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DIG ITAL IZED S iGNATURES AND PUBLIC-KEY FUNCTIONS

• AS INT RA C IA B LE AS FACTOR IZAT ION

by

M ichael 0. Rabin

Visit ing Professor of Applied Math ematics , MIT
Professor of Ma them atics , He brew University

• Jerusalem , Israel

ABSTRACT . We introduce a new class of public-ke y

functions involving a number n = p .q having two

large p rime factors. As usual , t he key n is p ubl i c ,

while p and q are the private key used by the

issuer for production of signatures and function

inversion. These functions can be used for aH the

applications involving public - key functi ons )pi~oposed

by Diff ie and H eil m an ~~—.}1.-~~inc l uding di g i t al ized

s ignatures. We prove that for any given n , if we
E ~~~~

can i nvert the funct i on y = (~~(x) for even a small

percentage of the values y then we can factor n

Thus as long as factoriz ation of large num bers

rema ins practically intractable , for app ro pr i atly

chosen keys not even a small percentage of signatures

are forgerable. Breaking the RSA function —f--6---3~’ is

at most as hard as factori zat ion ,bu t i s not known to

be equivalent to factorization even in the weak sense

that ability to invert all function values e n t a i l s —  -‘ ~~~

-~~~.• ••_*~•~.ie•.~~~.,. 
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~~~~~• ability to factor the key. Computati on time for

these func ti ons , i.e. s i g nature ver ifi ca t ion , is

• several hundred times faster than for the RSA scheme .

— in ~tü+~) Inve r sion time , us ing the priv ate key ,

is comparabl e. The almost -everywhere intractabili ty

of signature -forgery for our functions (on the

assum ption that factoring is intractable) is of

great practical signif icance and seem s to be the

• first proved result of this kind . ~~~~~~ •

• Key words. Public -key funct ions, Dig it aliz e d

signatures , Factor i za ti on , In tractable problems .
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INTRO DU CTION

In their fundamental paper [ ‘ ] D iffie and

• N eu man have shown how p u b l i c  key trap door f u n c t i o n s

can be employed for the solution of v ario u ’~ prob l ems

aris ing in electronic mail , inc l u d i n g  th y produ c tion

of di gital ized si gnatures. An examp l e of a puh l ic-

key function usable for d i q i t a l i z e d  s iqn atures was

given In the elegant paper [h ] by R ivest , Ad elm ~in ,

and Shamir , who introduced a trap -door one-way function

emp l oying a number n factor ob l e into ~i product

n — p~ q of two large primes. The dec o di nq a l q o r i t h m

g i ven th [6] for this fun ction r equi re s know lt ’d qt ’

of the factors p . q of n . It is , ho wever , conceivable

that another d e coding algori thm exists that does not

i n v o lve or impl y factor i zation of ii. Thus , b r e a kin q

th i s o n e — w a y  f u n c t i o n  is at  most  as d i f f i c u l t  as

fac tor i zat lo n , but possibly easier.

We present a different p u b l i c  key function wh i ch

can be used for d i q i t a l i z e d  signatures , and ~ i l the

ot her app l ica t ions , in t he same way ~is the above -

mentione d function. The fun ct ion in [N i s  1 - 1 .

Our function is four to one , hut this causes onl y

s l ight modifications in the app l jc~it iOns.

•,a- —.~~~~ —--- ~~~~~~~~~~ —•——-~~
-•. ~~~~~~~~ ‘-
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For this new function we can prove that the

ability to forge si gnatures or decode messages is

equivalent to the ability to ~actor large numbers.

In fact , for any given n , a signature forgery or

inversion al gorithm effective in just a small

percentage of all cases , say one case in a thousand ,

already leads to a factorization of n . By

inversion we mean finding for a number y in the

range of E one of the x such that E(x) y.

In view of the present -day intractability of

the factorization problem , this fact lends substantial

support to the viability of our publi c-key function.

As long as it is impossible in practi ce to factor

large numbers , it will be impossible for a fixed key

to forge signatures even for a small percentage of

all messages.

