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FORWARD

The Tenth Image Understanding Workshop under the sponsorship of the Defen:e Advanced Research
Projects Agency (DARPA) convened at the Davidson Conference Center for Continuing Education, University
of Southern California, on the 7th and 8th of November 1979. Lt. Col. Larry E Druffel, Program Manager
for the I.U. Research Project in the Information Processing Techniques Office of DARPA welcomed the govern-
m:nt officials and research personnel to the two day workshop. Lt. Col Druffel noted that plans are
frogressing for a demonstration system to evaluate the maturity of IU technology by automating mapping,
(harting and geodesy functions. While focussing on specific cartographic photointerpretation functions,
whe system should offer the entire image exploitation community an opportunity to assess the future appli-
cation of Image Understanding methodologies to their specific problem.

This workshop, which maiked the beginning of the fifth year in this research program, proceeded
essentially in the pattern established by the previous semi-annual meetings. As usual, the University and
Industrial Research Personnel informed the attending representatives from the various Army, Navy, Air Force
and Government Agency Organizations about various technical facets of the research effort and provided an
vverview of progress in Image Understanding Research during the past six month period. An unusual feature
of this workshop was a session devoted entirely to the subject of "Symbolic Representation". This session
was designed to assist the research community to thoroughly review their apinions on this topic which is
key to Image Understanding and to enable those attending to secure a comprehensive overview of the subject.
At all sessions, an interchange of views between the researchers and user communitees helped to foster the
basic aim of these workshops - improved communication between designers and users.

The papers contained in these proceedings represent the work of the DARPA sponsored research
programs at the various institutions involved. Most of the technical papers were presented by the authors
at the workshop. However, in the interest of Timiting the technical sessions, a few papers are reporduced
here which were not able to be formally presented. The Principal Investigators reports included herein are
designed to provide a brief outline of the subjects presented by the various P.I.'s. In addition to the
technical sessions, participants visited the image processing lahoratories of the University of Southern
California for live demonstrations of the USC Image Processing Institute capabilities.

The host for the workshop was Dr. Alexander A. Sawchuk, Associate Professor of Electrical
Engineering and Director, Image Processing Institute of the University of Southern California. The sponsors
and workshop organizers are indebted to Dr. Sawchuk for his untiring efforts in providing arrangements and
assuring the success of the workshop. Appreciation is also extended to Ms. Hilda Marti of USC for her work
in securing facilities and general assistance and to Ms. Jackqueline Frye of the staff at SAI for typing
support for mailings and collection and arrangement of the conference proceedings.

The materials for the cover of this document were provided by Dr. Keith Price, Kesearch Scientist
at USC. The layout is designed to show the flow of events as images are processed in the laboratories and
are representative of the type of user descriptions which the systems require for processing images of a
given area. The semantic network is, by necessity, partial. Many links (relations) have been left out for
clarity and relative locations (above, below, etc.) are approximately indicated by the position of the
nodes corresponding to the objects. The results of matching this model with the actual image ar: shown in
the San Diego photo on the right side. The photo, Dr. Price tell us, is NASA pnoto 573001332170.. (1703).

He notes that this one shows some errors where the ocean is broken apart when the waves become very clear
and where some linear segments are clearly misidentified as being part of the major highway. The artwork
and layout is the work of Mr. Thomas G. Dickerson of the Art Department of Science Applications, Inc.

Lee S. Baumann
Science Applications, Inc.
Workshop Organizer
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DEVELOPMENT OF CUSTOM-DESIGNED INTEGRATED CIRCUITS FOR IMAGE UNDERSTANDING

G.R. Nudd, S.D. Fouse, and T.A. Nussmeier

Hughes Research Laboratories, Malibu, California 90265

P.A.

and

Nygeard

Carlsbad Research Center, Carlsbad, California 92008

ABSTRACT

This paper describes our on-going program to
develop special-purpose charge-coupled device and
metal oxide semiconductor integrated circuits for
real-time image processing. This work has empha-
sized the development of circuits that will perform
the front-end, or '"low-level," processing functions
at data rates in excess of 10° pixels/sec. We
describe the design and fabrication of a third test
chip which will perform two-dimensional processing
operations over kernel sizes ranging from 3x3 to
26x26 pixels. Included on this chip are data
programmable operations for processing over a 5 x 5
kernel at real-time television rates.
we describe the test facilities we have designed
and bullt to demonstrate the performance of these
circuits and the initfal test results.

1. 1NTRODUCTION

A primary aim of the program has been to
demonstrate the feasibility of performing image-
understanding algorithms in real time.
purposes, we define "real time" to be equivalent to
high-quality television, 7.5-MHz data rate.
for relatively simple operations on kernels of 3x3
or 5x5 pixels, this represents a speed increase
over conventional general-purpose computers of at
least two or three orders of magnitude.
this increased throughpvi, we have designed and
implemented novel charge-coupled device (CCD) and
metal oxide semiconductor (MOS) processing archi-
tectures that can be integrated into infrared and
video cameras. Based on thc work funded on this
program, we are currently investigating several
military applications that rcquire both the sensor
and processor to be integrated onto a single chip
(the so-called "smart-sensor" philosophy).

We have designed, built, and tested three
integrated-circuit test chips containing the 14
algorithms listed in Table 1.
used to demonstrate a different approach to image
analysis. The first chip shown in Figure 1 was
aimed at demonstrating a novel two-dimensional CCD
filtering approach which allows concatenation of
several (in this case 5) image-understanding

operations and has been designed to be integrated
into the sensor directly at the focal plane. Each
of the functions on this chip operatees over a 3x3
array of picture elements and provides a single
processed picture element for each new input pixel.
The circuit accepts three lines of video data
equivalent to the 3x3 array and as such requires
two external analog delay lines when operated from
a vidicon or commercial camera, as shown in

Figure 2. 1In our initial work to operate these

e et it

781910 R1
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CIRCUITRY
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Fig. 1. Photomicrograph of test chip I.
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Each chip has been cecD321
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Fig. 2. Formation of the 3x3 pixel array
using externa. analog delay lines.
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circuits in real time, we haye used Fairchild

ccD 321 analog line delays. These have worked
quite well but 1limit both the dynamic range and the
signal-to-noise ratio of the processor. We are
currently investigating techniques for incorpo-
rating the circuits directly into a CCD imager as

shown in Figure 3.

shown in Figuve 4, contains
five individual circuits again using a 3x3 pixel
kernel and is aimed at demonstrating adaptive
processing using the local mean as the control.

This circuit has been operated directly from both a
yidicon and CCD camera with an overall processing
accuracy equivalent to 4 bits. The operations per-
formed in addition to the 3x3 average are adaptive
stretch, binarization based on the local mean,
unsharp masking, and Sobel edge detection. Under a
parallel contract with Nisht Vision Laboratories,
Fort Belvoir, Virginia, -~ have integrated these
¢ircuits into a demonstration processor, shown in
Figure 5. At the request of the customer, we
incorporated a CCD field delay to rrmove the inter-
face and provide a processing capability on adja-
cent lines of video. This processor has been oper-
ated at a 4-MHz clock rate, and the results are

reported in Ref 1.

The second chip,

T | 9136 3
B
ooy
iMAGER |
| L e |
et = Y'DG
J. "nt
Fig. 3. Technique for integrated

CcCD images and processor

CENTER AND
TEST DEVICES / LOCAL AVERAGE

LIS AR
MASKEN

S ARIZER
ADAFTIVE (|
SEF1L) TETECTION
Fig. 4. Photomicrograph of test chip IL.

Our recent work has been concerned with the
design, processing, and initial evaluation of a
third test chip, which is aimed at demonstrating
processing techniques using larger kernel sizes
(as high as 26x26 pixels) and demonstrating a pro-
grammable capability. After many problems and
delays in obtaining a satisfactory mask set, we
have now completed the processing of this chip and
are currently collecting preliminary performance
data on each of the five circuits, as described

below.

1I. PROGRESS ON TEST CHIP III
a1 effort this period has been with

The princip
and processing of this

the design, simulation,
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Fig. 5. Real-time test facility for test chip IL

chip. Five functions, a 7x7 mask programmable
array, a 3x3 Laplacian, a median operator, a 5x5
voltage programmable convolution, and a large 26x26
element convolution for the primal sketch,“ are
included. The design goal 1s for a 15-MHz clock
rate and an overall processing accuracy equivalent
to 6 bits. The resolution of the circuit lithog-
raphy is 5 to 7 um, equivalent to commercial opti-
cal techniques, and the technology is n-tyr~ sur-
face cnannel. The bandwidth requirements for this
chip are towards the high end of the speed capa-
bility range for surface channel devices and hence
represent a considerable challenge. Also, the
kernel size has been considerably extended from the
9 pixels used in our previous work. The largest
processor, the convolution fer the primal sketch,
contains 338 pixels. Further, the dynamic range
required by the cperators contained on the chip is
nuch increased, representing approximately 8 bits,
and we are including special techniques to achieve
this. Probably the most significant challenge we
are addressing on this chip is the development of
programmable processing kernels. The concept here
is to develop a general-purpose convolutional
processor that can accept data at real-time video
rates and can adapt its kernel size and weights
either in a preprogrammed way or in response to
the processed output at a speed higher than the
frame rate (>30 Hz). If such a device can be de-
veloped with accuracy equivalent to 6 bits, it will
find very widespread general utility in image anal-
ysis and understanding. At present, the kernel

size for this circuit 1is 5x5, but there is no
fundamental limit preventing this from beiny sig-
nificantly increased. To meet the significantly
increased demands both in terms of speed and dynamic
range, we have included an on-chip sample and hold
to both reduce the output noise and lower the clock
feedthrough. This should significantly increase
the performance of the functions, particularly at
high speed. A schematic of the circuit is shown in
Figure 6. This device has been simulated to oper-
ate at an 11-MHz data rate and provide a 60-dB com-
mon mode rejection driving a 30-pF output load.
This circuit is included in each of the CCD
functions.

A photomicrograph of the full chip showing
each circuit and the test devices is shown in
Figure 7. The chip itself is approximately
225 milsz, which is slightly larger than our previ-
ous one (191 mils?)., This has resulted in fewer
dice per wafer, thus requiring higher yield to pro-
vide acceptable quantities for testing. We are
currently processing 11 wafers, each with 36 dice/
wafer. This should hopefully result in enough
acceptable circuits for initial testing. Later we
will process an additional lot when the chip's
initial operating parameters have been determined.

This chip has now been designed and simulated
using the circult analysis and simulation program
SPICE. The individual cells have been drawn and
the composite digitized by the mask maker. Because
of high demand in the IC market, the turnaround at
the mask maker has been somewhat longer than orig-
inally anticipated. In addition to this delay, the
initial mask set received was incomplete; also,
some of the masks were reversed field. The net
effect of these two delays is an anticipated sched-
ule slippage of several months. We have only
recently completed the procrssing required prior to
short testing the devices, dicing the wafer, and
packaging. However, this process 1s now complete,
and we have started the initial performance evalu-
ation. Because of the larger kernel size and the
significantly different characteristics of these
circuits, we essentially have had to rebuild the
test facility. Considerable time and effort was
expended on this during this period, as discussed
below.

III, PERFORMANCE, EVALUATION, AND TESTING

To be able to effectively test the performance
of the microelectronic circuits developed, it has
been necessary to develop an appropriate test
facility. The essential components of this system
are shown in Figure 8. The functions developed on
the test chip include both two-phase and single-
phase circuits, each requiring a clock swing of at
least 20 V. To achieve this, we have developed a
driven system that operates from an 3-channel (T‘L
voltage level) word generator and uses these out-
puts to develop MOS level waveforms. This gener-
ator 1s also used to develop the necessary diffu-
sion and reset pulses. The word generator can be
clocked at a 20-MHz bit rate to process a 3-MHz
bandwidth signal. The imagery will be obtained
either from a stored data base or a vidicon camera.
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In either case, the data requires formatting into
several parallel video lines to form the appropri-
ate kernel size. The system to do this has now
been completed. It consists of a 10-MHz, 8-bit
analog-to-digital converter system that provides
input to a 24-kbit RAM register. The RAM register
provides a delay equivalent to six horizontal
lines. A digital-to-analog converter is included
after each 4 kbits to provide the analog output from
the adjacent lines. The necessary hardware to pro-
vide this facility has now been completed and the
system tested with a commercial vidicon. In addi-
tion, a signal cond{tioner %»ox, which both trans-
lates the dc level of the resulting video data and
can provide the necessary variable gain, has been
designed and built. We also have provided the capa-
bility to vary both the spatial and temporal reso-
lution of the processor and have investigated sev-
eral commercial "frame grabbers" and digital mem-
ories to provide this facility. The system we built
is based on the Quantex Field Grabber with resolu-
tion of 256x256 pixels each with 6 bits of gray
scale. We have interfaced this system to an IMSAI
8080 microcomputer for evaluation and have written
several software packages to manipulate the data to
provide both simulation of image-understanding
operations and manipulation for display purposes.

We are currently using this facility to evalu-
ate the first lot of test wafers. We have decided
to investigate the 5x5 data programmable convolu~-
tion and the median operator initially. The sche-
matic of the 5x5 programmable operator is shown in
Figure 9. Essentially, it accepts five parallel
lines of video data and performs a 25~point bipolar
convolution on a sliding 5x5 pixel array. The
mathematical formulation of the processor is given
by

VSET ¢,
VAVE ¢ ¢ d’s]'%'

k+3 143
T, = Z E L " Wy o
i=k=2 j+1-2

where I is the intensity of the processed image, I
is the original image, and the Wis are the program-
mable weights. The processor consists of a two-
dimensional floating gate array with 25 voltage-
controlled taps. This array overiays five separate
CCD delay lines through which charge equivalent to
each picture intensity is clocked. A single source
follower at the end of all of the delay lines is
used to detect the linearity and transfer efficiency
of the basic CCD structure. An example of the oper-
ation in this mode is given in Figure 10. The input
signal is shown on the upper trace, and the output
resulting from two cycles of this waveform is shown
on the lower trace. The operator here is at

"6 kHz, equivalent to the pixel rate of the stored
data base microprocessor system. The photograph
illustrates the need for an output stage including
a sample and hold. The reset pulses occurring each
pixel interval can be seen to hav: about the same
magnitude as the diffusion output. These are due
entirely to feedthrough and are unwanted outputs,
To avoild this, we have tested the an-chip sample
and hold as shown in Figure 11. In this case, the
input signal consists of a single frequency that is
sampled each 60 psec. At these intervals, the out-
put level of the waveform is sampled and frozen
until the next sample pulse. This circuit is
included on all the active CCD outputs and is used
to eliminate the unwanted clock to reset feed-
throughs. The initial results obtained from the
floating gate are shown in Figure 12(a and b). In
each case, the input signal is shown on the upper
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OUTPUT
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Fig. 13. Linearity and dynamic range of 5x%5
programmable processor.

IV. STUDY OF VLSI FOR IMAGE UNDERSTANDING

In addition to the work on the CCD/MOS cir-
cuitry and building a new test facility, we have
begun an analysis program to determine tiie impact
and advantages of very large scale integratin
(VLSI) on image understanding. The on-golng work
in software and algorithm development clearly is
leading to an ever-ircreasing demand for computa-
tional throughput. Further, it is evident that,
vven with the most sophisticated general-purpose
machines, the processing times are incompatible
with any real-time application. An apparent solu-
tion to these issues is the development of new
processing architectures based on the latest tech-
nologies. Two significant developments have been
taking place in microelectronics in the past several
yeavs. The first is the development of a variety
of new technologies such as DMOS, CM0S/sos, IZL,
LCL, and GaAs. Each offers a different combination
of parameters in terms of speed, power consumption,
and the possible level of integratiou. It is of
particular importance to the I.U. program to be
able to evaluate the advantages and constraints of
all the available technologies with respect to our
programs. In addition, with increased resolution
of integrated-circuit features and decreased power
consumption, the level of integration within each
chip has greatly increased. For example, in highly
regular arvays, such as memories, as many as 10 to
10° functions can be integrated in each chip. This
development will also have profound effects.

To some extent, the design and architecture of
high-density circuitry other than memories and com-
mercial microprocessors have lagged behind these
developments, and a significant advance can be
expected from the optimum design of image-
processing architectures. To achleve the maximum
advantages of VLSI for the I.U. problem, two pre-
cepts must be adhered to. First, the designs and
architectures must, where possible, provide con-
current opevation. The obvious bottlenecks that
result in the von Neuman concepts of a single
arithmetic unit, etc. can be circumvented by highly
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COMPUTER PROCESSED

CHIP PROCESSED

Fig. 14. Performance of 5x5 programmable
processor on test pattern.
(all weights equivalent to unity)

localized operation with multiple primitives. This
removes many of the problems from the processor and
places them in the control and data distribution
system. There is, for example, a need for local-
ized distributed storage and memory associated with
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each primitive for data and instruction queuing. In
addition, both for ease of design and for increased
packing density, the circuitry must be highly regu-
lar on the silicon surface.

From our previous work on this program, it is
clear that, using current state-of-the-art tech-
nology, low to intermediate level primitives can be
built that will provide real-time operation with-
out requiring extensive area on the silicon. From
this work, we anticipate that five or six primi-
tives might be included in a single 200-m112 chip.
In support of this concept, we are currently
investigating concepts for data distribution and
intelligent local storage as well as techniques
such as residue operation and number thevretical
transformation for regularizing the processes thiem-
selves. The eventual aim of this work, which will
continue in the next period, is to determine an
optimum way of mapping the algorithms and processors
onto the two-dimensional siliconm.

V. SUMMARY AND FUTURE PLANS

During the current period, our work has been
concentrated in three areas: the fabrication of
Test Chip III, the development of an effectivs test
facility and preliminary testing of the circuits,
and an initial stud, of the effect of VLSI on image
understanding. Progress in each of these areas has

been satisfactory, although unexpected delays have
been encountered primarily with the outside mask
maker. The problems with this vendor have created
an unavoidable delay of at least two months and
have been largely responsible for our delay in the
testing schedule. However, all 11 masks have now
been received, and the wafers have been processed
and short tested. We have completed nearly all the
work on the test facility and are now getting ini~
tial test results. This work will continue next
period, and we intend to issue an interim report
detailing the test results as available. In addi-
tion to this, we have started our VLSI study and
are star:ing to formulate an approach for this
major task next year.
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INVESTIGATION OF VLSI TECHNULOGIES FOR IMAGE PROCESSING

W.L. Eversole, D.J. Mayer, F.B. Frazee, and T.F. Cheek, Jr.
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13500 North Central Expressway, P.0. Box 225936

Dallas,
ABSTRACT

This paper summarizes recent work performed
under a subcontract from Carnegie-Mellon Univer-
sity for the DARPA Image Understanding Progi-:1.
Discussion of the implementation of a real iime
median operator and a programmable sum of products
operator are presented.

I. INTRODUCTION

The concept of very large scale integration
(VLSI) implementation of a real time digital
image processor based on multiple arithmetic
logic units {ALUs) and on-chip buffer]memories
was presented at an earlier workshop.' The
implemercation of the appropriate b%ffer memories
was discussed at the last workshop.“ While recent
advances in component technolcgy now make possible
the realization of real-time image processors
capable of performing highly complex functions,
an understanding of the potential for implementing
complex algorithms with miniaturized hardware is
a necessary tie between algorithm research and
hardware development efforts. The need to pr¢ erly
define the complex functions before actual
integrated circuit design begins is imperative due
to the complexity of image processing algorithms
and the development cost and schedules of an
integrated circuit design. A poorly defined
“unction or a hastily made technology decision
can destroy an othe'wise successful program. “he
design and implementation of a breadboard version
of a pronosed integrated circuit is considered
good engineering practice. The breadboard version
allows evaluation of the algorithm as well as the
discovery and evaluation of the prohlems, risks
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and options involved before incurring enormous
expenses.

This paper discusses the breadboard versions
of two image processing algorithms; a 5 x 5 median
of medians operator, and a programmable sum of
products operator.

IT. MEDIAN OF MEDIANS OPERATOR

The 5 x 5 median of medians! operator
discussed at a previous workshop was implemented
using off-the-shelf components. The breadboard
will allow evaluation of the median of medians
operator and provide important design inputs for
a completely integrated version. A block diagram
of the breadboard is shown in Figure 1. The
breadboard was designed for real-time operation
using a commercial TV camera as the sensor.
Commercially available 8 bit analog-to-digital
and digital-to-analog converters were used. The
memory needed to buffer 4 lines of video was
implemented using 1024 x 4 bit static random
access memories (RAMs). The median operator
circuitry was implemented using low power Schottky
transistor-transistor logic. The ability to
operate on images of different resolutions was
accomplished by controlling the timing of the
median board to accept every output sample of the
buffer memory for full resoluticn or every other
sample for 1/2 resolution, every fourth sample
for 1/4 resolution or every eighth sample for 1/8
resolution. The power required for the buffer
menmory function and the median of medians operator
is 10 watts and 14 watts, respectively. The power
and size of these simple functions emphasize tha
need for invegrated circuit technology in the
implementation of image processing functions.

The operation of the median of medians bread-
beard is shown in Figure 2. The original image
is cnrrupted by impulse-like noise. The nocise is
seen as small dark areas on the face of the girl.
After passing through the median of medians bread-
board the impulse noise is removed. The median
filtered image appears somewhat blurry at sharp
edyes of the image. This is caused by the signal
surprension property of the two dimensional 5 x 6
median filtering. Operation of the median of
medians breadboard at ditferent resolutions is
shown in Figure 3. As the resolution is decreased
tg$ median filtered image becomes less recogniz-
abie.
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The median of medians breadboard has been
delivered to Carnegie-Mellon University along
with a simple interface board for interfacing to
the VAC 117780 computer. This will allow the 5 x
5 median of medians filter to operate on imanes
up to 1024 x 1024 pixels.

I11. PROGRAMMABLE SUM OF PRODUCTS OPERATOR

Many image processing algorithms require
operations of the form

y= I WX (1)

where the wi's represent a set of fixed weighting
coefficients and the X;'s represent a set or
sequence of input values. Equation (1) can be
used to calculate the coefficients of various
transforms such as Fourier, Cosine, Hadamard,
Haar, etc. Where two dimensional transforms are
needed, successive une dimensional transforms can
be used if the transfcrms are separable. Another
very important application of Equation (1) is the
discrete convolution of a two dimensional input
image with a convolution array. These mathematical
operations based on the neighbori:ig pixel values
are termed neighboihood operators and are used in
many image processing algorithms. Examples of
neighborhood operators include noise smoothing,
adge crispening. linear edge enhancement, etc.

Equation (i) can be implemented using digiteal
multipliers and adders; h~werver, the size and
power required to perform the multiplication at
video data rates with the accuracy needed for
most image processing applications is prohibited.

A technique for realizing Equation (1) that
does not require digigal multiplication is the

ROM-accumulator (RAC)® technique. The RAC tech-
nique implements the sum of products of an input
word set with a set of weighting coefficients
using a tzhle 1ookéup procedure as discussed at
the last workshop.

To properly define the LSI/VLSI 1mplemen-
tation of the programmable sum of products
operatcr, a breadboard version of a 3 x 3 pro-
grammable operalor using of f-the-shelf components
is being designed and implementeo. A block
diagram of the 3 x 3 programmable operator bread-
board is shown in Figure 4. The breadboard
consists of nine input latches, nine paralle!
in-serial out shift registers, a fast 512 x 12
bit memory for temporary storage of the partial
products, an EPROM for permanent storage of the
partial products, shift and accumulate circuitry,
tri-state output latches, and control circuitry.

The input latches are used to buffer the 8-
bit input data paths (A, B and ) into the RAC
circuitry. They also act as an 8-bit wide shift
register for sliding window operations. When
operating on 3 x 3 pixel blocks, data paths A, B
and C are applied in parllel to latches L2, L5,
and L8, respectively by appropriate control of
the 2 multiplexers. In this case, the input

latches act as 3 parallel, 3-pixel shift registers.
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When operating on 9 x 1 pixel blocks, data path C
is applied to latch L8 and data paths A and B are
not used. In this case the mult.iplexers allow
the input latches to form a single 9-pixel shift
register.

when data is valid in the input latches,
their contents are clocked in parallel into the
parallel in-serial out shift registers. These
registers convert each bit-parallel input word
into bit-serial form which provides 8 sequential
9-bit addresses to the partial product memory.
This memory is composed of 12, 30 ns static 1K
x 1 MOS RAMs. The desired partial products
stored in this memory are initialiy downloaded
from EPROMs or alternatively from a computer.

The 8 sequential partial products obtained
from the memory are applied to the shift and
accumulate circuitry which performs binary
weighting aﬁd summation using carry-save additicn
techniques. ' Unsigned mangitude or two's comple-
ment data may be used. The accunulator output is
latched in tri-state buifers.

Using commercially available components the
maximum internai clock rate tur the shift registers,
memory, and accumulator is 20 MHz. Thus, for 8-
bit wide input data, 400 ns (8 x 50 ns) are
required to complete each sum of products calcu-
lation. When performing 3 x 3 sliding window
operations, the maximum input date rate is there-
fore 2.5 MHz. In order to perform 3 x 3 sliding
window operations at standard TV data rates, three
boards may be operated in parallel with 6-bit
input data to achieve an input data rate of 10
MHz. When performing 9 x 1 non-sliding oper-
ations with a single board, the maximum 8-bit
input data rate is theoretically 22.5 MHz. The
preadboard, however, is designed for 10 MHz
maximum input data rate.

The design of the breadboard is complete and
fabrication has begun.

CONCLUSIONS

This paper has discussed the imolementation
using off-the-shelf components of twe imege
processing functions; a median of medians operator
and a programmable sum of products operator.
These breadboard activities are invaluabie aids
to integrated circuit architecture desion.
Fxperimental results from the median of medians
cperator were shown and a detailed discussion of
the programmable sum of products breadboard was
presented. Work is continuing on the fabrication
of the programmable sum of products breadboard.
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HIGHFR LEVEL ALGORITHMS:

EVALUATION AND IMPLEMENTATION

Thomas J. Willett
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ABSTRACT

Under contract to the University of Maryland
Westinghouse has been investigating the potential
for hardware implementation of higher level algo-
rithms associated with the image understanding pro-
cess. The progran is sponsored by DARPA and moni-
tored by the Army's Night Vision and Flectro-opti-
cal Laboratory. In this report seven current
algorithms are defined, and one example (the
1ight/dark, edge-no edge relaxation process, with
borderness) is examined in detail, both as re-~
gards the computation of initial probabilities,
and of the relaxation process itself.

The complexity of emerging algorichms has
created a severe processing load for the general-
purpose computer. With +thirty minute running times
for a single image sample, statistical tesling be-
comes prohibitive for & data base of several hun-
dred samples. Westinghouse proposes to attack this
problem with the use of array processors. The
approach 1s discussed in this paper. It is noted
that software development for array processing may
also simplify the hardware implementation effort.

INTRODUCTION

Past effort on this program has been concen-
trated on the definition of digital architecture
for implementing the image processing algorithms
developed at the University of Maryland (UMd). Re-
cently, however, & need has emerged to provide sup-
port to UMd in the statistical testing of complex
algorithms. To understand this need, consider that
the processing of a relaxation algorithm for a small
image window may require more than 30 minutes of
running time on & general-purpose computer. Typi-
cal data bases, on the other hand, will contain
Consequently, the

several hundred image samples.

demand on the computer to obtain significant statis-

tical results becames prohibitive.

ision, Baltimore, Maryland 21203

There are at least three ways to overcome this

dilemna. The most obvious way is to simplify the

algorithms. In actual practice, simplification
usually does occur. However, the search for new,
more powerful appraoches rapidly overcomen the re-
duction in complexity. it is concluded that means
must be found for jealing with very large loads.

A second approach is to puild special-purpose
hardware capable of adequate throughput rates. The
design of such hardware is the subject of our con-
tinuing effort. Apart from the obvious drawbacks of
time and expense. however, - here is a heavy require-
ment for programmability. The variety of the algo-
rithms which one would like to examine is almost
unlimited. The inflexibility of almost any special-
purpose hardware could be expected to undesirably
restrict the algorithm design and evaluation.

A third approach, and one which we are now in-
vestigating, is the use of a fully programmable
array processor, with a throughput in excess of 10
operations per second. Westinghouse is a leader in
array processor development, with particular appli-
cation to military problems. At present, this is
rack-sized equipment. However, the Universal Array
development described at the last workshop (Ref. 1)
is directed specifically toward the LSI implemen-—
Consequently, there is

tation of array processors.

the prospect that a satisfactory performance
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demonstration on the array processor can be readily
translated into a miniaturized form with a minimum
of program modification.

The use of the array processor for statistical
testing appears tu offer the advantages of flexi-
bility and shorti responus time, under the assump-
tion that such a machine can in fact accommodate
the UMd algorithms. We are now investigating this
matter, as will be discussed below.

The evolution from an image processing concept
to miniature hardware might follow the paths shown
by Figure 1. After initiating the concept, UMd
would develop the algorithm and would perform a
feasibility demonstration of 1ts performance on a
small set of test samples. Westinghouse would
adapt the algorithms for the processing of a sta-
tistical test on the array processor, using a
test dats base approved by NVEOL. In a parallel
effort, Westinghouse would investigate the LSI
implementetior of the algorithms, based on all
available logic families. It would also consider
their implementation with Universal Array archi-
tenture. The results of the statistical test, and
the recommendations for implementation would be
available for further action by & military agency
such as NVEOL.

In the next section we review the prospects
for algorithm evaluation using the Programmable
Array Processor. This is followed by a discussion
of the prospects for implementation of seven al-
gorithms currently under examination at UMd.

IMPLEMENATION OF IMACE PROCESSING ALGORITHMS ON
AN ARRAY PROCESSOR

Westinghouse has developed a family of Program-

mable Array Processors (PAP) designed for high-

speed signal processing. Tn general, the PAP is a
single unit that is specifically structured for
high-speed, iterative processing oL sets of data
commonly referred to as "vectors'. I{, for example,
we consider each line of digitized video data as

an input "vector", then Image processing of conse-
cutive lines of image data should be accomplished
at high speed rates. The PAP is "programmable'
that is, its operation is controlled by a computer.
The PAP is "highly programmable”, which means that
it has com lex, higher-order instructions and is
capable of autonomous operation and decision making.

The Westinghouse PAP is currently in its third
generation of hardware development, with the next
generation being designed. Systems applications
include high-speed video and radar signal analysis.
New designs will make use of Universal Arrays and
other LSI circuitry, as well as modular architec-
ture for improved data handling and data through-
put rates.

The video input data is stored into bulk memory
under program control of an internal general-
purpose computer, which includes the capability to
reformat and re-order the data. See Figure 2. The
Vector-Array Processor (VAP) is a four-channel
processor that performs most of the vector arith-
metic instrucitons, such as MULTIPLY/ADD, COMPARE,
ACCUMULATE, LOGICALS, TABLE LOOK-UP, DOWN SAMPLE,
UP ©AMPLE, SQUARE, and DETECT. The basic control
functions such as loop controls, branching, and
indexing are provided in boti. the VAP and the
internal general-purpose computer.

The VAP usually operates two or three orders

of magnitude faster than commonly used computers




17

doing iterative processing on dats in vector format.

The efficient data interface which is capable of

video data input rates maintains high data through-

put rates for the PAP system. The unit is struc-
tured to be very efficient at ordinary arithmetic
operations such as multiply and add with fractional
scaling, so it is expected to be well suited for
complex slgorithms such as relaxation.
Westinghouse is investigating the increase in
image processing capability that can be achieved by
performing the processing functions on the Westing-
house Programmable Array Processor (PAP). It is
currently intended that this effort will have sever-
al goals, which are principally long-term goals, but
with significant results from the initial effort.
Specific goels are the following:
1. Analysis of various potentially useful image
processing algoritnms to obtain a prelim-
inery determination of their compatibility
with vector processing foruat.

2. Estimation of PAP data throughput rates for
the principal algorithms. These estimates
will include not only the adds and multi-
plies associated with the repetitive linear
operations, but the control overhead and
data storage and transmission that is a
significant 1imit on array processing.

3, Evaluation of algorithms for compatibility
with the line-at-a~time processing typical
of a vector processing architecture. This

should include algorithm effectiveness,

complexity, and potential for further
optimization.

