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PROBABILISTIC ALGORITII4S IN F INITE FIELDS

by

Mi c hael 0. Rab i n

Visit ing Professor of Appl ied Mathematics , MIT
Professor of Mathematics , Hebrew University

Jerusalem , Israel

Abstra ct. We present probab il istic algorithms for the problems

of finding an i rreducible polynomial of degree n over a finite

f ield , finding roots of a polynomial , and factoring a polynomial

in to Its irreducib le factors over a ‘m ite field. Al l of t hese

problems are of importance in al gebraic coding theory, alge bra i c

symbol manipulation , an~i nt.rber theory . These al gorithms have a

very transparent, easy to program structure . For finite fields of

large characteristic p, so that exhaustive search throng z~ i s not

feasible, our algor ithm s are of l ower order in the degrees of the

polynomial and fields in question , than previousl y published algorithms.

Research on probabilistic algorit hms in finite fields was work

conducted during 1~ 76 while at MIT.

Key Words and Phrases. Co~~utations in finite fields; root-finding ;

factorizatlon of polynomials; probabil istic algorithms .
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PROBABIL ISTIC ALGORITHMS IN FI NITE FIELDS ~~~~~~~~~~~~

~~~~ T~~.Michael 0. Rabin • ,,

• ‘/

In this paper we utilize the method of probabilistic

algorithms to solve some importan t computational problems

pertaining to finite fields . The questions we deal with

are the following. Given a prime p and an integer n , how

do we actually perform the arithmetical operat ions of

E GP(p~ ). Given a polynomial f(x) of degree in with coef-

ficients in E , we wish to find a root a £ E of f(x)— 0, if

such a root does exist . This is the root-findiflg prob lem.

Finally , given a polynomial f(x) £ E (xJ , we want to find the

factorization f — 
~l

•
~ 2 ’•••

•
~ k of f into its irreducible

factors f~~(x) c E(xJ . This is the factorization problem .

All, of the above problem.. are of great significance

in alg.braic coding th.ory , see 1 2 J ,  in algebraic symbol

manipulation, and in computational number theory .
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Algorithms for th. latter two problems are given in Berle—

kamp ’s 12 1 and more completely in the important pape r (3 1

which culminates his own work on the subject and also

incorporates important ideas of Collins , Knuth, Welch ,

Zassenhaus , and others.

Berlekaisp solves the root-finding problem for

f cGF(p~), dsg(f) - a, by reducing it to the factorization

problem of another polynomial F(x) £ Z~ (x) (Z~ GF(p),

is the field of residues mod p), where deg(F) - an. The

problem of factoring ?(x) c Z~ (xJ i. solved by reducing it to

finding the roots in of another polynomial G(x) e Z~ (x1 .

Thus .verything is reduced to root—finding in For

root—finding in a large Z~ , a case in which search is not

feasible, Berlekamp proposes a probabilistic algorithm in-

volving a random choice of d £ Z~ . The article (3 J does

not contain a proof for the validity of this alqorithm.

Our starting point is to solve directly the problem

of root-finding in GF(p’~) - E for polynomials f t

by a probabilistic algorithm which generalizes to arbitrary

finite fields Berlekamp ’s algorithm for The validity

of th. algorithm is based on Theorem 4 which has a

surprisingly simple proof.
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We now base factorization of a polynomial f(x) £ Z~ (x1

on root-finding for the same f. Namely, if f(x) has ir-

reducible factors of degree m.h~ (x) c Z1,(xJ, lcick , then

th. product D ( x )  - flh~~ c) of these factors can be readily

found by computations in Z~ (x). The roots of 0(x) are

in GF(Pm) and the above root-finding algorithm allows us

to directly find such a root a t GF(pin). The minimal

polynomial h (x) £ Z~ IX 1 of a , which i~ of degree a, can be foun d

by one of two methods given in Section 3. ~1ow, a is also

a root of some hj (X )  of degree in, so that ~(x) •

and we have found one irreducible factor of f(x) An

it.ration of this process finda all the irreducible factors.

The same algorithm works for  fac t  iza t ion of polynomials

f(x) c E (xI , where E is any finite field , by use of roots

of th. polynomial f(x) itsalt.

In terms of the number of Z~-op rations (additions

and multiplications mod p, of numbers Oca , bcp) used, our

algorithms are of compl.xity proportional to log p. Thus

th.y ars feasible even for fields CF(p’~) where p is so

larg. that exhaustive search through is not possible

L aving out th. factor log p and factors of order

loqn’log loqn , the algorithms presented here have the

following complexities. A root of f(x) £ GF (p’~) ,  deg f — in,



1~
IlI 

- - - —.— - -— - —.- ‘ ,- -=— .• 