The fact that we are abl e to prove , on the

assumption that factoring is hard , that for our

function , for a fixed key n whose factori zation

i s no t g tven ,inversion must be hard for almost all

messages is of great significance. For other trap

door functions it may be the case that even though

worst case com p lex ity or even ave rage com p lex ity

are high , in say one percent of cases inversion is

— —•-.~• -.—— ~~,.—-‘ -•-— • - - - — . L...... ~.,.., ~~~~~~~~~~~~ .•. — . -•— •.•.••— - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—.— L
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easy. From a commerc ial point of view this would pose

an unacce pt able r i s k. For exam ple, an a dversary can

ran domly search by computer for m essages useful to

him , such as payment instruction s , on wh i c h he can

forge si gnatures. To the best of our knowled ge , we

have in this article the first example of an almost

everywhere d ifficult problem of this type.

In add ition , com pu ta t i on ti me for t h i s func ti on

is several hundred times faster , an d inversion

w hen p ,q are known ,is a~ out ei gh t t imes f as te r  than

the corresponding algorithms in [ 6]. If we invert

the RSA function by Chinese Remainderin g , as we do

here , then inversion time for the two functions are

com parable.

Theorems 1 and 2 concerning the equivalence of

square -root extraction with fact orization , are per h ap s

also of inde pendent number-theoretic interest.

T HE PUBLIC -KEY FUNCTION

Let n = p~ q be the product of two large primes

p,q, and let 0 h n .

L 

DEFINITION 1 The function E f l b (x) is defined for

O < X < ~ ~~ ‘ L b (x) 
— x (x+h ) mod n , 0 

~ 
E f l b (x)~

n .

• Com putation of E(x) , for fixed n ,b , requir es

one addition , one m ’t i p l i c a t i o n , and one division of

— •.~~~ - ~~~~ 
•
~~~
-

~~~~~~~~
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x(x+ b) by n to find the residue E f l b (x). Note

that only the public key n ,b , hut not the factorization

n = p •q , is required for encoding.

Z. INVERSION ALGORITHMS

Given c x (x+b ) mod n , we want to find the

four values 0 .
~ x 1 n , 1 i 4 such that E(x.) = c.

We assume of course that the private key, i.e. the

fac tors  of n 
, 

are known.

Throughout this paper res(A ,B) w i l l  denote the

residue of A when divided by B , an d (A ,B) w i ll

denote the greatest common divisor (g .c.d.) of A

and B.

lhe decoder , who is the issuer of the pub l i c

key n ,b , kno w s t he factor i zat i on n = p~ q. Clearl y,

it sufficies to solve the equation x (x+h ) - c

se p aratel y mod p and mod q and then find a solution

mod n

Let a be an inte q er so that a F I mod p 
,

a 0 mod q , and b satisf y b F 1 mod q.

b mod p . If r and s s a t i s f y the c o n g r u e n c e

mod p an d mod q respectively, then z = ar + hs

solves the congruence mo d n , an d x = re s  ( z ,n)

Is the soug ht-afte r solution.

• - • ~~~~~~~~~~~~~ 
• .

~~~~~
,— 

~~~~~~~~ -
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In wh a t follows let p he a t i xed pr’ iin e .
sh~i l l  understand all in t e q e rs a to be r e ’sidues

mod p . i.e. * a .. p . For d a q u a i r a t i~

residue t~a .r . ) mod p, ,~3 wi l l  denote an~ one ot

the wo i nt eqers such that (~ J ) ‘ ~O d p 
, 

a rid

- ‘d w i l l  denote p - ~d.

To sohe

( I )  f(~~) = \~ + bx — c mod p

I et d = h ~ mod p t lien \ ~ ~1 “ d nio 
~ 

p

= — d • c . e c a n s o I v e t h e e q u a t ~ o n (, 1

as soon as w e  can e\ tr a ct square r~ ot s mod p. i .e.,

solve v — ri E Q mod p

Ass ume first that p = 4k — 1 so th a t 4 ~p +l

Since m is a q . r. , m I mod p. We cl a i m  that

p + 1
— 4

~ = , m ni nip d p

is  one of the two squa re  r o o t s  of m. Na m e l y ,
P;l

m m .m m mod p .

Thus one implementation of the function would use p

* 
and q such t ha t  p = q 3 mod 4 , and the decoding algorithm

(~
)

• For p = 4 k  + 1 we directly solve the equation (1)

by a probabilistic al g ori thm. This is a sp ecial case of

Berle kamp ’ s root-finding in GF(p l al oor ithn i given in [1].
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The short proof g i ven here is t a k e n fr cn [5], where

generalizations to GF(p~ ) appear. If th ” roots c f  (1

are •~~~, ~ c GF(p) then ~ + b ~ — c (~ 
- •~~~

) ( x  — ~
) ~ h

— 1

roots in GF (p) O f  the polynomia l e qu at ion ~ - 1 - 0

are exactly the quadratic res id ues G F(p) . Consequent l~

if .~ is a quadratic r esidue whi l e  :~ i s n o t, then
p— i

— 1 , f(x)) — ~~, so that and su h sequent l~

- (b+~.) mod p are r ead i l~ fo und.

