the latter choice. 1In a recent paper by Lauer
and Nea2dham[19], they state "that these two categories ars duals
of 2ach other and that a system which is constructed according to
on2z model has a diresct counterpart in the other." We agree with
the duality conclusion but feel that the message-oriented ap-
proach has some deficiancies for our purposes; these deficiencies
may be completely irrelavant in other applications. The follow-

ing examplz from ADA[156] will illustrate most of these points.

e
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task SEMAPHORE is task body SEMAPHORE is

entry P; begin loop
antry V; accept P;
and; accept V;
end loop;
end;

initiate SEMAPHORE;

P;
{critical section>

v;

The "initiate" statement causes the creation of the SEMA-
PHORE task which 1is egquivalent to a *MOD process; note that a
second "initiate"™ while SEMAPHORE is still active would be an er-
ror. The "accept" statement defines a message reception point

within a task as follows:

accept ENTRYNAME [ (FORMALS) ]
[do STATEMENTS

and [ENTRYNAME ] 18

The procedure call syntax is used to send a message to an "ac-
cept" point. The "accept" statement must be executed by an ac-
tive task to raceive a message. The execution semantics are as
follows. "Whichever(receiver or sender task) gets there first
waits for the other. Whaen the rendezvous is achieved, the ap-
propriate parameters of the caller ars passad to the called task

... The caller is then temporarily suspendad until the <callead

=1l




task completes the statements embraced by do ... 2nd. Any 24t
parameters are then passad back to the <aller and finally both
tasks proceed independently of each other."[16]

Since "accept" is an executable statement, the ra2ceiving
task <can choose the execution point at which to raceive th2 mes-
sage; thus, mutual exclusion among competing messages is provided
automatically. Also, the raceiving task(process) remains stati=z
while a *MOD process is activated for sach messag=. Other usz2ful
proparties of the message-oriented approach ar2 listed in Lauer
and Needham[19]. However in our opinion, the message-oriented
approach has the following disadvantages for a systems program-
ming language.

Message Queuing. Since the receiving task in a message systam

can only process one message at a time, the ka2rnel must quaue any
additional messages which arrive before the next "accept" state-
ment 1is executed. In *MOD, message gueuing, stacking, etc. ares
choices under user control since every message has a procass to
implement the delay protocol. Several examples of the
*MOD/Modula programming approach may be found in Wirth([28,30] or

in an application description by Andrews(1l].

Active Processes. In *MOD, the racipient of a message is normal-

ly passive(no activation record or process control block); in the
message-oriented approach, the task is always active although it
may be delayed at an "accept" statement. Consider the semaphor:2
example. Every semaphorz used in an operating system would be an
independent task with an activation racord and control bdlock.
This fault is corrected in *MOD by separating messaje transmis-

sion and synchronization facilities. 1In addition, the *¥0D usar

=13~
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can always create a static procass but the wuser of a messaje-
orientad system can naver cr2ata2 a passive process which can "ac-
cept" a message.

Delayad Processaes. The caller is always suspended until the

called task completes the entry routine. This defect is present
in both ADA and "distributed processes" but not in PLITS, *MOD,
or Lausr and Needham. The primary reason for delay is to wait
for a returned message. *MOD provides all combinations of "delay
until called process terminates" and "delay until called process
returns a message" except for "no delay but message returned"
which can be easily programmed.

Process Deletion. It is dangerous to delete processes because of

possible 1late arrivals or of the potantial loss of messages in
the wait queue. This is not a problem in *MOD since every mes-
sage is quaranteed a coriesponding process.

Priority. The message-oriented languages have no way to force an
exeacuting task to racognize a high-priority message. If the
priority war2 associated with the task as in *M0D, the message-
oriented approach could distinguish among messages to competing
tasks but not among different "accept" points within a single
task. The r2ason 1is that even if the task could recognize the
naw messajz, it would be illegal to duplicate the task to accept
1t Trying to associate a priority with the message is also fu-
tiles because tharz2 i3 no way to force the ex=2cuting task to par-
form the ~orresponding "accept" statement.

