
P
AD—A079 709 WISCONSIN UNIV—MADISON MAT HEMATXCS RESEARCH CENTER ~~~ 9fl

UNCLASSIFIED MRC TSR 200S

D ISTRIBUTED PROGRAMMING. CU)

_ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ • H

L ~ 2~8 ~~251.0 L
_ _ _

L L
~~~~~~ Ili2.2

~~ ~~~ 11111 2.0

Hill 
___________ 

—

liii!’ 25 
~JJJ=i~ ~jn~

MICROCOPY RESOLW]ON TEST CHART
NAIIONAL RUR[AU Of STANDARDS - 963 -A



‘
~~~~~

M tTechrkical ~uInmary ~ep~~ t~~ 2008

~~ D--~~~~~I~GUAGE FOR DISTRIBUTED)

C ~~~ Robert P .,/ COOk

I ~ft~Q~ i~d-~ 7~~~ —~~ I~~~
j

Mathematics Research Center
Universit y of Wisconsin—Madison C’
610 Walnut Street
Madison , Wisconsin 5 3106

_ e .
LU (Received August 20, 1979)
—J

Approved for public release
Distribution unlimited

• Sponsored by

U. S. Army Research Office
P.O. Box 12211
Research Trian gle Park

P r~orth Carolina 2 7709 80 1 15 05 ?

—I

UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

*MOD__A LANGU AGE FOR DISTRIBUTED PROGRAMMING
•

I
. •
,
•:‘

~~~
- .

Robert P. Cook

V ,
.. •

.J~~Technical Summary Report # 2008 ~~~~~~~~~~~

October 1979 ~~

ABSTRACT

Distributed programming is characterized by high communications costs

and the absence of shared variables and procedures as synchronization tools.

*MOD is a high-level language system which attempts to address these prob-

lems by creating an environment conducive to efficient and reliable network

software construction . The concept of a processor module is introduced as

well as a methodology for distributed data abstraction and process communica-

tion. In addition , a VHLN (virtual , high-level langu’~ge network) is proposed

for system development.

AMS (MOS) Subject Classification : 68A05, 68A10, 68A55

Key Words: distributed programming , modula , processor module ,

data abstraction , programming languages

Work Unit #8 (Computer Science)

~j~onsored by the United States Army under Contract No. DAAG29—75—C-0024 and the
Computer Sciences Department, University of Wisconsin , Madison.

7 1 • p~’- .1 
~~~~~~

~~~~~ 

~~~~~ ~P I ~~~~~~~~
• -

— - -•—-----
~——~ ——

- •-

• — .—--—--• ~~~~~~~~~~~~~~~~~~~~~~ -.~.—--~-—--
~~~~~~~~~~~

SIGNIFICANCE AND EXPLANATION

A language ( *MOD) for distributed programming is being

designed and implemented at the University of Wisconsin to

facilitate research in network software concepts. Distributed

programming is characterized by the use of multiple hardware

processors to implement an algorithm. The *MOD system also

proposes a convenient methodology for the debugging and develop-

ment of distributed programs. In addition, the language contains

some new approaches in the areas of data abstraction, mutual

exclusion, and synchronization.

.1~ _ - 
- •~

/ 

J

~~~~j

7

The resp~nsibilfty foi the wor~i~g a~d vIe~s eipressed i~ ~Ehis
summary lies with MRC , and not with the author of this report .

*

/

r . - -

~~~~~~~~~~~
- -

~~~~~~~~~~~~~~~
-— - - -

~~~~~
•
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

•-
~~~~~~ 

*MOD_...A LANGUAGE FOR DISTRIBUTED PROGRAMMING

Robert P. Cook

1. Introduction

*~ OD(starmod ) is a language , deri~ ed from ~Iodula[27], which

is intended for systems prog ramming in the network environment.

The *VIOD project is based on experience with our PDPI1/VAX ~1odu le

compilar [4] and was inspired by Brinch Hansen ’s “distribut ed

processes” concepts (3]. The design strives to address the sys-

tems programmer ’s traditional concern for efficiency and includes

the constraint that each language feature should be maximally e~-

tensible. For example , the *MQD user can utilize the data

abstraction mechanisms to construct either queue or stack types;

thus , the language attempts to define an appropriate set of prim-

itives which can be extended to meet programming needs. By giv-

ing each user the freedom to experiment with language construct3

for distributed programming , *~4OD is also intended as a mech anism

for research. This paper discusses the rationale behind th-~

des ign  of the *400 system and contrasts the language featur es

chosen with those of the Department of Defense (DoD) ~ D ’~

language(l51, Hoare ’s Communicating Sequential Proc~ 3s~ :3

(CS?) (14], Feldm an ’s PLITS[2 ,9], and Brinch Hansen ’s “di~ tribut e1

processes”(3]. In particular , we address the distribu ted pro-

gramming problem areas of interprocessor communi cation , typ2

checking , separate compilation , d ebugg ing , and kernel effi ciency.

The *MOO language definition [Sj should be consulted for the • Le-

tails of design decision5 in other areas such as data abstr action

or synchronization.
P

Sponsored by the United States Army under Contract No DAAG29-75-C-0024 and
Computer Sciences Department University of Wisconsin , ~1adison .

—



_________ ________

2. System 3v e rv i ew

Before proceed ing further w i t h  a m o r e  detailed discussion of

the distributed programm ing features , we will consider the module

concept of Modula as a focal point for program development . k

module encapsulates an environment and defines the relationship

between Itself and the outside world; therefore , both the

informa tion—hiding properties proposed by Parnas (2~31 and the

flexibility of the Sirnula(6] “c lass ” mechanism are maintained .

each module usually corresponds to a program abstraction and con-

sists of an external interface specification , data structure de-

finitions , procedures , process es , and an optional initialization

par t.