4. Evaluation of compativility of pipelire

processing (typical of the Westinghouse

AUTO-Q system) Vector processing (typical
of the Westinghouse PAP system) and parallel
processing arrays with the basic image
processing algorithms. Since there is no
¥nown existing hardware for 1ine-at-a-time,
parallel processing arrays a potential
architecture will be developed for analysis.
5, Comparative analysis of the programmability
and pctential speed capability of pipeline
Processors, vector processors and parallel
processing arrays, using current fabrication
technology and ultimate potential technol-
ogies (e.g. CCD's, high speed universal
arruys, VHSIC).
6. Depending on the potential capabilities of
the parallel processing arrays (determined
above) continue development of an archi-
tecture and system design for a3 demonstra-
tion unit, and develop the capability for
simulating its operation on the PAP.
HARDWARE IMPLEMENTATION
This section describes the algorithms which
are currently under evaluation for implementation
in hardware. One of these, the "light/dark, edge/
no edge" relaxstion process, with "porderness”, is
examined in some detail as represer.tative of the
implementation process. First, the initial proba-
bilities are considered. This is followed by the
relaxation process itself.
ALGORITHM REVIEW
We briefly review seven algorithms developed
by UMd which are pbeing analyzed by Westinghouse for
hardware implementation. The first four2 are seg-
mentation algorithms based on the relaxation ap-

The fifth3 is a spot detector which is

preach.
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desjgned to select thresholds for segmentation. The and reinforces no edge (and vice versa) if

last two are higher order algorithms for shape class- they are alongside one another. This has

ification and texture classification. the effect of strengthening the appropriate

"Light/Dark" Relaxation Algorithm

The Light/Dark Relaxation algorithm initial-
1y assigns "light" and "dark" probabilities
to image pixels based on their gray levels.
These probabilities are then iteratively ad-
justed at each image point (pixel) based on
the probabilities at 1eighboring points;
l.e., light reinforces light and dark re-
inforces dark. This has the effect of ad-
Justing the probabilities initially ossign-
ed to noisy pixels so as to make them more
consistent with their surroundings. Eventu-
ally, the light probabilities at all points
of a light region should become uniformly
high and vice versa for the dark probabil-
ities, so that thresholding becomes easy and
should produce noise free results. This al-
gorithm and its implementation were described
in detail in the Third, Fourth, and Fifth
Quarterly Reports on this program.

"Edge/No Edpe" Relaxation Algorithm

The Edge/No Edge Relaxation Algorithm is a
process in which "edge" and "no edge" prob-
abilities are initially assigned to each
image point (or, alternately, to each ad-
Jacent pair of points) based on the relative
values of the gray level differences in
various directions around the point. These
probabilities are then adjusted based on the
probabilities at neighboring points.: no-
edge reinforces no-edge; edge reinforces

cdge if they smoothly continue one another,

edge probabilities at points that lie along
smooth edges, and strengthening the no edge
probability elsewhere, so that edge detec-
tion should yield less noisy results. This
algorithm and its implementation were de-
sceribed in detail in the Fourth and Fifth

Quarterly Report.

. Joint "Light/Dark, Edge/No Edge" Relaxation

This algorithm combines the above algorithms
and allows them to interact in much the

same manner as the individual probabilities
interact in either of the above algorithms.
The interaction between light/dark and edge/
no edge takes place at the relaxation level
which substantially incresses the computa-

tional load.

. Joint "Light/Dark, Edge'No Edge" Relaxation

with "Borderness"

This algorivam produces results similar to
the Joint "Light/Dark, Edge/No kdge" Re-
laxation Algorithm described above; it al-
lows interaction between the "Light/Dark"
and "Edge/No Edge" Algorithms using a Bor-
derness concept. This e¢ssentially, provides
interaction at the initial  probability
level rather than the relaxation level,

and eases the computational burdep sub-
stantially. The relaxation computation is
done in the Light/Dark mode. Implementation
of this algorithm is a combination and
extension of the relaxation work performed

previously. Here, the probability of light
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is initially high only adjecent to edges on
their light sides. This gives an array of
borderness values which are high on the

light size of edges and and low elsewhere.

. Spot Detector

This algorithm permits each target within a
image to be thresholded individuaily. Lcw-
er resolution renditions of the original
image are obtainea by Lxh averaging; suc-
cessive averaging will produce a spot (one
pixel) target. A tiased 3x3 LaPlacian Oper-
ator is scanned across the lower resolution
image and responses sre analyzed for fre-
quency and gpatial proximity. Given a
positive response, a threshold is selected
by averaging the eight background pixels
surrounding the target, and averaging this
quantity with the target gray level. The
result is used to threshold the target in
the original, high resolution image.

Shape Classification by Relaxationh’5’6

The purpose of this algorithm is to recog-
nize shapes described by closed boundary
curves of more complex shapes such as air-
planes. Basically they are segmented into
a number of parts and sequences (triples)

of these parts are examined for consistency
using probabilities relaxation. The seg-
mented parts could be nose, right wing, left
wing, and tail. Since the segmentation ig
imperfect, initial probabilities are assign-
ed, analytically, to the various segments.
Then sequences of adjacent segmented parts
are used to reinforce the identification of

particular segments.
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T. Texture Primitive Extra.ction'r’8
Many textures can be characterized as a
collection of primitive elements, i.e. con-
nected regions satisfying certain properties.
Here, the primitive extraction is done using
edge-based techniques.

IMPLEMENTATION OF "LIGHT/DARK EDGE/NO EDGE" with
"BORDERNESS" ALGORITHM

We describe the implementation of the Joint
"Light/Dark, Edge/No Edge" Relaxation with "Border-
ness" Algorithm because it represents a summary of
the work performed on relaxation and its implement-
ation would be capable of landling some of the high-
er order relaxation algoriihms such as the Shape
Classification Algorithm. We shall concentrate
first on the initial probability computations.
INITIAL PROBABILITIES (Edge/No Edge)

The Edge/No Edge Algorithm finds the largest
edge value over a 3x3 neighborhood for each of eight
directions by multiplying the gray levels in the
3x3 array by a mask rotated through eight positions.
The 3x3 array is shown in Figure 3 together with the
eight mask position.

The edge value for first mask position is

e(1) = A(-1) + B(0) + (C(+1)

+D(-1) + E(0) + ®(+1)

+G(-1) + H(0) + ( I(+1), and the
edge value for a particular pixel is e = max, e(i),
i=1,2,...8. We note the symmetry in the edge
computations shown in Figure ba. 1In Figure Ub, we
rearrange the interiors of the quantities such that
the middle pixel in each quantity is also the middle
pixel, geometrically, between its neighbors in the
3x3 array. Then one clockwise shift around the

outer eight pixels followed by a counter clockwise




shift forms the quantities shown in Figure 5. Then
with four additional shifts in either direction,
the quantities of Figure 4a appear in the outer
eight pixel positions as shown in Figure 6. The
number of operations to form these quantities are
six shifts and three adds performed in parallel
over eight units. If we assume that each pixel is
represented by a processor capable of 20 million
operations/sec. then the nine operations consume
450 nanoseconds. Hence, five sets of eight proces-
sors are capable of performing the edge computations

at video rates. We delete the e = max e(i) step

1

because it iz not included in the borderness

computation.

INITIAL PROBABILITIES (EDGE/NO EDGE WITH BORDER-
NESS)

In computing "Borderness" we add the e(i)
value, corresponding to the +1 position of the mask,
with the gray level at that pixel position. The
resultant quantity is placed at that pixel position.
In terms of the mask positions and e(i) quantities,
the final borderness mask is shown in Figure 7.

With the completion of the edge/no edge computation
described in the previous paragraph, the edge
values, e(i), are in positions within the computa~
tional array shown in Figure 8a. By shifting clcck-
wise four positions, e(1) is in the middle of the

gt

L
+1 column for mask 1.

Similarly, cach of the other
edge values are in the middle position of their +1
sequence, Then by shifting one position clockwise,
followed by a counter clockwise shift. (Figure 8c),
the appropriate triplets in Figure T can be formed.

Thus to form the Borderness values, six shifts and

two adds are required for a total of 400 nanoseconds.
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The total time to compute Borderness is 950 nano-
seconds which requires 10 sets of 8 processors for
real time operation.

INITIAL PROBABILITIES (LIGHT/DARK)

We defire p_ (A) = glgx = glmin as the proba-
Xy
gl
2
bility of a pixel at position xy being dark where

glxy is the gray level at pixel xy, glr is the

gray level range over the image, glmin is the mini-

mum gray level over the image, and A refers to dark.

Then an estimate of the probability of =sny pixel in

. . .
the image bcing dark is p(A) = = P

is the number of pixels in the imuge.

(X) where n
An estimate
of the joint probability of thc center (ith) pixel

(of a 3x3 window) being dark and its eight neigh-
(m) =172
o n xy

(A7) where A” refers to light. Note

bors (Jjth pixel) being light is P,

pxy(k)p

that
pxy

x+i,y+]

(A) =1 - pxy(k), i.e. the probability of

light is one minus the probability of dark. There

are four joint probabilities p, (A, p..(A"2),

J ij
pij(A’A'), and pij(AA') to be computed for each of
the eight neighbors for each pixel in the image.

By substitution, assuming glm = 0, we obtain

in

ey =11
pij(x AT @ [ - S Bl - 8L, (
gl
r
B .
glx+i,y+j) D} glxy glx+i,y+j]’ and, in general,

any of the joint probability expressions can be
written as

() =fl2gl ,Zgl gl

5y Xy Xy TUx+i,y+j’

¥ glx+i,y+j]'

Further, it is shown in the Fifth Quarterly Report

that £ gl h ( glxy T s Ic ).

1

the sum over the neighboring pixels can be found

¥1 g+ = That is,

from the sum over all the pixels minus the sum over

two rows (froqu2,rk_l, 5 ) and two columns (from




TR P m————

N . WS s N

21

1,2,01_1,01) where k is the total number of rows and
1 is the totel number of columns. This allows the

as an accumula-

computation of I glxy’ I glx+i,y+j

tion plus two arithmet’c operations. For the

gl glxy product, we note the symmetry proper-

x+i,y+]
ly. That is, let us change notation such that i,j
are running indices over the entire frame. Then

the center pixel %o lower right pixel combination
instead of being glxy g1x+i,y+J
3 gl

which is the center to upper left

becomes glij

Clearly, gli is equal to

Blis), 541 141,341

Blieg,av1 &y
combination in the next row and one column to the
right. With this reciprocity in mind, we need only
compute four of the glij g1i+l,J+l(g1xy, glx+i,y+j)
combinations directly with the operator shown in
Figure 9. Assuming a 2's complement addition in
eight steps for an 8 bit by 8 bit multiplication,
there are 400 nanoseconds per multiplication and
1600 nanoseconds per pixel. Hence, 16 processors
are needed (assuming a 50 nanosecond clock cycle) to
produce the initial probability products for light/
dark relaxation in resl time, i.e. video rates of

30 frames per second.

In summary, 96 processors (20 mega operations/
sec) are required to produce the initial probability
computations for the Joint "Light/Dark, Edge/No
Edge" with "Borderness" Relaxation Algorithm at
30 frames per second.

THE RELAXATION CCMPUTATION

In the First and Second Quarterly Reports, we
described a number of cammercially available bit-
sliced architectures, e.g. AMD 2901, AMD2903,

MC 10800, etc. in terms of th:ir instruction repe-
toire, speed, power, and size. We concluded that,

although bit-sliced architecture offered substan-

tial advantages over conventional microprocezsors,
the size and speed were not adequate for airborne
image processing applications, particularly
missiles. We then concentrated our efforts on the
use of Westinghouse Universal Arrays in the Third
and Fourth Quarterly Reports, as a tool for jmple~
mentation. We described the relaxation calcula-
tions in terms of Systolic Arrays, composed of
Universal Array multipliers. We continue that
effort here, and broaden i, with the addition of
a programmable Westinghouse Universal Array (ALU)
Arithmetic Logic Unit. It is assumed that the ALU
is 8 bits wide, has an instruction set comparable
to the AMD 2903, performs 20 million arithmetic
operations per second, is contained on a .5 inch x
.5 inch chip and performs multiplication on-chip
using 2's complement addition. A 8 bit x 8 bit
multiplication takes 400 nanoseconds. In the
previous section, this processor was applied to
the initial probability computations for the Joint
"Light/Dark, Edge/No Edge" Relaxation Algorithm
with "Borderness". In this section, the processor
is applied to the relaxation computation for that
algorithm.

To implement the relaxation computation, as-

sume lhat the quantities pij(kk'), Ty (Ax7),

d
pi(k), pj(k‘) and p(A) have been computed as part
of the initial probability calculations.

The first quantity computed is

k+1 _n 8 - 2 oo
djy () =52, pj(k ) rij(kk ). For A" =
1,2 the quantity beccmes
k+l,., _ k k
a4 ) = p, (1) pJ(l) rij(k,l) +
k k
pi(k) pJ(E) rij(k,z). i

For each possible value of A, the above quantity




N— o

=k el e i i me

S Ty e S R

[ P S S—

then becomes:

agy (1) = (1) py(1) vy, (1,2 +
p(1) (@) r, (1,2) (1)
9y 2) = p,(2) pj(l) rij(2,1) +
p; (2) p?(?) ry5(2:2), (2)
a pair of expressions. The p?;l(X) = f;l(x)/

k+1 k+1
9 ; (X)/i‘qi

above pair in the numerator over their sum in the

(L") expression is then one of the

denominator. So the computation of (1) and (2) is

the basic computation of relaxation and other ex-

pressions p?;](k), p?+l(X) are mere manipulations

of this pair. Consider, the computation of expres-

sion (1) and (2). The i index refers to the center

pixel in the 3x3 array; the index j refers to each

of the eight neighbors. But as discussed earlier,

we can use the same operator, shown in Figure 10, to

compute qggl(A). In other words, at each center

+1 q
pixel, we need only compute the q?j (X\) appropriate
for four of the eight neighbors, numbered arbitrar-

ily in Figure 10. The computations required are:

A

i 1) pﬁ(l) rch(l,l) +

5t = p
pe(1) pi(2) r ) (1,2)

k+1 k
p.(2)

k
qvh (2) = " ph(l) rch(g’l) +

nk(E) pﬁ(?) rch(E,E)

‘e

afe (1) = pK(1) (1) ¢ _((2,2) +

pg(l) pg(E) rc6(l,?)
ags (2) - pE(2) pE(1) v gl2,1) +

rh(2) pg(2) r_g(2,2)
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There are eight expressions of the form:
abc+ade=a (bec+ de),

that is, multiply, multiply, add, and multiply.

If we assume 400 nanoseconds for an on chip multi-

ply, and 50 nanoseconds for an add, the computation

time is 1250 nanoseconds for one q?;l(k) quantity

and 8x1250 = 10,000 nanoseconds for &.

If we assume an image frame containing 330,000
pixels (standard 525 line TV), then processing at
video rates (30 frames/c.c.) means a processing
rate of 10 million pixels/sec. or an allowable
tine interval between pixels of 100 nanoseconds.
With two processors, the allowable time between
pixels is 200 nanosecond for each processor; with
twenty processors, the allowable time per processor
is 2000 naioseconds; .nd with 100 processors, the
allowable time per processor is 10,000 nanoseconds.
Hence, 100 ALU's of the type just desecribzd
prqduces the allowable time between pixels or a
processing rate of 2,000 mega operations (2
billion)/second. Assuming 0.5 inech x 0.5 inch
for each ALU chip, a 3 inch x 3 inch space
accormodates 36 ALU's and a board pair contains 72.
With 1/2 inch centers between board pairs, a 3 inch
x 3 inch x 3 inch volume contains six board pairs
or 12 boards. Only three of these boards contain
the 100 ALU's necessary for the qEJ(X) computation.
This means that the frame is divided into 100 verti-
cal strips and each processor is responsible for
approximately 50 pixels in the image. The prelim-
inary design allows the relaxation iterations to be
computed at frame rates.

Thus, if five iterations

arc necessary for convergence, the actual cueing

rate 1s six frames per second.
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To reduce computation time by a factor of 5,

we could utilize 500 processors, but this would ex-
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ZMOB: A Mob of 256 Cooperative
280A-Based Microcomputers

Chuck Rieger

Computer Science Department
University of Maryland
College Park, MD 20742

1. INTRODUCTION

Current directions of computer science and com-
puting in general are toward more parallel machine
architectures and distributed models of computing
based upon these new architectures. Broadly
speaking, parallel architectures fall into two
categories: parallel synchronous machines (typified
by ILLIAC IV), which execute the same code synchro-
nously in many processors operating on different
data, and parallel autonomous machines (typified by
CM*), in which many independent processors can be
put to work on different aspects of a large compu-
tation.

In past and much current work, emphasis has
been on the former variety of machine {1-3].
Recently, however, there has been considerable in-
terest in highly parallel architectures capable of
supporting complex distributed computation via a
large number of autonomous processors [4,5].

While many interesting machines have been proposed
or are currently being developed, theve has appa-
reatly been no specific attempt to build a machine
with a truly large number of autonomous processors,
each having substantial independent computing
power.

ZMOB is such a machine, currently under design
and simulation at Maryland. Architecturally, ZMOB
is a collection of 256 identical but autonomous
Z80A-based microcomputers (processors). FEach pro-
cessor (Fig. 1) comprises 32K bytes of 375 ns read/
write central memory (expandable to 48K bytes), up
to 4K bytes of resident operating system on 450as
EPROM, an 8-bit hardware multiplier, and interface
logic for communications functions. (This is a
non-trivial microcomputer, comparable in size and
power to the average small business or personal
computer.) Two processors will share each PC
board, making a total of 128 processor boards
mounted in several rack cabinets, and supplied by
a rather hefty power supply. Although the
machiane will initially consist of 256 processors,
its architecture is extensible (in principle) to
any number of processors. 1In practice, we will
anticipate extensibility to 1024 processors. The
current cost estimate for the 256 processor
machine is $100K.

Good intercommunication pathways and bandwidths

are critical to the success of any highly parallel
machine. As describad below, we have what we
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feel 1s a very attractive solution to inter-pro-
cessor communication, and processor-to-outside-
world communication. The strategy will be non-
blocking (e.g., there can be 128 full-speed czonver-
sations between pairs of processors), and will

give each processor the illusion of data communi-
cation rates as high as the Z80A it.elf can manage.
In one mode, for example, data rates into or out

of ZMOB can exceed 20 megabytes per second.

2. BACKGROUND AND !OTIVATION

The ZMOB idea sprang originally from needs of
the Computer Vision Lab at Maryland. Tn certain
vision tasks based on relaxation algorithms [g],
each pixel of, say, a 512 by 512 image must be
processed once per "iteration". The processing of
eacit of the quarter milliion pixels is identical,
and independent of the processing of other points
during one iteration. A typical relaxation algo-
rithi: will require 5-i0 iterations to Lonverge.
The particular algorithm used will vary with the
application.

In a complex relaxation algorithm, each rixel
is represented by a "probability vector" of perhaps
10 bytes, and the per-point, per-iteration compu-
tation in sich an algorithm might involve 1000
8-bit integer multiplez and a corresponding number
of additions. Rough calculations show that one
complete iteration can therefore require upwards
of 250,000,000 multiplies and a zomparable number
of adds, a staggering computation which requires
hours on a medium-size conventional machine. Our
preliminary studies (relatively complete Z80A
code, hand-simulated timing results) indicate that
ZMOB will require on the order of 100 seconds for
such a computation.

Although motivated by relaxation processing
needs, it quickly became obvious that a machine
with such a great computing potential ought to be
general-purpose as a research tool for distributed
computing models in all of computer science.
Specifically, it became of concern that the geome-
try of intercommunication paths not be unduly
biased by the machine's applications in vision
(where 4-neighbor adjacency 1is natural), and that
the 8 megabytes of high-speed central memory not




he inaccessible to computations desiring to view
the machine as a large single address space. The
design of the intercopmunication system reflects
these councerns, and results ipn a machine which is
hoth general-purpose, and whlch (from tlmiag
studles) supports the initial vision applications
as fast as any other special-purpose ZBOA-based
archictecture could.

3, BASIC PROCESSOR ARCHITECTURE

7MOB is a collecticn of autonomous Z80A-based
microcomputers. The ZBOA is an 8-bit microproces-
sor chip with a 158 instruction repertoire, two
sets of 7 8-bit registers, and several 16-bit
registers for stack pointer, program counter, and
indexed addressing. It is a stack machine with a
64K byte address space, 256 loglcal 1/0 ports, and
o T-cycle time of 250ns. A typical instruction
will require about 2 microseconds to execute, and
therc are several rather powerful block search and
transfer instructions. High-speed vectored lnter-
rupt linkage is another virtue of the chip, which
sells in quantities for less that $15.

In the initial conception, the plan warc to
assign each ZMOB processor to two scan lines of
image data in a 512 by 512 pixel image. In such
2 machine, each processor would be connected to lts
two adjacent processors (handling adjacent scan
lines), and to an external controlling computer
(e.g., a PDP-11), all over interrupt driven 8-bit
paral lel ports with handshaklng. At power-on,

ZMOB would be cleared, bringirg each processor
hack to its basic resident operating system. This
system would allow for the loading of applications
programs and parameters into thie processor's RAM.
After initiallzation, all processors would be
forced into their DMA condition while the external
machine, having access to the individual proces-
sors' address spaces (as pieces of one large vir-
tual space), loaded in the starting image data.
After loading and removal of the DMA conditiom, the
external machine would broadcast a system-wide
start command over all control pcrts. Once run-
ning, each processor would request information from
its neighboring processors, compute two pixels'
worth of probabllity vector updates, then advance
to the next of the 512 pixels across its two scan
lines. The operation would progress (pretty much
synchronously) iu all processors simul taneously
until, at the end of the scan line, each would
broadcast ''ready” messages to the external compu-
ter. When all had bteen accounted for, the external
computer would again force all processors tc their
DMA state, read the jteration's results for TV dis-
play update, then release the processors on the
next iteratlon.

Timing simu.ations showed that such a machine
would be quite profitable. For example, the time
required to compute each image pixel's 3 by 3
8-bit gray-scale average in a 512 by 512 image
would be about 2 fifths of a sccond, whlle the

time required to run a simple edge detector over a
512 by 512 image would be about one second. Even
an elaborate relaxation algorithm invelving 10
Jabels per image point would complete each itera-
tion in about 100 seconds, orders of magnitude
faster than presently possihle on a conventional
machine.

The initial conceptlon of the machine rapidly
evolved lnto a design capable of supportlng a
variety of distributed computing models, in addi-
tion to the vision models from which the idea
came. The current deslgn, ZMOB, supports the
original vision appllcations witliin the same time
estimates, and will result in a machine that is a
flexible and general purpose research tool.

4, THE CONVEYOR BELT

In the current design. there are no direct
nelghbor-neighbor communication paths. Rather,
each processor is a mail stop on a high-speed,
synchronous "convejor belt' (Fig. 2). The ZMOB
portion of the conveyor belt is thus 256 positlons
long (but indefinitely extendible), and resemhles
certain existing synchronous ring networks in its
concept [7] (although the iypes of messages passed
are quite different). The external controlling
computer, and perhaps other devices such as high
speed dlsk interfaces, are additional mail stops
on the conveyor telt.

Each mail stop (Fig. 3) is associated with a
processor, and is physically a part of that pro-
cessor's PC board. Mail stops are connected to-
gether over dedicated backplane bus lines. Each
mall stop is a high—speed'synchronous latch capable
of cwitching data between the processcr and the
conveyor belt. While the optlmal width of the
conveyor belt has not been determined, we are pre-
sently conductlng timing studies based on a wldth
of four fields of between 8 and 10 bits each:
source ID, destination ID, data, and control.

Conceptually, the conveyor helt's role is to
accept a message from a processor and deliver it
to another directly or indirectly referenced >ro-
cessor, or population of processors. Ideally, we
would like the conveyor belt to serve as a non-
blocking message switcher, l.e., one in which n/2
simultaneous processor-processor conversations
could be in progress at maximum Z80A rates. This
would give each processor the illusion of having
lnstant access to any other processor.

As it turns out, this ldeal is achlevable.
Aside from DMA, the Z80A's highest memory or 1/0
data transfer rate is one hyte per 5.25 mlcro-
seconds (achieved durlng several of the block
memory-mov: instructlons). This is a hardware
llmltation of the Z80A, and cannot be improved
upon hy clever programning techniques., To act as
a non-blocking message switcher, the conveyer belt
needs only to make one complete revolution every

"2 ol
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5.25 microseconds so that a specific position on
the belt (a bin) will always be available for
each processor's next memory transfer every 5.25
microseconds. Conventional high-speed digital
electronics can support the approximately 50 mhz
shift frequency required for such a conveyor
belt. While engineering and economic considera-
tions might dictate a somewhat slower conveyor
belt in the 20 mhz range, even at a lower rate,
most forms of interprocessor communicatlon can
proceed at full Z80A rates.

The conveyor belt is synchronized by two
system-wide control lines, the conveyor belt shift
clock, and the index pulse. The shift clock con-
trols the basic movement of data into and out of
each mail stop, and hence around the conveyor belt.
The index pulse is emitted once per complete revo-
lution of the belt, and signifies to each processor
that its own bin is under the provessor.

Each processor owns
index pulse. When this

the bin indicated hy the
bin is at the processor,
any data waiting in the STAGING REGISTER will be
taken onto the conveyor belt. The staging
register, loaded byte- wise by the Z80A at its con-
venience, and armed when its data field has been
loaded, serves to synchronize the otherwise asyn-
chronous operations of the processor and conveyor
belt. Outbound data will only be accepted when the
processor's bin is flagged as empty by a bit in the
control byte (i.e., if the message is not consumed
by the intended destination, it will be retained on
the belt, unless the originating processor has in-
dicated that it wishes to intercept its own trans-
mission if not consumed in one revolution).

Outbound data requires only a o, no-go deci-
sion about whether the bin is free to accept the
contents of the staging register. For the inbound
pathway, each mail stop requires a small amount of
high-speed decision logic for int=rcepting coi veyor
bell messages directed at its protessor. In addi-
tion to its numerical address on the conveyor belt,
each processor can adve:..se a category code. When
armed, this category ced: (any combination of
zeroes, ones, and din'i-cire's) will accept any
message whose destination 1’eld matches the code,
permitting call-by-capability in addition to call-
by-name.

When deemed appropriate, a conveyor belt mes-
sage is lifted off the belt into the processor's
HOLDING REGISTER, and the bin from which 7+ came
marked as empty. It is appropriate to 1ift a mes-
sage into the holding register oniy when the hold-
ing register is empty and the inbound decision
logic determines its processor to be an appropriate
receiver of a message if (1) the message is di-
rected to the processor by direct numerical ad-
dress, (2) the capability code of the message
matches the processor's capability code, or (3)
the procesesor's own message has arrived back at the
processor after one complete revolution on the
belt without being read. Each of these three
receive conditions can be selected or deselected
by the processor via processor-writable control
bits in the irbound decision logic. When none are
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enabled, the mail stop will accept no conventional
messages.

In addition to these three receive conditions,
there is a fourth condition used in conjunction
with high-speed block bhursts between a pair of
processors. In this mode, neither processor of
the pair will be inspecting or setting any conveyor
belt field but the daia field. The receilver must
therefere be in a mode which exludes all inbound
messages other than those oriyinating from the
processor with which it is communicating. Ip
this private conversation mode, a fourth, over-
riding component of the inbound decision logic per-
mite che receiver to identify an exclusive source
of inbound messages. When in this mode, only a
message whose source ID matches the contents of
the EXCLUSIVE SOURCE register will be intercepted
by the inbound decision logic.

When a conventional message is accepted into
the holding register by the inbound decision logic,
the BELT DATA AVAILABLE status flag is set, and a
maskable interrupt geuerated. The processor caa
then inspect the message at its convenience by
reading the holding register crntents as a group
of input ports. For block burst mode, in which
both the sender and receiver are executing block
instructions (and have disabled their interrupts),
the inbound decision logic will also control the
PROCESSOR WAIT line to provide hardware synchroni-
zation between the processcr and best.

Inbound messages can be read either destruc—
tively (i.e., consuri:.d) or non-destructively (i.e.,
noted) by the mail -top, according to another
control bit associated with the message. Destruc-
tive reads are ured for cne-one conver sations,
while non-destructive reads are used for broad-
casting messages to thc population at large.

For absolute external control, there is a class
of conveyor belt control messages that will be un-
condifionally accepted by a mail stop. Some of
these can be directed at a specific processor or
class of processors, while others can be broadcast
to the population at large (i.e., are not consumed
by mail steps, but instead pasced along). All
control messages release any processor-wait con-
diticvn, and generate a non-maskable processor in-
terrapt to bring the processor back to its opera-
ting system. In this way, the controlling compu-
ter maintains ultimate control over ZMOB.

5. PATTERNS OF USE

7MOB will be a general purpose research tool
for distributed and autonomous, parallel computa-
ting. As mentioned, each processor jrself would
be powerful enough to run its own operating
system with text editors and high level languages,
if it were a stand-alone personal computer at-=
tached to a floppy disk system. (¥or example,

with a 48K memory, each processor wauld be capable
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of supporting a PASCAL compiler.)

In the vicion relaxation applications for
which the machine is to be used initially, each
processor will be running the same code on its own
subregion of the 512 by 512 pixel image. In a
large relaxation algorithm, each pixel will be
represented by, say, a 10 byte probability vector,
meaning that each processor will work on 10,240
hytes of image data. This data, together with the
relaxation algorithm's code and constant data, will
be shipped to each processor at very high speeds over
the conveyor belt during initiulization. The code
and constant data can be loaded at the 5.25 micro-
secoud rate of the Z80A by havini the external com-
puter load one byte of data onto the belt in non-
destructive read mode each 5.25 microsecond. All
processors will note and store each byte via their
high-speed block input instruction loops. This
means, for example, that all ZMOB processors could
accept a 10,000 byte nrogram in just over one tenth
second, assuming a conveyor belt speed of 20 mhz.
After loading the program, the external computer
loads the image data at whatever rate it is able.
In this mode, if capable of the high data rate, the
external computer could load each revolution of
the couveyor belt with the next 256 bytes of image
data, each directed to a different processor. As~
suming the conveyor belt rums at 20 mhz, and that
the external computer is capable of meeting this
data rate, the 2.5 million bhytes of a 512 hy 512
pixel image of 10-byte-deep probability vectors
can also be loaded in slightly over one-tenth
second. After processing, delivery of results
would occur at a comparable data rate.

The vision applications can be characterized as
highly parallel, nearly synchronous computations,
not dissimilar to those for which ILLIAC IV was
designed. MHowever, these applications use ZMOB
in a highly structured way. Another obvious mode
of operation is one in which each processor runs
its own expert code, and the machine is used more
as a population of experts in the MICROPLANNER [8],
CONNIVER [9], or ACTORS [10] paradigm. We expect
nuch interesting research to open up in this area.

Another mode of operatior would segment ZMOB
into fiefdoms. Each fiefdom would be a cluster of
processors, governed by one agreed-upon distin-
pyuished member. This member would be responsible
for onc ongoing computation, and would use his
serfs primarily as extended memory which he could
page in as needed. Since the conveyor belt has
heen designed to be responsive to high-speed data
hursts among processors, we will be able to develop
a very fast paging system capable of paging rates
equal to or surpassing good disks (i.e., no seek
latency, but somewhat slower data rates). 1In this
pattern of use, for example, we might run LISP on
ZMOB by creating a fiefdom for the evaluator, one
for the garbage collector, one for the scanner,
one for a real-time debugger/monitor, and so on.

In & more conventional pattern of use, only one
of ZMOB's processcrs would be distinguished as the
central computing processor, and all other proces-
sors would support high speed paging and memory
management for that one processor. This would

make all 8 or 12 magabytes of high speed memory
directly accessible, and would resemble a large
conventional computer with very fast paging poten-—
tials. However, since a single 280A is admittedly
not a high tbroughput machine, it will probably
turn out that ZMOB will seldom be used in this
mode.