Assume that ~ and ~ art’ of the ~ane t~~ pt ’ . i .e.,

b oth quadrat i c r e sid ue \ (q.r. t or both q u adratic non—resi-

dues mod p. and that ~~~~~~ Let 0 ~ p t hen  ,~ + ~S and

S + •~ are or the s a m e  t y p e  if and onl y i f  ( 1 + .c ) / ( ~~ +~c i  is

a q.r. mod p. As L~ ta kes al l  va lu e s ~ ~S p ex cept

= — S . the quot i ent (~~+~c)/ ( 5+~ S) tak es a l l  ~al ucs

O ~ p except \ = I. T h u s  fo r  e x a c t 1~ c h o i c e s

~~~~ and s .. w i l l  not be of the same t v pe

Sin ce t ( x - ~~ ( x ~~ ,
~~~ (x• 

~~~~~~~~~~ 
, we have that for a

~~~~~~~ c h o i c e  c f  0 ,
~ 

p . with pr o h ah il itv 1K

P.
~

l

(3) ( x  - 1 , f (x _ •~c~~ = — - ~c or x — -

Thus on t he ave ra ge two values of ~ have to he tried for

finding the roots of (1).

The comput ation of the q.c.d . (3) requIres O( log~ p)

operations in GF (p), i .e.. additions and m u l t i p l i c a t i o n s
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mod p. Namel y ,  by e s s e n t i a l l y  re~ e~~ted  s q u a r i n g s  s t a r t -

ing  w i t h  x , c o m p u t e  x + h = res (x ? , 
f (x-~~)). Wh enever

a quadratic polynomial is encountered , divi d e  by f(x-~~)

to produce a linear pol ynomial. Note that x is a formal

v a r i a b l e  so tha t  a l l  c o m p u t a t i o n s  i n v o l v e  j u s t  p a i r s  of

r e s i d u e s  mod p. Now by ( 3 )  , 
x + h - 1 is x - ~ 

- 6 or

x — — , so t h a t  — 6 - h + 1 is a root of (1).

3. USE IN SIGNATURES

To employ E for signatures the signer P produces

two large primes p ,q by use of one of the prime -tes ting

algorithms [i ,7]. He forms n = p ’q, chooses a number

0 < b < n and publicizes the pair (ri ,b) (but not the

factors p,q).

By conven ti on , when wishing to sign a given message ,

M ,P a dd s as suf fi x a w o rd U of an a g ree d u p on len gt h k .

The choice of U is randomized each time a message is to

L 

b e s i g n e d .  The s ign er now co mp r e s s e s  M 1 = MU by a hash-

in g function to a word C(M 1) = c , so that as a binary

numbe r c < n; see [4]. The computation of C( ) is publicly

known, so t hat c = C(M 1) is checkable by everybody .

P now checks whether for this c the congruence

(4) x(x+b) c mod n 

— __ =_ . t ~,t: . • _.; 
- _~SIl1l~~
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is s o l v a b l e .

By the anal ysis of Secti on 2 , this congruence is

solvable if and onl y if m = c + d2 is a q. r . mod p and

mod q. Thus testing the s o l v a b i l i t y  of ~4) amounts to

computing the Jacobi Symbols (
~~) and (~

) w hich is

e s s e n t i a l l y  a g . c . d . type  c o m p u t a t i o n .

If congruence (4) is not solv a ble then P pi cks another

ra nd om U 1 an d tries c1 = C(M U 1 ). The expected number of

t r i e s  i s 4 . When for some U the congruence (4) is

solv ab le fo r c = C( M U) 
, 

P finds a solution x.

DEFINITION 2 : Fo r a g iven public key n ,b used by P an d

an ag reed  upon c o m p r e s s i n g  f u n c t i o n  C( ) and integer k ,

P’ s s i g n a t u r e  on a m e s s a g e  M is  a p a i r  U ,x whe re

~(U) 
= k and x(x + b) C(MU) mod n.