~ computer system is traditi onallyt25] viewed as a collec-

tion of processors , processes , and procedures. k processor exe-

cutes commands or instructions , a ~~ ocedur e  is a sequence of in—

structions for a processor , and a process is one or more pro-

cedures together with the information necessary to control and to

define the virtua l processor on which it runs. *MOD provides

these entities in the forms of a “processor module ” , procedure

and process declarations , respectively. In addition , a “network

~nodu1e” is required to define system connectivity for the proces-

sors and to declare any global types or constants. These module

types can be declared with the following syntax:

—2—



r • 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•‘lODULEDECLP~Rk T IO W : =

MODUL.ETYPE; (external; I

(d e f i r ELEMENT (, E L CM E NT 1...; 1

(e x p o r t ELEMENT (, ELEME N T 1...; 1

(p e r v a s i v e ELE M ENT (, EL EME N T] . . . ;~
(BLOCK I

~~~~ I D E N T I F I E R  -

M ODULETYPE : =

( i nt e r f a c e  I processo r 1 module  I D E N T I F I E R I

n e t w o r k  m o d u l e  ID E N T I F I E R LINK ( , LINK 1 ...
B LOCK : =

timport IDENTIFIER (,ID EN T IFI ER 1...; 1

(D E CLA R~ TI ON L IST

b e g i n  ST~ TEMEN TLt9T

L L N K :  (P R OCESSOR ID ( , PRO CE SSORID 1...)

ELEMENT : IDENTIFIER [(PROCEDIJREID) I

rh -c I D E N T i F I E R  names the  m o d u l e  and m u s t  be matched  by the

I D E N T I F I E R  a t  the  end of the BLOCK. The BLOCK cons is t s  of de-

c l a r a t i o n s  f o r  c o n s t a n t s , type s , v a r i a bl es , m o d u l e s , processes ,

or procedures as well as a ST~ TEM ENT LI ST w h i c h  can be used to in-

i t i a l i ze  t h e  mo d u l e .  The m o d u l e  b o u n d a r y  d e l i ne a t e s  a closed

lexical scope which can only be superseded by the explicit

specification of “define ” , “export” , or “Impo rt” lists.

*-~ —3—



-~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- • • - -

— ~~~~~~~~~~~~~~~~~~~~ 

-

An tDEN~ I?IER specified In an “import” list causes a Je—

c]aration from a global scope to be made accessible within the

module. The “expo rt” attribute allows a local declaration to be

visible at the enclosing lexical level; whil e “pervasive” makes

the IDENTIFIER known a t all lexical levels wher e the same name is

not already declared . The latter option is most useful for

system—wide constant and type definitions. The optional PRO—

CEDUREID can be used to specify automa tic ini tial iza t ion f or ex-

ported types. The “define ” statement is provided as an alterna-

tive to “export” . It gives the user the ability to list those

IDENTIFIERs which can be referenced externally, but only by pre-

fixing the reference with the module name as with the Simula

“class ” notation. Furthermore , the “define ” , “export” , and “per-

vasive ” statements provide implicit read—only protection for any

variable so listed . The ability to specify the external inter—

face for each module is becoming a standa rd fea tur e of modern

prog ramming as is demonstrated by its use in Mesa(lø), Eu—

c].id(l9], Alphard (241, kD~ [l5), etc.

Each processor LINK specifies a list of processor modules

which  can be sent messages. No variables or shared code are al-

lowed at the network evel; any procedures used for type imple-

mentations are replicated in the appropriate “processor modu le ” s.

Each “process or module” can represen t any number of phys ical pro-

cessors as long as they all use a shared memory for instruction

ii execu tion. The external interface specification for a “processor

module” lists any messag e types and process names which are used

for communication. We should also point out that the availabili-

ty of a hardware multiprocesso r to Implement a particular “pro-

cessor module” should be regarded as a fortuitous circum stance —

-

~ 

~~~~~~~~~~~~~~~ 
- - .

.~~
— .•w-. -

~~
-
~

— —
~~

•• • --- - -—-— — -•—- .•--- .
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - -
~~~~~~~~~~~~~~~~~~~

-

-• .. -~ - -. . ——
~~~~

-,•

~

-

and should not be counted on by the programmer. kn “interface

modu le ” is a Modula construct (27], similar to a monitor (1.3],

which guarantees mutua l exclusion across all the contained pr o-

cedures.

The example in Figure 1 illustrates these concepts with a

ring network version of Dijkstra ’s Dining Philosophers (7~I prob-

lem . As in the original version , five philosophers are each try-

ing to eat a plate of special spaghetti which has been placed in

the middle of a round table. In our example , each ph ilosoph er

can only directly control the right—hand fork; to get the left

fork , the philosopher to the left must be consulted . However ,

each philosopher is also restricted to conversation with the

• right neighbo r only; therefore , a messag e must be sent around the

ring(table) to get permission to use the left—hand fork and to

give it back. The algorithm is based on an ordered resource al-

location strateg y developed by Havender (121 which prevents

deadlock and starvation.

The “diningroo rn ” network definition specifies the connec-

tivity for the ring network , defines a “semaphore ” data type , and

contains the program stubs for the five philosophers. Since

“semaphore ”s are declared as “pervasive ” , they will appear as

builtin types in all processors in which “semapho r e” is not rede—

d ared . The five processors are specified only in terms of their

external interfaces ~termed a program stub ) . The keyword

“external” indicates that the processor definitions are part of a

separate compilation. The bind ing process for separate compil e—

tions will be discussed in Section 4.

—5—

I L L .  _ _ _ _ _



r ~~~

- -- - —

~~

-

~~

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _

Figure 1

fletwork module diningroom= (phil~3 ,phiU),(phill ,phil2),(phjj.2,phj13),
(phil3 ,phil4),(phil4 ,philc3); (*ring network*)

interface module semaphoredef; (*Boolean semaphore abstraction *)
pervasive semaphore(init ,P,V; (*available to all processors*)
type semaphore = record taken: boolean;

free : signal;
end record;

procedure P(var 5: semaphore);
begin
if s.taken then wait(s.free) end if;
s • taken: =true

procedure V (v a r 5: semaphore) ;
begin
Ltaken:=false; send(s.free)

~~~~ V;
p~~ cedure init(var s: semaphore);

begin s.taken:=false
end hilt;

~~~ semapho redef;
processo r module philø; e x t er n a l ;

define get ,pu t,got; (*program stub for philosopher zero~process get(who ,fork: integer); (*get “fork” for “who” *)
process put(fork: inte~~~j; (*give “fork” back
p~ocess got(who: integer); (*tell “who ” the news *)
(* referenced externall~~~as philc3.get, etc. *)end phi l~~;

processor modu le phil4; external ;

end p h i l 4 ;
end dining room .