6. CONCLUTTON

It is anticipated that ZMOB development will
be in full swing by late spring 1980. Before that
time, we hope to have a prototype system of 4 to 8
processors running on a small conveyor belt. The
project will be supported bv several faculty and
graduate studenis, and will hopefully be in
relatively complete form by spring 1981. During
development, extensive software development tools
(assemb’ers, higher level system languages, simu-
lators debuggers) will emerge. Hopefully, the
machine will also simulate and make possible new
theories of distributed problem solving and paral-
lel computing.
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USING PYRAMIDS TO DEFINE
LOCAL THRESHOLDS FOR BLOB DETECTION

Michael Shneier

Computer Vision Laboratory
Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

A method for detecting blobs in images is described.
The method involves building a succession of lower
resolution images and looking for spots in these
images. A spot in a low-resolution image corre-
sponds to a distinguished compact region in a known
position in the original image. Further, it is
possible to calculate thresholds in the low-
resolution image, using very simple methods, and to
apply those thresholds to the region of the
original image corresponding to the spot. Examples
are shown in which the technique is applied to
several images.

1. INTRODUCTION

The most common way to extract objects from a
picture is to threshold the picture. Many differ-
ent techniques have been used to select good
thresholds for this purpose [4]. Threshold selec~
tion involves choosing a gray level t such that
all gray levels greater than t are mapped into
the "object™ label, while all other gray levels are
mapped into the "background" label. 1In its
simplest form, a single threshold is chosen for the
whole image. This does not usually give good
results because of variations in lighting, or
because there are several objects in the picture
with different gray-level characteristics. For
better results, =several local thresholds can be
extracted from various parts of the picture, and
can be applied just in those regions.

This paper describes a method of identifying
parts of a pilcture on which to apply a threshcld,
and a means of calculating a local threshold for
each of thes2 parts. The method involves construc-
ting a "pyramid" of images, each of lower resolu-
tion than its predecessor [1-3]. At some level of
the pyramid, it is to be expected that any blob-
like object should become spot-like. Thus, by
running a spot-detector over the low-resolution
images, the interesting regions in the picture can
be discovered, and only these regions need be
thresholded. 1In addition, the characteristics of
the local regions (or the spots) can be used to
calculate a good local threshold.

Examples are given of tne application of the
method to several images. In all cases the results
are quite good, and highlight the usefulness of the
method.

2. THE ALGORITHM

The algorithm has two mein tasks. The first
is to find parts of the picture that differ signi-
ficantly from the background (likely objects),
while the second 1s to calculate a iocal threshold
for each of these parts and apply it in the
neighborhood of the parts. Foth tasks make use of
the pyramid of low-resolution imapes.

1. If the whole pyramid has been constructed,
stop. Otherwise, read in the previous
pyramid level (the picture, if this is
the tirst iteration).

2. Build a new level (see below).
3. Apply a spot detector to the new level.

4. Evaluatc the spots reculting from step 3
and find "good" spots (see below). If
there are tro many good spots, go to 1.

5. For each good spot,
a. calculate a threshold (see below);

b. apply the threshold to the region in
the original picture corresponding to
the spot and write the results to the
output picture.

6. Go to 1.

The original image forms the base of the pyra-
mid. Each level is constructed on top of its pre-
decessor, and is processed before its successor is
constructed. This means that only one level need
be maintained at any time, in addition to the
original picture and the partially-constructed
thresholded picture.

A pyramid level 1s constructed from its pre-
decessor by mapping 2 by 2 squares of pixels from
the previous level into single pixels in the new
level. Two methocs of calculating the new value
from the old were implemented. The first iunvolves




simple averaging of the four pixels. In the
second method, each 2 by 2 block of pixels is
examined and the four gray levels are sorted in
order of brightness. The widdle two values are
then averaged to give the new pixel corresponding
to the 2 hy 2 block. This process gives results
that maintain edges reascnably well. 1In practice,
both methods usually produce the same results.

The new level of the prramid is one quarter the
size of the old (Figure la).

Having built a level of the pyramid, the next
step is to apply 4 spot detector to {t. The spot
detector is a simple mask (Figure 2) that is ap-
plied at every point in the image. 1t looks for
points that differ from their neighbors and scores
them according to how much they differ. Note that
the central value in the mask is smaller than an
unbiased mask would require. This is to insure
that the spots are more than marginally differ~nt
from their neighbors. It tends to ignore sp ‘s
caused by noise. The result of running the spot
detector is a new image with high values where
there are spots, and low valuecs elsewere.

The spot detector is very conservative, so
another process is run to find a subset of "good"
spots. Good spots are spots that are isolated.

At low levels of the pyramid (high resolution),
spots that are close together are deleted because
they can he expected to merge into sing!e spots
higher up in the pyramid. At higher le els of the
pyramid, this is not such a good idea because
single spots represent large regions in the origi-
nal picture. Thus, the definition of "good" is
weighted by the level of the pyramid. A spot is
good if the number of its neighbors that also
respouded positively to the spot detector is less
than a 1: el-dependent threshold.

Each spot in the low-resolution image corre-
sponds |5 a region in the picture. If there are
teco many spots, then large parts of the picture
will be covered. If there is indeed an object in
the picture, it should coalesce into a smaller
number of spots higher in the pyramid. If there is
no object, then all the spots represent noise. I[n
either case, the picture is too "busy". A maximum
number of good spots is allowed at each level. 1f
this number is exceeded, no further processing is
performed, and a new pyramid level is constructed.

When a small enough number of good spots is
discovered at a given level {n the pyramid, the
thresholding can be performed. Notice that it need
only he applied to the regions in the picture
corresponding to the spots in the pyramid. All
other regions are ignored.

Many threshold selection techniques are appli-
cahle at this stage. There are the standard tech-
niques [4] which may be applied to thc picture
{tself in the region corresponding to a spot.

In addition, it is possible to make use of the
informatfon in the low-resolution image to calcu-
late a threshold. Both approaches were followed
for the examples to be discussed here. Using the
low-resolution image has the advantage that simple
operations on the low resolntion Iimage correspond

to complex vperations involving much larger numbers
of points in the picture.

The simplest threshold tlat can be extracted
from the low resolution image is simply the gray
level of the region in the picture corresponding
to the spot. Usually, this threshold does not
extract the whole object because the high gray
levels bias the threshold, and there are very few
non-ohject points in the region to provide an
opposite bias (Figure 1c).

An altecpative threshold is obtained by ignor-
ing the spot itself. and averaging the surrounding
points in the low-r¢.olution picture. This suffers
from the opposite problem from the previous method.
Now, too many non-object points reduce the thres-
hold, aund so parts of the background are classified
as belonging to the object (Figure 1d).

A compromise hetween these two methods gives
very good results. The outputs from the above two
threshold selection processes are averaged, and the
result is used as the threshold (Figure 1b).

The threshold is applied to a region slightly
larger than that corresponding to the spot. This
is to insure that parts of the object that were
averaged into different points in the low-resolu-
tion image still may be classified, provided that
they are not too far away from the spot center.
1f, indecd, the object extends a significant dis-
tance from the spot center, the spot detector
should have found several spots in the neighbor-
hood, each of which would be processed separately
(or they would all be merged into a larger spot at
the next level).

Another method of calculating a locai thres-
hold was also implemented. The method involves
computing a histogram of the gray levels in the
regfons of the original picture that correspond to
spots. For each spot a histogram is constructed
for a region slightly larger than the projection
of the spot onto the picture. The histogram is
then examined, and a threshold is selected. The
process of selection is compiicated by the shape
of the histogram, which tends either to be uni-
modal, or to have uno significant peaks (Figure 3).
The method that was used to find a threshold in-
volves making an initial estimate, and refining
the estimate on the basis of the shape of a part
of the histogram.

The initial guess that was used was one of
the naive thresholds mentioned above. The gray
level corresponding to the spot in the pyramid
provides an estimate of the gray level in the
center of the object. Usually, the estimate needs
to be modified to take account of parts of the
object close to the background. To accomplish
this, the histogram is examined, starting at the
initic]l estimate, and moving in the direction of
the batkground gray levels. The highest peak in
the histogram in this direction is discovered, and
the final threshold is chosen at the deepest
valley between this peak and the initial estimate.
This usually results in a good threshold, in most
cases in one very similar to the averaging of the
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center and surround points in the pyramid discussed
above.

The output picture is initially blank. Th:
only regions of the picture that are changed are
those that correspond to positive responses to the
spot detector at some lovel in the pyrauid. As a
result, very little background noise appears in
the output.

3. EXAMPLES

The method was applied to 24 FL1R images and
to a picture of part of a handwritten signature.
The results are shown in Figures 4-7. The examples
are divided into three categories.

The first set of pictures (Figure 4) was pro-
cessed using a simple averaging scheme for building
the pyramids. The threshold was selected from the
low resolution image by taking the average of the
center (spot) gray level, and the average surround-
ing gray level.

Sometimes, when the contrast between the
object and the background is small, the averaging
process may cause the object to merge into the
background. For FL1R imagery, it was found that it
is often better to use the median instead of the
average in building the pyramids. Figure 5 shows
a set of examples where this was done. The thres-
hold selection used the same method as for Figure
4,

The alternative method of selecting a thres-
hold by examining the histogram is illustrated in
Figures 6 and 7. Figure 6 shows four FLIR images
and the results of thresholding them. The pyramids
for these images were constructed by averaging,
and the thresholds were selected by examining a
hlstogram of a region in the image slightly larger
than that corresponding to the spot.

Figure 7 illustrates the difference between
selecting the threshold using only the low-resolu-
tion image, and making use o1 the histogram as
well. For the signature in Figure 7, the histo-
gram method results in a much cleaner thresholded
image.

4. DISCUSSION

The blob-detection system described here is
the first stage in a more ambitious feature-detec-—
tion scheme. As it stands, the system provides a
good threshold selection technique, with several
advantages. One of the most important advantages
is the ability of the system to isolate signifi-
cant regions in a picture. This results both in
butter local threshold selection and in cleaner
thresholded images. The thresholds are tailored
specifically to the region to which they are ap-
plied, and uninteresting regions are ignored.
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A problem that arose frowm the way the algo-
rithm was implemented concerns the treatment of
points on the borders of the picture. These points
were ignored in the implementation, and, as a
result, the algorithm discovered significant ob-
jects only if they were not on the border of the
picture. This effect could be aggravated by the
pyramid-building process because a point on the
border of an image high in the pyramid corresponds
to a fairly large region in the picture. There
are several ways of overcoming this problem. For
example, one-sided spot detectors could be used at
the edges of the pictures, or the pictures could be
extended either Ly reflection about the edge, or by
folding the edges over so that the left and right
and the top and bottom edges are contiguous.

A question that arises naturally concerns the
amount of averaging between levels in the pyramid.
Perhaps the exponential tapering used in these
experiments is too harsh, and spot detectors of
various intermediate sizes should be used in addi-
tion to those used here. This would more accurate-
ly capture the fine detail of the shapes and allow
greater control over threshold selection. It is
expected that further research will be conducted on
this aspect of the algorithm.

An extension of the method that is currently
under investigation is the detection of elongated
objects. In conventional thresholding schemes,
the shape of an object can only be discovered after
the object has been extracted. 1t is not possible
to search for objects with specific shape proper-
ties. Using the current method, however, it is
possible to extract only those features that are of
the desired shape. For example, to extract elon-
gated objects, a line or streak dctector can be
applied instead of a spot detector. Preliminary
results suggest that a straightforward extension of
the blob-detection system can be produced which
will detect only the elongated objects in a pic-
ture. This will help to alleviate a problem that
sometimes arises when objects are not sufficiently
blob-like. In such cases, some parts of the object
may not be covered by the {rojection of a spot,
and only part of the object may be thresholded.

Eventually, the system is envisaged as having
multiple cooperating parts. Several feature detec-
tors will be vun at each level of the pyramid, for
example, both line detectors and spot detectors.
These would then interact within the levels and
across levels. The whole system should be able to
detect many different features simultaneously, and
classify them on the basis of both local and
global information.

5. CONCLUSIONS

A new method of detecting blobs in a picture
by spot detection and local thresholding has been
presented. The examples showed how simple thres-
hold-detection calculations on low-resolution
images can lead to good segmentation of the plc-
ture.




The method readily lends itself to extensions
to more complex feature detection tasks, including
detection of objects with specific properties, e.g.
elongated objects,

It is expected that the method will eventualiy
be fncluded in a comprehensive, multilevel feature—
extraction system that makes use of multiple-
resolution im:ges and responses from several dif-
ferent feature detectors.
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Figure 1

a) A FLIR image of a tank, and the pyramid con-
structed from it. b) Thresholded image using the
average of center and surrounding spots.

¢)  Thresholded image uslng surrounding spots only,
d) Thresholded image using center spot only.
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Figure 2

The mask used for the spot detector.
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Figure 3

An example of a histogram used for threshold
selection. Point a is the initial point chosen for
thresholding (see text). Point b is the highest
peak in the direction of the background. Point c
1s the polnt chosen as the final threshold. Point
d is the threshold chosen by the method of
averaging the center and background points in the
low-resolution image. The histogram is for a spot
«n the bottom left picture of Figure 6. The small
size of the spot results in a very low peak in the
histogram (at a).
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Figure 4
Figure 6
Eight FLIR images and their thresholded outputs.

The pyramid was built by averaging in these
examples and the threshold was selected as the
average of the center and surrounding points in the

Four FLIR images and their thresholded outputs.
The pyramids in these examples were constru~ted by

averaging, and the threshold was selected by exam-
low-resolution image. ining the histograms of local regions corresponding
to spots. '

% Doty

c
Figure 5 Figure 7
Eleven FLIR images and their thresholded out- a) A picture of part of a handwritven signature.

puts. The pyramid was built using the median and b) The thresholded output using the average of

the threshold was selected as the average of the the center and surrounding low-resolution

center and surrounding points in the low-resolution points.

image. ¢) The result of calculating a threshold by
examining the histogram. 3

"

i F il e [T e T B8 (P T g 4 | eall il atindlie 1aH *



QUADTREE STRUCTURES FOR REGTON PROCESSING
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ABSTRACT

Research into the use of the quadtrec data struc-—
ture for lmage processing applications is de-
scribed. A quadtree represents an image array by
a tree of out degree 4 which 1is constructed by
recursively subdividing the array into blocks of
constant value. This representation is particu-
larly useful when applied to binary arrays repre-
senting regions (i.e., 1's are region points).
Algorithms are informally discussed for conversion
between this and other representations, and for
measuring geometric properties of regions repre-
sented in this manner. Results of execution time
analyses of these algorithms are also given.

1. TINTRODUCTION

Region representation is an important issue in
image processing, computer graphics and cartogra-
phy. There are numerous renresentations currently
in use. In this paper we focus our attention on
the cuadtree {1,6-11] representation. We discuss
its relationship to more traditional representa-
tions and present informal descriptions of algo-
rithms for converting between quadtrees and these
representations. We also show how geometric
properties of regions represented by quadtrees can
be measured.

In our discussion we assume that a region is
a subset of a 2P by 2" arrav which is viewed as
being composed of unit-sq. -2 pixels. The most
common region representatio.s used in image proces—
sing are the binary array and the run length repre-
sentation [14]. The binary array represents region
pixels by 1's and non-region pixels by 0's. The
run length representation represents each row of
the binary array as a sequence of runs of 1's al-
ternating with runs of 2's.

Boundaries of regions are often specified as
a sequence of unit vectors in the principal direc-
tions. This representation is termed a chain code
[S]. For example, letting 1 represent 90°#% i
(i=0,1,2,3), we have the following sequence as the
chain code for the region in Figure la:

6 5 62 95723 12 3% gnadPo1® Bl e 0SFOIL0. Y
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Note that this is a clockwise code which starts at
the leftmost of the uppermost border points. Chain
codes yileld a compact representation; however, they
are somewhat inconvenient for performing operations
such as set union and intersection.

Regions can also be represented by a collection
of maximal blocks that are contained in the given
region. One such trivial representation is the
run length whers the blocks are 1 by m rectangles.
A more general representation treats the region as
a union of maximal blocks (of 1's) of a given
shape. The medial axis transform (MAT) [2,12] is
the set of points serving as centers of these
blocks and their corresponding radii.

The quadtree is a variant on the maximal hlock
representation in which the blocks have standard
sizes and positions (i.e., powers of two). It is
an approach to region ropresentation which is
based on the successive subdivision of an image
array into quadrants. If the array does not
consist entirely of 1's or entirely of 0's, then
we subdivide it into quadrants, subquadrants,...
until we obtain blocks (possibly single pixels)
that consist of 1's or of O's, i.e., they are
entirely contained in the region or entirely dis-—
joint from it. This process is represented by a
tree of out degree 4 in which the root node
represents the entire array. The four sons of the
root node represent the quadrants (labeled in
order NW, NE, SW, SE), and the leaf nodes corre-
spond to those blocks of the array for which no
further subdivision is necessary. Leaf nodes are
said to be "black" or "white' depending on
whether their corresponding blocks are entirely
within or outside of the region respectively. All
non-leaf nodes are said to be "gray'. Since the
array was assumed to be s by 2", the tree height
is at most n. As an example, Figure 1b is a
block decomposition of the region in Figure la
while Figure le is the corresponding quadtree.

2. PRELIMINARIES

In the quadtree representation, by virtue of
its tree~-like nature, most operaticns are earried
out by techniques which traverse the tree. Tn
fact, many of the operations that we describe ean
be characterized as having two basic steps. The
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first step either traverses the quadtree in a
specified order or constructs a quadtree, The
second step performs a computation at each node
which often makes use of its neighboring nodes, i.e.
nodes representing image blocks that are adjacent
to the given node's block. Frequently these two
steps are performed in parallel.

In general, we prefer to avoid having to use
position (i.e., coordinates) and size information
when making relative transitions (i.e., locating
neighboring nodes) in the quadtree since they in=-
volve computation (rather than simply chasing
links) and are clumsy when adjacent blocks are of
different sizes (e.g., when a neighboring block is
larger). Also, we do not assume that there are
links from a node to its neiglibors, because we do
not want to use links in excess of four links from
a non-leaf node to its sons and the link from a
non-root node to its father. Thus all of our
operations are implemented by algorithms that make
use of the existing structure of the tree. This
is in contrast with the methods of Klinger and
Rhodes [11] which make use of size and position
information, and those of Hunter and Steiglitz
[6-8] which locate neighbors through the use of
explicit links (termed nets and ropes).

Locating neighbors in a given direction is
quite straightforward. Given a node corresponding
to a specific block in the image, its neighl - in
a particular direction (horizontal or vertical) i
determined by locating a common ancestor. For
cxample, if we want to find a eastern neighbor, the
common ancestor is the first ancestor node which is
reached via its NW or SW son. Next, we retrace the
path from the common ancestor, but making mirror
image moves about the appropriate axis, e.g., to
find an eastern or western neighbor, the mirror
images of NF and SE are NW and SW, respectively.
For example, the eastern neighbor of node 32 in
Figure 1~ is node 33. It is located by ascending
the tree until the common ancestor, H, is found.
This requires going through a SE link to reach L
and a NW link to reach H. Node 33 is now reached
by backtracking along the previous path with the
appropriate mirror image moves (i.e., going through
a NE link to reach M and a SW link to reach 33).

In general, adjacent neighbors need not be of
the same size., If they are larger, then only a
part of the path to the common ancestor is re-
traced. 1If they are smaller, then the retraced
path ends at a "gray" node of equal size. Note
that similar techniques can be used to locate di-
agonal neighbors (i.e., nodes corresponding :o
blocks that touch the given node's block at a ror-
ner). For example, node 20 in Figure lc is the
NW neighbor of node 22. For more details, see [21].

3. CONVERSION

3.1 Quadtrees and Arrays

The definition of a quadtree leads naturally
to a "top down' quadtree construction process.
This may lead to excessive computation because the

. — = - - =

process of examining whether a quadrant contains
all 1's or all 0's may cause certain parts of

the region to be examined repeatedly by virtue of
being composed of a mixture of 1's and 0's. Alter-
natively, a "bottom-up" method may be employed
which scans the picture in the sequence

1 2 5 617 18 21 22
3 4 7 819 20 23 2
9 10 13 14 25 26 29 30
11 12 15 16 27 28 31 32
43 .

where the numbers indicate the sequence in wnich
the pixels are examined. As maximal blocks of 0's
or 1's are discovered, corresponding leaf nodes
are added along with the necessary ancestor nodes.
This is done in such a way that leaf nodes are
never created until they are known to be maximal.
Thus there is never a need to merge four leaves
of the same color and change the color of their
common parent from gray to white cr hlack as is
appropriate. See [19] for the details of such a
algorithm whose execution time is proportional to
the number of pixels in the image.

If it is necessary to scan the picture row by
row (e.g., when the input is a run length coding)
the quadtree construction process is somewhat more
complex. We scan the picture a row at a time.

For odd-numbered rows, nodes corresponding to the
pixei or run values are added to the tree, one
node per pixel. For even-numbared rows, nodes

added for the pixels and attempts are made to
disco.  maxzimal blocks of 0's or 1's whose size
depends on ' r row number (e.g., when processing
the fourth row, maximal blocks of maximum size
4=by-4 can be discovered). In such a case
merging is said to take place. See [18] for the
details of an algorithm that constructs a quadtree
from a vow by row scan such that at any instant
of time a valid quadtree exists. This algorithm
has an execution time that is proportional to the
number of pixels in the image.

Similarly, for a given quadtree we can output
the corresponding binary picture hy traversing
the tree in such a way that for each row the
appropriate blocks are visited and a row of O's or
1'¢ is output. In essence, we visit each quadtree
node once for each row that intersects it (i.e.,

a node corresponding to a block of size

2% by 2% is visited 2" times). For the details see
[20] where 1n algorithm is described whose execu-—
tion time .epends only on the number of blocks of
each size that comprise the image - not on their
particular configuration.

3.2 Quadtrees and Borders

In order to determine, for a given leaf node
M of a quadtree, whether the corresponding block
is on the border, we must visit the leaf nodes
that correspoud to 4-adjacent blocks and check
whether they are black or white. For example, to
find M's right hand neighbor we use the neighbor
finding techniques outlined in Section 2. If the
neighbor is a leaf node, then its block is at
least as large as that of M and so it is M's sole
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neighbor to the right. Otherwise, the neighbor is
the root of a subtree whose leftmost leaf nodes
correspond to M's right-hand neighbors. These
nodes are found by traversing that subtree.

Let M,N be black and white leaf nodes whose
associated hlocks are 4-adiacent. Thus the pair
M,N defines a common border segment of length 2K
(2K is the minimum of the side lengths of M and N)
which ends at a corner of the smaller of the two
blocks (they may both end at a common point).

In order to produce a boundary code representation
for a region in the image we must determine the
next segment along the border whose previous seg-
ment lay between M and N. This is achieved by
locating the other leaf P whose block touches the
end of the segment between M and N:

If the M,N segment ends at a corner of both M and
N, then we must find the other leaf R or leaves
P,Q whose blecks touch that corner:

[] or [1]

PlQ

Again, this can be accomplished by using neighbor
finding techniques as outlined in Section 2.

For the non-common corner case, the next bor-
der segment is the common border defined by M and P
if P is white, or the common horder defined by N
and P’ if P is black. 1In the common corner case,
the pair of blocks defining the next border seg-
ment is determined exactly as in the standard
"erack following" algorithm [13] for traversing
region borders. This process is repeated until we
re~encounter the block pair M,N. At this point
the entire border has been traversed. The succes-
sive border segments constitute a 4-direction chain
code, broken up into segments whose lengths are
sums of powers of two. The time required for this
process 1s on the order of the number of border
nodes times the tree height. For more details

see [4],

Using the methods described in the last two
paragraphs, we can traverse the quadtree, find all
borders, and generate their codes. During this
process, we mark each border as we follow it, so
that it will not be followed again from a different
starting point. Note that the marking process is
complicated by the fact that a node's block may be
on many different borders.

In order to generate a quadtree from a set of
4-direction chain codes we use a two-step process.
First, we trace the boundary in a clockwise
direction and construct a quadtree whose black leaf
nodes are of a size equal to the unit code length.
All the black nodes correspond to blocks on the
interior side of the boundary. All remaining nodes
are left uncolored. Second, all uncolored nodes
are set to black or white as appropriate. This is
achieved by traversing the tree, and for each
uncolored leaf node, examining its neighbors. The
node is colored black unless any of its neighbors
is white or is black with a border along the shared
boundary. At any stage, merging occurs if the
four rows of a non-leaf node are leaves having the
same color. The details of the algorithm are
given in [15]. The time required is proportional
to the product of the perimeter (i.e., the 4-
direction chain code length) and the tree height.

3.3 Quadtrees of Derived Sets

Let S he the set of 1's in a given binary
array, and let § be the complement of S. The quad-
tree of S is the same as that of S, with black
leaf nodes changed to white and vice versa. To
get the quadtree of S U T from those of S and T, we
traverse the two trees simultaneously. Where they
agree, the new tree is the same and if the two
nodes are gray, then their subtrees are traversed.
If S has a gray (=nonleaf) node where T has a black
node, the new tree gets a black node; if T has a
white node there, we copy the subtree of S at that
gray node into the new tree. If S has a white
node, we copy the subtree of T at the corresponding
node. The algorithm for S (I T is exactly analo-
gous, with the roles of black and white reversed.
The time required for these algorithms is propor-
tional to the number of nodes in the smaller of the
two trees [23].

3.4 Skeletons and Medial Axis Transforms

The medial axis of a region is a subset of its
points each of which has a distance from the com-
plement of the region (using a suitably defined
distance metric) which is a local maximum. The
medial axis transform (MAT) consists of the set of
medial axis or "skeleton" points and their asso-
ciated distance values. The quadtree representa-
tion may be rendered even more compact by the use
of a skeleton~like representation. Recall that a
quadtree is a set of disjoint maximal square blocks
having sides whose lengths are powers of 2. We
define a quadtree skeleton to be a set of maximal
square blocks having sides whose lengths are sums
of powers of two. The maximum value (i.e., "chess-
board") distance metric [13] is the most appropri-
ate for an image represented hy . nuadtree. See
[21] for the details of its computation for a
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quadtree; see also [24] for a different quadtree
distance transform. A quadtree medial axis trans-
form (QMAT) is a quadtree whose black nodes cor-
respond to members of the quadtree skeleton while
all remaining leaf nodes are white. See [22] for
the details of a quadtree to QMAT conversion al-
gorithr whose execution time is on the order of the
number of nodes in the tree.

4. PROPERTY MEASUREMENT

4,1 Connected Component lLabeling

Traditionally, connected component labeling
is achieved by scanning a binary array row by row
from left to right and labelling adjacencies that
are discovered to the right zua downward. During
this process equivalences will be generated. A
subsequent pass merges these equivalences and up-
dates the labels of the affected pixels. In the
case of the quadtree representation we also scan
the image in a sequential manner. However, the
sequence's order is dictated by the tree structure
- i.e., we traverse the -ree in postorder. When-
ever, a black leaf node is encountered all black
nodes that are adjacent to its south and east
sides are also visited and are labeled accordingly.
Again, equivalences generated during this traversal
are subsequently merged and a tree traversal is
used to update the labels. The interesting result
is that the algorithm's execution time is propor-
tional to the number of blocks in the image and
does not depend on their size. In contrast, for
the binary array representation the execution time
is proportional to the number of pixels. An analo-
gous result is described in the next section. See
[17] for the details of an algorithm that labels
connected components in time on the order of the
number of nodes in the tree plus the product of
B.-log B where B is the number of black leaf nodes.

4.2 Component Counting and Cenus Computation

Once the connected components have been
labeled, it is trivial to count them, since their
number is the same as the number of inequivalent
labels. We will next describe a method of deter-
mining the number of components minus the number
of holes by counting certain types of local pat~
terns in the array; this number, g, is known as the
genus or Euler number of the array.

Let V _be the number of 1's, E the number
of 11's and 1'5, and F the number of
e it is well known [13] that
g=V-E+F, This result can be generalized to the
case where the array is represented by a quadtree
{3]1. 1In fact, let V be the number of black leaf
nodes; E the number of pairs of such nodes whose
blocks are horizontally or vertically adjacent;
and F the number of triples or quadruples of
such nodes whose blocks meet at and surround a
common point, e.g.

s in the array;
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Then g=V-E+F . These adjacencies can be found
(see Section 3.2) hy traversing the trec; the
time required is on the order of the number of
nodes in the tree.

4.3 Area and Moments

The area of a region represented by a quadtree
can be obtained by summing the areas of the black
leaf nodes, i.e., counting 4" for each such node
that represcnte a 2% by Zh block. Similarly, the
first x and y momencs of the region relative to a
given origin can be computed by summing the first
moments of these blocks; note that we know the
position (and size) of each block from the coordi-
nates of its leaf in the tree. Knowing the area
and the first moments gives us the coordinates of
the centroid, and we can then compute ceniral
moments relative to the centroid as the origin.
The time required for any of these computations is
proportional to the number of nodes in the tree.
Further details on moment computation from quad-
trees can be found in [23].

4.4 Perimetcr

An obvious way of obtaining the perimetier of a
region represented by a quadtree is tc simply tra-
verse its horder and sum the number of steps.
However, there is no need to traverse the border
segments in order. Instead, we use a method which
traverses the tree in postorder and for each
black leaf node examines the colors of its
neighbors or 1ts four sides. For each white
neighbor the length of the corresponding border
segment is included in the perimeter. See [16]
for the details of such an algorithm which has
execution time proportional to the number of nodes
in the tree.

5. CONCLUDING REMARKS

We have briefly sketched algorithms for accom-
plishing ‘raditional region processing operations
by use of the quadtree representation. Many of
the methods used on the pixel level carry over to
the quadtree domain (e.g., connected component
labeling, genus, etc.). Because of its compact-
ness, the quadtree permits faster execution of
these operacions., Often the quadtree algorithms
require time proportional to the number of blocks
in the image, independent of their size.

Quadtrees constitute an interesting alterna-
tive to the standard methods of digitally repre-
senting regions. Their chief disadvantage is that
they are non shift-invariant; two regions differ-
ing only by a translation may have quite different
quadtrees (but see [22]). Thus shape matching
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0 from quadtrecs is not straightforward.

Neverthe-

less, in other respects they have many potential

advantages.

They provide a compact and easily

constructed representation from which standard
region properties can be efficiently computed. 1In
effect, they are '"variable-resolution arrays"

in which detail is represented only when it is
available, without requiring excessive storage for
parts of the image where detail is missing.
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Summary

Argos Is an lnage understanding system which
was built to test the appilcation of the Locus
search technique to the task of image

understanding. By a sequence of small
modlifications, Locus search can be transformed into
a relaxation method. Relaxation using the Locus
probabillty updating rules  exhibits superlor
performance. We present some thoughts on how

shape information can be appiied.

ngitroduction

The Argos image understanding system1' 2
attempts to explain an Image by matching segments
of the Image to a set of iabels. The segments may
be Individual  pixels or contlguous  reglons
deslgnated by hand or by a segmenter program.
The label set deflnes the set of real-world objects
which may be identified by the system, e.g., Three

Rivers Stadluin, or Fort Pitt Bridge.

Image labeiiing, or the assignment of a labei to
each segment, is performed under the control of a
knowledge network, which Is a directed graph,
Each node of the network describes a iabei, and
contains one or more templates. A tempiate
describes the spectral and shape properties
expected of an area which is to be given the iabel.
Usuaiiy a node contains only ane tempiate. Muitiple
templates cope with objects which have radically
varylng appearance, such as the Allegheny River
with and without ice.

The arcs of the network represent possibie
adjacencles of seqments with differing labets. We

use Just the coarse directlons "left-of* and
"above", plus their Inverses. Presence of an arc
from labei A to iabel B in direction § indicates that it
Is possibie for the image to contaln object A in the
directlon § from object B. The presence of an arc
Indicates merely that the transition permission is
nonzero. We usuaily think of transition permissions
as 0-1 vaiued, but fractlonai vaiues ca. be used to
indicate a self-transition penaity or bonus.

Using the local knowiedge contained in the
network nodes, a score vector is computed for each
segment, teiiing how weil it matches the most
favorable template of each labei. From this match
vector Is computed a normallzed probabliity vector,
for which each entry Indicates the probability that
the particular segment has a given label.

The job of the search aigorithm is to find the
overali pairings of segments to labeis which best
fits the a prior! probubility vectors, consistent with
the connectivity arcs of the network.

2. Search Strategies

The search strategies which we have empioyed
with Argos lie along a spectrum which includes
Locus search at one end and reiaxation at the
other. We now quickly review the principal ldeas of
the two methods.