~~~~~~~~~~~

-4—

can be found in 0 (n 2m) Z~ -o~e rations . A polynomial

f(x) £ Z~~( x 1 .  de g( f )  — n , can be factored in 0 (n 3 ) ope-

rations.

If the arithmetical operations of the field E • GF(p”)

are wired into circuitry so that an E—Operation can be

viewed as a unit , then the above root-finding algorithm

uses 0 (na ) operation. Under the same assumption for the
• 

- f i elds GF(p~ ) ,  i<n , the factorization of f ( x )  uses 0 (n 2 )

operations.

The rc. t— finding and factorization algorithms for

the case of large p, g iven in ( 3 1 are of higher order in

n ~~ot— finding for f (x ) £ G?(pM ) ,  de g ( f )  — n , uses

0 ( ( n ’m) 3 •m) z~ —o~erations . Pactorization of f c Z~~( x J ,

de q ( f )  — n , uses 0 ( n 4 ) Z~ —o~erations.

If p ii small so that it is practicable to find a

solution in of f ( x )  — 0 by search , then a more careful

comparison between the algorithms given here and the non-

probabilistic algorithm s presented in ( 3  ) is necessary .

The latter algorithm for factorization will run in time

0(n 3) but there is an 0(p )  factor. Our algorithm will

run in 0(n 3) (in the non—preprocessed case ) with a factor

of 0(loqp) . Thus for very small p. exact comparisons will



- -_ _---—
— •• - -• -. — .---- -

~~~
----—---- -.-- - --- -— 

-

~ -.~~ r~--~-’

—5—

depend on the numerical constants involved . However ,

the algorithms given here are sufficiently fast in all

cases to jus t i fy  their use even for small value s of p.

The probabilistic nature of our algorithm s does not

• detract f rom their practical applicability . The basic

probabilistic step is a random choice of an element 6 £ E

which is then used in an attempt to split a polynomial

f(x) into two factors. We prove that for any fixed finite

field E and any fixed f(x), the probability of success

by such a random choice is at least h a l f .  Thus the ex-

pected number of such steps leading to success is at most

two. Furthermore, in an algorithm involving many such

steps, the probability of a run of bad random choices

leading to a signif icant  deviation from the expected total

- 

- number of steps is very small.
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1. ARITHMETIC OF (p (pfl)

Let p be a prime , n an inteqer and q — ~n As

customary , denote by GF(q) - E the unique finite field of

q elements. In particular GF(p) - is the field of

residues mod p. we want to actually compute with elements

of E. For — <{O .,l ,...,p— l }, + ,.), the operations are

simDly addition and multiplication mod p. If

(1) g(x) — x~ + a~ _ 1 x~I 1+ ... +a 0 € Z0(xI,

is an irreducible polynomial of dectree n , then

GF (p~ ) ~ Z~~(x)/(g(x))

where (g) is the ideal generated ~y g. Given such a

g(x), E can be represented as the set of n-tuplee of ale- —

menta of Z~~. Let B — (b~ _11....b0)1 
.
, — (c~~ 1.....c0)

Addition is component-wise . To multiply, form

_ _ _ _  _ _ _  -— -~~.~~- —--~~~~~~—



d ( x )  — (b 1x
’~
’
~+. ..+h0) (c~_1x~

’
~~+...+c0)

and find the residue 5 ( x )  — d~~ 1x~
’~~ +...+d0 of -1 (x) when

divided by g(x). Then B~~ — (d~...1....,d0).

Thus we need a method for finding an irreducible poly-

nomial (1) . To test for irreducibility we use the following .

LEMMA 1. Let !x~ all the prime divisors of n and

denote n/t~ - in
1
. A polynomial q (x) r 2 (x) of degree n

is irreducible in if and only if

(2) q(x) (x~ —x)

(3 ) ( g ( x )  , x~ —x ) — 1, l <j 4 z k ,

where (a ,b) denotes the qr c ta te s t  cot~~on d iv i so r  of a and b.

Proof. Assume that q~ x~ is irreducible , then every root
n

-
~ of g(x) — 0 lies in F. — r.F(p~). Hence - a - 0 , and

n
(x—a1 j (x~ —x ). Since q(x) has no multiple roots , ( 2) fol lows .

Since g(x) is irreducible of degree n , it has no

roots in any field GF(p
in) , rncn. This directly implies (3)

Assume conversely that (2) and (3) hold . From (2) it

follows that all roots of q(x) — 0 are in T~ — r F ( p n ) 