—6-
~ - *

~ : T T T T : T TT. .~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

3. Language Concepts

From the *MOD viewpoint , a computer network can be charac—

terized as an arbitrary collection of processors with fixed com-

munica tion paths for interprocessor messag e transfer. Messages

are assumed to rang e from no content(signal or interrupt) to ar-

bitrary data structures. Furthermore, we require strong type

checking both within and across processors to maintain system

consistency . Finall y, any mechanisms presented should be effi-

cient and should not constrain the options of the systems pro-

grammer. For these reasons, we developed a process—oriented com-

munication methodolog y which eliminated the need for additional

statements to handle messages. In the next sections , the *MOD

design will be presented along with a detailed discussion of the

alternatives , advantages and disadvantages.

3.1 Processes~ and Signals

Each “processo r module” consists of one or more concurrent

processes declared as follows :

PROC ESSDECE.kRATION : =

~rocess IDENTIFIER ((FORMALS) 1

‘(‘EXPRESSION’l’ I [:TYPEIDI;

B LOC K

~ IDENTIFIER

PROCESSREFERENCE:

PROCESSID [(ARGUMENTLIST) 1

—7—, *

L - --
_ _ _ _ _ _

-

- __
~~~~~~~~~~--~~~~~~ - ~~~~~ ~~-~--~ --~~~~ ‘-~ —- ~~—— - - - ~~ -~ -~ - --- -~ -—- 

~~~~~ - - 
~~~~~~~~~~~~~~~~~~~ 

_— —

Except for the keyword “process” and the optional priority EX-

PRESSION , the declaration is identical to that of a procedure;

however , the semantics are different since a process can execute

independently of its creator. Each instance of a process is

created by a PROCES~ REFERENC E which must specify a list of ar;u—

rnents correspond ing exactly in type and number to the FORM7~LS.

kt this point , storag e space is obtained for the activation

record and the process control block , both of which remain allo-

cated until the process terminates. The returned value for a

functional process is set by assignment to the process iden tifier

and must match the specified TYPEID. When a functional process

exits , the returned value is copied from its activation record to

the address space of the caller. The use of a functional process

corresponds to send ing a message and then waiting for a reply

while a reference to a non—functional process implies parallel

execution. We will frequently use the term message as a synonym

for the record containing the arguments to or result from a pro-

cess.

The optional EXPRESSION must evaluate to a compile—time con-

stant which specifies the inittal(defau l t zero) priority of the

process. Each process ’ priority can be modified by assignment to

the variable “priority ” which is used to control contex t swit ches

among processes. The general rule is that a process loses con-

trol of the hardware processor if i t lowers its priority ba1o~v

that of another “ ready ” process or if a higher priority process

changes to the “ ready ” sta te. The other bui lti n pro c~~~;

identifier(” origin ”) i s a  tiie stamp whi ch indicates th e  c r e a t i o n

4. order relative to all other processes in the same proc?s;: r

— 8—

U .  
-



-~~ - - - - - --

~~~~~~~~

module. The example in Figure 2 comple tes the Dining Philoso-

phers network by defining the actions of each processor and

serves as an illustration of the preced ing defini tions.

Each philosopher is required to request the forks in a

specific order and must have obtained the first fork before re-

qu esting the second . The “get ” process accepts fork reques ts and

either passes the request to the right in the ring or else gets

control of the fork and sends an acknowledgment to the “who ” ph i-

losopher. The “go t” process uses its higher priority to spe-e i

the acknowledgments to the appropriate philosophers. Finall y , it

should be noted that multipl e activations of each process can

coexist; for instance , three independent copies of the “get ” pr o—

cess could be handling requests simultaneously.

The signal construct embodies a messag e capability that is

even simpler than a process cell in that its arrival represents

the only conten t. “signal” can be used as a basic type in *W D

to declare variables which can only be manipulated by the follow-

ing procedures :

send (SIGNALID) wai t(SIGNALID ,R A N K)

awa ited (SIGN~.LID)

rhe interpretation of these procedures is identical both with in

and across proc essors. ~ “wai t” delays the executing pr ocess in

a loca l prior ity queue specific to SIGNALID. The queue is or—

dered first by the RANK attribute and secondly by the longest

wait tim e. - The “awa i ted ” function returns a Boolean value whi :’
~

reflects the status of the “wait ” queue (true=not empty) for SI~ —

NALID. The “send” statement unlinks the process a t the he~ .1 of

S I G N A L I D ’ s queue and sets the process ’ sta tus to “ r e a d y ” . U no

— (~—

p p .

r

r

--

processor module Phil. ; (* g~~~~ j Qj *)

define ge t ,put ,go~~; (*n=i 41 mod 5, righ t neighbor *)
~~port phil~~;
cons t first=mi n (i ,i+4 mod 5);

second=max(j.,j-4-4 mod 5);
var myfork ,goti t: semaphore;
p~ pçess get(who ,fork : integer); (*get fork for who*)

begin (*calls who on success*)
if fork <> I then phil .get(who ,fork);

else P(my~ ork); got(who);

end get ;
process put (fork : integer) ; (*give “fork” back*)

begin (*wake up anyone waiting *)
if fork <> I then phil .pu t(fork);

else V(my~ ork);

end pu t;

~~~~~~~~~ 
got(who : integer) r u ;  (*1et “who ” use “fork*)

begin
if who <> i then phil .got(who) ;

else V (go~~it) ;end if;
end go t;

a~~cedur e getfork(fork: integer ); (*philosopher waits for “for k”*)
begin get( i ,fork) ; P(gotit);
end getfork;

begin loop
(*think*) getfork (first ) ; getfork(second);
(*eat*) put(fi rst ); put(second);
end loop;

end ph il.
1~~

— 10—
*

_ _  

•

- 
---

