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KORWARD 

The Tenth Image Understanding Workshop under the sponsorship of the Defen:e Advanced Research 
Projects Agency (DARPA) convened at the Davidson Conference Center for Continuing Education, University 
of Southern California, on the 7th and 8th of November 1979. Lt. Col. Larry E Druffel, Program Manager 
for the I.U. Research Project in the Information Processing Techniques Office of DARPA welcomed the govern- 
ment officials and research personnel to the two day workshop. Lt. Col Druffel noted that plans are 
progressing for a demonstration system to evaluate the maturity of IU technology by automating mapping, 
(harting and geodesy functions. While focussing on specific cartographic photointerpretation functions, 
;he system should offer the entire image exploitation community an opportunity to assess the future appli- 
cation of Image Understanding methodologies to their specific problem. 

This workshop, which marked the beginning of the fifth year in this research program, proceeded 
essentially in the puttern established by the previous semi-annual meetings. As usual, the University and 
Industrial Research Personnel informed the attending representatives from"the various Army, Navy, Air Force 
and Government Agency Organizations about various technical facets of the research effort and provided an 
overview of progress in Image Understanding Research during the past six month period. An unusual feature 
of this workshop was a session devoted entirely to the subject of "Symbolic Representation". This session 
was designed to assist the research community to thoroughly review their opinions on this topic which is 
key to Image Understanding and to enable those attending to secure a comprehensive overview of the subject. 
At all sessions, an interchange of views between the researchers and user communitees helped to foster the 
basic aim of these workshops - improved communication between designers and users. 

The papers contained in these proceedings represent the work of the DARPA sponsored research 
programs at the various institutions involved. Most of the technical papers were presented by the authors 
at the workshop. However, in the interest of limiting the technical sessions, a few papers are reporduced 
here which were not able to be formally presented. The Principal Investigators reports included herein are 
designed to provide a brief outline of the subjects presented by the various P.I.'s. In addition to the 
technical sessions, participants visited the image processing laboratories of the University of Southern 
California for live demonstrations of the U5C Image Processing Institute capabilities. 

The host for the workshop was Dr. Alexander A. Sawchuk, Associate Professor of Electrical 
Engineering and Director, Image Processing Institute of the University of Southern California. The sponsors 
and workshop organizers are indebted to Dr. Sawchuk for his untiring efforts in providinc, arrangements and 
assuring the success of the workshop. Appreciation is also extended to Ms. Hilda Marti öf USC for her work 
in securing facilities and general assistance and to Ms. JacKqueline Frye of the staff at SAI for typing 
support for mailings and collection and arrangement of the conference proceedings. 

The materials for the cover of this document were provided by Dr. Keith Price, Research Scientist 
at USC. The layout is designed to show the flow of events as images are processed in the laboratories and 
are representative of the type of user descriptions which the systems require for processing images of a 
given area. The semantic network is, by necessity, partial. Many links (relations) ha>'e been left out for 
clarity and relative locations (above, below, etc.) are approximately indicated by the position of the 
nodes corresponding to the objects. The results of matching this model with the actual image ar > shown in 
the San Diego photo on the right side. The photo. Dr. Price tell us, is NASA pnoto 573001392170. (1703). 
He notes that this one shows some errors where the ocean is broken apart when the waves become ve-y clear 
and where some linear segments are clearly misidentified as being part of the major highway. The artwork 
and layout is the work of Mr. Thomas G. Dickerson of the Art Department,of Science Applications, Inc. 

Lee S. Baumann 
Science Applications, Inc. 
Workshop Organiser 
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DEVELOPMENT OF CUSTOM-DESIGNED INTEGRATED CIRCUITS FOR IMAGE UNDERSTANDING 

G.R. Nudd, S.D. Fouse, and T.A. Nussraeier 

Hughes Research Laboratories, Mallbu, California 90265 

and 

P.A. Nyg^ard 

Carlsbad Research Center, Carlsbad, California 92008 

ABSTRACT 

This paper describes our on-going program to 
develop special-purpose charge-coupled device and 
metal oxide semiconductor integrated circuits for 
real-time image processing. This work has empha- 
sized the development of circuits that will perform 
the front-end, or "low-level," processing functions 
at data rates in excess of 10^ pixels/sec.  We 
describe the design and fabrication of a third test 
chip which will perform two-dimensional processing 
operations over kernel sizes ranging from 3x3 to 
26x26 pixels.  Included on this chip are data 
programmable operations for processing over a 5 x 5 
kernel at real-time television rates.  In addition, 
we describe the test facilities we have designed 
and built to demonstrate the performance of these 
circuits and the initial fest results. 

I.  LNTRUDUCTION 

A primary aim of the program has been to 
demonstrate the feasibility of performing image- 
understanding algorithms in real time.  For our 
purposes, we define "real time" to be equivalent to 
high-quality television, 7.5-MHz data rate.  Even 
for relatively simple operations on kernels of 3x3 
or 5x5 pixels, this represents a speed increase 
over conventional genera]-purpose computers of at 
least two or three orders of magnitude.  To achieve 
this increased throughpu;:, we have designed and 
implemented novel charge-coupled device (CCD) and 
metal oxide semiconductor (MOS) processing archi- 
tectures that can be integrated into infrared and 
video cameras.  Based on the work funded on this 
program, we are currently investigating several 
military applications that require both the sensor 
and processor to be integrated onto a single chip 
(the so-called "smart-sensor" philosophy). 

We have designed, built, and tested three 
integrated-circult test chips containing the 14 
algorithms listed In Table 1.  Each chip has been 
used to demonstrate a different approach to image 
analysis.  The first chip shown in Figure 1 was 
aimed at demonstrating a novel two-dimensional CCD 
filtering approach which allows concatenation of 
several (in this case 5) image-understanding 

operations and has been designed to be Integrated 
into the sensor directly at the focal plane. Each 
of the functions on this chip operate? over a 3x3 
array of picture elements and provides a single 
processed picture element for each new Input pixel. 
The circuit accepts three lines of video data 
equivalent to the 3x3 array and as such requires 
two external analog delay lines when operated from 
a vldicon or commercial camera, as shown in 
Figure 2.  In our initial work to operate these 

TWO DIMENSIONAL 
FILTER 

Fig. 1.  Photomicrograph of test chip I. 

VIDICON 

9136-2 

PROC CCD321 

1     1 

CCD321 V7 
OUTPUT 

Fig. 2. Formation of the 3x3 pixel array 
using external analog delay lines. 



Table  1 
Integrated  Circuit Primitives  Developed  to  Date 

♦PREDICTED PERFORMANCE BASED ON DESIGN 

circuits  in real  time,  we  have  used Fairchild 
rrlTll amloK line delays.     These have worked 

tfwenU limit both the ^ -** ^ the 

.ignal-to-noise ratio of  the processor.    We are 
gently investigating techniques for  in orpo 
rating  the circuits directly into a CCD iraager as 

shown  in Figure  3. 

The   second  chip,   shown  in Figure  4     contains 
five  individual  circuits  again using a  3x3  pixel 
kernel  and  is aimed at  demonstrating adaptive 

b-^ir^b^Sa-d-e^/frrLtha 
StA -camera with an overall processing^ 

rorm:rLerdrifirto0t4heb3x3-averagePare  adaptive 

^^^kinr-  S^-^r^-i^aer  a 
pa allel  contract with Ni'.ht Vision Laboratories, 
To      Belvolr, Virginia.    -.   have ^egrated    hese 
circuits   into a  demonstration processor,   shown  in 
Figure   5.     At  the request  of   the customer'  We.   ter. 
incorporated a CCD field delay to r-.move the  inter 
ace and  provide a processing capability -J^a- 

cent   lines  of  video.     This  processor  has been  oper 
ated  at  a  4-MHz clock rate,  and  the results  are 

reported  in Ref  1. 

Fig.   3.    Technique for  integrated 
CCD images and  processor 

TEST DtVICLS 

CENTER AND 
/LOCAI AVERAGE 

Fig. 
Photomicrograph of test chip II. 

Our recent work has been concerned with the 
i -[„n nrocesslnE, and initial evaluation ot a 
^f «r^rwMch is aimed at demonstrating 
nrocessing techniques using larger kernel sizes 
fas high L 26x26 pixels) and demonstrating a pro- 
vable capability.  After many P-b ems and 
elays in obtaining a satisfactory mask e  we 

have now completed the processing of this chip ana 
are currently collecting preliminary Pf f'™6 

data on each of the five circuits, as described 

below. 

II. PROGRESS ON TEST CHIP  III 

The  principal   effort  this  period  has been with 
the design,   simulation,   and   processing of  this 



Flg. 5.  Real-time test facility for test chip II. 

chip.  Five functions, a 7x7 mask programmable 
array, a 3x3 Laplacian, a median operator, a 5x5 
voltage programmable convolution, and a large 26x26 
element convolution for the primal sketch, are 
Included.  The design goal Is for a 15-MHz clock 
rate and an overall processing accuracy equivalent 
to 6 bits.  The resolution of the circuit lithog- 
raphy is 5 to 7 ym, equivalent to commercial opti- 
cal techniques, and the technology is n-typ« sur- 
face channel.  The bandwidth requirements lor this 
chip are towards the high end of the speed capa- 
bility range for surface channel devices and hence 
represent a considerable challenge. Also, the 
kernel size has been considerably extended from the 
9 pixels used in our previous work. The largest 
processor, the convolution for the primal sketch, 
contains 338 plxe.ls.  Further, the dynamic range 
required by the operators contained on the chip is 
much Increased, representing approximately 8 bits, 
and we are including special techniques to achieve 
this.  Probably the most significant challenge we 
are addressing on this chip is the development of 
programmable processing kernels.  The concept here 
is to develop a general-purpose convolutlonal 
processor that can accept data at real-time video 
rates and can adapt, its kernel size and weights 
either in a preprogrammed way or in response to 
the processed output at a speed higher than the 
frame rate (>30 Hz).  If such a device can be de- 
veloped with accuracy equivalent to 6 bits, it wll] 
find very widespread general utility in image anal- 
ysis and understanding. At present, the kernel 

size for this circuit is 5x5, but there is no 
fundamental limit preventing this from being sig- 
nificantly Increased.  To meet the significantly 
increased demands both in terms of speed and dynamic 
range, we have included an on-chip sample and hold 
to both reduce the output noise and lower the clock 
feedthrough.  This should significantly increase 
the performance of the functions, particularly at 
high speed.  A schematic of the circuit is shown In 
Figure 6.  This device has been simulated to oper- 
ate at an 11-MHz data rate and provide a 60-dB com- 
mon mode rejection driving a 30-pF output load. 
This circuit is included in each of the CCD 
functions. 

A photomicrograph of the full chip showing 
each circuit and the test devices is shown in 
Figure 7. The chip itself is approximately 
225 mils2, which is slightly larger than our previ- 
ous one (191 mils2). This has resulted in fewer 
dice per wafer, thus requiring higher yield to pro- 
vide acceptable quantities for testing.  We are 
currently processing 11 wafers, each with 36 dice/ 
wafer. This should hopefully result in enough 
acceptable circuits for initial testing.  Later we 
will process an additional lot when the chip's 
initial operating parameters have been determined. 

This chip has now been designed and simulated 
using the circuit analysis and simulation program 
SPICE. The individual cells have been drawn and 
the composite digitized by the mask maker.  Because 
of high demand in the IC market, the turnaround at 
the mask maker has been somewhat longer than orig- 
inally anticipated.  In addition to this delay, the 
Initial mask set received was Incomplete; also, 
some of the masks were reversed field.  The net 
effect of these two delays is an anticipated sched- 
ule slippage of several months.  We have only 
recently completed the processing required prior to 
short testing the devices, dicing the wafer, and 
packaging.  However, this process is now complete, 
and we have started the initial performance evalu- 
ation.  Because of the larger kernel size and the 
significantly different characteristics of these 
circuits, we essentially have had to rebuild the 
test facility. Considerable time and effort was 
expended on this during this period, as discussed 
below. 

III.  PERFORMANCE, EVALUATION, AND TESTING 

To be able to effectively test the performance 
of the microelectronic circuits developed, it has 
been necessary to develop an appropriate test 
facility.  The essential components of this system 
are shown in Figure 8.  The functions developed on 
the test chip Include both two-phase and single- 
phase circuits, each requiring a clock swing of at 
least 20 V.  To achieve this, we have developed a 
driven system that operates from an 3-channel (T L 
voltage level) word generator and uses these out- 
puts to develop MOS level waveforms.  This gener- 
ator is also used to develop the necessary diffu- 
sion and reset pulses.  The word generator can be 
clocked at a 20-MHz bit rate to process a 3-MHz 
bandwidth signal.  The imagery will be obtained 
either from a stored data base or a vidicon camera. 

._   



Fig. 6.  Schematic of on-chip sample and hold 
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Fig. 7.  Photomicrograph of image understanding 
chip III. 

VIDEO 
MONITOR 

1 
'S 

VIDICON ^ 
QUANTEX 

FIELD 
GRABBER 

■♦ — 
^COMPUTER 

EXPOATArNJ 
fEXPDATA OUT 

7-LINE 
DELAY A/D  CONVERTER 

1 11        1 
A^ 1PLIFIER AMPLIFIERS 

u III I 
T1ST DEV CE 4 DC 

BIAS 

TTt | «*■ 

c -OCK DRIV ERS 

1 t     ft t 
DIGITAL 
WORD 

GENERATO i 

Fig. 8.  Schematic of test facility. 
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In either case, the data requires formatting Into 
several parallel video lines to form the appropri- 
ate kernel size.  The system to do this has now 
been completed.  It consists of a 10-MHz, 8-bJt 
analog-to-dlgital converter system that provides 
input to a 24-kbit RAM register.  The RAM register 
provides a delay equivalent to six horizontal 
lines. A digital-to-analog converter is Included 
after each 4 kbits to provide the analog output from 
the adjacent lines.  The necessary hardware to pro- 
vide this facility has now been completed and the 
system tested with a commercial vidicon.  In addi- 
tion, a signal cond4 tloner 'oox, which both trans- 
lates the dc level of the resulting video data and 
can provide the necessary variable gain, has been 
designed and built. We also have provided the capa- 
bility to vary both the spatial and temporal reso- 
lution of the processor and have investigated sev- 
eral commercial "frame grabbers" and digital mem- 
ories to provide this facility.  The system we built 
is based on the Quantex Field Grabber with resolu- 
tion of 256x256 pixels each with 6 bits of gray 
scale. We have interfaced this system to an IMSAI 
8080 microcomputer for evaluation and have written 
several software packages to manipulate the data to 
provide both simulation of image-understanding 
operations and manipulation for display purposes. 

We are currently using this facility to evalu- 
ate the first lot of test wafers. We have decided 
to investigate the 5x5 data programmable convolu- 
tion and the median operator Initially.  The sche- 
matic of the 5x5 programmable operator is shown in 
Figure 9.  Essentially, it accepts five parallel 
lines of video data and performs a 25-point bipolar 
convolution on a sliding 5x5 pixel array.  The 
mathematical formulation of the processor is given 
by 

k,l 

k+3  1+3 

I E 
l=k-2 j-i-1-2 

ij 

where I is the intensity of the processed image, I 
is the original image, and the W^ are the program- 
mable weights.  The processor consists of a two- 
dimensional floating gate array with 25 voltage- 
controlled taps. This array overlays five separate 
CCD delay lines through which charge equivalent to 
each picture intensity Is clocked.  A single source 
follower at the end of all of the delay lines is 
used to detect the linearity and transfer efficiency 
of the basic CCD structure. An example nf the oper- 
ation in this mode is given in Figure 10.  The input 
signal is shown on the upper trace, and the output 
resulting from two cycles of this waveform is shown 
on the lower trace.  The operator here is at 
^6 kHz, equivalent to the pixel rate of the stored 
data base microprocessor system.  The photograph 
illustrates the need for an output stage including 
a sample and hold.  The reset pulses occurring each 
pixel interval can be seen to havt about the same 
magnitude as the diffusion output.  These are due 
entirely to feedthrough and are unwanted outputs. 
To avoid this, we have tested the on-r^hip sample 
and hold as shown in Figure 11.  In this case, the 
input signal consists of a single frequency that is 
sampled each 60 ysec.  At these Intervals, the out- 
put level of the waveform is sampled and frozen 
until the next sample pulse.  This circuit is 
included on all the active CCD outputs and is used 
to eliminate the unwanted clock to reset feed- \ 
throughs.  The initial results obtained from the 
floating gate are shown in Figure 12(a and b).  In 
each case, the input signal is shown on the upper 
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Figure 9.  Schematic of 5x5 programmable filter. 
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10.  Outpul from source-follower on the 
programmable processor. 

INPUT 
WAVEFORM 

Fig, II. Operation of tlie on-chip 
sample and hold. 

trace and the resulting inipnlse response shown 
below.  hi Figure L2(a) the voltage settings on the 
floatlag arrays are equivalent to 0, -1, 0, -1, 0, 
and In Figure 12(b) to 0, 1, 0, -1, 0.  In each 
case, the Lnpul    ponse f.inlvalent to this setting 
Is obtained, verifying both the programmablllty and 
the capability ol bipolar weighting.  Figure 12(c) 
shows the Impulse response equivalent to 1, 1, 1, 
L, 1. Although these are preliminary results, it 
is clear that all th( necessary functions are oper- 
ating on the chip.  The dynamic range of the device 
obtained  • fai Ls Illustrated In Figure 13.  It is 
equivalent to about 14 gray levels.  The granular- 
ity on the trace shown is due In part to the micro- 
processor system used to obtain this transfer 
charari! i ! t i.e.  Our work will contlrue on this 
circuit to Improve both the accuracy and dynamic 
range and to increase the speed to 7.5 MHz.  We 
have, however, started to process some test- 
patterns, as shown in Figure 14.  The first con- 
alsts ol a two-dimensiona] grid with lines each a 
singli pixi I in width.  This h, s been processed 
with the pi       set foi a 1, 1, 1, 1, 1 impulse 

INPUT IMPULSE 

INPUT IMPULSE 

IMPULSE 
RESPONSE 

Fig 12. 

INPUT IMPULSE 

Impulse response of programmable array 
for setting (0, -1, 0, -1, 0), (0, 1, 0, 
-1, 0), and (I, 1, 1, 1, 1). 

response In both x and y.  Che resulting grid with 
each line 5 pixels wide is shown In Figure 14(b). 
This corresponds directly to the simulation shown 
in Figure 14(c).  A similar result for the picture 
of the house is shown in Figure 15.  The impulse 
responses for the programmable array setup to be 
both a plus shape and a cross shape are shown in 
Figure 16. 

During the next phase of the program, we will 
continue the testing and evaluation of the circuits 
and provide a detailed performance review. 
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INPUT VOLTAGE 

Fig. 13.  Linearity and dynamic range of 5x5 
programmable processor. 

IV.  STUDY OF VLSI FOR IMAGE UNDERSTANDING 

In addition to the work on the CCD/MOS cir- 
cuitry and building a new test facility, we have 
begun an analysis program to determine trie Impact 
and advantages of very large scale integratiju 
(VLSI) on image understanding.  The on-goinj, work 
in software and algorithm development clearly is 
leading to an ever-increasing demand for computa- 
tional throughput.  Further, it is evident that, 
iiven with the most sophisticated general-purpose 
machines, the processing times are incompatible 
with any real-time application.  An apparent solu- 
tion to these issues is the development of new 
processing architectures based on the latest tech- 
nologies.  Two significant developments have been 
taking place in microelectronics in the past several 
yeais.  The first is the development of a variety 
of new technologies such as DMOS, CMOS/SOS, i2L, 
ÜCL, ajid GaAs.  Each offers a different combination 
of parameters in terms of speed, power consumption, 
and the possible level of integratioi.  It is of 
particular importance to the I.U. program to be 
able to evaluate the advantages and constraints of 
all the available technologies with respect to our 
programs.  In addition, with increased resolution 
of integrated-circuit features and decreased power 
consumption, the level of Integration within each 
chip has gveatly Increased.  For example, in highly 
regular arrays, such as memories, as many as n^ to 
10° functions can be Integrated in each chip.  This 
development will also have profound effects. 

To some extent, the design and architecture of 
high-density circuitry other than memories and com- 
mercial microproceasors have lagged behind these 
developments, and a significant advance can be 
expected from the optimum design of image- 
processing architectures.  To achieve the maximum 
advantages of VLSI for the I.U. problem, two pre- 
cepts must be adhered to.  First, the designs and 
architectures must, where possible, provide con- 
current operation.  The obvious bottlenecks that 
result in the von Neuman concepts of a single 
arithmetic unit, etc. can be circumvented by highly 

CHIP PROCESSED 

Fig. 14.  Performance of 5x5 programmable 
processor on test pattern. 

(all weights equivalent to unity) 

localized operation with multiple primitives. This 
removes many of the problems from the processor and 
places them in the control and data distribution 
system.  There is, for example, a need for local- 
ized distributed storage and memory associated with 

■  ' ' "   ""i 
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Fig.   16.     Impulse  response  of  piogramraabie 
filter. 

,    -. 



each primitive for data and instruction queuing. In 
addition, both for ease of design and for increased 
packing density, the circuitry must be highly regu- 
lar on the silicon surface. 

From our previous work on this program, it is 
clear that, using current state-of-the-art tech- 
nology, low to intermediate level primitives can be 
built that will provide real-time operation with- 
out requiring extensive area on the silicon.  From 
this work, we anticipate that five or six primi- 
tives might be included in a single 200-mll2 chip. 
In support of this concept, we are currently 
investigating concepts for data distribution and 
intelligent local storage as well as techniques 
such as residue operation and number theoretical 
transformation for regularizing the processes t'iem- 
selves. The eventual aim of this work, which will 
continue in the next period, is to determine an 
optimum way of mapping the algorithms and processors 
onto the two-dimensional silicon. 

V.  SUMMARY AMD FUTURE PLANS 

During the current period, our work has been 
concentrated in three areas:  the fabrication of 
Test Chip III, the development of an effectiv test 
facility and preliminary testing of the circuits, 
and an Initial stud: of the effect of VLSI on image 
understanding.  Progress in each of these areas has 

been satisfactory, although unexpected delays have 
been encountered primarily with the outside mask 
maker. The problems with this vendor have created 
an unavoidable delay of at least two months and 
have been largely responsible for our delay in the 
testing schedule. However, all 11 masks have now 
been received, and the wafers have been processed 
and short tested. We have completed nearly all the 
work on the test facility and are now getting ini- 
tial test results.  This work will continue next 
period, and we Intend to issue an interim report 
detailing the test results as available.  In addi- 
tion to this, we ha^e started our VLSI study and 
are starring to formulate an approach for this 
major task next year. 
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ABSTRACT 

This paper summarizes recent work perfonned 
under a subcontract from Carnegie-Mellon Univer- 
sity for the DARPA Image Understanding Progr i. 
Discussion of the implementation of a real time 
median operator and a programmable sum of products 
operator are presented. 

1. INTRODUCTION 

The concept of very large scale integration 
(VLSI) implementation of a real time digital 
image processor based on multiple arithmetic 
logic units (ALUs) and on-chip buffer.memories 
was presented at an earlier workshop.  The 
implementation of the appropriate buffer memories 
was discussed at the last workshop.  While recent 
advances in component technology now make possible 
the realization of real-time image processors 
capable of performing highly complex functions, 
an understanding of the potential for implementing 
complex algorithms with miniaturized hardware is 
a necessary tie between algorithm research and 
hardware development efforts. The need to pre ierly 
define the complex functions before actual 
integrated circuit design begins is imperative due 
to the complexity of imaqe processing algorithms 
and the development cost and schedules of an 
integrated circuit design. A poorly defined 
''unction or a hastily marie technology decision 
can destroy an otherwise successful program. The 
design and implementation of a breadboard version 
of a proposed integrated circuit is considered 
good engineering practice. The breadboard version 
allows evaluation of the algorithm as well as the 
discovery and evaluation of the problems, risks 

and options involved before incurring enormous 
expenses. 

This paper discusses the breadboard versions 
of two image processing algorithms; a 5 x 5 median 
of medians operator, and a programmable sum of 
products operator. 

II. MEDIAN OF MEDIANS OPERATOR 

The 5x5 median of medians operator 
discussed at a previous workshop was implemented 
using off-the-shelf components. The breadboard 
will allow evaluation of the median of medians 
operator and provide important design inputs for 
a completely integrated version. A block diagram 
of the breadboard is shown in Figure 1. The 
breadboard was designed for real-time operation 
using a commercial TV camera as the sensor. 
Commercially available 8 bit analog-to-digital 
and digital-to-analog converters were used. The 
memory needed to buffer 4 lines of video was 
implemented using 1024 x 4 bit static random 
access memories (RAMs). The median operator 
circuitry was implemented using low power Schottky 
transistor-transistor logic. The ability to 
operate on images of different resolutions was 
accomplished by controlling the timing of the 
median board to accept every output sample of the 
buffer memory for full resoluticn or every other 
sample for 1/2 resolution, every fourth sample 
for 1/4 resolution or every eighth sample for 1/8 
resolution. The power required for the buffer 
memory function and the median of medians operator 
is 10 watts and 14 watts, respectively. The power 
and size of these simple functions emphasize th» 
need for integrated circuit technology in the 
implementation of image processing functions. 

The operation of the median of medians bread- 
board is shown in Figure 2. The original image 
is corrupted by impulse-l.ke noise. The noise is 
seen as small dark areas on the face of the girl. 
After passing through the median of medians bread- 
board the impulse noise is removed. The median 
filtered image appears somewhat blurry at sharp 
edges of the image. This is caused by the signal 
Suppression property of the two dimensional 5x5 
median filtering. Operation of the median of 
medians brtadboaru at dilferent resolutions is 
shown in Figure 3. As the resolution is decreased 
the median filtered image becomes less recogniz- 
able. 
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The median of medians breadboard has been 
delivered to Carnegie-Mellon University along 
with a simple interface board for interfacing to 
the VAC 11/780 computer. This will allow the 5 x 
5 median of medians filter to operate on images 
up to 1024 x 1024 pixels. 

III. PROGRAMMABLt SUM OF PRODUCTS OPERATOR 

Many image processing algorithms require 
operations of the form 

M-1 

1=0 

(1) 

where the W/s represent a set of fixed weighting 
coefficients and the X/s rep-esent a set or 
sequence of input values. Equation (1) can be 
used to calculate the coefficients of various 
transforms such as Fourier. Cosine, Hadamard, 
Haar. etc. Where two dimensional transforms are 
needed, successive one dimensional transforms can 
be used if the transforms are separable. Another 
very important application of Equation (1) is the 
discrete convolution of a two dimensional input 
image with a convolution array. These mathematical 
operations based on the neighboring pixel values 
are termed neighborhood operators and are used in 
many image processing algorithms. Examples of 
neighborhood operators include noise smoothing, 
edge crispening. linear edge enhancement, etc. 

Equation (i) can be implemented using digital 
multipliers and adders; h-werver, the size and 
power required to perform the multip^cation at 
video data rates with the accuracy needed for 
most imago processing applications is prohibited. 

A technique for realizing Equation (1) that 
does not require digital ;nultiplication is the 
ROM-accumulator (RAC)J technique. The RAC tech- 
nique implements the sum of products of an input 
word set with a set of weighting coefficients 
using a table look-up procedure as discussed at 
the last workshop. 

To properly define the LSI/VLSI implemen- 
tation of the programmable sum of products 
operator, a breadboard version of a 3 x 3 pro- 
granrnai.le operator using off-the-shelf components 
is being designed and implementea. A block 
diagram of the 3 x 3 programmable operator bread- 
board is shown in Figure 4. The breadboard 
consists of nine input latches, nine PframT 
in-serial out shift registers, a fast 51Z *U 
bit memory for temporary storage of the Partial 
products, an EPROM for permanent storage of the 
partial products, shift and accumulate circuitry, 
tri-state output latches, and control circuitry. 

The input latches are used to buffer the 8- 
bit input data paths (A, B and C) into the RAC 
circuitry. They also act as an 8-bit wide shift 
register for sliding window operations. When 
operating on 3 x 3 pixel blocks, data paths A. B 
and C are applied in parllel to latches L2. L5, 
and L8, respectively by appropriate control of 
the 2 multiplexers. In this case, the input 
latches act as 3 parallel, 3-pixel shift registers. 

When operating on 9 x 1 pixel blocks, data path C 
is applied to latch L8 and data paths A and B are 
not used. In this case the multiplexers allow 
the input latches to form a single 9-pixel shut 
regi ster. 

When data is valid in the input latches, 
their contents are clocked in parallel into the 
parallel in-serial out shift registers. These 
registers convert each bit-parallel input word 
into bit-serial form which provides 8 sequential 
9-bit addresses to the partial product memory. 
This memory is composed of 12, 30 ns static IK. 
x 1 MOS RAMs. The desired partial products 
stored in this memory are initially downloaded 
from EPROMs or alternatively from a computer. 

The 8 sequential partial products obtained 
from the memory are applied to the shift and 
accumulate circuitry which performs binary 
weighting and summation using carry-save addition 
techniques.4 Unsigned mangitude or two s comple- 
ment data may be used. The accumulator output is 
latched in tri-state buffers. 

Using commercially available components the 
maximum internal clock rate for the shift registers, 
memory, and accumulator is 20 MHz. Thus, for 8- 
bit wide input data, 400 ns (8 x 50 ns) are 
required to complete each sum of products calcu- 
lation. When performing 3 x 3 sliding window 
operations, the mavimum input date rate is there- 
fore 2.5 MHz. In order to perform 3x3 sliding 
window operations at standard TV data rates, three 
boards may be operated in parallel with 6-bit 
input data to achieve an input data rate of iu 
MHz. When performing 9 x 1 non-sliding oper- 
ations with a single board, the maximum 8-bIt 
input data rate is theoretically 22.5 MHz. The 
breadboard, however, is designed for 10 MHz 
maximum input data rate. 

The design of the breadboard is complete and 
fabrication has begun. 

CONCLUSIONS 

This paper has discussed the imolementation 
using off-the-shelf components of twr invge 
processing functions; a median of medians operator 
and a programmable sum of products operator. 
These breadboard activities are invaluable aids 
to integrated circuit architecture design. 
Experimental results from the median of medians 
operator were shown and a detailed discussion of 
the programmable sum of products breadboard was 
presented. Work is continuing on the fabrication 
of the programmable sum of products breadboard. 
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HIGHER  LEVEL ALGORITHMS:     EVALUATION  ANB IMPLEM^TATION 
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ABSTRACT 

Under contract to the University of Maryland 
Westinghouse has been investigating the potential 
for hardware implementation of higher level algo- 

SinrociatL with the ^^ZTlTlo^ 
nes-  The program is sponsored by DARPA ana moni 
tored hy the Army's Night Vision and Electro-optx- 
cal Laboratory.  In this report -ven current 
algorithms are defined, and one example (the 
liaht/dark. edge-no edge relaxation proces., with 
hofdern^:) is'examined in detail, ^th - r- 
gards the computation of initial probabilities, 
and of the relaxation process itsell. 

The complexity of emerging algorithms has 
created a severe processing load for the g««^" 
createa a ^    * thirty minute running times 
PforrPOaS:iCngle "age s^ple, statistical testing be- 

ome^ prohibitive for a data base f ^^ 
dred samples. Westinghouse V™VOsesto*ttactt^ 

problem with the use of array Procfs0"-. T^ted 
approach is discussed in this paper.  It ^ ™tea 

^at software development for -ray processing *ay 
also simplify the hardware implementation effort. 

INTRODUCTION 

Past effort on this program has been concen- 

trated on the definition of digital architecture 

for implementing the image processing algorithms 

developed at the University of Maryland (UMd). Re- 

cently, however, a need has emerged to provide sup- 

port to UMd in the statistical testing of complex 

algorithms. To understand this need, consider that 

the processing of a relaxation algorithm for a small 

image window may require more than 30 minutes of 

running time on a general-purpose computer. Typi- 

cal data bases, on the other hand, will contain 

several hundred image samples. Conseqvently, the 

demand on the computer to obtain significant statis- 

tical results becomes prohibitive. 

There are at least three ways to overcome this 

dilemna. The most obvious way is to simplify the 

algorithms.  In actual practice, simplification 

usually does occur.  However, the search for new, 

more powerful appraoches rapidly overcome", the re- 

-i„„-;+,r  Tt la concluded that means duction in complexity,  it is oom-j-u 

must be found for dealing with very large loads. 

A second approach is to build special-purpose 

hardware capable of adequate throughput rates. The 

design of such hardware is the subject of our con- 

tinuing effort.  Apart from the obvious drawbacks of 

time and expense, however, .here is a heavy require- 

ment for programmability. The variety of the algo- 

rithms which one would like to examine is almost 

unlimited. The inflexibility of almost any special- 

purpose hardware could be expected to undesirably 

restrict the algorithm design and evaluation. 

A third approach, and one which we are now in- 

vestigating, is the use of a fully programmable 

array processor, with a throughput in excess of IQ1' 

operations per second. Westinghouse is a leader in 

array processor development, with particular appli- 

cation to military problems. At present, this is 

rack-sized equipment.  However, the Universal Array 

development described at the last workshop (Ref. l) 

is directed specifically toward the LSI implemen- 

tation of array processors.  Consequently, there is 

the prospect that a satisfactory performance 

.8 
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demonstration on the array processor can be readily 

translated into a miniaturized form with a minimum 

of program modification. 

The use of the ar^-ay processor for statistical 

testing appears to offer the advantages of flexi- 

bility and short responce time, under the assump- 

tion that such a machine can in fact accommodate 

the UMd algorithms. We are now Investigating this 

matter, as will be discussed below. 

The evolution from an image processing concept 

to miniature hardware might follow the paths shown 

by Figure 1.  After initiating the concept, UMd 

would develop the algorithm and would perform a 

feasibility demonstration of its performance on a 

small set of test samples.  Westinghouse would 

adapt the algorithms for the processing of a sta- 

tistical test on the array processor, using a 

test data base approved by NVEOL.  In a parallel 

effort, Westinghouse would investigate the LSI 

implementrtion of the algorithms, based on all 

available logic families.  It would also consider 

their implementation with Universa] Array archi- 

tecture. The results of the statistical test, and 

the recommendations for implementation would be 

available for further action by a military agency 

such as NVEOL. 

In the next section we review the pro-pects 

for algorithm evaluation using the Programmable 

Array Processor. This is followed by a discussion 

of the prospects for implementation of seven al- 

gorithms currently under examination at UMd. 

IMPLEMENATION OK IMAOE PROCESSINr; ALGORITHMS ON 
AN ARRAY PROCESSOR 

Westinghouse has developed a family of Program- 

mable Array Processors (PAP) designed for high- 

speed signal processing.  In general, the PAP is a 

single unit that is specifically structured for 

high-speed, iterative processing on sets of data 

commonly referred to as "vectors".  If, for example, 

we consider each line of digitized video data as 

an input "vector", then image processing of conse- 

cutive lines of image data should be accomplished 

at high speed rates.  The PAP is "programmable"; 

that is, its operation is controlled by a computer. 

The PAP is "highly programmable", which means that 

it has com; lex, higher-order instructions and is 

capable of autonomous operation and decision making. 

The Westinghouse PAP is currently in its third 

generation of hardware development, with the next 

generation being designed.  Systems applications 

include high-speed video and radar signal analysis. 

New designs will make use of Universal Arrays and 

other LSI circuitry, as well as modular architec- 

ture for improved data handling and data through- 

put rates. 

The video input data is stored into bulk memory 

under program control of an internal general- 

purpose computer, which includes the capability to 

reformat and re-order the data.  See Figure 2.  The 

Vector-Array Processor (VAP) is a four-channel 

processor that performs most of the vector arith- 

metic instrucitons, such as MULTIPLY/ADD, COMPARE, 

ACCUMULATE, LOGICALS, TABLE LOOK-UP, DOWN SAMPLE, 

UP SAMPLE, SQUARE, and DETECT.  The basic control 

functions such as loop controls, branching, and 

indexing are provided in boti. the VAP and the 

internal general-purpose computer. 

The VAP usually operates two or three orders 

of magnitude faster than commonly used computers 
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doing iterative processing on data in vector formt. 

The efficient data interface which is capahle of 

video data input rates .aintains high data through- 

put rates for the PAP system.  The unit is struc- 

tured to be very efficient at ordinary arithmetic 

operations such as multiply and add with fractional 

scaling, so it is expected to be well suited for 

complex algorithms such as relaxation. 

Westinghouse is investigating the increase in 

image processing capability that can be achieved by 

perfoming the processing functions on the Westing- 

house Programmable Array Processor (PAP).  It is 

currently intended that this effort will have sever- 

a! goals, which are principally long-term goals, but 

with significant results from the initial effort. 

Specific feoals are the following: 

1. Analysis of various potentially useful image 

processing algoritnms to obtain a prelim- 

inary determination of their compatibility 

with vector processing format. 

2. Estmation of PAP data throughput rates for 

the principal algorithms. These estimates 

will include not only the adds and multi- 

plies associated with the repetitive linear 

operations, but the control overhead and 

data storage and transmission that is a 

significant limit on array processing. 

3. Evaluation of algorithms for compatibility 

with the line-at-a-time processing typical 

of a vector processing architecture. This 

should include algorithm effectiveness, 

complexity, and potential for further 

optimization. 

U. Evaluation of compatibility of pipell«« 

processing (typical of the Westinghouse 

AUTO-Q system) Vector processing (typical 

of the Westinghouse PAP system) and parallel 

processing arrays with the basic image 

processing algorithms.  Since there is no 

known existing hardware for line-at-a-time, 

parallel processing arrays a potential 

architecture will be developed for analysis. 

5. Comparative analysis of the progr^ability 

and potential speed capability of pipeline 

processors, vector processors and parallel 

processing arrays, using current fabrication 

technology and ultimate potential technol- 

ogies (e.g. CCD's, high speed universal 

arrays, VHSIC). 

6. Depending on the potential capabilities of 

the parallel processing arrays (determined 

above) continue development of an archi- 

tecture and system design for a demonstra- 

tion unit, and develop the capability for 

simulating its operation on the PAP. 

HARDWARE IMPLEMENTATION 

This section describes the algorithms which 

are currently under evaluation for implementation 

in hardware. One of these, the "light/darK, edge/ 

nc edge" relaxation process, with "borderness", is 

^»+„11 nc, recreser Native of the examined in some detail as rcpres 

TTir^t the initial proba- implementation process.  First, tne 

■A^0r\       This is followed by the bilities are considered,  mis 

relaxation process itself. 

ALGORITHM REVIEW 

We briefly review seven algorithms developed 

by üMd which are being analyzed by Westinghouse for 
p 

hardware implementation. The first four are seg- 

mentation algorithms based on the relaxation ap- 

proach. The fifth3 is a spot detector which is 
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designed to select thresholds for segmentation. The 

last two are higher order algorithms for shape class- 

ification and texture classification. 

1. "Light/Dark" Relaxation Algorithm 

The Light/Dark Relaxation algorithm initial- 

ly assigns "light" and "dark" probabilities 

to image pixels based on their gray levels. 

These probabilities are then iteratively ad- 

justed at each image point (pixel) based on 

the probabilities at neighboring points; 

i.e., light reinforces light and dark re- 

inforces dark. This has the effect of ad- 

justing the probabilities initially assign- 

ed to noify pixels so as to make them more 

consistent with their surroundings.  Eventu- 

ally, the light probabilities at all points 

of a light region should become uniformly 

high and vice versa for the dark probabil- 

ities, so that thresholding becomes easy and 

should produce noise free results.  This al- 

gorithm and its implementation were described 

in detail in the Third, Fourth, and Fifth 

Quarterly Reports on this program. 

2. "Edge/No Edge" Relaxation Algorithm 

The Edge/No Edge Relaxation Algorithm is a 

process in tfhich "edge" and "no edge" prob- 

abilities are initially assigned to each 

image point (or, alternately, to each ad- 

jacent pair of points) based on the relative 

values of the gray level differences in 

various directions around the point. These 

probabilities are then adjusted based on the 

probabilities at neighboring points.:  no- 

edge reinforces no-edge; edge reinforces 

edge if they smoothly continue one another. 

and reinforces no edge (and vice versa) If 

they are alongside one another. This has 

the effect of strengthening the appropriate 

edge probabilities at points that lie along 

smooth edges, and strengthening the no edge 

probability elsewhere, so that edge detec- 

tion should yield less noisy results.  This 

algorithm and Its implementation were de- 

scribed in detail in the Fourth and Fifth 

Quarterly Report. 

3. Joint "Light/Dark, Edge/No Edge" Relaxation 

This algorithm combines the above algorithms 

and allows them to interact in much the 

same manner as the individual probabilities 

interact in either of the above algorithms. 