Anybody can check P’ s signature b y c mputing

c = C(MU) and testing whether x(x +b) c mod n .

The randomization of the suffix U of ~ also adds

protection against possible attacks on the fun ction E.

Without the suffix , an adversary may attempt to feed to

P messages M for hi s signature , h o pi ng to l e a r n  the

factoriza tion of n from the solution of x(x+b) C(M)

mo d n ,w hich wi l l  be produced by P as his si gnature .

Ac tually, this does not seem a serious threat because of

the hashing effected by C(M).

L . 
~• . •  •~~ ~~~: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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However , the randomized suff i x of len gt h k leads

to essen ti a l l y  2k p ossible ran dom values for c = C ( M U ) .

Thus for , sa y, k = 60, the adversar y has no effective

contro l over the congruence (4) that P will solve.

4. INVERSION IS EQUIVALENT TO FACTORIZATION

We now wan t to show tha t i f an ad versary can i nv ert

E f l b (x) by any algorithm then he can factor n. By invert-

in g we mean f i n di ng for y one of the four x such tha t

E n b (X) = y. F inding one such x is sufficient for the

woul d b e s ig na ture fo rger , so that we wan t to show that

this is hard. Thus th e pro b lem of , say, forging P’ s

si gnatures is exactly as intractable as the factorization

of a number n w h i c h  is a p roduct  of l a rge  p r imes .  As

men tioned in the Introduction , the scheme in [6] is at

m0 4.t as safe as factorization but conceivably easier to

crack .

In the follow ing theorem we count an addition of num-

bers a ,b , < n as one operation.

I t is readily seen that if we can solve (4) for fixed

n ,b and arbitrary c then we can extract squa re roots ,

i.e. , solve y 2 m mod n whenever a solution exists.

Namely, le tting b 2d mod n(n is odd) and in = c + d2

mod n , (4) turns into

A
~~~—~~-i~=~= ~~~~~~~~~~~~~~~~~~~~~~~~ -_-~~ —~—- -- 

~~~~~~~~~ — ~~~
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.~ d x 4 d — ( d m o tI n

• Thu s our result fo l l o w s from

THEOREM 1 : Let AL he an a I qo r i t  hrir f o r  f i n d i n q one o f

t he s o l u ti ons of

( 
~

) in no.1 n

whenever a so 1 Ut on e x i s t s , and requ r r in c F n st t’ps

There exists an a I qor it h iii for fa c to r I nq ii ~~ qu r n •~

~F(n ) 4 log : n steps .

r~ ~~ . Ass uni e that n = p . q i s a p r od u t o t ~ c pr nt ’ s

the ia s e r e 1 e ‘~ an t for I . I he pro o e a s r I e ~ t en ~l s t 0

the genera l  c a s e .

For a ii y 0 ~ k ~ ii , k 
, 
n 1 * t he re  a rp ’ v a ~ t 1 i i

so l utions for the con qru en ce

y - k ’ mod n .

Namely, le t res (k ,p) — r , res (k,q l = s then the s o l u t i o n s

y of th I s congr uence s a t  i s fy rt’ s ~, v 
, 

p r iriod p 
, 
re s 

, 
q —

s mod q and each of  th e four si qu ~ omb i na t i on s ci yes r i s ~

to a dl fferent solution. D e f i n i n g  for i) 
, 

~ ii * ~

to inea n y y mod n 
, 

we see t~ hat  t hi s eq u i va 1 enc e rt’ I at ion

decomposes the set 0 y ~ ii , (y , n) 1 i nt o c lasse s ea ch

containing four elemen ts.

Denote by ~m the solution of (5~ b~ A L f~~’ ar i ~

m 
, 

(m , n ) 1 . I f AL produces rio re t han on t’ so I ut i on t hen

,~ TTL_~~. - ~~•- • • • - -- • --



-1\-

t. he fa c t o  r i a t r on  a 1 q u p  t hm t ha t to 1 1 ow s 1 s eve ii u i- t Pro

f ac i l i t  at od

(‘boo s r ’ a t ra nd o m  a ii unrb e’ r 0 k - ii . I t ( k • n � I

th en we d rr’c t 1 qe t .1 t a ~ t o  r o r i i  . In p i a  c t ic e , t h I s

pc ss i h i 1 it ‘~ . an be ireq 1 ec ted . Conip u t e k : in mod ii

C oinpu f t’ k • ii b y AL . . No , k r s i ri he eq u i a 1 en j O

c 1 a ss by t Pi t’ re I at I on , o t  k . lit a ran Join c P ro i e O f

~ k ~ ii 
, 

a 1 1 t c u  r pc s s hi o c Pr o i t ’ s 0 t ii u n~ P er ’ s w i t i n

a ny  c l a s  ‘~ a r e  eq na 1 1 1 I ki ’ I Heir ~ e w i t pro ha hi 1 i t 1 1 .’