~~~~~~ - - - ~~~~ - -~~~~~~~ -.. - ~~~~~~
— - - -~~~~~~~~~~~~~~~ — -~~~~~~~~--~~~ ~~~~~~~~~~~~—
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Assume that q has an irreducible factor ct1 (x) of degree

m cn . The roots of q1 (x) lie in GF (pin) which is generated

over 2 by any onc~ of these roots . Hence r,F(pm) ~~ F~ andp

m m .  Consequently ~~~~ for one of the maxim al (livisors

of n , and all roots of 11 (x) lie in C T~’ ( p  ) . !~ut then

( g ( x ) , x~~~ -x) is divisible by q1 (x) contradicting (3).

Thus q(x) must be irreducible.

In computing the number of operations required to test

a given polynomial ~or pri-~~1ity we count , here and else-

where in thie arti-le , in terr~ of arithmetical operations

of Z~~. To obtain a hit-operations count , we should multi ply

our results by fl(p) - thv~ nurther of bit operations required

to multipl y or divide two ntirthers of log p bits . ~s is

well known , T~(p) can he taken to be 0 (loqp loq lop p)

In orde r to shorten subsequent formulas we introd uce

the following

Notation : L ( n )  - log n.loq log n

n
The computation of ~~~~~~~ -x) is executed by computinq

x~ modulo ~i(x) . Ts.s is well known,x~ can be calculated by
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at most 2.log p~
’ 
~iultiplications mod q(x) . Since we compute

mod g(x) we never deal with polyno r~uals of degree greater than

2n.

I t is sh wn in ( 4 J th a t  mul ti ply ing two n—degree

polynomials with coefficients in any f ini te field can be

done by 0(n log n loq log n) - 0(n L(n)) field operations.

Consequently division an ! fin!i nq remainder can he lone in

0(nL(n)) operations , sec [ 1 ,p.288] . Th-:~ the basic sten

of computini r (x)~~s ( x ) nol q ( x ) ,  where d e g ( r ) , Ie c t ( s ) < n - l ,
n

uses 0 (nL (n) ) (
~~)orit iO~~5 .  Thi’ (

~~
( r u t .~ t ic~~ of uses

0 (n’L (n) log p) nnerat ions .

To test (3) we nec-I k.loq n c o m p u tat i o n s  of t h e  above

type so t h a t  th”  t o t a l  n inhr ’ r of operati’~n~; is O(n 2lo~~L(n) log p)

The sea rc h f~~r an i r r e d u c i b l e  polvncr~ial of deqrec n is

base ! on the fo1lnw~ nq renult which ~ a ~r’aker f~~r’-i , su f —

fu c i en t  f o r  r~i r  ~~~~~~~~~~~~~ Theoren 3 . 3 . 6  [2 J . We cive a

proo f not -itilizing cTe ’ior at inq  f ur c t i o ns .

L:’~~\ 2. r)enote by -‘(n) the numbe r o’ l i ’ ’er ent  - on i c

polynomials in ~~ f x J  - l eqr r ” n which are irr~ducible. Thi~~n

n n/2(4 )  p -p lOg fl < m (n) c
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(5) 1 m (n) 1(
np

Note that p
~
’ is the number of all monic polynomials of

degree n.

Proof. Let ~ 1(x ) ~~.. . , ct~~( x ) ~ t — m(n), he all the pair—

wise different irreducible manic polynomials of degree n.