3imultaneous Me2ssajes. Consider the "get" process in Figure 2.
[f thr2e simultaneous messagas arrive, thre2e independent "get"
process2s would be created which could all be in execution on a

multiprocessor system, In the massage-oriented approach, 2ach

=T




task can process one message at a time and it is illegal to du-
plicate a task; thereforzs, software is automatically biased to-
ward single processor systems. In *MOD, the distinction was in-

tended to be transparent.

Synchronization Primitives. The ADA semaphore example is typical

of a synchronization primitive constructed using messages. The
disadvantage is that a task must be created for each semaphor=.
Additional problems arise if the order of message arrival forms
the basis for synchronization. Since separate queues ar2 main-
tained for parallel "accept" statements, the sequence information
is lost. 1In all fairness, we will also agr2e that synchroniza-
tion primitives are 1less useful in a message system since the

"accept" statement is an exclusion mechanism.

3.3 Other Languages

Hoara's CSP, DoD's ADA, and Feldman's PLITS language are all £
message-oriented. CSP and PLITS are oriented toward end-user
programming. PLITS, for instance, performs automatic routing of
messagas which would be a user-implemented service in *M0OD. CSP

is strongest in its exploration of nondeterministic programming

featurzss while PLITS is more completely specified with raspzct to
distributaed programming. The ADA language is a CSP derivative
which, 1if used for systems programming, suffers from the defacts
listaed earlier.

*40D extends Brinch Hansen's "distributed processes" for 1

natwork communication and improves the multiprogramming features

of Wirth's Modula language. For example, =zach "distributed pro-

Q

233" can b2 encoded as a *MOD "processor module" as follows:
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h process distributed

<own variables>

proc name(input paramskoutput params)
<local variables>
<{statement>

<initial statement>

processor module *MODdistributed;

define name, nametype;
<own variables>

type nametype= record

output params
end reacord;
process name(input params) :nametype;
<local variables>
begin <statement>
end name;
gggi2.<initia1 statement>

end *MODdistributed.

The *MOD extensions to these languages are summarized below:

- -




1. Added processor and network modules notation.

2. Defined network-wide, strong type checking.

3. Defined a separate compilation facility for network construc-
tion.

4. Added "size" specifications to types for interfacs defini-
tions.

5. Deleted "device modules".

6. Integrated priority into signal and process handling.

7. Changed signal and process semantics to conform to network
usage.

8. Improvad external interface specification statements.

9. Added data abstraction primitives and parameterized types.

In addition, we have retained a "degree of transparency"([21]
between concurrent and distributed programming features while
trying to satisfy the efficiency constraints of a systems pro-

gramming language.

4., System Construction and Testing

*M0OD has more severe binding problems than found in most
systems in that a network can be saparately compiled by processor
modul2s, processor modulas by modules, and modul2s by even small-
er modules. All must be type checked and loaded to form a work-
ing system. The compilation order rules is that all declarations
must be available prior to a module's compilation. A modulas with
the "external” clause is termed a program stub which can be de-
finad by the programmer or created by the *MOD compiler. The
former option can be used for top-down program cr2ation or to in-
terface with foreign systems. Once the corresponding modulzs body

is defined as in Figure 2, the *M0OD compiler automatically gen-

=] 7=
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erates a program stub in textual form. There arz several advan-
tages to this approach.

First, the programmer only maintains one object--the pro-
gram; this may be contrasted with other languages which require
the user to maintain both a declarations package and a program
body. Since the *MOD stub is generated from the most recent copy
of the program, the probability of inconsistencies between the
two definitions 1is minimal. Finally, the *MOD method automati-
cally generates a program specification in a machine-indepandent
format which is useful if software is being developed at several
different sites.