~~~~~~-— - - - —  
~~~~~~~~~~~~

- - -



r -- -

~~ 

- - - - -

~~~

- - - .--- -

~~~~~~~~~

,

process  is w a i t i n g  f o r  the s i gna l , the “send ” is ignored . The

semaphore e x a m p l e  in  F i g u r e  1 uses both the messag e and de lay

capabilitie s of signals to build a synchronization pr imitive.

For in terprocassor communication , the  “ import” processor can

only perform “send ” operations on a signal while the

“export/define ” processo r is unrestricted . Thus , a signal can be

tho ugh t  of as a means of generating a name for a processor which

also embodies a communication capability. The capability is also

revocable in the sense that if the defining processor never

“wait” s for the signal , the signal will always be ignored by de-

finiti on.

3.2 Desi gn Decisions

One of the  major differences of opinion in dis tributed pro—

g r am r n i n g  language design occurs over the use of process—oriented

v e r s u s  messag e — o r i e n t e d  c o m m u n i c a t i o n .  The DoD ~DA l a n g u a g e  is a

typical example of the  l a t t e r  c h o i c e .  In a recen t  paper  by L au er

and Ne .edhamtl9J, they state “that these two categories are d u al s

of each other and that a system which is constructed according to

one mode l  has  a d i rec t  c o u n t e r p a r t  in  the o t he r . ” We ag ree  w i t h

th e  d u a l i t y c o n c l u s i o n  but  fee l  t ha t  t he  message—oriented ap—

p r o a c h  ~ias  some d e f i c i e n c i e s  f o r  our purposes ;  these d e f i c i e nc i e s

m ay be co m p l e t e l y  i r r e l ev a n t  in  o the r  a p p l i c a t i o n s .  The fo l low-

ing exampl e from AD~~[l6J will illustra te most of these points.

-11-

L~ ~~~

_

~

. - --.-~~~~-,--“ ---~ — --.



task SEMAP~1ORE is task body SEMAPHORE j~.

entry P; begin loo~

entry V; accept P;

end; accept V;

end loop;

end;

initiate SEMAPHORE ;

<critical section>

The “initiat e ” statement causes the creation of the 3EM~.—

PHORE task which is equivalent to a *MOD process; note th a t  a

second “initiate ” while SEMAPHORE is still active would be an er-

ror. The “accept” statement defines a messag e reception po int

within a task as follows :

accept ENTRYNAIIE ((FORMALS) I

(do ST TEMENTS

~~~ tENTRYWAME 1 1;

The procedure cail syntax is used to send a messag e to an “ ac-

cept” point. The “accept” statement must be executed by an a:-

tive task to receive a message. The execution seman tics are as

follows . “Which ever(receiver or sender task) gets there f i r s t

waits for the other. When the rendezvous is achieved , t h e ip-

propriate parameters of the caller are passed to the c a l l e d t~~s~

The caller is then temporarily suspended until the :3 ’L ’.. e - ~

_ , 1_

- - -~~~~~~~~~-~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~~~ - — .. -~~~~~~~~~~~~~~

task completes the statements embraced by do ... ~n i . kny ou~

parameters are then passed back to the -caller and finally both

tasks proceed independently of each other.” (16)

Since “accept” is art executable statement , the r eceiving

task can choose the execution point at which to receive the mes-

sage; thus , mutual exclusion among competing messages is provided

automatically . Also , the receiving task(process) remains static

while a *rlOD process is activated for each message. Other useful

properties of the message—oriented approach are listed in Lauer

and Needham (l9]. However in our opinion , the message—oriented

approach has the following disadvantages for a systems program-

ming language.

Messag e Queuing . Since the receiving task in a messag e system

can only process one messag e at a time , the kernel must queue art y

add itional messages which arrive before the next “accept” state—

ment is executed . In *MOD , messag e queuing , stacking , etc . are

choices under user control since every message has a process to

implement the delay protocol. Several examples of the

*~4OD/~4 odu la programming approach may be found in W Irtht2S ,301 or

in art application descri ption by Artdrews [l].

~ctive_Processes. In *r4OD , the recip ient of a messag e is normal-

ly passive(no ac tivation record or process control block); in the

message—oriented approach , the task is alwa ys active althoug h i t

may be delayed at an “accept” statement. Consider the semaphore

example. Every semaphore used in an operating system would be an

independent task with an activat ion- record and control blec~~.

rhis faul t is corrected in *MOD by separating messal e tr ansm is—

4. sion and synchronization faciliti es. In addit ion , t h e * 400 is~ r

— 13—

— - - .~~~

. j

can alwa ys crea te a static process but the user of a message—

orient ed system can never create a passive process which can “ ac-

cept ” a message .

De layed Processes . The c a l l e r is a lways suspended u n t i l the

called task completes the entry routine. This defect is present

in both ADA and “distributed processes” but not in PLITS , *MOD ,

or Lauer and Needham. The p r i m a r y reason f o r d e l a y is to w a i t

for a returned message. *MOD provides all combinations of “delay

until called process termina tes” and “delay until called process

re turns a message” except for “no delay but messag e returned ”

which can be easily programmed .

Process_ D e l e t i o n . It is dangerous to delete processes because of

possible late arrivals or of the p o t e n t i a l loss of messages in

the wait queue . This is no t a problem in *MOD since every mes-

sage is guaranteed a cotrespondirtg process.

Priority . The message—oriented languages have no way to force an

execut ing task to recognize a high—priority message. If the

priori ty were associated with the task as in *.MOD , the message—

oriented approach could distinguish among messages to competing

tasks but not among different “ accept” points within a single

t a s k . The r e a s o n i s t h a t even if the task could recognize the

ne~ message , it would be illegal to duplicate the task to accept

i t . T r y i n g to a s s o c i a t e a p r i o r i t y w i t h the message is also fu-

t i l e b e c au s~ L h e r e i s no way to f o r c e t he e x e c u t i n g t ask to p e r —

form thi correspon ding “accept ” statement.