Any element 1 i F - GF (p’) which is of degree n over

satisfies exactly one equation g~~(x) — 0 and each such

equation has exactly n such roots . If ~ ~~ r is the set

of elements of de’irs’r’ n over then c(U) /n — m(n)

kn element c F is in H if it is not in any proper

maximal subfield GF(n ’) C F ,where m i is a maxima l divisor

of n (see the notation in L~rv~a 1) . The r.ardinality of such

a subfield is at most n/2 and the number of these maxima l

- n n/2subfields is smaller than log n. Thus p - p log n < c(H)

from which (4) and (5) follow .

In 1 2 J Berlekamp remarks that Theorem 3.36 means that

a randomly chosen polynomial of degree n will be irreducible

with probability nearly 1/n , without suggesting to base an

algorithm on this fact . In the general spirit of the present

paper, we solve the problem of finding an irreducible po1y-

nomial by randomization .

_ _ __ _  -
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The algorithm for finding an irreducible polynomial

proceeds as follows. Choose a polynomial (1) randomly and

test for irreducibility~ continue until an irreducible

polynomial of degree n is found. Lemma 2 ensures that

the expected number of polynomials to be tried before an

irreducible one is found is n. Thus the expected number of

operations (in Z~ ) for finding an irreducible polynomial

of degree n is 0(n 3lognL(n).log p).

The root-finding algorithm for CF (q) assumes that the

ari thmetic of this field is given , so that the question of

f ind i ng an i rreducible polynomial ac tual ly  does not arise .

In the factorization of a polynomial of daaree n we may
nineed computations in fields (F(p ) ,  l < i r t , such that

~ n1 < n .  The coun t of all opera tions , includinq the pre—

computation of the (x), will use the following.
i

LEMMA 3. Let flj .  lc i< t , satisfy ~ fl j c n. The expected

number of operations used for finding irreducible poly-

nomials h i (x), deq (hi) — n 1 , l ict , is 0(n3loqnL (n) log p).

Proof.

E n~ loqn~ L(n~ )log p < n 2log nL(n)loqpt 
~i ~

< n 3loqnL(n) log p.

_ _  _ _ _  _ _ _ _ _ _ _ _ _ _ _  _ _  - -
S

~ii —-—a- 
-
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2. ROOT~.PINDINr, IN rF(p”)

Let E — (F(q) be a fixed finite field , and f(x) c P.(xJ

be a polynomial of degree i n .  We wish to find one (or all)

of the roots a c E of f(x) - 0. We give a probabilistic

algorithm for this prob lem , which is a generalization of

the algorithm given in flerlekamp ( 3 3 for prime fields

to arbitrary finite fields P. Our proof for the validity

of the general algorithm of course applies also to the

speckal case of Z~ , which is given essentially without

proof in ( 3 1

Assume for the time beinc that q - pfl is odd. we

shall indicate later how to treat the important case q —

Form the g.c.d.

f 1 ( x )  — (f Cx ) , ~~ — l _ 1)

If f 1 ( x )  — 1 then f ( x )  has no roots in ~
‘
. In general

f 1 (x)  — (x—Q 1) • . . ( x — C 1 k ) ,  kcm ,

where the are all the pairwise different roots in F of

f ( x )  • 0.

_  

- 

- - _  .
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(6) X c
~~~_ l — (x d~~l)  (x d +l)  , d —

The next natural step is to try (f 1 ( x ) ,  x 1
-1) . If some

of the 
~~ 

satisfy -~~— l  — 0 while others satisf y cz~ +l — 0,

then this g.c.d. will be a true divisor of f1 (x), and we

will have further advanced towards the goal of finding a

linear factor x—a , i.e . a root , of f(x) . In general we are

not guaranteed that the g.c.1 will be dif’erent from 1 or

— f 1 (x) . However , this advantageous situation can be created

by randomization ,

Call x ,~ c F:, a � 0, ~
‘ 

~ 0, of di fferent ~ype if

ad ,‘ 8
d , where d -

THEORE M 4. Let ‘l’~~2 ~ ~~ ‘1 
~ (12.

(7) — c ({i5~ ~~E, 
-
~~~

+
~~ 

and 
~~~ 

are of different type ) )

Proof. The elements -i.~+6 and 
~2

”
~ 

are of different

typ e if and only if neither is zero and

d
~ 1; hence 

~~~~~~~~~~~~~~~~ 

— —1.