The interaction between light/dark and edge/ 

no edge takes place at the relaxation level 

which substantially increases the computa- 

tional load. 

h.   Joint "Light/Dark, Edge'No Edge" Relaxation 
with "Borderness" 

This algorithm produces results similar to 

the Joint "Light/Dark, Edge/No Edge" Re- 

laxation Algorithm described above; it al- 

lows interaction between the "Light/Dark" 

and "Edge/No Edge" Algorithms using a Bor- 

derness concept. This essentially, provides 

interaction at the initial  probability 

level rather than the relaxation level, 

and eases the computational burdeii sub- 

stantially.  The relaxation computation is 

done in the Light/Dark mode.  Implementation 

of this algorithm is a combination and 

extension of the relaxation work performed 

previously.  Here, the probability of light 
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is initially high only adjacent to edges on 

their light sides.  This gives an array of 

borderness values which are high on the 

light size of edges and and low elsewhere. 

5. Spot Detector 

This algorithm permits each target within a 

image to be thresholded individually.  Low- 

er resolution renditions of the original 

image are obtainea by kxh  averaging; suc- 

cessive averaging will produce a spot (one 

pixel) target. A biased 3x3 LaPlacian Oper- 

ator is scanned across the lower resolution 

image and responses are analyzed for fre- 

quency and spatial proximity.  Given a 

positive response, a threshold is selected 

by averaging the eight background pixels 

surrounding the target, and averaging this 

quantity with the target gray level.  The 

result is used to threshold the target in 

the original, high resolution image. 

6. Shape Classification by Relaxation ,5'^ 

The purpose of this algorithm is to recog- 

nize shapes described by closed boundary 

curves of more complex shapes such as air- 

planes.  Basically they are segmented into 

a number of parts and sequences (triples) 

of these parts are examined for consistency 

using probabilities relaxation.  The seg- 

mented parts could be nose, right wing, left 

wing, and tail.  Since the segmentation is 

imperfect, initial probabilities are assign- 

ed, analytically, to the various segments. 

Then sequences of adjacent segmented parts 

are used to reinforce the identification of 

particular segments. 

7. Texture Primitive Extraction'7'»^ 

Many textures 2an be characterized as a 

collection of primitive elements, i.e. con- 

nected regions satisfying certain properties. 

Here, the primitive extraction is done using 

edge-based techniques. 

IMPLEMENTATION OF "LIGHT/DARK EDGE/NO EDGE" with 
"BORDERNESS" ALGORITHM 

We describe the implementation of the Joint 

"Light/Dark, Edge/No Edge" Relaxation with "Border- 

ness" Algorithm because it represents a summary of 

the work performed on relaxation and it:; implement- 

ation would be capable of landling some of the high- 

er order relaxation algoriihms such as the Shape 

Classification Algorithm. We shall concentrate 

first on the initial probability computations. 

INITIAL PROBABILITIES (Edge/No Edge) 

The Edge/No Edge Algorithm finds the largest 

edge value over a 3x3 neighborhood for each of eight 

directions by multiplying the gray levels in the 

3x3 array by a mask rotated through eight positions. 

The 3x3 array is shown in Figure 3 together with the 

eight mask position. 

The edge value for first mask position is 

e(l) = A(-l) + B(0) + (C(+l) 

+D(-1) + E(0) + P(+l) 

+G(-1) + i[(0) + ( !(+!), and the 

edge value for a particular pixel is e = max. e(i), 

i ■ 1,2,...8. We note the symmetry in the edge 

computations shown in Figure Ita.  In Figure lib, we 

rearrange the interiors of the quantities such that 

the middle pixel in each quantity is also the middle 

pixel, geometrically, between its neighbors in the 

3x3 array.  Then one clockwise shift around the 

outer eight pixels followed by a counter clockwise 
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shift forms the quantities shown in Figure 5.  Then 

with four additional shifts in either direction, 

the quantities of Figure ka  appear in the outer 

eignt pixel positions as shown in Figure 6.  The 

number of operations to form these quantities are 

six shifts and three adds performed in parallel 

over eight units.  If we assume that each pixel is 

represented by a processor capable of 20 million 

operations/3ec. then the nine operations consume 

1*50 nanoseconds.  Hence, five sets of eight proces- 

sors are capable of performing the edge computations 

at video rates.  We delete the e = max e(i) step 
i 

because it is not included in the borderness 

computation. 

INITIAL PROBABILITIES (EDGE/NO EDGE WITH BORDER- 
NESS) 

In computing "Borderness" we add the e(i) 

value, corresponding to the +1 position of the mask, 

with the gray level at that pixel position.  The 

resultant quantity is placed at that pixel position. 

In terras of the mask positions and e(i) quantities, 

the final borderness mask is shown in Figure 7. 

With the completion of the edge/no edge computation 

described in the previous paragraph, the edge 

values, e(i), are in positions within the computa- 

tional array shown in Figure 8a. By shifting clock- 

wise four positions, e(l) is in the middle of the 

+1 
+1 
+1 column for mask 1.  Similarly, each of the other 

edge values are in the middle position of their +1 

sequence. Then by shifting one position clockwise, 

followed by a counter clockwise shift, (Figure 8c), 

the appropriate triplets in Figure 7 can be formed. 

Thus to form the Borderness values, six shifts and 

two adds are required for a total of 1*00 nanoseconds. 

The total time to compute Borderness is 950 nano- 

seconds which requires 10 sets of 8 processors for 

real time operation. 

INITIAL PROBABILITIES (LIGHT/DARK) 

We define p (A) =  xy -  rain as the proba- 

^       ^r 
bility of a pixel at position xy being dark where 

gl  is the gray level at pixel xy, gl is the 

gray level range over the image, gl .  is the mini- 
mi n 

mum gray level over the image, and X  refers tc dark. 

Then an estimate of the probability of any pixel in 

—     1 Z 
the image being dark is p(A) = —   p  (X) where n 

n xy rxy 

is the number of pixels in the image.  An estimate 

of the Joint probability of the center (ith) pixel 

(of a 3x3 window) being dark and its eight neigh- 

bors (jth pixel) being light is p..(XX') = — J 

Ij       n xy 

P ('Op.,..,- ,.4.!^') where X' refers to light.  Note xy   XTi,y+j 

that p (X')=l-p  (X), i.e. the probability of 

light is one minus the probability of dark.  There 

are four joint probabilities p..(XX), p..(X'X), 

p.. .(X'X'), and p.. (XX') to be computed for each of 

the eight neighbors for each pixel in the image. 

By substitution, assuming gl .  =0, we obtain 
rain 

p^rn.ii^ci.gi^gi^.gi^ 

glx+i,y+j
)+ r glxy Slx+i,y+j

]' and' in general, 

any of the Joint probability expressions can be 

written as 

p.,( ) = f[I gl  , £ gl  gl  .  _, 
ij xy     xy B x+i,y+j' 

Further, it is shown in the Fifth Quarterly Report 

that I  glx+.iy+J = h (I el7Vt   T.  rk, I  0l).     That is, 

the sum over the neighboring pixels can be found 

from the sum over all the pixels minus the sum over 

two rows (froml,2,r, -, , r ) and two columns (from 
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l)2,c  ,c ) where k is the total number of rows and 

1 is the tota", number of columns.  This allows the 

computation of I gl  , E gl ,.  , . as an accumula- 

tion plus two arithmetic operations.  For the 

S-'- +• +i ^^  product, we note the symmetry proper- 

ly. That is, let us change notation such that i,j 

are running indices over the entire frame. Then 

the center pixel to lower right pixel combination 

instead of being gl  gl ..  ,, becomes gl,, 
^ ^ xy  x+i,y+J       0 ij 

gli+i,j+r   c168^' sijj 8i1+1j+1 
is e<iual to 

gl. , ... gl.. which is the center to upper left 

combination in the next row and one column to the 

right. With this reciprocity in mind, we need only 

compute four of the gl.j Sl^j^gl^ Slx+i>y+j) 

combinations directly with the operator shown in 

Figure 9. Assuming a 2's canplement addition in 

eight steps for an 8 bit by 8 bit multiplication, 

there are ItOO nanoseconds per multiplication and 

1600 nanoseconds per pixel.  Hence, 16 processors 

are needed (assuming a 50 nanosecond clock cycle) to 

produce the initial probability products for light/ 

dark relaxation in real time, i.e. video rates of 

30 frames per second. 

In summary, 96 processors (20 mega operations/ 

sec) are required to produce the initial probability 

computations for the Joint "Light/Dark, Edge/No 

Edge" with "Borderness" Relaxation Algorithm at 

30 frames per second. 

THE RELAXATION COMPUTATION 

In the First and Second Quarterly Reports, we 

described a number of commercially available bit- 

sliced architectures, e.g. AMD 2901, AMD2903, 

MC 10800, etc. in terms of th;."r instruction repe- 

tolre, speed, power, and size.  We concluded that, 

although bit-sliced architecture offered substan- 

tial advantages over conventional microprocessors, 

the size and speed were not adequate for airborne 

image processing applications, particularly 

missiles.  We then concentrated our efforts on the 

use of Westinghouse Universal Arrays in the Third 

and Fourth Quarterly Reports, as a tool for imple- 

mentation.  We described the relaxation calcula- 

tions in terms of Systolic Arrays, composed of 

Universal Array multipliers. We continue that 

effort here, and broaden i:,, with the addition of 

a programmable Westinghouse Universal Array (ALU) 

Arithmetic Logic Unit.  It is assumed that the ALU 

is 8 bits wide, has an instruction set comparable 

to the AMD 2903, performs 20 million arithmetic 

operations per second, is contained on a .5 inch x 

.5 inch chip and performs multiplication on-chip 

using 2's complement addition. A 8 bit x 8 bit 

multiplication takes 1*00 nanoseconds.  In the 

previous section, this processor was applied to 

the initial probability computations for the Joint 

"Light/Dark, Edge/No Edge" Relaxation Algorithm 

with "Borderness".  In this section, the processor 

is applied to the relaxation computation for that 

algorithm. 

To implement the relaxation computation, as- 

sume that the quantities p.,(XX'), r. .(AA'), 

p.(A), p.(A') and p(A) have been computed as part 

of the initial probability calculations. 

The first quantity computed is 

qk^1(A) = L  pk(A) P.(A') r.,(AA'). For A' = 
IJ A    1      J       IJ 

1,2 the quantity beccmes 

q^U) = pk(A) pk(l) "(A,!) + 

pk(A) pk(2) r U,2). 

For each possible value of A, the above quantity 
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then becomes: 

k+1. 
qr^l)  = p^(l)  pjd)  r..(l,l)  + 

pj(l)  pj{2)   ^.(1,2) (l) 

q.j{2)   =  p^(2)   p^l)   ^(2,1)   + 

p^(2)  PJ(2)   r..(2,2), (2) 

a pair of expressions.     The p. . '(X)  = q. .   (X)/ 

k+1,, , ._    k+1  ,,,, 
q..   (A)/i  q.        (A   )   expression  is  then one  of the 
ij r  i 

above pair in the  numerator  over their  sum  in the 

denominator.     So the computation of (l)  and  (2)  is 

the basic computation of relaxation and other ex- 

k+1,,,       k+1,,, 
pressions p       (A),  p.     (A)  are mere manipulations 

of this pair.     Consider,  the computation of expres- 

sion   (1)   and  (2).     The  1  index refers  to  the  center 

pixel in the  3x3 array;   the  index j  refers  to each 

of the eight neighbors.     But as  discussed earlier, 

we  can  use the  same  operator,   shown in Figure 10,  to 

k+1 
compute  q.,   (A).     In  other words,   at each  center 

k+1 pixel, we need only compute the q      (A)  appropriate 

for  four of the eight neighbors,  numbered arbitrar- 

ily in Figure 10.     The computations required are: 

V^D =PNI) p{(l) r^(l.l) * 

q^1{2)  =  P^{2)   p^l)   rcl<(2,l)  + 

P*d)  P*(2)   ^(2,2) 

q^-d)   = p*d)   P^d)   rc6d,l)  + 

pj(l)  p^(2)   rc6d,2) 

<81(2) " ^ P8(l) ^cS^'1' + 

r>)  Pk
8(2)   rc8(2,2) 

There  are eight expressions of the  form: 

abc+ade=a  (be  +  de), 

that is, multiply, multiply,  add,  and multiply. 

If we  assume hOO nanoseconds  for an on chip multi- 

ply,   and  50 nanoseconds   for  an  add,   the  computation 

time  is 1250 nanoseconds   for one q. .   (A)  quantity 

and  0x1250 =  10,000 nanoseconds  for  B. 

If we assume an image  frame containing  330,000 

pixels   (standard 525 line TV),  then processing at 

video rates   (30 frames/r.c.) means a processing 

rate  of 10 million pixels/sec.     or an  allowable 

tine  interval between pixels of 100 nanoseconds. 

With two processors, the  allowable time between 

pixels  is 200 nanosecond for each processor;  with 

twenty processors,  the allowable time per processor 

is  2000 nanoseconds;   Jid with 100 processors,  the 

allowable time per processor is  10,000 nanoseconds. 

Hence,  100 ALU's of the type Just described 

produces the allowable time between pixels or a 

processing rate of 2,000 mega operations   (2 

billlon)/second.    Assuming 0.5 inch x 0.5  inch 

for each ALU chip,  a 3 inch x 3 inch space 

accommodates  36 ALU's and a board pair contains  72. 

With 1/2  inch centers between board pair:;,  a 3 inch 

x 3 inch x 3 inch volume  contains six board pairs 

or 12 boards.     Only three of  these boards contain 

the 100 ALU's necessary for the q..(A)  computation. 

This means that the frame  is divided into 100 verti- 

cal strips and each processor is responsible for 

approximately 50 pixels  in the  image.     The prelim- 

inary design allows the relaxation iterations  to be 

computed at frame rates.     Thus,  if five iterations 

are necessary for convergence,  the actual cueing 

rate  is  six frames per second. 
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To reduce computation time by a factor of 5. 

we could utilize 500 processors, but this would ex- 

ceed the desired volume. More simplification are 

necessary in the computations.  In summary, pre- 

liminary analysis indicates that It may he possible 

to perform i„„axation computations at a rate of six 

frame/sec. in a volume of 3 inches x 3 inches x 3 

inches using 100 programmable processors. 

With regard to hardware implementation, the 

following conclusions have been reached: 

1. Joint Light/Dark Edge/Ko Edge with Border- 

ness which incorporates interaction between 

Light/Dark Edge/No Edge at the initial 

probability level is easier to implement 

than the Joint Light/Dark Edge/No Edge, 

results appear to be comparable. 

2. This algorithm can be accommodated, 

according to preliminary analysis, in a 

3x3x3 inch volume at six frames per sec. 

assuming five iterations for convergence. 

3. The spot detection algorithm appears to 

produce thresholds in a relatively simple 

manner, can be accommodated in a 3x3x3 

inch volume and has application in tactical 

missiles. 

k.    Shape Classification by Relaxation can be 

accommodated by the 100 ALU array- 

processor found in the 3x3x3 volume with 

some dynanuc reconfiguration of architec- 

ture. 

5. Texture analysis offers an opportunity to 

attack the problem of forming edge based 

groups or primitives using memory array 

techniques which are now more attractive 

based on memory advances and the 100 ALU 

array. 
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ZMOB: A Mob of 256 Cooperative 

280A-Based Microcomputers 

Chuck Rieger 
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1.  INTRODUCTION 

Current directions of computer science and com- 
puting in general are toward more parallel machine 
architectures and distributed models of computing 
based upon these new architectures.  Broadly 
speaking, parallel architectures fall into two 
categories: parallel synchronous machines (typified 
by ILLIAC IV), which execute the same code synchro- 
nously in many processors operating on different 
data, and parallel autonomous machines (typified by 
CM*), in which many independent processors can be 
put to work on different aspects of a large compu- 
tation. 

In past and much current work, emphasis has 
been on the former variety of machine [1-3]. 
Recently, however, there has been considerable in- 
terest in highly parallel architectures capable of 
supporting complex distributed computation via a 
large number of autonomous processors [4,5]. 
While many interesting machines have been proposed 
or are currently being developed, there has appa- 
rently been no specific attempt to build a machine 
with a truly large number of autouumous processors, 
each having substantial Independent computing 
power. 

ZMOB is such a machine, currently under design 
and simulation at Maryland.  Architecturally, ZMOB 
is a collection of 256 Identical but autonomous 
Z80A-based microcomputers (processors).  Each pro- 
cessor (Fig. 1) comprises'32K bytes of 375 ns read/ 
write central memory (expandable to 48K bytes), up 
to 4K bytes of resident operating system on 450iis 
EPROM, an 8-bit hardware multiplier, and interface 
logic for communications functions.  (This is a 
non-trivial microcomputer, comparable in size and 
power to the average small business or personal 
computer.)  Two processors will share each PC 
board, making a total of 128 processor boards 
mounted in several rack cabinets, and supplied by 
a rather hefty power supply.  Although  the 

machine will initially consist of 256 processors, 
its architecture is extensible (in principle) to 
any number of processors.  In practice, we will 
anticipate extensibility to 1024 processors. The 
current cost estimate for the 256 processor 
machine is $100K. 

Good intercommunication pathways and bandwidths 
are critical to the success of any highly parallel 
machine.  As described below, we have what we 

feel is a very attractive solution to inter-pro- 
cessor communication, and processor-to-outside- 
world communicaMon.  The strategy will be non- 

blocking (e.g., there can be 128 full-speed conver- 
sations between pairs of processors), and will 

give each processor the illusion of data communi- 
cation rates as high as the Z80A it .elf can manage. 
In one mode, for example, data rates into or out 
of ZMOB can exceed 20 megabytes per second. 

2.  BACKGROUND AND f.OTIVATION 

The ZMOB idea sprang originally from needs of 
the Computer Vision Lab at Maryland.  In certain 
vision tasks based on relaxation algorithms [&], 
each pixel of, say, a 512 by 512 image must be 
processed once per "Iteration".  The processing of 
each of the quarter million pixels is identical, 
and Independent of the processing of other points 
during one iteration.  A typical relaxation algo- 
rlthr. will require 5-J0 Iterations to converge. 
The particular algorithm used will vary with the 
application. 

In a complex relaxation algorithm, each pixel 
is represented by a "probability vector" of perhaps 
10 bytes, and the per-point, per-iteration compu- 
tation in sjch an algorithm might Involve 1000 
8-bit integer multiples and a corresponding number 
of additions.  Rough calculations show that one 
complete iteration can therefore require upwards 
of 250,000,000 multiplies and a comparable number 
of „dds, a staggering computation which requires 
hours on a medium-size conventional machine.  Our 
preliminary studies (relatively complete Z80A 
code, hand-simulated timing results) indicate that 
ZMOB will require on the order of 100 seconds for 
such a computation. 

Although motivated by relaxation processing 
needs, it quickly became obvious that a machine 
with such a great computing potential ought to be 
general-purpose as a research tool for distributed 
computing models in all of computer science. 
Specifically, it became of concern that the geome- 
try of Intercommunication paths not be unduly 
biased by the machine's applications in vision 
(where 4-neighbor adjacency is natural), and that 
the 8 megabytes of high-speed central memory not 
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be Inaccessible to computations desiring to view 
the machine as a Large single address space.  The 
design ol the intercümmunlcation system reflects 
these concerns, and results in a machine which is 
both general-purpose, and which (from tlml ig 
studies) supports the Initial vision applications 
as fast as any other special-purpose Z80A-based 

archietecture could. 

3.  BASIC PROCESSOR ARCHITECTURE 

ZMOB is a collection of autonomous Z8üA-based 
microcomputers.  The Z80A is an 8-bit microproces- 

■ hip witli a 158 Instruction repertoire, two 

sets of 7 8-bit registers, and several 16-blt 
registers for stack pointer, program counter, and 
indexed addressing.  It Is a stack machine with a 
6AK byte address space, 256 logical I/O ports, and 
a T-cycle time of 250ns.  A typical instruction 
will require about 2 microseconds to execute, and 
there are several rather powerful block search and 
transfer instructions.  High-speed vectored inter- 
rupt linkage is another virtue of the chip, which 

sells in quantities for less that $15. 

In the initial conception, the plan war to 
assign each ZMOB processor to two scan lines of 
image data In a 512 by 512 pixel image.  In such 
a machine, each processor would be connected to its 
two adjacent processors (handling adjacent scan 
lines), and to an external controlling computer 
(e.g., a PDP-11), all over Interrupt driven 8-bit 
parallel ports with handshaking.  At power-on, 
ZMOB would be cleared, bringing each processor 
back to Its basic resident operating system.  This 
system would allow tor the loading of applications 
programs and parameters Into the processor's RAM. 
After initialization, all processors would be 
forced Into their DMA condition while the external 
machine, having access to the individual, proces- 
sors' address spaces (as pieces of one large vir- 
tual space), loaded in the starting image data. 
After loading and removal of the DMA condition, the 
external machine would broadcast a system-wide 
start command over all control ports.  Once run- 
ning, each processor would request information from 
Its neighboring processors, compute two pixels 
worth of probability vector updates, then advance 
to the next of the 512 pixels across its two scan 
Mm;.  The operation would progress (pretty much 
synchronously) iir all processors simultaneously 
until, at the end of the scan line, each would 
broadcast "ready" messages to the external compu- 
ter.  When all had been accounted [or, the external 
computer would again force all processors to their 
DMA state, read the iteration's results for TV dis- 
play update, then release the processors on the 

next iteration. 

Timing simulations showed that such a machine 
would be quite profitable.  For example, the time 
required to compute each Image pixel's 3 by 3 
8-hLt gray-scale average in a 512 by 512 image 
would be about 2 fifths of a s.^-ind, while the 

time required to run a simple edge detector over a 
512 by 512 image would be about one second.  Even 
an elaborate relaxation algorithm involving 10 
labels per image point would complete each Itera- 
tion in about 100 seconds, orders of magnitude 
faster than presently possible on a conventional 

machine. 

The Initial conception of the machine rapidly 

evolved into a design capable of supporting a 
variety of distributed computing models, in addi- 
tion to the vision models from which the idea 
came.  The current design, ZMOB, supports the 
original vision applications within the same time 
estimates, and will result in a machine that is a 
flexible and general purpose research tool. 

4.  THE CONVEYOR BELT 

In the current design, there are no direct 
neighbor-neighbor communication paths.  Rather, 

each processor is a mail stop on a high-speed, 
synchronous "conveyor belt" (Fig. 2).  The ZMOB 
portion of the conveyor belt is thus 256 positions 
long (but indefinitely extendible), and resembles 
certain existing synchronous ring networks in its 
concept [7] (although the types of messages passed 
are quite different).  The external controlling 
computer, and perhaps other devices such as high 
speed disk interfaces, are additional mail stops 

on the conveyor belt. 

Each mail stop (Fig. 3) is associated with a 
processor, and is physically a part of that pro- 
cessor's PC board. Mail stops are connected to- 
gether over dedicated backplane bus lines.  Each 
mail stop is a high-speed' synchronous latch capable 
of bwitchlng data between the processor and the 
conveyor belt.  While the optimal width of the 
conveyor belt has not been determined, we are pre- 
sently conducting timing studies based on a width 
of four fields of between 8 and 10 bits each: 
source ID, destination ID, data, and control. 

Conceptually, the conveyor belt's role is to 
accept a message from a processor and deliver it 
to another directly or indirectly referenced pro- 
cessor, or population of processors.  Ideally, we 
would like the conveyor belt to serve as a non- 
blocking message switcher, i.e., one in which n/2 
simultaneous processor-processor conversations 
could be in progress at maximum Z80A rates.  This 
would give each processor the illusion of having 

instant access to any other processor. 

As It turns out, this ideal is achievable. 
Aside froT DMA, the Z80A's highest memory or I/O 
data transfer rate is one byte per 5.25 micro- 
seconds (achieved during several of the block 
memory-inovl instructions).  This Is a hardware 
limitation of the Z80A, and cannot be improved 
upon by clever programming techniques.  To act as 
a non-blocking message switcher, the conveyer belt 
needs only to make one complete revolution every 

._   __ _ ;JMaa^ 
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5.25 microseconds so that a specific position on 
the belt (a bin) will always be available for 
each processor's next memory transfer every 5.25 
microseconds.  Conventional high-speed digital 
electronics can support the approximately 50 rahz 

shift frequency required for such a conveyor 
belt.  While engineering and economic considera- 
tions might dictate a somewhat slower conveyor 
belt in the 20 mhz range, even at a lower rate, 
most forms of interprocessor communication can 

proceed at full Z80A rates. 

The conveyor belt is synchronized by two 
system-wide control lines, the conveyor belt shift 
clock, and the index pulse.  The shift clock con- 
trols the basic movement of data into and out of 
each mail stop, and hence around the conveyor belt. 
The index pulse is emitted once per complete revo- 
lution of th« belt, and signifies to each processor 

that its own bin is under the processor. 

Each processor owns tht bin indicated by the 
index pulse.  When this bin is at the processor, 
any data waiting in the STAGING REGISTER will be 

taken onto the conveyor belt.  The staging 
register, loaded byte- «xse by the Z80A at its con- 
venience, and armed when its data field has been 
loaded, serves to synchronize the othferwise asyn- 
chronous operations of the processor and conveyor 
belt.  Outbound data will only be accepted when the 
processor's bin is flagged as empty by a bit in the 
control byte (i.e., if the message is not consumed 
by the intended destination, it will be retained on 
the belt, unless the originating processor has in- 
dicated that it wishes to Intercept its own trans- 
mission if not consumed in one revolution). 

Outbound data requires only a go, no-go deci- 
sion about whether the bin is free to accept the 
contents of the staging register.  For the inbound 
pathway, each mail stop requires a small amount of 
high-speed decision logic for ipt^rcepting coi veyor 
belt messages directed at its processor.  In addi- 
tion to its numerical adlress on the ionveyor belt, 
each processor can advei. Uie a category code.  When 
armed, this category codj (any combination of 
zeroes, ones, and ri.T'L-c ire's) will accept any 
message whose destination i.'eld matches the code, 
permitting call-by-capability In addition to call- 

by-name. 

When deemed appropriate, a conveyor belt mes- 

sage is lifted off the belt into the processor's 
HOLDING REGISTER, and the bin from which it  came 
marked as empty.  It is appropriate to lift a mes- 
sage into the holding register only when the hold- 
ing register is empty and the inbound decision 
logic determines its processor to be an appropriate 
receiver of a message if (1) the message is di- 
rected to the processor by direct numerical ad- 
dress, (2) the capability code of the message 
matches the processor's capability code, or (3) 
the processor's own message h?s arrived back at the 
processor after one complete revolution on the 
belt without being read.  Each of these three 
receive conditions can be selected or deselected 
by the processor via processor-writable control 
bits in the li.bound decision logic. When none are 

enabled, the mail stop will accept no conventional 

messages. 

In addition to these three receivfi conditions, 
there is a fourth condition used in conjunction 

with high-speed block bursts between a pair of 
processors.  In this mode, neither processor of 
the pair will be inspecting or setting any conveyor 
belt field but the daLa field.  The receiver must 
therefore be in a mode which exludes all inbound 
messages other than those originating from the 
processor with which it is communicating.  In 
this private conversation mode, a fourth, over- 
riding component of the Inbound decision logic per- 
mits the receiver to Identify an exclusive source 
of inbound messages.  When in this mode, only a 
message whose source ID matches the contents of 
the EXCLUSIVE SOURCE register will be intercepted 

by the inbound decision logic. 

When a conventional message is accepted into 
the holding register by the inbound decision logic, 
the BELT DATA AVAILA3Lt status flag is set, and a 
maskable interrupt generated.  The processor can 
then Inspect the message at its convenience by 
reading the holding register contents as a group 
of input ports.  For block burst mode, in which 
both the sender and receiver are executing block 
instructions (and have disabled their Interrupts), 
the Inbound decision logic will also control the 
PROCESSOR WAIT line to provide hardware synchroni- 

zation between the processor and bext. 

Inbound messages can be read either destruc- 
tively (i.e., consun.d) or non-destructively (i.e., 
noted) by the mail '.top, according to another 
control bit associated with the message.  Destruc- 
tive reads are ufed for one-one conversations, 
while non-destmctive reads are used for broad- 

casting messages to the population at large. 

For absolute external control, there is a class 
of conveyor belt control messages that will be un- 

conditionally accepted by a mail stop.  Some of 
these can be directed at a specific proces?or or 
class of processors, while others can be broadcast 
to the population at large (i.e., are not consumed 

by mail stops, but instead pasted along). All 
control messages release any processor-wait con- 
dition, and generate a non-maskable processor in- 
terrupt to bring the processor back to its opera- 
ting system.  In this way, the controlling compu- 
ter maintains ultimate control over ZMOB. 

5.  PATTERNS OF USE 

ZMOB will be a general purpose research tool 
for distributed and autonomous, parallel computa- 
ting. As mentioned, each processor itself would 

be powerful enough to run its own operating 
system with text editors and high level languages, 
if it were a stand-alone personal computer at- 
tached to a floppy disk system.  (For example, 
with a 48K memory, each processor would be capable 

■ ■ 
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of supporting a PASCAL compiler.) 

In the vis;,in relaxation applications for 
which the machine is to be used initially, each 
processor will be running the same code on its own 
subregion of Che 512 by 512 pixel image.  In a 
large relaxation algorithm, each pixel will be 
represented by, say, a 10 byte probability vector, 
meaning that each processor will work on 10,240 

bytes of image data.  This data, together with the 
relaxation algorithm's code and constant data, will 
be shipped to each processor at very high speeds over 
the conveyor belt during Initialization.  The code 
and constant data can be loaded at the 5.25 micro- 
second rate of the Z80A by having the external com- 
puter load one byte of data onto the belt in non- 
destructive read mode each 5.25 microsecond.  All 
processors will note and store each byte via their 
high-speed block input instruction loops.  This 
means, for example, that all ZMOB processors could 
accept a 10,000 byte program in just over one tenth 
second, asBuming a conveyor belt speed of 20 mhz. 
After loading the program, the external computer 
loads the image data at whatever rate it is able. 
Cn this mode, if capable of the high data rate, the 
external computer could load each revolution of 
the conveyor belt with the next 256 bytes of image 
duta, each directed to a different processor.  As- 
suming the conveyor belt runs at 20 mhz, and that 
the external computer is capable of meeting this 
data rate, the 2.5 million bytes of a 512 by 512 
pixel image of 10-byte-deep probability vectors 
can also be loaded in slightly over one-tenth 
second.  After processing, delivery of results 
would occur at a comparable data rate. 

The vision applications can be characterized as 
highly parallel, nearly synchronous computations, 
not dissimilar to those for which ILLIAC IV was 
designed.  However, these applications use ZMOB 
in a highly structured way.  Another obvious mode 
of operation is one in which each processor runs 
its own expert code, and the machine is used more 
as a population of experts in the MICRÜP1ANNER [8], 
CÜNNIVER [9], or ACTORS [10] paradigm.  We expect 
much interesting research to open up in tills area. 

Another mode of operation would segment ZMOB 
into fiefdoms.  Each fiefdom would be a cluster of 
processors, governed by one agreed-upon distin- 
guished member.  This member would be responsible 
for onp ongoing computation, and would use his 
serfs primarily as extended memory which he could 
page in as needed.  Since the conveyor belt has 
been designed to be responsive to high-speed data 
bursts among processors, we will be able to develop 
a very fast paging system capable of paging rates 
equal to or surpassing good disks (i.e., no seek 
latency, but somewhat slower data rates).  In this 
pattern of use, for example, we might run 1,151 on 
ZMOB by creating a fiefdom for the evaluator, one 
for the garbage collector, one for the scanner, 
one for a real-time debugger/monitor, and so on. 

In a more conventional pattern of use, only one 
of ZMOii's processors would be distinguished as the 
central computing processor, and all other proces- 
sors would support high speed paging and memory 
management for that one processor.  This would 

make all 8 or 12 magabytes of high speed memory 
directly accessible, and would resemble a large 
conventional computer with very fast paging poten- 
tials.  However, since a single Z80A is admittedly 
not a high throughput machine, it will probably 
turn out that ZMOB will seldom be used in this 
mode. 

6.  CONCLiriON 

It is anticipated that ZMOB development will 
be in full swing by late spring 1980.  Before that 
time, we hope to have a prototype system of 4 to 8 
processors running on a small conveyor belt.  The 
project will be supported by several faculty and 
graduate students, and will hopefully be in 
relatively complete form by spring 1981.  During 
development, extensive software development tools 
(assemblers, higher level system languages, simu- 
lators debuggers) will emerge.  Hopefully, the 
machine will also simulate and make possible new- 
theories of distributed problem solving and paral- 
lel computing. 
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ABSTRACT 

A method for detecting blobs in images is described. 
The method involves building a succession of lower 
resolution images and looking for spots in these 
images.  A spot in a low-resolution image corre- 
sponds to a distinguished compact region in a known 
position in the original image.  Further, it is 
possible to calculate thresholds in the low- 
resolution image, using very simple methods, and to 
apply those thresholds to the region of the 
original image corresponding to the spot.  Examples 
are shown in which the technique is applied to 
several images. 

1.  INTRODUCTION 

The most common way to extract objects from a 
picture is to threshold the picture. Many differ- 
ent techniques have been used to select good 
thresholds for this purpose [4],  Threshold selec- 
tion Involves choosing a gray level t such that 
all gray levels greater than t are mapped into 
the "object" label, while all other gray levels are 
mapped into the "background" label.  In its 
simplest form, a single threshold is chosen for the 
whole image.  This does not usually give good 
results because of variations in lighting, or 
because there are several objects in the picture 
with different gray-level characteristics.  For 
better results, several local thresholds can be 
extracted from various parts of the picture, and 
can be applied just in those regions. 

This paper describes a method of Identifying 
parts of a picture on which to apply a threshold, 
and a means of calculating a local threshold for 
each of thesi parts.  The method involves construc- 
ting a "pyramid" of Images, each of lower resolu- 
tion than its predecessor [1-3].  At some level of 
the pyramid, it is to be expected that any blob- 
like object should become spot-like.  Thus, by 
running a spot-detector over the low-resolution 
images, the interesting regions in the picture can 
be discovered, and only these regions need be 
thresholded.  In addition, the characteristics of 
the local regions (or the spots) can be used to 
calculate a good local threshold. 

Examples are given of tne application of the 
method to several images.  In all cases the results 
are quite good, and highlight the usefulness of the 
method. 

2.  THE ALGORITHM 

The algorithm has two m?in tasks.  The first 
is to find parts o" the picture that differ signi- 
ficantly from the background (likely objects), 
while the second is to calculate a local threshold 
for each of these parts and apply it in the 
neighborhood of the parts.  Both tasks make use of 
the pyramid of low-resolution images. 

1. If the whole pyramid has been constructed, 
stop.  Otherwise, read in the previous 
pyramid level (the picture, if this is 
the first iteration). 

2. Build a new level (see below). 

3. Apply a spot detector to the new level. 

4. Evaluate the spots resulting from step 3 
and find "good" spots (see below).  If 
there are too  many good spots, go to 1. 

5. For each good spot, 

a. calculate a threshold (see below); 

b. apply the threshold to the region in 
the original picture corresponding to 
the spot and write the results to the 
output picture. 

6. Go to 1. 

The original image forms the base of the pyra- 
mid.  Each level is constructed on top of its pre- 
decessor, and Is processed before its successor is 
constructed.  This means that only one level need 
be maintained at any time, in addition to the 
original picture and the partially-constructed 
thresholded picture. 

A pyramid level is constructed from its pre- 
decessor by mapping 2 by 2 squares of pixels from 
the previous leve1 into single pixels in the new 
level. Two nethoct. of calculating the new value 
from the old were implemented.  The first involves 
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simple averaging oi   Liu- four pixels.  In the 
second method, each 2 by 2 block of pixels Ls 
examined and the lour gray Levels are sorted In 
order oi brightness.  The ■..riddle two values are 
then averaged to give the new pixel corresponding 
to tie 2 by 2 block.  This process gives results 
that maintain edges reasonably weli.  In practice, 
both methods usually p'-oduce the same results. 
The new level of the pyramid is one quarter the 
size of the old (Figure la). 

Having buill a level of the pyramid, the next 
step is to apply a spot detector to it.  The spot 
detector Is a simple mask (Figure 2) that Is ap- 
plied at every point in the image.  It looks for 
pointa that differ from their neighbors and scores 
them according to how much they differ.  Note that 
tin1 central value in the mask Is smaller than an 
unbiased mask would require.  This is to insure 
that the spots are more than marginally different 
from their neighbors.  It tends to ignore sp 's 
caused by noise.  The result ol running the spot 
detector is a new image with high values where 
there are spots, and low values elsew.icre. 

The spot detector is very conservative, so 
another process is run to find a subset of "good" 
spots.  Good spots are spots that are isolated. 
At low levels of the pyramid (high resolution), 
spots that are close together are deleted because 
they can be expected to merge into single spots 
higher up in the pyramid.  At higher le els of the 
pyramid, this is not such a good idea because 
single spots represent large regions in the origi- 
nal picture.  Tims, the definition of "good" is 
weighted by the level of the pyramid.  A spot is 
good if the number of its neighbors that also 
responded positively to the spot detector is less 
than a 1  .'i-dependen t threshold. 

Ilai h spot in the low-resolution image corre- 
sponds o a region in the picture.  If there are 
too many spots, then large parts of the picture 
will be covered.  If there is indeed an object in 
the picture, it should coalesce into a smaller 
number of spots higher in the pyramid.  If there is 
no object, then all the spots represent noise.  In 
either case, the picture is too "busy".  A maximum 
number of good spots is allowed at each level.  If 
this number is exceeded, no further processing is 
performed, and a new pyramid level is constructed. 

Unen  a  small enough number of good spots is 
discovered at a given level in the pyramid, the 
thresholding can he performed.  Notice that it need 
only be applied to the regions in the picture 
corresponding to the spots in the pyramid.  All 
other regions are ignored. 

Many threshold selection techniques are appli- 
cable at: this stage.  There are the standard tech- 
niques [4| which may be applied to the picture 
Itself in the region corresponding to a spot. 
In addition, it is possible to make use of the 
information in the low-resolution image to calcu- 
late a threshold.  Both approaches were followed 
for the examples to be discussed here.  Using the 
low-resolution image has the advantage that simple 
operations on the low resolution image correspond 

to complex operations Involving much larger numbers 
of points in the picture. 

The simplest threshold that can be extracted 
from the low resolution image Is simply the gray 

level of the region in the picture corresponding 
to the spot.  Usually, this threshold does not 
extract the whole object because the high gray 
levels bias the threshold, and there are very few 
non-object points in the region to provide an 
opposite bias (Figure 1c). 

An alternative threshold is obtained by ignor- 
ing the spot itself and averaging the surrounding 
points in the low-n solution picture. This suffers 
from the opposite problem from the previous method. 
Now, too many non-object points reduce the thres- 
hold, and so parts of the background are classified 
as belonging to the object (Figure Id). 

A compromise between these two methods gives 
very good results.  The outputs from the above two 
threshold selection processes are averaged, and the 
result Is used as the threshold (Figure lb). 

The threshold Is applied to a region slightly 
larger than that corresponding to the spot.  This 
is to insure that parts of the object that were 
averaged Into different points in the low-resolu- 
tion image still may be classified, provided that 
they are not too far away from the spot center. 
It, indeed, the object extends a significant dis- 
tance from the spot center, the spot detector 
should have found several spots in the neighbor- 
hood, each of which would be processed separately 
(or they would all be merged Into a larger spot at 
th» next level). 

Another method of calculating a local thres- 
hold was also implemented.  The method involves 
computing a histogram of the gray levels in the 
regions of the original picture that correspond to 
spots.  For each spot a histogram is constructed 
for a region slightly larger than the projection 
of the spot onto the picture.  The histogram is 
then examined, and a threshold Is selected.  The 

process of selection is complicated by the shape 
of the histogram, which tends either to be uni- 

modal, or to have no significant peaks (Figure 3). 
The method that was used to find a threshold in- 
volves making an initial estimate, and refining 
the estimate on the basis of the shape of a part 
of the histogram. 

The initial guess that was used was one of 
the naive thresholds mentioned above.  The gray 
level corresponding to the spot In the pyramid 
provides an estimate of the gray level in the 
center of the object.  Usually, the estimate needs 
to be modified to take account of parts of the 
object close to the background.  To accomplish 
this, the histogram is examined, starting at the 
inititl estimate, and moving in the direction of 
the background gray levels.  The highest peak in 
the histogram in this direction is discovered, and 
the final threshold is chosen at the deepest 
valley between this peak and the initial estimate. 
This usually results in a good threshold, in most 
cases in one very similar to the averaging of the 
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center and surround points in the pyramid discussed 
above. 