k ~ 
nrc d p , k — mod q

0 I’ k — mcd p , k k rio ~1 q

I he re  f o r e  w i t h  i’ot ’~rb ii r t 1 /

~ b
’t 

~, k— k ~ ,n~ p or q

1 ho c cm pc t a t t o ii o f in req u I r ~ s P ii s t o p s • T h~

ow p u t a t 0 U 0 f t Pr ‘ ~i . . r’ req u 1 1’ t’ s a t 110 •‘ t 1 0 0 i i

s~~b t i’ ,~ c ( o p i s air ~1 d i \ i i oii ’~ by .
‘ 
, o I ii L i m b o  i s  s lid I le  r t han n

He nc e the ox pe c t e’d num b or 0 1 s t e ps i s .
‘ r (ii ‘P 4 .

‘ I (10: i i

I f we o on t h i t — Op t ’ a t  1 o us t tie U sub t rac t I on o ii umh e r s

snla I I e r t han ii r’e q u li - e s a t mo ~ t 1 oq n bit — o p e ra  t r o n s

and the hound Is .‘P~~n~ ~

Th e pro v 1 o us t ho~ rem rita v ho s t re ii q t hen ed to ccv t’r t he

s i t  u5i t I on th a t or the q I y en key an be dcc oded in

,i us t a snra 1 I pt’rc out aflt’ of al l ~a St ’S .

• 
‘• ~~~~~~~~~~~~~~ —
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THEOREM 2: I f AL solves (5) in F ( n )  steps for l/e

of the 0 m n, (m ,n) = 1 , for which (5) has a solution ,

then there is an algorithm for factorin g n requiring

2eF(n) + 2log2 n s teps.

Pkoo~~. As in the proof of Theorem 1, choose a 0 - k -~ n at

random an d compute k2 .. in mod n. Apply AL to find ,‘m .

If the computation runs more than F(n) steps abort it

an d choose another k. Whenever a root k 1 = ,‘n~ i s f ound ,

com pute (k-k 1 , n) . The analysis in the proo f of Theorem 1

implies that with probability 1/2 each such try produces

a factor i zation of n.

The expected number of cho ices of k leading to a ~ir

i s e an d the ex p ec te d num ber of c~~se.s of AL needed

fo r  a fac tor i za t i on , i s  2 . T h u s  t he t o t a l  e x p e c te d num ber

of ste ps is 2eF(n) + 2lo g2 n. Note th at we embark on the

secon d p hase o f the f a c t o r i z a t i o n  on l y a f ter  a s u c c e s s  of

AL i n f i nd i ng •‘m .

I f fo r  e x a m p l e  e = 1000 , and F(n) were not prohibi-

tively large , then an a d v e r s a r y  c o u l d f a c t o r  n i n

2000 F(n) + 2log 2 n steps. Conseque ntly, if no practical

algor ithm for factoring n is possible ,then no p r ac t ic al

decoding algorithm could work in even 1/1000 of all cases.

-



-15-

5. G E N E R A L I Z A T I O N S

The a bove method of construction of a one-way function

can be ~‘x tended to employ polynomials or powers of x of

s m a l l  d e g r e e s  o the r  than 2 .

Assume for exam ple that n = p •q, where p and q

are primes of the form 3k + 1 . The one-way function wi l l

be E ( x )  x 3mod n . The decoding is effected by solving

• x l 
- m 0 mod p and mod q by a probabilistic algo rithm

s imilar to the one used in Section 2. A gain one can prove

tha t any algorithm for extracting cu bic roots leads , for n

of the ab ove f o rm , to a factoriza tion of n.

The probability that x 3 w mod n is solvable for a

random w is 1/9. Thus for ut ilization in signatures the

qu a d r a t i c  scheme seems b es t.

— .1 - ~~~- • . - - -S • S • • .
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