1I
~~~ 

-

~~~~ _ _— — - — - _ _ _ _ _ _
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The equation ~d — -l has exactly d — solutions in ~~.

a , +~Consider the 1-1 mapping •(6) • —
~~~~~

--

~~ . ?~s 6 ranges over

E —
~ ~~~~ 

•(6) ranges over r — (1). Thus for exactly

values of 6, ( 6 ) d 
— — 1 . This implies (7)

COROLLARY 5. Consider for 
~ P the g.c.d f

6
(x) — Cf  1(x )

(x+ 6) d _ l ) .  We have

(8) 
~ Pr (51 

0< deg f~~(x)<deg f1)

Proof. The common roots of f1 Cx ) and (,C+6)d_l are those

a
~ 

(f1(cij) — 0) for which (~~ +6)d_l • 0. By Theorem 4,

with probability 1/2, CI~~+6 has this property while

does not, or vice-versa . This entails (8). Actually the

probability is nearly 1_112k, where deg f1-k, but we cannot

prove this.

Root—f indin~g algorithm. r,iven f(x) of degree in ,

compute f 1 (x). Choose 6 £ P randomly and compute f~ Cx ).

If 0 deg f 6 
( deg f1 then let f 2 Cx ) • f6 Cx ) or f2(x) —

f1/f6, according as to whether deq f5 < 1/2 deg f 1 or not .

If f ,~ — 1. or f 6 — f1 choose another 6 and repeat the previous

step By Corollary 5 , the expected number of choices of

6 £ F: until we find f2(x) ii less than 2.

I
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Since the degree is at least halved in each step ,

a f t e r  at most log in step8 we find a linear factor x—a 3
of f(x), i.e. a root.

The number of (field -F) arithmetica l operations r e—

quired for finding f 1(x) and f2(x) is 0(n.rn r,(m)loq p),whero

F — GF(Pn). Since deg f2~ in , it follows that the number

of operations for finding f3 Cx ) is at most half the number

of operations for finding f2 ; and similarly for f4 etc .

Thus the total number of P-operations used for finding a

root of f(x) is still just 0(n.mL(m)loq p).

In terms of operations in each P—operation re-

quires 0(nL(n)) operations with residues modulo p. Thus

the total (expected) number of Z~ -o~erations for root-

finding is

(9) 0(n2 ~mL (m)L(n) log p)

3. FACTORIZATION OF POLYNOMIALS

Let f(x) C Z~~( X J  be a polynomial of degree n which we

want to factor into its irreducible factors. We may assume

that f’(x) (the derivative) is not zero. For otherwise

Ji ~ - _

_ _ _

±~~~~

•