The output picture is initially blank.  Th, 
only regions of the picture that are changed are 
those that correspond to positive responses to the 
spot detector at some Ic^el in the pyi.-;uid. As a 
result, very little background noise appears in 
the output. 

3.  EXAMPLES 

The method was applied to V,  FL1R images and 
to a picture of part of a handwritten signature. 
The results are shown in Figures 4-7.  The examples 
are divided into three categories. 

The first set of pictures (Figure 4) was pro- 
cessed using a simple averaging scheme for building 
the pyramids.  The threshold was selected from the 
low resolution image by taking the average of the 
center (spot) gray level, and the average surround- 

ing gray level. 

Sometimes, when the contrast between the 
object and the background is small, the averaging 
process may cause the object to merge into the 
background.  For FL1R imagery, it was found that it 
is often better to use the median instead of the 
average in building the pyramids.  Figure 5 shows 
a set of examples where this was done.  The thres- 
hold selection used the same method as for Figure 

4. 

The alternative method of selecting a thres- 
hold by examining the histogram is illustrated in 
Figures 6 and 7.  Figure 6 shows four FUR images 
and the results of thresholding them.  The pyramids 
for these images were constructed by averaging, 
and the thresholds were selected by examining a 
histogram of a region in the image slightly larger 
than that corresponding to the spot. 

Figure 7 Illustrates the difference between 
selecting the threshold using only the low-resolu- 
tion image, and making use oi the histogram as 
well.  For the signature in Figure 7, the histo- 
gram method results in a much cleaner thresholded 

image. 

4.  DISCUSSION 

The blob-detect 
the first stage in a 
tion scheme.  As it 
good threshold selec 
advantages.  One of 
is the ability of th 
cant regions in a pi 
better local thresho 
thresholded images, 
specifically to the 
plied, and uninteres 

ion system described here is 
more ambitious feature-detec- 
stands, the system provides a 
tion technique, with several 
the most important advantages 
e system to isolate signifi- 
cture. This results both in 
Id selection and in cleaner 
The thresholds are tailored 
region to which they are ap- 
ting regions are ignored. 

A problem that arose from the way the algo- 
rithm was implemented concerns the treatment of 
points on the borders of the picture.  These points 
were ignored in the implementation, and, as a 
result, the algorithm discovered significant ob- 
jects only if they were not on the border of the 
picture.  This effect, could be aggravated by the 
pyramid-building process because a point on the 
border of an image high in the pyramid corresponds 
to a fairly large region in the picture.  There 
are several ways of overcoming this problem.  For 
example, one-sided spot detectors could be used at 
the edges of the plcDires, or the pictures could be 
extended either by reflection about the edge, or by 
folding the edges over so that the left and right 
and the top and bottom edges are contiguous. 

A question that arises naturally concerns the 
amount of averaging between levels in the pyramid. 
Perhaps the exponential tapering used in these 
experiments is too harsh, and spot detectors of 
various intermeaiate sizes jhould be used in addi- 
tion to those used here.  This would more accurate- 
ly capture the fine detail of the shapes and allow 
greater control over threshold selection.  It is 
expected that further research will be conducted on 
this aspect of the algorithm. 

An extension of the method that is currently 
under investigation is the detection of elongated 
objects.  In conventional thresholding schemes, 
the shape of an object can only be discovered after 
the object has been extracted.  It is not possible 
to search for objects with specific shape proper- 
ties.  Using the current method, however, it is 
possible to extract only those features that are of 
the desired shape.  For example, to extract elon- 
gated objects, a line or streak detector can be 
applied instead of a spot detector.  Preliminary 
results suggest that a straightforward extension of 
the blob-detection system can be produced which 
will detect only the elongated objects in a pic- 
ture.  This will help to alleviate a problem that 
sometimes arises when objects are not sufficiently 
blob-like.  In such cascj, some parts of the object 
may not be covered by the projection of a spot, 
and only part of the object may be thresholded. 

Eventually, the system is envisaged as having 
multiple cooperating parts.  Several feature detec- 
tors will be run at each level of the pyramid, for 
example, both line detectors and spot detectors. 
These would then interact within the levels and 
across levels.  The whole system should be able to 
detect many different features simultaneously, and 
classify them on the basis of both local and 
global information. 

5.  CONCLUSIONS 

A new method of detecting blobs in a picture 
by spot detection and local thresholding has been 
presented.  The examples showed how simple thres- 
hold-detection calculations on low-resolution 
images can lead to good segmentation of the pic- 
ture. 

H t . ■,; ■■-■-, | 
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The method readily lends itself to extensions 
to more complex feature detection tasks, including 
detection of objects with specific properties, e.g. 
elongated objects. 

It is expected that the method will eventually 
be Included in a comprehensive, multilevel feature- 
extraction system that makes use of multiple- 
resolution images and responses from several dif- 
ferent feature detectors. 
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Figure 2 

The mask used for the spot detector 

s 

Figure 1 

a)  A FI.IR image of a tank, and the pyramid con- 
structed from It.  b)  Thresholded image using the 
iverage oi   center and surrounding spots. 
c) Thresholded image using surrounding spots only. 
d) Thresholded image using center spot only. 

Figure 3 

An example of a histogram used for threshold 
selection.  Point a is the initial point chosen for 
thresholding (see text).  Point b is the highest 
peak in the direction of the background.  Point c 

is the point chosen as the final threshold.  Point 
d is the threshold chosen by the method of 

averaging the center and background points in the 
low-resolution image. The histogram is for a spot 
•n the bottom left picture of Figure 6.  The small 
size of the spot results in a very low peak in the 
histogram (at a). H 
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Figure 4 

Eight FLIR images and their thresholded outputs. 
The pyramid was built by averaging in these 
examples and the threshold was selected as the 
average of the center and surrounding points in the 
low-resolution image. 

Figure 6 

Four FLIR images and their thresholded outputs. 
The pyramids in these examples were constructed by 
averaging, and the threshold was selected by exam- 
ining the histograms of local regions corresponding 
to spots. 

3*^^ 

Figure 5 

Eleven FLIR images and their thresholded out-       a) 
puts. The pyramid was built using the median and      b) 
the threshold was selected as the average of the 

center and surrounding points in the low-resolution 
image. c) 

Figure 7 

A picture of part of a handwritten signature 
The thresholded output using the average of 
the center and surrounding low-resolution 
points. 

The result of calculating a threshold by 
examining the histogram. 

m. 
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ABSTRACT 

Research Into the use of the quadtree data struc- 
ture for image processing applications is de- 
scribed.  A quadtree represents an image array by 
a tree of out degree k  which Is constructed by 
recursively subdividing the array into blacks of 
constant value.  This representation is particu- 
larly useful when applied to binary arrays repre- 
senting regions (i.e., I's are region points). 
Algorithms are informally discussed for conversion 
between this and other representations, and for 
measuring geometric properties of regions repre- 
sented in this manner.  Results of execution time 

analyses of these algorithms are also given. 

1.  INTRODUCTION 

Region representation is an important issue in 

image processing, computer graphics and cartogra- 
phy  There are numerous representations currentlv 

in use.  In this paper we focus our attention on 
the Quadtree [1,6-11] representation.  We discuss 
its relationship to more traditional representa- 
tions and present informal descriptions of algo- 
rithms for converting between quadtrees and these 
representations.  We also show how geometric 
properties of regions represented by quadtrees can 

he measured. 

In our discussion we assume that a region is 

a subset of a 2n by 2n arrav which is viewed as 
being composed of unit-sr_ - pixels.  The most 
common region representatio.'S used in image proces- 
sing are the binary array and the run length repre- 
sentation [14].  The binary array represents region 
pixels by I's and non-region pixels by 0 s.  The 
run length representation represents each row of 
the binary array as a sequence of runs of 1 s al- 

ternating with runs of Vs. 

Boundaries of regions are often specified as 
a sequence of unit vectors in the principal direc- 
tions.  This representation is termed a chain code 

[5].  For example, letting i represent 90 * i 
(1=0,1,2,3), we have the following sequence as the 

chain code for the region in Figure la: 

9  S  3 
0 3 0^ 3D 2J 1 2 33 0 3 25 I6 0 1 0 1 0 3 0 1 0 1 

Note that this is a clockwise code which starts at 
the leftmost of the uppermost border points.  Chain 
codes yield a compact representation; horfever, they 
are somewhat inconvenient for performing operations 

such as set union and intersection. 

Regions can also be represented by a collection 

of maximal blocks that are contained in the given 
region.  One such trivial representation is the 
run length wher- the blocks are 1 by m rectangles. 
A more general representation treats the region as 

a union of maximal blocks (of  I's) of a given 
shape.  The medial axis transform (MAT) [2,12] is 
the set of points serving as centers of these 

blocks and their corresponding radii. 

The quadtree is a variant on the maximal block 
representation in which the blocks have standard 

sizes and positions (I.e., powers of two).  It is 
an approach to region representation which is 
based on the successive subdivision of an image 

array into quadrants.  If the array does not 
consist entirely of I's or entirely of 0's, then 
we subdivide it into quadrants, subquadrants,... 
until we obtain blocks (possibly single pixels) 

that consist of I's or of 0's, i.e., they are 
entirely contained in the region or entirely dis- 
joint from it.  This process is represented by a 

tree of out degree 4 in which the root node 
represents the entire array.  The four sons of the 
root node represent the quadrants (labeled in 
order NW, NE, SW, SE), and the leaf nodes corre- 
spond to those blocks of the array for which no 
further subdivision Is necessary.  Leaf nodes are 
said to be "black" or "white" depending on^ 
whether their corresponding blocks are entirely 
within or outside of the region respectively.  All 
non-leaf nodes are said to be "gray".  Since the 
array was assumed to be 2n by 2n, the tree height 

is at most n.  As an example, Figure lb is a 
block decomposition of the region in Figure la 
while Figure 1c is the corresponding quadtree. 

2.  PRELIMINARIES 

In the quadtree representation, by virtue of 
Its tree-like nature, most operations are carried 
out by techniques which traverse the tree.  In 
fact, many of the operations that we describe can 
be characterized as having two basic steps.  The 
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first step either traverses the quadtree In a 
specified order or constructs a quadtree. The 
second step performs a computation at each node 
which often makes use of its neighboring nodes, i.e. 
nodes representing image blocks that are adjacent 
to the given node's block.  Frequently these two 
steps are performed in parallel. 

In general, we prefer to avoid having to use 
position (i.e., coordinates) and size information 
when making relative transitions (i.e., locating 
neighboring nodes) in the quadtree since they in- 
volve computation (rather than simply chasing 
links) and are clumsy when adjacent blocks are of 
different sizes (e.g., when a neighboring block is 
larger).  Also, we do not assume that there are 
links from a node to its neighbors, because we do 
not want to use links In excess of four links from 
a non-leaf node to its sons and the link from a 
non-root node to its father.  Thus all of our 
operations are implemented by algorithms that make 
use of the existing structure of the tree. This 
is in contrast with the methods of Kllnger and 
Rhodes [11] which make use of size and position 

information, and those of Hunter and Steiglit? 
[6-8] which locate neighbors through the use of 
explicit links (termed nets and ropes,). 

Locating neighbors in a given direction is 
quite straightforward.  Given a node corresponding 
to a specific block in the image, its neighb ;- in 
a particular direction (horizontal or vertical) Ls 
determined by locating a common ancestor.  For 

example, if we want to find a eastern neighbor, the 
common ancestor is the first ancestor node which is 
reached via its NW or SW son.  Next, we retrace the 
path from the common ancestor, but making mirror 
image moves about the appropriate axis, e.g., to 
find an eastern ui western neighbor, the mirror 
images oi NE and SE are NW and SW, respectively. 
For example, the eastern neighbor of node 32 in 
Figure 1■ la node 33.  It is located by ascending 
the tree until the common ancestor, H, is found. 
This requires going through a SE link to reach L 
and a MW link to reach H.  Node 33 is now reached 
by backtracking along the previous path with the 
appropriate mirror image moves (i.e., going through 
a NE link to reach M and a SW link to reach 33). 

In general, adjacent neighbors need not be of 
the same size.  If they are larger, then only a 
part of the path to the common ancestor is re- 
traced.  If they are smaller, then the retraced 
path ends at a "gray" node of equal size.  Note 
that similar techniques can be used to locate di- 
agonal neighbors (i.e., nodes corresponding ,;o 
blocks that touch the given node's block at a cor- 
ner).  For example, node 20 in Figure 1c is the 
NW neighbor of node 22.  For more details, see [21]. 

3.  CONVERSION 

3.1 Quadtrees and Arrays 

The definition of a quadtree leads naturally 
to a "top down" quadtree construction process. 
This may lead to excessive computation because the 

process of examining whether a quadrant contains 
all 1's or all 0's may cause certain parts of 
the region to be examined repeatedly by virtue of 
being composed of a mixture of I's and 0's.  Alter- 
natively, a "bottom-up" method may be employed 
which scans the picture in the sequence 

1 2  5 6 17 18 21 22 
3 4 7 8 19 20 23 24 
9 10 13 14 25 26 29 30 

11 12 15 16 27 28 31 32 
33 ... 

where the numbers Indicate the sequence in which 
the pixels are examined. As maximal blocks of 0's 
or 1's are discovered, corresponding leaf nodes 
are added along with the necessary ancestor nodes. 
This is done in such a way that leaf nodes are 
never created until they are known to be maximal. 
Thus them  is  never a need to merge four leaves 
of the same color and change the color of their 
common parent from gray to white rr black as is 
appropriate.  See [19] for the details of such a 
algorithm whose execution time is proportional to 
the number of pixels in the image. 

If it is necessary to scan the picture row by 
row (e.g., when the input is a run length coding) 
the quadtree construction process is somewhat more 
complex.  We scan the picture a row at a time. 
For odd-numbered rows, nodes corresponding to the 
pixel or run values are added to the tree, one 
node per pixel.  For even-numbered rows, nodes 

added for the pixels and attempts are made to 
dlscov ■ maxima] blocks of 0's or 1's whose size 
depends on 'n row number (e.g., when processing 
the fourth row, maximal blocks of maximum size 
4-by-4 can be discovered).  In such a case 
merging Is said to take place.  See [18] for the 

details of an algorithm that constructs a quadtree 
from a row by row scan such that at any instant 
of time a valid quadtree exists.  This algorithm 
has an execution time that is proportional to the 
number of pixels in the image. 

Similarly, Cor a given quadtree we can output 
the corresponding binary picture by traversing 
the tree in such a way that for each row the 
appropriate blocks are visited and a row of 0's or 
I'fi is output.  In essence, we visit each quadtree 
node once for each row that intersects it (i.e., 
a node corresponding to a block of size 
2K by 2  is visited 2K times).  For the details see 
[20] where an algorithm is described whose execu- 
tion time .epends only on ^be number of blocks of 
each size that comprise the image - not on their 
particular configuration. 

3.2 Quadtrees and Borders 

In order to determine, for a 
M of a quadtree, whether the corr 
is on the border, we must visit 
that correspond to 4-adjacent bio 
whether they are black or white, 
find M's right hand neighbor we u 
finding techniques outlined in Se 
neighbor is a leaf node, then its 
least as large as that of M and s 

given leaf node 
esponding block 
the leaf nodes 
cks and check 

For example, to 
se the neighbor 
ction 2.  If the 
block is at 

o it is M's sole 

—— — ———•— 



38 

neighbor to the right.  Otherwise, the neighbor is 
the root of a subtree whose leftmost leaf nodes 
correspond to M's right-hand neighbors.  These 
nodes are found by traversing that subtree. 

Let M.N be black and white leaf nodes whose 
associated blocks are A-ad-jacent.  Thus the pair 
M,N defines a common border segment of length 2^ 
(2K is the minimum of the side lengths of M and N) 
which ends at a corner of the smaller of the two 
blocks (they may both end at a common point). 
In order to produce a boundary code representation 
for a region in the image we must determine the 
next segment along the border whose previous seg- 
ment  lay between M and N.  This is achieved by 
locating the other leaf P whose block touches the 
end of the segment between M and N: 

If the M,N segment ends at a corner of both M and 
N, then we must find the other leaf R or leaves 
P,Q whose blocks touch that corner: 

F 
M 

p Q 

Again, this can be accomplished by us.lng neighbor 
finding techniques as outlined in Section 2. 

For the non-common corner case, the next bor- 
der segment is the common border defined by M and P 
if P. is white, or the common border defined by N 
and P if P is black.  In the common corner case, 
the pair of blocks defining the next border seg- 
ment is determined exactly as in the standard 
"crack following" algorithm [13] for traversing 
region borders.  This process is repeated until we 
re-encounter the block pair M,N.  At this point 
the entire border has been traversed.  The succes- 
sive border segments constitute a 4-direction chain 
code, broken up into segments whose lengths are 
suras of powers of two.  The time required for this 
process is on the order of the number of border 
nodes times the tree heighL.  For more details 
see [4], 

Using the methods described in the last two 
paragraphs, we can traverse the quadtree, find all 
borders, and generate their codes.  During this 
process, we mark each border as we follow it, so 
that it will not be followed again from a different 
starting point.  Note that the marking process is 
complicated by the fact that a node's block may be 
on many different borders. 

In order to generate a quadtree from a set of 
4-direction chain codes we use a two-step process. 
First, we trace the boundary in a clockwise 
direction and construct a quadtree whose black leaf 
nodes are of a size equal to the unit code length. 
All the black nodes correspond to blocks on the 
interior side of the boundary.  All remaining nodes 
are left uncolored.  Second, all uncolored nodes 
are set to black or white as appropriate.  This is 
achieved by traversing the tree, and for each 
uncolored leaf node, examining its neighbors.  The 
node is colored black unless any of its neighbors 
is white or is black with a border along the shared 
boundary.  At any stage, merging occurs if the 
four rows of a non-leaf node are leaves having the 
same color.  The details of the algorithm are 
given in [15].  The time required is proportional 
to the product of the perimeter (i.e., the 4- 
direction chain code length) and the tree height. 

3.3 Quadtrees of Derived Sets 

Let S be the set of 1's in a given binary 
array, and let 1>  be the complement of S.  The quad- 
tree of S is the same as that of S, with black 
leaf nodes changed to white and vice versa.  To 
get the quadtree of S U T from those of S and T, we 
traverse the two trees simultaneously.  Where they 
agree, the new tree is the same and if the two 
nodes are gray, then their subtrees are traversed. 
If S has a gray (=nonleaf) node where T has a black 
node, the new tree gets a black node; if I has a 
white node there, we copy the subtree of S at that 
gray node into the new tree.  If S has a white 
node, we copy the subtree of T at the corresponding 
node.  The algorithm for S II T is exactly analo- 
gous, with the roles of black and white reversed. 
The time required for these algorithms is propor- 
tional to the number of nodes in the smaller of the 
two trees [23]. 

3.4 Skeletons and Medial Axis Transforms 

The medial axis of a region is a subset of its 
points each of which has a distance from the com- 
plement of the region (using a suitably defined 
distance metric) which is a local maximum.  The 
medial axis transform (MAT) consists of the set of 
medial axis or "skeleton" points and their asso- 
ciated distance values. The quadtree representa- 
tion may be rendered even more compact by the use 
of a skeleton-like representation.  Recall that a 
quadtree is a set of disjoint maximal square blocks 
having sides whose lengths are powers of 2.  We 
define a quadtree skeleton to be a set of maximal 
square blocks having sides whose lengths are sums 
of powers of two.  The maximum value (i.e., "chess- 
board") distance metric [13] is the most appropri- 

ate for an image represented by .. quadtree.  See 
[21] for the details of Its computation for a 
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quadtree;  see also [24] for a different quadtree 
distance transform.  A quadtree medial axis trans- 
form (QMAT) is a quadtree whose black nodes cor- 
respond to members of the quadtree skeleton while 
all remaining leaf nodes are white.  See [22] for 
the details of a quadtree to QMAT conversion al- 
gorithr whose execution time is on the order of the 

number of nodes in the tree. 

PROPERTY MEASUREMENT 

_ 

Then  g"V-E+F .  These adjacencies can be found 
(see Section 3.2) by travel sing the tre<.;  the 
time required is on the order of the number of 

nodes in the tree. 

4.1 Connected  Component  Labeling 

Traditionally, connected component labeling 
Is achieved by scanning a binary array rjw by row 
from left to right and labeling adjacencies that 
are discovered to the right f-nü downward.  During 
this process equivalences will be generated,  A 
subsequent pass merges these equivalences and up- 
dates the labels of the affected pixels.  In the 
case of the quadtree representation we also scan 
the image in a sequential manner. However, the 
sequence's order is dictated by the tree structure 
- i.e., we traverse the ;ree in postorder.  When- 
ever, a black leaf node is encountered all black 
nodes that are adjacent to its south and east 
sides are also visited and are labeled accordingly. 
Again, equivalences generated during this traversal 
are subsequently merged and a tree traversal is 
used to update the labels. The interesting result 
is that the algorithm's execution time is propor- 
tional to the number of blocks in the image and 
does not depend on their size.  In contrast, for 
the binary array representation the execution time 
is proportional to the number of pixels.  An analo- 
gous result is described in the next section.  See 
[17] for the details of an algorithm that labels 
connected components in time on the order of the 
number of nodes in the tree plus the product of 
B-log B where B is the number of black leaf nodes. 

4.2 Component Counting and Genus Computation 

Once the connected components have been 
labeled, it is trivial to count them, since their 
number is the same as the number of inequivalent 
labels. We will next describe a method of deter- 
mining the number of components minus the number 
of holes by counting certain types of local pat- 
terns in the array; this number, g, is known as the 
genus or Euler number of the array. 

Let V be the number of l's,  E the number 

of 11's and j's,  and  F the number of 

j|'s in the array;  it is well known [13] that 

g=V-E+F. This result can be generalized to the 
case where the array is represented by a quadtree 
[3]. In fact, let V be the number of black leaf 
nodes; E the number of pairs of such nodes whose 
blocks are horizontally or vertically adjacent; 
and F the number of triples or quadruples of 
such nodes whose blocks meet at and surround a 

common point, e.g. 

4.3 Area and Moments 

The area of a region represented by a quadtree 
can be obtained by summing the areas of the black 
leaf nodes, i.e., counting 4'1 for each such node 
that represent'- a 2" by 2" block.  Similarly, the 
first x and y moments of the region relativt: to a 
given origin ran be computed by summing the first 
moments of these blocks; note that we know the 
position (and size) of each block from the coordi- 
nates of its leaf in the tree.  Knowing the area 
and the first moments gives us the coordinates of 
the centroid, and we can then compute cenfral 
moments relative to the centroid as the origin. 
The time required for any of these computations is 
proportional to the number of nodes in the tree. 
Further details on moment computation from quad- 
trees can be found in [23]. 

4.4 Perimeter 

An obvious way of obtaining the perimeter of a 
region represented by a quadtree is tc simply tra- 
verse its border and sum the number of s'-eps. 
However, there is no need to traverse the border 
segments in order.  Instead, we use a method which 
traverses the tree in postorder and for each 
black leaf node examines the colors of its 
neighbors on its four sides.  For each white 
neighbor th.-; length of the corresponding border 
segment is included in the perimeter.  See [16] 
for the details of such an algorithm which has 
execution time proportional to the number of nodes 

in the tree. 

5.  CONCLUDING REMARKS 

We have briefly sketched algorithms for accom- 
plishing 'raditional region processing operations 
by use of the quadtree representation.  Many of 
the methods used on the pixel level carry over to 
the quadtree domain (e.g., connected component 
labeling, genus, etc.).  Because of its compact- 
ness, the quadtree permits faster execution of 
these operations.  Often the quadtree algorithms 
require time proportional to the number of blocks 
in the image, independent of their size. 

Quadtrees constitute an interesting alterna- 
tive to the standard methods of digitally repre- 
senting regions.  Their chief disadvantage is that 
they are non shift-invariant; two regions differ- 
ing only by a translation may have quite different 
quadtrees (but see [22] i .  Thus shape matching 
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from quadtrees is not straightforward .  Neverthe- 
less, in other respects they have many potential 
advantages.  They provide a compact and easily 
constructed representation from which standard 
region properties can be efficiently computed.  In 
effect, they are "variable-resolution arrays" 
in which detail is represented only when it is 
available, without requiring excessive storage for 
parts of the image where detail is missing. 
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Figure 1.  A region, Its ma.-tlmal blocks, and the corresponding quadtree.  Blocks 
In the region are shaded, background blocKS are blank. 
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Summary 

Argos Is an linage understanding system which 

was built to test the application of the Locus 

search technique to the task of Image 

understanding. By      a      sequence      of      smalt 

modifications, Locus search can be transformed Into 

a relaxation method. Relaxation using the Locus 

probability updating rules exhibits superior 

performance. We present some thoughts on how 

shape Information can be applied. 

1. Introduction 

The Argos Image understanding system1-2 

attempts to explain an Image by matching segments 

of the Image to a set of labels. The segments may 

be Individual pixels or contiguous regions 

designated by hand or by a segmenter program. 

The label set defines the set of real-world objects 

which may be Identified by the system, e.g., Three 

Rivers Stadium, or Fort Pitt Bridge. 

Image labelling, or the assignment of a label to 

each segment. Is performed under the control of a 

knowledge network, which Is a directed graph. 

Each node of the network describes a label, and 

contains one or more templates. A template 

describes the spectral and shape properties 

expected of an area which Is to be given the label. 

Usually a node contains only one template. Multiple 

templates cope with objects which have radically 

varying appearance, such as the Allegheny River 
with and without Ice. 

The   arcs   of   the   network   represent   possible 

adjacencies of segments with differing labels.   We 

use just the coarse directions "left-of" and 

"above", plus their Inverses. Presence of an arc 

from label A to label B In direction J indicates that it 

Is possible for the Image to contain object A In the 

direction j from object B. The presence of an arc 

Indicates merely that the transition permission Is 

nonzero. We usually think of transition permissions 

as 0-1 valued, but fractional values ca.i be used to 

Indicate a self-transition penalty or bonus. 

Using the local knowledge contained In the 

network nodes, a score vector Is computed for each 

segment, telling how well It matches the most 

favorable template of each label. From this match 

vector Is computed a normalized probability vector, 

for which each entry Indicates the probability that 

the particular segment has a given label. 

The Job of the search algorithm is to find the 

overall pairings of segments to labels which best 

fits the a priori probability vectors, consistent with 

the connectivity arcs of the network. 

2. Search Strategics 

The search strategies which we have employed 

with Argos He along a spectrum which Includes 

Locus search at one end and relaxation at the 

other. We now quickly review the principal Ideas of 

the two methods. 

2.1 Relaxation 

The relaxation method repeatedly updates In 

parallel the pe'-segment label probability vectors. 

The updating function for a segment takes into 

consideration the segment's present label 

probability   vector,   the   vectors  of  the   seoment's 
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neighbors, and the transition pertnlssloi s along the 

directions separating the segments.  In short, 

a maximum: 

p   ,(1+1) ■ p  ,(1) * Avg Avg Pnlß) * T 

n(N keL 
k« (1) 

where 

s Is the segment for which the vector Is 
being recomputed. 

(sj) 

I Is a candidate label for segment s. 

Is the probability a;> computed In iteration 
I that segment s has label J. (The barred 
value is what Is developed prior to 
renormalizatlon.) 

N Is    the    set   of   segments   which   are 
neighbors to s. 

n Is an Individual neighbor. 

L Is the set of labels. 

k Is a label of a neighbor segment. 

I Is the direction from which neighbor n Is 
separated from segment s. 

Is the transition permission from label k 
to label J in direction J. 

'a 

The relaxation process is iterated until a concensus 

develops on a label for each segment. 

2.2 Locus 

Locus search has Its roots In dynamic 

programming. For a one-dlmenslonal signal. It 

amounts to dynamic programming with pruning of 

poor candidates. Locus was used with success In 

the Harpy speech understanding system. 3 

Dynamic programming Is strictly valid only for 

one-dlmenslonal signals such as speech waveforms. 

But one of Its premises suggested that it might be 

profitably employed on a two-dimensional Image 

signal. The premise is that In the globally besv 

labelling, the labels chosen must be consistent with 

each other, but not necessarily with runners up. 

This statement may not seen startling, but It allows 

a reduction In the computational complexity of the 

search. The updating function Is the same as noted 

above, t ave that the second average 's changed to 

PsJ(l+1) = PsJ(i)*AvgWa*pnk*TkJj 
n«N k(L 

(2) 

The straightforward transmutation of Locus into 

a i.-D algorithm retains the "one-and-a-fraction 

pass ' nature of its predecessor, as well as back 

pointers.   The algorithm proceeds as follows. 

An ordering Is Induced on the segments, such 

that Insofar as poss'ble, each segment has 

neighbors which precede it, and neighbors which 

follow It. These are celled predecessor and 

successor neighbors, respectively. 

One pass is made through the ordered segment 

list to apply contextual information to update each 

segment's label probabilities. The context used for 

a segment is Its predecessors, which alraaciy have 

undergone reprocessing, in this way, the network 

constraints propagate forward through the segment 

list. Thus, the updating of the last segment takes 

Into account all that has gone before. During this 

forward pass, the computation of eq. 2 implicitly 

selects a best choice for the label of each 

predecessor. The best choice for a neighbor n Is 

the label k which establishes the value of the Max 

operator. This value of k is recorded as the 

backpointer to neighbor n from label J of segment 

s. Informally, the backpointer states, "If segment s 

Is labelled j, then the best label for n is k." 

These backpointers are used to propagate 

contextual Information in the reverse direction. 

After the forward pass, when all backpointers have 

been computed, the best global labelling can b« 

reconstructed by following the chain of 

backpointers, beginning with the best label of the 

last segment. 

The fly In the ointment of pure Locus Is that 

most segments have multiple successors, end that 

the successors' backpointers tend to disagree. 

Worse than sheer disagreement Is the case when 

the label proposed by one successor is incompatible 

with the final labelling of another successor. 

Originally, Argos coped with such problems by 
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dlscountl.ig the backpointers which would cause 

conflicts, and then by plurality vote If necessary. 

This proved to be unsatisfactory, because it throws 

away hard-won summary Information. This Is quite 

serious, because conflicts turn out to be very 

frequent. 

It Is clear that in such circumstances, the 

successors must negotiate the best mutually 

acceptable compromise. This can be easily 

achieved by applying forward pass techniques to 

the back pass. The pointer traccback is replaced 

by a backsearch which computes a segment's final 

label. It starts with the scores left over from the 

forward pass, and applies network consistency 

constraints to the final labelllngs of the successor 

segments. 

This "backsearch" version of Locus results In a 

more robust system. Its labelling accuracy Is 

better, and It supports Its findings more solidly. 

Argos has a mechanism to prune segment-label 

candldctes which score poorly. The mechanism Is 

activated when a probability is below some 

threshold which is placed relative to the best 

present candidate. Backsearch is equivalent to 

running Locus backward through the data with the 

re ätlve Piunlng threshold set to zero. 

The next search variant soon suggests Itself; 

run the Locus updater back and forth through the 

s »gment list, slowly decreasing the relative pruning 

tiireshoid to zero. This method Is superior to the 

others. 

At this stage, the algorithm actually Is 

recognizable as a sequentially Implemented 

relaxation process. To convert It to the classical 

variant, we can eliminate the distinction between 

predecessor and succeisor neighbors and update 

all of the probabl'lty vectors In parallel. Then the 

only distinction Is whether the maximum operator or 

the average appears In the updating function. (It's 

a relaxation process either way.) 

3. Speedups 

It Is worth considering how these algorithms 

differ in computational complexity, and what 

properties might be exploited to speed the search. 

We will consider pruning, sorting, and parallelism. 

3.1 Pruning 

Obviously, poor labels can be pruned with any 

of these search algorithms. It seems, however, that 

parallel relaxation must wait longer (more Iterations) 

before pruning heavily. The sequential variants use 

contextual Information from longer range on the first 

pass. 

An Interesting effect of pruning Is that 

segments which In the early going emerge to have 

quite definite labels will have the other labels 

pruned awjy. Then they can't change through 

subsequent Iterations. They cause the search to 

appear to be Island-driven. 

3.2 Sorting 

The variants which use eq. 2 for the updating 

function can derive more benefit from keeping the 

probability vectors sorted. Most labels, even poo-ly 

scoring ones, will link to fairly high-scoring neicil.bor 

labels, so It pays to keep the high-scoring labels at 

the front of the list. If label probability vectors are 

kept sorted, then computing the Max transition 

consists of finding the first label In the list with a 

legal transition. In the case of multivalued 

transition permissions, a neighbor's probability 

vector must be examined only to the point of 

proving that no following value can Improve the 

score. In contrast, updating function 1 requires 

that the neighbor's whole probat-ility list must be 

taken Into the updating calculation. 

3.3 Parallelism 

Locus has been criticized as being an inherently 

serial algorithm which could not take advantage of 

parallelism. It Iö true that segments are considered 

sequentially, but that only ties down variable s In 

tquatlons 1 and 2. It may well be that s Is the 

simplest   place   to  parcel  out  different  values  to 
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several processors, but tNare arc other 

opportunities for parallelism. A different candidate 

label could be assigned to each processor, thus 

finding parallelism In the J variable. Similarly, the 

neighbor n and Its label k could yield parallelism. 

4. Shape 

The shape knowledge which Argos maintains for 

each label Is Its orientation, elongation, and 

compactness. Compactness Is the ratio of area to 

the square of the perimeter. Orientation and 

elongation are determined by computing the best-fit 

ellipse. From the map database, these ihape 

measures are precomputed for each template it the 

time the positional constraint network Is derived. 

For example, the U.S. Steel building will be found to 

be quite elongated in the vertical direction, so a 

segment or cluster of segments which exhibits 

vertical elongation would find support for being 

labelled "U.S. Steel building". 

The shape Information carries with it a modicum 

of occlusion knowledge. If the network Is compiled 

for a viewpoint in which Mellon Bank partially 

occludes trie U.S Steel building, then this will be 

reflected as a smaller size and different shape for 

the latter. The compiled network will know to 

expect the shape change in the image. 

A problem arlsc-s with the orientation feature. 

For shapes with very low eccentricity, a small 

perturbatlo could cause a drastic change in the 

orientation. One Roijtlon Is to place a low weight on 

the orientation measure when the elongation is low. 

This Is achieved by consluerlng eccentricity and 

orientation to be polar coordinates of a shape 

vector. Shape comparisons are achieved by taking 

the megnitude of the difference of the two shape 

vectors. For convenience, this shape vector can be 

convefted from polar form to cartesian. Then the 

two components can be treated as separate 

features without either suffering from the pole 

problem that orientation does. The advantage of 

treating them separately :s that It Is easier to 

merge them Into the general feature vector which 

describes the PPE. 

The use of shape knowledge suffers from 

chicken-egg behavior, regardless of the particular 

labelling search strategy. The shape Information is 

supposed to provide guidance for the local labelling 

of a segment. Yet, the shape match cannot be 

applied until It Is known which set of contiguous 

segments Is to be considared as a 

commoniy-labelied group. If the shape is computed 

for only the current segment, or for It and Its similar 

Immediate neighbors, then there Is still a good 

chance that some other segment should have been 

Included, or that one of the included neighbors 

would l.ave better been omiitcd. The first approach 

taken by /.. 38 was to record, for each candidate 

label of a segment, a bit-map defining the 

contiguous set of segments which could be 

expected (based on backpointers) to receive the 

same label. The shape computation would be 

deferred until the process had proceeded to the 

last successor neighbor, so as to allow th* bit maps 

to accumulate. This last neighbor would apply the 

shape match. Thus, the current segment's shape 

match would affect the last successor's view of its 

environment, and hence its label and backpointers. 

And the last successor's backpointers would affect 

the choice of labels for the current segment and 

others. 

With relaxation labelling, we can wait for a 

couple of Iterations before applying shape 

knowledge. This allows many segment-label palrr, to 

be pruned, which reduces the number of 

combinations of segments for which shape 

measures must be found. 

Our present test data has not allowed the 

quality of the shape procedures to be fully tested. 

With pixelwlse labelling, the search space Is too 

large: too many labels for too many segments have 

different ideas about where the boundaries lie for 

which shape can be computed. Hand-segmented 

Images are generally not oversegmented, so for 

them ahape evaluation usually involves only one 

segment at a time. This doesn't result In a fully 

satisfactory test. It does, however, turn up an 

Interesting phenomenon. Although the shape 

measures provided good matches, the Locus search 

did not apply them frequently enough (only at the 

last successor). Sometimes shape would cause the 

last successor's backpointer to be correct, but t;ie 

benerlcial   effect   did   not  ususliy  propagate  back 
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through  mutual neighbors.    So the result would be 

only to cause a backpointer conflict. 

The present scheme for applying shape 

knowledge Is not fully satisfactory, either 

theoretically or from the point of view of 

computational complexity. Shape Is an area where 

much remains to be done. 

5. Performance 

The cross of Locus with relaxation seems to 

propagate influence from a distance more 

effectively than either pure Locus or the 

backsearch version. To illustrate its effectiveness; 

the present battery of experiments was run using 

two pictures of Pittsburgh as guinea pigs. One had 

39 segments, of which 0 would be correctly 

identified using optical match alone. Pure Locus 

(with backpointers) obtained 14 correctly labelled 

segments, backsearch 21, and repeated passes 

33. By     biasing    the    network    to    discourage 

self-transitions, backsearch achieved 36, but this 

might constitute an adaptation to the particular 

image. It seems hardly likely that any search 

strategy would dig out the other three segments, 

since they have very bad signal matches. 

The other image had 16 segments. All three 

methods correctly labelled 14 of them. However, 

backsearch and the multipass algorithm obtained 

thel" results quite solidly, whereas pure Locus had 

some lucky bounces. 

The relaxation labeller requires about two to 

three times the processing time of pure Locus. This 

seems quite acceptable In view of the Increase In 

accuracy. 
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INTRODUCTION 

This p-üer presents a set of "texture 
energy" tran.iorms that provide texture measures 
for each pixel of a monochrcme image. The 
transforms are fast, requiring on y 
one-dimensional convolutions and simple 
moving-average techniques. The method is more 
accurate than gray level co-occurrence methods. 
It is local, operating on small image windows in 
much the same manner as the human visual system. 
It can be made invariant to changes in 
luminance, contrast, and rotation without 
histogran equalization or other preprocessing. 

These texture measures are more local than 
previously studied frequency-domain statistics. 
Frequency components are measured with very 
small convolution masks, and phase relationships 
within each wir.dow are measured without regard 
to any global origin. This method, similar to 
human visual processing, is appropriate for 
textures with a short coherence length or 

correlation distance.'. 

Figures la and lb show the sequence of 
images, or image blocks, used in "easuring 
texture. The original image is first filtered 
with a set of small convolution masks, typically 
5x5 masks with integer coefficients. Only 
one-dimensional convolution is required, since 
the masks are separable. Ttie filtering could 
also be accomplished optically or with 
multistage 3x3 convolutions. 

The filtered images are then processed with 
a nonlinear "local texture energy" filter. This 
is simpl" a moving-window average of the 
absolute J image values. Such moving-window 
operations are very fast even on general-purpose 
digital computers. The best window size depends 
on the size of image texture regions. This 
study has concentrated on 15x15 windows. Even 
waller windows might be useful if color 
information were available. 

The next step in Figure 1 shows the linear 
combination of texture energy planes into a 
analler n.miber of principal component planes, 
typically three or four. This is an optional 
data compression step. It is tempting ^ call 
the final images "perceptual planes,1 but it has 
not yet been proven that they relate to human 
texture perception.  Ttiey do seen to represent 

natural texture dimensions, and to be more 
"reliable" than the texture energy planes. 

The final output is a segmented or labele" 
image. A classifier assigning texture labels to 
the image pixels can take either texture energy 
planes or principal component planes as input. 
Classification is simple and fast if texture 
classes are known a priori. Clustering or 
segmentation algorithms mus*: be used if texture 
classes are unknown. 

Texture Data 

In an experimental study, the results can 
be no better than the input data. We require a 
set of uniform texture fields large enough to 
provide adequate samples or each texture. 
ideally this training set should come from a 
target application area. For a general vision 
systan, each texture must be a "natural" one, 
and the set must include a range of natural 
texture dimensions. We avoid artificially 
generated textures, such as sinusoidal gratings, 
because they would favor the Fourier transform 
and other frequency domain measures. 

The textures we have chosen are  from 
high-resolution photographs used in the Brodatz 
texture album.. Figure 2a shows a composite. 
The first two rows of 128x126 blocks are from 
the images of Grass, Raffia,  Sand,  Wool, 
Pigskin,  Leather,  Water,  and  Wood.  The 
lower-left quadrant is composed of 32x32 blocks, 
and the lower-right quadrant of 16x16 blocks. 
The 128x128 blocks have  been  individually 
histogran equalized, the other blocks have been 
equalized by quadrant.  Histogram equalization 
removes all first-order differences,  it also 
finesses the problem of whether to measure image 
luminance or density, since the equalization 
gives the same result for either. We have also 
used a more rigorous adaptive equalization: it 
seans to give more conservative and reliable 

results. 