Once the object modules for a processor module have been
created, a program called the binder is invoked which checks the
creation datas for consistency and releases the object modulass to
the system loader to create a bootable core image file. The core
image contains the machine-dependent *MOD kernel discussed in the
next section and a compiler-created table which contains the mes-
sage codes for external communication and the process addresses

for arriving transmissions. At this point, the software can be

In order to test software in the distributed environmant, it
must Dbe possible to experiment both with software algorithms and
hardwarz components. The advent of high-lev2al languages has
grecatly enhanced algorithm development but the same flexibility
is not present for hardwara. The virtual machine approach [11]
was a step in the right direction but was primarily oriented to-
wards the construction of multiprogrammed, single processor
softwar2. Tha VM 2nvironment has been sujggested [26] as suitable
for the development of network softwarz but the wuser 1is still

-18-
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given a bare machine as a starting point.
OQur proposal consists of a two-level approach-- 1) a
VHLN (virtual high-level 1language network) *MOD environment for

network software development and experimentation on a single host

computar (a PDP1ll or VAX in the current implementation effort);
and 2) a compiler capable of producing bootable code for a
number of different machines. The VHLN system is a simulated
network which uses compiled code and runtime aids to provide a
variety of error-checking and debugging aids. Thus,
hardware/software systems can be developad in an economical
manner on a single processor, even if the target hardware is not
available due to delivery or design problems. The *MOD system
can also b2 used as a research tool by institutions that only
have a single processor. Once a software system has been tested,
it can be moved to the host machines for production use.

Several advantages ensue from the use of a VHLN environmant.
First, as 1is 1illustrated in the Dining Philosophers example,
there are no machine details to muddle up the solution. 1In fact,
if machine designers made peripheral devices maintain the
process/signal philosophy, no such bit twiddling would ever be
necessary! The high-level language methodology provides system-
wide type-checking, data abstraction, and encapsulation mechan-
isms. In addition, the "defining module" concept insures that
somz2one i3 responsible for every bit of software in the systam;
if something does not work, the culprit is easily found. Also,
software can be developed in an environment that provides a use-

ful s2t of diagnostic and debugging tools beforz being moved to

the tarjet computer system. It is much more economical ¢to

dzvz2lop software aids for one host development computer than for

- J.\ . «]19=




ecach target machine. The VHLN system also has some disadvan-
tages.

The simulated, multiple processor environment providad by
the *MOD system is unrealistic in the sense that events will not
have a real-time correspondence to the performance of systems
running on bare machines. It might be possible to add some
clock-driven primitives to the language to address this problem
if it proves serious. As we gain more experiesnce with the sys-
tem, it will be possible to draw more definitive conclusions re-

garding the ease of moving from a simulated to a real network.

5. The *MOD Kernel

The *MOD kernel performs process control and message
transmission functions only; any routing, security, buffering, or
flow control operations are the domain of the systems programmer.
In addition, process control do2s not include the traditional
scheduling decisions. A process loses control of a hardware pro-
cessor only by terminating, blocking, lowering its priority, or
by receipt of a message for a higher priority process. Therefore,
the major kernel function 1is message processing which is con-
trollad by a compiler-genarated table.

A list is generated by the compiler which details the
processes referenced and the corresponding processor identifica-
tion; in addition, a similar list is created for local processes
that occur in "export" or "define" statements. When an external
process request occurs, the kernel constructs a message from the

argument list as follows:

var message: record
arglt Tlg
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ardy: Ty;

a2nd record

The processor identification for the destination 1is available
from the kernel tables so the message is transmitted along with
some control, error, and sequence information. When the message
is received, the target processor verifies that tha procass has
been exported, creates an activation record containing the mes~
sage for the new process, and sets the "origin" time stamp. If
the new process has the highest "ready" priority, it will begin
execution immediately. For a functional process call, the ori-
ginating kernel changes the process status of the caller to indi-
cate that it is waiting for a reply message from the target pro-
cessor. When a raply arrives, its origin 1is wverified against
that 1in the process' control block; the reply is appended to the
process' activation record; and the process' status is changed to
"ready". It will resume exacution if it has the highest priori-
ty.