~~~_ 
- ~~~ 

--J1
_ _
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k
f(x) • (g(x))~ where g ’(x) 1 0 and this g is readily

found . For example, x2~+a x~ + b — (x
2+a x + b)~~. By

calculating (f(x), f’(x)) — h (x), and f/h1wa have reduced
the problem to factoring a polynomial, with no repeated
factors. Calculate

— (f(x) , x~
’ —x) , lqn<n.

Since GF(pin) consists exactly of all the elements of

degrees i, i~m, over Z~,, we have that g~ (x) is the product
of all irreducible factors h (x)~~f (x) of degrees jim.

Choose the ~~ / 1 of lowest index in . If deg (q~ ) -

then

g~ (x) — hl (x)...hk (x) , k.m — t

and each h~ (x) is irreducible of degree in. All roots of
are in G?(p in ) .  Find a root a of g~ (x)  — 0. This

root is a root of a unique hi(x).

To find this h~~(x) form the powers

( 10) 1, a ,.. • , •

Ths.e •1.ments of (F (p ~ ) are rn-component vector, with

coordinates in ~~ Solve the system of linear equations

_
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(11) b0 + b1as ... b 1ain_ ’ + am — 0

where the bi,  0c i cm - l , are the unknown s and the coordinates

of the are the coefficients . Now.h~~(x) -

xm+bm l x
m_l

+. . . +b0.

Another way for computina h~~(x) was suggested by N.
Ben-Or . Note that h1 (x) is irreducible of degree in .  Since

— ~~ is an automorphism of GF(pin) over the field

the conjugates of a are

in- 1
(12) aO — a ,  a

1 
— ar,..., am_ i — cz~

The polynomial h i (x )  is now obtained by the calculat ion

in GF (pin) of

(13) h~ Cx) — (x— ~0) (x—c,1) . . . (x~cLm i )

Using either one of the above methods , one irreducible

factor of g~~(x )  (and of ( x ) )  is found .Next we find  a root

B of q~~Cx) / h ~~(x) and another fac tor h~~(x) of ~~ (x). and so on.

4
I

_ _ _ _ _  _ _ _ _ _ _

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  - ----
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Proceeding to factor the other gj(x), we choose

g~~(x) ~ 1 with the lowest index m<r. If m4’r then g~~(x )  is

the product of irreducible factors of degree r. If m ir

then and ~~~~ is the product of such factors.

Factor g~~(x) or ~~~~ into its irreducible factors of

degree r by one of the above methods.

In general , let m 1<m 2 c ... <m t cn be the indices for  which

~ 1. After i— l steps we found D1 (x)~~....D~_1 (x)~ where

Dj(x) is the product of all irreducible factors of degree

of f (x), and each D
1
(x) is factored . (flote that

D~ (x) 1 is possible despite ~~ ~ 1 . ~or example, f(x)

may have irreduci’- le factors of degrees 2 and 3, but no

irreducible factors of degree ~~. In this case fl
2(x) ~ 1,

D3(x) ~ I, D6(x) 1 , and nG (x) — D2(x)D 3 (x) .) Now,

(14) Di
(
~

C ) — g (x)/ 1 D
1
(x).

m i m i

If D~~(x )  ~ 1 and m~~cdeg fl i ( x ) ,  than factor it by the above

method. If m i - deq Di (x )  then D~~(x )  is already irreducible

of degre. m j . and f ( x )  has exactly one irreducible factor

of this degree .

~:: _ _
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4. COUNTING OPERATIONS

Let us now count the number of Z
r
_oPerations re-

quired to factor a polynomial f(x) c Z~~[x) of degree n.

The cos t of getting rid of multip le factor5 of f(x) and

of discovering the factors D~ (x) defined in Section 3

is majorized by the cost of factoring the fl~ (x). so that

we confine ourselves to estimating the latter cost.

We have f(x) — Di (x)...Dt(x), where ~eq — d~~.

Each D 1 (x) — hjl (x)~~
...1h ik (x), where deg h~ 1 

—

and h
~ j 

is irreducible. The algorithm o~ Section 3 seeks

roots 3i’’~~
•’
~ k of ?‘)

~
(x) — 0, one for v!ach factor

h~ 3
(x), so that h~ 1

(1~ ) — IL Using the operation count

(9) for root-finding , where ri — (because

£ GF (p~~ ), 1cjck~ )~ and deg D~ — di, we get

0(m
~
di L(d~ )L(m~) log p) for find ing one root, say B1.

We then find hi(x) by (11) or (13). ‘lext we find a root of

Di(x)/h ji (x) . so that we are sure that the root belongs to

a ~~~ + li ii. Overestimating by not using the fact that
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deg (D ifh i1) — d~
_m
~ etc ., we get 0(k~

m
~
d
~ 

L(d~ )L(m~) log p)

for total number of Z
r
-operations to find the relevant roots

of D~ (x). Since k1m~ - d~ and mj cd i we get

(15) 0(d~ L (d~ )
2 log p)

as a bound on these operath,ns for D~ (x) . Since n — Zd~

we obtain by sunvnation from (15), in the manner of deriving

Lemma 3 ,

(16) 0(n 3 L(n)2 log p)

as a bound on cost of finding all the necessary roots of

all the D~~(x).

The first method for finding the h~)
(x) .once a root