2.1 Relaxation

The reiaxation method repeatedly updates in
parailel the per-segment label probability vectors.
The updating function for a segment takes into
consjderation the segment's present iabel

probabllity vector, the vectors of the seoment's




nelghbors, and the transition permissioi s along the
directions separating the segments. In short,

Pey(#1) =Py s avaavg P DTy (1)

neN kel
where
s is the segment for whtich the vector is
being recomputed.
i Is a candldute label for segment s.

P(sJ)(') is the probablilty as computed In Iteration
i that segment s hes labei }. (The barred
vaiue is what Is deveioped prior to
renormalization.)

N is the set of segments which are
neighbors to s.

n Is an individuai neighbor.

L is the set of labels.

k is a iabel of a nelghbor segment.

8 is the directlon from which nelghbor n is

separated from segment s.

T6 Is the transltion permission from labei k
to label j in directlon §.

The relaxation process is Iterated untli a cencensus
develops on a label for each segment.

2.2 Locus

Locus search has its roots in dynamic
programming. For a one-dimensionai signal, it
amounts to dynamic programming with pruning of
poor candidates. Locus was used wlith success In
the Harpy speech understanding system. 3
Dynamic programming s strictly valld only for
one-~-dimensionai signais such as speech waveforms.
But one of its premises suggested that It might be
profitably empioyed on a two-dimensional image
signal. The premise is that In the globzlly best
labelling, the iabels chosen must be conslstent with
each other, but not necessarlly with runners up.
This statement may not seem startling, but It ailows
a reduction in the comnputational complexity of the
search. The updating function is the same as noted
above, : ave that the second average is changed to
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a maximum:

P = s avgMax Py a Tyjy (2
neN kel

The stralghtforward transmutation of Locus into
a z-D algorithm retains the '"one-and-a-fraction
pass' nature of its predecessor, as well as back
pointers. The aigorithm proceeds as foilows.

An ordering is Induced on the segnents, such
that Insofur as poss'ble, each segment has
neighbors which precede It, and neighbors which
foilow it. These are celled predecessor and

successor nelghbors, respectively.

One pass is made through the ordered segment
list to apply contextual Information to update each
segment’s label probabliitles. The context used for
a segment is its predecessors, which airzady have
undergone reprocessing. In this way, the network
constraints propagate forward tiwrough the segment
list. Thus, the updating of the last segment takes
Into account ail that has gone before. During this
forward pass, the computation of eq. 2 Impllicitiy
selects a best cholce for the label of each
predecessor. The best cholce for a neighbor n is
the iabel k which establlshes the value of the Max
operator. This veaiue of k is recorded as the
backpolnter to neighbor n from labei ) of segment
s. informaily, the backpolnter states, "if segment s
Is iabelled j, then the best label for n Is k."

These backpointers are used to propagate
contextual Informatlion In the reverse direction.
After the forward pass, when all backpointers have
been computed, the best giobai iabeliing can be
reconstructed by foilowing the <chain of
backpolinters, beginning with the best label of the
last segment.

The fiy in the olntment of pure Locus is that
most segments have multlple successors, end that
the successors' backpointers tend to disagree.
Worse than sheer disagreement is the case when
the labei proposed by one successor Is incompatibie
with the finai labeiling of another successor.

Originally, Argos coped with such problems by
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discounting the backpointers which would cause
conflicts, and then by plurailty vote If necessary.
This proved to be unsatisfactory, because it throws
away hard-won summary Information. This Is quite
because conflicts turn out to be very

serious,
frequent.

It is clear that In such circumstances, the
successors Inust negotiate the best mutually

acceptable compromise. This can be easily
achieved by appiying forward pass techniques to
the back pass. The pointer traceback Is replaced
by a backsearch which computes a segment’s finai
it starts with the scores left over from the

consistency

iabei.
forward pass, and applies network
constraints to the fina! labeilings of the successor

segments.

This "backsearch" version of Locus resuits In a

more robust system. its labelling accuracy is

better, and it supports its findings more solidly.

Argos has a mechanism to prune segment-label

candidates which scare pootly. The mechanism Is

probabillty Is
relative to the best

when a below some

Is pilaced
present candidate. Backsearch Is equivaient to
running Locus backward through the data with the

activated
tiireshoid which

re atlve piuning threshoid set to zero.

The next search variant soon suggests itself:
run the Locus updater back and forth through the
s:gment list, slowly decreasing the relative pruning
tureshold to zero. This method is superior to the

others.

At this aigorithm actually s

recognizabie as a

stage, the
sequentlally implemented
relaxation process. To convert it to the classical
varlant, we can eilminate the distinction hetween
predecessor ard successor neighbors and update
all of the probablity vectors In parailel. Then the
only distinction Is whether the maximum operator or
the average appears in the updating function. {it's

a relaxation process either way.)

a4

3. Speedups

it Is worth consldering how these algorithms
differ in computational and what
properties might be expiolted to speed the search.
We will consider pruning, sorting, and paralielism.

complexity,

3.1 Pruning

Obviously. poor iabels can be pruned with any
of these search algotithms. it seems, however, that
paraliel relaxation must wait ionger {more iterations)
before pruning heavily. The sequential variants use
contextual information from ionger range on the first

pass.

An Interesting effect of pruning s that
segments which in the early golng emerge to have
labels wili have the other iabels
Then they can't change through

They cause the search to

quite definite
pruned away.
subsequent iterations.
appear to be Island-driven.

3.2 Sorting

The variants which use eg. 2 for the updating
function can derive more benefit from keeping the
probability vectors sorted. Most labeis, even poorly
scoring ones, will link to falriy high-scoring nelgtibor
labels, so It pays to keep the high-scoring labels at
the front of the llst. If label probability vectors are
kept sorted, then computing the Max transtilon
consists of finding the first iabel in the list with a
multivalued
probabiiity

iegal transitlon. in the case of

transition permissions, a nelghbor's
vector must be examined only to the point of
proving that no foiiowing vaiue can improve the
score. In contrast, updating function 1 requires
that the neighbor's whole probabiiity list must be

taken into the updating calcuiation.

3.3 Paralielism

Locus has been criticized as being an Inherentiy
serial aigorithm which couid not take advantage of
paralielism. it i5 true that segments are consldered
sequentiaily, but that only ties down variabie s In
it may weil be that s is the

equations 1 and 2.
simplest piace to parcel out different vaiues to
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several processors, but there are other
opportunities for parallelism. A different candidate
label could be assigned to each processor, thus
finding parallellsm In the J varlable. Simllarly, the
nelghbor n and Its label k could yield paralielism.

4. Shape

The shape knowledge which Argos mailntalns for
each label Is Its orlcntation, elonpatlon, and
compactness. Compactness s the ratlo of area to
the square of the perimeter. Orlentation and
elongation are determined by computing the best-flt
elllpse. From the map database, these shape
measures are preconputed for each template at the
time the posltional constralnt network Is derlved.
For example, the U.S. Steel building wlili be found to
be qulte elongated in the vertical directlon, so &
segment or cluster of sfagments which exhiblts
vertlcal elongation would find support for belng
labelled "U.S. Steel building”.

The shape Information carrles with it a modicum
of occluslon knowledge. |If the network Is compilied
for a vlewpolnt In which Mellon Bank partialy
occludes tne U.S Steel bullidlng. then this will be
reflected as a smaller size and different shape for
the latter. The complled network will know to
expect the shape change in the Image.

A problem arlses with the orlentation feature.
For shapes with very low eccentriclty, a small
perturbatio. could cause a drastlc change In the
orlentatlon. One solutlon is to place a low welght on
the orlentatlon measure when the elongatlon Is low.
This 18 achleved by consluoering eccentriclty and
orlentatlon to be polar coordinates of a shape
vector. Shape comparisons are achleved by taking
the megnitude of the difference of the two shape
vectors. For convenlence, this shape vector can be
converted from polar form to carteslan. Then the
two components can be treated as separate
features without either suffering from the pole
problem that orlentation does. The advantage of
treating them separately s that It is easler to
merge them Into the general feature vector which
describes the PPE.

The use of shape knowledge suffers from
chicken-egg behavior, regardless of the particular
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labelling search strategy. The shape Informatlon Is
supposed to provide guldance for the local labelling
of a seyment. Yet, the shape match cannot be
applied untll it Is known which set of contiguous
segments Is to be consldered as a
commonly-labelled group. |f the shape Is computed
for only the current segment, or for it and its simllar
Immedlate nelghbors, then there Is still a good
chance that some other segment should have been
Included, or that one of the included nelghbors
would liave beiter been omiited. The first approach
taken by f. ,.s was to record, for each candldate
label of a segment, a blt-map deflning the
contlguous set of segments which could be
expected (based on backpolnters) to receive the
same label. The shape computation would be
deferred untli the process had proceeded to the
last successor nelghbor, so as to allow the bit maps
to accumulate. This last neighbor would apply the
shape match. Thus, the current segment's shape
match would affect the last successor's view of Its
environment, and hence Its label and backpolnters.
And the last successor's backpolnters would affect
the cholce of labels for the current segment and
others.

With relaxatlon labeillng, we can walt for a
couple of Iterations before applying shape
knowledge. This allows many segment-iabel pairs to
be pruned, which reduces the number of
comblnatlons of segments for which shape
measures must be found.

Our present test data has not allowed the
quallty of the shape procedures to pbe fully tested.
WIth pixelwlse labelling, the search space Is too
large: too many labels for too many segments have
different Ideas about where the boundarles lie for
which shape can be computed. Hand-segmented
Images are generally not oversegmented, so for
them shape evaluation usually Involves only one
segment at a time. This doesn't result In a fully
satisfactory test. It does, however, turn up an
Interesting phenomenon. Although the shape
measures provided good matches, the Locus search
did not apply them frequently enough {only at the
last successor). Sometimes shape would cause the
last successor’s backpointer to be correct, but tie
beneviclal effect did not ususliy propagate back
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through mutual neighbors. So the result wouid be
only to cause a backpolnter conflict.

The present scheme for applylng shape
knowledge Is not fully satisfactory, either
theoretically or from the point of vilew of

computational complexity. Shape is an area where
much remains to be done.

5. Performance

The cross of Locus with reiaxation scems to

propagate influence from a distance more

effectively than either pure Locus or the
backsearch version. To lflustrate its etfectiveness:
the present battery of experiments was run using
two plctures of Pittsburgh as guinea plgs. One had
39 segments, of which @ would be correctly
identlfled using opticai match alone. Pure Locus
(wlith backpolinters) obtalned 14 correctly labelled
segments, backsearch 21, and repeated passes
33. By biasing the network to discourage
self-transitlons, backsearch achleved 36, but this
might constitute an adaptation to the particular
image. it seems hardly likely that any search
strategy would dig out the other three segments,

since they have very bad signal matches.

All three
However,

The other image had 16 segments.
methods correctly labelled 14 of them.
backsearch and the muitipass algorithm obtained
thel> results quite solidiy, whereas pure Locus had
same iucky hounces.

The relaxation labeiler requires about two to
three tlmes the processing time of pure Locus. This
seems quite acceptabie in view of the Increase in
accuracy.
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INTRODUCTION

This p-per presents a set of “texture
energy” tran. forms that provide texture measures
for each pixel of a monochrome image. The
transforms are fast, requiring only
one-dimensional convolutions and simple
moving-average techniques.  The method is more
accurate than gray level co-occurrence methods.
1t is local, operating on small image windows in
much the same manner as the human visual system.
1t can be made invariant to changes in
luminance, contrast, and rotation without
histogram equalization or other preprocessing.

These texture measures are more local then
previously studied frequency-domain statistics.
Frequency components are measured with very
emall convolution masks, and phase relationships
within each wirdow are measured without regard
to any global origin. This method, similar to

natural texture dimensions, and to be more
"reliable” than the texture energy planes.

The final output is a segmented or labele”
image. A classifier assigning texture labels to
the image pixels can take either texture energy
planes or principal component planes as input.
Classification is simple and fast if texture
classes are known a priori. Clustering or
segmentation algorithms must be usea if texture
¢:lasses are unknown.

Texture Détea

In an experimental study, the results can
be no better than the input data. We require a
set of uniform texture fields large enough to
provide adequate samples ot each texture.
1deally this training set should come from a
target application area. Feor a general vision
system, each texture must be a "natural" one,

L human visual processing, is appropriate for and the set must include a range of natural
1 textures with a short coherence length or texture dimensions. We avoid artificially
| correlation distance. generated textures, such as sinusoidal gratings,
' because they would favor the Fourier transform
i sigures la and 1b show the sequence of and other freguency domain measures.
. images, or image blocks, used in measuring
texture. The original image is first filtered ' The  textures we have chosen are from
with a set of small convolution masks, typically high-resolution photographs used in the Brodatz
5x5 masks with integer coefficients. Only texture album. Figure 2a shows a composite.
one-dimensional convolution is required, since The first two rows of 128x128 blocks are from
the masks are separable. The filtering could the images of Grass, Raffia, Sand, Wool,
also be accomplished optically or with pigskin, Leather, Water, and Wocd. The
multistage 3x3 convolutions. lower-left quadrant is composed of 32x32 blocks,
1 and the lower-right guadrant of 16x16 blocks.
J The filtered images are then processed with The 128x128 blocks have been individually
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a nonlinear "local texture energy" filter. This
is simply a moving-window average of the
absolute image values. Such moving-window
operations are very fast even on general-purpose
digital computers. The best wirndow size depends
on the size of image texture regions. This
study has concentrated on 15x15 windows. Even
aguzller windows might be useful if color
information were available.

The next step in Figure 1 shows the linear
combination of texture energy planes into a
smaller mmber of principal component planes,
typically three or four. This is an optional
data compression step. It is tempting to call
the final images "perceptual planes,” but it has
not yet been proven that they relate to human
texture perception. They do seem to represent

histogram equalized, the other blocks have been
equalized by guadrant. Histogram egqualization
removes all first-order differences. It also
finesses the problem of whether to measure image
luminance or density, since the equalization
gives the same result for either. We have also
used a more rigorous adaptive eaualization: it
seems to give more conservative and reliable
results.

The textures were chosen precisely because
they are difficult to discriminate. They are a
worst case dataset. Grass and Sand are very
similar, with the main difference being the
extended edges in grass. Pigskin, Raffia, and
sand may be considered cellular textures with
similar cell sizes. Raffia is distinguished by
its long-range structure, and Wool by its fiber




content and lack of coarse edge structure. The
Grass, leather, wood, and Weter imagec all have
vertical structure.

Compar ison Statistics

Co-cccurrence matrices eire @ popular source
of textate teatures. We have generated
co-occurrence matrices from 15x15 source windows
requantized to 32 gray levels. Each matrix is
thus 32x32. Nine of these matrices are used,
with horizontal and vertical pixel spacings of
2ero, one, and seven pixels. The  chosen
spacings correspond to horizontal, vertical, and
top--left to bottom-right diagonal directions.
The P00 matrix records tirst-order information:
all entries are on the Jiagonal. The other
eight matrices record second-order information.
'The matrices are not symmetric, nor is there any
averaging across different co-occurrence angles.

Table 1 shows classification accuracies
available with various Leature sets. The first
analysis uses only the ASM, CON, COR, 1IDM, and
ENT Haralick moments (i, 2]. Together the 32
features give almost 58% classification accuracy
on the adaptively equalized texture set. The

globally equalized textures generate two
dominant discriminant functions using P10CON,
PO1ICM, P70IDM, P11CON, POICCN, P10IDM, PI1OCOR,
and P11COR. Discriminant  functions for
adaptively equalized textures use PI10OCON,
PU1IDM, F70CON, P1I1CON, POICON, and P71COR.
Angular second moment, correlation, and entropy
features apparently carry little texture
informat ion.

The second and third analyses in Table 1
use rectilinear and diagonal  moments,

These moments will not be
described here. Neither set is as powerful as
the Haralick moments. The fourth analysis
combines all of the co-occurrence features, a
total of 172 independert texture measures for
the nine co-occurrence matrices. Classificaticn
accuracy improves very little, and the variables
selected by the discriminant analysis are nearly
all from the Haralick set.

respectively.

Macro-Statistic Selection

Figure 1 shows a one-to-one mapping between
filtered images and texture energy planes.
Twelve measures per pixel were used in
preliminary research. Experience has shown that
either variance or standaird deviation alone is
sufficient to extract texture information from
the filtered images.

Variance is an average squared deviation
from the mean. For a zero-mean field, it is an
eneryy measure. The standard deviaiion (SDV)
statistic is the sguare root of this local
energy. It may be considered a "texture energy"
measure. A faster energy transform is the
average of absolute values (ABSAVE) within a
window. For a zero-mean field it may be
consideted a fast approximation to the standard
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oeviation. It  performs poorly only with
operators which are not zero-sum.

Table 2 shows classification accuracies
possible with local texture energy measures. In
each case the discriminant analysis routine
selected about a dozen features, each produced

by convolution with a 3-vector, 5-vector, 3x3
matrix, or 5x5 matrix. SOV and ABSAVE
statistics were gathered over 15x15

"macro-windows." Classification accuracies are
much higher than the 72% achieved with
co-occurrence Statistice. For this dataset,
ABSAVE features are jointly more powerful than
SDV features, and nearly as powerful as both
sets together.

Rotation-invariant filters, such as the
Sobel gradient magnitude, are only fair as
texture measures. Better results &are obtained
by wusing directional masks separately and then
combining the texture energy measures. Averages
of ABSAVE values from rotated filter masks, such
as L5E5 and ESL5, «can be used as
rotation-invariant texture measures. The
usefulness of such measures depends on the
application area. 1In a general vision system it
is better to use directional measures, and to
allow a higher level processor to decide which
textures are equivalent.

Center-Weighted Filter Masks

Figure 3 shows two sets of one-dimensional
convolution masks. The names are mnemonice for
Level, Edge, Spot, Wave, and Ripple. The
vectors in each set are ordered by sequency.
The vectors are weighted toward the center, all
are symmetric or antisymmetric, and all but the
Level vectors are zero-sum. Vectors in each set
are independent, but not orthogonal.

The 1x3 vectors form a basis for the larger
vector sets. Each 1x5 vector may be generated
by convolving two 1x3 vectors. S5, for
instance, can be generated as (L3)*(S3),
(63)*(L3), or (E3)*(E3). A set of 1x7 vectors
can be generated by convolving 1x3 and 1x5
vectors, or by twice convolving 1x3 vectors.
The seguency of a generated vector is the sum of
the component sequencies.

We have applied horizontal and vertical
masks in pairs, although the discriminant
analyses have not been constrained to assign
equal weights. The six 3-vectors alone perform
slightly better than the elaborate co-occurrence
features. This 1is amazing considering the
simplicity of the texture energy method and the
many experimental vindications of Haralick's
co-occurrence statistics. The 5-vector
statistics perform even better, achieving 82%
classification accuracy. Using 7-vectors or
combining more than one vector size gives no
significant improvement .

Neurological studies show that
cor tex

the wvisual
computes edge measures in approximately




ten-degree increments. We have investigated
one-dimensional features in the two main
diagonal directions. Inclusion of diagonal
features  improves classification accuracies
significantly. The 5-vector statistics alone
are sufficient to achieve 86% classification
accuracy, close to the maximum reached in this
study. Cambining different vector sizes adds
little power, but provide insight into the
feature selection process. The discciminant

routine selects vectors of all directions and
sizes. Different subsets are selected in the
globally equalized and adaptively equalized
cases. vet all of the selected features are
either Edge statistics or the symmetric
statistics. None of the high-sequency
antisymmetric features were found useful.

Figure 4 shows the nine masks generated by
convolviig a vertical 3-vector with a horizontal
3-vector. This may be considered a
cross-product or vector multipl ication
operation, but convolution has special
significance here. We shall extract texture
informat ion from image data by convolving with
the 3x3 masks. Convolution with the component
one-dimensional masks gives exactly the same
result as convolution with a separable 3x3 mask.

The nine independent 3x3 masks form a
complete set. Any 3x3 matrix can be expresscd
as a unique linear combination of the masks.
The 5x5 masks and 7x7 masks also form complete
sets, with even stronger weighting toward thc
center. The separable structure of these masks
makes it feasible to  apply them as
spatial-domain filters. A 5x5 convolution, for
instance, can be implemented as two  3x3
convolutions, a 5xl and a 1x5 convolution, or
two 3xl and two 1x3 convolutions.

Two-dimensional masks are even morc
powerful than the tested sets of one-dimensional
masks. Again the length five masks are best,
although the evidence is less conclusive.
Classification accuracies are in the range 86%
to  88%. The adaptively equalized 3x3+5x5
feature subset differs from the 5x5 feature
subset only by the inclusion of L3§3, the ninth
and last feature to be adaed. Analyses with 7x7
masks have shown no significant improvement.
Selected statistics again differ from one
analysis to another, but high-sequency
antisymmetric features are not useful. The
consistent inclusion of R5R5 is somewhat
surprising since matching image structures must
be quite rare. This mask resembles a
two-dimensional sinc or Bessel function. The
similar 585 feature is individually very
strong, but has little power when combined with
other features.

Combining one~-dimensional and
two—dimensional features improves classification
accuracy very little. Two-dimensional features
cnter the models first, followed by a few of the
longer vector features. Again there are few
Wave or antisymmetric features, despite the fact

they ate indivit ..y strong discriminating
features. Otherwise the selection seems
somewhat arbitrary.

Two sets of filter masks have been found
which work well: rotated vector masks and
separable square masks. Very likely the human
visual system uses rotated circular masks. For
digital imaye processing the square masks are
the most convenient. Only the Level, Edge,
Spot, and Ripple 5x5 masks are useful.
Classification of 15z15 blocks can be done with
accuracies above 86% using just the Level, Edge,
and Ripple or the lLevel, Spot, and Ripple
subsets.

Classification Results

The Level (or L5L5) texture energy
transform is sensitive to changes in luminance
level. Its moving-window average can be used as
a brightness measure for segmentation purposes.
Its standard dcviation can be used as a local
contrast measure. The other filters are
inherently insensitive to low frequency
luninance changes, and can be made invariant to
contrast changes by taking the ratio of ABSAVE
values to the L5L5 SDV  values. This
normal izat ion reduccs classification accuracy by
about two percentage points. The
contrast-invariant features may be used to
segment or classiiy imege textures without prior
histogram equalization.

We have applied the contrast-invariant
transforme to the composite texture image.
Figure 2 shows the first two principle component
planes before contrast normalization. The third
plane (rot shown) is similar to the second with
contrast in the first quadrant reversed. The
discriminant dimensions are the same ones found
with co-occurrence features and with every other
texture set we have tricd.

Figure 2d shows the results of classifying
e/ery pixel into one of the eight texture
categories. The 15 zero-sum texture transforms
from the 5x5 ILevel, Edge, Spot, and Ripple
sgbsct were used. Processing time was about 30
m}nutes on a PCP KL/10. Using twelve or even
nine features would produce similar results 1in
less time.

It can be seen that the large blocks are
almos; , perfectly classified. Average
classification accuracy is near 87% for interior
regions of the 128x128 blocks. The 32x32 blocks
are well separated, and the 16x16 blocks are
differentiated to an extent. We believe this
perfomance to be urmatched by any other texture
classifier or image segmentation system.

4 qrn.mw-
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Table 1. Co-occurrence Classification Accuracy. Table 2. Macro-Statistic Classification

Accuracies.
Feature Set Global Adaptive
e Feature Set Global Adaptive
Haralick Moments 70.85 (570 5188
Rectilinear Moments 63.04 65.92 SDV 85.99 85.60
Diagonal Moments 56. 60 63.04 ABSAVE 88.09 87.11
Cambined Moments 72.07 68.16 SDV+ABSAVE 89.16 817155
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ABSTRACT

This paper describes several applications of
simple cooperative computational techniques in tex-
ture analysis. The techniques involve parallel
local operations of various sizes and resolutions
performed on the given image. Interactions at a
given size level, in the form of iterative local
smoothing processes, can be used to improve the
reliability of textural features measured at indi-
vidual pixels or over windows. Interaction between
operations of different sizes or resolutions can
be used to check the textural homogeneity of win-
dows or to detect and extract texture primitives.

1. INTRODUCTION

Texture plays an important role in the classi-
fication of terrain and land use types on aerial
photographs and remote sensor imagery, particularly
in the absence of multispectral information. For
a recent review of texture analysis techniques see

{1].

We will deal here primarily with the problem
of classifying a given set of texture samples; in
other words, we assume that we are given a set of
image windows, each consisting of a single texture,
and our task is to classify the windows into tex-
ture types, based on a set of feature measurements.
A more difficult problem is that of segmenting a
given image into uniformly textured regions.

A wide variety of statistical features can be
used for texture classification. The following are
three basic approaches:

a) One can use second-order gray level statis-
tics, computed from "cooccurrence matrices'
that represent the second-order probability
density of gray level for various displace-
ments. Alternatively, one can use first-
order statistics of various local proper-
ties, e.g., of gray level differences for
various displacements.

b) More generally, one can use second-order
local property statistes. These need not

be computed for all pairs of points having
a given displacement; rather, one can de-
fine a set of points that have characteris-
tic local property values (e.g., local
maxima of gray level difference), and com-
pute second order local property statistics
for pairs of these points having specific
relationships (e.g., in the gradient direc-
tion) [2]. Alternatively, one can use
local property values to select pairs of
points in this way, and then compute second
order gray level statistics for these pairs
f3]. Each of these approaches has alvan-
tages in some situations.

c) One can segment the texture into 'primitive
elements", and compute first-order statis-
tics of properties of these elements (area,
perimeter, elongatedness, average gray
level, etc.), or second-order statistics
of properties of neighboring pairs of
elements [4].

This paper describes several applications of
simple cooperative computational techniques in
texture analysis. The techniques involve parallel
local operations of various sizes and resolutions
performed on the given texture samples. In Section
2 we show how interactions at a given size level,
in the form of iterative local smoothing processes,
can be used to improve the reliability of texture
features. We also discuss how this approach can
be extended to include interactions between dif-
ferent sizes. Section 3 revicws some simple
methods of extracting texture primitives, and shows
how interactions over a range of sizes can be used
to detect and extract such primitives.

2. TEXTURE FEATURE SMOOTHING

Typically, to obtain good classification per-
formance, texture features should be computed for
windows of size at least 64 by 64 pixels. 1f
smaller windows are used, the feature values be-
come unreliable, and classification performance
deteriorates. However, the size of the windows
required for reliable classification poses a
problem when we try to analyze the textures on a
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given image; the larger the windows used, the fewer
of them will fit inside the uniformly textured re-
gions on the image, =o that it becomes difficult

to obtain sufficient numbers of uniformly textured
samples,

This problem can be alleviated, to a substan-
tial extent, by using small windows, and smoothing
the texture feature values before using them for
classification. The smoothing is done by selec-
tively averaging the features measured for a given
window with those measured for some of the neigh-
boring windows; this should be done in such a way
that the neighbors used are likely to have the same
texture as the given window. A number of recently
investigated image smoothing techniques should have
the desired behavior; median filtering, and the gk
scheme in which we average with the k neighbors
whose feature values are closest to those of the
given window, are two examples.

A technical report on this method is in prepa-
ration; in this paper we give only one illustra-
tion. Figure 1 is & 512 by 512 pixel image com-
posed of two geological terrain types (the divid-
ing line is the 45° diagonal). Thus this image
consists of 56 windows of size 64 by 64 that repre-
Sent pure terrain types (28 of each), plus eight
mixed windows lying on the diagonal. If we use
windows of size 32 by 32, we have 120 pure windows
of each type and 16 mixed windows; whiie if we use
size 16 by 16, we have 496 pure windows of each
type and 32 mixed windows. Note that the mixed
area is reduced as the windows get smaller; the
numbers of pixels belongin§ to mixed windows are
212 for the 64 by 64's, 218 for the 37 by 32's,
and 213 for the 16 by 16's.

A single second-order gray level statistic was
used as the sole texture feature in this example,
This feature was the moment of inertia of the co-
occurrence matrix about its main diagonal (called
the "Contrast" feature by Haralick); it was mea-
sured for a one-pixel displacement in the horizon-
tal direction. The mean U and standard deviation
0 of the feature values for the windows of each
size in each class are given in Table 1. These o
and 0 values define a Gaussian probability density
for each class and each size. We used these densi-
ties, in conjunction with Bayes' theorem, to com-
pute the probability that each window belongs to
each of the twc classes, and to classify the window
according to the greater of these probabilities.
Since the densities overlap, particularly for the
smaller windows, these maximum-1likelihood classi-
fications are not all correct; the error rates are
shown in the first row ("iteration 0") of Table 2.
(These rates refer only to the unmixed windows,)

The Es smoothing process was now iteratively
applied to the feature values, Under this process,
the variahility of the values within each class
rapidly decreases; thig resultg in substantially
reduced error rates when the windows are classified
on the basis of their smoothed values, as Table 2
shows. No problems arise for windows near the
border between the two textures, since the E
scheme is likely to average the features of such a
window only with the features of neighboring
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windows of the same type. For the 64 by 64 win-
dows, the error rate is reduced to almost zero in
only a few iterations; while for the smaller win-
dows, it is reduced to a level usually achievable
only through the use of lary: windows.

In the experiments Just described, only the
features derived from windows of a single size wera
allowed to interact. Chen ard Pavlidis [5] have
described a split-and-merge method of texture
Segmentation in which feature values measured on
windows of different sizes ar: compared. If the
values for all four quadrants of a window are suf-
ficiently close to the values for the entire win-
dow, then the window need not be subdivided; other-
wise, we split it into quadrants. It would be
very desirable to combine their method of "verti-
cal" interaction between the feature values with
our "horizontal" interaction method. Further work
along these lines is planned.

Iterative smoothing can also be used to improve
the results of image segmentation by pixel classi-
fication based on local property values. Such
classifications are often somewhat noisy because
the values are variable; for example, even in a
"busy' region, local measures of "busyness" do not
have uniformly high values. If we smooth the
values, using a local smoothing scheme which tends
not to cross region boundaries, the results are
improved. Experiments along these lines are in
progress.

As an alternative to iterative smoothing, one
can use the initial feature values to probabilig-
tically classify the windows (or pixels), and then
use a relaxation scheme to adjust the class pro-
babilities; this too should result in a reduced
€rror rate. A comparison between the iterative
smoothing and relaxation approaches is planned.

It should be mentioned that in analogous studies of
pixel classifiration based on spectral signatures,
relaxation gave much better results than smoothing.,

3. TEXTURE PRIMITIVE EXTRACTION

In [4], a region growing technique was used to
extract texture primitives. Several simple methods
of extracting primitives have also been investi~
gated [6,7]. These included thresholding at a per-
centile, adaptive requantization (converting the
window's histogram into a small set of spikes), and
the SUPERSLICE algorithm; each of these schemes
yields a set of connected components as primitives.
The resulting set of Components tends to be rather
"noisy", i.e., some of them appear to be fragments
of primitives, while others seem to be conglo-
merates of several primitives. Nevertheless,
first- and second-order statistics (of area, elon-
gatedness, etc,) computed from these components
provide a useful basis for texture classification,
Examples of the components obtained by these
methods are shown in Figure 2.
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A much "cleaner" set of primitives can be oh-

tained using an edge-based approach [8], in which
primitives are defined as clusters of antiparallel
edge pairs. The basic idea is as follows: An edse
detector is applied to the given texture window,
and nonmaximum suppression, in conjunction with a
low threshold, is used to select a set of edge
points. At each sucn point, a search is made out
to a fixed distance in the gradient direction. If
an approximately antiparallel edge is encountered,
the line segment joining the two edge points is
assumed to be part of a primitive, and the points
of this segment have their values incremented in an
output array. When this has been done for all

edge points, the points of the outpit array that
belong to primitives should have high values. The
final extractiou of primitives is done by smoothing
and thresholding the output array; see [8] for the
details. Examples of the primitives obtained in
this way are shown in Figure 3. Statistics derived
from these primitves can then be used to classify
the textures.