The textures were chosen precisely because 
they are difficult to discriminate. They are a 
worst case dataset. Grass and Sand are very 
similar, with the main difference being the 
extended edges in grass. Pigskin, Raffia, and 
Sand may be considered cellular textures with 
similar cell sizes. Raffia is distinguished by 
its long-range structure, and Wool by its fiber 
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content and lack of coarse edge structure. The 
Grass, Leather, Wood, and Water images all have 
vertical structure. 

Comparison Statistics 

Co-occurrence matrices are a popular source 
of texture features. We have generated 
co-occurrence matrices from 15x15 source windows 
tequantized to 32 gray levels. Each matrix is 
thus 32x32. Nine of these matrices are used, 
with horizontal and vertical pixel spacings of 
zero, one, and seven pixels. The chosen 
spacings correspond to horizontal, vertical, and 
top left to bottom-right diagonal directions. 
'Ihr POO matrix records first-order information: 
all entries are on the diagonal. The other 
eight matrices record second-order information. 
The matrices are not symmetric, nor is there any 
averaging across different co-occurrence angles. 

Table 1 shows classification accuracies 
available with various feature sets. The first 
analysis uses only the ASM, CON, COR, IDM, and 
EM Haralick moments [1, 2). Together the 32 
features give almost 58% classification accuracy 
on the adaptively equalized texture set. The 
globally equalized textures generate two 
dominant discriminant functions using P1ÜC0N, 
P01IDM, P70IDM, P11C0N, P01CON, P10IDM, P10COR, 
and P11COR. Discriminant functions for 
adaptively equalized textures use P10CON, 
P01IDM, F70CON, P11CON, P01CON, and P71COR. 
Angular second moment, correlation, and entropy 
features apparently carry little texture 
information. 

The second and third analyses in Table 1 
use rectilinear and diagonal moments, 
respectively. These moments will not be 
described here. Neither set is as powerful as 
the Haralick moments. The fourth analysis 
combines all of the co-occurrence features, a 
total of 172 independert texture measures for 
the nine co-occurrence matrices. Classification 
accuracy improves very little, and the variables 
selected by the discriminant analysis are nearly 
all from the Haralick set. 

Macro-Statistic Selection 

Figure 1 shows a one-to-one mapping between 
filtered images and texture energy planes. 
TV/elve measures per pixel were used in 
preliminary research. Experience has shown that 
either variance or standard deviation alone is 
sufficient to extract texture information from 
the filtered images. 

Variance is an average squared deviation 
frcni the mean. For a zero-mean field, it is an 
energy measure. The standard deviation (SDV) 
statistic is the square root of this local 
energy. It may be considered a "texture energy" 
measure. A faster energy transform is the 
average of absolute values (ABSAVE) within a 
window. For a zero-mean field it may be 
considered a fast approximation to the standard 

deviation.   It  performs  poorly only with 
operators which are not zero-sum. 

Table 2 shows classification accuracies 
possible with local texture energy measures. In 
each case the discriminant analysis routine 
selected about a dozen features, each produced 
by convolution with a 3-vector, 5-vector, 3x3 
matrix, or 5x5 matrix. SDV and ABSAVE 
statistics were gathered over 15x15 
"macro-windows." Classification accuracies are 
much higher than the 72% achieved with 
co-occurrence statistics. For this dataset, 
ABSAVE features are jointly more powerful than 
SDV features, and nearly as powerful as both 
sets together. 

Rotation-invariant filters, such as the 
Sobel gradient magnitude, are only fair as 
texture measures. Better results are obtained 
by using directional masks separately and then 
combining the texture energy measures. Averages 
of ABSAVE values from rotated filter masks, such 
as L5E5 and E5L5, can be used as 
rotation-invariant texture measures. The 
usefulness of such measures depends on the 
application area. In a general vision system it 
is better to use directional measures, and to 
allow a higher level processor to decide which 
textures are equivalent. 

Center-Weighted Filter Masks 

Figure 3 shows two sets of one-dimensional 
convolution masks. The names are mnemonics for 
Level, Edge, Spot, Wave, and Ripple. The 
vectors in each set are ordered by sequency. 
The vectors are weighted toward the center, all 
are symmetric or antisymmetric, and all but the 
Level vectors are zero-sum. Vectors in each set 
are independent, but not orthogonal. 

The 1x3 vectors form a basis for the larger 
vector sets. Each 1x5 vector may be generated 
by convolving two 1x3 vectors. S5, for 
instance, can be generated as (L3)*(S3), 
(S3)*(L3), or (E3)*(E3). A set of 1x7 vectors 
can be generated by convolving 1x3 and 1x5 
vectors, or by twice convolving 1x3 vectors. 
The sequency of a generated vector is the sum of 
the component sequencies. 

We have applied horizontal and vertical 
masks in pairs, although the discriminant 
analyses have not been constrained to assign 
equal weights. The six 3-vectots alone perform 
slightly better than the elaborate co-occurrence 
features. This is amazing considering the 
simplicity of the texture energy method and the 
many experimental vindications of Haralick's 
co-occurrence statistics. The 5-vectot 
statistics perform oven better, achieving 82% 
classification accuracy. Using 7-vectorE or 
combining more than one vector size gives no 
significant improvement. 

Neurological studies show that the visual 
cortex computes edge measures in approximately 
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ten-iegree increments. We have investigatea 
one-dimensional features in the two main 
diagonal directions. Inclusion of diagonal 
features improves classification accuracies 
significantly. The 5-vector statistics alone 
are sufficient to achieve 86% classification 
accuracy, close to the maximum reached in this 
study. Conbining different vector sizes adds 
little power, but provide insight into the 
feature selection process. The discriminant 
routine selects vectors of all directions and 
sizes. Different subsets are selected in the 
globally equalized and adaptively equalized 
cases. Yet all of the selected features are 
either Edge statistics or the symmetric 
statistics. None        of      the      high-sequency 
antisymnetric features were found useful. 

Figure 4 shows the nine masks generated    by 
convolvi.jg a vertical 3-vector with a horizontal 

considered       a 
multiplication 
has       special 
extract texture 

convolving with 

3-vector.        This     may       be 
cross-product or        vector 
operation,      but      convolution 
significance    here.      We    shall 
information from image data by 
the    3x3    masks.    Convolution with the component 
one-dimensional masks    gives    exactly    the    same 
result as convolution with a separable 3x3 mask. 

The nine independent 3x3 masks form a 
complete set. Any 3x3 matrix can be expressed 
as a unique linear combination of the masks. 
The 5x5 masks and 7x7 masks also form complete 
sets, with even stronger weighting toward the 
center. The separable structure of these masks 
makes it feasible to apply than as 
spatial-domain filters. A 5x5 convolution, for 
instance, can be implemented as two 3x3 
convolutions, a 5x1 and a 1x5 convolution, or 
two 3x1 and two 1x3 convolutions. 

TWo-dimensional masks are even more 
powerful than the tested sets of one-dimensional 
masks. Again the length five masks are best, 
although the evidence is less conclusive. 
Classification accuracies ate in the range 86% 
to 88%. The adaptively equalized 3x3+5x5 
feature subset differs from the 5x5 feature 
subset only by the inclusion of L3S3, the ninth 
and last feature to be adaed. Analyses with 7x7 
masks have shown no significant improvement. 
Selected statistics again differ from one 
analysis to another, but high-sequency 
antisymmetric features are not useful. The 
consistent inclusion of R5R5 is somewhat 
surprising since matching image structures must 
be quite rare. This mask resembles a 
two-dimensional sine or Bessel function. The 
similar S5S5 feature is individually very 
strong, but has little power when combined with 
other features. 

Conbining one-dimensional and 
two-dimensional features improves classification 
accuracy very little. Two-dimensional features 
^nter the models first, followed by a few of the 
longer vector features. Again there are few 
Wave or antisymmetric features, despite the tact 

they are indivi-* *xy strong discriminating 
features. Otherwise the selection seems 
somewhat arbitrary. 

TWO sets of filter masks have been found 
which work well: rotated vector masks and 
separable square masks. Very likely the human 
visual systan uses rotated circular masks. For 
digital imasj° processing the square masks are 
the most convenient. Only the Level, Edge, 
Spot, and Ripple 5x5 masks are useful. 
Classification of 15x15 blocks can be done with 
accuracies above 86% using just the Level, Edge, 
and Ripple or the Level, Spot, and Ripple 
subsets. 

Classification Results 

The Level (or L5L5) texture energy 
transform is sensitive to changes in luminance 
level. Its moving-window average can be used as 
a brightness measure for segmentation purposes. 
Its standard deviation can be used as a local 
contrast measure. The other filters are 
inherently insensitive to low frequency 
luminance changes, and can be made invariant to 
contrast changes by taking the ratio of ABSAVE 
values to the L5L5 SDV values. This 
normalization reduces classification accuracy by 
about two percentage points. The 
contrast-invariant features may be used to 
segment or classify image textures without prior 
histogram equalization. 

Wc have applied the contrast-invariant 
transforms to the composite texture image. 
Figure 2 shows the first two principle component 
planes before contrast normalization. The third 
plane (not shown) is similar to the second with 
contrast in the first quadrant reversed. The 
discriminant dimensions are the same ones found 
with co-occurrence features and with every other 
texture set we have tried. 

Figure 2d shows the results of classifying 
every pixel into one of the eight texture 
categories. The 15 zero-sum texture transforms 
from the 5x5 Level, Edge, Spot, and Ripple 
subset were used. Processing time was about 30 
minutes on a PDF KL/10. Using twelve or even 
nine features would produce similar results in 
less time. 

It can be 
almost per 
classification 
regions of the 
are well separ 
differentiated 
perfomance to 
classifier or 

seen that the    large    blocks    are 
fectly classified. Average 
accuracy is near 87% for  interior 
128x128 blocks.    The 32x32 blocks 

ated, and    the    16x16    blocks    are 
to    an   extent.    We believe this 

be unmatched by any other    texture 
image segmentation system. 
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Table 1. Co-occurrence Classification Accuracy. 

Feature Set      Global   Adaptive 

Haralick Munents 70 85 67 58 
Rectilinear Moments 63 04 65 92 
Diagonal Monents 56 60 63 04 
Conbined Monents 72 07 68 16 

Table 2. Macro-Statistic Classification 
Accuracies. 

Feature Set  Global  Adaptive 

SDV 85.99 85.60 
ABSAVE 88.09 87.11 
SDV+ABSAVE   89.16    87.55 

I(r,c)   Micro- 

iFilter 

F(r.c) Energy 

Transform 

E(r,c) Component 

Rotation 

C(r,c) 
> Classifier 

M(r,c) 

(a)  Operator Sequence 

(b)  Image Plane Sequence 

Figure 1.  Flow Diagrams. 
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(a)   Composite 
(b)   First Component 

(c)   Second  Component 
(d)   15x15  Classification 

Figure  2.     Texture   Images. 
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Figure 3.    Center-Weighted Vector Masks. 
Figure 4.     3x3 Center-Weighted Masks 
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ABSTRACT 

This paper describes several applications of 
simple cooperative computational techniques in tex- 
ture analysis.  The techniques involve parallel 
local operations of various sizes and resolutions 
performed on the given image.  Interactions at a 
given size level, in the form of iterative local 
smoothing processes, can be used to improve the 
reliability of textural features measured at indi- 
vidual pixels or over windows.  Interaction between 
operations of different sizes or resolutions can 
be used to check the textural homogeneity of win- 
dows or to detect and extract texture primitives. 

1. INTRODUCTION 

Texture plays an important role in the classi- 
fication of terrain and land use types on aerial 
photographs and remote sensor imagery, particularly 
in the absence of raultispectral information.  For 
a recent rei'iew of texture analysis techniques see 

[1]. 

We will deal here primarily with the problem 
of classifying a given set of texture samples; in 
other words, we assume that we are given a set of 
image windows, each consisting of a single texture, 
and our task is to classify the windows into tex- 
ture types, based on a set of feature measurements. 
A more difficult problem is that of segmenting a 
given image into uniformly textured regions. 

A wide variety of statistical features can be 
used for texture classification.  The following are 
three basic approaches: 

a) One can use second-order gray level statis- 
tics, computed from "cooccurrence matrices" 

that represent the second-order p/obability 
density of gray level for various displace- 
ments.  Alternatively, one can use first- 
order statistics of various local proper- 
ties, e.g., of gray level differences for 
various displacements. 

b) More generally, one can use second-order 
local property statistcs.  These need not 

be computed for all pairs of points having 
a given displacement; rather, one can de- 

fine a set of points that have characteris- 
tic local property values (e.g. , local 
maxima of gray level difference), and com- 
pute second order local property statistics 
for pairs of these points having specific 
relationships (e.g., in the gradient direc- 
tion) [2].  Alternatively, one can use 

local property values to select pairs of 
points in this way, and then compute second 
order gray level statistics for these pairs 
[3].  Each of these approaches has advan- 
tages in some situations. 

c)  One can segment the texture into "primitive 
elements", and compute first-order statis- 
tics of properties of these elements (area, 
perimeter, elongatedness, average gray 
level, etc.), or second-order statistics 
of properties of neighboring pairs of 
elements [4]. 

This paper describes several applications of 
simple cooperative computational techniques in 
texture analysis.  The techniques involve parallel 
local operations of various sizes and resolutions 
performed on the given texture samples.  In Section 
2 we show how interactions at a given size level, 
in the form of iterstive local smoothing processes, 
can be used to improve thf^ reliability of texture 
features.  We also discuss how this approach can 

be extended to include interactions between dif- 
ferent sizes.  Section 3 reviews some simple 
methods of extracting texture primitives, and shows 
how interactions over a range of sizes can be used 
to detect and extract such primitives. 

2.  TEXTURE FEATURE SMOOTHING 

Typically, to obtain good classification per- 
formance, texture features should be computed for 
windows of size at least 64 by 64 pixels.  If 
smaller windows are used, the feature values be- 
come unreliable, and classification performance 
deteriorates.  However, the size of the windows 
required for reliable classification poses a 
problem when we try to analyze the textures on a 
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given xmage; the larger the windows used, the fewer 
of them will f^ inside the uniformly textured re- 
gions on the image, so that it becomes difficult 
to obtain sufficient numbers of uniformly textured 
samples. 

This problem can be alleviated, to a substan- 
tial extent by using small windows, and smoothing 
the texture feature values before using them for 
classification.  The smoothing is done by selec- 
tively averaging the features measured for a given 
window with those measured for some of the neigh- 
boring windows; this should be done in such a way 
that the neighbors used are likely to have the same 
texture as the given window.  A number of recently 
investigated image smoothing techniques should have 
the desired behavior; median filtering, and the E^ 
scheme rn which we average with the k neighbors 
whose feature values are closest to those of the 
given window, are two examples. 

A technical report on this method is in prepa- 
ration; in this paper we give only one illustra- 
tion  Figure 1 is & 5i2 by 512 plxel      ^ 

posed of two geological terrain types (the divid- 
ing line is the 45° diagonal).  Thus this image 
consists of 56 windows of size 64 by 64 that repre- 
sent pure terrain types (28 of each), plus eight 
mixed windows lying on the diagonal.  If „e use 
window, of size 32 by 32, ve have 120 pure windows 

s0 z'l bvyPlfi
and \6 ^^ WlndOWS; Wh^ " - °- siz3 16 by 16, we have 496 pure windows of each 

type and 32 mixed windows.  Note that the mixed 
area is reduced as the windows get smaller; the 
numbers of pixels belonging to mixed windows are 

\   ol3 the 64 by 64 S> 2  for thf. 32 by 32's and 21J for the 16 by 16's. "7^8, 

,1sPA
SiH8le Sf"nd-ord^ g"y level statistic was 

used as the sole texture feature in this example. 
This feature was the moment of inertia of the co- 
occurrence matrix about its main diagonal (called 
the "Contrast" feature by Haralick); it was mea 

Z J0\*  one-Pixel displacement in the horizon- 
tal direction.  The mean p and standard deviation 
a of the feature values for the windows of each 
size in each class are given in Table 1.  These u 
and a values define a Gaussian probability density 
for each class and each size.  We used these densi- 
ties, in conjunction with Bayes1 theorem, to com- 
pute the probability that each window belongs to 
each of the twe classes, and to classify the window 
according t0 the greater of these probabilities 

^ n the
j
d
j
ensltles overlap, particularly for the 

smaller windows, these maximum-likelihood classi- 
fications are not all correct; the error rates are 
shown 1„ the first row ("iteration 0") of Table 2 
(These rates refer only to the unmixed windows.) 

The E smoothing process was now Iteratively 
applied to the feature values.  Under this process 
the variability of the values within each cLss  ' 
rapidly decreases; this results in substantially 
reduced error rates when the windows are classified 
on the basis of their smoothed values, as Table 2 
shows.  No problems arise for windows near the 
border between the two textures, since the E5 

scheme is likely to average the features of such a 
window only with the features of neighboring 

windows of the same type.  For the 64 by 64 win- 
dows, the error rate is .educed to almost zero in 
only a few iterations; while for the smaller Win- 
dows, it is reduced to a level usually achievable 
only through the use of larb. windows. 

In the experiments just described, only the 
features derived from windows of a single size „er^ 
allowed to interact.  Chen and Pavlidis [5] havl 
described a split-and-merge method of texture 
segmentation in which feature values measured on 
windows of different sizes ar. compared.  If the 
values for all four quadrants .f a window are suf- 
ficiently close to the values for the entire win- 
dow, then the window need not be subdivided; other- 

lllVr^l^   U   int0 ^""ts-  It would be 
very desirable to combine their method of "verti- 
cal interaction between the feature values with 
our "horizontal" interaction method.  Further work 
along these lines is planned. 

Iterative smoothing can also be used to improve 

ficatL H: "H ^T Se~ati°" ^ pixel cUss - tication based on local property values.  Such 
classifications are often somewhat noisy because 

"busv" reS-are rrifble; f0r example' e-n i« - busy region, local measures of "busyness" do not 
have uniformly high values.  If we smooth Che 
values, using a local smoothing scheme which tends 
not to cross region boundaries, the results are 
improved.  Experiments along these lines are in 
progress. n 

A;, an alternative to iterative smoothing, one 

l" r ' C 1^tlal featUre ValueM to Probabilis- 
tically classify the windows (or pixels), and then 
use a relaxation scheme to adjust the class pro- 
babilities; this too should result in a reduced 
error rate.  A comparison between the iterative 
smoothing and relaxation approaches is planned. 
I should be mentioned that in analogous studies of 
Pixel classification based on spectral signatures 
relaxation gave much better results than Soothing 

3.  TEXTURE PRIMITIVE EXTRACTION 

extract [^Va region.8rowlng technique was used to 
extract texture primitives.  Several simple methods 
of extracting primitives have also been investi- 
gated [6,7].  These included thresholding at a per- 

wfna1^' f?3?111^ requantizatlon (converting the 
window's histogram into a small set of spikes)  and 
the SUPERSLICE algorithm; each of these s'che^es 
yields a set of connected components as primitives 

"noisv"  i  8 Set ^ COra~ts t-ds to'be rather 
of orL'M  ■' S^ 0f them appear t0 be fragments of primitives, while others seem to be conglo- 
merates of several primitives.  Nevertheless 
first- and second-order statistics (of area, elon- 
gatedness, etc.) computed from these components 
provide a useful basis for texture classifica on 
Examples of the components obtained by these 
methods are shown in Figure 2. 
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A much "cleaner" set of primitives can be ob- 
tained using an edge-based approach [8], in which 
primitives are defined as clusters of antiparallel 
edge pairs.  The basic idea is as follows: An edge 
detector is applied to the given texture window, 
and nonmaximum suppression, in conjunction with a 

low threshold, Is used to select a set of edge 
points.  At each sucn point, a search is made out 
to a fixed distance in the gradient direction.  If 
an approximately antiparallel edge is encountered, 
the line segment joining the two edge points is 
assumed to be part of a primitive, and the points 
of this segment have their values incremented in an 
output array.  When this has been done for all 
edge points, the points ol the outp'it array that 
belong to primitives should have high values.  The 
final extraction of primitives is done by smoothing 
and thresholding the output irray; see [8] for the 
details.  Examples of the primitives obtained in 
this way are shown in Figure 3.  Statistics derived 
from these primitves can then be used to classify 
the textures. 

The edge-based approach to texture primitive 
classification can be implemented on several dif- 

ferent levels.  The implementation described in the 
preceding paragraph was based on individual edge 
points; for each such point, it searched the image 
in the appropriate direction foi an antiparallel 
edge. A computationally cheaper idea might be to 
Eirft link the edge points into edge segments, and 
then search the list of these segments to find 
antiparallel pai-s. 

as a process of cooperation and competition among 
a set of "dipole" operators of many lengths and 
orientations centered at each point; the dipoles 
having a given orientation compete, while those 
having different orientations cooperate. 

Still another method of detecting and extract- 
ing texture primitives is to apply a set of spot 
(and streak) detectors, having a range of sizes 
(and orientations), to the given window.  By a pro- 
cess of nonmaximum suppression with respect to 
position and size (and orientation), we can select 
a discrete set of locally best responses, which 
presumably correspond to primitives, assuming that 
the primitives are spot-like or streak-like.  This 
process can be regarded as one of cooperation and 
competition among detectors of various sizes.  The 
primitives that are detected in this way can then 
be extracted, if desired, by a local segmentation 
process, as described in a separate paper in these 
Proceedings.  This approach was implemented many 
years ago in early studies of spot and streak 
detection using operators of multiple sizes; a one- 
dimensional version of it was recently used to 
define locally significant peaks in waveforms. 
Again, this la a computationally expensive ap- 
proach, but it could be implemented very efficient- 
ly on suitable parallel hardware.  Preliminary work 
along these lines is in progress, and further in- 
vestigation of this approach is planned. 

One can also design implementations which do 
not require the explicit extraction of edge points 
from the given window, but rather operate on the 
raw gradient values.  For example, suppose that 
for every point P we examine the set of pairs of 
points Q,R within a given distance of P that are 
symmetrically positioned with respect to P. (This 
involves a large number of operations for each P, 
but the process could be carried out quite effi- 
ciently using suitable parallel hardware.)  Sup- 
pose that the gradient magnitudes at both Q and R 
are high, and the gradient directions are approxi- 
mately antiparallel and roughly perpendicular to 
the lüie QR; then we increment the points of seg- 
me'it QR by an appropriate amount on an output 
arrpy. The increment can be inhibited if some 
proper subsegment of QR has given rise to a higher 
increment.  When this has been done for all triples 
P^R, we should have high values in regions sur- 
rounded by antiparallel edges, and lower values 
elsewhere.  Note that if we increment only P, 
rather than the entire segment QR, the results 
should be high on the "medial axes" of antiparallel 
edges, and low elsewhere; thus we have defined a 

generalization of the medial axis transformation to 
unsegmented gray scale images.  This approach to 
primitive extraction and medial axis construction 
is currently under active investigation. 

The conceptual advantage of this approach is 
that it requires no thresholding until the final 
stage, when a decision must be made as to which 
output array values represent primitives (or medial 

axes). The approach just described can be regarded 

4.  CONCLUDING REMARKS 

The ideas sketched in this paper indicate how 
simple cooperative computational methods may have 
a variety of uses in texture analysis.  The possi- 
bility of implementing such methods in parallel 
makes them potentially attractive for use in future 
real-time texture analysis sysl. 
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Figure 2.  Primitive elements extracted from windows of seven textures using three simple methods.  The 
textures are (a-d) grass, raffia, sand, and wool, from Brodatz's album; (e-g) Lower Pennsylvanlan 
shale, Mlsslsslppian limestone and shale, and Pennsylvanlan sandstone and shale from a LANDSAT 
image. The pictures in each part are as follows: 

Original window 
Adaptive quantization 

Parts   (a-d) 

25th  percentile 
SUPERSL1CE 

Original  window Darkest   25th  percentile 
lightest   25th  percentile SUPERSLICE 

Parts   (e-g) 
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Figure 1,  Geological terrain types selected from 
a LANDSAT fraTie.  Ttie upper left is 

Pennsylvania sandstone and shale; the 
lower right is Mississippian limestone 
and shale. 

Window Si Ize 
Terrain 
Type 64 by 64 32 Dy 32 16 by 16 

Pennsylvanian 

a 

15.32 
1.50 

15.33 
2.21 

15.32 
3.44 

Mississippian 
a 

11.66 
1.20 

11.67 
1.75 

11.68 
2.65 

Table 1.  Means and standard deviations for the 

terrain types. 

Wind. DW S ize 

Iteration 64 by 64 32 by 32 16 by 16 

0 9 19 28 

1 2 8 19 

2 2 5 16 

3 2 4 14 

4 2 4 14 

5 2 3 13 

6 2 3 13 

7 2 3 13 

8 2 3 12 

9 2 3 12 

10 2 3 11 

11 2 3 11 

12 2 2 11 

Table 2,  Error rates (%) . 

Figure 3. Primitive elements extracted from the 

same windows as in Figure 2 using the 
edge-based method. 
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Summary 

Lights Is a system for the Interpretation of 

simple moving light displays of Jointed objects 

against a stationary background. The displays 

being studied differ from those examined by 

previous researchers In that (1) objects are 

represented by a relatively small number of points, 

(2) objects are not rigid, and (3) the viewi .g 

geometry Is such that highly varying degrees of 

perspective distortion occur. An algorithm Is 

presented which segments the points of an Ml.D of 

a wire frame man Into body parts. The relationship 

of this algorithm to previous theories of MLD 

perception and actual human performance is 

discussed. 

The preparation of Ihl» paper was supported in part by the 
Defence Adavanced Projects Research Agency, monitored by the 0NR 
under contract No. N00014-78-C-0164. 

1. Introduction; Moving Light Displays 

If asked what aspect of vision means 
the most to them, a watchmaker may 
answer "acuity," a night flier, 
"sensitivity," and an artist, "color." But 
to the animals which Invented the 
vertebrate eye, and hold the patents on 
most of the features of the human model, 
the visual registration of movement was 
of the greatest Importance. 1 (p. 342) 

Motion supplies the visual system with crucial 

Information about out environment. Indeed, motion 

Information alone Is sufficient for perception: A 

sequence of binary Images representing points from 

a moving object can produce a strong and 

true-to-llfe three-dimensional perception. 

Early In 1978 1 set out to study Just this kind of 

motion Image, which I labelled a moving light display 

(MLD). I felt that MLD perception represented a 

sevtre challenge to existing notions about machine 

perception of multiple frame Images. 

An MLD Isolates and presents geometric 

evidence of motion divorced from such factors as 

texture, color and lighting. The only source of 

Information In an MLD Is the position and velocity of 

Its rolnts, and position does not provide sufficient 

data     for     MLD     Interpretation. Psychological 

experiments have shown that Individual frames of 

an MLD cannot usually be recognized by human 

subjects. ^ 

So little Information appears to be present In an 

MLD, that the question arises as to the nature of 

MLD perception: does the perception of MLDs 

require a large knowledge base to be used for 

hypothesis generation and model matching?, or do 

MLDs possess a structure which Is exploited by the 

visual system as a shortcut to recognition? 

2. Human performance 

In looking for answers to thesft questions, It is 

Instructive to consider Just how good humpn beings 

are at interpreting MLDs. Johansson 3, for example, 

has demonstrated the that twelve moving lights can 

evoke the illusion of a walking man. His MLDs were 

created on video tape through the use of high 

Intensity lights and adjustments of video contrast. 

Subjects performed a variety of tasks wearing 

glass bead reflectors on their major Joints 

(shoulders, elbows, wrists, hips, knees and ankles), 

and   the   resulting   MLDs   of   human   body   motion 
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display considerable complexity. Less than .2 

seconds were required for perfect recognition of an 

MLD as a moving man. Only .4 of a second was 

necessary for discrimination of different human 

movements, e.g. walking left, walking right, and 

walking backward. 

The Illusion of t^pth created by MLDs Is very 

strong. When presented with a movie screen on 

which a small number of moving points are 

projected, a human observer will invariably try to 

place a three-dimensional Interpretation on their 

movements. This Is true even when abundant 

evidence of two dimensionality Is present, such as 

the edge of the screen and the sound of the 

projector. 

Human understending of MLDs involves more 

than simple object identification and recognitljn. A 

considerable amount of Information can be 

recovered from MLDs. Cutting has recently 

demonstrated the ability of subjects to recognize 

the sex of a walker /1, and It Is even possible to 

recognize the gait of a friend 5. 

3. Theories of MLP Interpretation 

A number of theories have been developed to 

explain human perception of MLDs. I shall outline 

two of the most prominent, one from the field of 

psychology and one from computer science. A more 

complete critique of existing theories can be found 

in 0 

3.1 Johansson: Spatio-temporal Integration 

Johansson and Ills colleagues Borjesson and 

von Hofsten have attempted to explain the 

Interpretation of MLDs In terms of a low level 

'spatio-temporal differentiation and integration' '. 

The outer layers of the visual system, according to 

this theory, extract a hierarchy of coordinate 

systems that permit the Interpretation of motion 

patterns according to a simple vector analysis. 

In his 1976 paper Johansson describes the 

theory as It applies to th« Interpretation of the 

hlp-knee-ankle system of an MLD of a man walking 

parallel to the viewing plane. The hip Is identified 

as    moving    In    the    coordinate    system   of   the 

stationary background. The knee moves In the 

coordinate system o." the hip and the ankle in the 

coordinate system of the knee. Each point's total 

motion Is seen as the composition of a movement 

relative to ItO particular coordinate system with the 

motion of that coordinate system relative to the 

next In the hierarchy. 

Johansson suggests that the selection of a 

coordinate system for a point depends upon its two 

dimensional velocity. The lowest velocity point Is 

Interpreted relative to the stationary background 

and so on down the hierarchy. Unfortunately, this 

criterion does not always work even in his simple 

example. At certain points of the walker's step, 

e.g. when his foot Is In contact with the floor, the 

movement Of the ankle Is actually less than the 

movement ot either the hip or knee. 

Despite their difficulty K defining rules for the 

determination of a coordinate hierarchy, Johansson 

et al. have presented a large body of data to 

corroborate their claim thut the human visual 

system Is performing a kind of vector decomposition 

In the analysis of MLDs. Their theory has led to the 

correct prediction of several MLD effects. 

3.2 Ullman; The structure from motion theorem 

A radically different approach has recently 

been suggested by Ullman 8. He has demonstrated 

that three distinct orthogonal projections of four 

non-coplanar points provide sufficient Information to 

reconstruct mathematically the three-dimensional 

structure of the object defined by the points 

(subject to a possible reflection). Using this 

'structure from motion' theorem, Ullman has written a 

computer program capable of deriving the structure 

of multiple rigid objects In motion, he has also 

suggested an algorithm for the Interpretation of 

MLDs of certain objects viewed by perspective 

transformation. He divides an object Into rigid 

groups of four non-coplanar points, Iteratively 

classifying ov flapping groups of points In order to 

extract   tt relative   three-dimensional   location. 

The accurc of this algorithm depends on the 

distances between the points selected In each 

step of the analysis. They must be close enough to 

each  other  (relative  to the viewing distance) so 
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that   to  a   first  approximation they are viewed by 

orthogonal projection. 

Neither of these theories of MLD perception 

provides a basis for the Interpretation of complex 

Images. Ullman °, for example, cannot cope with 

the low degree of connectivity, the perspective 

distortion, or the non-rigldlty of MLDs such as those 

of human motion created by Johansson ". 

Johansson, on the other hand, presents only a 

partial solution, leaving out Important details such 

as the determination of connectivity and coordinate 

bases. 

4. Lights 

I began my o.vn study of MLDs by gathering 

extensive statistics on the position and velocity of 

MLD points. I hoped Initially to demonstrate a 

strong mathematical relationship between the 

underlying objects and the movement of their 

'lights', such as was shown to exist by Ullman for n 

restricted class of MLDs. 

What I found was that strong relationships do 

exist between the movement of related points 

which are not dependent on a particular viewing 

transform (as in Ullman) and can not therefore be 

used directly for tliree-dimenslonal reconstruction. 

Instead, ti.ey derive from the fact that any 

perspective transform, even allowing for certain 

types of systematic distortion, tends over a period 

of time to preserve relationships between the 

movement of connected components of an MLL). 

Lights Is a computer system written to explore 

the ways In which this and other kinds of 

Information can be exploited for the purpose of MLiI 

interpretation. In Its present form Lights Is able to 

track and cluster points belonging to Independently 

moving objects. Within a cluster. Lights analyzes 

the relative motions of object points. It then 

performs an Initial segmentation of these points Into 

groups representing Independently moving subparts. 

the high degree of difficulty represented by such 

Images. The distance of each 'walking man' from 

the hypothetical viewer varies from about two to 

four times the man's height, creating an overall 

change In perspective distortion of 2.1. Typically, 

each man Is seen to take about five steps In five 

seconas. Frames     are    displayed    for    about 

twenty-five milliseconds. The point of visual 

fixation remains constant (see Figure 4-1). 

These MLDs were created by a program 

(written in SAIL) based on a model of human walking 

movement developed by Cutting 9. Taken alone, 

the motions of the shoulders and hips define two 

ellipses having different major and minor axes. The 

arms and legj swing as dcuble pendulums from the 

shoulders and hips and the entire body moves 

forward with each step. The speed of stride may oe 

varied. As the speed Is Increased, a forward lean 

and accentuated arm and leg swinging are added. 

Other stimulus parameters Include hip and shoulder 

excursion, speed, size, and three-dimensional path 

and orientation. The path of movement Is defined 

ihr;r by a SAIL procedure which takes the current 

distant e 'walked' and returns a three-dimensional 

coordinate ul by a chain-coded path on a plane 

Interactively specified on a screen (CRT) with a 

computer 'mouse'. The direction faced by the man 

Is tangent to the path at all times. 

Although referred to as a 'walking man', the 

underlying model Is actually that of a wire-frame 

figure, since no attempt Is made to occlude points 

on the basis of body part widths. Nevertheless, the 

net effect Is a stimulus universally identified by 

human observers as a walking (albeit transparent) 

man. 

Non-biological motions were studied using a 

program which simulated translation and rotation of 

geometric figures such as cylinders, squares, 

tetrahedrons, and less conventional objects such 

as 'Jacks'. Once again, the underlying model was 

wire-frame and not solid so that no occlusion was 
possible. 

4.1 The Input to Llgh'.s 

MLDs of human beings walking along different 

paths on a plane were chosen to be the primary 

stimuli for Lights.    The reason for this choice was 
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Frame   1 

■v 

Frame 2 

Frame 5 Frame 6 

Frame  ^ Frame   10 

Frame   13 Frame   14 

Figure 4-1: MLD of two men walking: 
representative frames 

4.2 Components of MLP Interpretation 

Lights breaks the problem of MLD Interpretation 
Into three components: 

1. Correspom/ence. As presented to a 
viewer, an MLD contains no explicit 
data   Identifying  points  In  one  frame 

with points In another. This 
correspondence must be established 
before any further processing. 

2. Object separation. Just as there Is 
no explicit correspondence between 
points In successive frames, an MLD 
does not provide a ready-made 
solution to the problem of separating 
Its points Into groups which belong to 
different objects. 

3. Determination of subparts. Once the 
points of an MLD have been divided 
Into groups which are believed to 
correspond to distinct objects. It Is 
necessary to break each object down 
Into its component parts. This 
amounts to building a skeleton of the 
object by describing the connectivity 
relationships between Its points. 

4.3 Tracking 

For each frame, the Input to the interpretation 

program is an unlabeled set of coordinate pairs 

corresponding to the points of the MLD. The 

problem of tracking points from one frame to the 

next has been studied by others10,8. Often, 

though, tracking algorithms have been based on 

Information (such as trie cross correlation of small 

areas around prospective matches) derived from a 

greyscale Image which served as the source for the 
MLD. 

The MLDs under study here contain a small 

number of points and depict objects with parts In 

relative motion. The basic assumption is that the 

velocity of points in an MLD varies smoothly and can 

be used to estimate position from frame to frame. 

4.3.1. The tracking algorithm. The tracking 

algorithm used by Lights selects for each frame the 

correspondence which minimizes the sum of the 

differences between the expected position of each 

point (based on Its velocity averaged over the 

preceding two frames) and the actual position of 

the corresponding point In the next frame. 

Let m denote the number of points In frame f7 

and n the number of points In frame F+1. Let P(F,I) 

represent the Ith point in frame F for 1 < I < m, and 
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P(F+1,J) represent the Jth point In frame F+1 for 1 < 

J < n. In addition, let Predlct(F,l) be the function 

which takes the point P(F,1) In frame F and returns 

the predicted position of that point In frame F+1 

based on Its average velocity, and let dF+1(l,J) be 

the Euclidean distance between points PredlcUF,!) 

and P(F+1,j). The correspondence desired Is 

defined as the function CF(I) which maps Indices for 

KF,») Into Indices for P(F+1,») such that 

m 
^^/'.CFO)) 

Is at a minimum. 

It Is important that the function CF(I) can be 

calculated efficiently. A naive approach would be 

to calculate all posslb! / sums and choose the 

smallest, a feat requiring 0(mn) operations. 

Lights avoids this combinatorial explosion by 

applying a heuristic algorithm which will calculate 

CF(I) In 0(Max(m,n)2log(n)) worst case time with an 

normal time of 0(Max(m log2(n), n log(n))). The Idea 

for this algorithm came from the recognition of the 

fact that, in the images under study, the point 

selected by the function CF(I) was normallyu the 

point closest to Predict(F,l). This followed from the 

sparseness of the MLDs and the fact that the 

motions of their points corresponded to the motion 

of phyclcal objects. 

For each point In frame F the point closest to Its 

predicted location In frame F+1 Is calculated.   This 

can   be   done   In  0(Max(m  log2(n),  n !og(n))) time 

using a Voronol construction ^.   An array of n lists 

is then obtained with each list corresponding to a 

point P(F+1,J) In frame F+1  and containing the set 

of points In frame F for which P(F+1,j) is the best 

choice.   This array Is then traversed and lists with 

more than one element are examined.   For list L(|) 

the best choice of element P(F,I) Is made such that 

the sum of the distance from PredlcUF,!) to P(F+1,j) 

and the distance between all other points In L and 

their next best selection In F+1 Is at a minimum.   All 

other points In the list are then distributed to the 

lists  corresponding to their next best choice. For 

one   pass  of  the   array  this algorithm requires at 

least 0(n log(n)) and at most 0(m n log(n)) time. 

The speed with which this calculation can be 

performed Is due to the fact that the intermediate 

data structures used for constructing the original 

n-point Voronol diagram can be reused to calculate 

an n-1 point Voronol diagram. The new Voronol 

diagram thus requires O(n) rather than 0(n log(n)) 

time to construct. Finding the next best match Is 

then 0(log(n)) and a maximum of (m-1) + 2 x m 

additions are required to calculate the prospective 

sums. If there are no lists containing more than one 

element the algorithm has finished and calculated 

the function CF(1). In the majority (> 907.) of MLD 

frames studied, this condition occurs Immediately 

and no Iterations are required. Otherwise the 

algorithm is Iterated a fixed number of times or until 

success Is achieved. 

If the tracking algorithm succeeds, the optimal 

match has been found. Optlmality 'esults from the 

fa jt that the selection of a match from a conflict 

l;st Is always made In such a way that. If no further 

conflicts were to arise, the sum of all distances 

would be minimized. Once found, the list of point to 

point correspondences Is then recorded and passed 

on to the later stages of Lights. 

Failure of the heuristic does not Imply failure of 

subsequent stages of the interpretation process. 

All failures are recorded, and an approximation to 

the best match Is used In place of the optimal 

solution. Later stages of the system, however, 

treat the data from failure frames with caution. 

4.3.2. Occlusion. The basic capabilities for 

dealing with occlusion were Included Into the 

tracking portion of the Lights system, even though 

no attempt was made to test the system with 

occluded MLDs. When, during the tracking process, 

a point appears for which there was no match In the 

previous frame or when the distance between an 

old point and Its match Is greater than three 

standard deviations from the mean. It Is assumed 

that a new point has been added to the MLD. 

Points are assumed to have been deleted from the 

MLD when a suitable match can no longer be found. 

No attempt Is made by the tracker to identify a 

point which has disappeared In the past with a 

newly discovered point. This function Is more 

properly    performed    by    later    stages    of    the 
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Interpretation   piocess   based  on  object  topology 

and world knowledge. 