for each hj~~(x) is given , employs 0(m~L(m~)) 20—operationa

to calculate the sequence (10) of powers of the given root.

The solution in of the system (11) of in linear equations

in in unknowns uses 0(m~) operations wh ich majorizes the

previous term . Suming over all the h~ 1
(x) and over-

estimating we get 0 (n 3 ) Z~ _oPer’ations for  f ind ing  a l l  the

h~~~(x). lci ct , l~ iCk~.

L1~ _ __ _ _ _ _ _ _  

_ _



~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~ -

—21—

We now estimate the operations used in Ben—Or ’s

method for computing the ~~~ Cx ) from the roots. Using the

notation of (12) and (13) , so that the root is a and

deg (h~~(x)) — m~ , we use O(mi log p) GF(p t ) —mult ip lications

to perform the Mi raising. to exponent p. Counting

ope rations , we get

(17) 0(m~ L(m~) log p)

operations for computing the sequence (12)

The formation of the product (13) is a computation of

th. polynomial hCx) from its given roots

Using the result of (l,p.299 J , and taking into account that

in a finit, field we require 0(m L (m) ) (instead of 0Cm log in)

operations to multiply two polynomials of degree rn we get

that

(18) 0((m~L(m~))
2 log mi)

operations of are used to form each hij. Since D~ (x)

has k
i 

factor h~~ (x). l< j<k~ , and d.g Dj — m ik i, we get

S

t~.
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from (17) , ( 18) the upper estimate

(19) O UnL (n))2 (loq n + log p))

for the Z~ -o~er’ations used in Ben-Or’s method to f ind  al l

the irreducible factors h~~~(x) 5 1ci.c t, lcick i, of f Cx ),

once a root of each factor was computed .

5. SUMMA RY OF RESULTS AND EXTENSIONS

The root—finding method of Section 2 is not applicable

to polynomials f(z) ~F(2’~)(xJ . However, a small modi f i-

cation does work . In stead of x~~
’1’-l we use the polynomial

2 2m—lTr ( x )  — x + x 4.. .+x

For a c GF (2 ” ) — E we have T(a)2 — T(a) so that every a is a

root of T (x )  — 0 or of T(x) — 1. Also T(c *+ $) T(a) + T(B).

THE ORE M 6. If a1 j~a2 ,  a1,a2 c F , then

2n —l  
— cU6i T(6a1) + T(6a2))).



Proof. T(5a1) + T(6a2) iff T(6(a1+a2)) + 0 i.e. — 1 .

Now ci 1+a 2 + 0 so that ~ — 6(a1+a2) runs wi th 6 through all

B £ F. In particular , for appropriate values of 6 , all the

2n—i roots of T(x) - 1 are obtained. This proves the theorem .

Based on Theorem 6 , we have a probabilistic root-

finding algorithm for polynomials f c E(x~ which ~s

completely analogous than the algorithm in Section 2

The factorization algorithms for polynomials

f(x) £ Z~~(xJ given in Section 3 immediately generalizes to

polynomials with coefficients in a general finite field

F - GFCq). The operations—count are the same , with F.-

operations replacing Z~-o~eratione .

We su~m~arize our results as follows.

1. Finding irreducible polynomials.

The expected number of steps for finding an ir-

reducible polynomial g (x) c Z~~(xI , of degree n is

0(n3log n L (n) log p) . Any such polynomial enables us to

compute in G?CPn)

2. Root—finding .

The expected number of Z~-o~erationa used to find a

root in F — G?(p”) of c polynomial f(x) c F(xJ of degree

m is 0 ( n 2m L ( m )  L ( n )  log p).
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If the arithmetic of G?(p’~) is directly wired into

circuitry so that an F-arithmetical operation is counted

as one operation , then the number of operation. for

root—finding is 0(n.m LCm ) log p)

3. Factorization into irreducible factors

The total number of ‘~ —o~erations for factoring a

polynomial f c Z~,tx J of degree n is

0 (n l04 fl L&i) log p) + 0 (n L (n )  log p) + 0(n3)

Here are included the computations of the necessary ir-

reducible polynomials gj(x) needed for the arithmetics of

the relevant fields GF(pin), The last te rm represents the

operations used to solve linear equations under the first

method.

If we assume that the arithmetic s of all fields Crip in ) ,

n<n , are performed by wired circui try then it is preferable

to use the second me thod for computing the factors f rom the

roots , based on ( 12 )  and (13). From (1.6) and (19) it fol-

lows , since each GF(Pm) operation is counted as one ope-

ration . that the numbe r of operation . used for factoring a



-
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polynomial of degree n into irreducible factor, is

0 ( n 2L ( n )  log p) + 0 ( n L ( n )  (log n + log p)).

The first term majorises the second term , but we display

the latter as well since it reflects the structure of the

algorithm.
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