3 i m J 1 t -~n e o u 3 ~1e ssa g e s. C o n s i d e r the “ ge t ” process in F i g u r e 2.

if th r e e ;iinultan-eo us messages arrive , three independent “get”

proc e;;~~s ~ojl1 be created which could all be in execution on a

4. nilt ipro :e;;-i r system . In the message—oriented approach , each

—14—
*

- - ~~~~~~~~~~~~~~~~~~~~~~~-~~~-~~~ -~~~~~~ - - - ---~~~~-

~~

.- - -

I
task can process one messag e at a t i m e and i t is i l l e g a l to du-

plicate a task; therefore , software is automatically biased to-

ward single processor systems. In *M OD, the distinction was in-

tended to be transparent.

S y n c h r o n i z a t i o n_P r i m i t i v e s . The ADA semaphore example is t y p i c a l

of a s y n c h r o n i z a t i o n p r i m i t i v e cons truc t ed us ing messages . The

disadvan tag e is that a task must be created for each semaphore.

Additional problems arise i f the o r de r of messag e a r r i v a l f o rm s

the basis for synchronization. Since separate queues are main-

tained for parallel “accep t” statements , the sequence information

is lost. In all fairness , we will also agree that synchroniza-

tion primitives are less useful in a message system since the

“accept ” statement is an exclusion mechanism .

3 . 3 O t h e r_L a n g u a g e s

1-b are ’s CSP , DoD’s ADA , and Feldman ’s PLITS language are all

messag e—oriented . CSP and PLITS are oriented towa rd end—user

programming . PLITS , for instance , performs automatic routing of

messages which would be a user-implemented service in *MOD . CSP

is strongest in its exploration of n o n d e t e r m i n i s t i c p r o g r a m m i n g

features while PLITS is more completel y specified with respect to

distribut ed programming . The ADA language is a CSP derivative

w h i c h , if used for systems programming , suffers from the d ef e c t s

listed earlier.

*‘49T) extends Brinch Hansen ’s “distributed processes” for

network communication and i m p r o v e s the m u l t i p r o g r amming f e a t u re s

of ~ L r t h ’ s M o d u l a l a n g u a g e . For ex a m p l e , each “ d i s t r i b u t e d pro—

c ess ” can be encoded as a *IOD “processor module ” as fo l l ows :

—15—

7 *

-_

process d i s t r i b u t e d

<own variables)

p~ oc n a m e (in p u t pa rams *ou tpu t params)

<local vari ables>

<statement>

<initial statement)

processor module *MoDdistributed ;

de f i n e name , nametype ;

<own var iables)

type nametype= record

output pa rams

end record ;

process name (inpu t params) :nametype ;

<local variables)

begin <statement)

end name;

begin <initial statement)

end *~~ODd is tr ib u ted

The *MOD ex tens ions to these l anguages a re s um m a r i z e d be low:

—16—

IL .

L L ~~~~~~~~~~~
_ _ _ _ _ __ _ _ _ _ _ _ - _ _ _ _ _ _ _ _

1. Added processor and network modul e notation.

2. D e f i ned n e t w o r k — w i d e , s t rong type check ing .

3. Defined a separate compilation facility for network construc—

t i o n .

4. Added “ s ize ” s p e c i f i c a t i o n s to type s f o r i n t e r f a c e d e f i n i —

t iort s .

5. Deleted “dev i ce modules ” .

6. Integrated priority into signal and process handling .

7 . Chang ed s i g n a l and process s e m a n t i c s to c o n f o rm to n e t w o r k

usage.

8. Improved external interface specification statements.

9. Added data a b s t r a c t i o n p r i m i t i v e s and p a r a m e t e r i z e d types.

I n a d d i t i o n , we have r e t a i n e d a “ d e g r e e of t r a n sp a r e n c y ” t 2 l 1

between concurrent and distributed programming features while

t r y i n g to s a t i s f y the efficiency constraints of a systems pro-

gramming lang uage.

4. ~~stem Co nstruction and Testing

*MQD has more severe bind ing problem s than found in most

systems in that a network can be separately compiled by processor
-

modules , processor modules by modu les , and modules by even small-

er modu les . Al l must be type checked arA loaded to form a work-

ing system . The compilation order rule is that all declarations

must be available prior to a module ’s compilation. P~ module with

the “external” clause is termed a program stub which can be de-

fined by the programmer or created by the *MOD compiler. The

former option can be used for top—down program creation or to in—

t e r f a c e w i t h f o r e i g n sys tems . Once the correspond ing module body

is d e f i n e d as In F i g u r e 2 , the * 43D c om p i l e r a u t o m a t i c a l l y g ’en —

—17—
7.

‘LI ,
Li-

_ _ _ _ _ _ _ _

— - -— - --—— — - - _______________________ — ______________ -. -- - -

crates a program s tub in t ex tua l f o r m . There a r e severa l advan-

tages to this approach.

First , the programmer only maintain s one object——the pro—

gram; this may be contrasted with other languages which require

the user to maintain both a declarations package and a program

body. Since the *MOD stub is generated from the most recent copy

of the program , the probability of inconsistencies between the

two definitions is minimal. Finally, the *MOD method automati-

cally generates a program specification in a machine—independent

format which is useful if software is being developed at several

different sites.

Once the object modules for a processo r module have been

created , a program called the binder is invoked which checks the

creation dates for consistency and releases the object modules to

the system loader to create a bootable core imag e file. The core

image contains the machine—dependent *MOD kernel discussed in the

next section and a compiler—created table which contains the mes-

sag e codes for external communi cation and the process addresses

for arriving transmissions. t this point , the software can be

tested .