4-3.3.       Experience      with      the      tracking 

algorithm. The     Lights     tracking     algorithm    was 

devised    and   used   to   handle   MLDs   of   common 

objects which have a high degree of predictability 

In   their   motions.     In   practice,   the  algorithm has 

worked   extremely   wt!l.      For   MLDs   derived   from 

analytic functions (e.g. a man walklnq !n a circle or 

straight line) perfect tracking Is the rule.  When the 

stimulus    Is    generated   by    a    chain-coded   path, 

discontinuities of motion can cause tracking errors 

detectable  only  by later program stages.    This Is 

usually caused by the fact that the optimal match 

does not always correspond to the 'correct' match 

for such Images. The algorithm has failed to find the 

optimal match In less than two percent of all fames 

examined. In all cases, tracking errors occur during 

frames  which  also cause  difficulty for the human 
tracking system. 

In  one  example, a roughly triangular path was 

drawn and the chain-code used for the construction 

of   an   MID   of   a   walking   man.      The   best  hand 

rounding of the triangle's corners still left them too 

sharp   for   smooth   human  turning  motions,  but the 

resulting display was considered very acceptable. 

When shown to a number of graduate students over 

the  span  of  a   few weeks,  all  reported seeing  a 

'normal'   man  walking  along  a  triangular path with 

sharp turns.    When the tracking program was run 

using   this   MLD  as  Input,  It  mismatched the right 

knee with the left ankle after the first turn In the 

triangle.       When    these   points   were   viewed   In 

Isolation,   without   the   walking   man   to   give  them 

context,   a   number  of  people  who  had seen the 

previous   display   had   the   same   Impression   of   a 

switchover.     Alerted to this illusion and re-shown 

the original MLD, all students saw the 'ankle turn 

Into the  knee' even though that was Inconsistent 

with their interpretations of the resi of the display. 

This    human   tendency   to   Ignorp   tracking   errors 

unless   they  are   explicitly pointed out suggested 

the   strategy   for  handling  such  difficulties. When 

confronted      with     a     possible     conflict,     the 

Interpretation program simply suspends Judgment on 

the Identity of questionably matched points, waiting 

for a clear Interpretation to present Itself In later 

frames. 

4.3.4. The use of velocity Information. For 

some MLDs, particularly those with a single cbject, 

accurate tracking can be obtained without the use 

of a velocity estimate. This amounts to the 

assumption that no previous knowledge Is 

necessary to map points from one frame to the 

next. It Is normally the case, however, that 

Information Is known about the previous frames of 

an MLD. By using velocity Information, more 

complex MLDs can be accurately tracked, even 

when wire-frame objects are seen to move In front 

of each other. Error rates were calculated for the 

Lights tracking algorithm for three different MLDs of 

Increasing complexity. Three different values of 

the tracking algorithm's 'past history' parameter 

w<.re used. With no past history taken Into account 

(i.e. velocity averaged over zero frames) the 

simplest of the MLDs was nearly perfectly tracked, 

bu': the two more complex MLDs produced a large 

number of errors. As velocity was averaged over 

first one and then two frames more accurate 

correspondences were obtained. 

The use of velocity information for tracking 

brings up the question of choosing Initial conditions. 

Lights assumes that the correspondence between 

points In the first two frames of an MLD can be 

made on the basis of no past history (velocity). If e 

good match cannot be made,each new frame Is 

examined In turn until this condition can be met. 

4.4 Object Separation 

Separation of MLD points Into groups belonging 

to different objects Is the next stage of Lights' 

Interpretation process. The underlying assumption 

Is that Independently moving objects can be 

differentiated on the basis of their projected 

movement and position. When this assumption Is 

violated, as In the case of two dancers arm In arm 

or soldiers marching side by side, the claim Is that 

an MLD provides Insufficient data to separate the 

objects.   Higher level knowledge must be employed. 

This approach to MLD Interpretation departs 

from commonly held opinions in the field of motion 

research.    Ullman 8 has criticized the grouping of 
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elements Into bodies as a prelude to structural 

analysis. He bases his stand on the fact that a 

Gestaltlst grouping of points by 'common fate' Is 

frequently Inadequate for the separation of 

complex MLDs. Potter's criterion 12, for example, 

groups two points whenever their velocity 

difference falls below a defined threshold. Ullman 

cites the example of an MLD depleting two rotating 

cylinders one on top of the other as a 

demonstration of the problems with this technique. 

In such displays each cylinder contains points 

spanning a range of velocities and both may contain 

points moving at exactly the same speed. 

The fact that simple rules for grouping points do 

not work should not be taken as sufficient grounds 

for abandoning the Idea of low-level object 

grouping. Ullman was quick to give up object 

clustering because absolute structure determination 

was possible for his Images. This solution Is not 

available for the less restricted domain represented 

by MLDs of walking men. 

Potter's less than satisfactory algorithm Is, 

nevertheless, based on a reasonable assumption 

about the nature of velocity data from projected 

motion. Points In an Image which correspond to the 

same moving object will exhibit, over time, 

relationships which can be exploited to separate 

them from other points In a scene. The problem with 

Potter's algorithm Is th«t it does not take into 

account the fact that position as well as velocity Is 

a key factor In determining the segmentation of a 

moving scene. Moreover, time is an Important tool in 

motion understanding. It provides redundancy of 

information which can overcome errors and 

Inadequacies In motion data. By utilizing all the 

Information available In an MLD -- position, velocity 

and the redundancy of data in successive frames — 

a way can be found around Oilman's objections In 

the techniques of graph-theoretic cluster analysis. 

4.4.1 Clustering points Into 

objects. Single-linkage cluster analysis has been 

successfully used to handle a wide range of 

problems such as separating two touching Gaussian 

distributions of points and determining gradient 

clustering 13. It has been previously used In motion 

research to match segmented areas in successive 

frames of motion Images 14. This technique, based 

on the computation of the minimal spanning tree 

(MST), Is used by Lights to distinguish 

Independently moving objects. 

Let every point In an MLD frame be represented 

by the four-vector {x,y,V%,vJ), where x and y are Its 

projected position and ux and uy its projected 

velocity (as determined by the tracking algorithm 

described In the previous section). A graph can be 

constructed which has each point as a node, with 

each node connected to all others by an edge of 

cost equal to their Euclidean distance. Information 

from previous frames Is Included by adding to this 

edge cost a function of the cost of the same edge 

In past frames. A minimal spanning tree can then be 

built 15 and the resulting graph can be segmented 

Into clusters based on an appropriate cut function. 

It Is Interesting to see how this algorithm 

functions on the example proposed by Ullman. 

Figure 4-2 shows the result of the algorithm on a 

frame of an MLD of two rotating cylinders viewed In 

orthogonal projection. 

'—' 

^ 

1 

Cylinders.Lights: 
Frame  7 

Figure 4-2: MST for two rotating cylinders 

Thirty points were placed on each cylinder In such a 

way that no boundary could be seen In a static 

view of the first frame. After seven frames the 

MST for these points was calculated based on a 

cumulative distance function. While the projected 

velocity of points moving nearly parallel to the 

viewing plane did differ greatly from that of points 
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moving nearly perpendicular to It, no sharp divisions 

occured within a cylinder because the speed of a 

point was close to that of Its neighbors. On the 

border between the two cylinders, their different 

rotational velocities (four degrees per frame for the 

upper cylinder and two degrees per frame for the 

lower) resulted In a discontinuity which was found 

by the cluster analysis. 

When a perspective rather than an orthogonal 

projection Is used, changes In scale caused by 

varying degrees of perspective distortion can 

detract from the usefulness of data collected in 

previous frames. Lights compensates for these 

changes and for the mismatch In the units 

measuring velocity and position by scaling and 

translating each dimension of the four-dimensional 

feature space to have unit variance and zero mean. 

Single frame distances between features in this 

new space are combined with previous values to 

form a measure of the distance between points 

over a number of frames according to the function: 

CDn (l,J) = d(l,J) + CDf,., (l,i) x .95 

where CDn (l,J) Is the cumulative distance between 

points I and ) In frame n and d(i,J) Is the Euclidean 

distance between points i and ) In frame n. 

The criterion for separating ciustr.rs was 

conservatively chosen. Two clusters were assumed 

to be unrelated when the cost of the MST edge 

separating them was over fifty percent larger than 

the average cost of the edges near Its two 

endpolnts. A cluster was required to have at least 

two points. 

Figure 4-3 shows the MST for two men, one 

walking In a circle, the other in a triangle, after 

thirty frames, figure 4-4 below It shows another 

MST, this one calculated for two walking men 

traversing intersecting paths. In both cases a cut 

between the two groups of points could be made in 

twenty-five frames or less (about one-half step). 

Both examples were complicated by the fact that 

the projected po-iitlons of the two grrups were 

initially close and by the fact that In both cases the 

mfen were made to walk 'In step' rather than show 

completely unrelated movement patterns.    Greater 

Figure 4-3: MST for two men after 30 frames 

Pent hi Pot h2. Lights 
Frame  26 

Figure 4-4; MST for two men after 26 frames 

Independence    of    movement   would    hasten   the 
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clustering process. 

It should be noted that single-linkage clustering 

Is but one of a group of clustering techniques 

Including complete-linkage and average-linkage 

(King's     method)     clustering. Investigation    Is 

proceeding on the usefulness of these different 

clustering techniques and on the choice of cut 

criterion. 

4.6 Intra-Object Relationships 

An object In motion can be thought of as 

defining a moving coordinate system. Object parts 

move relative to that system and In turn define 

their own frames of reference. These two facts 

reflect not only the mechanics of motion but also Its 

normal perception by a human observer. 

Yet, particularly In the case of MLDs, this 

correspondence between object and percept 

seems singularly fortuitous. An infinlle number of 

motions of points in space can produce a single 

MLD, and jnce a three-dimensional interpretation of 

structure Is arrived at, It does not necessarily 

resolve such questions as 'what parts of an object 

are connected?' and 'how are unconnected parts 

related?'. 

An Informal experiment was devised to see how 

a group of graduate students and faculty members 

interpreted ambiguous connectivity Information in 

MLDs. A display was constructed similar to the 

walklnrj man displays discussed earlier but with the 

difference that the man remained rigid throughout 

his motion about a circular path (see Figure 4-5). 

The result corresponded roughly to a scene In which 

a mannequin Is wheeled around in a circle or rotated 

on a lazy susan. Not only was the display 

understood as a rigid group of points moving through 

space. It was recognized immediately as a man In a 

fixed position. Other displays of rigid objects 

showed this same tendency to evoke a single 

perception of connectivity, despite the fact that all 

their points were equally 'connected' In the sense 

that an Imaginary rod could be extended between 

them. 

Certainly In the case of the rigid man moving in 

a   circle,   part  of  the  explanation  must lie  in  the 
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Figure 4-5: MLD of mannaquin; 
representative frames 

sophisticated pattern matching abilities of the 

human mind. This may not, however, be the only 

reason. It may also be the case that the 

mechanisms used to Interpret the structure of an 

object seen in an MLD are seiioülve to certain 

relationships in the stimulus pattern, resulting In a 

tendency toward certain Interpretations. 
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Whether or not this represents a credible 

theory of human vision, It Is the case that the 

relationship calculation done by Lights on the points 

of an MLD (see previous section) can suggest 

connectivity In the underlying objects. Figure 4-6 

shows the MST for three rigid objects - a man, a 

cube and a Jack. There Is a high degree of 

similarity between the 

Figure 4-6: MST for three rigid objects 

connectivity preferred by most observers and the 

connections favored by the relationship function on 

which the MST was based. 

Initially It was hoped that this kind of clustering 

alone would lead to a natural breakdown of the 

object Into subparts according to the following 

algorithm: 

1.Separate   Individually  moving  objects 
using MST clustering. 

2.Recalculate the MST for each object 
so defined. 

3.Use this graph to define subparts. 

Unfortunately, the groupings obtalnea from this 

algorithm did nov always correspond to the correct 

division of the objects. The reason Is that the 

clustering algorithm Is meant to Identify closely 

related points from their two-dimensional projection 

of position and velocity. For It to work properly, the 

relationships between the three-dimensional 

motions of connected points must be preserved. 

Often this will not happen If the object as a whole 

Is spinning or twisting In space. 

The calculation of similarity should most 

properly be done relative to the coordinate system 

defined by the moving object. Two tacts define 

that system: (1) the movement of its origin, and (2) 

Its changing orientation relative to the stationary 

background (the orientation Itself Is not important 

because there Is no one 'correct' orientation for the 

object's coordinate system). 

Lights attempts to compensate for these 

factors. The centrold of the points defining an 

object Is used as an approximation for the origin of 

the object's frame of reference (psychologists 

have also used the centrold, see Borjesson and von 

Hofsten 16). Some compensation for the rotation of 

an object Is achieved through a modification to the 

Euclidean distance function to allow points with 

equal but opposite velocity to be considered 'close' 

together. The resulting MST more accurately 

reflects object composition. As can be seen In 

figures 4-7 and 4-8 the graph forms a singly-linked 
skeleton for the object. 

The division of an object into Its related parts 

is still subject to uncertainty. In the case of the 

walking man In particular, pseudo-relationships 

sometimes result from the similarity of motion of the 

arms and legs on opposite sides of the body. These 

graphs are useful nonetheltss as a starting point 

for the next stages of the Interpretation process - 

the recovery of three-dimensional relationships and 

the matching of the stimulus to a known model. 
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Figure 4-7: MST skeleton for walking man 
superimposed on canonical representation 

Circle. Lights 
Frame  30 

the process of Interpretation. This Information Is 

available Independent of the kind of objects being 

observed and derives from the fact that, over time, 

related three-dimensional motions will exhibit 

relationships In their two-dimensional projection. 

These relationships hold true for both orthogonal 

and perspective projection and In the face of 

systematic distortions, and appear to explain the 

extraordinary robustness of MLD perception by 
human beings. 

Lights has been used successfully on MLDs with 

one and two walking men and on Images with 

geometric objects In motion. In addition, an MLD of 

a man walking a dog was recently constructed and 

was properly Interpreted by Lights. Work is 

currently proceeding on the final phases of MLD 

Interpretation: model-matching and description. 

Figure 4-B: MST skeleton for walking man 
superimposed on actual frame from MLD 

S. Conclusion 

Lights   demonstrates   that   MLDs   possess   an 

Internal structure which can be a significant aid In 



68 

2. 

5. 

6. 

7. 

9. 

References 

Walls G. C, The Vertebrate eye and Its 
adaptive radiation, Hafner. New York, 1963. 

Johansson. Gunnar, "Visual motion 
perception," Scientific American, November 

1976, PP. 76-88. 

Johansson, Gunnar, "Visual perception of 
biological motion and a model for Its 
analysis," Perception and Psychophyslcs, 
Vol. 14, No. 2, 1973, pp. 201-211. 

Kozlowskl, Lynn T. and Cutting, James E., 
-Recognizing the sex of a walker from 
dynamic point-light displays," Perception 
and Psychophyslcs, Vol. 21, 'o. 6, 1977, pp. 

575-580. 

Cutting.   James   E. and   Kozlowskl,  Lynn  T., 
"Recognizing   friends   by   their   walk:   gait 
perception      without      familiarity     cues. 
Bulletin of the Psychonometrlc Society, Vol. 
9, No. 5, 1977, pp. 353-356. 

Rashld, Richard, Lights: A system for the 
Interpretation of moving light displays, PhD 
dissertation. University of Rochester, 1979, 

In preparation. 

Johansson, Gunnar,        "Spatio-temporal 
differentiation and Integration In visual 
motion perception," Psychological Pr.search, 

Vol. 38, 1976, PP. 370-393. 

Ullman, Shimon, "The Interpretation of 
structure from motion," 1978.Unpubllshed 
paper, Massachusetts Institute of 
Technology. Artificial Intelligence 

Laboratory. 

Cutting, James E.. "A program to generate 
synthetic walkers as dynamic point-light 
displays," Behavior Research Methods and 
mstrumentatlon. Vol. 10, No. 1, 1978, pp. 

91-94. 

10. 

11. 

W. B., 
Tech. 

Minnesota, 

12. 

13. 

Barnard,      S. T.      and     Thompson 
"Disparity     analysis    of    Images, 
report 79-1,      University     of 

January 1979. 

Shamos, Michael, "Closest-point problems," 
Proceedings of Sixteenth Annual Symposium 
on Foiidatlons  of Computer Science, ACM, 

14. 

15. 

16. 

1975, pp. 151-162. 

Potter J. L., Extraction and utilization of 
motion in scene description, PhD 
dissertation. University of Wisconsin, 1974. 

Zahn, Charles T., "Graph-theoretical 
methods for detecting and describing 
Gestalt clusters," IEEE Transactions on 
Computers, Vol. C-20. No. 1, January 1971. 

pp. 68-86. 

Dreschler, L. and Nagel, H.-H., "Using 
'affinity' for extracting Images of moving 
objects from TV-frame sequences," 
Bericht 44, Universität Hamburg, Institut fur 

Informatik, February 1978. 

Gower, J.C. and Ross, G.J.S., "Minimum 
spanning trees aand single linkage cluster 
analysis," Applied Statistics, Vol. 18, No. 1, 

1969, pp. 54-64. 

Borjesson, Erik and von Hofsten, Claes, »A 
vector model for perceived object rotation 
and translation In space," Psychological 

Research, Vol. 38, 1975, pp. 209-230. 



GO 

MOTION DETECTION AND ANALYSIS 

John Batali and Shimon Ullman 

M.I.T. Artiftcial Intelligente Laboratory 
545 Technology Square, Cambridge MA 02134, U.S.A. 

ABSTRACT 

Motion information may be obtained from local measure- 
ments near the zero-crossing contours of image sequences 
convolved with a V7G mask. The information thus obtained 
may then be used to determine the boundaries and motions of 
objects in the image sequences. A computer implementation 
of the motion analysis is described. 

INTRODUCTION 

The extraction of motion information is an important 
stage in the early analysis of visual information It can be sub- 
sequently used for a variety of useful tasks, eg. the separation 
of moving objects from their background, and navigation by 
optical information. 

In this paper we describe a technique for extracting mo- 
tion information from a sequence of two (or more) images. We 
then outline a method for using the motion measurements in 
order to determine the boundaries of moving objects. These 
methods are based on the analysis of motion detection in 
[Marr<fe Ullman, 1979] They have been recently implemented 
by John Batali, and tested on a number of both natural and 
computer-generated images. 

THEORETICAL OVERVIEW 

The analysis of motion in an image / is begun by con- 
volving the image with a mask shaped like V2G where V is 
the Laplacian operator and G is a symmetric 2-dimensional 
gaussian distribution: 

G^.V)^ ST7ex> 
1 

2TO
J 

V-fv') 

with a the "space constant" of the gaussian. 

Next, the zero-crossing contours (roughly speaking, the 
contours of zero value) in the filtered image are located. These 
zero-crossing contours serve as the basis for the computation 
of stereoscopic matching i: J recent theory proposed by Marr 
and Poggio [1979], and for the computation of the primal 

sketch [Marr, 1976; Marr A Hildrcth, 1979], Zero-crossings 
correspond to loci of sharp intensity changes; they are useful 
in describing the changes that occur in an image at a par- 
ticular scale. In addition, the representation of the filtered 
image by its zero-crossings is probably complete [Marr, Poggio 
& Ullman, 1979] and one can thus expect them to play an 
important role in early visual processing. 

There are a number of reasons for basing the extraction 
of motion as well on the zero-crossing analysis. First, if zero- 
crossing contours form the basis of shape analysis, it is useful 
to determine their motion, thereby combining the analysis of 
shapes with the analysis of their motion. Second, the zero- 
crossings define contours along which the intensity gradient 
(perpendicular to the contours) is substantial, making it pos- 
sible to obtain reliable velocity measurements.  Third, the 
zero-crossings seem to be the earliest possible primitives for 
which reliable velocity can be obtained [Marr & Ullman, 1979]. 

However the use of zero-crossing contours raises a sub- 
stantial difficulty if their velocity is to be measured by a local 
operator. This difficulty, which we shall term the aperture 
problem, is illustrated in figure 1    If the motion is to be 
detected by a unit that is small compared with the overall 
contour, the only information one can extract is the com- 
ponent of the motion locally perpendicular to the contour. 
Motion parallel to the contour would not be detected Hence 
local measurements alone fail to give either the direction of 
the speed of movement, and can only restrict the direction 
to within ±90°. The use of zero-crossings (or other extended 
elements, such as edges and lines) decomposes the problem 
into two stages: the local measurements at the zero-crossing, 
and the subsequent combination of these measurements. We 
shall briefly review each in turn. 

MEASUREMENTS AT THE ZERO-CROSSINGS 

Suppose we have available from a time-varying image: 
/(i.y.t), its convolution with a V2(7 mask: S(z,y,t) = 
VG » l{x,y,t), and the time derivative of the convolution: 
T(x, y, I) = |S(i, y, t) = I V2G . /. From figure 2 it can 
be seen that if the zero-crossing is moving to the right, the 
value of the convolution at position Z will be increasing; and 
if the zero-crossing is moving to the left, the value will be 
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Figure 1.     The  Aperture Problem. 
If the motion of an oriented element i« detected by a unit 

that is »mall comparfl to the size of the moving element, the only 
information that caii be extracted i« the component of the motion 
perpendicular to the element. Looking at the moving edge £ through 
a »mall aperture A, it U imposaible to determine whether the actual 
motion is, e.g., in the direction of 6 or that of c. 

decreasing. Hence, by examining the time derivative of the 
convolution at position Z, the magnitude of the motion rela- 
tive to the orientation may be determined unambiguously. 
Figures 2b and 2c illustrate this. 

In the case of motion to the right, when the zero-crossing 
reaches Z, T is strongly positive over a region centred on 
Z and 2aT wide, where aT is the space constant of the the 
gaussian used to obtain T. If motion is to the left, the sign 
of T is reversed. 

In general, we have: 

r = -tvf • vs 

where r is a unit vector and w, is the component of motion in 
the f direction. If we take f. to be the direction perpendicular 
to the icro-crossing contour, then v,, may be determined by 
measuring f,   VS and T. 

In particular, the sign of the component of motion per- 
pendicular to the zero-crossing segment is obtainable from 
the direction of f, VS and the sign of T. This is equivalent 
to an assertiv-T about the direction of motion of the zero- 
croBsing. 

COMBINING THE MEASUREMENTS 

Although the above measurements produce assertions 
that are only correct to within ±90°, by so doing they con- 
strain the direction of motion to that range of values (figure 
3o, 6). The actual direction of motion may then be determined 
by combining the local constraints (figure 3c, d). 

The general idea is to associate with each point on a 
zero-crossing contour an assertion about the possible motion 
at that point. A local operator then examines the assertions 
made in the vicinity of a point, and changes the assertion 
associated with the point to reflect the information obtained 
from the local region. The operators are considered to be 
working in parallel at each zero-crossing point in the image. 
As the assertions at various points in the image are modified, 
nearby operators will then use this modified information to 
further constrain the assertions. In this way, constraints 
"spread" throughout the image and the correct direction of 
the motions of whole objects may be determined. 

Now, if desired, the actual angular velocity, v of an ob- 
ject may be calculated Irom 5 f, = tv,. And discontinuities 
in either the directions or the velocities in the image indicate 
possible object boundaries. 

COMPUTER IMPLEMENTATION 

Figure 4 shows the results of various stages of a computer 
implementation of the procedure Figures do and 4b show 
the input images—two random-dot patterns. The squares are 
512 by 512 pixels with a 50% density of 4 by 4 pixel dots. 
Figure 4b was constructed from figure 4a by moving a central 
square to the right and the background to the left. 

When the two images are displayed to human subjects, 
with an interstimulus interval of about 10 msec, the central 
square is easily seen moving separately from the background. 

The images are then convolved with a difference of gaus- 
sian mask whose central ex .tatory width is 6 pixels. An 
approximation to ^ V3G» / is obtained by subtracting figure 
4a from figure 4b and convolving the result with a mask of 
ui = 6 pixels. This order of operation is justified because, due 
to the linearity of the derivative and convolution operations, 
we have; 

-V'GW = V'G.-/. 
dt dl 

Figure 4c shows the result of the convolution of figure 4a, 
and figure 4d is the convolution of the difference image. 

Zero-crossings are taken as the points in figure 4c whose 
values are nonnegative and where the sign changes from one 
side of the point to the other. These are shown in figure 4«. 

The direction of f, ■ VS is determined by fitting a line 
to a short segment of zero-crossings and recording the side of 
the segments where the values are positive. The local-motion 
direction is then found by examining the sign of the convolved 
difference image, T, at the corresponding point and applying 
the rule: 
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S'       ^^--'S 

Figure 2.     The Value, of S = V2G . /, and of T = | VJG • / in 
the Vicinity of an holaled Inten«ity Edge. 

Figure 2a ihows the S iignal at a function of distance. The 
iero-cro«§ing in the aignal corre§pond» to the position of the edge. 
Figure 26 showa the apatial diatribution of the T aignal when the 

edge ia moving to the right, and (2c) when it ia moving to the left. 
Motion of the zeo-croaaing to the right can be delected when the S 
and T aignala are aa ahown in figure 26. Motion of the iero-croaaing 
to the left ia indicated in figure 2c 

•mm' 
-—-——3 1 
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Figure 3.     The Combination of Local Con.trainU. 
The con.traint. placed by a .ingle local-motion ^"r i. that 

the direction of motion mu.t lie within a range of 180 on the aN 
lowed .ide of the oriented element, (figure 3«). Equ.valently .1 • 
forbidden to lie on the other .ide, 36. Figure 3c .how. the forb.dden 

rone, for two oriented el-ment, moving along the direction ndteaUd 
by the arrow. The forbidden zone of their common "f«» '• th. 
union of their individual forbidden «one., a. indicated in 3d. The 
direction of motion i. now contained to lie within the inlemclion 
of their allowed lone«, i.e. the fir.t quadrant. 

(1) If the value of T \B ponitive, 
the motion is toward the negative eide 
of the xero-croBsing contour. 

(2) If the value of T is negative, 
the motion is toward the positive side. 

(3) If the value of T is zero, 
the motion is ambiguous 

Figure 4/ shows the points thus assigned a direction of 
motion from 315° to 45° (0° to the right) Figure 4g shows 
the points assigned a directions from 135° to 225°. 

The combination of local constraints proceeds by mod- 
ification of the motion assertions associated with each lero- 
crossing point If motion was found at a wreKrosriBg point, 
we initially associate the set of allowed dirrctmns of motion 

with the point Otherwise, we initially associate a no-motion 
assertion, as well as the direction of the positive side, with 

the zero-crossing. 
A local operator, INT, then collects the assertions made 

in the vicinity of each zero-crossing point in the image and 
modifies the assertion at that point to reflect the informa- 
tion obtained in the local region   If the intersection of the 
sets of allowed directions associated with points in a small 
region is nonempty, INT modifies the assertion made at the 
central point of the region to allow only the directions in 
the intersection.  If the cntirf image were of a single, rigid 
object in pure translation, and the local-motion detectors 
were perfect, e^ch operation of INT on a local regwn would 
further constrain the allowed direction of motion around the 
correct direction. Continued iterations would eventually be 
equivalent to a "global" intersection converging on a single 
allowed direction-the actual direction the. object moved. 
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If the interBection of the allowed directions in a loral 
region around a point is empty, it means one of two things: 
Either one of the measurements in the region was in error, 
or the region contains an occluding edge between two ob- 
jects moving in different directions. We call such points "nil- 
consistent". 

Nil-consistent points are important for two reasons; First, 
if they occur at an occluding contour, they represent the 
desired output of the separation process. A nil-consistent 
contour is a very strong indicator or an object boundary. 
Secondly, we don't want to attempt to find Che intersection 
of consistent directions over a region that gave rise to a nil- 
consistent point. If produced by an error, it is possible that 
the region contains other errors and it would be good to min- 
imize their effect. If the nil-consistent point was produced 
by an edge, we wish to intersect only within the object's 
boundaries—not ar oss them. 

So when the local region being examined by an INT 
operator contains a nil-consistent point, the operator makes 
no changes in the refion. For moving objects, we thus in- 
tersect o within the object boundaries and a-void error 
points. 1 e object contains zero-crossing points at many 
orientationb, the allowed direction of motion will be tightly 
constrained after a few INT iterations. 

If no motion was found at a zero-crossing point (i.e. the 
value of 7" was zero), we could have one of two situations: 
Either there was actually no motion at the point; or the mo- 
tion at the 'o\ni was parallel with the zero-crossing contour. 
To account for these situations, the INT operator treats all 
no-motion assertions as consistent if no other type of asser- 
tion is found in the region. If all nc-motion assertions in the 
region are associated with zero-crossing segments with the 
same, orientation, and the intersection of the set of allowed 
directions associated with zero-crossings where motion was 
found inclui'' I one of the directions parallel with the non- 
moving contours, that direction will be the assertion INT at- 
taches to the central point of the region. In all ether cases, 
non-motion and motion assertions are taken to be intensis- 
tent, and nil-consistent assertions arc associated with points 
in regions that contain both. The addition of these considera- 

tions allows the separation of a moving object from a non- 
moving background as well as the inclusion of the very strong 
constraints suggested by movement parallel with one of the 
object's contours. If we allow "tracking" of one of two objects 
moving in the same direction but at different speeds, then 
that object can be seen ?8 the "ground" for the the other 
object and thus the two ran be separated. 

The INT operator collected the aascrtions made in a 12 
by 12 pixel square region around each point and modified 
the assertion at the point in the appropriate way. The nil- 
consistent points found after one iteration are shown in fig 

All of the computations in both the motion-detection 
and combination of constraint programs are local in the sense 
that they only use values in a few nearby points. In biological 
systems this sort of spatially limited locality is important 
because it allows the processing to be done very quickly, 
in parallel over the entire image. Information need not be 
transmitted very far, so no long intcrconncrtio'is are needed. 

Both of these considerations apply also to the implemen- 
tation of the computations in VLSI hardware. Current design 
work taking advantage of this locality is being done on a VLSI 

implementation of an oriented zero-crossing detector. 
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B 

Figure A      Thf Motion of Handom Dot«. 

Fip.nre «la »how» a 51'/ X 512 pixel rnndimdot pattern with 
a 50% densil.y of 4X4 pixel dot». In 46 tlie centre of 4a is »hifted 
one pixel to thf .ight, 1'ie bacPground i» »hifted one pixel to the 
left. Figure show» the convolution of the first imnge with a 
difference of i.ni»»ian nmik whose «) = 6 pixels. The convolulioi: 
of the imagr ueated hy »ublracting 4o from 46 i» shown in id. The 
zero crossings of the first image are shown in figure 4e. 4/ »ho«! 
the poim.» where the local motion algorithm found motion to the 
right, and ig »how» zero-crossings that moved to the left. Figure 
ih shows the nil consistent points found after one iteration of the 
INT operator. 
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RECONSTRUCTING SMOOTH SURFACES FROM PARTIAL, NOISY INFORMATION 

11. G. Barrow and J. M. Tenenbaum 
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ABSTRACT 

Interpolating ümooth surfaces from boundary 
conditions  is  a  ubiquitous  problem  in early  visual 
processing.     We describe a solution for an 
important special   case:     the  interpolation  of 
surfaces that  are  locally spherical or cylindrical 
from  initial   orientation values and  constraints  on 
orientation.     The  approach exploits  an  observation 
that components of  the unit normal vary   linearly on 
surfaces  of uniform curvature,  which permits 
implementation  using  local  parallel  processes. 
Experiments  on spherical and cylindrical  test  cases 
have  produced  essentially  exact  reconstructions, 
even when boundary values were  extremely  sparse  or 
only partially constrained.    Results on other  test 
cases  seem in reasonable agreement with human 
perception. 

INTRODUCTION 

sources  must  therefore  address  the   following  basic 
computational problems: 

(1) interpolation of sparse data 

(2) smoothing of  noisy  data 

(3) deciding which   techniques  are  applicable 
in which parts  of the  scene 

(/I)     integration  of different  types  of  data 
from different,  sources 

(5)    deciding the  location and  physical  type 
of boundaries 

In  this  paper we  look  mainly  at  the   first 
problem,  which arises  in  virtually all  theories of 
low-level  vision  [l,   ?].     We  principally  address 
the problem of reconstructing a smooth surface, 
given a set of initial  orientation values,  which 
may be sparse or only  partially  constrained. 

SurlHce perception plays a fu-.idamental  role  in 
early  visual   processing,   both  in  humans  and 
machines   [l,   2].     An  explicit  representation  of 
surface structure  is directly necessary  for many 
low-level visual  functions involved  in applications 
such  as  terrain modeling,  navigation,   and  obstacle 
avoidance.     It  is also a prerequisite  for general- 
purpose,  high-performance vision systems. 

Information  about  surfaces  comes   from  various 
sources:     stereopsis,   motion parallax,   texture 
gradient,   shading,   and  contour shape,   to  name   a 
few.     Information may be provided  in  terms of 
absolute  or  relative  values  of orientation or 
range,  depending upon the nature of the source. 
Moreover,   different  techniques  for  extracting  this 
information are valid  in different  parts of  the 
scene.     For example,   inferring shape  from shading 
is difficult on a highly textured surface,   or in 
areas of complex  illumination,  while stereo 
information  is  not  available  in  textureless  areas 
nor areas  visible  only  from one viewpoint.     Thus, 
in general,   evidence  la  incomplete,   may  be  quite 
sparse  (as in line drawings),   and subject  to noise, 
which  leads  to ambiguity. 

Any attempt  to derive globally consistent 
surface  descriptions   from  these diverse  local 

COMPUTATIONAL PRINCIPLES 

We  begin with a  precise  definition of  the 
reconstruction problem  in   terms  of  input  and 
output. 

The  input  is  assumed   to  be  in  the   form of 
sparse arrays,  containing  local  estimates  of 
surface range and orientation,   in a  viewer-centered 
coordinate  frame.     In   practice,   the  estimates may 
be clustered  where  the  information is obtainable, 
such as along curves corresponding to surface 
boundaries.     In general,   they  are  subject   to  error 
and  may be only partially constrained.     For 
example,  given a  three-dimensional boundary,   the 
surface normals are only  constrained   to be 
orthogonal  to the boundary  elements.    We also 
assume that the location and nature of all   surface 
boundaries are known,   since  they  give  rise  to 
discontinuities of range or orientation.     This last 
condition is required   in the  current  implementation 
and  is intended  to be  relaxed  at a  later date  to 
accommodate imperfect  boundary detection. 

The desired  output   is  simply   filled  arrays  of 
range and surface orientation  representing the most 
likely surfaces consistent with the input  data. 
Refinement of hypothesized surface discontinuities 
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i3also desired,   .^se  output  arrays  .re  analogs 
to our intrinsic  images  UJ  or narr s 

[2]. 
For any  given  set  of  input  data    an  infinitude 

^^S ZT^IC   of t^l I: HI*  -pends 
s^Sti^L about the nature of surfaces .n 

the world and the image formation process. Ad hoc 
Nothing and interpolation schemes whxch a  not 

rooted in these assumptions lead t0 ^c°"ect few 

results in  simple cases.  For "f.-J ^ '^l 

points on the -^-^^^rvirn^reco:" a 
averaging ['> ^J 0l rarlge 

spherical surface. 

Assumptions about Surfaces 

The Drincipal assumption we make about 
physica surges is that range and -ientation are 
continuous over them.  We further aasume that each 
point on the surface is essentially 
indistinguishable from neighboring points. Thus, 
n he absence of evidence to the contrary, it 
follows that local surface ^aractene ics mus 
Vary as smoothly as possible anu that the total 

variation is minimal over the -^e- ^ /f 
orientation are both defined witn ^*re"ce ^ a 

viewer-centered coordinate syster, and so they 
c nno directly be the criteria f°r *valu*Ung the 
intrinsic smoothness of hypothetical surfac s-  The 
simplest appropriate measures involve the rate o 
hange of orientation over the surface; principal 
curvatures (k1, k2), Gaussian total) curvature 
kW), mean curvature (k1+k2), and vana ions 

up n t^m all reflect this rate of change [5]. Jwo 
reasonable definitions of smoothness of a surface 
are uniformity of some appropriate measure of 

and the integrated Gr.ussian curvature, G, as shown 

by: 

curvature 
curvature 

/ 
kl   + k2)   -da =  Tkl^-da + /*k2   .da +  2^1 *k2. 

= /kAda *Jk2   -da  +  2^0.da 

da 
(1) 

we also note  that making curvature^niform^y 

ZlZTTs ZiZeTl miniLZing  total scared 
x ,*• +ho   inteeral  of curvature  is 

ZZIT   ihiffoil^ffrom the well-known fact 
that for any function,  fU), 

6],   or minimality  of  integrated squared 
7].    Uniformity can be defined as 

animal  variance  or minimal   integrated  magnitude of 
gradient. 

The  choice  of  a  measure  and  how  to  employ  it 
lP e       minimize  the measure  or  its  derivative) 
^s!  in general,  upon   the nature of the process 

+ ^  +V10  onrface.     For example, fhat  xrnve  rise  to  tne  suiicioct 
surfaferformed by elastic membranes  (e.g.,  soap 

films)  -^.--^r^tri^rminl^area and 
Terfm^f ^af/rr S surffs  formed by bending 
sheets  of  inelastic  material   (e.g.,   paper or sheet 
metal)  are characterized  by  zero Gaussian curvature 
fQ       surfaces  formed  by  many machining operations 
(e.g.,  planes,  cylinders,   and spheres) have 
constant principal  curvatures. 

We  are  not  prepared,   at  this  point,   to 
maintaL that any 0? these measures is inheren ly 
suoerior.   particularly because of various close 
reCtio^hips that exist between them.    We note, 
for Example!  that minimizing the integrated  square 

f merc'-ature  is  ^^^  ^ mif ^ fs sum of  integrated   squares  of principal  curvatures 

Variance of f fbar)   .dx 

=/f   .dx     -     [^f-dx 

(2) 

]     /  M 

On  any  developable  surface  for which  Gaussian 
curvaturc/G.   is everywhere  zero,  and on a  su    ace 
for which orientation is known everywhere at  its 
boundazy  (e.g.,  the boundary is extremal   .   the 
Hntearal  of  G  :s  constant.     Thus,   for  such 
surfaces,   minimizing variance of G and minimizing 
its integrated  square are equivalent. 

By  itself,  however,   uniformity  of Gaussian 
curvature is  not sufficiently constraining.     Any 

= :u=r irr:::s^r^%r=if 
developable surface. 

test oases and  intuitively reasonable 
reconstructions  for other smooth surfaces.     In 
Tar" ular,  given surface orientations defnd 
around  a  circular outline,   corresponding  to  the 
extremal boundary of a sphere,   or along two 
«arallel  line»,   corresponding to  the  extremal 
boundary of a kght circular cylinder    we  require 

fail  this  test,  producing surfces  that are  too 
nat or too  pe^ed.    Given good  perfomance on  the 
test cases,  we can expect reasonable performance  in 
general. 

I 
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A  RECONSTRUCTION  ALGORITHM 

Although  in  principle correct reconstruction 
fo»- Tur test cases can be  obtaineu  in many ways, 
the  complexity of  the  interpolation process  depends 
critically upon  the   representation.     For example, 
representing surface  orientation  in  terms   of 
gradient space  leads  to difficulties because 
gradient varies very nonlinearly across the  image 
of a  smooth  surface,   becoming infinite at  extremal 
boundaries.     We  shall  now propose an approach   that 
leads  to elegantly simple  interpolation for our 
test  cases. 

Coordinate  Frames 

3iv...i an image  plane,  we shall assume a  right- 
minded  Cartesian coordinate  system with x- and y- 
axes  lying  in  the  plane  (see  Figure  2).     We  also 
assume orthogonal projection in the direction of 
the  z-axis.     Each  image point  (x,y) has an 
associated  range,   Z(x,y);   the corresponding scene 
point  is  thus specified  by 

f   x,   y,   Z(x,y)   ) 

Each image point also has an associated unit vector 
that specifies the local surface orientation at the 
corresponding scene point: 

N(x,y)  -  ( Nx(x,y), Ny(x,y), Nz(x,y) ) 

Since N is normal to the surface Z, 

Nx/Nz -  - dZ/dx 

and    Ny/Nz  =  - dZ/dy 

(The derivatives dZ/dx and dZ/dy correspond to p 
and q when the surface normal is represented in 
gradient space form, (p,q,-l).) 