The edge-based approach to texture primitive
classification can be implemented on several dif-
ferent levels. The implementation described in the
preceding paragraph was based on individual edge
points; for each such point, it searched the image
in the appropriate direction for an antiparallel
edge. A computationally cheaper idea might be to
firet link the edge points into edge segments, and
then search the list of these segments to find
antiparallel pai -s,

One can also design implementations which do
not require the explicit extraction of edge points
from the given window, but rather operate on the
raw gradient values. For example, suppose that
for every point P we examine the set of pairs of
points Q,R within a given distance of P that are
symmetrically positioned with respect to P, (This
involves a large number of operations for each P,
but the process could be carried out quite effi-
ciently using suitable parallel hardware.) Sup-
pose that the gradient magnitudes at both Q and R
are high, and the gradient directions are approxi-
mately antiparallel and ronghly perpendicular to
the line QR; then we increment the points of seg-
ment QR by an appropriate amount on an output
arrey. The increment can be inhibited if some
proper subsegment of QR has given rise to a higher
increment. When this has been done for all triples
P,Q,R, we should have high values in regions sur-
rounded by antiparallel edges, and lower values
elsewhere, Note that if we increment only P,
rather than the entire segment QR, the results
should be high on the "medial axes" of antiparallel
edges, and low elsewhere; thus we have defined a
generalization of the medial axis transformation to
unsegmented gray scale images. This approach to
primitive extraction and medial axis construction
is currently under active investigation.

The conceptual advantage of this approach is
that it requires no thresholding until the final
stage, when a decision must be made as to which
output array values represent primitives (or medial
axes). The approach just described can be regarded
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as a process of cooperation and competition among
a set of "dipole" operators of many lengths and
orientations centered at each point; the dipoles
kaving a given orientation compete, while those
having different orientations cooperate.

S5till another method of detecting and extract-
ing texture primitives is to apply a set of spot
(and streak) detectors, having a range of sizes
(and orientations), to the given window. By a pro-
cess of nonmaximum suppression with respect to
position and size (and orientation), we can select
a discrete set of locally best responses, which
presumably correspond to primitives, assuming that
the primitives are spot-like or streak-like. This
process can be regarded as one of cooperation and
competition among detectors of various sizes., The
primitives that are detected in this way can then
be extracted, if desired, by a local segmentation
process, as descrihed in a separate paper in these
Proceedings. This approach was implemented many
years ago in early studies of spot and streak
detection using operators of multiple sizes; a one-
dimensional version of it was recently used to
define locally significant peaks in waveforms.
Again, this is a computationally expensive ap-
proach, but it could be implemented very efficient-
ly on suitable parallel hardware. Preliminary work
along these lines is in progress, and further in-
vestigation of this approach is planned.

4. CONCLUDING REMARKS

The ideas sketched in this paper indicate how
simple cooperative computational methods may have
a variety of uses in texture analysis. The possi-
bility of implementing such methods in parallel
makes them potentially attractive for use in future
real-time texture analysis syster:.

REFERENCES

1. R. M. Haralick, Statistical and structural
approaches to texture, Proc. IEEE 67, 1979,
786-804.

2. L. 8. Davis, S. Johns, and J. K. Aggarwal,
Texture analysis using generalized cooccurrence
matrices, IEEETPAMI-1, 1979, 251-259.

3. C. R. Dyer, T.-H. Hong, and A. Rosenf 1d, Tex-
ture classification using gray level cooccur-
rence based on edge maxima, Computer Science
TR~738, University of Maryland, College Park,
MD, March 1979.

4, J. T. Maleson, C. M. Brown, and J. A. Feldman,
Understanding natural texture, Proceedings
Image Understanding Workshop, Oct. 1977, 19-27.




5. P. C. Chen and T. Pavlidis, Segmentation by FIGURE 1 MAY BI JND ON Til. FOLLOWING PAGE.
texture using a co-occurrence matrix and a
split-and-merge algorithm, CGIP 10, 1979,
172-182.

6. S. Wang, F. R. D. Velasco, and A. Rosenfeld,
A comparison of some simple methods for ex-
tracting texture primitives and thelr effec-
tiveness in texture classification, Computer
Science TR-759, University of Maryland, College
Park, MD, April 1979.

7. S. Wang, A. Wu, and A. Rosenfeld, Second-order
statistics of texture primitives, Computer
Science TR-779, University of Maryland, College
Park, MD, July 1979,

8. T.-H. Hong, C. R. Dyer, and A. Rosenfeld, Tex-
ture primitive extraction using an edge-hased
approach, Computer Science TR-763, University
of Maryland, College Park, MD, May 1979.

.-
-

b -3
™

5 & A3 & ¥ w ! ¢

""_-..) all \f. ‘, \."\ ‘S N i ¢ K o
T2 YT L PO % JIRENE Y Ve E=53 b o i
(e) (8)

Figure 2. Primitive elements extracted from windows of seven textures using three simple methods. The
textures are (a-d) grass, raffia, sand, and wool, from Brodatz's album; (e-g) Lower Pennsylvanian
shale, Mississippian limestone and shale, and Pennsylvanian sandstone and shale from a LANDSAT
image. The pictures in each part are as follows:

Original window 25th percentile | Original window Darkest 25th percentile
Adaptive quantization SUPERSLICE Lightest 25th percentile SUPERSLICE
Parts (a-d) Parts (e-g)
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Window Size
Terrain
_Type 64 by 64 32 by 32 16 by 16
Pennsylvanian " L5, 32 15.33 Lo 22
o 1.50 2.21 3.44
Mississippian " 11.66 11.67 11.68
Geological terrain types selected from g 1.20 1875 2.65
a LANDSAT framne. The upper left is
Pennsylvania sandstone and shale; the
lower right is dississippian limestone Table 1. Means and standard deviations for the
and shale, terrain types.
Window Size
Iteration 64 by 64 32 by 32 16 by 16
0 9 19 28
1 2 8 19
2 2 5 ile f
3 2 4 14 '
4 2 4 14
5 2 3 13 l
6 2 3 13
7 2 3 13
8 2 3 iz ‘
9 2 3 12
10 2 3 11
11 2 3 11
12 2 2 11

Table 2. Error rates (7).

Figure 3. Primitive elements extracted from the
same wlndows as in Figure 2 using the
edge~based method.
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LIGHTS: A STUDY IN MOTION
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Summary

Lights is a system for the interpretation of
simple moving light displays of jointed objects
against a stationary background. The displays
being studied differ from those examined by
previous researchers in that (1) objects are
represented by a relatively small number of points,
(2) oblects are not rigid, and (3) the viewi.g
geometry Is such that highly varylng degrees of
perspective distortion occur. An algorithm s
presented which segments the points of an MLD of
a wire-frame man Into body parts. The relationsti
of this algorithm to previous theorles of MLD
perceptlon and actuai human performance is

discussed.
The preparation of this paper was supported in part by the

Cefence Adavanced Projects Research Agency, monitored by the ONR
under contract No. NO0014-78-C-0164.

1. Introduction: Moving Light Dispiays

if asked what aspect of vision means
the most to them, a watchmaker may
answer "acuity," a night  flier,
usensitivity,” and an artist, "color." But
to the animals which Invented the
vertebrate eye, and hold the patents on
most of the features of the human model,
the visuai registration of movement was
of the greatest Importance. 1 (p. 342)

Motion supplies the visua! system with crucial
Information about out environment. indeed, motion
Information alone Is sufficient for perception: A
sequence of binary Images representing points from
a moving object can produce a strong and
true-to-life three-dimensional perception.

g T

Early in 1978 | set out to study Just this kind of
motion Image, which | labelied a moving light display
(MLD). i felt that MLD perception represented a
severe chailenge to exlisting notions about machine
perception of muitiple frame images.

An MLD Isolates and presents geometric
evidence of motion divorced from such factors as
texture, color and lighting. The only source of
information in an MLD is the position and velocity of
its roints, and position does not provide sufficient
data for MLD Psychologicai
experiments have shown that individual frames of

an MLD cannot usually be recognized by human
2

interpretation.

subjects.

So little information appears to be present in an
MLD, that the question arises as to the nature of
MLD perception: does the perception of MLDs
require a large knowledge base to be used for
hypothesis generation and modei matching?, or do
MLDs possess a structure which Is expioited by the

visual system as a shortcut to recognition?

2. Human performance

In looking for answers to thesz guestions, it is
Instructive to conslder just how good humen beings
are at Iinterpreting MLDs. Johansson 3. for example,
hhas demonstrated the that twelve moving lights can
evoke the iilusion of a walking man. His MLDs were
created on video tape tihrough the use of high
Intensity lights and adjustments of video contrast.
Subjects performed a wvariety of tasks wearing
glass bead reflectors on their major joints
(shouiders, eibows, wrists, hips, knees and ankies),
and the resulting MLDs of human body motion

e e




Less than .2
seconds were required for perfect recognition of an
MLD as a moving men. Only .4 of a second was

display considerable complexity.

necessary for discrimination of different human
movements, e.g. walking left, walking right, and
walklng backward.

The llluslon of uzpth created by MLOs Is very
strong. When presented with a movie screen on
which a small number of moving polnts are
projected, a human qbserver wlll Invarlably try to
place a three-dimenslonal Interprelation on thelr
movements. This Is true even when abundant
evidence of two dimenslonallty Is present, such as
the edge of the screen and the sound of the

projector.

Human understending of MLDs Involves more
than slmple object Identiflcation and recognition. A
Information can be

conslderable amount of

recovered from MLDs. Cutting has recently
demonstrated the abllity of subjects to recognlze
the sex of a walker 4, and It Is even possible to

recognlize the galt of a frlend 5

3. Theories of MLD Interpretation

A number of theorles have been developed to
explaln human perception of MLDs. | shall outline
two of the most prominent, one from the fleld of
psychology and one from computer sclence. A more

compirte critique of exlsting theorles can be found
in 8.

3.1 Johansson: Spaﬁf.z-temporﬂglrlntegratlon

Johansson and hls colleagues Borjesson and
von Hofsten have attempted to explain the
Interpretation of MLDs In terms of a low level
rspatlo-temporal differentlation and integratlon’ 7,
The outer layers of the visual system, according to
this theory, extract a hlerarchy of coordinate
systems that permit the Interpretation ot motlon
patterns according to a simple vector analysls.

In his 1876 paper Johansson describes the
theory as It applles to ti=2 Interpretation of the
hlp-knee-ankle system of an MLD of a man walking
parallel to the vlewlng plane. The hip Is Identifled
as moving In the coordinate system of the
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statlonary background. The knee moves In the
coordinate system of the hlp and the ankle In the
coordinate system of the knee. Each point's total
motlon Is seen as the composition of a movement
relatlve to It particular coordinate system with the
motlon of that coordinate system relative to the

next In the hlerarchy.

Johansson suggests that the selectlon of a
coordinate system for a point depends upon its two
dimenslonal veloclty. The lowest veloclty point Is
Interpreted relatlve to the stetlonary background
and so on down the hlerarchy. Unfortunately, this
criterlon does not always work even In his simple
example. At certaln points of the walker's step,
e.g. when his foot Is In contact with the floor, the
movement of the ankle Is actually less than the

movement ot elther the hlp or knee.

Desplte thelr difficulty Ir defining rules for the
determination of a coordinate hlerarchy, Johansson
et al. have presented a large body of data to
corroborate thelr claim that the human visual
system |s performing a kind of vector decomposition
In the analysls of MLDs. Thelr theory has led to the
correct prediction of several MLD efiects.

3.2 Ullman: The structure from motlon theorem

A radlcally different approach has recently
been suggested by Ullman 8. He has demonstrated
that three dlstinct orthogonal projectlons of four
non-coplanar polints provide sufflclent Information to
reconstruct mathematically the three-dimensional
structure of the object deflned by the polnts
(subject to a posslible reflection). Using this
istructure from motlon' theorem, Ullman has written a
computer program capable of derlving the structure
of multiple rigld objects In motlon. he has also
suggested an algorithm for the Interpretation of
MLDs of certaln objects viewed by perspective
transformetion. He divides an object Into rigld
groups of four non-coplanar polnts, Iteratively
classlfylng ov ~rlapping groups of polnts In order to
extract th relatlve three-dimenslonal locatlon.
The accure © of this algorithm depends con the
distances between the polnts selected In each
step of the analysls. They must be close enough to

each other (relative to the vlewing distance) so
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that to a first approximation they are viewed by
orthogounal projection.

Nelther of these theorles of MLD perception
provides a basis for the interpretation of complex
Images. Ullman 8, for exampie, cannot cope with
the low degree of connectivity, the perspective
distortion, or the non-rigidity of MLDs such as those
of human motion created by Johansson 3,
Johansson, on the other hand, presents only a
partlal solution, leaving out Important detalis such
as the determination of connectivity and coordinate

bases.

4. Lights

| began my own study of MLDs by gathering
extensive statistics on the position and velocity of
MLD points. | hoped Iinitlally to demonstrate a
strong mathematical relationship between the
underlying objects and the movement of thelr
'lights’, such as was shown to exist by Ullmin for a
restricted class of MLDs.

What | found was that strong relationships dao
exist between the movement of related points
which are not deprndent on a particular viewing
transform (as in Ullman) and can not therefore be
used directly for three-dimensional reconstruction.
Instead, tl.ey derive from the fact that any
perspective transform, even allowing for certain
types of systematic distortion, tends over a period
of time to preserve relationships between the
movement of connected components of an MLD.

Lights Is a computer system written to explore
the ways In which this and other kinds of
Information can be expioited for the purpose of MLI)
interpretation. In its present form Lights is able to
track and cluster points belonging to independently
moving objects. Within a cluster, Lights analyzes
the relative motions of object points. It then
performs an Initial segmentation of these points Into
groups representing independently moving subparts.

4.1 The Input to Ligh's

MLDs of human beings walking aiong different
paths on a plane were chosen to be the primary
stimull for Lights. The reason for this choice was
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the high degree of difficulty represented by such
Images. The distance of each 'walking man’ from
the hypothetical viewer varles from about two-to
four times the man’s helght, creating an overail
change In perspective distortion of 2.1. Typically,
each man is seen to take about flve steps in flve
seconas. Frames are displayed for about
twenty-five milliseconds. The point of wvisual
fixatlon remains constant (see Figure 4-1).

These MLDs were created by a program
(written In SAIL) based on a madel of human walking
movement develuped by Cutting 9, Taken alone,
the motlons of the shoulders and hips define two
ellipses having different major and minor axes. The
arms and legs swiirg as dcuble pendulums from the
shoulders and hips and the entire body moves
forward with each step. The speed of stride may pe
varied. As the speed Is increased, a forward lean
and accentuated arm and leg swinging are added.
Other stimulus parameters include hip and shoulder
excurslon, speed, size, and three-dimensional path
and orientation. The path of movement is defined

‘ther by a SAIL procedure which takes the current
distun. ¢ 'walked’ and returns a three-dimenslonal
coordinate o1 by a chain-coded path on a plane
Interactively specificd on a screen (CRT) with a
computer 'mouse’. The direction faced by the man
Is tangent to the path at ali times.

Although referred to as a ‘walking man’, the
underlying model is actually that of a wire-frame
figure, since no attempt Is made to occlude points
on the basis of body part widths. Nevertheless, the
net effect is a stimulus universally identified by
human observers as a walking (albelt transparent)
man.

Non-biologlcal motlons were studled using a
program which simulated translation and rotation of
geometric figures such as cylinders, squares,
tetrahedrons, and less conventional objects such
as ‘lacks’. Once again, the underlying model was
wire-frame and not solid so that no occlusion was
posslbie.
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Figure 4-1: MLD of two men walking:
representative frames

4.2 Components of MLD interpretation

Lights breaks the problem of MLD Interpretation
into three components:

1. Correspondence. As presented to a
viewer, an MLD contains no explicit
data Identifying points In one frame
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with points in another, This
correspohdence must be established
before any further processing.

2. Object separation. Just as there |s
no explicit correspondence between
poirts in successive frames, an MLD
does not provide a ready-made
solution to the problem of separating
its polnts Into groups which belong to
different ohjects.

3. Determination of subparts. Once the
points of an MLD have been divided
Into groups which are belleved to
correspond to distinct objects, It is
necessary to break each object down
Into its component parts. This
amounts to bullding a skeleton of the
object by describing the connectivity
relationshlps between its points.

4.3 Tracking

For each frame, the Input to the Interpretation
program Is an unlabeled set of coordinate palrs
corresponding to the points of the MLD. The
probiem of tracking points from one frame to the
next has been studled by others108, often,
though, tracking aigorithms have been based on
Informatlon (such as tne cross correlation of smalil
areas around prospective matches) derlved from a
greyscale image which served as the source for the
MLD.

The MLDs under study here contaln a small
number of polnts and deplct objects with parts in
relative motion. The basic assumption is that the
velocity of points in an MLD varies smoothly and can
be used to estimate poslition from frame to frame,

4.3.1. The tracking aigorithm, The tracking
algorithm used by Lights selects for each frame the
correspondence which minimizes the sum of the

differences between the expected position of each
point (based on its veloclty averaged over the
preceding two frames) and the actual position of
the corresponding point In the next frame.

=

Let m denote the number of polnts in frame F
and n the number of points In frame F+1. Let P(F,1)
represent the ith point In frame F for 1 <1 <m, and
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P(F+1,]) represent the jth pointin frame F+1 for 1 <
J € n.In addition, let Predict(F,]) be the function
which takes the point P(F,) In frame F and returns
the predicted position of that point In frame F+1
based on Its average velocity, and let d R (1,)) be
the Euclidean distance between points Predict(F,l)
and P(F+1,)).
deflned as the function CF(I) which maps Indices for
P(F,») Into Indices for P(F+1,%) such that

The correspondence desired Is

m F
2, 9,  (WCFO)

Is at a minimum.

It Is Important that the function CF(I) can be
calculated efficlently. A naive approach would be
to calculate all possibiz sums and choose the
smallest, a feat requliring o(m") operations.

Lights avolds this combinatorial expiosion by
avplylng a heuristic algorithm which will caiculate
Ce() In O(Max(m.n)zlog(n)) worst case time with an
normal time of O(Max(m Iogz(n). n log(n))). The idea
for this algorithm came from the recognition of the
fact that, In the images under study, the point
selected by the function Cg(i) was normaliyu the
polnt closest to Predict(F,l). This followed from the
sparseness of the MLDs and the fact that the
motlons of their points corresponded to the motion

of physical objects.

For each point In frame F the point ciosest to its
predicted location In frame F+1 Is calculated. This
can be done In O(Max(m log2(n), n iog(n))) time
using a Voronol construction 11, An array of n lists
|s then obtalned with each list corresponding to a
point P(F+1,)) In frame F+1 and contalning the set
of polnts In frame F for which P(F+1,)) is the best
cholce. This array is then traversed and lists with
more than one element are examined. For list L({)
the best cholce of element P(F,i) Is made such that
the sum of the distance from Predict(F,I) to P(F+1,j)
and the distance between all other points In L and
thelr next best se'ection in F+1 1s at a minlmum. Ali
other polnts In the list are then distributed to the
lists corresponding to their next best cholce. For
one pass of the array this aigorlithm requlres at
least O(n log(n)) and at most o{m n log(n)) tlme.
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The speed with which this calcuiation can be
performed Is due to the fact that the intermediate
data structures used for constructing the original
n-polnt Voronol diagram can be reused to caiculate
an n-1 point Voronol diagram. The new Voronol
diagram thus requires O(n) rather than o(n log(n))
time to construct. Finding the next best match Is
then O(log(n)) and a maximum of (m-1) + 2 x m
additions are required to caicuiate the prospective
sums. |f there are no lists containing more than one
element the aigorithm has finished and calcuiated
the functlon Cg(l). In the majority (> 90%) of MLD
frames studied, this condition occurs immediately
and no Iterations are required. Otherwise the
algorithm Is Iterated a flxed number of times or untii
success Is achleved.

I1f the tracklng aigoritim succeeds, the optimal
match has been found. Optimality resuits from the
fact that the selection of a match from a confiict
st Is always made In such a way that, If no further
conflicts were to arlse, the sum of ail distances
would be minimized. Once found, the iist of point to
point correspondences is then recorded and passed
on to the iater stages of iLights.

Faliure of the heurlstic does not Imply failure of
subsequent stages of the interpretation process.
All fallures are recorded, and an approximation to
the best match Is used In place of the optimal
solutlon. Later stages of the system, however,
treat the data from fallure frames with caution.

4.3.2. Occlusion, The basic capabllities for
deallng wlith occluslon were Included Into the
tracking portlon of the Lights system, even though
no attempt was made to test the system with
occluded MLDs. When, during the tracking process,
a point appears for which there ‘was no match In the
previous frame or when the distance between an
old point and its match Iis greater than three
standard deviations from the mean, it is assumed
that a new point has been added to the MLD.
Polnts are assumed to have been deleted from the
MLD when a suitabie match can no ionger be found.
No attempt Is made by the tiacker to Identlfy a
point which has disappeared In the past with a
newly discovered point. This function Is more
properly performed by later stages of the




Interpretation process based on object topology
and wortd knowiedge.

4.3.3, Experience with the tracking
algorithm, The Lights tracking algorithm was
devised and used to handle MLDs of common

objects which have a high degree of predictability
In thelr motlons. In practice, the algorithm has
worked extremely we!l. For MLDs derived from
analytic functions (e.g. a man waiking 'n a circle or
straight line) perfect tracking Is the rule. When the
stimulus Is generated by a chaln-coded path,
discontinuities of motlon can causz tracking errors
detectabie onily by later program stages. This Is
usualty caused by the fact that the optimal match
does not always correspond to the ‘correct’ match
for such Images. The aigorlthm has ‘ailed to find the
optimai match in less than two percent of all frames
examined. In all cases, tracking errors occur during
frames which also cause difficulty for the human
tracking system.

In one example, a roughly triangular path was
drawn and the chain-code used for the construction
of an MLD of a walking man. The best hand
rounding of the triangle's corners still left them too
shurp for smooth human turning motlons, but the
resulting display was considered very acceptabile.
When shown to a number of graduate students over
the span of a few weeks, all reported seeing a
'normal’ man walking along a trlangular path with
sharp turns. When the tracking program was run
using this MLD as Input, It mismatched the right
knee with the left ankle after the first turn In the
trlangle. When these polnts were viewed In
Isolation, without the walking man to give them
context, a number of peopte who had seen the
previous display had the same impresslon of a
switchover. Alerted to thls lliuston and re-shown
the original MLD, all students saw the 'ankle turn
Into the knee’ even though that was Inconslstent
with thelr interpretations of the rest of the display.
This human tendency to ignore tracking errors
uniess they are explicltly pointed out suggested
the strategy for handiing such difficulties. When
confronted with a possible confilct, the
Interpretation program slmply suspends judgment on
the Identity of questionably matched points, waliting
for a clear Interpretation to present Itself In later
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frames.

4.3.4, The use of velocity Information, For
some MLDs, particularly those with a single cbhject,
accurate tracking can be obtained wlithout the use

of a velocity estimate. This amounts to the
assumption that no previous knowledge is
necessary to map points from one frame to the
next. it Is normally the case, however, that
information Is known about the previous frames of
an MLD. By uslng veloclty Information, more
complex MLDs can be accurately tracked, cven
when wire-frame objects are seen to move In front
of each other. Error rates were calculated for the
Lights tracking aigorithm for three different MLDs of
Increasing complexity. Three different values of
the tracking algorithm’s 'past history’ parameter
wire used. With no past history taken Into account
(l.e. veloclty averaged over zero frames) the
simpliest of the MLDs was nearly perfectly tracked,
bul the two more complex MLDs produced a large
number of errors. As velocity was averaged over
first one and then two frames more accurate
correspondences were obtained.

The use of velocity information for tracking
brings up the question of choosing Initial conditions.
Lights assumes that the correspondence between
points In the first two frames of an MLD can be
made on the basls of no past history (velocity), If e
good matich cannot be made,each new frame s
examined In turn until this condition can be met.

4.4 Object Separation

Separation of MLD points into groups beionging
to different objects is the next stage of Lights’
Interpretation process. The undertying assumption
Is that Independently moving objects can be
differentiated on the basls of thelr projected
movement and posltlon. When this assumption Is
violated, as in the case of two dancers arm In arm
or soldlers marching side by side, the claim Is that
an MLD provides insufficient data to separate the
objects. Higher level knowledge must be employed,

This approach to MLD Interpretation departs
from commonly held opinions in the fleld of motion
research. Uliman 8 has criticized the grouping of




elements Into bodies as a preiude to structurai
analysis. He bases his stand on the fact that a
Gestaltist grouping of points by ‘common fate' Is
frequently inadequate for the separation of
complex MLDs. Potter's criterion 12, for exampie,
groups two points whenever thelr velocity
difference falls beiow a defined threshoid. Uliman
cites the example of an MLD depicting two rotating
cylinders one on top of the other as a
demonstration of the probiems with this technique.
In such displays each cyiinder contains points
spanning a range of velocities and both may contain
points moving at exactly the same speed.

The fact that simple ruies for grouping points do
not work should not be taken as sufficient grounds
for abandoning the idea of low-level object
grouping. Uliman was quick to give up object
clustering because absolute structure determination
was possible for his images. This soiution is not
avallabie for the less restricted domain represented
by MLDs of walking men.

Potter’s iess than satisfactery aigorithm is,
nevertheiess, based on a reasonabie assumption
about the nature of velocity data from projected
motion. Points In an image which correspond to the
same moving object wiil exhibit, over time,
relationships which can be expioited to separate
them from other points In a scene. The problem with
Potter's algorithm is th:ai it does not take Iinto
account the fact that position as weil as veiocity Is
a key factor in determining the segmentation of a
moving scene. Moreover, time is an important tool in
motion understanding. it provides redundancy of
information which can overcome errors and
inadequacies in motion data. By utiiizing ali the
information avallabie in an MLD -- position, veiocity
and the redundancy of data in successive frames -~
a way can be found around Uiiman's objections in
the techniques of graph-theoretic cluster analysis.

4.4.1. Clustering points into
objects. Singie-linkage cluster analysis has been
successfully used to handie a wide range of
problems such as separating two touching Gaussian
distributions of points and determining gradient
clustering 13, |t has been previously used in motion
research to match segmented areas In successive
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frames of motion images 14 This technique, based
on the computation of the minimai spanning tree
(MST), is wused by Lights to distinguish
independently moving objects.

Let every point in an MLD frame be represented
by the four-vector (x,y,vx.vy), where x and y are Its
projected position and v, and vy its projected
velocity (as determined by the tracking aigorithm
described in the previous section). A graph can be
constructed which has each point as a node, with
each node connected to all others by an edge of
cost equal to their Eucildean distance. information
from previous frames is Inciuded by adding to this
edge cost a function of ‘he cost of the same edge
in past frames. A minimai spanning tree can then be
buiit 15 and the resuiting graph can be segmented
into clusters based cri an appropriate cut function.

it is Interesting to see how this aigorithm
functions on the example proposed by Uliman.
Figure 4-2 shows the resuit of the aigorithm on a
frame of an MLD of two rotating cylinders viewed in

orthogonal projection.

r
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Figure 4-2: MST for two rotating cylinders

Thirty points were placed on each cylinder in such a
way that no boundary could be seen In a static
view of the first frame. After seven frames the
MST for these points was caiculated based on a
cumuiative distance function. While the projected
velocity of points moving nearly parailel to the
viewing plane did differ greatiy from that of points
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moving nearly perpendlcular to It, no sharp divislons
occured within a cylinder because the speed of a
point was close to that of Its neighbors. On the
border between the two cylinders, thelr different
rotatlonal velocltles (four degrees per frame for the
upper cylinder and two degrees per frame for the
lower) resulted In a discontinulty which was found
by the cluster analysls.

When a perspectlve rather than an orthogonal
projectlon Is used, changes In scale caused by
varylng degrees of perspectlve distortion can
detract from the usefulness of data collected In
previous frames. Llghts compensates for these
changes and for the mismatch In the unlts
measuring veloclty and posltlon by scallng and
translating each dimenslon of the four-dimenslonal
feature space to have unlt variance and zero mean.
Single frame distances between fealures In this
new space are combined with previous values to
form a measure of the dilstance between polnts
over a number of frames according to the function:

€Dy, (1)) = d(l,]) + CDy.q (1)) x .85

where CD (1,j) 1s the cumulatllve distance between
polnts | and ) In frame n and d{(l,j) Is the Euclidean
distance between polnts | and | In frame n.

The criterlon for separating clusters was
conservatlvely chosen. Two clusters were assumed
to be unrelated when the cost of the MST edge
separating them was over flfty percent larger than
the average cost of the edges near Its two
endpolnts. A cluster was requlred to have at least
two polnts.

Figure 4-3 shows the MST for two men, one
walking In a clrcle, the other In a trlangle, after
thirty frames. Flgure 4-4 below It shows another
MST, this one calculated for two walklng men
traversing Intersecting paths. In both cases a cut
between the two groups of points could be made In
twenty-flve frames or less (about one-half step).
Both examples were complicated by the fact that
the projected posltions of the two grcups were
Initlally close and by the fact that In both cases the
men were made to walk ‘In step’ rather than show
completely unrelated movement patterns. Greater
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Figure 4-3: MST for two men after 30 frames

PathiPath2.Lighis i
Frame 2B ]
Figure 4-4: MST for two men after 26 frames J

Independence of movement would hasten the




clustering process.

It should be noted that singie-iinkage clustering
1s but one of a group of clustering techniques
including compiete-inkage and average-linkage
(King's method) clustering. investigation Is
proceeding on the usefuiness of these different
cilustering techniques and on the choice of cut
criterion.

4.6 Intra-Object Relationships

An object In motion can be thought of as
defining a moving coordinate system. Object parts
move relative to that system and In turn define
their own frames of reference. These two facts
reflect not only the mechanics of motion but aiso its
normal perception by a human observer.

Yet, particularly In the case of MLDs, this
correspondence between object and percept
seems singularly fortultous. An infinite number of
motions of points in space can produce a single
MLD, and unce a three-dimensional interpretation of
structure Is arrived at, it does not necessarily
resolve such questions as 'what parts of an object
are connected?' and 'how are unconnected parts
related?’.

An Informal experiment was devised to see how
a group of graduate students and facuity members
interpreted ambiguous connectivity information in
MLDs. A display was constructed simllar to the
walklng man dispiays discussed eariier but with the
difference that the man remained rigid throughout
his motion about a circuilar path (see Figure 4-5).
The resuit corresponded roughiy to a scene In which
a mannequin is wheeled around in a circie or rotated
on a lazy susan. Not oniy was the display
understood as a rigid group of points moving through
space, It was recognized immediately as a man In a
fixed position. Other displays of rigid objects
showed this same tendency to evoke a singie
perception of connectivity, desplte the fact that all
their polnts were equally 'connected’ In the sense
that an Imaginary rod could be extended between

them.

Certalnly in the case of the rigid man moving In
a circie, part of the expianation must lie in the
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Figure 4-5: MLD of mannzguin:
representative frames

sophisticated pattern matching abliities of the
human mind. This may not, however, be the only
reason. It may also be the case that the
mechanisms used to Interpret the structure of an
object seen In an MLD are sensilive to certain
relationships in the stimuius pattern, resuiting in a

tendency toward certain interpretations.




Whether or this represents a credible
theory of human vision, It Is the case that the
relationship calculation done by Lights on the points
of an MLD (see previous section) can suggest
connectivity In the underlying objects. Figure 4-6
shows the MST for three rigid objects - a man, a

There is a high degree of

not

cube and a Jack.
simliarity between the

Figure 4-8: MST for three rigid obJects

connectlvity preferred by most observers and the
connections favored by the relationship function on
which the MST was based.

initially it was hoped that this kind of clustering
alone would lead to a natural breakdown of the
obJect Into subparts according to the foliowing
algorlthm:

1.Separate Indlvidually moving objects
using MST clustering.

2.Pecaiculate the MST for each object
so defined.
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3.Use this graph to define subparts.

Unfortunately, the groupings obtalned from this
algorithm did not always correspond to the correct
division of the objects. The reason is that the
clustering algorithm is meant to identify closely
reiated points from their two-dimensional projection
of position and veiocity. For it to work properiy, the
reiatlonships the
motions of connected points must be preserved.
Often this wiil not happen If the object as a whole
Is spinning or twisting In space.

between three-dimensionai

The calcuiation of shouild most
properly be done relativ2 to the coordinate system
defined by the moving object. Two facts define

that system: (1) the movement of Its origin, and (2)

similarity

its changing orlentation relative to the stationary
background (the orientation itseif Is not Important
because there Is no one ‘correct’ orlentation for the
obJect’s coordinate system).