In order to test software in the distributed environment , it

must be possible to experiment both wi th software algorithms and

hardware components. The advent of high—level languages has

greatly enhanced algorithm development but the same flexibility

is not present for hardware . The -virtual machine approach (ill -

was i -5tep i n the r i g h t direction but was primarily oriented to—

wards th~ cnn struct ion of multiprogrammed , single processor

seftwa r~~. r~ e V4 environment has been suggested (26] as suitable

for the]?vel-o pment of network software but the user Is still

—18—
7. *

U -
~~~~ ---- -- -..~~~~~~~~~~~~~~~~~ —-~~~~-- —-—



— ~~~~~~~~~~~~ 
—

~~~
— — — —

~~~~~
---- — -

~

giv e n a ba r e machi ne as a starting point.

Our proposal consists of a two—level approach—— 1) a

VUL W( virtua l high-level language network) *MOD environment for

network software development and experimentation on a s i n g l e  host

computer (a PDP11 or VAX in the current implementation effort);

and 2) a compiler capable of producing bootable code for a

number of different machines. The VHLN system is a simulated

network which uses comp iled code and runtime aids to provide a

variety of error—checking and debug g ing aids. Thus,

hardware/software system s can be developed in an economical

manner on a single processo r , even if the target hardware is not

available due to delivery or design problems. The *MOD system

can also be used as a research tool by institutions that only

• have a single processor. Once a software system has been tested ,

it can be moved to the host machines for production use.

Several advantages ensue from the use of a VHLN environment.

First , as is illustrated in the Dining Philosophers example ,

there are no machine details to muddle up the solution. In fact ,

if machine designers made peripheral devices maintain the

process/si gnal philosophy , no such bit twiddling would ever be

necessary! The high—level language methodology provides system—

aide type-checking , da ta abstraction , and encapsulation mechan—

i srns. In addition , the “defining module ” concept insures that

som eone is  r e s p o n s i b l e  fo r  every bit of software in the system ;

• if something does not work , the culprit is easily found . Also ,

software cari be developed in an e n v i r o n m e n t  t h a t  p rov ides  a use—

f i l set of diagnostic and debugging tools before being moved to

th~ t arget computer system . It is much more economical to

iei~ lop softwa re aids for one host developmen t computer than for



each target machine. The VHLN system also has some disadvan-

tag es.

The simulated , multipl e processo r environment provide d by

the *MOD system is u n re a l i s t i c  in the sense tha t  events  w i l l  not

have  a r e a l — t i m e  correspondence to the pe r fo rmance of system s

r u n n i n g  on ba re  m a c h i n e s .  It m i g h t  be possible to add some

clock—driven primitives to the language to address this problem

if it proves serious. As we gain more experience wi th the sys-

tem , it will be possible to draw more definitive conclusions re—

gard ing the ease of moving from a simulated to a real network.

5. The *MOD Kern el

The *MOD kernel performs process control and messag e

transmission functions only; any routing , secur ity, bu f f e r i ng -, or -

flow control operations are the domain of the systems programmer.

In a d d i t i o n , process con t ro l  does not inc lud e the t r a d i t i o n a l

schedu l ing  dec i s ions .  A process loses con t ro l  of a h a r d w a r e  pro-

cessor only by terminating , blocking , lowering its priority, or

by r e c e i p t  of a messag e fo r  a h i g h e r  p r i o r i t y  process. T h e r e f o r e ,

the major kernel function is messag e process ing which is con-

trolled by a compiler—generated table.

A l i s t  is genera ted  by the compi le r  which  d e t a i l s  the

processes referenced and the correspond i ng processor identifica-

tion; in addition , a sim ilar list is created for local processes

tha t  occur in  “ expor t”  or “ d e f i n e ” s t a tements .  When an e x t e r n a l

process request  occurs , the  k e r ne l  cons t ruc t s  a messag e f r o m  the

argument li st as follows : -

var message: record

arg
1~ T1;

-20-

~ 

.~~ - . I , -~~ 

— 

- -— — — - 

-



V - - - — - - —
~~

- ‘ —---------- .--- —~~~— 
__________________  

—-,‘

arg~~: ~~~
end record

rhe processo r identification for the destination is available

from the kernel tables so the message is transmitted along with

some control , e r r or , and sequence info rmation. When the message

is received , the target processo r verifies that the process has

been exported , creates an activation record containing the mes-

sag e for the new process , and sets the “orig in ” time stamp. If

the new process has the highest “ ready ” priority , it will begin

execution immediately. For a functional process call , the cr1—

— ginating kernel changes the process status of the caller to m di—

cate that it is waiting for a repl y messag e from the target pro-

cessor. When a reply arrives , its origin is verified against

that in the process ’ control block; the reply is appended to the

process ’ activation record; and the process ’ status is changed to

“ ready” . It will resume execution if it has the highest priori-

ty.

At this point , it should be noted that most I/O processors

do not have the sophistication or the flexibility to implement -

the previous protocol. Wirth (27] proposed the concept of a

“device ” module to capture the essence of I/O programmi ng . 3y

necessity , the device module ’s syntax is very machine and , in

som e cases, device dependent. For instance , a PDP—ll module con-

tains priority level , interrupt location , and device register

syntax . Device modules have been omitted from *‘400 because of

their inherent machine dependency; instead , process calls arid

signals are used to their fullest capabilities. The advantag e is

—21.-
7. *

L 
- . ,-. -- -~~



--~~~~
-—--.- —~~~~~~--~~~—~~~~- - - -- - -~~~~~~~~~-~~~~~~~~~~

that all programs retain their machine independence at the ex-

pense of a small number of machi ne language instructions for each

processo r whic h convert device interrupts to signals or process

calls , as appropriate . Consider the following exampl e from Wirth

[28).

device module tim ing [61;

define tick ;

use time;

var tick: signal; LCS [177545b1 : bits ;

process driver[ lOøb ) ;

beg in

LCS[6J :=true ;(* start clock running *)

loop

doio ; i n c ( t i i n e)- ;

wh ile awaited(tick) do

send (tick); 
~~~~

~~~ (*lOOp *);

end d r iv e r ;

be-gin dri v er

end t i m i n g ;

rhi.~ example would be expressed in *MOD as follows .

process timing ; -

i m p o r t t i ck ,t im e ;

:ons t ST~ RT~ LOCK 4;

var int errup t:si gnal ;

b e g i n

—22—
7, 1

• 

- - -  —L L~~~~ - - . — -~~~~~~
-
~~~~~~~~~~~ -~~~~ - ---- ~~~~~~~~~~~~~ --- —-~~~~- - -~~~~~~~~~~~~~~~~ ——-


-

~~——&i._
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —

priority:= 6;