Differentiating equation (3), WL obtain 

(3) 

d(Nx/Nz)/dy     =     -  d  Z/dy.dx 
(4) 

and d(Ny/Nz)/d> -  d  Z/dx.dy 

For a  smooth  surface,   the   terms  on  the  right  of  (4) 
are  equal,   hence 

d(Nx/Nz)/dy     =     d(Ny/Nz)/dx       . (5) 

Finally,   since  N  is  a   unit  vector, 

2 2 2 
Nx     +  Ny     +  Nz       =1       . (g) 

Semicircle 

Let us begin by considering a two-dimensional 
version of surface reconstruction.     In Figure  3 
observe  that  the unit normal  to a semicircular 
surface cross section is  everywhere aligned  with 
the  radius.     It  therefore  follows  that  triangles 
OPQ and PST are similar,  and  so 

OP   :   00 PS PT   :   TS (7) 

But vector OP is the radius vector (x,z) and PS is 
the unit normal vector (Nx.Nz).  Moreover, the 
length OP is constant (equal to R) and the length 
PS is also constant (equal to unity).  Hence, 

Nx K/R and Nz =  z/R (8) 

Sphere 

Now consider a three-dimensional spherical 
surface, as shown in Figure 4-  Again the radius 
and normal vectors are aligned, and so from similar 
figures we have 

Nx  - x/R Ny y/R and Nz = z/R . (9) 

The point to note is that Nx and Ny are both 
linear functions of x and y, and that Nz can 
readily be derived from Nx and Ny because vector N 
has unit length. 

Cylinder 

The case of the right  circular cylinder is 
only  E   little more  complex.     In  Figure  5  observe  a 
cylinder  of  radius  R  centered   upon a  line  in  the  x- 
y  plane,   inclined  at an angle   A  to  the  x  axis.     Let 
d   be   the  distance of point   (x,y,0)   from  the axis  of 
the  cylinder.     Then 

d     =    y.Cos  A  -  x.Sin A (10) 

(11) 
and 

2 2 2 
z       =    R       -     d 

Let  Nd   be  the component  of  vector  N parallel 
to  tin  x-y   plane;   it  is  clearly  perpendicular  to 
the axis  of  the  cylinder.     Now,   since a  cross 
section  of  the  cylinder  is  analogous  to  our  first, 
two-dimensional,   case. 

Nd d/R 

Taking components of Nd parallel to the x and 

Nx   -  Nd.Sin  A and Ny •  -Nd.Cos A 

(12) 

(13) 

Substituting  in  this equation  for Nd,   and   then  for 
d , 
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and 

Nx  - 

Ny ■ 

(y.Cos A - x.Sin A).Sin A/R 

-(y.Cos A - x.Sin A).Cos A/R 

have the system relax to fill in consistent 
(U)   intervening values.  At present we know how to 

handle the restricted case where only orientation 

is initially specified. 

Ohserve that as for the sphere, Nx and Ny are 

linear functions of x and y, and that U  can be 

derived from Nx and Ny. 

INTERPOLATING SPHERICAL AND CYLINDRICAL SURFACES 

From the preceding section, we can see that to 

interpolate values for the normal vector, on 
spherical and cylindrical surfaces, between points 
where its value is known, we aeed only determine 
the linear functions that describe the components 

Nx and Ny.  This can be done simply from known 
values at any three noncollinear points.  The 

resulting functions can be used to Predict 
nrecisely values of Nx and Ny, and hence Nz also, 
over the entire surface. The vector field produced 

is guaranteed to satisfy the integrability 
constraint of Equation 5, as may be verified by 
substituting for Nx, Ny, and Nz from Equations 9 or 
14 (for the sphere or cylinder, respectively) and 
6.  Finally, the orientation field can be 

integrated' to recover range values. 

For the special test cases, because of the 

global nature of the linearity of Nx and Ny, it is 
possible to interpolate between given boundary 

values, treating Nx and Ny as essentially 
independent variables.  While in general the 
integrability constraint should not be ignored, m 

practice, since complex surfaces can often be 
approximated locally by spheres or cylinders, this 
constraint is weak and its omission does not result 

in significant errors. 

THE INTERPOLATION PROCESS 

At each point in the orientation array we can 
imagine a process that is attempting to make the 
two observable components of the normal, Nx and Ny, 

each vary as linearly as possible. The P^cess 
looks at the values of Nx (or Ny) in a small patch 
surrounding the point and attempts to infer the 
linear function, f = ax + by + c, that best models 
Nx locally.  It then tries to relax the value for 
the point to reduce the supposed error. 

There are numerous ways to implement such a 

process, and we shall describe some of the ones 
with which we have experimented. One of the 
simplest is to perform a local least-squares fit, 

deriving the three parameters a, b, and c.  ihe 
function f is then used to estimate a corrected 
value for the central point.  The leaLt-squares 
fitting process is equivalent to taking weighted 

averages of the values in the patch, " 

different sets of weights: 

using three 

s Nx I Nx Nx (15) 

The three parameters of f are given by three linear 

combinations of these three averages. 

If we are careful to use a symmetric patch 

with its origin at the point in question, the sets 
of weights and the linear combinations are 
particularly simple—the three sums in equation 

(15) correspond, respectively, to 

A COMPUTATIONAL MODEL 

We have implemented a model that uses parallel 

local operations to derive the orientation and 
range over a surface from boundary values.  It 
exploits the linearity and separability results for 
the test cases and extends them to arbitrary smooth 

surfaces. 

The overall system organization is a subset of 

the array stack architecture first proposed in MJ- 
It consists conceptually of two primary arrays, one 
for range and the other for surface normal vectors, 
which are in registration with each other (and with 

the input image).  Values at each point within an 
array are constrained by local processes that 
maintain smoothness and by processes that operate 

between arrays to maintain the 
differential/integral relationship.  In gent-ral, we 
must be able to insert initial boundary values 
sparsely in both range and orientation arrays and 

'I »s (16) 

Equations (15) and (16) can be readily solved for 
a b and c; but note that under the above 
assumptions, f(0,0)=c so computation of a and b is 
unnecessary for updating the central point, unless 

derivatives are also of interest. 

An alternative approach follows from the fact 

that a linear functic, satisfies the equation 

- 0 (17) 

Numerical solution of this equation,  subject 
to boundary conditions,   is well known.    The V^ 
operator may be discretely approximated  by the 
operator 

-1 
-14-1 

-1 
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Applying  this  operator at  a   point   in  the  image 
leads  to an  equation  of  the  form 

4Hx Nx Nx Nx -     0 
0 12 3 4 

and  hence, rewriting, 

Nx  - (Nx  + Nx  + Nx  + Nx )/4 
0      12    3    4 

(18) 

(19) 

Equation (19) is used in a relaxation process 
that iteratively replaces the value of NXQ at each 
point by the average of its neighbors.  Although 
the underlying theory is different from least- 
squares fitting, the two methods lead to 
essentially the same discrete numerical 
implementation. 

The iterative local averaging approach works 
well in the interior regions of a surface, but 
difficulties arise near surface boundaries where 
orientation is permitted to be discontinuous. Care 
must be taken to ensure that the patch under 
consideration does not fall across the boundary, 
otherwise estimation of the parameters will be in 
error. On the other hand, it is necessary to be 

able to estimate values right up to the boundary, 
which may, for example, result from another surface 
occluding the one which we are attempting to 
reconstruct. 

The least-squareT method is applicable to any 
shape of patch, which we can simply truncate at the 
boundary.  However, the linear combination used to 
compute each parameter dtpends upon the particular 
shape, so we must either precorapute the 
coefficients for al'- possible patches (256 for a 
3x3 area) or resc t to inverting a 3x3 matrix to 
derive them for each particular patch.  Neither of 
these is attractive. 

The above disadvantages can be overcome by 
decomposing the two-dimensional fitting process 
into several one-dimensional fits.  We do this by 
considering a set of line segments passing through 
the central point, as shown in Figure 5.  Along 
each line we fit a function, f = ax + c, to the 

data values, and thus determine a corrected value 
for the point.  The independent estimates produced 
from the set of line segments can then be averaged. 
If the line segments are each symmetric about the 
central point, then the corrected central value is 
again simply the average of the values along the 
line. The principal advantage of the decomposition 
is that we can discard line segments which overlap 
a boundary, and often at least one is left to 
provide a corrected value.  We would prefer to use 
short symmetric line segments, since they form a 
compact operator, but in order to get into corners 
we need also to resort to one-sided segments (which 
effectively extrapolate the central value). We 
have implemented a scheme that uses the compact 
symmetric operator when it can, and an asymmetric 
operator when this is not possible (see Figure 7). 

We have experimented with a rather different 
technique for coping with boundary discontinuities, 
which is of interest because it involves multiple 
interrelated arrays of information.  For each 
component of the orientation vector we introduce 
two auxiliary arrays containing estimates of its 
gradient in the x and y directions.  For surfaces 

of uniform curvature, such as the sphere and 
cylinder, these gradients will be constant over the 
surface; and for others, we assume they will be 
slowly varying.  To reconstruct the co'iponents of 
the normal, we first compute its derivatives, then 
locally average the derivatives, and finally 

reintegrate them to obtain updated orientation 
estimates. 

Derivatives at a point are estimated by 
considering line segments through the point 
parallel to the axes.  We again fit a linear 

function--but now we record its slope, rather than 
its intercept, and insert it in the appropriate 
gradient array.  In the interior of a region we may 
use a symmetric line segment, and near boundaries, 
a one-sided segment, as before.  The gradient 
arrays are smoothed by an operator that forms a 
weighted average over a patch, which may easily be 
truncated at a boundary.  (To form the average over 
an arbitrarily-shaped patch, it is only necessary 

to compute the sum of weighted values of points 
within the patch and the sum of the weights, and 
then divide the former by the latter.)  A corrected 
orientation value can be computed from a 
neighboring value by adding (or subtracting) the 
appropriate gradient.  Each neighboring point not 
separated by a boundary produces such an estimate, 
and all the estimates are averaged. 

ESTIMATION OF SURFACE RANGE 

The process of integrating orientation values 

to obtain estimates of range Z is very similar to 
that used in reintegrating orientation gradients. 
We again use a relaxation technique, and 

iteratively compute estimates for Z from 
neighboring values and the local surface 
orientation.  Here we need orientation expressed as 

dZ/dx and dZ/dy, whim are obtained from Nx and Ny 
by Equation 3-  H least one absolute value of Z 
must be provided to strve as a constant of 
integration.  Providing more than one initial Z 
value constrains the surface to pass through the 

specified points; but since the inverse path from Z 
to N has not yet been implemented, the resulting 
range surface is not guaranteed to be consistent 
with the orientations. 

' 

..-  -. ..-..-■.--^ 
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EXPERIMENTAL  RESULTS 

An interactive system was  implemented  in 
MAINSAIL  [lO]   to  experiment with  and  evaluate  the 
various interpolation algorithms  discussed above. 
This system  includes  faca.lities  for generating 
quadric surface test cases,   selecting interpolation 
options,  and  plotting error distributions. 

Test  Cases 

How well  do  each  of  the  above  interpolation 
techniques  reconstruct  the  test  surfaces?    To 
answer this,  we  performed a series of experiments 
in which  the  correct  values  of  Nx  and  Ny  were  fixed 
along the extremal  boundaries  of  a  sphere  or 
cylinder,  as shown in Figure 8.     The surface 
orientations  reconstructed  from  these  boundary 
conditions  were  compared  with  those  of  ideal 
spherical  or  cylindrical  surfaces  generated 
analytically. 

The first set of experiment 
of radius 7 centered in a 17 x 1 
array. We deliberately used a c 
the accuracy of the reconstructi 
conditions. (A coarse grid also 
experimental advantage of minimi 
iterations needed for convergenc 
for Nx and Ny were fixed at poin 
falling just inside the circular 
of the sphere. Table I summariz 
this test case, using various in 
operators. 

s  involved a sphere 
7 interpolation 
oarse grid  to test 
on under difficult 
has   the 

King the number of 
.)     Correct  values 

ts   in  the  array 
extremal boundary 

es the results for 
terpolation 

The results on the spherical  test case are 
almost  uniformly good.     In  all  cases,   except 
gradient  smoothing,   the  maximum absolute error  is 
below one percent after 100 iterations 
(-1.C  <  Nx,   Ny  <   1.0).     On  any  cross  section 
through the sphere,   the maximum error occurs 
approximately a quarter of the way  in from both 
boundary  points,   the  error  being  zjro  at   the 
boundary points and also on  the symmetry axis half 
way  between  them.     We  conclude  that  8-connected, 
uniformly weighted averaging and 8-way linear 
interpolation/extrapolation  are  superior  in  terms 
of speed of convergence,  with  the  li   .ar operator 
preferred  because  of its  advantages  at  boundaries 
and  corners.     These  conclusions  generalize   to all 
of the test oases we have studied  to date.    Thus, 
for brevity,   the  experimental   results  that  follow 
are reported only for the 8-way  linear operator. 

The second  set  of experiments   involved  a 
cylinder of radius 6,   centered  in an 8 x 8 
interpolation  array.     Again,   correct values  for Nx 
and Ny were  fixed at points  in  the array falling 
just  inside  the parallel lines  representing the 
extremal   boundaries  of  the  cylinder.     With  the 
cylinder oriented  parallel to  the  X or Y axis,   the 
maximum absolute error in Nx  or Ny after 50 
iterations  was   .018 and  the  RMS  average  error  .01   . 
After 100 iterations,   the absolute error dropped to 
.0004 and  the RMS average to  .0002.     When the major 

axis of the cylinder was inclined 60 degrees to  the 
X-axis,   the errors  look much higher:     .12 absolute 
and  .03 RMS after 50 iterations;   .108 absolute and 
.03 RMS after  100 iterations;   .09 absolute and   .02 
RMS after 300 iterations.     However,   the  errorful 
orientations  were  concentrated  solely  in  the  upper 
right and lower left corners of the array,  where 
the cylinder boundary is effectively  occluded  by 
the array edge.     Extrapolation of values from the 
central  region,   where  the orientations are very 
accurate,   into  these partially occluded  corners 
accounts  for the slow rate of convergence.    After 
1,000 iterations,   however,   orientations  are  highly 
accurate  throughout  the  array. 

Other Smooth  Surfaces 

Given  that  orientations  for uniformly curved 
surfaces can be accurately reconstructed,  the 
obvious next  question  is  how well  the  algorithms 
perform on other surfaces  for which curvature is 
not  globally  uniform.     A  simple case   to  consider is 
that  of ^Ti elliptical  boundary.     However,   we 
immediately  run   into  the  problem of what  is  to  be 
taken as  the   "correct"   reconstruction.     When  people 
are asked what solid  surface  they perceive,   they 
usually report  either an elongated object  or a 
squat object,   roughly  corresponding to a  solid of 
revolution about  the major or minor axis, 
respectively.     The elongated object  is preferred, 
and one can argue that  it  is more plausible on the 
grounds of general  viewpoint  (a  fat,   squat object 
looks elongated  only  from a  narrow range  of 
viewpoints).     When presented  with  initial 
orientations  for an elliptical extremal boundary 
(Figure  9),   our algorithms  reconstruct  an elongated 
object,   with  approximately  uniform  curvature about 
the  major axis.     They,   in effect,   reconstruct  a 
generalized  cylinder  [li],   but without explicitly 
invoking processes  to  find  the axis of symmetry or 
matching  the  opposite  boundaries. 

In a  representative experiment,   initial values 
for Nx  and  Ny  were  fixed  inside an elliptic-shaped 
extremal boundary   (major axis  15,   minor axis  5). 
The reconstructed  orientations were then compared 
with  the orientations  of the solid of revolution 
generated  when  the  ellipse  is  rotated  about  its 
major axis.     The  resulting errors after 50 
iterations were:     for Nx,   .02 maximum absolute 
error and   .006 average  RMS error;  and  for Ny,   .005 
maximum absolute and   .002  RMS. 

Occluding Boundaries 

We also wish to  know how well  the 
reconstruction  process performs when the 
orientation  is  not  known at all boundary points. 
In particular,   when  the surface of interest  is 
occluded by another  object,   the  occluding  boundary 
provides no constraints.     In such cases,   the 
orientation at  the  boundary must be  inferred  from 
that of neighboring points,   just like at any other 
interior points  of  the  surface.    The 8-way linear 
operator will correctly handle these situations, 
since it  takes care  to avoid  interpolating across 
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boundaries.     We  take  advantage of  this  ability  by 
treating the borders  of the orientation array as 
occluding boundaries,   so  that  we may  deal  with 
objects which extend out of the image.     For 
example,   spherical surface orientations were 
correctly recovered  from the partially visible 
boundary  shown  in  Figure  10.     The  case  of   the 
tilted  cylinder discussed above  is a second 
example. 

Experiments with occluded boundaries  raised 
the  question  of just how  little  boundary 
information suffices  to effect recovery.     We 
experimented with a  limiting case  in which  we 
attempted  to  reconstruct  surface  orientation  of a 
sphere from just  four initial boundary  values at 
the corners of the arrays.     This corresponds  to  the 
image of a  large sphere whose boundary 
circumscribes the square array  (see Figure  11). 
The   resulting surface  orientations  produced  from 
these  extremely sparse  initial  conditions  were  as 
accurate  as when all   the  boundary  orientations  are 
given,   but more  iterations were  required.     For 
example,   fixing  the  Nx  and  Ny  orientations  at  the 
corners  of a  17 x   17 square array  to   the  values  for 
a   sphere  of  radius  12,   the  maximum absolute  error 
of  the  reconstructed  interior orientations after 
400 iterations was  less  than  .005. 

Qualitative  Boundary  Conditions 

In all  the above  experiments,   boundary 
conditions were provided by specifying exact 
orientations at all unoccluded points along 
extremal   boundaries.     The  values  of  Nx  and  Ny at 
these  points were  initially   inserted   in  the  arrays 
and   were  held   fixed   through all  iterations.      In  a 
complete visual system  it is necessary  to derive 
these  values  from  the  shape  of extremal  boundaries 
in  the   image.     In  principle,   this  can  be  done 
easily,   since  the  surface  normal  at  each  point   is 
constrained   to  be orthogonal  to  both   the  tangent  to 
the boundary and  to the  line of sight.     (For 
orthogonal  projection,   the  normal  must   thus   be 
parallel   to  the image plane.)     In a spatially 
quantized  image,  the accurate determination of 
tangent  is difficult,  particularly when the object 
is  not  very  large  compared   to  the  quantization 
grid. 

One way  to overcome  this problem is  to 
introduce  the notion  of qualitative,   partially- 
constraining boundary  conditions.     We  can,   for 
example,  constrain the surface normals along a 
quantized  extremal   boundary   to be  approximately 
parallel  to  the image plane and  point  outward 
across   the  boundary.     We   then  rely on  the  iterative 
process  to  reconstruct exact  values   for the  normals 
at   points  on  the  boundary,   treating  them  just   like 
interior  points.     To   implement  this  approach,   we 
intriduce a step which at each  iteration checks the 
orientation at boundary points.     For each boundary 
element adjacent  to  the  point,  we check  that  the 
surface  normal  has  a  component  directed   outward 
across   it.     If  it  does  not,   the  value  of  Nx  or Ny 
is  modified  appropriately.     The  value  of Nz  is  also 

checked   to  be  close  to   zero,   and  vector N is 
normalized  to ensure it  remains a unit vector. 
This process was applied  to the spherical, 
cylindrical,  and  elliptical  test  cases,  and was 
found  to yield orientation  values accurate to  10 
percent,   for both interior and boundary points, 
after only  100 iterations.     The principal 
limitation  on  accuracy appears   to  be  the  coarse 
quantization grid  being used. 

FUTURE  PLANS 

Experimentation  is  continuing  to determine how 
well  the  reconstruction   technique  performs,   both  in 
absolute  terms and  relative  to human perception, 
for a  variety  of  test  surfaces.     Simultaneously,   we 
are investigating other interpolation operators 
that reflect measures  of curvature appropriate  to 
different  surface  types,   such  as  soap films.     We 
are also extending the program to deal with a wider 
range  of  reconstruction  problems,   including, 
specifically,   reconstruction  from  noisy  range 
values and  from partially constrained normals along 
intersection edges,  mentioned  in the preceding 
paragraph.     These  extensions  will  require  properly 
integrating surface orientation and  range  (which 
may require making  the integrability condition of 
Equation  5  explicit),   and   smoothing  noisy,   and 
possibly inconsistent,   data.     Ultimately,  a general 
vision system will need  the ability to add and 
delete  hypothesized   discontinuities  so  that 
surfaces  and  boundaries  can  be  simultaneously 
refined. 

Although  the  reconstruction  process  we have 
described  is conceptually parallel,   there are 
inherent  limitations  on how fast  information can 
propagate across  the  image.     Thus,   convergence 
speed  is  of practical concern.     Using larger 
operators  increases  the  effective velocity of 
i-ropagation but can impair precision where small 
features are  involved.     What  seems   to  be  required 
is  a  scheme   that   combines  multiple sizes  of 
operators  in a hierarchical  organization,  where 
initial  estimates  provided by the  larger operators 
are refined by the smaller ones.     We are studying a 
number  of  theoretical  questions   raised  by a 
hierarchical approach to surface  reconstruction, 
including the effects of operator size on speed  and 
accuracy,  and  the key question  of how information 
propagates  between  levels  of  the  hierarchy. 

CONCLUSION 

Interpolating smooth surfaces  from boundary 
conditions  is  a  ubiquitous  problem  in early  visual 
processing  [l,   2,   7,   11-18].     We  describe a 
solution for an  important special case:     the 
interpolation of surfaces  that are  locally 
spherical  or cylindrical,   given initial orientation 
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values and constraints on orientation.  Our 
principal contributions are:  the observation that 
components of the unit normal vary linearly on 
surfaces of uniform curvature; the development of a 
number of parallel computational techniques for 
surface reconstruction exploiting this observation; 
and the clarification of some of the conditions 
under which surfaces can be reconstructed from 

incomplete information. 

The ability to handle sparse or partially 
constrained initial conditions is impovtant in a 
reconstruction algorithm because often nothing else 
is obtainable.  It is well known, for example, that 
photometric constraints yield families ot normals 
at most points on a smooth surface, not unique 
values.  Also, since range values, as provided by 
stereo, motion parallax, and laser range-finders 
may be noisy, so may initial orientations obtained 
by differentiating range.  A major remaining source 
of surface information is contour shape, as invoked 
in the interpretation of surfaces defined by line 
drawings.  In line drawing interpretation L7, n- 
nl  the initial conditions are extremely sparse, 
being undefined except along the lines.  Moreover, 
along those lines corresponding to intersection and 
occlusion (as opposed to extremal) boundaries, 
orientations are only constrained to be orthogonal 
to the three-dimensional line segment; their exact 

directions are indeterminate. 

Reconstruction experiments on spherical and 
cvlindrical test cases have produced essentially 
exact reconstructions, eren when boundary values 
were extremely sparse or only partially 
constrained. Results on other test cases seem in 
reasonable agreement with human perception. 
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TABLE  I   -     INTERPOLATION  RESULTS  FOR  SPHERICAL TEST  CASE 

Operator §  Iterations      Max.   Abs.   Error    Average   (RMS)   error 
(Nx,   Ny) (Nx,   Hy) 

Uniformly Weighted 
Average over 4- 
connected 3X3 patch 

Uniformly Weighted 
Average over 8- 
connected 3X3 patch 

V      over a 4- 
connected 3X3 patch 

R-way  linear interpolation/ 
extrapolation  (see Figure 6) 

4-way linear interpolation/ 
extrapolation  (just parallel 
to x and y axes) 

Gradient smoothing over a 
4-connected 3X3 patch 

Gradient  smoothing  over an 
8-connected  3X3  patch 

50 
100 

.0165 

.0004 

50 
100 

.0007 
.0000006 

50 
100 

.006 
.00006 

50 
100 

.004 
.00002 

50 
100 

.03 
.001 

50 
100 
200 

.40 

.26 

.10 

50 
100 
200 

.13 

.03 
.001 

.0075 

.0002 

.0003 
.0000003 

.003 
.00003 

.002 
.00001 

.01 
.0007 

.19 

.12 

.05 

.05 

.01 
.0005 
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DETECTION OF ROADS  AND  LINEAR 
STRUCTURES  IN  AERIAL  IMAGERY BY  COMPUTER 

M. A, 
Fischler, J. M. Tenanbaum. and H. C. Wolf 
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Menlo Park, California 

ABSTRACT 

This paper describes a computer-based approach 
to  the problem of detecting and  precisely 
delineating roads,  and similar    line-like 

f'Z^TZ  S UfM-rt»« f". .ulllpla. «-I for combining loca L n-.j^nu vnrious 
possibly incommensurato, sources, ^eluding various 
Une Md edge detection operators, map Knowledge 

iSt the likely path of roads through an image, 

and generic knowledge about roads (e.g., 

results are included. 

INTRODUCTION 

A person given the problem of producing an 

overlay'sho^ing the clearly visible roads m an 

aerial image would norrally be expected to 
accomplish this task with little difficulty even 

though he may be completely unfamiliar with the 

th.ri%s -=«"f r ■: 
linear structures  in aerial images. 

Performance  Criteria 

Our goal  is  to produce a  list of connected 

of the actual  road and should have the  following 

properties: 

(1) No  point  on a track should  be lo^ed 
outside of the road boundaries when  the 
road  is clearly visible. 

(2) The   track  should be  smooth  where  the  road 
is straight o" smoothly curving  (within 
the constrains of a digital raster 
representatior ). 

(,)     If parts  of  the  road  are  occluded,   those 
portions of the continuous track 
overlaying the  occluded  segments  should 
be labeled as such. 

(A)     In areas  where   the   road   is  partially 
( occluded,   the  track should follow the 

actual c^ter of the  road   (as opposed to 
the center of  the visible portion).    If 
the road is composed of adjacent but 
separated  lanes,   then each  lane  will be 
considered a separate  road  for our 
purposes. 

Contextual Settings  for Road Tracking 

A  "road"  is a  functionally defined  entity 

whose appearance in an image ^^'L ffs vism 
width -.nd how much  internal  road detail  is visible, 
Te      appearance depends  largely on image 

;  ^ut^Csee  Figure  1:     ^fJ^ZlTcllls 

z7^iriz:*i'< - -L^rrio jion 
in the  image. 

We have found that the following ^ntext"^, a 
settings retire significantly different approaches 

to  the road tracking problem: 

(1)    High vs.     low  resolution  (low  resolution 
(1)     -^defined as the  case  in which  the  roa 

being tracked has an  image  width of three 
or fewer pixels). 

■lear vs.     occluded  viewing  (clear 
viewing is defined a» a situation in 
which no more  than approximately 30% ol 
the  road  being  tracked  is  occluded  by 
clouds,   intervening  objects,  etc.;. 

(3)    High  vs.     low density   of  linear detail 
(5)    Sminally,   this distinction corresponds 

to urban vs.     rural  scenes). 

In this papor we will  mainly  be concerned with 

reported   ^uam  L
1
"

1
"-!' ..      -naA  y,aa been 

of high-resolution  imagery,  once the  road has 

(2) 
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"acquired" and we are able to track features 

internal to the road boundaries, the surrounding 
detail is of minor importance (except as it 
introduces shadows and occlusions); thus, the 
distinction between urban and rural scenes is 
important mainly at low resolution.  Where the 
roads are heavily occluded, road matching rather 

than road tracking is the appropriate technique; 
here one needs to have prior knowledge of ui? 
geometry of the road networks being searched for. 
Prior knowledge about the (approximate) iocation 
and/or direction of the roads in the in.agery is 
important if a bpecific road (as opposed to all 

roads) is to be tracked; some method of indicating 
which road we are interested in is necessary, and 
this is typically done by delimiting a search area 
in the input image.  Finally, prior knowledge about 
terrain type and/or scene elevations can be used to 
help distinguish low-resolution roads from other 
linear features by invoking cultural and economic 
constraints which are known to affect road 
construction. 

Detecting Local Road Presence--Road Operators and 
Models 

At low resolution roads are line-like 
structures of essentially constant width, which, in 
general, are locally constant in intensity in the 
along-track direction and show significant contrast 
with the adjacent terrain (generally, they are 
either uniformly lighter or darker).  A specific 
interpretation of this low-resolution road model is 

embodied in the Duda Road Operator (DRO) described 
in Figure 2.  In Figure 3 we show some examples of 
the scores produced by this operator on a variety 
of road scenes.  It is apparent that the DRO does a 
good Jot most of the time but has some significant 
weaknesses; it is sensitive to (a) road orientation 
(in directions other than the four principal 
directions explicitly covered by the masks 
described in Figure 2), (b) raster quantization 
effects (e.g., where a straight line segment "jogs" 
in crossing a quantization boundary), (c) sharp 
changes in road direction, and (d) to certain 
contrast problems with the adjacent terrain. 

LOW-RFSOLIITION ROAD TRACKING 

At low resolution roads are often 
indistinguishable from other linear features 
appearing in the image (including artifacts, such 
as scratches).  Thus, the low-resolution road 
tracking problem largely reduces to the gei.eral 
problem of line (as opposed to edge) following. 
Nevertheless, there are still some weak semantics 
that can be invoked to specifically tailor a system 

for road tracking, trading some generality for 
significant increases in performance. 

The Basic Paradigm 

The basic paradigm we employ is to first 
evaluate all local evidence for the presence of a 
rosl at every location in the search area (a low 
numeric value indicates a high likelihood that the 
given image point lies on a road), and then find a 
single track which, while satisfying imposed 
constraints (such ap continuity), minimizes the sum 

of the local evaluation scores (costs) associated 
with every point along the track.  While the basic 
optimisation paradigm is not new (e.g., Fischler 

[1973], Montanari |"1971], Martelli [1976], Barrow 
and Tenenbaum [1975] Rubin [1978]), it is 
incomplete in that it does not provide mechanisms 
for reconciling incommensurate sources of 
information.  This capability is crucial in 
problems such as road tracing in which no single 
coherent model is adequate for reliable detection. 
In this paper we introduce new and relatively 
simple mechanisms for combining local evidence and 
constraints in the context of an optimization 
paradigm for detecting linear structures. 

At this point one might wonder if a special 
road operator is really required; why not simply 
use a generic edge djtector (e.g., Sobel [in Duda 
and Hart, 1973.1, Roberts [l965], or Heuckel [l971 
and I973])? Even more to the point, we notice that 
it is possible to interpret the effect of employing 
an operator on an image as resulting in the 
suppression of all detail other than that 
associated with the entity to be detected; 
therefore, a high-pass filter might act as a 

perfectly good road operator.  Finally, roads will 
generally be lighter or darker than the immediately 
adjacent terrain; why not simply use the actual 

intensity values (contrast-enhanced and possibly 
inverted, depending on the relative brightness 
between the road and adjacent terrain)?  In Figure 
4 we show a comparison of these different 
techniques applied to the same road scene; in 
Figure 5 the scores are thresholded to nke 
explicit the locations in the image which are 
assigned the highest road presence likelihoods by 
the different techniques. 

In the approach we have .f veloped, a key 
attribute characterizing the utility of a "local" 
image feature detector (i.e., "operator") is the 
percentage and coherence of its mistakes when it is 
almost certain it has found instances of the 

feature it is designed to detect.  FJven though the 
Duda road operator makes mistakes of omission, its 

performance in not making coherent false-alarm type 
errors is quite good. 

Combining Incommensurate Sources of Knowledge--An 
Elaboration erf the Basic Optimization Paradigm — 

We will now specify a general approach for 
combining the results deduced by the application of 
a set of (road) operators, as well as to the 
problem of allowing prior knowledge and constraints 

Suggested by R. 0. Duda of SRI International. 
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to influence the answer produced by the 

optimization algorithm. 

We partition our in« .atory of operators into 
two categories--Type I operators, each of which can 
be adjusted to make very few coherent errors in 
detecting instances of the relevant feature when 
the feature is not present (possibly nt the cost of 
making a lar^e number of omission errors); and 
Type II operators, each of whxch can be adjusted to 
reliably give a quantitative indication of the 
presences of the feature when it is actually under 
examination (but these operators might be very 
unreliable in their assertions when examining 
something other than the desired feature).  Our 
basic approach is to strongly bias (or even 
constrain) the desired answer to fit the coherent 
ps+tern produced by a superposition of evidence 
provided by all the Type I operators and to fill in 
the details locally, using that particular Type II 

operator which seems to be most certain that it has 
found the desired feature.  (A more comprehensive 
discussion on methods for combining multisource 
evidence is given in Fischler and Garvey [in 
preparation].) 

A problem that immediately arises is how to 
combine the results of several Type I and Type II 
operators.  By considering the output of Type I 
operators to be valid binary decisions, we have 

made them commensurate and can logically combine 
their outputs.  In the context of tracking roads 

(or other linear features), we scan eac' of our 
Type I operators over some specified region of 
interest and create a binary overlay mask 
containing the logical union of the locations at 
which one or more of these operators has detected 
(with high likelihood) the presence of a road.  An 
example of such a mask, called a "perfect road 
score" (PRS) mask, is compared in Figure 6 with the 
road image from which it was derived. 

The problem of combining the results produced 
by a set of Type II operators has no acceptable 
solution when the values they return are not 

probabilities nor other commensurate quantities. 
However, Type I and Type II operator scores can be 
combined, since a positive Type I output can always 
be set to the maximum value (zero cost) on the 
likelinood scale of any Type II operator. 

Our approach is thus to AND the PRS mask 
(containing the union of all positive Type I 
outputs) with every array of scores produced by the 

Type II operators to produce a set of cost arrays 
(CA) with zero cost scores at the locations marked 

in the PRS mask.  The optimization algorithm is 
separately applied to each CA, and the path with 
the lowest global score is selected as the primary 
road track through the given region. 

In addition to creating a framework for 
"growing" the road using the Type I operators, we 
have develrped a simple mechanism for introducing 
constraints and a priori information via the scores 
obtained from the Type II operators. This is 

accomplished by numerically transforming the value 

"x" originally produced by any Type II operator 
using tne function:  score • xAa+b (with control 
constants a and b). For example, if control 
constant "a" is held fixed and "b" is increased, 
the resultant optimal path through the CA would 
tend to be smoother and straighter (somewhat like 
pulling the path taut); this effect occurs because, 
as "b" is iiioreased, the length of the path becomes 
relatively more important in comparison to the 
local quality as define.' by the individual values 
"x" returned by the operator.  If we are tracking a 
rocky coastline in an image, we would opt for 
placing the path through the locations having the 
best edge scores as opposed to trying to smooth the 
result; here we would use a zero value for "b".  In 
the case of tracking a road where smoothness is a 
nominal property, we would select some nonzero 
value fcr "b".  If we had a priori information that 
a road we are attempting to track is fairly 
straight, we could use a high value for "b". 

As the value of control constant "a" is 
increased, there is a very strong inhibition 
against going through a point having a low 
likelihood of being on a road.  Thus, if we wish to 

track a road in a region where there may be other 
strong linear structures nearby, a high value of 
constant "a" will prevent a jump from one linear 
object to another; but this can result in wandering 

(e.g., around shadows, vehicles, etc., in the case 
of tracking a high-resolution road).  Figure 7 

shows some examples of tracking a road with 
different values of the two control constants. 

The Low-Resolution Road Tracking Algorithm (LRRT) 

The low-reso?ution road tracking algorithm 
operates as follows: 

(1) A search region is designated in the 
image.  This search region is defined by 
a binary mask which delimits the search 
for the road track. 

(2) A selected set of Type I operators are 
scanned over the region designated by the 
search mask; and the scores produced by 
each such operator are histogrammed and 
thresholded at some preset level, based 
both on the nature of the operator and 
so that the number of points below this 
threshold will not exceed the number of 
road points estimated to be present in 
the search window (e.g., selecting 5% 
of the points in the search window might 
be an upper limit for the Duda road 
operator).  A PRS mask is generated as 
the union of those locations at which 
each Type I operator is lower than its 
associated threshold (scores are treated 
as costs; a lower score implies a more 
road-like appearance). 

(3) A selected set of Type II operators is 
scanned over the region designated by the 
search mask, and the scores produced by 
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each such operator are either scaled or 
normalized (e.g., by their histogram 
ranking) to lie in the nominal range from 
1-100; the scores for each Type II 
operator are stored in a separate array. 

(4)  Each Type II array is now sequentially 
modified as indicated: 

(a) In those regions of the imaja where 
some external source of information 
indicates that occlusions exist 
(e.g., due to clouds or to inter- 
vening objects), or where there is 
no significant contrast between the 
road and the adjacent terrain, thus 
rendering the road "invisible," a 
constant is added to the score at 
each pixel location. This is done 
in order to reduce the preference 
for one path over another through 
areas where the local operators are 
incapable of returning relevanb 
information about road presence. 

(b) The scores at those locations cor- 
responding to points in the PRM are 
set to zero (actually, they are set 
to some very small positive value to 
prevent arbitrary wandering, or even 
cycling, through regions of zero 
cost). 

(c) Every score "x" in the array is 
transformed (as discussed earlier) 
by the formula: 

x ' " x*a+b 

This transformation allows us to 
introduce external information in 
adjusting the balance between track 
smoothness (or straightness) and 
placing the track at its locally 
most probable location. 

(5)  Starting and terminating delimiters are 
designated in the search area:  either a 
pair of lines (e.g., the sides of the 
search window) or a pair of boxes, 
through which the road must pass.  Each 
Type II cost array is considered to be a 
graph with each pixel connected to each 
of its eight neighbors, and a minimum 
cost path is found in each such array 
between the starting and terminating 
delimiters.  Since there is no way to 
directly compare the relative merits of 
road tracks computed in two distinct 
Type II arrays, we employ a heuristic in 
which the average score per pixel along 
the track in each Type II array is 
computed, and its histogram ranking in 
comparison with all the scores produced 
by the given Type II operator over the 
search window is taken as the quality of 
the track.  The track with the highest 

quality number is chosen as the preferred 
track. 

THE GENERAL PROBLEM OF LOW-RESOLUTION 
ROAD TRACKING (MULTIPLE ROADS) 

We find that it is desirable to deal with the 
road-(linear feature)-tracking problem in three 
distinct phases: 

(1) The first phase produces a crude 
delineation of all the roads to be 
tracked (either producing an approximate 
track for each road segment or narrowing 
the search areas containing the different 
road segments).  This delineation can be 
obtained by making multiple passes 
through the initial search area of an 
image with the LRRT described above. 
After each pass, the detected road track 
is marked as a forbidden area so as to 
allow the next most prominent road 
segment to be detected.  If two distinct 
road tracks have common segments or have 
the same start and stop delimiters, then 
the "suboptiraal" road tracks produced by 
the linking algorithm (the algorithn 
which finds the lowest-cost path through 
the Type II operator cost array) will 
generally delineate additional road 
segments. 

With the availability of an external 
knowledge source, such as a map data base 
or a sketch map, the desired delineation 
can be obtained more directly. 

(2) The second phase produces a precise track 
for each road segment of interest by 
applying the LRRT to the individual crude 
delineations obtained in the first phase. 

(3) The third phase involves smoothing and 
possibly linking road segments separated 
by regions of significant occlusion, as 
well as marking those portions of a road 
track that were inferred from continuity 
rather than direct visibility. 

IMPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS 

While we have addressed the problems 
associated with each of the above phases for 
automatically delineating the low-resolution roads 
and linear structures in an image, most of our 
current experimental work has been concerned with 
obtaining a high-performance solution to the 
problem of precise delineation required in phase 
two.  We have implemented two versions of the LRRT 
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generically described in the preceding section:  an 
INTERLISP/SAIL version for developmental work and a 
FORTRAN version for more extensive experimentation 
and evaluation.  Both versions run on the SRI PDP- 
10, while the FORTRAN version was debigned to also 
be compatible with a CDC 6400 system at the 
U. S. Army Engineer Topographic Lab (ETL) at Ft. 
Belvoir (the FORTRAN version has a minimum core 
requirement of 20,000 60-bit words, and will track 
a road segment 128 pixels long in 15 seconds of CPU 
time; the corresponding numbers for the INTERL1SP 
version are 90,000 36-bit words of core and 60 

seconds of CPU time). 

The FORTRAN version of the LRRT makes some 

additional assumptions about the roads to be 
tracked:  it assumes that they are generally 
lighter or darker than the surrounding terrain and 
that they do not "double back" on themselves in the 
designated search areas.  It uses a single Type II 

operator (based on histogram normalized image 
intensity) and two Type I operators (the Duda road 
operator and an image intensity operator, which 
thresholds imago intensity and also checks the size 
of the above threshold intensity region about a 
potential road point to determine if the width 
constraint is satisfied).  This program has already 
been tested on approximately fifty road segments 
found in aerial images of seven different 
geographic locations with no failures, where the 
assumptions are satisfied and the roads are clearly 

visible (some examples are shown in Figure 8). 

CCNCLUDING COMMENTS 

In this paper we have addressed the problem of 

precise delineation of the roads and linear 
features appearing in aerial photographs usirg an 
approach based on global optimization of locally 
evaluated evidence.  Since there does not appear to 
exist a single coherent model suitabl? for reliable 

detection of local road presence, it was essential 
that some means for integrating information from 
multiple (incommensurate) image operators and 
knowledge sources be devised—the conventional 
optimization paradigm does not provide any formal 

machinery for achieving this task. 