At this point, it should be noted that most 1I/0 processors
do not have the sophistication or the flexibility to implement
the previous protocol. Wirth [27] proposad the concept of a2
"device" modulz to capturz the 2ssance of I1/0 programming. 3y
necessity, thes device modula's syntax is very machine and, in
some cases, device dependent. For instance, a PDP-11 modulz con-
tains priority level, interrupt 1location, and device register
syntax. Device modules have been omitted from *MOD becausz of
their inherent machine dependency; 1instead, process calls and

signals are used to their fullest capabilities. The advantage is
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I that all programs retain their machine indepandence at the 2x-
pense of a small number of machine language instructions for each
E processor which convert device interrupts to signals or process
|
|

calls, as appropriate. Consider the following example from Wirth

28] .

device module timing[6];

define tick;

se time;

—

o

var tick: signal; LCS[1775456bl: bits;

process driver([100b];

—

begin

LCS[5]):=true; (*start clock running*)

doio; inc(time);
while awaited(tick).gg
send(tick); =2nd;
2nd (*loop*);

and driver;

begin driver

end timing;

rhis example would be expressed in *MOD as follows.

process timing;
B —

import tick,time;

const STARTCLOCK=4;

! var interrupt:signal;
-~ begin

=232~




priority:=6;

(*start clock¥*)
SysS(STARTCLOCK,interrupt);

loop

wait(interrupt); 1inc(time);
while awaited(tick) do sand(tick):
end while;

2nd timing;

The "sys" procedure is the only escape mechanism to the host
machine. In the =2xample, the argument STARTCLOCK selects a kar-
nel routine which initializes the clock interrupt 1ocation(1608)
and starts the clock running. Since the *MOD process is waiting
at priority six, the "interrupt" signal will wake it up and the
priority will prevent processor presmption by messages to lower
priority processes. The priority construct provides the same
functionality as processor priority and has the advantage of be-
ing dynamic as opposed to the static notation of the device
module. Another advantage of the high-level approach is that
device handlars can be 2asily debugged by testing their response
to artificially g@enerated signals. Device modul2s have one ad-
vantage in that all the information is available, but force the
programmar to Aaccede to the perversity of the hardware designer
(se2 Wirth [29] for a list of typical problems). Since recent
nardwar2 trends indicate a growing support of high-level language
arcnitectur=z, there is no reason why this philosophy should not
also be 2xtended to external communication interfaces.

This implemantation also mak2s it easy to program hierar-
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chies of interrupt handlers as proposad by Lampson [l17]. Consid-
er the folllowing example taken ffom Unix [22].

The Unix system is initialized so that a memory fault trap
gJoes to an error routine. However, to create the table of free
space the system needs to know the current memory size. This 1is
accomplished by doing successive stores until a memory fault oc-
curs; the point of the fault 1identifies the highest available
memory address. The problem occurs in redirecting the trap away
from the error routine. The *MOD solution is to execute a "wait
(memoryfault,2)" which supersedes the "wait (memoryfault,l)" in
the error routine. When the signal occurs, the trap is diverted,
as desired. The UNIX solution is not nearly so elegant.

We have tried to illustrate by these examples that the dis-
tinctions between 1I/0 programming and process communication are
largely artificial; therefore, one methodology will suffice for

both.

6. Conclusions

The *MOD system represants an exploration of the design de-
cisions necessary to apply the modular programming philosophy of
Wirth [30) to the development of distributed softwars and to pro-
pose an environment conducive to the construction and debugging
of such systems. This paper would not have been written but €for
the impetus and inspiration of Brinch Hansen's excellent arti-
cle[3) on distributed procasses.

The current *MOD compiler is a 2808 line T[23] program whizh
runs on a PDP11/45 or VAX UNIX system, is one-pass, generates ob-

ject code, and compiles at 30602 LPM(VAX) or 1903 LPM(11/45). The

compiler is tabla-driven for parsing, semantic analysis, and code
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gle "processor
ecach of whom
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development.

could easily be modified to generate code for oth-
The present implementation is restricted to a sin-
module" and has been w2ll tested by sixty students

implemented a multiprogramming operating system

in VM mode. The network version of *MOD is wunder
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