(*start clock*)

s y s ( ST !~RTC LOCK , interrupt ) ;

loop

wait(in terrupt ) ; inc(time ) ;

while awaited(tick ) do send(tick );

end while;

end loop;

end timing ;

The “ sys ” procedure is the only escape mechanism to the host

machine. In the example , the argument STARTCLOC K selects a ker-

nel routine which initializes the clock interrupt location (l00
8)

rind starts the clock running . Since the *~4OD process is waiting

i~~ priority six , the “interrupt ” signal will wake it up and the

pr iority will prevent processor preemption by messages to lowe r -

prior ity processes. The priority construct provides the same

function ality as processor priority and has the advantag e of be—

Log dynam ic as opposed to the static notation of the device

m odule. Another advantag e of the high—level approach is that

device handlers can be easily debugged by testing their response

to artificially generated signals. Device modules have one ad—

v a n t a g e in that all the information is available , but force the

pro grammer to acced e to the pervers ity of the hardware designer

• (see Wi rth [29] for a list of typical problems ) . Since recent

.i ar~ ware trends indicate a growing support of high—level ianguage

-~r:hitectuj r -e , th e r e  i s  rio reason why this philosophy should not

~ils o h e  extended to external communication inter ’~aces.

T h i s  i m p l em e n t a t ion  also makes it easy to program hierar—

—23—

-
—  

_ _ _ _ _



- ~~~~~~~~~~~~~~~~~ -fl’-—’ - :r~— : - —
~ 

- -
~~~ 

- — - - - —~~~~~~~ .--
-- — - ---- —--

~~
--- -

chies of interrupt handlers as proposed by Lampson [17]. Consid-

er the folliowi ng example taken from Unix [22).

The ‘Juix system is initialized so that a memory fault trap

goes to an error routine . However , to create the table of free

space the system needs to know the current memory size. This is

accomplished by doing successive stores until a memory fault cc—

curs; the point of the fault identifies the highest available

memory address. The problem occurs in redirecting the trap awa y

from the error routine. The *MOD solution is to execute a “wait

(memory fault ,2)” which supersedes the “wait (memoryfaul t,l)” in

the error routine. When the signal occurs , the trap is diverted ,

as desired . The UNIX solution is not nearly so elegant.

We have tried to illustrate by these examples that the dis—

~~tinctions between I/O programming and process communication are

largely artificial; therefore , one methodology will suffice for

both .

6. Conclusions

The *MOD system represents an exploration of the design de-

cisions necessary to apply the modular programming philosophy of

Wirth (30] to the development of distributed software and to pro—

pose an environment conducive to the construction and debugging

of such systems. This pape r would not have been written but for

the impetus and inspiration of Brinch Hansen ’s excellent art i—

cle [3] on distributed processes.

The current *MOD compiler is a 2900 line 0(23] program which

runs on a PDP1I/45 or VAX UNIX system , is one—pass , generates ob-

ject code , and compiles at 3000 LPM(VAX) or l0O~3 LP~4(1.l/45). The

~ compiler is tabl e—driven for parsing , semantic analysis , and code

.
~~J

.
—24—


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -

— 

generation and could easily be modified to generate code for oth—

- er machines . The present impl ementation is restricted to a sin-

gle “processo r module” and has been well tested by sixty s tuden ts

each of whom implemented a multiprogramming operating system

which executed in ‘Pt mode. The network version of *MOD is under

development.

I 1
—25—

p - 
—

Li. - .  
- . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _-- -

~~~~~~ 

-



- - ~~~~--~~~~~

RE FE RE MC ES

[1 1 ~ndrews , 3.R., “Th e Design of a Messag e Switching
System : An Application and Evaluation of Module ” , IEEE
Trans. on Software Engineering 5, 2(March 1979) 138—147.

[2 1 Ball , I.E., Williams , G.J., Low , J.R., “Pr eliminary ZENO
Language Description ” , The University of Rochester , TR41,
(Jan. 1979)

[3 1 Brinch Hansen , P., “Distributed Processes: A Concurrent
Programming Concept ” , Comm . ACM 21 , ll (Nov . 1978), 934—941.

[4 ] Cook , R.P. , “ An Introduction to Modular Programming for Pas-
cal Users ” , The University of Wisconsin— ladison , Technical
Re por t , (Jan. 1979).

[5 1 Cook , R.P., “Th e *MOD System 3uide ” , in preparation.

[6 1 Dahi , 0.5. at al., “Simula 67 Common Base Language” ,
No r w e g i a n  C o m p u t i n g  Cen ter , Oslo(Ma y 1969).

[7 1 Dijkstra , E.W., “Cooperating Sequential Processes” , in
Programming Languages (F. Genuys ad.) , Academic Press ,
(1969) 43—1 12 .

[3 1 Dijkstra , E.W ., “Guarded Commands , Non—Dete rm inacy and A
Calculus for The Derivation of Programs , Marktobersdorf NATO
Conference , (Aug . 1975).

[9 ] F e l d m a n , -LA ., “Hi gh Level Programming for Distributed Com-
puting ” , Comm . P~CM 22 , 6(June 1979) 353—369.

[10) 3eschke C.M ., J.H. Morris Jr. and E.H. Satterthwaite , “Early
Experience with Mesa ” , Comm . ACM 20 , 8(Aug . 1977) 540—553.

[lii Soldber g , R.P., “Survey of Virtual Machine Research” ,
C o m p u t e r , 6 (June 1974) 34—44.

[12) F-lavender , J.W., “Avoiding Deadlock in Multitasking Systems” ,
IBM Sys. 3. 7, 2(1969) 74—84.

[13) -In -are , C.A.R. , “Monitors: An Operating System Structuring
Concept ” , Comm . ACM 17 , 10(0-ct. 1974) 549—557.

[14) :io-re , C .A.R. , “Communi cating Sequential Processes” , Comm.
AC ’t 21 , 3 (Aug. 1973) 666—677.

[15] Honeywell , Inc . and Cii Honeywell Bull , “Reference Manual
for the AD. Programming Languag e” , SIGPLAN Notices 14 ,
6(1-inc ~~ 7 -~~) Part A . 

—

( 1 6 1  9one’~ -~~l1 , to-c . and Cii Honeywell Bull , “Rationale for the
‘Design of the ADA Programming Language ” , SIGPLAN NotIces 14,

1i n - ~ ~97’)) ?art B. 
— — — —

I ~~~~~~~ 

-26— 

—

- - . 

- - ~~~~~~~~~~ . - ~~~~~~~~~ - -  -~~~~~~~~



[ 1 7 ]  Lampson , B.W., “Dynamic Protection Structures” , P1FIPS FJCC ,
(1969) 27—39.

[19] Lamp son , B.W. at  al , “Report on the Programming Languag e Eu—
d id” , SIGPLAN Notices 12 , 2(Feb. 1977).

[19] Lauer , H.C. and Needham , R I . ,  “On the Duality of Operating
System Structures” , Proc. Second Int. Symp. On Operatina

~~~tems Structures , IRIA (Oct. 1978).