Lights attempts to compensate for these
factors. The centroid of the points defining an
object Is used as an approximation for the origin of
the object's frame of reference (psychologists
have &lso used the centroid, see Bor)Jesson and von
Hofsten 16). Some compensation for the rotation of
an object Is achleved througit a modification to the
Euclldean distance function to afiow points with
equai but opposite velocity to be considered 'ciose’
together. The resuiting MST more accurately
As can be seen in
figures 4-7 and 4-8 the graph forms a singly-linked
skeleton for the ob)ect.

reflects object composition.

The division of an object into its reiated parts
Is stiil subject to uncertainty. In the case of the

waiking man In particular, pseudo-relationships
sometimes resuit from the simifarity of motlon of the
arms and legs on opposite sides of the body. These

graphs are useful nonetheless ss a starting point

for the next stages of the interpretation process ~
the recovery of three-dimensional relationships and
the matching of the stimulus to a known model.
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the process of Interpretation. This Information is

avallable independent of the kind of objects belng

observed and derives from the fact that, over time,

related three-dimensional motions wiii exhibit

relationships in their two-dimensional projection. l
These reiatlonships hold true tfor both orthogonal

and perspective projection and
systematic distortions,
extraordinary robustne
human beings.

In the face of I
and appear to explain the
ss of MLD perception by

T T
R ey

Lights has been used successfully on MLDs with
one and two walking men and on Images with
geometric objects In motion. In addition, an MLD of
a man walking a dog was recently constructed and
was properly interpreted by Lights. Work Is
| ‘ currently proceeding on the final phases of MLD

Interpretation: model-matchlng and description.

Dircle.Ligh!s
Frame 27

e T O R g N M A R T e

Figure 4-7: MST skeleton for walking man
8uperimposed on canonical representation

Ciro!e.Lights
Frame 3@

Figure 4-8: MST skeleton for walking man
superimposed on actual frame from MLD

3
5. Conclusion

Lights demonstrates that MLDs possess an
internal structure which can be a significant ald in
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MOTION DETECTION AND ANALYSIS

John Batali and Shimon Ullman

M.LT. Artificial Intelligence Laboratory
545 Technology Square, Cambridge MA 02134, US.A.

ABSTRACT

Motion information may be obtained from local measure-
ments near the zero-crossing contours of image sequences
convolved with a V?G mask. The information thus obtained
may then be used to determine the boundarics and motions of
objects in the image sequences. A computer implementation
of the motion analysis is described.

InTRODUCTION

The extraction of motion information is an important
stage in the early analysis of visual information. It can be sub-
sequently uscd for a variety of useful tasks, e.g. the separation
of moving objects from their background, and navigation by
optical information.

In this paper we describe a technique for extracting mo-
tion information from a sequence of two (or more) images. We
then outline a method for using the motion measurements in
order to determine the boundaries of moving objects. These
methods are based on the analysis of motion detection in
[Marr & Ullman, 1979}. They have been recently implemented
by John Batali, and tested on a number of both natural and
computer-generated images.

TrEORETICAL OVERVIEW

The analysis of motion in an image I is begun by con-
volving the image with a mask shaped like VG where V is
the Laplacian operator and G is a symmetric 2-dimensional
gaussian distribution:

—(* +v)

1
G(z,y) = 2r0? exp =

with o the “space constant” of the gaussian.

Next, the zero-crossing contours (roughly speaking, the
contours of zero value) in the filtered image are located. These
zero-crossing contours serve as the basis for the computation
of sterecscopic matching ir 2 recent theory proposed by Marr
and Poggio [1979], and for the computation of the primal
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sketch [Marr, 1976; Marr & Hildreth, 1979]. Zero-crossings
correspond to loci of sharp intensity changes; they are useful
in describing the changes that occur in an image at a par-
ticular scale. In addition, the representation of the filtered
image by its zero-crossings is probably complete [Marr, Poggio
& Ullman, 1979} and one rcan thus expect them to play an
important role in carly visual processing.

There are a number of reasons for basing the extraction
of motion as well on the zero-crossing analysis. First, if zero-
crossing contours form the basis of shape analysis, it 18 useful
to determine their motion, thereby combining the analysis of
shapes with the analysis of their motion. Second, the zero-
crossings define contonrs along which the intensity gradient
(perpendicutlar to the contours) is substantial, making it pos-
sible to obtain rehable velocity measurements. Third, the
zero-crossings scem to be the carliest possible primitives for
which reliable velocity can be obtained [Marr & Ullman, 1979].

However the use of zero-crossing contours raises a sub-
stantial difficulty if their velocity is to be measured by a local
operator. This difficulty, which we shall term the aperture
problem, is illustrated in figure 1. If the motion i8 to be
detected by a unit that is small rompared with the overall
contour, the only information one can extract is the com-
ponent of the motion locally perpendicular to the contour.
Motion parallel to the contour would not be detected Hence
local measurcments alone fail to give cither the direction of
the speed of movement, and can only restrict the direction
to within 4-90°. The usc of zero-crossings (or other extended
elements, such as edges and lines) decomposes the problem
into two stages: the local measurements at the Zero-crossing,
and the subsequent combination of these measurements. We
shall briefly review each in turn.

MEASUREMENTS AT THE ZERO-CnossINGS

Suppose we have available from a time-varying image:
I(z,y,t), its convolution with a VG mask: S(z,y,t) =
V2@ ¢ I(z,y,t), and the time derivative of the convolution:
T(z,y,t) = §S(z,v,t) = § V’G ¢ [. Fron figure 2 it can
be seen that if the zero-crossing is moving to the right, the
value of the convolution at position Z will be increasing; and
if the zero-crossing is moving to the left, the value will be
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Figure §. The .iperture Problem.

If the motion of an oriented element is detected by a unit
that is small compared to the size of the moving element, the only
information that can be extracted is the component of the motion
perpendicular to the element. Looking at the moving edge E through
a small aperture A, it is impossible to determine whether the actual

motion is, e.g., in the direction of b or that of c.

decreasing. Hence, by examining the time derivative of the
convolution at position Z, the magnitude of the motion rela-
tive to the oricntation may be determined unambiguously.
Figures 2b and 2c illustrate this.

In the case of motion to the right, when the zero-crossing
reaches Z, T is strongly positive over a region centred on
Z and 20, wide, where o, is the space constant of the the
gaussian used to obtain T. 1 motion is to the left, the sign
of T is reversed.

In general, we have:
= —y,7-V§

where # 18 a unit vector and v, is the component of motion in
the # direction. If we take 7, to be the direction perpendicular
to the zero-crossing contour, then v,, may be determined by
measuring 7,- VS and T'.

In particular, the sign of the component of motion per-
pendicular to the zero-crossing segment is obtainable from
the direction of .- VS and the sign of T. This is equivalent
to an assert:.n about the direction of motion of the zero-
crossing.
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CoMBiNING THE MEASUREMENTS

Although the above measurements produce assertions
that are only correct to within 4-90°, by so doing they con-
strain the direction of motion to that range of values (figure
3a, b). The actual directior of inotion may then be determined
by combining the local constraints {fignre 3¢, d).

The general idea is to associate with cach point on a
zero-crossing contour an assertion ahout the possible motion
at that point. A local operator then examines the assertions
made in the vicinity of a point, and changes the assertion
associated with the point to reflect the information obtained
from the local region. The operators are considered to be
working in parallel at each zero-crossing point in the image.
As the assertions at vzrious points in the image are modified,
nearby operators will then use this modified information to
further constrain the asscrtions. In this way, constraints
“spread” throughout the image and the correct direction of
the motions of whule objects may be determined.

Now, if desired, the actual angular velocity, ¥ of an ob-
ject may be calculated from 9 - ¥, = v,,. And discontinuities
in either the directions or the velocitics in the image indicate
possible object boundarics.

CoMPUTER IMPLEMENTATION

Figure 4 shows the results of various stages of a computer
implementation of the procedure. Figures 42 and 4b show
the input images—two random-dot patterns. The squares are
512 by 512 pixels with a 50% density of 4 by 4 pixel dots.
Figure 4b was constructed from figure 4a by moving a central
square to the right and the background to the left.

When the two images are displayed to human subjects,
with an interstimulus interval of about 10 msec, the central
square is easily seen moving separately from the background.

The images are then convolved with a dilference of gaus-
sian rnask whose central ey .tatory width is 6 pixels. An
approximation to § V?G # [ is obtained by subtracting figure
4a from figure 4b and convolving the result with a mask of
w = B pixels. This order of operation is justified because, due
to the linearity of the derivative and convolution operations,

we have: "
a
—VIGe] = VG-I
a " ‘o

Figure 4¢ shows the result of the convolution ol figure 4a,

and figure 4d is the convolution of the difference image.

Zero-crossings are taken as the points in figure 4c whose
values are nonnegative and where the sign changes from one
side of the point to the other. These are shown in figure de.

The direction of #, - VS is determined by fitting a line
to a short segment of zero-crossings and recording the side of
the segments where the values are positive. The local-motion
direction is then found by examining the sign of the convolved
difference image, T, at the corresponding poiat and applying
the rule:
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Figure 2. The Valuesof S = VG o/, and of T = £ V¥Gelin

the Vicinity of an Inolated Intensity Edge. edge is moving to the right, and (2c) when it is moving to the left.
Figure 2a shows the S signal as a function of distance. The Motion of the zero-crossing to the right can be delected when the S
zero-crossing in the signal corresponds to the position of the edge. and T signals are as shown in figure 25. Motion of the zero-crossing
Figure 2b shows the spatial distribution of the T signal when the to the left is indicated in figure 2¢
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Figure 3. The Combination of Local Constraints.

The constraint placed by a single local-motion detector is that
the direction of motion must lie within a range of 180° on the al-
lowed side of the oriented element. (figure 3a). Equivalently, it is
forbidden to lie on the other side, 3b. Figure 3¢ shows the forbidden

(1) If the valueof T ie positive,
the motion is toward the negative side
of the zero-crossing contour.

(2) If the value of T is negative,
the motion is toward the positive side.

(3) If the value of T is zero,
the motion is ambiguous.

Figure 4f shows the points thus assigned a direction of
motion from 315° to 45° (0° to the right). Figure 4g shows
the points assigned a directions from 135° to 225°.

The combination of local constraints proceeds by mod-
ification of the motion assertions associated with each zero-
crossing point. 1f motion was found at a zero-crossing point,
we initially associate the set of allowed directions of motion

i

zones for two oriented el~ments moving along the direction indicated
by the arrow. The forbidden zone of their common motioa is the
union of their individual forbidden zones, as indicated in 3d. The
direction of motion is now constrained to lie within the intersection
of their allowrd zones, i.e. the first quadrant.

with the point. Otherwise, we initially associate a no-motion
assertion, as well as the direction of the positive ride, with
the zero-crossing.

A local operator, INT, then collects the assertions made
in the vicinity of each zero-crossing point in the image and
modifies the assertion at that point to reflect the informa-
tion obtained in the local region. If the intersection of the
sets of allowed directions associated with points in a small
region is nonempty, INT modifics the assertion made at the
central point of the region to allow only the directions iz
the intersection. If the entire image werc of a single, rigid
object in pure translation, and the local-motion dctectors
were. perfect, each operation of iNT on a local region would
further constrain the allowed direction of motion around the
correct direction. Continued iterations would eventually be
equivalent to a “global” intersection converging on a single
allowed direction—the actual direction the object moved.




If the intersection of the allowed directions in a local
region around a print is empty, it means one of two things:
Either one of the measurements in the region was in error,
or the region contains an occluding edge between {wo ob-
jects moving in different directions. We call such points “nil-
consistent”.

Nil-consistent points arc important for tworeasons: First,
if they occur at an occluding contour, they represent the
desired output of the separation process. A nil-consistent
contour is a very strong indicator of an object boundary.
Secondly, we don’t want to attempt to find the intersection
of consistent directions over a region that gave rise to a nil-
consistent point. If produced by an error, it is possible that
the region contains other errors and it would be good to min-
imize their effect. If the nil-consistent point was produced
by an edge, we wish to intersect only within the object’s
boundaries—not ac: oss them.

So when the local region being examined by an INT
operator contains a nil-consistent point, the operator makes
no changes in the region. For moving objects, we thus in-
tersect oo within the object boundaries and avoid error
points. 1 e object contains zero-crossing points at many
orientation:, the allowed direction of motion will be tightly
constrained after a few INT iterations.

If no motion was found at a zero-crossing point. (i.e. the
value of T was zero), we could Lave one of two situations:
Zither there was actually no motion at the point; or the mo-
tion at the roint was parallel with the zero-crossing contour.
To account for these situations, the INT operator treats all
no-motion asscrtions as consistent if no other type of asser-
tion is found in the region. If all nc-motion assertions in the
region are associated with zero-crossing segments with the
same orientation, and the intersection of the set of allowed
directions associated with zero-crossings where motion was
found inclué<s onc of the directions parallel with the non-
moving contours, that direction will be the assertion INT at-
taches to the central point of the region. In all cther cases,
non-motior and motion assertions arc taken to be inconsis-
tent, and nil-consistent assertions arc associated with points
in regions that contain both. The addition of these considera-
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tions allows the separation of a moving object from a non-
moving background as well as the inclusion of the very strong
constraints suggested by movement parallel with one of the
object's contours. If we allow “tracking” of one of two objects
moving in the same direction but at different speeds, then
that object can be seen as the “ground” for the the other
object and thus the two ran be separated.

The INT operator collected the assertions made in a 12
by 12 pixel square region around each point and maodified
the assertion at the point in the appropriate way. The nil-
consistent points found afier one iteration are shown in fig

4h.

All of the computations in both the motion-detection
and combination of constraint programs are local in the sense
that they only use values in a few nearby points. In biological
systems this sort of spatially limited locality is important
because it allows the processing to be done very quickly,
in parallel over the entire image. Information nced not be
transmitted very far, s0 no long interconnections are needed.

Both of these considerations apply also to the implemen-
tation of the computations in vLsi hardware. Current design
work taking advantage of this locality is being done on a vLs1
implementation of an oriented zero-crossing detector.
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Figure 4. The Moticn of Random Dots

Figure 46 shows a 512 X 512 pixel randcm-dot pattern with
a 50% dencity oi 4 X 4 pixel dots. In 4b the centre of 4a is shifted
one pixel ‘ot ight, L4 background is shifted one pixel to the
l2ft. Figure shows the convolution of the first image with a
difference of gauasian mask whose w = 6 pixels. The convolution
of the imag cated by subtracting 4a from 4b is shown in 4d. The
zero-cressings of the firet image are shown in figure 4e. 4f shows
tlie points where the local-inotion algorithm found motion to the
right, and 4g shows zero-crossings that moved to the left. Figure
4h shows the nil consistent points found aflter one iteration of the
INT operator.
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RECONSTRUCTING SMOOTH SUKFACES FROM PARTIAL, NOISY INFORMAT

TON

H. G. Barrow and J. M. Tenenbaum

SRI International
Menlo Park, California

ABSTRACT

Interpolating smooth surfaces from boundary
conditions is a ubiquitous problem in early visual
processing. We describe a solution for an
important special case: the interpolation of
surfaces that are locally spherical or cylindrical
from initial orientation values and constraints on
orientation. The approach exploits an observation
that components of the unit normal vary linearly on
surfaces of uniform curvature, which permits
implementation using local parallel processes.
Experiments on spherical and cylindrical test cases
have produced essentially exact reconstructions,
even when boundary values were extremely sparse or
only partially constrained. Results on other test
cases seem in reasonable agreement with human

perception.

INTRODUCTION

Suri-ce perception plays a fundamental role in
early visual processing, both in humans and
machines [1, 2]. An explicit representation of
surface structure is directly necessary for many
low-level visual functions involved in applications
such as terrain modeling, navigation, and obstacle
avoidance. It is also a prerequisite for general-
purpose, high-performance vision systems.

Information about surfaces comes from various
sources: stereopsis, motion parallax, texture
gradient, shading, and contour shape, to name a
few. Intormation may be provided in terms of
absolute or relative values of orientation or
range, depending upon the nature of the source.
Moreover, different technigues for extracting this
information are valid in different parts of the
scene. For example, inferring shape from shading
is difficult on a highly textured surface, or in
areaz of complex illumination, while stereo
information is not available in textureless areas
nor areas visible only from one viewpoint. Thus,
in general, evidence is incomplete, may be quite
gparse (as in line drawings), and subject to noise,
which leads to ambiguity.

Any attempt to derive globally consistent
surface descriptions from these diverse local

sources must therefore address the following basic
computational problems:

(1) interpolation of sparse data

(2) smoothing of noisy data

(%) deciding which techniques are applicable
in which parts of the scene

(4) integration of different types of data
from different sources

(5) deciding the location and physical type
of boundaries

In this paper we look mainly at the first
which arises in virtually all theories of
low-level vision [1, 21. We principally address
the problem of reconstructing a smooth surface,
given a set of initial orientation values, which
may be sparse or only partially constrained.

problem,

COMPUPATIONAL PRINCIPLES

We hegin with a precise definition of the
reconstruction problem in terms of input and
output.

The input is assumed to be in the form of
sparse arrays, containing local estimates of
surface range and orientation, in a viewer-centered
coordinate frame. In practice, the estimates may
be clustered where ihe information is obtainable,
such as along curves corresponding to surface
boundaries. In general, they are subject to error
and may be only partially constrained. For
example, given a three-dimensional boundary, the
surface normals are only constrained to be
orthogonal to the boundary elements. We also
assume that the location and nature of all surface
voundaries are known, since they give rise to
discontinuities of range or orientation. This last
condition is required in the current implementation
and is intended to be relaxed at a later date to
accommodate imperfect boundary detection.

The desired output is simply filled arrays of
range and surface orientation representing the most
likely surfaces consistent with the input data.
Refinement of hypothesized surface discontinuities




is also desired. These output arrays are analogous
to our intrinsic images 1] or Marr's 2.5D sketch

[2].

For any given set of input data, an infinitude
of possible surfaces cai be found to fit
arbitrarily well. Whic of these is best depends
upon assumptions about the nature of surfaces in
the world and the image formatior. process. Ad hoc
smoothing and interpolation schemes which are not
rooted in these assump tions lead to incorrect
results in simple cases. For example, given a few
points on the surface of a sphere, iterative local
averaging [3, 4] of range values will not recover a
spherical surface.

Assumptions about Surfaces

The principal assumption we make about
physical surfaces is that range and orientation are
continuous over them. We further assume that each
point on the surface is essentially
indistinguishable from neighboring points. Thus,
in the absence of evidence to the contrary, it
follows that local surface characteristics must
vary as smoothly as possihle and that the total
variation is minimal over the ¢ 'rfae. Range and
orientation are both dafined witn reference to a
viewer-centered coordinate syster, and so they
cannot directly be the criteria for evaluating the
intrinsic smoothness of hypothetical surfaces. The
simplest appropriate measures involve the rate of
change of orientation over the surface; principal
curvatures (k1, k2), Gaussian (total) curvature
(k1¥k2), mean curvature (k1+k2), and variations
upon them all reflect this rate of change [5]- Two
reasonable definitions of smoothness of a surface
are uniformity of some appropriate measure of
curvature [6], or minimality of integrated squared
curvature [7]. Uniformity can be defined as
minimal variance OT minimal integrated magnitude of
gradient.

The choice of a measure and how *to employ it
(e.g., minimize the measure or its derivative)
depends, in general, upon the nature of the process
that gave rise to the surface. For example,
surfaces formed by elastic membranes (e.g., soap
films) are constrained to minimum energy
configurations characterized by minimum area and
zero mean curvature [8]; surfaces formed by bending
sheets of inelastic material (e.g., paper or sheet
metal) are characterized by zero Caussian curvature
[QW; surfaces formed by many machining operations
(e.g., planes, cylinders, and spheres) have
constant principal curvatures.

We are not prepared, at this point, to
maintain that any of these measures is inherently
superior, particularly because of various close
relationships that exist between them. We note,
for example, that minimizing the integrated square
of mean curvature is equivalent to minimizing the
sum of integrated squares of principal curvatures
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and the integrated Geussian curvature, G, as shown
by:

2 r 2 2
ﬁm + k2) .da = (k! .da +ﬁ2 .da + %1*1«2.@
/ (1)
2 2
=ﬁ(1 .da +/1L2 .da + 2'/(;.da

We also note that making curvature uniform by
minimizing its variance of any measure over a
surface is equivalent to minimizing total squared
curvature, 1f the integral of curvature is
constant. This follows from the well-known fact
that for any function, £(x),

2
/Ef—fbar) .dx
2
=ff .dx

On any developable surface for which Gaussian
curvature, G, is everywhere Z€Tro0, and on a surface
for which orientation is known evarywhere at its
boundary (e.g., the boundary ig extremal), the
integral of G is constant. Thus, for such
surfaces, minimizing variance of G and minimizing
its integrated square are equivalent.

variance of f =

(2)

2
- [ff.ax] /DX

By itself, however, uniformity of Gaussian
curvature is not sufficiently constraining. Any
developable surface is perfectly uniform by this
criterion, 80 considerable ambiguity remains, as is
evident in Figure 1, where all cf the developable
surfaces satisfy the samé boundary conditions.

Thus a secondary constraint, such as uniformity of
mean curvature, is required to find the smoothest

developable surface.

In this paper we focus on surfaces witk
reasonably uniform curvature--surfaces that are
locally spherical or cylindrical. We shell demand
exact reconstructions for spherical and cylindrical
test cases and intuitively reasonable
reconstructions for other smooth surfaces. In
particular, given surface orientations defined
around a eircular outline, corresponding to the
extremal boundary of a sphere, or along two
parallel lines, corresponding to the extremal
boundary of a right circular cylinder, we require
interpolation to yield the correct srherical or
cylindrical surface, with uniform (Gaussian, mean,
and principal) curvature. These cases &are
important because they require reconstructions that
are symmetric in three dimensions and independent
of viewpoint. Many simple interpolation techniques
fail this test, producing surf-ces that are too
flat or too peaked. Given good performance On the
test cases, we can expect reasonable performance in
general.




A RECONSTRUCTION ALGOR1THM

Although in principle correct reconstruction
for aur test cases can be obtaineu in many ways,
the complexity of the interpolation process depends
critically upon the representation. For example,
representing surface orientation in terms of
gradient space leads to difficulties because
gradient varies very nonlinearly across the image
of a smooth surface, becoming infinite at extremal
boundaries. We shall now propose an approach that
leads to elegantly simple interpolation for our
test cases.

Coordinate Frames

¢i. . an image plane, we shall assume a right-
handed Cartesian coordinate system with x- and y-
axes lyiug in the plane (see Figure 2). We also
assume orthogonal projection in the direction of
the z-axis. Each image point (x,y) has an
associated range, Z(x,y); the corresponding scene
point is thus specified by

(%, y, 2(x,y) )

Bach image point also has an associated unit vector
that specifies the local surface orientation at the
corresponding scene point:

N(x,y) = ( Nx(x,y), Ny(x,y), Na(x,y) )

Since N is normal to the surface Z,
Nx/Nz = - d7/dx

(3)

Ny/Nz =

and - d7/dy

(The derivatives d%/dx and dZ/dy correspond to p
and q when the surface normal is represented in
gradient space form, (p,q,~1).)

Differentiating equation (3), we obtain

2
- d Z/dy.dx

d(Nx/Nz)/dy
(4)
2
- d Z/dx.dy .

and d(Ny/Nz)/dx =

For a smooth surface, the terms on the right of (4)
are equal, hence
d(Nx/Nz)/dy =

d(Ny/Nz)/dx . (5)

Finally, since N is a unit vector,

2 2 2

Nx + Ny + Nz = 1

(6)
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Semicircle

Let us begin by considering a two-dimensional
version of surface reconstruction. 1n Figure 3
observe that the unit normal to a semicircular
surface cross section is everywhere aligned with
the radius. It therefore follows that triangles
OPQ and PST are similar, and so

OP : 0Q : QP = PS : PT : TS (7)
But vector OP is the radius vector (x,z) and PS is
the unit normal vector (Nx,Nz). Moreover, the
length OP is constant (equal to R) and the length
PS is also constant (equal to unity). Hence,
x/R Nz = z/R . (8)

Nx = and

SRy

Now consider a three-dimensional spherical
surface, as shown in Figure 4. Again the radius
and normal vectors are aligned, and so from similar
figures we have
Nz = z/R . (9)

Nx = x/R Ny = y/R and

The point to note is that Nx and Ny are both
linear functions of x and Yy, and that Nz can
readily be derived from Nx and Ny because vector N
has unit length.

Cylinder

The case of the right circular cylinder is
only & little more complex. 1n Figure 5 observe a
cylinder of radius R centered upon a line in the x-
y plane, inclined at an angle A to the x axis. Let
d be the distance of point (x,y,0) from the axis of

the cylinder. Then
d = y.Cos A - x.Sin A (10)
2 2 2
and z = R - 4 a1

Let Nd be the component of vector N parallel
to th: x-y plane; it is clearly perpendiculgr to
the avtis of the cylinder. Now, since a cross
section of the cylinder is +nalogous to our first,
two-dimensional, case,

Nd = d/R (12)
Taking components of Nd parallel to the x and y
axes,

e

= Nd.Sin A

§)

Substituting in this equation for Nd, and then for
d il

Nx and

Ny = -Nd.Cos A




N = (y.Cos A - x.3in A).Sin A/R

(14)
-(y.Cos A - x.5in A).Cos A/R

and Ny

Observe that as for the sphere, Nx and Ny are
linear functions of x and y, and that Nz can be
derived from Nx and Ny.

INTERPOLATING SPHERICAL AND CYLINDRICAL SURFACES

From the preceding section, we can see that to
interpolate values for the normal vector, on
gpherical and cylindrical surfaces, between points
where its value is known, we reed only determine
the linear functions that describe the components
Nx and Ny. This can be done simply from known
values at any three noncollinear points. The
resulting functions can be used to predict
precisely values of Nx and Ny, and hence Nz also,
over the entire surface. The vector field produced
is guaranteed to satisfy the integrability
constraint of Equation 5, as may be verified by
substituting for Nx, Ny, and Nz from Equations 9 or
14 (for the sphere or cylinder, respectively) and
6. TFinally, the orientation field can be
integrated to recover range values.

For the special test cases, because of the
global nature of the linearity of Nx and Ny, it is
possible to interpolate betweea given boundary
values, treating Nx and Ny as essentially
independent variables. While in general the
integrability constraint should not be ignored, in
practice, since complex surfaces can often be
approximated locally by spheres or cylinders, this
constraint is weak and its omission does not result
in significant errors.

A COMPUTATIONAL MODEL

We have implemented a model that uses parallel
local operations to derive the orientation and
range over a surface from boundary values. It
exploits the linearity and separability results for
the test cases and extends them to arbitrary smooth
surfaces.

The overall system organization is a subset of
the array stack architecture first proposed in 1].
1t consists conceptually of two primary arrays, one
for range and the other for surface normal vectors,
which are in registration with each other (and with
the input image). Values at each point within an
array are constrained by local processes that
maintain smoothness and by processes that operate
between arrays to maintain the
differential/integral relationship. In genvral, we
must be able to insert initial boundary values
sparsely in both range and orientation arrays and
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have the system relax to £i11 in consistent
intervening values. At present we know how to
handle the restricted case where only orientation
is initially specified.

THE INTERPOLATION PROCESS

At each point in the orientation array we can
imagine a process that is attempting to make the
two observable components of the normal, Nx and Ny,
each vary as linearly as possible. The process
looks at the values of Nx (or Ny) in a small patch
surrounding the point and attempts to infer the
linear function, f = ax + by + c, that best models
Nx locally. 1t then tries to relax the value for
the point to reduce the supposed error.

There are numerous ways to implement such a
process, and we shall describe some of the ones
with which we have experimented. One of the
simplest is to perform a local least-squares fit,
deriving the three parameters a, b, and c. The
function f is then used to estimate a corrected
value for the central point. The leact-squares
fitting process is equivalent to taking weighted
averages of the values in the patch, using three
different sets of weights:

2: Nx
i i

:E: x Nx , :2: y Nx ,
i i i i

i i i

(15)

The three parameters of f are given by three linear
combinations of these threz averages.

If we are careful to use a symmetric patch
with its origin at the point in question, the sets
of weights and the linear combinations are
particularly simple-~the three sums in equation
(15) correspond, respectively, to

a*zé: % g c*:E: 1
i

i i i i

(16)

Equations (15) and (16) can be readily solved for
a, b, and c; but note that under the above
assvmptions, £(0,0)=c. so computation of a and b is
unnecessary for updating the central point, unless
derivatives are also of interest.

An alternative approach follows from the fact
that a linear functici satisfies the equation

Vit = 0 (17)

Numerical solution of this equation, subject
to boundary conditions, is well known. The VZ
operator may be discretely approximated by the
operator

-1
At
-1

-1




Applying this operator at a point in the image
leads to an equation of the form

4Nx - Nx -Nx -Nx -Nx = 0 , (18)
0 1 2 3 4

and hence, rewriting,

Nx = (Nx + Nx + Nx + Nx )/4 o (19)
0 1 2 3 4

Equation (19) is used in a relaxation process
Lthat iteratively replaces the value of Nx, at each
point by the average of its neighbors. Although
the underlying theory is different from least-
squares fitting, the two methods lead to
essentially the same discrete numerical
implementation.

The iterative local averaging approach works
well in the interior regions of a surface, but
difticulties arise near surface boundaries where
orientation is permitted to be discontinuous. Care
must be taken to ensure that the patch under
consideration does not fall across the boundary,
otherwise estimation of the parameters will be in
error. On the other hand, it is necessary to be
able to estimate values right up to the boundary,
which may, for example, result from another surface
occluding the one which we are attempting to
reconstruct.

The least-squares method is applicable to any
shape of patch, which we can simply truncate at the
boundary. However, the linear combination used to
compute each parameter depends upon the particular
shape, so we must either precompute the
coefficients for al” possible patches (256 for a
%x3 area) or resott to inverting a 3x3 matrix to
derive them for each particular patch. Neither of
these is attractive.

The above disadvantages can be overcome by
decomposing the two-dimensional fitting process
into several one-dimensional fits. We do this by
considering a set of line segments passing through
the central point, as shown in Figure 6. Along
each line we fit a function, f = ax + ¢, to the
data values, and thus determine a corrected value
for the point. The independent estimates produced
from the set of line segments can then be averaged.
It the line segments are each symmetric about the
central point, then the corrected central value is
again simply the average of the values along the
line. The principal advantage of the decomposition
is that we can discard line segments which overlap
a boundary, and often at least one is left to
provide a corrected value. We would prefer to use
short symmetric line segments, since they form a
compact operator, but in order to get into corners
we need also to resort to one-sided segments (which
effectively extrapolate the central value). We
have implemented a scheme that uses the compact
symmetric operator when it can, and an asymmetric
operator when this is not possible (see Figure 7).

We have experimented with a rather different
technique for coping with boundary discontinuities,
which is of interest because it involves multiple
interrelated arrays of information. For each
component of the orientation vector we introduce
two auxiliary arrays containing estimates of its
gradient in the x and y directions. For surfaces
of uniform curvature, such as the sphere and
cylinder, these gradients will be constant over the
surface; and for others, we assume they will be
slowly varying. To reconstruct the components of
the normal, we first compute its derivatives, then
locally average the derivatives, and finally
reintegrate them to obtain updated orientation
estimates.

Derivatives at a point are estimated by
considering line segments through the point
parallel to the axes. We again fit a linear
function-~but now we record its slope, rather than
its intercept, and insert it in the appropriate
gradient array. In the interior of a region we may
use a symmetric line segment, and near boundaries,
a one-gsided segment, as before. The gradient
arrays are smoothed by an operator that forms a
weighted average over a patch, which may easily be
truncated at a boundary. (To form the average over
an arbitrarily-shaped patch, it is only necessary
to compute the sum of weighted values of points
within the patch and the sum of the weights, and
then divide the former by the latter.) A corrected
orientation value can be computed from a
neighboring value by adding (or subtracting) the
appropriate gradient. FEach neighboring point not
separated by a boundary produces such an estimate,
and all the estimates are averaged.

ESTIMATION OF SURFACE RANGE

The process of integrating orientation values
to obtain estimates of range Z is very similar to
that used in reintegrating orientstion gradients.
We again use a relaxation technique, and
iteratively compute estimates for Z from
neighboring values and the local surface
orientation. Here we need orientation expressed as
dZ/dx and dZ/dy, which are obtained from Nx and Ny
by Equation 3. At least one absolute value of 2
must be provided to serve as a constant of
integration. Providing more than one initial Z
value constrains the surface to pass through the
specified points; but since the inverse pa*h from 2
to N has not yet been implemented, the resulting
range surface is not guaranteed to be consistent
with the orientations.