Two key points characterize the basis of our 

approach: 

(l) Rather than projecting all image 
operators on a single linear scale and 

attempting to use them in the same 
qualitative manner, we have identified 
the distinctly different nature and 
potential use of operators which have 
strong object detection capabilities as 
opposed to those which are useful for 
object analysis once identification 
and/or location is known.  (Depending on 
the specific context, a particular 
operator might switch from one role to 

the other.)  We have provided a simple 
and uniform mechanism for integrating the 

information provided by the two classes 
nf operators for the specific task of 
tracking linear structures, and we 
believe tha': the same general approach is 
applicable in a wider range of problem 

settings. 

(2) We have recognized the fact that the 
score returned by an image operator 
usually has little absolute meaning, and 
yet a monotonic transformation of this 

score can lead to a significantly 
different final result in tracking linear 
structures.  We have capitalized on this 
property by introducing a monotonic 
transform which allows a simple and 
uniform mechanism for adjusting the 
scores to reflect a priori information 

and semantic constrtdnts. 

Our plans for future work include the 
development of more effective techniques for the 
completely unconstrained delineation required in 
phase one (defined earlier), for tracking and 
possibly distinguishing among a variety of 
different types of linear structures (e.g., roads, 
rivers, rai'lroEds, runways, etc.), and for tracking 
linear structui'is in three dimensions using stereo 

image pairs. 

The scientific content of this work lies in 

discovering effective models for representing and 
detecting the linear structures of interest and 
developing paradigms for integrating information 
from the wide variety of knowledge sources 
available to the human observer whose performance 

we are attempting to equal or surpass. 
Applications of our work in the military area 
include road monitoring for intelligence purposes, 
delineation of roads and linear features for 
automated cartography, and detection of roads and 
linear features as landmarks for autonomous 

navigation and weapon guidance. 
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FIGURE   1     ROAD SCENES  DEPICTED AT A SPECTRUM  OF   RESOLUTIONS 
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WINDOWS FOR THE ROAD OPERATORS 
Two other masks, similar to these, are used to detect vertical 
and left diagonal road segments. 

ROAD EDGE SCORING FUNCTION 

Function depicted as solid line is used for light road? F(-u) is used for dark roads. 

Symmetric form of ;he function, shown by dashed lines for negatiue values of u is 
used when road to background contrast is unknown. 

ROAD UNIFORMITY SCORING FUNCTION 

FIGURt 2      DEJCPIPTIOIM OF  DUDA ROAD OPERATOR 
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FIGURE  3    DUDA  ROAD OPERATOR  APPLIED TO A  NUMBER  OF  SCENES 
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ta) ORIGINAL  IMAGE 
(b)  DUDA  ROAD OPERATOR 

(d) SOBEL-TYPE  GRADIENT 
(c)  ROBERT'S CROSS GRADIENT 

FIGURE 4    DIFFERENT ROAD OPERATORS APPLIED TO THE SAME SCENE 
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(a) ORIGINAL  IMAGE (b)  DUDA   ROAD  OPERATOR 
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FIGURE  5    DIFFERENT  ROAD  OPERATORS APPLIED TO  THE  SAME  SCENE 
(Operator scores are thresholded to highlight the locations assigned the best scores.! 
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FIGURE 6    A SCENE  AND  ITS PERFECT  ROAD SCORE  MASK 
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FIGURE   7     EXAMPLES  OF  HOW  TRANSFORMING TYPE  II   IMAGE  OPERATOR  SCORES  (X)  ALLOW  US TO 
ADJUST  THE   TRADE-OFF  BETWEEN   ROAD SMOOTHNESS AND  PLACING THE   ROAD  TRACK 
AT   ITS  LOCALLY  MOST   PROBABLE   LOCATION 
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FIGURE  8    EXAMPLES OF   ROAD  DELINEATION  PRODUCED  BY  THE   LOW   RESOLUTION   ROAD  TRACKER 
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FIGURE   i!     EXAMPLES OF   ROAD  DELINEATION  PRODUCED  BY  THE   LOW  RESOLUTION   ROAD  TRACKER 

(Concluded) / 
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STEREO-CAMERA CALIBRATION 

Donald B. Gennery 

Artificial Intelligence Laboratory, Computer Science Department 

Stanford University, Stanford, California 94305 

ABSTRACT 

If the image plane coordinates of several pairs of 

corresponding points in a stereo pair of images have been 

measured, it is possible in general to use this information to 

compute the relative position and orientation of the two cameras, 

except for a distance scale factor. This paper describes a method 

of performing this calibration by a generalized least-squares 

adjustment. First, a general method of performing non-linear 

adjustments of this type by iterating on a linearization of the 

problem is reviewed. Then the specific mathematics needed for 

this problem, using analytical partial derivatives for the 

linearization, are derived. 

INTRODUCTION 

In Section II a general method of solving nonlinear 

generalized least-squares problems such as the above by using 

partial derivatives will be described. In Section III the specific 

mathematics needed for the above camera calibration problem will 

be derived. 

The method described herein has been implemented as a 

procedure in CAMRAS[1,DBG] and a driver program 

CAMRAD[1,DBG] on the PDP-10 at the Stanford Artificial 

Intelligence    Laboratory. This    procedure    contains    several 

additional features, including variance adjustment, automatic 

editing, and convergence acceleration, which are beyond the 

scope of this paper. The original version of the program, without 

these features or weighting, was written in 1973. 

Suppose we have two camera views of the same 

three-aimensional scene and wish to extract depth information. 

Suppose further that the relative position and orientation of the 

cameras are unknown. The solution then can be divided into 

three parts. First, rorresponding points can be identified in the 

two pictures. A correlation technique cou d be used for this step, 

as described in [1] or [2], Second, a generalized least-squares 

adjustment can be done to solve for the relative position and 

orientation of the two cameras (except that the absolute distance 

between the cameras cannot be determined unless some distance 

information is :ncluded). Third, the resulting information can be 

used to compute the 'relative) distances to the various points in 

the image. This paper is concerned primarily with the second of 

thess three steps. 
Let Camera 1 denote the camera which will be used as 

reference. We then wish to compute the direction from Camera 1 

to Camera 2 and the orientation of Camera 2 relative to Came'a 1. 

It may also be- desirable to compute the focal lengths of the two 

cameras as part of the adjustment. 

Consider any point in the three dimensional scene. Let the 

coordinates Of the image of this point in the Camera 1 film plane 

be Xpy! and the coordinates of its image in the Camera 2 film 

plane be x?,y2. Image point Xpyj corresponds to a ray in space, 

which, when projected into the Camera ? film plane, becomei a 

line segment. The distance from Ihis line segmenl to the image 

point x^yj is the magnilude of the error in the matching of this 

point. This error is a function of the angles which define Ihe 

relative position and orientation of the two cameras (and also Ihe 

focal lengths). What we desire to do is to perform a camera 

calibration by adjusting these angles (and perhaps focal lengths) 

to minimize the weighted sum of the squares (and cross products, 

if ihe errors are correlated) of these errors for all of the points 

that are used. 

II.   GENERAL METHOD 

In this seciion a method of performing nonlinear generalized 

least-squares adjustments will be described. This method u'.^s 

partia1 derivatives to linearize the problem and iterates to arlneve 

the exact sclution. 

We will use capital letters to denote matrices. Vectors will 

be represented by column matrices. A particular element of a 

matrix will be represented by the corresponding lower-case letter 

with approprilale integer subscripts. The lranspr.se of a matrix A 

will be dene'ed by AT, and the inverse of A will be denoied by 

A"1. 

Suppose we have a set of m unknov/n parameters for which 

values are desred, denoted by Ihe vector G (m by 1 matrix). (In 

our problem, thwse would be the quantities defining the camera 

calibration,) Suppose further that there are a set of n quantities 

(n > m) denoted by the vector F, which can be measured with 

some error and which are functions of G. Let U denote Ihe 

measured value of F (containing some error). (In our problem, Hie 

elements of U would be related to the film plane measurements in 

a way that will by explained in the next section.) Let V be Ihe 

vector of Ihe n residual errors in the fit to Ihe observations using 

a particular set of values for the parameters.   That is. 

U F(G) + V (2-1) 

with the functional dependence on G explicitly indicated. The 

problem is to use U to compute G such that V is minimized in some 

sense. 

For   Ihe   criterion   of   optimization   we   will   minimize   Ihe 

quadratic form 

VTWV (2-2) 

■    I 
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where W denotes an n by n weight matrix. W should be the 

inverse of the covariance matrix of the errors in the observations. 

This will result it; the maximum likelihood (in the F space) solution 

if the errors have the Gaussian (normal) distribution. Note that if 

W is a diagonal matrix (indicating no correlation between errors in 

different observations) the quadratic form reduces to a weighted 

sum of the squares of the elements of V. Thus the problem as 

stated here can be said to be a generalized least-squares 

adjustment. 

Solving (2-1) for V and substituting in (2-2) produces 

q   -   [U-F(G)]TW[U-F(G)] (2-3) 

The problem then is to find G such that q is minimum. 

The difficulty in obtaining a solution to the above problem 

lies in the fact that F in (2-1) is a nonlinear function, and thus in 

general there is no closed form solution. One way of solving the 

problem is to use some type of general numerical minimization 

technique, in which on various iterations new values of G are 

tried, q is recomputed each time, and q is driven to a minimum. 

However, such methods tend to converge rather slowly. Also, 

numerical problems may occur if q has a very broad minimum, for 

round-off errors may give rise to spurious local minima. Instead 

Of such an approach, to find the minimum of q, we will 

differentiate (2-3) with respect to G, set the result to zero, and 

solve for G iteratively. 

In order to follow the steps of this process, we rewrite 

(?-3) in terms of the elements of the matrices, as follows: 

q   =   ^[u, -MKJwJUj-fj«)] 

Differentiating this produces 

ft)     "B^ 

(2-4) 

(2-5) 

Since (2-5) is a nonlinear equation, to sol t it for G when dq/c)gK 

is set to zero, we will use Newton's method. To do this, the 

partial derivatives of äq/r>gk are needed.   These are 

^q 

^    ^f M r-      cTf, 

V  *ZH       Jdg| u   Ag^g, 
wJUj - fj        (2-6) 

The corrections d, needed to g, are related to the above by 

Z^-d, (2-7) 
äg|dgj 

(These corrections would be exactly correct if F were linear.) We 

can now revert to matrix notation, by defining the n by m matrix 

P to be composed of the partial derivatives of the function F, such 

that 

df. 
(2-8) 

and  the  n  by  m by m matrix R to be composed of the second 

derivatives of F, such that 

(2-9) 

Substituting (2-5) and (2-6) into (2-7), using these definitions, and 

dividing through by 2 produces 

[P1WP - RTW(U - F)]D  -  P'W'J-F) (2-10) 

where F, P, and R are all implicit functions 0/ G.   (An approximate 

value of G used to obtain F, P, and R in (2-10) defines the 

correction D needed to obtain a mord accurate value.) Notice that 

R is a strange creature, a three-dimensional matrix. These are 

not usually defined in matrix algebra, but the usual definitions can 

be generalized to handle them. In particular, a product of the 

form A - R'WB, where A, R, W, and B have respectively two, 

three, two, and one dimensions, is given by ah| = E r.iKw.j'>ji 

where the summation is over all values of i and j. (Of the five 

possible ways of rearranging the three indeces, the transpose of 

a three-dimensional matrix is defined here as reversing the order 

of the three indeces.) 
The solution for D can e-pressed in terms of the matrix 

inverse as follows: 

D   -   [PTWP - RTW(U-F)j'1PTW(U-F) (2-11) 

or equivalently 

D   -   [I - (P'WPrVWdJ - F^VWPr'p^OJ-FHZ-lZ) 

where I denctes the identity matrix (in this case m by m). D as 

obtained above using an approximate value of G would be added 

to this value of G to obtain a more accurate value, and this 

process would repeat until it converged. 

The worst part of the above solution is the necessity to 

compute the partial derivatives. Often ü-ey are difficult to derive 

analytically and difficult to compute accurately numerically. In 

either case they are time-consuming to compute. These 

difficulties are usually much worse for the second derivatives R 

than for the first derivatives P. Furthermore, there are nm 

second derivatives to compute and only nm first derivatives. 

Therefore, it is highly desirable to be able to omit the second 

derivatives from the computation. We will now consider the effect 

of neglecting them. 

With a reasonable first approximation, and especially on 

later iterations, the discrepancies U F are small. Also, if the 

function F is reasonably smooth, the second derivatives R are 

small. Of course, what is considered small is relative. In this case 

smallness depends on the magnitude of the first derivatives P. If 

U-F and R are small enough so that the relative change in P is 

small when G changes enough to cause F to vary by amounts on 

the order of U-F, then the nonlinearities are not having much 

effect, and the elements of RTW(U-F) are small compared to the 

elements of P1WP. Thus a good approximation in such cases can 

be obtained by setting R to zero in (2-11) or (2-12), which 

produces 

(P,WPr1P,W(U- F) (2-13) 

The use of this approximation is known as the Gauss method, 

because Gauss originally used it on ordinary least-squares 

problems. 

The approximate (Gauss) corrections g;ven by (2-13) are 

just the accurate (Newton) coi-rections given by (2-11) or (2-12) 

premultiplied by I - (PTWP)",R1W(U-F), The accurate corrections 

given by (2-ll) or (2-12) attempt 'o nullify an error in G which 

Newton's method has estimated to be -D, since -D + 0 - 0. But, if 

the Gauss method is used ins vad, we have in effect 

-D + (l-A)D = -AD, so that the vector of errors in G on each 

iteration is premultiplied by A • (P'WPr'R'WdJ-F), neglecting 

the higher order effects neglected in Newton's method. 

Therefore, using the approximation (2-13) cannot effect the final 

solution, unless it destroys the convergence. The matrix 

(PTWP)"lRTW(U-F) will tend to become constant as the solution 

convergences, as the discrepancies U-F converge to the final 

value of  the  residuals  V.    Thus the Gauss method changes the 

.■' 
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quadratic convergence of Newton's method to linear convergence, 
if convergence is achieved. II all of the eigenvalues of 
(PTWP)"'RTW<U-F) have an absolute value less than one, 
convergence will b« preserved, and the smaller the eigenvalues 
are, the faster convergence will be. (After several iterations, the 
error will lend to decrease by a factor equal to the absolule 
value of the largest eigenvalue.) From the arguments in the 
previous paragraph, the eigenvalues should be small, except when 
the initial approximation is very wrong (causing U-K to be large) 
or when F is very nonlinear (causing R to be large). Thus, except 
in these cases, the solution should converge rapidly. (A way of 
converting the linear convergence of the Gauss method into 
quadratic convergence without computing R will be discussed in a 
latßr section.) Some of these matters are discussed further in [3]. 

The solution using (2-13) is usually obtained by a different 
approach (as in [fl]). This approach approximates (2-1) by a 
linear.zation based on the partial derivatives of F, solves the 
resulting linear problem, and iterates this process to obtain the 
solution to the nonlinear problem. Thus let G0 denote an 
jpproximation to G. Then equation (2-1) can be approximated as 

follows; 

U  -  F(GL) ♦ P(GJ(Q - 0.) + V (2-11) 

where P is defined by (2-8) and its functional dependence on G 
has been explicitly indicated.   We nov define 

E   -  U - F(G0) 
D  -  G-G0 

Then (2-14) can be rewritten as 

E   -   PD+V 

(2-15 

(2-16) 

Thus we have replaced the nonlinear equation (2-1) by the linear 
equation (2-16), in which E represents the discrepancy between 
the observations and their computed values using the current 
aporoximations of the parameters, and D represents the 
corrections needed to the parameters. Therefore, we now wish 
to solve tor D in (2-16) so as to minimize q in (2-2). This is a 
standard problem in linear statistical models. (See, for example, 
[5].)   The solution for D is 

D  -  (P'WPr'P'WE (2-17) 

which is the same as (2-13). 
The covariance matrix SQ of the errors in the converged 

values of the parameters G can be obtained from the covariance 
matrix Sj of the errors in the observations U by the usual linear 
approxima'.ion of premultiplying by the matrix of partial 
derivatives of the transformation and postmultiplyi'-ig by ine 
transpose of this matrix. In this case the transformation from U to 
G in the neighborhood of the converged values is given by 
approximately (2-13) or more accurately by (2-12). (Regardless 
of which method was used to produce the converged values of G, 
the answer is the same. Thus the use of (2-12) will produce a 
more accurate error propagation than (2-13), although (2-12) is 
still only an approximation in this regard if higher-order terms are 

considered.) 
If the accurate transformation (2-12) is used, the matrix of 

partial derivatives will contain terms produced when (2-12) is 
differentiated relative to both occursnces of U in (2-12). 
However, when the derivatives are evaluated at the converged 
values, the effect of the first term drops out, since P W(U-F) is 
then zero (because Ü is then zero).  Thus we have 

SG   .   [I-{PTWPr1RTW(U-F)r1(PTWP)"IPTWSu 

P(PTWPr1[l - (P1WPrlR,W(U - F)]"1 (2-18) 

U W - Su'1, as It should for the optimum solution, this reduces to 

SG   =   [I-(PTWPr'RTW(U-F)]-l(P1WPr 
[I -(PTWPr1R1W(U-F)r1T (2-19) 

Using the approximation of neglecting the second derivatives, as 
in (2-13), reduces this to 

(P^WP)'1 (2-20) 

(Remember that (2-19) and (2-20) are correct only if W is the 
inverse of the covariance matrix of the observation errors.) 

Note that even though (2 19) was derived using the linear 
approximation for covariance propagation, it contains the second 
deriva.'ives of F. An even more accurate result could be obtained 
by considering second-order effects in the propagation, although 
this would require knowledge of moments of the error distribution 
of higher order than the second. This result would contain 
squares and cross products of the second derivatives, whereas 
they occur to the first power in (2-19). Therefore, if the second 
derivatives are small, (2-20) and (2-19) can be considered the 
first two members a( an infinite sequence of belter 
approximations, accurale to nigher powers of the second 
derivatives. In most cases (2-20) is quite adequate, since the 
error estimates usually jre not known very accurately anyway. 

It often is desired to know the covariance matrix of the 
residuals. (It is useful to compare the magnitude of the residuals 
to the square roots of the diagonal elements of their covariance 
matrix, for editing purposes.) For the approximate C6<;e, this can 
be derived by first obtaining the equation for the residuals by 
solving (2-16) for V and substituting (2-17) for D, to produce 

V   -   [I - P(PTWP)"lPTW]E (2-21) 

Then, since the covariance matrix of E is the same as that of U, 
the covariance matrix of V can be obtained by premultiplying Su 
by the coefficient of E (in brackets) in (2-21) and postmultiplying 
it by the transpose of this coefficient. If W - Sy"1, the resulting 
expression simplifies to 

Sy   «   Su-P(PTWPr1PT (2-22) 

Note that by using (2-20) the second term in this equation i; seen 
to be the covariance matrix of the adjusted para-ielers 
propagated into the observations! thus it is the covariance matrix 
of the adjusted observations. Therefore, (2-22) says that the 
covariance matrix of the residuals is equal to the covariance 
matrix of the observations minus the covariance matrix of the 
adjusted observations. This is seemingly appropriate, because the 
residuals are the observations minus the adjusted observations. 
However, this should be considered a coincidence, because the 
covariance nalrix of the difference of two vectors is the sum of 
their covariance matrices, not the difference, if the vectors are 
uncorrelated with each other. Here, the particular way in which 
the observations and tne adjusted observations are correlated 
produces the above result. (Remember that this result holds only 
in the approximate case and only if ttw veight matrix is the 
inverse of the covariance matrix of the observations.) 

In many cases W can be partitioned into a diagonal matrix 
of matrices. Let each of these submatrices on the mam diagonal 
of W be denoted by W,. In the corresponding manner E and P are 
partitioned by rows into E,  and P .   (What we have done is to 
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group the observation-, into sets so that there is no correlation of 

errors between members of different sets.) Then (2-17) and 

(2-20) can be rewritten as 

H-I P  'WP 

c - ^Tp/w.E, 

D   -   H"lC 

(2-23) 

Note that, if the errors in all of the observations are uncorrelated, 

W and E, are 1 by 1 matrices, which can be represented as the 

scalars w, arid e(, and P, is a 1 by m matrix. Furthermore, if all 

of the w, are equal, they cancel out of the equation for D, and we 

have an unweighted solution. 

Several other quantities of interest can be derived from the 

solution. We will present these tor the general approximate 

partitioned case, with W - Sy"1. Proofs can be found in 

references [4] and [5]. The adjusted value of E, is P,D. The 

residuals are 

P D 

The quadratic form is 

q   .   Vv/WiV, 

(2-24) 

(2-25) 

The expected value of q is n-m. If the scale factor of the 

covariance matrix of observation errors is unknown, W can be 

adjusted by the ratio (n-m)/q and SQ by the ratio q/(n-m). 

Otherwise, q can be used as a test on the adjustmer ti for, if the 

observation errors have the Gaussian distribution, then q has the 

chi-square distribution with n m degrees of freedom. Sc reprents 

the covariance matrix of errors in the adjusted parameters. The 

square n ols of the diagonal elements of SQ are the standard 

deviations of the adjusted parameters. The correlation matrix of 

:>■■ parameters can be obtained from SQ by dividing the i,j 

pif ment by the produc* of the standard deviations of the ith and 

jth parameters, for all i and j. Other results which follow directly 

from the results for the unpartitioned case are the covariance 

matrix of the adjusted observations P.SGP,1 and the covariance 

matrix of the residuals Sj   - P.^G^  ■ 
The solution of the nonlinear problem can now be described 

as follows. An initial approximation is used to compute the 

discrepancies E, and the partial derivatives P . Then D is 

computed from (2-23) and is added to the current approximation 

for G to obtain a better approximation. This process repeats until 

there is no further appreciable change in G. Then the final values 

from the last iteration can he used to obtain SG, V,, q, and the 

other derived quantities descme-J above. Of course, for 

convergence to the abs-oluie minimum of q rather than 

convergence to some local minimum or divergence, it is necessary 

that the initial approximation be sufficiently close to the true 

solution. In most practical problems this is not critical; in fact, 

often there is only one minimum. 

As p.-eviously discussed, the above solution for G, when 

converged, produces the true generalized least-stiuares 

adjustment regardless of the nonlmearity However, the 

properties that the solution for G is minimum-variance and 

unbiased are only approximate in the nonlinear case. Also, as 

previously discussed, SQ as computed above is only approximaiely 

the covariance matrix of the errors in the final value of G in the 

nonlinear case.    However, if the amount of nonlinearity over the 

range of the measurement errors is small, these lesults will be 

fairly accurate. 
Often it is desired to have observations directly on the 

parameters. There are several possible reasons for this. There 

may be some a priori information about the parameters that one 

wants tu combine into the solution. Also, it may be desired to 

give the initial anproximations a very small amount of weight in 

the solution, so that in case one of the parameters would 

otherwise be indeterminate, it will be constrained sufficier fly to 

prevent the H matrix from being singular and thus to allow a 

solution for the other parameters to be obtained. Finally, it may 

be desired to remove a parameter from the adjustment and to 

constrain it to a fixed value. This can be done by assigning a 

very large weight to the given value (although it would save 

computer time to delete this quantity from the parameters in the 

program insteadV In any of these cases the desired effect can be 

achieved by creating an additional m by m P, matrix, say P0, equal 

to the identity matrix. Corresponding to this there is E0, equal to 

the given a priori value of G minus the current approximation of 

G, and an m by m matrix W0, the desired a priori weight matrix. 

These are included ir, the summations for H and C just liKe any 

other observations. 

A few comments should be made about the numerical 

aspects of performing the compulations. The H matrix is always 

non-negative defir.ite; that is, if it is not singular It is positive 

definite. The    best    strategy    to    use    when    inverting    a 

positive-definite matrix by an elimination technique is to pivot on 

the main diagonal. (See [6].) Therefore, a simple matrix inverter 

without any pivoting can be used to obtain H , H is also 

symmetrical; therefore, some computation time can be saved if an 

inverter which makes use of this fact is used. However, if n is 

considerably larger than m, much more time is spent in computing 

H than in inverting it, so this is nardly worth (he trouble. In 

problems where the solution is nearly indeterminate, H will be 

nearly singular, and much accuracy can be lost because of 

numerical roundoff error. In such cases it may be necessary to 

use double precision in the computations for H, C, D, and SQ 

according to (2-23), including ttu inversion of H. (If a good 

inverter is used, there is usually not much point in having it in 

double precision unless a double-precison H is available to invert, 

as explained in [6].) However, high precision is not needed in 

computing the discrepancies E, and the partial derivatives P,, as 

long as consistent values are used thr ughout the computations 

for H and C. 

III.   CAMERA MODEL 

In this section we describe a method for computing the 

discrepancies and partial derivatives for the camera calibration 

problem so that the general solution described in the previous 

section can be performed. In this method the computations are 

expressed in terms of matrices and vectors as much as possible, 

so that the partial derivatives are easy to obtain. In the computer 

program which uses this method, the matrix operations are 

performed numerically by standard procedures. Therefore, there 

is no need to expand these equations to scalar 'orm analytically, 

except in a few cases where considerable computation time can 

be saved. 

First, the notation used here will be described. Each 

camera has a Cartesian coordinate system with the origin at the 

lens center, x to the right in the film plane, y up in the film plane, 

and z outwards along the optical axis. (The film plane is 

considered to be in front of the lens center at a distance equal to 

the focal length.) Thus the coordinate system s left-handed. The 

azimuth   and   elevation   of   the   Camera  2  Origin  relative  to  the 



105 

Camera 1 coordinate -jyslem are denoted by t/, and u2 (positive 

to the right from the z axis and up), respectively. The pan, till, 

and roll of the Camera 2 coordinate system relative to the Camera 

1 coordinate system are denoted by'/l,, fl2, and /?.,, (positive 

right, up, and right), respectively. The focal lenp.th of Cameras 1 

and 2 are denoted by f] and fj, respectively. Two vectors that 

will be needed later aie defined as follows; 

T     - (3-1) 

The symbol X denotes the vector cross product. 

As formulated in the previous section, the general solulior 

method required measurments to be mads directly on quantities 

that are functions of the parameters. However, liiiä Is not quite 

the situation that we have. Here the parameters are c^,, ci2, ß^, 

ßz, and ß-j (and perhaps I, and fj), and the directly obsp'.able 

quantities are x,, y,, x2, and y£. Brown [4] describes a way of 

handling such situations within the general formulation. However, 

this is not necessary fo^ our purposes here. We will merely 

propagate the error estimates of the actual observations into the 

quantity that we use as the discrepancy, in order to obtain the 

correct weights, and will consider the observations to be 

measurements directly on the discrepancy on any one iteration. 

In general, error propagation is done by premultiplying the 

covariance matrix by the matrix of partial derivatives of the 

iransformation and postmultiplying it by the transpose of the 

matrix of partials. (This amounts to a linear approximation. Since 

the discrepancy that we will use will be some distance in the 

Camera 2 film plane, and since we will consider the measurements 

to be made 'n this plane, this transformation is linear and thus the 

propagation is exact in this case.) 

Assume that for each point used in the adjustment ai 

arbitrary point Xj.y, in the Camera 1 film plane is picked, and 

than the position of the corresponding image point »j,yj in the 

Camera 2 film plane is measured. Let the accuracy of Xj and y2 

be given by the standard deviations (rx and CT,, and the 

covariance V%v. (The covariance matrix of <j and yj consists of 

0",, and 0"^ on the main diagonal and Cr^ on both sides off the 

diagonal.) 

The discrepancy e consi. Is of a component of the distance 

(rom the point x2,y2 to the nearest point of the line segment 

which consists o( tlv; projection into the Camera 2 film plane of 

the ray defined by th? Camera 1 lens center and point x^y, in 

the Camera 1 film plane. This Is a line segment because a point at 

an infinite distance on this ray projects into a specific point in the 

Camera 2 film plane (unless the ray is parallel to the film plane). 

The coordinates of this infinity point (in the Camera 2 film plane) 

which defines the end of the line segment are denoted by x0,yC|. 

If the point Xj,yj is beyond x^y,, (in the direction of the line 

segment), there are two components of the distance between 

these two point», and thus there are two observations lor this 

point (two components of the vector E). Otherwise, e consist of 

the perpendicular distance Irom Xj,y? to the line, and there is 

only one observation for this point. 

The first step tn deriving the needed mathematics consists 

of defining the rotation matrice' associated with the angles oq, 

oCj, /?], ßz, and ßy A prime (') denotes the t rivative of the 

specified matrix with respect to the associated angle.   Note that 

Aj and Aj are defined with the opposite direction of rotation from 

B, and B2. This is oecause the A's will be used to rotate a vector 

whereas the B's will be used to rotate the coordinate system. 

cos  Oj        0       s i n a 

0 1 0 

■Bine,       0      cos a 

1             0 0 

0       cos  «j sin Oj 

0 -s in oij cos Oj 

cos (3;        0 -sin (5, 

0              1 0 

si n (3,       0 cos (3| 

1 0 0 

0       cos  (32 -sin 3j 

0       s in ß2 cos (32 

-sin a 0      cos a. 

0 0 0 

-cos a,       0    -sin a 

cos (3;,     -sin (5-, 

sin (3;;       cos (3D 

0 0 

0 0 0 

0    -sin a2      cos Og 

0    -cos dj     -sin Uj 

-sin (3|       0    -cos (J, 

0 0 0 

cos 13,      0    -sin (5, 

0 0 0 

0    -sin (3j    -cos (32 

0      cos pj    -sin (Jj 

■sin (Sj     -cos (33       0 

cos |3j     -sin (J3       0 

0 0 0 

(3-2) 

Now we derive the infinity point x0,y0. An image point in 

the Camera 1 film plane has a three-dimensional position in the 

Camera 1 coordinate system given by the vector T ■ [x, y, fj] . 

Since we are concerned at the moment about the infinity point we 

can ignore the translation between the camera coordinate systems 

and consider only the rotation. To express the vector T in a 

coordinate "ystem aligned with Camera 2 we must rotate the 

coordinate syrtem through the pan, tilt, and roll angles. Let tne 

components of the resulting vector be denoted by the temporary 

variables u, v, and w.   Thus 

B-JBJBJT (3-3) 
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The projection of the point given by the above vector into the 

Crmera 2 film plane is given vy a vector in the same direction as 

the above vector but having a z component equal to f2. 

Therefore, 

f,u 

Vo    ■=     — 

(3-4) 

The partial derivatives of [u v w] with respect to /(!,, /f?j, and ß^ 

can be obtained by replacing in turn B], Bj, and Dj by B,', Bj, and 

Bj, ■'espectively, in equation (3-3). If the pa-tial derivatives with 

respect to f, are desired, they can be obtained by replacing T by 

I, (3-3),   since   6J/äf1 Equations  (3-'?) then cm  be 

differentiated  to obtain the partial derivatives of x0 and y0, as 

follows: 

f2 du 

w   r)% 

f;U    f>W 

'     ^    ^g 

^0 f. dv 

w  dg " ^ ig 
u 

w 

V 

w 

(3-5) 

where g denotes /?,, ß!, ß^, or f,. (The partial derivatives of Xj, 

and y0 with respect to a:, and u2 are zero.) 

The point x^.y,, is the end of the desired line segment. To 

completely determine it we need also the direction cosines of the 

line segment (in the direction away from x,,^;,), denoted by cx and 

c,,. These can be found by the following reasoning. The desired 

line is the intersection of the Camera 2 film plane and the plane 

defined by the Camera 2 lens center and the ray corresponding 

to the Camera 1 image point Xj(y]. 

Thus we proceed as follows. The ray which corresponds to 

the image point Xj.yj in the Camera 1 film plane is given by the 

direction of the vector T = [x, yj f,]7, in Camera 1 coordinates. 

First we must determine the plane containing this ray and the 

Camera 2 lens center. The normal to this plane is given by the 

direction of the vector cross product of T and the vector giving 

the direction of the Camera 2 lens center from the origin, This 

laltor vector is A^jl^; that is, the unit z vector roiated through 

the elevation and azimuth angles. Therefore, the normal to the 

desired plane is T x A|Ajlz, in Camera 1 coordinates. To express 

this normal in Camera 2 coordinates we must rotate the 

coordinate system by the pan, tilt, and roll angles. The result is 

BJBJBJGT x A^jl,). The normal to the Camera 2 film plane in 

Camera 2 coordinates is lz. The vector along the intersection of 

these two planes is the cross product of the normals to the two 

planes, namely 1^ x BjBjB^T x A^jlj). This is the desired line 

which is the projection of the ray into the Camera 2 film plar , 

expressed in Camera 2 coordinates. Since the vector lies in It .' 

Camera 2 film plane, its z component is zero. Thus, if we redefinj 

u and v as quantities proportional to the direction cosines of the 

desired line, we have 

I, x BjBjBjtT x AjAjg (3-6) 

Application of either the right-hand rule or the left-hand rule 

consistently to the above two cross products will verify that the 

above vector has the correct polarity, that is, it points away from 

"oiVo «long the line segment. The direction cosines c, and c,, can 

now be computed simply as follows from the results of (o-6): 

(3-7) 

The partial derivatives of [u v 0] with respect to the rf's 

and ß's can be obtained by replacing in turn the appropriate A's 

and B's in equation (3-6) by the corresponding A''s and B''s from 

(3-2). The partial derivatives with respect k f, can be obtained 

by replacing T in (3-6) by \I. Then the partial derivatives of c, 

and c^ are obtained as follows, where g denotes any of the 

parameters («•'s, ß's, or fj)i 

, du iSv 

dCj 
v1- 

dg 
- u V 

ög 
dg 

u2 dv 

Sg 

r* 

- uv 
du 

dg ,3 

(3-8) 

Now the discrepancy, its partial derivatives, and its weight 

can be computed. The subscript i will b3 U5.;d to denote to which 

of the image points these belong, although this subscript will not 

be used on the other quantities associated with each point, in 

order to avoid confusion with the other subscripts. 

If (x2 - x0)c)( + (y2 - y0)c>, i 0, then the point Xj,ys does 

not lie beyond ihe the end of lha line segment defined by x0, y0, 

cx, and c^, and the discrepancy e, is the perpendicular distance 

from the point to the line.   Therefore, 

{y? -y»)««" (Xj -x0)c„ 

08 

dg 

dc„ 
t. -» + e» ^(3-9) 0 dg    • ^ 

0V 

where g represents any of the parameters (od's, /Ts, or fs). (The 

way in which the polarity of e, is defined does not matter, as long 

as the polarity of its derivatives is consistent with this.) If the 

error in this point is uncorrelated with those of all other points, 

the correct weight for this point is the reciprocal of its variance: 

1 
o. 

(3-10) 

and the subscript i is the same as i in the summations in equation 

(2-23). 

On the other hand, if (xj - x0)c, + (yj - y0)c> < 0, there 

are discrepancies (the two components of the vector Er) which 

are the two components of the distance from Ihe point Xj,yj to 

the end of the line segment (x0,y0). Any two orthogonal 

components can be used here; for convenience we will use the x 

and y components.   Therefore, 
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clE, 
-ox0/äg 

-ay0/ag 

(3-11) 

1 

a large nonlinearity Is introduced. This will cause, among other 
things, the estimates of error in the solution obtained by the 
equations in Sertion 2 to be underestimates if the point Xj.yj lies 
beyond the infinity point or overestimates if the point appears to 
be closer than infinity. Furthermore, this nonlinearity is caused 
by a discontinuity. Thus using the second derivatives probably 
Will not help. That is, equation (2-19) may be no better than 
(2-20) in this case. 
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REPRESENTATIONS FOR IMAGE DATABASES 

David M. McKeown, Jr. 

Department of Computer Science 

Carnegie-Mellon University 

Pittsburgh, PA 15213 

Summary 

At Carnegie-Mellon we have had a modest 

research effort for the last two years In 

determining appropriate and functional 

representations for Integrated Image databases. 

The need for image databases for knowledge 

acquisition, photo Interpretation and performance 

evaluation Is clear. Traditional approaches to Image 

databases primarily address the problem of 

efficient access and display of the signal 

component of the image. Part of the reason for this 

is that Inadequate tools are available for describing 

and representing the symbolic aspects of the 

imagery. This area of research has also suffered 

because researchers do not tend to work with a 

large corpus or variety of Imagery and have 

therefore ignored the problems of structuring large 

image databases. However, photo Interpretation 

systems will have to process thousands of Images, 

produced by a variety of sensors at a continuum of 

resolutions. Such systems will rely upon symbolic 

knowledge (as well as signal knowledge) of 

imagery, terrain, and cultural features as a basis for 

Its Interpretation, and are likely to produce symbolic 

descriptions as a result of the interpretation 

process. 

For these reasons we must properly address 

the Integrated Image database problem If we are to 

make progress in building systems for photo 

Interpretation tasks. In this paper we will attempt 

to outline the datexypes Inherent In an Integrated 

image database and show that they are useable for 

a variety of photo interpretation task scenerlos. 

1. Integrated image Databases 

We will start by describing what It Is we wish to 

have represented In the database and the types of 

operations and accesses made to the data. Our 

discussion will be limited to the ex+ernal view 

(conceptual view) of the datatypes: methods of 

access, operations on and between datatypes. We 

will not dlscusd Internal representation or 

implementation of the database. There are two 

major points that we wish to make. First, that an 

Integrated Image database should contain (at least) 

three types of information: image data, te.raln data, 

and nap data. Secondly, that each of these 

datatypes should be viewed along two 

representational dimensions; the signal domain and 

the symbolic description domain. 

1.1 Datatypes 

In this section we will define our primitive 

datatypes: 

Image data consists of collections of digitized 

images (from photographs or direct sensor output) 

uf vertical and oblique views of areas of Interest, 

taken over time, under a variety of conditions, 

sensors and signal resolutions. 

Terrain data consists of discrete elevations 

referpnced above o, below sea level, registered to 

a known coordinate system. Depending on the 

application, it may be appropriate to maintain 

multiple terrain data computed over a variety of grid 

sizes. 

Map   data   consists  of descriptions of cultural 
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features, their structure and composition, size and 

location. Map features are typically, but not solely, 

limited to population centers, landforms, roads, 

railroads, lakes, rivers, power generation and 

distribution fficllltles, major Industries, dams and 

bridges. 

While we consider the above to be our primitive 

representational datatypes for an Integrated Image 

database, It Is certainly possible to add other 

sources of knowledge for photo Interpretation si'oh 

as sensor characteristics and physics, climatic and 

meteorological data, range data, and task specific 

data as datatypes. 

1.2 Representational Dimensions 

We can view each o' the datatypes as a 

hierarchy of abst; actions along two 

representational dlmen jlons: the signal domain and 

the symbolic description domain. The signal 

.esolutlon of an Image Is associated with the 

digitization aperature or the physical 

characteristos or optics of the sensor which 

produced rhe Image. We can obtain a hierarchy of 

signal descriptions of an Image by varying the 

digitization aperature, or through successive 

applications of Image operators, such as the 

median, over the Image. 

For terrain features, the signal domain hierarchy 

corresponds to the grid size over which the 

elevation points were computed. The number of 

levels in the terrain sigrai description hierarchy Is 

likely to depend on the smoothness of the terrain. 

I.e., mountainous areas will require a larger number 

of levels than relatively flat areas. 

The signal description hierarchy for map 

features Is analogous to the range of scales at 

which an area of interest could be mapped. The 

scale at which maps are drawn and the classes of 

cultural features they are likely to depict are 

determined by the function they are to serve. For 

example, that of a guide for tourists In Washington 

D.C. or hiking guide In a National Park. The signal 

description of a map should generate a 

multi-dimensional descriptor of cultural features on 

a  discrete  basts.    For each point In the map the 

signal description contains an Indication of the 
cultural features present at that location. Some 

likely cutural dimensions are: industry, 

transpor'.ation, storage, vegetation and ground 

cover  and waterways. 

The symbolic resolution hierarchy for each of 

our primitive representational datatypes can be 

viewed as collections of abstractions which 

describe aggregates of signal datatypes. Since the 

signal resolution determines only the lower bound at 

which the symbolic descriptors have meaning, there 

can be (as In the signal domain) a continuum of 

symbolic resolutions. The symbolic hierarchy for 

Image descriptions Is most often described in terms 

of objects, tcglons or features. For example, at a 

coarse symbolic level, an urban aerial scene might 

be broken Into a city region, river region, and an 

airport region. At a finer symbolic level, regions 

composed of maj^r roads. Industrial areas, 

residential areas, anc! park areas might be 

described, subsumed by the original city region. 

The symbolic description hierarchy for the 

terrain datatype can be represented by 

aggregation of discrete elevations into topographic 

features such as hillside, ravine, ridge, peak, and so 

on. Symbolic terrain descriptions containing the 

position or orientation of a ridge line, or large 

regions of local elevation minima, would have utility 

In the registration of images to maps. Again, 

symbolic terrain descriptions should be provided for 

In the database along a range of resolutions. 