[2 0] Pa rnas , D.L., “A Technique for Software Module Specification
with Examples” , Comm. ACM 15 , 5(Ma y 1972) 330—336 .

[21] Parnas , D.L. and Siewiorek , D.L. , Use of the Concept of
Transparency in the Design of Hierarchically Structured Sys-
tem s” , Comm. ACM iS , 7(July 1975) 401—408.

[22] Ritchie , D.M., Thompson , K., “The UNIX Time—Sharing System ” ,
Comm. ACM 17 , 7(July 1974) 365—375.

[2 3] R i t c h i e , D.~4., “C Reference Manual” , Bel l Labs , (Jan. 1974).

[24] Shaw , 4., W u l f , W.k., London , R.L., “Abstraction and Verifi-
cation in Alphard : Defining and Specifying Iteration and
3enerators” , Comm. ACM 20 , 8(Aug . 1977) 553—564.

[2 5) Wa tson , R.W., Timesharing System Des~j~ Concepts , McGraw-
• H i l l , (1 9 7 0) .

[2 6] W i n e t t , J.M ., “Virtual Machines for Developing Systems
S o f t w a r e ” , Proceed ings IEEE Computer Soci~~~~ C o n f e r e n c e ,
Boston MA , (Sept. 1971).

[2 7] W i r th , N., “Modula : A language for Modular Multiprogram-
ming ” , Software- Practice and ~~~~e r i en ce 7 , 1 (1977) 3—35 .

[23) Wirt h , N., “Th e Use of Modula” , Software— Practice and -

~~~~ e r i en c e  7, 1(1977) 37—65.

(29] W irth , N ., “Design and Impl ementation of Modula” , Software—
Practice and ~~~~e r ie nc e  7 , 1( 1 97 7 )  67 -94 .

( 3~3) Wirth , N., “Toward a Discipline of Real—Time Programming ” ,
Comm . ‘~C’4 20, 9(Aug . 1977) 577—583.

I- ~I

—27—

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~~~~~~
- -

~~~~
---,— -

—

--~~~~~~~~~~
- _

- ~~~.-.--.,- .‘.‘-~ - - - ~~~~~~~~~~~~~~~ ~~~~~~~~

S E L U R I T ’ y C F I C ~~~f lON OF T s t S PAGE PIt~~.n Dat. Entered.)

~~~~~~ 
DOCII~.~E k I I A T I ~~~ 

bAI~E READ INSTR UCTION S
~~ ‘•~~~~‘~~ ~~~~ “‘ ~~~‘ ‘~~~“ ‘~ ~~~ BEFORE CO MPL ETII ’~G FORM

¶ REPOR f NUMBER 2. GOVT ACCESSION NO 3 RECIPJE NT ~S C A T A L O G  NUMBER

2008 i’

4. T ITLE (~~ d Subt)tl•) S. TYPE OF REPORT & PERIOD COVERED

*MOD_...A LANGUAGE FOR DISTRIBUTED PROGRAMMING Summary Report - no specific
rep orting period

6. PERFORMING ORG. REPORT NUMBER

7. AUTHQR(.) B. CONTRACT OR GRANT NUMBER(a)

Robert p. Cook DAAGZ9-75-C-0024 ””

9. PERFORMING ORGANIZATION NAM E AND A~~ORESS 10. PROGRAM ELEMENT , PROJECT . TASK

Mathematics Research Center,~ University of 
A REA B WO RK UNIT NUMBERS

610 Walnut Street Wisconsin Work Unit #8 -

- . Computer Science
Madison~ Wisconsin 53706 __________________________
II. CONTROLLI NG OFFICE NAME AND ADD RESS 12. REPORT DATE

U. S. Army Research OffIce October 1979
P. 0. BOX 12211 13. NUMBER OF PAGES

Research Triangle Park , North Carolina 27709 27
TB. MONITORING ~GE’4CY NAME & ADDRESS(II dlft.r.n t from Controlling Office ) IS. SECURITY CLASS . (of tA t . r.pofl)

UNCLASSIFIED
ISa. DECLASS IFICATION (OOWN G RAOI*4 G

SCHEDULE

16. DISTR iBUT ION STATEMENT (of thia Report )

Approved for public release; distribution unlimited.

17. DIST RIeUTION STATEMENT (of it,. ab.t,act .nts,.d In Block 20 . II diff.r.,i t lice, Report)

lB. SUPPL EMENTARY NOTES

19. KEY WORDS (ConUnu. on rov~t.. ai d. if n.c.a.ary wd Id.ntif y by block ni~~ b•r)

distributed programming, modula, processor module, data abstraction,
programming languages

(ConSSnuf an r.v ,., aid. If n.c..aary wd Idsn(ily by bloc k numb.r)
Distributed programming is characterized by high communications costs and the

absence of shared variables and procedures as synchronization tools . .MIOD is a
high—leve~ language sjstem which attempts to address these problems by creating
an environment condud~ve to efficient and reliable network software construction .
The concept of a processor module is introduced as well as a methodology for dis-
tributed data abstraction and process communication. In addition, a \‘HLN (v i r tua l
high—level language network) is proposed for system development .

n
. DO ~~~~

k
, EDITION OF I NOV 69 IS OSSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF tHiS PAGE (WIlmi Data Ent .r,d i