EXPERIMENYAL RESULTS

L]

An interactive system was implemented in
MAINSAIL {10] to experiment with and evaluate the
various interpolation algorithms discussed above.
This system includes facilities for generating
quadric surface test cases, selecting interpolation
options, and plotting error distributions.

Test Cases

How well do each of the above interpolation
techniques reconstruct the test surfaces? To
answer this, we performed a series of experiments
in which the correct values of Nx and Ny were fixed
along the extremal boundaries of a sphere or
cylinder, as shown in Figure 8. The surface
orientations reconstructed from these boundary
conditions were compared with those of ideal
spherical or cylindrical surfaces generated
analytically.

The first set of experiments involved a sphere
of radius 7 centered in a 17 x 17 interpolation
array. We deliberately used a coarse grid to test
the accuracy of the reconstruction under difficult
conditions. (A coarse grid also has the
experimental advantage of minimizing the number of
iterations needed for convergence.) Cnrrect values
for Nx and Ny were fixed at points in the array
falling just inside the circular extremal boundary
of the sphere. Table I summarizes the results for
this test case, using various interpolation
operators.

The results on the
almost uriformly good.
gradient smoothing, the
below one percent after
(-1.0 < Nx, Ny < 1.0).
through the sphere, the maximum error occurs
approximately a quarter of the way in from both
boundary points, the error being zero at the
boundary points and also on the symmetry axis half
way between them. We conclude that B-connected,
uniformly weighted averaging and 8-way linear
interpolation/extrapolation are superior in terms
of speed of convergence, with the 1i :ar operator
preferred because of its advantages at boundaries
and corners. These conclusions generalize to all
of the test cases we have studied to date. Thus,
for brevity, the experimental results that follow
are reported only for the 8-way linear operator.

spherical test case are
In all cases, except
maximum absolute error is
100 itcrations

On any cross section

The second set of experiments involved a
cylinder of radius 6, centered in an 8 x 8
interpolation array. Again, correct values for Nx
and Ny were fixed at points in the array falling
just inside the parallel lines representing the
extremal boundaries of the cylinder. With the
cylinder oriented parallel to the X or Y axis, the
mazimum absolute error in Nx or Ny after 50
iterations was .018 and the RMS average error .0!

After 100 ~terations. the absclute error dropped to
.0004 and ihe RMS average to .0002. When the major
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axis of the cylinder was inclined 60 dzgrees to the
X-axis, the errors look much higher: .12 absolute
and .03 RMS after 50 iterations; .108 absolute and
.03 RMS after 100 itergtions; .09 absolute and .02
RMS after 300 iterations. However, the errorful
orientations were concentrated solely in the upper
right and lower left corners of the array, where
the cylinder boundary is effectively occluded by
the array edge. FExtrapolation of values from the
central region, where the orientations are very
accurate, into these partially occluded corners
accounts for the slow rate of convergence. After
1,000 iterations, however, orientations are highly
accurate throughout the array.

Other Smooth Surfaces

Given that orientations for uniformly curved
surfaces can be accurately reconstructed, the
obvious next question is how well the algorithms
perform on other surfaces for which curvature is
not glebally uniform. A simple case to consider is
that of an elliptical boundary. However, we
immediately run into the problem of what is to be
taken as the "correct” reconstruction. When people
are asked what solid surface they perceive, they
usually report either an elongated object or a
squat object, roughly corresponding to a solid of
revolution about the major or minor axis,
respectively. The elongated object is preferred,
and one can argue that it is more plausible on the
grounds of general viewpoint (a fat, squat object
looks elongated only from a narrow range of
viewpoints). When presented with initial
orientations for an elliptical extremal boundary
(Figure 9), our algorithms reconstruct an elongated
object, with approximately uniform curvature about
the major axis. They, in effect, reconstruct a
generalized cylinder f11], but without explicitly
invoking processes to find the axis of symmetry or
matching the opposite boundaries.

In a representative experiment, initial values
for Nx and Ny were fixed inside an elliptic-shaped
extremal boundary (major axis 15, minor axis 5).
The reconstructed orientations were then cempared
with the orientations of the solid of revolution
generated when the ellipse is rotated about its
major axis. The resulting errors after 50
iterations were: for Nx, .02 maximum absolute
error and .006 average RMS error; and for Ny,
maximum ahsolute and .002 RMS.

. 005

Occluding Boundaries

We also wish to know how well the
reconstruction process performs when the
orientation is not known at all boundary points.
In particular, when the surface of interest is
occluded by another object, the occluding boundary
provides no constraints. In such cases, the
orientation at the boundary must be inferred from
that of neighboring points, just like at any other
interior points of the surface. The 8-way linear

operator will correctly handle these situations,
since it takes care to avoid interpolating across
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boundaries. We take advantage of this ability by
treating the borders of the orientation array as
occluding boundaries, so tlat we may deal with
objects which extend out of the image. For
example, spherical surface orientations were
correctly recovered from the partially visible
boundary shown in Figure 10. The case of the
tilted cylinder discussed above is a second
example.

Experiments with occluded boundaries raised
the question of just how little boundary
information suffices to effect recovery. We
experimented with a limiting case in which we
attempted to reconstruct surface orientation of a
sphere from just four initial boundary values at
the corners of the arrays. This corresponds to the
image of a large sphere whose boundary
circumscribes the square array (see Figure 11).

The resulting surface orientations produced from
these extremely sparse initial conditions were as
accurate as when all the boundary orientations are
given, but more iterations were required. For
example, fixing the Nx and Ny orientations at the
corners of a 17 x 17 square array to the values for
a sphere of radius 12, the maximum absolute error
of the reconstructed interior orientations after
400 iterations was less than .005.

Qualitative Boundary Conditions

In all the above experiments, boundary
conditions were provided by specifying exact
orientations at all unoccluded points along
extremal boundaries. The values of Nx and Ny at
thiese points were initially inserted in the arrays
and were held fixed through all iterations. In a
complete visual system it is necessary to derive
these values from the shape of extremal boundaries
in the image. In principle, this can be done
easily, since the surface normal at each point is
constrained to be orthogonal to both the tangent to
the boundary and to the line of sight. (For
orthogonal projection, the normal must thus be
parallel to the image plane.) In a spatially
quantized image, the accurate determination of
tangent is difficult, particularly when the object
is not very large compared to the quantization
grid.

One way to overcome this problem is to
introduce the notion of qualitative, partially-
constraining boundary conditions. We can, for
example, constrain the surface normals along a
quantized extremal boundary to be approximately
parallel to the image plane and point outward
across the boundary. We then rely on the iterative
process to reconstruct exact values for the normals
at points on the boundary, treating them just like
interior points. To implement this approach, we
introduce a step which at each iteration checks the
orientation at boundary points. For each boundary
element adjacent to the point, we check that the
surface normal has a component directed outward
across it. TIf it does not, the value of Nx or Ny
is modified appropriately. The value of Nz is also
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checked to be close to zero, and vector N is
normalized to ensure it remains a unit vector.
This process was applied to the spherical,
cylindrical, and elliptical test cases, and was
found to yield orientation values accurate to 10
percent, for both interior and boundary points,
after only 100 iterations. The principal
limitation on accuracy appears to be the coarse
quantization grid being used.

FUTURE PLANS

Experimentation is continuing to determine how
well the reconstruction technique performs, both in
absolute terms and relative to human perception,
for a variety of test surfaces. Simultaneously, we
are investigating other interpolation operators
that reflect measures of curvature appropriate to
different surface types, such as soap films. We
are also extending the program to deal with a wider
range of reconstruction problems, including,
specifically, reconstruction from noisy range
values and from partially constrained normals along
intersection edges, mentioned in the preceding
paragraph. These extensions will require properly
integrating surface orientation and range (which
may require making the integrability condition of
Equation 5 explicit), and smoothing noisy, and
possibly inconsistent, data. Ultimately, a general
vision system will need the ability to add and
delete hypothesized discontinuities so that
surfaces and boundaries can be simultaneously
refined.

Although the reconstruction process we have
described is conceptually parallel, there are
inherent limitations on how fast information can
propagate across the image. Thus, convergence
speed is of practical concern. Using larger
operators increases the effective velocity of
yropagation but can impair precision where small
features are involved. What seems to be required
is a scheme that combines multiple sizes of
operators in a hierarchical organization, where
initial estimates provided by the larger operators
are refined by the smaller ones. We are studying a
number of theoretical questions raised by a
hierarchical approach to surface reconstruction,
including the effects of operator size on speed and
accuracy, and the key question of how information
propagates between levels of the hierarchy.

CONCLUSION

Interpolating smooth surfaces from boundary
conditions is a ubiquitous problem in early visual
processing [1, 2o {lo 11-18]. We describe a

solution for an important special case: the
interpolation of surfaces that are locally
spherical or cylindrical, given initial orientation




values and constraints on orientation. Our
principal contributions are: the observation that
components of the unit normal vary linearly on
surfaces of uniform curvature; the development of a
number of parallel computational techniques for
surface reconstruction exploiting this observation;
and the clarification of some of the conditions
under which surfaces can be rezonstructed from
incomplete information.

The ability to handle sparse or partially
constrained initial conditions is impovtant in a
reconstruction algorithm because ofter. nothing else
is obtainable. It is well known, for example, that
photometric constraints yield families of normals
at most points on a smooth surface, not unigque
values. Also, since range values, as provided by
stereo, motion parallax, and laser range-finders,
may be noisy, S0 may initial orientations obtained
by differentiating range. A major remaining source
of surface information is contour shape, as invoked
in the interpretation of surfaces defined by line
drawings. In line drawing interpretation [7, 1=
13], the initial conditions are extremely sparse,
being undefined except along the lines. Moreover,
along those lines corresponding to intersection and
occlusion (as opposed to extremal) boundaries,
orientations are only congstrained to be orthogonal
to the three-dimensional line segment; their exact
directions are indeterminate.

Reconstruction experiments on spherical and
cylindrical test cases have produced essentially
exact reconstructions, even when boundary values
were extremely sparse or only partially
constrained. Results on other test cases seem in
reasonable agreement with human perception.

ACKNOWLEDGEMENTS

The work reported in this paper was performed
under SRI's research program in computational

vision, which is Jjointly supported by ARPA, NSF,
and NASA.

REFERENCES
1o H. G. Barrow and J. M. Tenenbaum, "Recovering

Intrinsic Scene Characteristics from Images,"
in Computer Vision Systems, A. Hanson and

F. Riseman, eds., pp. 3~26 (hcademic Press,
New York, New York, 1978).

D. Marr, "Representing Visual Information,” ir
Computer Vision Systems, A. Hanson and
(Academic Press, New York,

E. Riseman, eds.
New York, 1978).

83

12.

R P —

L. S. Davis and A. Rosenfeld, "Noise Cleaning
by Iterated Local Averaging,” 1EEE Trans. SMC,
Vol. 8, pp. 705-T10 (1978).

R. Haralick, "A Facet Model for Image Data,"
Proc. IEEE Conf rence on Pattern Recognition
and Image Processing, Chicago, Illinois, pp.
485-497 (August 1979).

L. Brand, Vector and Tensor Analysis (John
Wiley, 1953).

4. G. Barrow and J. M. Tenenbaum, op. c¢it., pe
19, para. 4.

A. Witkin, "The Minimum Curvature Assumption
and Perceived Surface Orientation,”
presentation at Optical Society of America,
November 1978.

¥. J. Almgren, Jr., and J. E. Taylor, "The
Geometry of Soap Films and Soap Bubbles, "
Scientific American, pp. 82-93 (July 1976).

D. A. Huffman, "Curvature and Creases: A
Primer on Paper,” IEEE-TC, Vol. €-25, No. 10,
(October 1976).

C. Wilcox, M. Dageforde, and G. Jirak,
“MAINSAIL Language Manual,"” Stanford
University, Stanford, California (July 1979)-

D. Marr, "Analysis of Occluding Contour,”
Proc. Roy. Soc. lond. B, Vol. 197, pp. 441-475
(1977).

K. Stevens, "Surface Perception From Local
Analysis of Texture and Contour," Ph.D.
Dissertation, Electrical Engineering and
Computer Science, Mass. Inst. of Technclogy,
Cambridge, Massachusetts.

H. G. Barrow and J. M. Tenenbaum, "Recovery of
Three-Dimensional Shape Information from Image
Boundaries,” (in preparation).

B.XK.P. Horn, "Obtaining Shape from Shading
Information,” in The Psychology of Computer
Vision, P. H. Winston, ed. {(McGraw-Hill, New
York, New York, 1975).




15.

R. Woodham, "A Cooperative Algorithm for
Determining Surface Orientation from a Single
View," Proc. Fifth Intl. Joint Conference on
ézyificial Intelligence, Cambridge,
Wassachusetts, pp. 635-641 (August 1977).

M. Brooks, "Surface-Normals from Closed
Paths,” Proc. Sixth Intl. Jjoint Conference on
Artificial Intelligence, Tokyo, Japan, pp. 98-
101 (August 1979)-

D. Marr and T. Poggio, "Cooperative
Computation of Stereo Disparity,” Science,
Vol. 194, pp. 283-287 (1977).

W. F. Clocksin, "Determining the Orientation
of Surfaces from Optical Flow," Proc. AISB
Conference on Artificial Intelligence,
Hamburg, West Germany, pp. 93-102 (July 1978).

84

TABLE I - INTERPOLATION RESULTS FOR SPHERICAL TEST CASE

Max.

Abs. Error
(Nx, Ny)

Average (RMS) error
(Nx, Ny)

Operator # Iterations
Uniformly Weighted 50
Average over 4- 100
connected 3X3 patch
Uniformly Weighted 50
Average over 8- 100
connected 3X3 patch

V2 over a 4- 50
connected 3X3 patch 100
8-way linear interpolation/ 50
extrapolation (see Figure 6) 100
4-way linear interpolation/ 50
extrapolation (just parallel 100
to x and y axes)
GCradient smoothing over a 50
4-connected 3X3 patch 100
200
Gradient smoothing over an 50
g8-connected 3X3 patch 100
200

.0007
0000006

.006
. 00006

.004
.00002

.03
.001

.0003
.0000003

.003
.00003

.002
.00001

.01
.0007

.19
12
.05

e b e
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DETECTION OF ROADS AND LINEAR STRUCTURES IN AERIAL IMAGERY BY COMPUTER
M. A. Fischler, J. M., Tenenbaum, and H. C. Wolf

SRI International
Menlo Park, California

ABSTRACT (3) 1If parts of the road are occluded, those

This paper describes 2 computer-tased approach
to the problem of detecting and precisely
delineating roads, and similar "line-like"
structures, appearing in low-resolution aerial
imagery. The approach is based on a new paradigm
for combining local ipfarmation from multiple, and
possibly incommensurate, sources, including various
line ~nd edge detection operators, map knnwledge
arout the likely path of roads through an imuge,
and generic knowledge about roads (e.g«,
connectivity, curvature, and width constraints).
The final interpretation of the scene is achieved
by using either a graph sear~h or dynamic
programming technique to optimize a global figure
of merit. Implementation details and experimental
results are included.

INTRODUCTION

A person given the problem of producing an
overlay showing the clearly visible roads in an
aerial image would norrally be expected to
accomplish this task with little difficulty, even
though he may be completely unfamiliar with the
terrain depicted in the image. Our purpose in this
paper is to clarify the nature of this task and
some of its generalizations. In particular, we
wish to specify the requi rements and mechanisms for
a machine to be capable of near-human performance
in finding roads and other semantically meaningful
linear structures in aerial images.

Performance Criteria

Our goal is to produce a 1ist of connected
points for each segment of road which is tracked in
the input image. Bach such track is a delineation
of the actual road and should have thz following
properties:

(1) No point on a track should be located
outside of the road pboundaries when the
road is clearly visible.

(2) The srack should be amooth where the road
is straight or smoothly curving (within
the constraints of a digital raster
representation).

portions of the continuous track
overlaying the occluded segments should
pbe labeled as such.

(4) In arcas where the road is partially
occluded, the track should follow the
sctual center of the road (as opposed to
the center of the visible portion). If
the road is composed of adjacent but
geparated lanes, then each lane will be
considered a separate road for our
purposes.

ggntoxtual Settings for Road Tracking

A “road” is a functionally defined entity
whose appearance in an image depends largely on its
width and how much internal road detail is visible;
i.e., appearance depends largely nn image
resolution (see Figure 1: Road Scenes Depicted At

cpectrum of Resolutions). Additicnal factors
having a major effect on visually locating roads in
imagery include the visible extent of the road, its
contrast with the adjacent terrain, the presence of
neerby linear structures, and any prior knowledge
about the actual shape of the road and its locasion
in the image.

We have found that the following contextual
settings require significantly different approaches
to the road tracking problem:

(1) High vs. low resolution (low resolution
is defined as the case in which the road
being tracked has an image width of three
or fewer pixels).

(2) lear vs. occluded viewing (clear
viewing is defined as a situation in
which no more than approxima tely 30% of
the road being tracked is occluded by
clouds, intervening objects, etc.)e.

(3) High vs. low density of linear detail
(nominally, this distinction corresponds
to urban vs. rural scenes) .

In this paper we will mainly be concerned with
tracking roads in clear imagery of rural scenes at
low resolution. A robust technique for tracking
roads in high-resolution imagery was previously
reported (Quam [1978]). We note that in the case
of high-resolution imagery, once the road has been




"acquired" and we are able to track features
internal to the road boundaries, the surrounding
detail is of minor importance (except as it
introduces shadows and occlusions); thus, the
distinction between urban and rural scenes is
important mainly at low resolution. Where the
roads are heavily occluded, road matching rather
than road tracking is the appropriate technique;
here one needs to have prior knowledge of wn=z
geometry of the road networks being searched for.
Prior knowledge about the (approximate) location
and/or direction of the roads in the inagery is
important if a specific road (as opposed to all
roads) is to be tracked; some method of indicating
which road we are interested in is necessary, and
this is typically done by delimiting a search area
in the input image. Finally, prior knowledge about
terrain type and/or scene elevations can be used to
help distinpuish low-resoluiion roads from cther
linear features by invoking cultural and economic
constraints which are known to affect road
construction.

LOW-RESOLUTION ROAD TRACKING

At low resolution roads are often
indistinguishable from other linear features
appearing in the image (including artifacts, such
as scratches). Thus, the low-resclution road
tracking problem largely reduces to the geuneral
problem of line (as opposed to edge) following.
Nevertheless, there are still some weak semantics
that can be invoked to specifically tailor a system
for rcad trecking, trading some generality for
significant increases in performance.

The Basic Paradigm

The basic paradigm we employ is to first
evaluate all local evidence for the presence of a
roai at every location in the search area (a low
numeric value indicates a high likelihood that the
given image point lies on a road), and then find a
single track which, while satisfying imposed
constraints (such a= continuity), minimizes the sum
of the local evaluation scores (costs) associated
with every point along the track. While the basic
optimization paradigm is not new (e.g., Fischler
[1973], Montanari [1971], Martelli [1976], Barrow
and Tenenbaum [1975] Rubin [19781), it is
incompletie in that it does not provide mechanisms
for reconciling incommensurate sources of
information. This capability is crucial in
problems such as road tracing in whick no single
coherent model is adequate for reliable detection.
In this paper we introduce new and relatively
simple mechanisms for combining local evidence and
constraints in the context of an optimization
paradigm for detecting linear structures.

Detecting Local Road Presence--Road Operators and

Models

At low resolution roads are line-like
structures of essentially constant width, which, in
general, are locally constant in intensity in the
along-track direction and show significant contrast
with the adjacent torrain (generally, they are
either uniformly lighter or darker). A specific
interpretation of this low-resolution rogd model is
embodied in the Duda Road Operator (DRO) described
in Figure 2. In Figure % we show some examples of
the scores produced by this operator on a variety
of read scenes. It is apparent that the DRO does a
good jot most of the time but has some significant
weaknesses; it is sensitive to (a) road orientation
(in directions other ‘han the four principal
directions explicitly covered by the masks
described in Figure 2), (b) raster quantization
effects (e.g., where a straight line segment "jogs"
in crossing a guantization boundary), (c) sharp
changes in road direction, and (d) to certain
contrast problems with the adjacent terrain.

At this point one might wonder if a special
road operator is really required; why not simply
use a generic edge d:tector (e.g., Sobel [in Duda
and Hart, 19731, Roberts [1965], or Heuckel [1971
and 1973])? Even more to the point, we notice that
it is possible to interpret the effect of employing
an operator on an image as resulting in the
suppression of all detail other than that
associated with the entity to be detected;
therefore, a high-pass filter might act as a
perfectly good road operator. Finally, roads will
generally be lighter or darker than the immediately
ad jacent terrain; why not simply use the actual
intensity values (contrast-enhanced and possibly
inverted, depending on the relative brightness
between the road and adjacent terrain)? In Figure
4 we show a comparison of these different
techniques applied to the same road scere; in
Figure 5 the scores are thresholded to mnke
explicit the locations in the image which are
assigned the highest road presence likelihoods by
the different techniques.

In the approach we have .eveloped, a key
attribute characterizing the utility of a "local”
image feature detector (i.e., "cperator") is the
percentage and coherence of its mistakes when it is
almost certain it has found instances of the
feature it is designed to detect. Even though the
Duda road operator makes mistakes of omission, its
performance in not making coherent false-alarm type
errors is quite good.

Combining Incommensurate Sources of Knowledge--An

Elaboration of the Basic Optimization Paradigm

We will now specify a general approach for
combining the results deduced by the application of
a set of (road) operators, as well as to the
problem of allowing prior knowledge and constraints

* Suggested by R. 0. Duda of SRI International.




to influence the answer produced by the
optimization algorithm.

We partition our inv.atory of operators into
two categories--Type I operators, each of which can
be adjusted to make very few coherent errors in
detecting instances of the relevant feature when
the feature is not present (possibly at the cost of
making a large number of omission errors); and
Type II operators, each of which can be adjusted to
reliably give a quantitative indication of the
presences of the feature when it is actually under
examination (but these operators might be very
unreliable in their assertions when examining
something other than the desired feature). Our
basic approach is to strongly bias (or even
constrain) the desired answer to fit the coherent
pattern produced by a superposition of evidence
provided hy all the Type I operators and to¢ fill in
the details locally, using that particular Type II
operator which seems to be most certain that it has
found the desired feature. (A more comprehensive
discussion on methods for combining multisource
evidence is given in Fischler and Garvey [in
preparation].)

A prohlem that immediately arises is how to
combine the results of several Type I and Type II
operators. By censidering the output of Type I
operators to Ve valid hinary decisions, we have
made them commensurute and can logically combine
their outputs. In the context of tracking roads
(or other linear features), we scan each of our
Type I operators over some specified region of
interest and create a binary overlay mask
containing the logical union of the locations at
which one or more of these operato.,s has detected
(with high likelihood) the presence of a road. An
example of such a mask, called a "perfect road
score" (PRS) mask, is compared in Figure 6 with the
road image from which it was derived.

The problem of combining the results produced
by a set of Type II operators has no acceptable
solution when the values they return are not
probabilities nor other commensurate quantities.
However, Type I and Type II operator scores can be
combined, since a positive Type I output can always
be set to the maximum value !zero cost) on the
likelinood scale of any Type II operator.

Our approach is thus to AND the PRS mask
(containing the union of all positive Type I
outputs) with every array of scores produced by the
Type II operators to produce a set of cost arrays
(CA) with zero cost scoves at the locations marked
in the PRS mask. The optimization algorithm is
separately applied to each CA, and the path with
the lowest global score is selected as the primary
road track through the given region.

In addition to creating a framework for
"growing" the road using the Type I operators, we
have develcoped a simple mechanism for introducing

constraints and a priori information via the scores
obtained from the Type II operators. This is

accomplished by numerically transforming the value
"x" originally produced by any Type II operator
using tne function: score = x"a+b (with control
constants a and b). For example, if control
constant "a" is held fixed and "b" is increased,
the resultant optimal path through the CA would
tend to be smoother and straighter (somewhat like
pulling the path taut); this eftect occurs because,
as "b" is increased, the length of the path becomes
relatively more important in comparison to the
local quality as defined by the individual values
"x" returned by the operator. If we are tracking a
rocky coastline in an image, we would opt for
placing the path through the locations having the
best edge scores as opposed to trying to smooth the
result; here we would use a zero value for "b". In
the case of tracking a road where smoothness is a
nominal property, we would select some nonzero
value fer "b". If we had a priori information that
a road we are attempting to track is fairly
straight, we could use a high value for "b".

As the value of control constant "a" is
increased, there is a very strong inhibition
against going through a point having a low
likelihood of being on a road. Thus, if we wish to
track a road in a region where there may be other
strong linear structures nearby, a high value of
constant "a" will prevent a jump from one linear
object to another; but this can result in wandering
(e.g., around shadows, vehicles, etc., in the case
ot tracking a high-resolution road). Figure 7
shows some examples of tracking a road with
different values of the two control constants.

The Low-Resolution Road Tracking Algorithm (LRRT)

The low-resolution road tracking algorithm
operates as follows:

(1) A search region is designated in the
image. This search region is defined by
a binary mask which delimits the search
for the road track.

(2) A selected set of Type I operators are
scanned over the region designated by the
search mask; and the scores produced by
each such operator are histogrammed and
thresholded at some preset level, based
both on the nature of the operator and
so that the number of points below this
threshold will not exceed the number of
road points estimated to be present in
the search window (e.g., selecting 5%
of the points in the search wirdow might
be an upper limit for the Duda road
operator). A PRS mask 1s generated as
the union of those locations at which
each Type I operator is lower than its
associated threshold (scores are treated
as costs; a lower score implies a more
road-like appearance).

(3) A selected set of Type II operators is
scanned over the region designated by the
search mask, and the scores produced by

il + il . I




(4)

(5)

each such operator are either scaled or
normalized (e.g., by their histogram
ranking) to lie in the nominal range from
1-100; the scores for each Type II
operator are stored in a separate array.

Each Type Il array is now sequentially
modified as indicated:

(a) 1In those regions of the image where
some external sourre of information
indicates that occlusions exist
(e.g., due to clouds or to inter-
vening objects), or where there is
no significant contrast between the
road and the adjacent terrain, thus
rendoring the road "invisible," a
constant is added to the score at
each pixel location. This is done
in order to reduce the preference
for one path over another through
areas where the local operators are
incapable of returning relevant
information about road presence.

(b) The scores at those locations cor-
responding to points in the PRM are
set to zero (actually, they are set
to some very small positive value to
prevent arbitrary wandering, or even
cycling, through regions of zero
cost).

(¢) Every score "x" in the array is
transformed (as discussed earlier)
by the formula:

x' = x"a+b

This transformation allows us to
introduce external information in
adjusting the balance between track
smoothness (or straightness) and
placing the track at its locally
most probable location.

Starting and terminating delimiters are
designated in the search area: ei‘her a
pair of lines (e.g., the sides of the
search window) or a pair of boxes,
through which the road must pass. Each
Type 1I cost array is considered to be a
graph with each pixel connected to each
of its eight neighbors, and a minimum
coet path is found in each such array
between the starting and terminating
delimiters. Since there is no way to
directly compare the relative merits of
road tracks computed in two distinct
Type II arrays, we employ a heuristic in
which the average score per pixel along
the track in each Type 1I array is
computed, and its histogram ranking in
comparison with all the scures produced
by the given Type II operator cver the
search window is taken as the quality of
the track. The track with the highest

quality number is chosen as the preferred
track.

THE GENERAL PROBLEM OF LOW-RESOLUTION
ROAD TRACKING (MULTIPLE ROADS)

We find that it is desirable to deal with the
road-(linear feature)-tracking problem in three
distinct phases:

(1) The first phase produces a crude
delineation of all the roads to be
tracked (either producing an approximate
track for each road segment or narrowing
the search areas containing the different
road segments). This delineation can be
obtained by making multiple passes
throuzh the initial search area of an
image with the LRRT described above.
After each pass, the detected road track
is marked as a forbidden area so as to
allow the next most prominent road
segment to be detected. If two distinct
road tracks have common segments or have
the same start and stop delimiters, then
the "suboptimal" road tracks produced by
the linking algovithm (the algorithm
which finds the lowest-cost path through
the Type II operator cost array) will
generally delineate additional road
segments.

With the availability of an external
knowledge source, such as a map dats base
or a sketch map, the desired delineation
can be obtained more directly.

(2) The second phase produces a precise track
for each road segment of interest by
applying the LRRT to the individual crude
delineations obtained in the first rhase.

(3) The tnird phase involves smoothing and
possibly linking road segments separated
by regions of significant occlusion, as
well as marking those portions of a road
track that were inferred from continuity
rather than direct visibility.

IMPLEMENTAT10N DETAILS AND EXPERIMENTAL RESULTS

While we have addressed the problems
associated with each of the above phases for
automatically delineating the low-resolution roads
and linear structures in an image, most of our
current experimental work has been concerned with
obtaining a high-performance solution to the
problem of precise delineation required in phase
two. We have implemented two versions of the LRRT
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generically described in the preceding section: an
INTERLISP/SAIL version for developmental work and a
FORTRAN version for more extensive experimentation
and evaluation. Both versions run on the SRI PDP-
10, while the FORTRAN version was designed to also
be compatible with a CDC 6400 system at the

U. S. Army Engineer Topographic lLab (ETL) at Ft.
Belvoir (the FORTRAN version has a minimum core
requirement of 20,000 60-bit words, and will track
4 road segment 128 pixels long in 15 seconds of CPU
time; the corresponding numbers for the INTERLISP
version are 90,000 36-bit words of core and 60
seconds of CPU time).

The FORTRAN version of the LRRT makes some
additional assumptions about the roads to be
tracked: it assumes that they are generally
lighter or darker than the surrounding terrain and
that they do not "double back" on themselves in the
designated search areas. Tt uses a single Type II
operator (based on histogram normalized image
intensity) and two Type I operators (the Duda road
operator and an image intensity operator, which
thresholds image intensity and also checks the size
0¢ the above threshold intensity region about a
potential road point to determine if the width
constraint is satisfied). This program has already
been tested on approximately fifty road segments
found in aerial images of seven different
geographic locations with no failures, where thre
assumptions are satisfied and the roads rcre clearly
visible (some examples are shown in Figure 8).

CCNCLUDING COMMENTS

In this paper we have addressed the problem of
precise delineation of the roads and linear
features appearing in aerial photographs usirg an
approach based on global optimization of locally
evaluated evidence. Since there does not appear to
exist a single coherent model suitable for reliable
detection of local road presence, it was essential
that some means for integrating information from
multiple (incommensurate) image operators and
knowledge sources be devised--the conventional
optimization paradigm does not provide any formal
machinery for achieving this task.

Two key points characterize the basis of our
approach:

(1) Rather than projecting all image
operators on a single linear scale and
attempting to use them in the same
qualitative manner, we have identified
the distinctly different nature and
potential use of operators which have
strong object detection capabilities as
opposed to those which are ugeful for
object analysis once identification
and/or location is known. (Depending on

the specific context, a particular
operator might switch from one role to

the other.) We have provided a simple
and uniform mechanism for integrating the
information provided by the two classes
nf operators for the specific task of
tracking linear structures, and we
believe tha® the same general approach is
appiicable in a wider range of problem
settings.

(2) We have recognized the fact that the
score returned by an image operator
usually has little absolute meaning, and
yet a monotonic transformation of this
score can lead to a significantly
different final result in tracking linear
structures. We have capitalized on this
property by introducing a monotonic
transform which allows a simple and
uniform mechanism for adjusting the
scores to reflect & priori information
and semantic construints.

Our plans for future work include the
development of more effective techniques for the
completely unconstrained delineation required in
phase one (defined earlier), for tracking and
possibly distinguishing among a variety of
different types of linear structures (e.g., roads,
rivers, railroezds, runways, etc.), and for tracking
linear structur»s in three dimensions using stereo
image pairs.

The scientific contznt of this work lies in
discovering effective models for representing and
detecting the linear structures of interest and
developing paradigms for integrating information
from the wide variety of knowledge sources
available to the human observer whose performance
we are attempting to equal or surpass.
Applications of our work in the military area
include road monitoring for intelligence purposes,
delineation of roads and linear features for
automated cartography, and detection of roads and
linear features as landmarks for autonomous
navigation and weapon guidance.
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MASK TO DETECT RIGHT DIAGONAL ROAD SEGMENTS

3
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i=1

WINDOWS FOR THE ROAD OPERATORS
Two other masks, similar to these, are used to detect vertical
and left diagonal road segments.
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ROAD EDGE SCORING FUNCTION
Function depicted as solid line is used for light roads F{-u) is used for dark roads.
Symmetric form of ihe function, shown by dashed lines for negative values of u, is
used when road to backaround contrast is unknown.
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ROAD UNIFORMITY SCORING FUNCTION

FIGURE 2 DESCRIPTION OF DUDA ROAD OPERATOR
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FIGURE 3 DUDA ROAD OPERATOR APPLIED TO A NUMBER OF SCENES
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FIGURE 4 DIFFERENT ROAD OPERATORS APPLIED TO THE SAME SCENE
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{e} HUECKEL LINE OPERATOR {f) INTENSITY

FIGURE B

DIFFERENT ROAD OPERATORS APPLIED TO THE SAME SCENE
Operator scores are thresholded to highlight the locations assigned the best scores. }
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FIGURE 6 A SCENE AND {TS PERFECT ROAD SCORE MASK

fe) X'=X1241 d) X '=X12+2000

FIGURE 7 EXAMPLES OF HOW TRANSFORMING TYPE {I IMAGE OPERATOR SCORES (X) ALLOW US TO
ADJUST THE TRADE-OFF BETWEEN ROAD SMOOTHNESS AND PLACING THE ROAD TRACK
AT ITS LOCALLY MOST PROBABLE LOCATION
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FIGURE 8 EXAMPLES OF ROAD DELINEATION PRODUCED BY THE LOW RESOLUTION ROAD TRACKER
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FIGURL EXAMPLES OF ROAD DELINEATION PRODUCED BY THE LOW RELOLUTION ROAD TRACKER

oncluded

et e o e T T 3 I TS 1 WS TR o T I e R DO TG it A R




Ln'n...!.'.i‘;'.m'_u;uu-'w Ll | = i e Ty R e i P bl wan)

e — S a——

STEREQ-CAMERA CALIBRATION

Donald B. Gennery

Artificial Intelligence Laboratory, Computer Science Department
Stanford University, Stanford, California 94305

ABSTRACT

If the image plane coordinates of several pairs of
corresponding points 1n a stereo pair of images have been
measured, it is possible in general to use this information to
compute the relative position and orientation of the two cameras,
except for a distance scale factor. This paper describes a method
of performing this calibration by a generalized least-squares
adjustment. First, a gereral method of performing non-linear
adjustments of this type by iterating on a linearization of the
problem is reviewed. Then the specific mathematics needed for
this problem, using analytical partial derivatives for the
linearization, are derived.

I INTRODUCTION

Suppose we have two camera views of the same
three-dimensional scene and wish to extract depth information.
Suppose further that the relative position and orientation of the
cameras are unknown, The solution then can be divided into
three parts. First, corresponding points can be identified in the
two pictures. A correlation technique cou d be used for this step,
as described in [1] or [2). Second, a generalized least-squares
adjustment can be done to solve for the relative position and
orientation of the two cameras (except that the absolute distance
between the cameras cannot be determined unless some distance
information is ‘ncluded). Third, the resulling information can be
used to compule the ‘relative) distances to the various points in
the image. This paper 1s concerned primarily with the second nf
thesa three steps.

Let Camera | denote the camera which will be used as
reference, We then wish to compute the direction from Camera |
to Camera 2 and the orientation of Camera 2 relative to Camera 1.
It may also be desivable to compute the focal lengths of the two
cameras as part of the adjustment.

Consider any point in the three dimensional scene. Let the
coordinates of the image of this point in the Camera 1 film plane
be x,,y; and the coordinates of its image in the Camera 2 film
plane be x,,y,. Image point x,,y, corresponds to a ray in space,
which, when projected into the Camera 2 film plane, become: a
line segment. The distance from this line segment to the image
point x5y, is the magnitude of the error in the matching of this
point. This error is a function of the angles which define the
relative position and orientation of the two cameras (and also the
focal lengths). What we desire to do is lo perform a camera
calibration by adjusting these angles (and perhaps focal lengths)
to minimize the weighted sum of the squares (and cross products,
if the errors are correlated) of these errors for all of the ponts
that are used.

In Section Il a general method of solving nonlinear
generalized least-squares problems such as the above by using
partial derivatives will be described. In Section Il the specific
mathematics needed for the above camera calibration problem will
be derived.

The method described herein has been implemented as a
procedure in  CAMRAS[{,DBG] and a driver program
CAMRAD[1,0BG] on the PDP-10 at the Stanford Artificial
Intelligence Laboratory. This procedure contains several
acdditional features, including variance adjustment, automatic
editing, and convergence acceleration, which are beyond the
scope of this paper. The original version of the program, without
these features or weighting, was written in 1973,

Il GENERAL METHOD

In this seclion a method of performing nonlinear generalized
least-squares adjustments will be described. This method uses
partial derivatives to linearize the problem and iterates to arineve
the exact sclution.

We will use capital letters to denote matrices. Vectors will
be represented by column matrices. A particular clement of a
matrix will be represented by the corresponding lower-case letter
with appropritate integer subscripts. The transpcse of a matrix A
will be denc’ed by A', and the inverse of A will be denoted by
ATl

Suppos~ we have a set of m unknown parameters for which
values are desi-ed, denoted by the vector G (m by I matrix). (In
our problem, these would be the quantities defining the camera
calibration.) Suppose further that there are a set of n quantities
(n = m) denoted by the vector F, which can be measured with
some error and which are functions of G. Let U denote the
measured value of F (containing some error). (in our problem, the
elements of U would be related to the film plane measurements in
a way that will by explained in the next section.) Let V be the
vector of the n residual errors in the fit to the observations using
a particular set of values for the parameters. That is,

U = FG)+V (2-1)

with the functional dependence on G explicitly indicated. The
problem is to use U to compute G such that V is minimized in some
sense.

For the criterion of oplimization we will minimize the
quadratic form

q = Viwy (2-2)




where W denotes an n by n weight matrix. W should be the
inverse of the covariance matrix of the errors in the observations.
This will result ir; the maximum likelihood (in the F space) solution
it the errors have the Gaussian (normal) distribution. Note that if
W is a diagonal matrix (indicating no correlation between errors in
different observations) the quadratic form reduces to a weighted
sum of the squares of the elements of V. Thus the problem as
stated here can be said to be a generalized least-squares
adjustment.
Solving (2-1) for V and substituting in (2-2) produces

q = [U-FG)]'WIU - F(G)) (2-3)

The problem then is to find G such that q is minimum,

The difticulty in obtaining a solution to the above problem
lies in the fact that F in (2-1) is 2 nonlinear function, and thus in
zeneral there is no closed form solution. One way of solving the
problem is to use some type of general numerical minimization
technique, in which on various iterations new values of G are
tried, q is recomputed each time, and q is driven to a minimum,
However, such methods tend to convarge rather slowly. Also,
numerical problems may occur if q has a very broad minimum, for
round-off errors may give rise to spurious local minima. Instead
of such an approach, to find the minimum of q, we will
differentiate (2-3) with respect to G, set the result to zero, and
solve for G iteratively.

In order to follow the steps of this process, we rewrite
(2-3) in terms of the elements of the matrices, as follows:

q = D [u - £,(G)w, [u, - f(G)] (2-4)
]
Differentiating this produces
dq of
— = -2) —w, [u -f(G) (2-5)
agk "z’ agk J[ J J ]

Since (2-5) is a nonlinear equation, to sol e it for G when dq/dg,
is set to zero, we will use Newton's method. To do this, the
partial derivatives of dq/dg, are needed. These are

3%
agka&

at of 8%
—Lw, =t -2 — w, [u, -] (2-6)
W o8k U og oogde, Y Y

The corrections d, needed to g, are related to the above by

3%q 3q
d = - — (2-7)
Z og,og, ~ g,

(These corrections would be exactly correct if F were linear.) We
can now revert to matrix notation, by defining the n by m matrix
P to be composed of the partial derivatives of the function F, such
that

of
g,
and the n by m by m matrix R to be composed of the second
derivatives of r, such *hat

(2-8)

Py &

a2,
og_98
Substituting (2-5) and (2-6) into (2-7), using these definitions, and
dividing through by 2 produces

(2-9)

ruk

3

[PTWP - R'W(U - F)JD = PTW'J-F) (2-10)

where F, P, and R are all implicit functions of G. (An approximate
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value of G used to obtain F, P, and R in (2-10; defires the
correction D needed to obtain a more accurate value.) Notice that
R is a strange creature, a three-dimensional matrix. These are
not usually defined in matrix algebra, but the usual definitions can
be generalized to handle them. In particular, a product of the
form A = RTWB, where A, R, W, and B have respectively two,
three, two, and one dimensions, is given by a, = ¥ r | w, b,
where the summation is over all values of i and j. (Of the five
possible ways of rearranging the three indeces, the transpose of
a three-dimensional matrix is defined here as reversing the order
of the three indeces.)

The solution for D can expressed in terms of the matrix
inverse as follows:

D = [P'WP-R'W(U - F)"PTW(U - F) (2-11)
or equivalently
D = [I-PWPIR'WWU - ) PTWPYTPTWU - F)(2-12)

where | denctes the identity matrix (in this case m by m). D as
obtained above using an approximate value of G would be added
to this value of G to obtain a more accurate value, and this
process would repeat until it converged.

The worst part of the above solution is the necessity to
compute the partial derivatives. Often tirey are difficult to derive
anatytically and difficult to compute accurately numerically. In
either case they are time-consuming to compute.  These
difficulties are usually much worse for the second derivatives R
than for the first derivatives P. Furthermore, there are nm?
second derivatives to compute and only rm first derivatives.
Therefore, it is highly desirable to be able to omit the second
derivatives from the computation. We will now consider the effect
of neglecting them.

With a reasonable first approximation, and especially on
later iterations, the discrepancies U-F are small. Also, if the
function F is reasonably smooth, the second derivatives R are
small. Of course, what is considered small is relative. In this case
smaliness depends on the magnitude of the first derivatives P, If
U-F and R are small enough so that the relative change in P is
small when G changes enough to cause F to vary by amounts on
the order of U-F, then the nonlinearities are not having much
effect, and the elements of RTW(U-F) are small compared to the
elements of PTWP. Thus a good apgroximation in such cases can
be obtained by setting R to zero in (2-11) or (2-12), which
produces

D ~ (PTWP)'P'W(U - F) (2-13)

The use cf this approximation is known as the Gauss method,
because Gauss originally used it on ordinary least-squares
problems.

The approximate (Gauss) corrections g'ven by (2-13) are
just the accurate (Newton) corrections given by (2-11) or (2-12)
premultiplied by | - (PTWP) ' RTW(U-F). The accurate corrections
given by (2-11) or (2-12) attempt !0 nullify an error in G which
Newi{on’s method has estimated to be -D, since -D+D = 0. But, if
the Gauss method is used ins »ad, we have in effect
-D + (I-A)D = -AD, so that the vector of errors in G on each
iteration is premultiplied by A = (P"WP)'R'W(U-F), neglecting
the higher order effects neglected in Newton's method.
Therefore, using the approximation (2-13) cannot effect the final
solution, unless it destroys the convergence. The matrix
(PTW P 'RTW(U-F) will tend to become constant as the solution
convergences, as the discrepancies U-F converge to the final
value of the residuals V. Thus the Gauss method changes the
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quadratic convergence of Newton’s method to linear convergence,
it convergence is achieved. It all of the eigenvalues of
(PTWP)'R"W(U-F) have an absolute vatue tess than one,
convergehce will be preserved, and the smaller the eigenvalues
are, the faster convergence will be. (After several iterations, the
error will tend to decrease by a factor equal to the absolute
value of the largest eigenvalue.) From the arguments in the
previous paragraph, the eigenvalues should be small, except when
the initial approximation is very wrong (causing \-F to oe large)
or when F is very nonlinear {causing R to be targe). Thus, except
in these cases, the solution should converge vapidly. (A way of
converting the linear convergence of the Gauss method into
quadratic convergence without computing R will be discussed in a
later section.) Some of these matters are discussed further in [31

The solution using (2-13) is usualiy obtained by a ditferent
approach (as in [4]). This approach approximates (2-1) by a
linear.zation based on the parhal derivatives of F, solves the
resulting linear problem, and iterates this process to obtain the
solution to the nonlinear problem. Thus let G, denote an
approximation to G. Then equation (2-1) can be approximated as
follows:

U = F(G,) + P(G,)G - G) +V (2-14)

where P is defined by (2-8) and its functional dependence on G
has been exglicitly indicated. We now define

E = U-F(G,) (2-15
D =~ G-G,

Then (2-14) can be rewritten as
E = PD+V (2-16)

Thus we have replaced the nonlinear equation (2-1) by the linear
equation (2-16), in which E represents the discrepancy between
the observations and their computed values using the current
aporoximations of the parameters, and D represerts the
corrections needed to the parameters. Therefore, we now wish
0 solve tor D in (2-16) so as to minimize q in (2-2). This ic a
standard problem in tinear stalistical models. (See, for example,
[5)) The solution for D is

D = (P'WP'PTWE (2-17)

which 1s the same as (2-13).

The covariance malrix Sg of the errors in the converged
values of the parameters G can be obtained from the covariance
matrix Sy of the errors in tha observations U by the usual tinear
approximalion of premultiplying by the matrix of partial
derivatives of the transformation and postmultiplying by ine
transpose of this matrix. In this case the transformation from U to
G in the neighborhood of ihe converged values is given by
approximately (2-13) or more accuralely by (2-12). (Regardless
of which methed was used to produce the converged values of G,
the answer is the same. Thus the use of (2-12) will produce a
more accurate error propagation than (2-13), although (2-12) is
still only an approximation in this regerd if highar-order terms are
conslidered.)

tf the accurate transformation (2-12) is used, the matrix of
partial derivatives will contain terms produced when (2-12) is
differentiated relative to both occursnces of U in (2-12).
However, when the darivatives are evaluated at the converged
values, the effect of the first term drops out, sinca PTW(U-F) is
then zero (because O is then zero). Thus we have
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sg = [t- PTWPIR'WU - B P'WR P PTWSy
WPl - PTWPYIR'W(U - F))'(2-18)

W= SU", as it should for the optimum selution, this reduces to

Sg = [t- (P'WP)'R'W(U - A PTwp)!
0-@EweylR'wu - 1’ (2-19)

Using the approximation of neglecting the second derivatives, as
in (2-13), reduces this to

Sg = (P'WPY! (2-20)

(Remember that (2-19) anu (2-20) are correct only if W is the
inverse of the covariance matrix of the observation errors.}

Note that even though (2 19) was derived using the linear
approximation for covariance propagation, it contains the second
derivatives of F. An even mora accurate result could be obtained
by considering second-order effects in the propagation, although
this would require knowledge of moments of the error distribution
of higher order than the second. This result would contain
squares and cross products of the second derivatives, whereas
they occur to the first power in (2-19). Therefore, if the second
derivatives are small, (2-20) and (2-19) can be considered the
first two members <of an infinite sequence of better
approximations, accurale to higher powers of the second
derivatives. In most cases (2-20) is quite adequate, since the
error estimates usually are not known very accurately anyway.

It often is desired to know the covariance matrix of the
residuals. (It is useful to compare the magnitude of the residuals
to the square rools of the diagonal elements of their covariance
matrix, tor editing purposes.) For the approximate case, this can
be derived by first obtaining the equation for the residuals by
solving (2-16) for V and substituting (2-17) for D, to produce

V = [t- P(P'WP'PTWIE e-21)

Then, since the covariance matrix of E is the same as that of U,
the covariance matrix of V can be obtained by premuitiplying Sy
by the coefficient of E (in brackets) in (2-21) and postmultiplying
it by the transpose of this coefficient. If W = SU", the resulting
expression simptifies to

Sy = Sy-PCP'wP P (2-22)

Note that by using (2-20) the second term in this equation i« seen
to be the covariance matrix of lhe adjusted para eters
propagated into the observations; thus it is the covariance matrix
of the adjusted observations. Therefore, (2-22) says that the
covariance matrix of the residuals is equal to the covariance
matrix of the observations minus the covariance matrix of the
adjusted observations. This is seemingly appropriate, because the
residuals are the observations minus the adjusted observations.
However, this should be considered a coincidence, because the
covariance matrix of the difference of two vectors is the sum of
their covariance matrices, not the difference, if the vectors are
uncorretated with each other. Here, the particular way in which
the observations and the adjusted observations are correlated
produces the above result. (Remember that this result holds only
in the approximate case and only if tha weight matrix is the
inverse of the covariance matrix of the observations.)

In many cases W can be partitioned inlo a diagonal malrix
of matrices. Let each of these submatrices on the main diagonal
of W be denoted by W,. In the corresponding manner E and P are
partitioned by rows into E, end P,. (What we have done is to




group the ob.ervations into sels so thal there s no correlalion of
errors between members of different sets) Then (2-17) and
(2-20) can be rewritten as

Ho= > P'WP
1

c = >p'WE,
'

D = HiC
SG » H-‘

Note that, if the errors in all of the observations are uncorrelated,
W, and E, are | by | malrices, which can be represented as the
scalars w, and e, and P, is a | by m matrix, furthermore, if all
of the w, are equal, they cancel out of the equation for D, and we
have an unweighted solution.

Several other quantities of interest can be derived from the
solution. We will present these for the general approximate
partitioned case, with W = SU". Proofs can be found in
references [4] and [5] The adjusted value of E, is P D. The
residuals are

V. = E -PD (2-24)

The guadratic form is
qa = 2.vwWy, (2-25)

The expected vaiue of q is n-m. It the scale factor of the
covariance matrix of observation errors is unknown, W can be
adjusted by the ratio (n-m)/q and Sg by the ratio a/(n-m).
Otherwise, q can be used as a test on the adjustmert: for, if the
observation errors have the Gaussian distribution, then g has the
chi-square distribution with n m degrees of freedom. Sg reprents
the covariance matrix of errors in the adjusted parameters. The
square rcots of the diagonal elements of Sg are the standard
deviations of the adjusted parameters. The correlation matrix of
i+ parameters can be obtained from Sg by dividing the i,j
en menl by the product of the standard deviations of the ith and
)th parameters, for all i and j. Other results which follow directly
from the results for the unpartitioned case are the covariance
inatrix of the adjusted observations P,S(;F’IT and the covariance
matrix of the residuals Sy - PIRGP|1.

The solution of the nonlinear problem can now be described
as follows. An initial approximatior is used to compule the
discrepancies E, and the partial derivatives P. Then D is
computed from (2-23) and is added to the current approximation
for G to obtain a better approximation. This process repeats until
there is no further appreciable change in G. Then the final values
from the last iteration can he used to obtain Sg, V, g, and the
other derived quantities descrized above. Of course, for
convergence to the absoluie minimum of q rather than
convergence to some local minimum or divergerce, It is necessary
that the initial approximation be sufficiently close to the true
solution. In most practical problems this is not critical; in fact,
often there is only one minimum,

As previously discussed, the ahove solution for G, when
converged, produces the true generalized least-squares
adjustment regardless of the nonlinearity. However, the
properties that the solution for G is minimum-variance and
unbiased are only approximate in the nonlinear case. Also, as
previously discussed, S as computed above is only approximately
the covariance matrix of the errors in the final value of G in the
nonlinear case. However, if the amount of nonlinearity over the

range of the measurement errors is small, these resulls will be
fairty accurate.

Often it is desired to have obwervations directly on the
parameters. There are several possible reasons for this. There
may be some a priori information about the parameters that one
wants to combine into the solution. Also, it may be desired to
give the initial anproximations a very small amount of weight in
the solution, so that in case one of the parameters would
otherwise be indelerminate, it wilt be constrained sufficiertly to
prevent the H matrix from being singular and thus to allow a
solution for the other parameters to be obtained. Finally, il may
be desired to remove a parameter from the adjusiment and to
constrain it to a fixed value. This can be done by assigning a
very large weight to the given value (although it would save
computer lime to delete this guantity from the parameters in the
program instead). In any of these cases the desired effect can be
achieved by crealing an additional m by m P, matrix, say P,, equal
to the identity malrix. Corresponding to this there i1s £, equal to
the given a priori value of G minus the current approximation of
G, and an m by m matrix W, the desired a priort weight matrix.
These dre included in the summations for H and C just like any
other observations,

A tew commenls should be made about the numerical
aspects of performing the computations. The H matrix is always
non-negative definite; that is, if it is not singular it is positive
definite. The best strategy to use when inverting a
positive-definite matrix by an elimination technique is to pivot on
the main diagonal. (See [6).) Therefore, a simple matrix inverter
without any pivoting can be used to obtain HY. His also
symmetrical; therefore, some computation time can be saved if an
inverter which makes use of this fact is used. However, if nis
considerably larger than m, much more time is spent in computing
H than in inverting it, so this is nardly worth the trouble. In
problems where the solution is nearly indeterminate, H will be
nearly singular, and much accuracy can be lost because of
numerical roundoff error. In such cases it may be necessary to
use double precision in the computations for H, C, D, and $g
according to (2-28), including the inversion of H (If a good
inverter is used. there is usually not much point in having 1l in
double precision unless a double-precis'on H is available to invert,
as explained in [6]) However, high precision is not needed in
computing the discrepancies E, and the partial derivatives P,, as
long as consistent values are used thr ughout the compulations
for H and C.

IIl. CAMERA MODEL

In this section we describe a method for compuling the
discrepancies and partial derivatives for the camera caiioration
prublem so that the general solution described in the previous
section can be performed. In this method the computations are
expressed in terms of matrices and vectors as much as possible,
so that the partial derivalives are easy to obtain. In the computer
program which uses this method, the matrix operations are
performed numerically by standard procedures. Theretore, there
is no need to expaend these equations to scalar form analytically,
except in a few cases where considerable computation time can
be saved.

First, the notation used here will be described. Each
camera has a Cartesian coordinate system with the origin at the
lens center, x to the right in the film plane, y up in the film plane,
and z outwards along the optical axis. {The film plane is
considered 1o be in front of the lens center at a distance equal to
the focal length.) Thus the coordinate system s left-handed. The
azimuth and elevation of the Camera 2 origin relative to the




Camera ! coordinate system are denoted by oy and e, (positive
to the right from the z axis and up), respectively. The pan, tiit,
and roll of the Camera 2 coordinate system relative to the Camera
1 coordinate system are denoted by‘#3,, £, and S, (positive
right, up, and right), respectively. The focal length of Cameras 1
and 2 are denoted by f; ang f,, respectively. Two vectors that
will be needed later are defined as follows:

X 0
T = |y I, = |o (3-1)
iy 1

The symbol x denotes the vector cross product.

As formulated in the previous section, the general solutior
method required measurments to be maoe directly on quantities
that are functions of the parameters. However, his is not quite
the situation that we have. Here the parameters are oLyy olgy By,
3, and 5 (and perhaps f, and f,), and the directly obse~.able
quantities are x,, y,, X5, and y,. Brown [4] describes a way of
handling such siluations within the general formulation. However,
this is not necessary for our purposes here. We will merely
propagate the error estimates of the actual observations into the
quantity that we use as the discrepancy, in order 1o obtain the
correct weights, and will consider the observations to be
measurements directly on the discrepancy on any one iteration.
In general, error propagation is done by premultiplying the
covariance matrix by the matrix of partial derivatives of the
iransformation and postmuitiplying it by the transpose of the
matrix of partials, (This amounts to a linear approximation. Since
the discrepancy that we will use will be some distance in the
Camera 2 film plane, and since we will consider the measurements
to be made ‘n this plane, this transformation is linear and thus the
propagation is exact in this case.)

Assume that for each point used in the adjustment an
arbitrary point x;,y, in the Camera 1 film plane is picked, and
thzn the position of the corresponding image point ¥y in the
Camera 2 film plane is measured. Let the accuracy of x; and y,
be given by the standard deviations 0, and 0, and the
covariance 0, . (The covariance matrix of x; and y, consists of
(T,(z and O'yz on the main diagonal and (r,, on both sides off the
diagonal.)

The discrepancy e consi-ts of a component of the distance
from the point x,y, to the nearest point of the line segment
which consists of the projection into the Camera 2 film plane of
the ray defined by th= Camera | lens cealer and point Xy.yy in
the Camera 1 film plane. This is a line segment because a point at
an infinite distance on this ray projects into a specific point i the
Camera 2 film plane (unless the ray is parallel to the film plane).
The coordinates of this infimity point (in the Camera 2 film plane)
which defines the end of the line segment are denoted by x.,y,.
If the pomt xpy, is beyond xgy, (in the direction of the line
segment), there are two components of the distance belween
these two points, and thus there are two observations for this
puint {two components of the vecior E). Otherwise, e consist of
the perpendicular distance from x,y; to the line, and there is
only one observation for this point,

The first step in deriving the needed mathematics consists
of defining the rotation matrices associated with the angles oLy,
o5, 3y, A5 and A5 A prime (") denotes the w. rivative of the
specified matrix with respect to the associated angle. Note that
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A, and A, are defined with the opposite direction of rotation from
B, and B,. This is because the A's will be used to rotate a vector
whereas the B’s will be used to rotate the coordinate system.

r 1 r
cos of 0 sina -sina, 0 cosa
A= 0 1 0 Aj=| O 0 0
-gin ¢, 0 cosq | -cos oy 0 -sin q |
- < <
1 0 0 [‘0 0 0

A;=| 0 cos a; sina | Az=| 0 -sin o, cos o

0 -sinao; cosa 0 -cos g, -sin g,
- J 9 J
r 1 r 1
cos @, 0 -sin g, -sin @, 0 -cos B
B, = 0 1 0 B, = 0 0 0
sin @, 0 cos g | cos B 0 -sin g ]
r 9 r 9
1 0 0 0 0 0

B,=| 0 cos B, -sinpB, |B;=|] 0 -sing, -cosf,

0 sin B, cosf, 0 cosfB, -sinf,

cos B -sin @, 0 (—sin By -cos By 0

coe By -sin Gy 0

By=| sin 83, cos @By 0| By

0 0 1 0 o 0
] 3-2)

Now we derive the infinity point x.,y,. An image point in
the Camera 1 film plane has a three-dimensional position in the
Camera 1 coordinate system given by the vector ™ =[x, y, 1,1
Since we are concerned at the moment about the infinity point we
can ignore the translation between the camera coordinate systems
and consider only the rotation. To express the vector T in a
coordinate system aligned with Camera 2 we must rotate the
coordinate sy:tem through the pan, tilt, and roll angles. Let tne
components of the resulting vector be denoted by the temporary
variables u, v, and w. Thus

v | = B.B,8T (3-3)

-
.




The projection of the point given by the above vector into the
Cazmera 2 film plane is given by a veclor in the same direction as
the above vector but having a z component equal to f,.

Therefore,
o - EY
’ f‘:v (3-0)
Yo * -

The partial derivatives of [u v w]’ with respect to 4, £, and 8,
can be obtained by replacing in turn B, B, and B, by B}, B, and
B:], respectively, in equation (3-3). If the pa-tial derivatives with
respect to f, are desired, they can be obtained by replacing T by
I, in (3-3), sirce OT/df, = I,. Equations (3-4) then cin be
differentiated to obtain the partial derivatives of x; and y,, as
follows,

Ax,, f; ou  fu dw
% wog wioe
3y, fa v fv o

i

of, w

e v

S 4%

where g denotes £, A, £y, or f;. (The partial derivatives of x,
and y, with respect to o¢; and o, are zero.)

The point x,,y, 1s the end of the desired line segment. To
completely determine it we need also the direction cosines of the
line segment (in the direction away from x,,y,), denotec by ¢, and
c,. These can be found by the following reasoning. The desired
line is the intersection of the Camera 2 film plane and the plane
defined by the Camera 2 lens center and the ray corresponding
to the Camera 1 image point x,,y,.

Thus we proceed as follows. The ray which corresponds to
the image point x;,y, in the Camera 1 film plane is given by the
direction of the vector T = [x; y, fle, in Camera | coordinates,
First we must determine the plane containing this ray and the
Camera 2 lens center. The normal to this plane is given by the
direction of the vector cross product of T and the vector giving
the direction of the Camera 2 lens center from the origin, This
laltar vector is A Al ; that is, the unit z vector roiated through
the elevation and azimuth angles. Therefore, the normal to the
desired plane is T x AjA,l,, in Camera | coordinates. To express
this normal in Camera 2 coordinates we must rotate the
coordinate system by the pan, tilt, and roll angles. Tha result is
ByB,B(T x A A,l,). The normal to the Camera 2 film plane in
Camera 2 coordinales is |,. The vector along the intersection of
these two planes is the cross product of the normals to the two
planes, namely I, x B48,B,(T x A A,l,). This is the desired line
which is the projection of the ray into the Camera 2 film plar ,
expressed in Camera 2 coordinates. Since the vector lies in ti
Camera 2 film plane, its z component is zero. Thus, if we redefing
u and v as quantities proportional to the direction cosines of the
desired tine, we have

ol

v | = 1, xByBBy(T X AAL)  (3-6)
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Application of either the right-hand rule or the left-hand rule
consistently to the sbove two cross products will verify that the
above vector has the correct polarty, that is, it points away from
X5Yo along the tine segment, The direction cosines ¢, and ¢, can
now be computed simply as follows from the results of (3-6):

r o= \/(uz +v9)

(3-7)

u
¢, = -
r

v
c. = -
r

The partial derivatives of [u v O]T with respect to the o's
and A&’s can be obtained by replacing in turn the appropriate A’s
and B's in equation (3-6) by the corresponding A”s and B"s from
(3-2). The partial derivatives with respect t. {, can be obtained
by replacing T in (3-6) by I,. Then the partial derivatives of ¢,
and ¢, are obtained as tollows, where g denotes any of the
parameters («’s, A’s, or f,):

g Ou dv
ve — -uy —
dc, og og
R R
% [ (3-3)
2 OV du
Ut — ~uv —
o Lw "
og i

Now the discrepancy, its partial derivatives, and its weight
can be computed. The subscript i will be used to denote to which
of the image points these belong, although this subscript will not
be used on the other quantities associated with each paint, in
order to avoid corfusion with the other subscripts,

If {x; - xg)ec, + (yz - yo)c, 2 0, then the point x;,y, does
not lie beyond ilie the end of tha line segment defined by x, y,,
¢,, and ¢, and the discrepancy e, is the perpendicular distance
from the point to the line. Therefore,

e, = Iy, ~y,)e, - {xp - x,)e,
de dc d¢ dy X
— = {yp - y,) = -l - x) =L -¢, == +¢, —=23-9)
B T VETY Gy TR TRR Ty
D’B? = c,zoyz S BCE o © c’,z('.T,(2

where g represents any of the parameters («'s, A's, or f's). (The
way in which the polarity of e, is defined does not matter, as long
as the polarity of its derivatives is consistent with this) If the
error in this point is uncorrelated with those of all other points,
the correct weight for this point is the reciprocal of its variance:

(3-10)

and the subscript i is the same as i in the summations in equation
(2-23).

On the other hand, if (x; - x;)c, + (y, - y,)c, <0, there
are discrepancies (the two components of the vector E ) which
are the two components of the distance from the point x;,y, to
the end of the line segment (x,y,). Any two orthogonal

components can be used here; for convenience we wilt use the x
and y components. Therefore,
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(3-11)

o, -3x,/3g 1

3;3_ { -3y, /dg

The covariance matrix of E, is (e same as the covariance matrix
of x; and y,. If the error in this point is uncorrelated with those
of ail other points, the correct weight matrix for this point is the
inverse of this covariance matrix:

! eI N ¢ 5
0,°0," - Oy 2 el

and the subscript i is the same as i in the summations in equation
{2-23).

Finally, the partial derivatives for each point are assembled

into a matrix, as required in the equations in Section li, as folicws:

LR EEEEE R G,
where the last two elements would not be present it the focal
lengths are not to be adjusted, and where E, is replaced by the
scalar e, if the point does not appear to be beyond infinity.
(Thus P, has eithe: one twa rows sccording to whether the first
or second case above holds.) The minus sign is present because
P was defined in Section il as the partial derivatives of F, which
appears in the equation for E with a minus sign.

A few words should be said about the implementation of
the above computalions The matrix pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>