Symbolic descriptions for maps should allow for 

the aggregation of map signal descriptions Into 

cultural features. The analogy between scale for 

symbolic map descriptions and resolution for 

symbolic Image descriptions is clear. However, 

since we required that the map signal description 

produce a multl-dlmenslonal cultural description (ie. 

dwellings within farmlands, bridges over rivers) It Is 

appropriate that each dimension in thu signal 

descriptor produce a complete and disjoint symbolic 

map description. The notion of cultural map 

"overlays" appears to be In harmony with how maps 

are generated, why they are color coded, and how 

humans Interpret them. 

1_ 
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1.3 Datatype Access and Operations 

For each of our datatypes: Image, terrain, and 

nrsp, the Integrated Image database should provide 

access to both the signal and symbolic components 

c>* the datatypes. 

Signal addressing for Image and terrain 

datatypes Is fairly well understood. These 

datatypes can be stored In a raster organization 

since many low level Image processing algorithms 

tend to perform a global co.nputatlon rver the entire 

two dimensional signal. Pyramid organizations can 

allow efficient access to signal descriptions at a 

range of resolutions. Block organizations within 

levels of the pyramid may improve access times to 

signal elements for certain high level operators. 

The signal representation of map datatypes is 

somewhat more difficult since a particular map point 

may be associated with a variety of cultural 

features. We propose disjoint "map overlays" with 

a given overlay representing a specific cultural 

feature type. These overlays may be efficiently 

implemented as binary masks. 

For most complex photo interpretation tasks the 

interprfctatlon process will require the ability to 

retrieve previously processed lmac,ery which covers 

the area In question, or contains features similar to 

those being Indentlfled. Thus the ability to find and 

display datatypes both In terms of content and 

location should be provided. We have come to call 

this type of Image data operation symbolic 

SfJOiesslng.  For example; 

- Image data: "find all of the Images 
containing bridges over the Potomac 
river", or "how many Images contain 
the Fort Belvoir area". 

- terrain data: "show me all ridges 
whose length Is greater than one 
mile", or "display all plateaus whose 
elevation Is 1000 meters". 

- map data: "find all forest and farm 
fields between 50 and ICO acres", or 
"display ali four lane divided 
highways". 

The fundamental operation on thesp datatypes 

Is the signal to symbol mapping. This mapping 

associates    a    collection    oV   signal   descriptions 

features with a symbolic name. Thus, a collection 

of Image signal description points (pixels) which 

cover an urban area could be aggregated to form a 

collection of symbolic entities: power station, harbor 

area, Industrial area, park, etc. The terrain 

datatype operator maps discrete elevations Into 

symbolic topological features. Similarly the signal to 

symbol map operator would generate cultural 

overlays from the map signal. 

2. Photo lnterpretat[onTdSks 

There exists a variety of tasks which can be 

addressed as applications of an Intelligent 

photographic Interpretation system. We Intend to 

use these datatypes on some representative task 

domains: symbolic feature detection, image to map 

registration, change detection anr1 tracking, map 

generation and updating, land use and cultural 

analysis. 

3. Examples 

We plan to produce for the IUS workshop 

meeting, Nov. 1979, r.oma examples of a typical 

Integrated database enty for an aerial image 

centered over Occoquan River In Virginia. These 

examples will Illustrate how each of our primitive 

datatypes can be used to describe major features Ir. 

the Image In both the signal and symbolic 

description domains. 

4. Conclusions 

In this paper we have focused on two major 

aspects of representations for Image databases. 

First, we propose that an integrated image database 

contain Image dtta, terrain data and map data as 

primitive datatypes. Secondly, we believe that each 

of these datatypes should be viewed along two 

representational dimensions, the signal domain and 

the symbolic description domain. The database 

should have facilities to maintain features at 

varying resolutions along each of the 

representational dimensions,        and        provide 

mechanisms  for  symbolic  accessing  and signal to 

symbol mapping. 



112 

LEVELS  OF  REPRESENTATION 
IN  CULTURAL   FEATURE  EXTRACTION 

Azriel  Rosenfeld 

Computer Vision  Laboratory 
Computer  Science  Center 

University  of Maryland 
College  Park,   MD  20742 

ABSTRACT 

Tnis paper describes the extraction of cultural 
features such as roads and buildings from aerial 
photographs.  It describes an approach based on 
linking edge pixels into edge segments; grouping 
these into feature segments such as pairs of auti- 
parallel edges; and finally extracting global fea- 
tures.  This involves three levels of representa- 
tion, based on pixels, edge segments, and feature 
segments, respectively.  Processing techniques that 
can be us-d at each of these levels are described, 
and preliminary results are presented for small 
portions of an aerial photograph of the Ocroquan, 

VA area.  The approach is also applicable to 
other types of imagery. 

1.  INTRODUCTION 

This paper describes an approach to the extrac- 
tion of cultural features such as roads and build- 
ings from aerial photographs.  The approach in- 
volves three stages, at which successively more 
global knowledge about the features is used to 
guide the extraction process.  Each stage uses an 
appropriate type of data representation; arrays of 
pixels, sets of edge segments, and sets of feature 
segments are used at the successi'-e stages. 

'n Lhe following sections oi the paper, the 
stages of the feature extraction process, as they 
are pre0ently conceived, are described.  The rea- 
sons underlying various design decisions are given; 
this subject is also discussed in the curren« 
status report on this project, elsewhere in these 
Proceedings.  Examples of results obtained at the 
first two stages are also given.  These examples 

involve Suall portions of an aerial photograph of 
th*.  Occoquan, VA area, distributed by DARPA to the 
participants in the Image Understanding Program. 

The approach taken in this paper was motivated 
by the following considerations: 

a)  It is necessary to develop methods lhat can 
deal with cases where map information, giving the 
approximate locations of the features to be ex- 
tracted, is unavailable.  The SRI approach to road 
finding [1] does make use of such information. 
Evidently, however, there will be many situations 
where map information is not available or is un- 
reliable, particularly In cases Involving features 

of a transient or short-lived nature, or areas 
that are not frequently mapped at the desired level 
of detail. 

b) An effort has been made to use methods that 
can be Implemented by parallel processing tech- 
niques, ,articularly at the lower levels.  If in- 
herently sequential methods, such as road tracking, 
are used too extensively, it will be difficult to 
implement the feature extraction process in real 
time. 

c) In order to reduce computatiMnal costs, the 
approach has been broken up into stages, at which 
increasingly global and more specialized knowledge 
about the features to be extracted is used.  The 
first stage involves local operations on pixels, 
using general Information about the local proper- 
ties (gray level, color, contrast, etc.) that 
pixels belonging to the features are likely to 
have.  Since at this stage we are examining every 
pixel, it is important that only simple computa- 
tions be performed.  The principal output of this 
stage is a set of line segments representing frag- 
ments of feature edges, and labelled with various 
property values computed for these fragments.  The 
second stage groups these edge segments into pieces 
of features ("feature segments"), based on "semi- 
local" properties of the features (curvature, 
parallel-sidedness, etc.); the third stage groups 
the feature segments into global features, using 
global information about their shapes and spatial 
relationships.  Thus at each stage, the computa- 
tions are more complex, but they are applied to a 
smaller set of data. 

d)  Since the approach involves several succes- 
sive stages of segmentation or grouping, if errors 
are made at an early stage, they may be difficult 
to correct at later stages.  It 1c important to 
preserve the correspondences between entities at 
successive levels—i.e., between edge segments and 
the pixels that comprise them, and between feature 
segments and the edges of which they are composed; 
this will make it easier to locate the sources of 
any errors.  It is also highly desirable to avoid 
firm decisions at any stage, and to avoid the use 
of processes that involve thresholds, but rather 
to make fuzzy or "probabilistic" decisions when- 
eve. possible, thus deferring commitments until 
they are confirmed by corroborating evidence.  Note 
that when firm decisions are made, inputs that 
differ by arbitrarily small amounts may give rise 
to drastically different outputs.  If such deci- 

sions must be made, they should be based on as much 
information as possible. 
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2.  THE PIXEL LEVEL 

Cultural features often contrast with their 
surrounds, and are usually bounded by sharp, local- 
ly straight edges.  These characteristics can be 
used as guidelines in classifying pixels as possi- 
bly belonging to such features.  On the other hand, 
information about feature shapes and spatial rela- 
tionships would normally not be very useful in 
making decisions about pixels, unless the informa- 
tion is very specific, i.e., template-like.  Know- 
ing that houses are rectangular, for example, does 
not help us in classifying a pixel as being possi- 
bly part of a house, since we do not know its posi- 
tion in the house, so that we can say very little 
about how it should be related to other pixels if 
it is indeed part of a house. 

If the features have characteristic gray levels 
or colors, we should certainly use these properties 
in making decisions at the pixel level; but in non- 
multispectral imagery, it will usually not be pos- 
sible to characterize features in this way.   More- 
over, if we do classify the pixels based on their 
gray levels, we will often obtain large connected 
components of constant gray level; thus using a 
very local classification criterion (the pixel's 
gray level) may give rise to relatively global 
segments, and this will often be unwarranted. 

Thus this process should produce sets of high-mag- 
nitude responses that lie on (thin) straight (or 
smoothly curved) edge segments, and such that the 
associated directions are locally very consistent. 
Note that the process involves no thresholds or 
decisions, and that it is readily implementable in 
parallel. 

Figure 1 illustrates the results of applying 
such processes to the edge responses in a small 
portion of the aerial photograph.  The desired 
enhancement effects are all quite apparent.* The 
specific algorithms used were described in an 
earlier technical report [3].  Many variations on 
these algorithms could have been used, and would 
have yielded similar results; e.g., see 14]. An 
edge enhancement relaxation scheme could also have 
been used. 

The approach to feature extraction at the 
University of Southern California [5] is also 
edge-based, but it involves a one-pass process of 
nonmaximum suppression and thresholding, rather 
than an Iterative, quantitative process.  The USC 
approach is thus computationally cheaper, but it 
is probably more likely to make errors. 

These considerations have led us to propose the 
use of an edge-based approach at the pixel level. 
We first use local operators to estimate the magni- 
tude and direction of the gradient at each point. 
We then use an iterative process at the pixel level 
to adjust the magnitudes and directions in the 
following way: 

a) The magnitude is increased in the preserve 
of high magnitudes at neighboring points in 
the tangential direction, provided their 
directions are smooth continuations of that 
direction;  and it is decreased in the ab- 
sence of sucli neighbors.  This strengthens 
the edge responses at points that lie on 
straight or smoothly curved edges, and 
weakens them elsewhere. 

b) At the same time, the direction is adjusted 
to make it agree more closely with these 
neighboring directions; the amount of ad- 
justment depends on the magnitudes at these 
neighbors.  This tends to smooth out irre- 
gularities in the edge responses caused by 
noise.* 

*An iterative scheme could also be used [2] for 
edge thinning:  The magnitude is reduced in the 
presence of higher magnitudes at neighboring points 
in the graditnt direction, and increased in the 
presence of lower magnitudes.  If this is done 
iteratively, the magnitudes at the tops of the 
"ridges" of responses increase, while those at 
other points decrease, so that the edge responses 
are thinned. 

3.  EDGE SEGMENT CONSTRUCTION 

We now want to construct a data representation 
based on entities more global than pixels; this 
will allow us to use mere global knowledge about 
cultural features, e.g., simple types of shape In- 
formation, to classify these entities.  Straight 
or smoothly curved edge segments are obvious 
choices for these entities, since the pixel-level 
processes tind   to produce sets of edge responses 
that lie along such segments. 

Extracting edge segments inherently involves 
some sort of threshold criterion, since one must 
decide whether or not to construct a segment cor- 
responding to a given collection of edge responses. 
Such decisions should be easier for enhanced 
responses, but they are still nontrivial, and 
should be made on the basis of as much information 
as possible.  If we simply threshold the (enhanced) 
edge magnitudes, we are making the decisions on a 
pixel by pixel basis, usir.g only the information 
concerning that pixel, which Is undesirable. 
(Note, however, that when we do this for enhanced 
responses, the information associated with a pixel 
also reflects the natui. >.- of It« neighbors.) 

* Since no thinning was done, the magnitude rein- 
forcement process tends to thleken the edges; but 
this is not considered harmful, since in any case 
line segments will be fitted to the edges at the 
next step, and these will be much the same whether 
or not the edges are thin—in fact, they may be 
more reliable if the edges are thick. 
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A somewhat safer idea is to make decisions 
about pixels in the context of their neighborhoods. 

For example, one mlfent "accept" a pixel if its own 
magnitude, and the magnitudes of two of its neigh- 
bors in the tangential directions, are sufficiently 
high.  (Note that this idea is very compatible with 
the enhancement process; it essentially accepts 
just those pixels that would be strongly enhanced.) 
At the same time, one can establish links between 
each accepted pixel and its neighbors; chese links 
can then be used to define connected components of 

accepted pixels, which then constitute the desired 
edge segments.  Such a linking approach is used by 
USC [5].  Alternatively, once can use a global 
straightness criterion in defining the connected 
components by requiring each pixel's direction to 
lie close to the average direction of the already 
accepted pixels [3]; this breaks up smooth curves 
into segment» having relatively low net changes in 
slope from one end to the other.  Figure 2 illu- 
strates the types of edge segments obtained using 

this criterion. 

It would be even more desirable to make deci- 
sions about entire groups of linkable edge pixels; 
but the number of such groups is enormous, and it 
is utterly impractical to consider all of them. 
However, suppose that we are only interested in 
groups of edge pixels that lie on a curve of a 
given shape, e.g., on a straight line.  In this 
case we can use a Hough transform approach to map 
collinear sets of edge responses into compact peaks 
in the Hough space.  We must then use a threshold 
criterion to detect the peaks, but this criterion 
is now being applied to an entire group of colli- 
near edge pixels, rather than on a pixel by pixel 
basis.  It should be mentioned that we obtain a 
cleaner Hough space when we use enhanced edge 
responses, since the slope estimates are much more 
consistent than in the raw responses, and this in 
turn makes the estimates of the distances of lines 
from the origin much more consistent.  Of course, 
we should not merely use slope and distance (and 
response magnitude) to define clusters in Hough 
space; other properties associated with the edge 
responses, e.g. the gray levels on the two sides of 
the edge, should also be used if appropriate, to 
differentiate between responses that (probably) 
belong to different edges.  It may even be desir- 
able to use position along the line as a feature, 
in order to avoid clustering responses that are far 
apart in the image and have no responses between 
ther.  This more global. Hough-like approach to 
edge segment construction is currently under inves- 

tigation. 

4.  THE EDGE SEGMENT LEVEL 

We now have a set of edge segments, with each 

of which we can associate various properties, 
including its length, average slope, average 
strength, etc., as well as properties of the gray 
levels on the two sides of the segment's consti- 
tuent edge pixels, e.g. the means and standard 

deviations of these gray levels.  If desired, we 
can now use this information to search for missing 
parts of edges in the original image, so as to fill 
gaps in the edge segments and create longer ones. 
We can also now group the edge segments into linear 
feature segments, based on our knowledge about the 
expected geometrical properties of these segments, 
in this section we discuss some possible approaches 
to edge segment grouping.  For simplicity, we con- 
sider two simple types of grouping, based, respec- 
tively, on good continuation and on parallelism. 

Straight segments that are collinear, or curved 
segments that "point toward" one another, can be 
linked using criteria based on strength, length, 
distince, and good continuation, as well as simi- 
larity of properties [6].  (This assumes, of 
course, that such linking is consistent with what 
we know about the features that we are trying to 
extract.)  Linking across large gaps can be done 
much more reliably at the segment level than at 
the pixel level, since the information that we 
have about the segments (slope, property simila- 
rity, etc.) is more reliable than the correspond- 
ing' information about pixels.  At the same time, 
exploration of large gaps at the pixel level would 
involve an excessive amount of computation per 

pixel. 

This type of linking involves pairwise deci- 

sions; as pointed out in Section 3, it would be 
preferable to make decisions about entire groups 
of segments as to whether or not they -.onstitute 
good groupings, rather than making decisions about 

two segments at a time.  In general, it is not 
practical to consider all possible combinations of 
segments; but if we restrict ourselves to sets of 
collinear segments (or more generally, segments 
that lie on ■: curve of known shape) , it is compu- 
tationally feasible to evaluate all possible pairs 

of consecutive segments as possible groupings. 
Various criteria for evaluating such groupings are 
under investigation.  The problem is analogous in 
some respects to that of peak detection in wave- 
forms, since clusters of segments can be regarded 
as peaks in the density of segments along the line. 
Simple criteria for clustering collinear segments 
will often yield good results; for example. Figure 
3 shows the results of comoining pairs of consecu- 
tive segments that are separated by gaps shorter 
than the sum of their lengths.  Note that this pro- 

cess can be itorated. 

In addition to segment linking based on colll- 

nearity or good continuation, one usually also 
wants to link pairs of "antiparallel" segrosnl«, 
representing pairs of parallel edges whesf dark 
sides or light sides face one another, since cul- 
tural features often have parallel sides.  In the 
USC experiments [5], links are shown only for 
pairs having no segments between them; but in 
general, we should be allowed to link two segments 
even if there are other segments between them, 
since these other segments may be due to noise, or 
may represent features internal to the given one 
(e.g., a penthouse on a building, a divider strip 
on a highway).  Thus in general we must compute 
link merits for many pairs of segments, and then 



choose "best" pairs fof actual linking.  The merit 

function may depend on the strengths, slopes, 
lengths, and property value similarity of the seg- 
ments, as well as on their degree of overlap and on 
the distance between them, and on any special know- 
ledge that we may have about the properties of the 
desired features.  A number of simple merit func- 
tions are currently under investigation.  Note 
that the merit may be asymmetrical; for example, 
if a short segment and a long segment face one 
another, the merit of linking the short one to the 
long one may be much higher than that of linking 
the long one to the short one.  Given the merits 
for all pairs of segments, we can link all pairs 
having (mutually) highest merit; once we have done 
this, the linked segments are no longer candidates 
for linking, so that some of the remaining pairs 
may now have mutually highest merit and can now be 
linked.  This process can be repeated until no 
further linking is possible.  Figure 4 shows the 
results of applying this process using a very 
simple merit function, namely the fraction by which 
one segment overlaps the other divided by the 
distance between them, provided the segments have 
approximately equal slopes.  Several variations 
of this approach have also been tried, with essen- 

tially identical results. 

The antiparallel linking schemes just described 
are all based on pairwise decisions.  As before, it 
would be preferable to evaluate groupings of seg- 
ments that form antiparallel strips,  rather than 
linking such segments two at a time.  This would 
allow us to combine the collinear and antiparallel 
linking processes into a single strip clustering 
process.  Here again, a Hough-like approach might 
be used to detect clusters arising from strips. 
Such an approach is currently under investigation. 

segments.  Initially, each individual segment will 
be probabilistically classified, on the basis of 
its properties, as being (part of) a road, build- 
ing, etc.  These probabilities will then be adjust- 
ed based on their compatibilities with those of 
nearby or otheiwis" related segments.  One should 
not expect that a simple algebraic formula can be 
used to compute the probability adjustments; 
rather, they will be computed by a probabilistic 
"decision tree" associated with each segment. 
This approach should result in a generally consis- 
tent classification (which, of course, may still 
be ambiguous).  If inconsistencies remain, they 
will probably reflect errors in the feature segment 
extraction process, assuming that the compatibility 

models aie adequate. 

6. CONCLUDING REMARKS 

This paper has outlined a proposed approach to 
the extraction of cultural features such as build- 
ings and roads from aerial imagery.  The later 
steps in the approach have not yet been designed 
in detail, and some of the methods currently im- 
plemented at the earlier stages represent compro- 
mises made on grounds of expediency.  However, 
further work is being done at all levels, and it 
is expected that a reasonable approximation to the 
system outlined above will be implemented by mid- 
1980.  Tests of this system, and of variations on 
it, will then be conducted on DARPA-suppiied 

imagery. 
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Figure 1.  (a) Window of the Occoquan photograph, showing parts of Lorton reformatory 

Figure 1.  (b) Original Sobel gradient magnitudes and three iterations of the 
enhancement process 

Figure 1. (c) Gradient directions, displayed as gray levels ranging from black 
to white as the direction (from dark, to light) varies from 0" to 
±180°; originals and three iterations of enhancement 
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Figure 1. (d) Gradiput magnitudes displayed numerically on a scale of 0-63 for a small subwindow, 
indi.ated by tick marks in (a): (dl) subwindow gray levels; (d2) original gradient 
magnitudes;   (d3-5)  results of  three iterations 



1U 

(dA) 

o 
o 
0 
0 

46 
61 
IB 
0 

30 
49 
38 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

45 
62 
47 
0 

33 
51 
40 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

41 
61 
47 
0 

34 
!1 
45 
24 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

40 
60 
46 
0 

36 
53 
43 
0 
0 
0 
0 
0 
0 
0 
0 

0 
5 
0 
o 
0 

42 
63 
4S 
o 

41 
56 
41 
0 

11 
0 
0 
0 
0 
0 
0 

o 
o 
0 
0 
0 

47 
63 
30 
0 

41 
56 
44 
26 
0 
0 
0 
0 
o 
0 
0 

0 
o 
0 
0 
0 

49 
63 
47 
0 

42 
5S 
46 
26 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

55 
63 
47 
0 

43 
57 
43 
0 
0 
O 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

52 
63 
43 
0 

45 
60 
42 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

31 
54 
63 
45 
0 

45 
5B 
36 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
o 
0 

2S 
53 
63 
45 
0 

44 
58 
37 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

54 
63 
46 
0 

41 
53 
34 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

54 
63 
47 
o 

41 
52 
37 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

51 
63 
47 
0 

40 
49 
35 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

52 
63 
47 
O 

38 
50 
40 
21 
0 
0 
0 
0 
o 
0 
0 

0 
0 
0 
0 
0 

53 
63 
47 
0 

39 
51 
39 
0 
C 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

53 
63 
46 
0 

39 
51 
39 
0 
0 
0 
0 
0 
0 
0 
0 

Ü 
0 
0 
0 
0 

5B 
63 
45 
0 

43 
48 
0 
0 
0 
0 
0 
0 
0 
0 
0 

(d5) 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 

63 
63 

0 
0 
0 
0 
0 

63 
63 

63  63 
0   0 

63 63 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
« 
0 
0 
o 
o 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

0 
8 
0 
0 
O 

63 
63 
63 
0   O 

63  63 
63 
63 
0 
0 
0 
O 
0 
O 
O 
0 

0 
0 
0 
o 
0 

63 
63 
63 

63 
63 
0 
O 
0 
0 
O 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
o 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

Ü 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 

0 
63 
63 
63 
0 
0 
0 
0 
0 
0 

0 
0 
0 
O 
0 

63 
63  63 
63  63 

0 
63 
63 
63 
O 
0 
0 
0 
O 
0 
0 
0 

0 
0 
o 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
c 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
C 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
o 
o 
0 

63 
63 
63 
0 

63 
63 
63 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

63 
63 
63 
0 

63 
63 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Figure 1(d), continued 
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Figure  1.      (e)  Gradient  direction,  displayed  in degre 
es  for  the subwindow:     original 
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Figure 1.  (e) Gradient directions displayed in degrees for the subwindow:  three iterations 
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Figure 2.  (a) Edge components extracted from the subwindow in Figure 1 
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Figure 2.  (b) Line segments fitted to the edge components in the window 
of Figure 1 
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Figure 3.  Results of colllnear linking (heavy lines) for the window of Figure 1 
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Figure 4.  (a) Results of antiparallel linking (heavy lines, joined by dashed lines) for the 
window of Figure 3.  (b) The antiparallel pairs only 
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Figure 1'.  Analogous to Figure 1 for a second window showing part of a new suburban area 
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Figure 1'.  (dl-3) 
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Figure 2'.  Analogous to Figure 2 for the second (sub)wln()ow 
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Figure 3'.  Analogous to Figure 3 for the window of Figure 1'. 

(a) (b) 

Figure 4'.  Analogous to Figure 4 for the window of Figure 3'. 
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MIT'S REPRESENTATION TECHNiaUES 

Patrick H. Winston and the Staff 

The Artificial Intelligence Laboratory 

Massachusetts Institute of Technology 

In (Ms series of image understanding conference proceedings, me 

have stressed the key issue of representation. In particular, we 

have described the work of Horn and his collaborators using the 
reflertance map and the albedo image in working with sate. IU 
images, and we have described the work of Man and h.s 

collaborators using the primal sketch, the 2 1/2-D -ketch, and 

body-centered, 3-D models to work toward a comprehensive theory 
of recognition. 

Some of this material has be adapted from previous workshop 
proceedings. 

Horn Concentrates on Representing Image-formation 
Constraints 

Understanding an image implies a need to understand how light 

reflection depends on various combinations of surface material, 

surface orit'tation, and light-source position. Among the 

products are ools for dealmp with the following needs: 

* Automated generation of shaded relief maps. 

* Generation of low-level, obliquely-viewed images. 

* Generation of special maps that bring out particular 
terrain features 

* Ciassification of ground cover for crop prediction. 

* Matching images to terrain data for satellite 
navigation. 

* Making maps for automaiic or semiautomatic change 
detection. 

Doing all this requires a number of key representations: the 

reflectance map, the digital terrain map, the synthetic image, the 

multiple-sun synthetic .mage, the albedo image, and the 

change-detection image Since understanding reflectance maps is 

prerequisite to following Horn's work, we now describe what is 

involved 

The Reflectance Map 

The purpose of the reflectance map is to make explicit the 

relationship among observed intensity, surface material, surface 

oripntation, and light-source position. To see how. consider 

figure I. All points (p, q) in the space correspond to surface 

onentaiions. For a given surface material and light-source 

position, a surface's orientation determines its reflected light 

intensity. By drawing lines through points representing 

orientatloni that have the same intensity, one gets the 

isointensity lines shown This particular map is for illumination 
from the upper left. 

Synthetic Images 

Once it is potttble to predict intensities from material, 

orientation, and light-position information, it is then possible to 
produce synthetic high-altitude images. 

Figure 2 shows an image of a piece of Switzerland synthetically 

generated using a digital terrain model and a simple 

reflectance-map model of light reflection. Appropriate 

combinat.ons of ground cover and sun position can be used to 

give the user the best possible feel for the mountains and hills 
that constitute the terrain 

Interestingly, however, shaded relief maps need not conform to 

«■hat might actually be observed. Horn ha. made images that 

correspond to terrain illuminated by three sur.s, one blue, one 

red, and one green. Such images give special insight into terrain 

properties at a glance Slopes with exposure to the south, for 

example, are readily identified because of their red hue from the 
red, southern sun. 

The thru ;t of Horn's work, however, is to make images that 

match photographs as closely as possible with a view toward 

registering real aerial photographs with terrain models. Such 

matching is a vital first step toward improving the use of 
satellite images 
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Self-shadowed 

Figure I. A reflectance map.   Lines are loci of constant 

reflectance, showing the combinations of partial 
derivatives that reflect light equally.   This map assumes 

illumination from the lower left 

Albedo Images and Change-detection Images 

After a real aerial photograph is registered with a synthet.c one 
produced from a terra.n model, some areas will refuse to match 

well because the actual ground cover is not the one assumed In 
generating the synthetic •mage   Horn def.nes an atktdo image to 
be an image In which each point's intensity is the ratio of the 
intensity in the real image to the intensity in the synthetic image. 
In addition to use in classification, it seems likely that albedo 
images will be useful in change detect.on.   It would be nice if 
change could be detected by subtracting one image from another. 
Unfortunately, the changes M sun position from hour to hour 
and from day to day make thM impossible by swamping changes 
caused by changes in the ground cover.  Instead, Horn proposes 
to divide earlier and later real image intensities by the intensities 
predicted by the terrain model to give two registered albedo 
images   Then, one albedo image is subtracted from the other, 
producing change that will correspond to ground-cover 

differences occurring between the earlier and later recording 

times. 

For human use, the two albedo Images can be printed In 
different colors and superimposed. The human analyst's eye Is 

Instantly drawn to places where changes have taken place 

because their hue will differ from the surrounding area. 

Marr's View of Vision Theory Stresses Three Representations 

Marr has championed the idea that vision research must follow 

these steps: 

* First, a competence to be understood is precisely 

described. Often this means understanding the limits 
of the various modules of the human vision system. 
Knowing the strength of the various modules In an 
existing, clearly good system, helps us to know what 
competence is needed in the modules of the 

computer-based systems of the future 

* Second, npresenlaticms are selected or invented that 

facilitate expticH description of the targes processing 

products. 

* Third, the competence and the representations are 
combined Into a well-defined computation problem to 

be solved. 

* Fourth, algorithms are devised that perform the 

desired computation. 
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LflfCERT DENT Dt MORCLES 

ItlAi.E. .-.     ■      '"-I  ■■' 
data   i nter pti    »terl.        tti 

Figure 2  A synthetic images   THIS one. a pieu • ' jwitzerland, 

was made using the reflectance map of figure I 

* And fifth, results are validated  by computer 

implementation. 

At the highest level, observation of competences and definition 

of representations have led Marr to think in terms of three levels 

of representation The primal sketch makes information about 

intensity changes explicit. The 2 112 D sketch makes 

Information about surface orientation explicit. And the the 3-D 

model makes information about object shape explicit. 

Zero-Crossings and the Primal Sketch 

The raw primal sketch is constructed from the image, producing 

primitive description of the intensity changes in terms of edges, 

bars, blobs, and terminations, which are each characterized by 

positicr, u.Citation, contrast, and size. 

Computing thi aw primal sketch falls naturally into two parts: 

(i) since intensity changes occur in natural images over a wide 
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range of scales, we first detect and represent the intensity changes 

at a set of different scales; and (ii) the descriptions that arise 

from these Independent channels are then combined into a single 

primal sketch of the image. 

Marr and Hildreth have shown that provided some weak 

conditions are satisfied, intensity changes at a particular scale in 

an Image i(x,y) are best detected by locating the zero crossings of 

D2C(x.y):I(x,y), where C(x,y) is the two dimensional Gaussian 

distribution, and D2 is the Laplacian. The operator D G 

uniquely satisfies certain critical properties of localization in 

space and frequency.   The smallest operator usable in practice 

has a diameter of 9 picture elements in the central, positive 

region, with an overall support of roughly 1000 pixels. 

Interestingly, this is roughly the size of the smallest channel 

found in early human vision The zero-crossings are then 

represented by a set of oriented primitives called zero-crossing 

segments, each describing a piece of the contour whose intensity 

slope (rate at which the convolution changes across the segment), 

and local orientation is roughly uniform. Small, closed contours 

are represented as blobs, also with an associa'ed orientation, 

average intensity slope, and size defined by thnr extent along a 

major and minor axis. 

Figure %: Zero-crossings in the output of the convolution of the 

above image with a D2G filter. 

0 

Some intensity changes will give rise to zero-crossings over a 

range of adjacent scales, while others may be detected only at a 

single scale. In combining information from the separate 

channels, we take advantage of the observation that intensity 

changes in an image arise from surface discontinuities, or from 

reflectance or illumination boundaries, which all have the 

property that they are spatially localized. This observation led 

to the spatial coincidence assumption, which states that if similar 

information concerning the presence of an intensity change is 

found across a set of adjacent channels, they most likely describe 

the same physical intensity change, so their descriptions may be 

integrated into a single description of an edge. Information in 

one channel which does not coincide with that from adjacent 

channels is assumed to arise from a physical phenomenon which 

can only be measured at that one scale, so it gives rise to an 

independent descriptive element The final raw primal sketch 

contains a binary map specifying the position of original 

zero-crossing contours, together with the symbolic descripnon of 

the intensity changes, obtained from the separate channels 

Figures 3, 4, and 5 illustrate these components of the raw primal 

sketch. Figure 3b shows the map of zero-crossing contours for 

the image in Figure 3a, while figures 4 and 5 show symbolic 

representations of some of the descriptors attached to the 

locations marked in figure 3b Figure 4 illustrates the blobs 

detected in the image, and figure 5 the local orientations 

assigned to edge segments. These diagrams show only the 

spatial Information contained in the descriptors. Typical 

examples of the full descriptors are: 

jiiiiiiiiii 
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Figure 4: Symbolic representation of the blobs detected In the 

image The arrow marks the blob whose full descriptor appears 

in the text. 

Figure 5: Symbolic representation of local orientations assigned 

to edge segments detected in the image. The arrow marks the 

blob whose full descriptor appears in the text. 

(BLOB (POSITION 146 21) 
(ORIENTATION 105) 
(CONTRAST 76) 
(LENGTH 16) 
(WIDTH 6)) 

(EDGE (POSITION 104 23) 

(ORIENTATION 120) 
(CONTRAST-2.5) 
(LENGTH 25) 
(WIDTH 4)) 

The descriptors to which these correspond are marked with 

arrows 

The 2 1/2 D Sketch 

The 2 1/2 D sketch makes information about surface orientation 

explicit.  Figure 6 illustrates what is in the 2 12/ D sketch. 

Body-centered 3 D Models 

The key to shape recognition is to produce as consistent a 

description as possible of shape from the local surface 

information available in the 2 1/2 D sketch. The description 

should not, for example, depend on the viewer's vantage point. 

Marr and Nlshihara have slated the problem fomafiy in terms 

of three criteria, atcessibility, scope and uniqvtness, and 

sensitivity and stabtltly. From this they determined that to be 

suitable for recognition a shape representation should be (I) 

based on the arrangement of volumetric features such as centers 

of mass and axes of elongation or symmetry, (2) that these 

arrangements should be specified in an object-centered 

coordinate frame (as opposed to a viewer-centered one like that 

of the 2 1/2 D sketch), and (3) the description should be modulai 

with each module specifying the relative arrangement of a small 

number of related features which could stand alone as a shape 
description 

One example of such a representation is that of Nishihara which 

extends the generalized cylinder representation invented by 

Binford at Stanford. Figure 7 illustrates the representation. 

Nishihara's thesis deals with the problem of computing such a 

description from the 2 1/2 D sketch The work includes a 

consideration of a technique based on identifying chain! of local 

ridge points at a given resolution and over a range fixed by the 

resolution The results are not complete but early indications are 

promising and further work is in progress 

M 
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Figure 6: The 2 1/2 D sketch represents depth, contours of 
surface discontinuity, and the orientation of visible surfaces. 
The orientation of the needles is determined by the projection of 
the surface normal on the image plane, and the length of the 
needles represents the dip out of that plane (part a). A typical 
2 1/2 D sketch appears in b, although depth information is not 

represented in the figure. 
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Figure 7: This diagram illustrates the organization of shape 

information in a ?-D model description. Each box corresponds 

to a 3-D model; with its model axis on the left side of the box 

and the arrangement of its component axes are shown on the 

right side In addition some component axes have 3-D models 

associated with them and this is indicated by the way the boxes 

overlap The relative arrangement of each model's component 

axes, however, is shown improperly since it should be in an 

object-centered system rather than the viewer-centered projection 

used here This example shows a coarse overall description of a 

human shape along with an elaboration of one of its components 

(the arm). The important rharacteristics of this type of 

organization are. each 3-D model is a self-contained unit of 

shape information and has ?, limited complexity; information 

appears in shape contexts appropriate for recognition; and thi 

representation can be used flexibly (components czn be 

elaborated according to the needs of the moment or the time 

available, and a 3-D model description of a component is easily 

added to a description of the whole shape). 

"'■■' 
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Representation  and  Coramunioatlon  of  Image-Related  Information 

Kenneth  R.   Sloan,   Jr. 

Department of Computer  Science 
University of  Rochester 

Rochester,   NY   1U627 
ABSTRACT 

The display, transmission, analysis and 
storage of images present many problems having to 
do with both the images themselves and other, 
imjge-related information. Representation of the 
image-related information is especially difficult 
in a multiple-machine environment. 

At Rochester, we have been developing 
representations and communication strategies for 
images. The "Nam^-Type-Value Slot" is emerging as 
a powerful, general structure. It is proving to 
be especially useful for the representation o*- 
information about the image, the description of 
the image representation, and possibly the 
encoding of the image itself. 

1.  Introduction 

Image processing and image understanding (th9 
application of artificial intelligence techniques 
to image processing) require the storage of, 
communication of, and access to very large amounts 
of image data. 

Images  are 
two-dimensional 
(pixels).  Each 
the original 
"color" of the 
area.  Such im 
The color measur 
multi-spectral 
information such 
or  land use cat 
images. 

commonly  represented  as  a 
array  of  picture  elements 

pixel represents a small area in 
mage.  The value of a pixel is the 
original  image over that small 
ages are known as "raster" images. 
e may be binary, grey scale, or a 
vector.   Other  ("non-visual") 
as texture measures,  population, 

agories also may be represented as 

The primary use of raster  images is, of 
course, display.  Towards that end, the images may 
be manipulated to select sub-images,  enhance the 
features  of  interest,  change the range or 
distribution of "color" values, etc.  They may be 
analyzed by computer programs or by humans using 
interactive aides.  Such analysis may involve the 
application of segmentation techniques, texture 
measures, or "queries" to the  inage about the 
location of specific features.  In .U of these 
operations  (display,  enhancement,  analysis) 
derived images are produced and stored 'or later 
processing.  In addition, these operations require 
as  input,  or  produce  as output,  symbolic 
information which is about the image, but  is not 
the image itself. 

This range of uses and the multitude of 
images produced in a significant image processing 
effort rasults in a wide range of image management 
problems   To store images,  one must have a 
^presentation that allows the image  to  be 
reconstructed and accessed effectively.  Tnere are 
many problems in sharing images, especially those 
with differc-nt characteristics,  among programs. 
These problems multiply „hen several different 
machines  are being used.  Problems  involving 
maintaining relationships ar.oung images,  such as 
derivation    histories,    and   the   useful 
catagorizations : of  imag.. ■  are  non-trivial. 
finally,     the  storage and maintenance of derived 
auxl.ABry information,  as from scene analysis 
prese t more problems. 

in this paper, we .liscuss the use of a 
single, uniform data element-the "Name-Type-Value 
Slot." The NTV slot stems most recently from the 
work on PLITS [Feldman, 1979]. We „ill consider 
its use in the context of the representation of 
images, the description of such image 
representations, and the representation of 
information which relates the image to the rest of 
the world. 

2.  Classes of Image Information 

The information associated with an image (or 
a collection of images) can be classified into 
several broad catagories. Each class of 
information has a different pattern of use and 
generally requires a different storage technique. 

First, there is the image itself. 
Essentially, this is a two-dimensional array of 
(possibly  vector,  usually  integer)  values. 

l0ragLr 0f thiS dafca ls relatively 
straightforward, and there are the usual problems 
in array storage and description. 

This leads us to the second class of image 
related data: Format Descriptors. We need to 
know the size of each pixel, the dimensions of the 
image array, and how the pixels are packed. This 
is the basic information needed in order to locate 
the pixel at location [x,y] in the image. 

A third class of image related information is 
that which is derived directly from the image 
itseit. Some of this derived information is very 
expensive to compute but 

^rmation is 
requires very little 
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storage Cat least relative to the image). 
Statistics computed over the pixel values (min, 
max, mean, standard deviation), or histograms of 
these values fall into this catagory. Information 
about the results of a feature detector (edge, 

blob, circle, etc.) may also be of this type. 

Sometimes the derived information takes the 

form of another image. Image operations such as 
windowing or sampling reduce the size of the image 

array. Intensity transformations chaige the 
values of pixels, and sometimes the number of bits 
needed to represent the pixels. The reiults of a 
region grower or edge finder may be represented as 

an image with (hopefully) the same form as the 
original Image but with "colors" chosen from 
anothe" space. A Fourier transform produces an 
"image." All of these derived images are related 
in some way with the original image, and these 
image-image relationships form yet another class 

of image-related information. 

Finally, there are image-world relationships. 

These may be known a priori, or may be the result 
of an analysis of the image. For example, the 
mapping of pixels in an aerial image to locations 
on the ground may be the result of one stage of 
image analysis and the starting point of another. 

This classification of image-related 
information is based on function and intent. Some 
of the classes are easy to characterize in terms 
of the amount of storage required, but others are 
quite variable. All pose problems in storage, 
access and maintenance of needed relationships 
with other information. 

3.  Name-Type-Value (NTV) Slots 

Name-Type-Value slots are self-dercribing 
units of information with a NAME, used for 
accessing the information, a TYPE, describing the 
representation, and a VALUE, the actual value of 
the slot. 

Part of its heritage comes from the LEAP 
concepts developed for the language SAIL [Feldman, 

19691. In addition, it shares several concepts 
with the PLITS message-based system designed at 
Rochester, including the actual internal format 
for the NTV slots [Low, 1978]. 

The underlying meaning of an NTV slot is that 
it describes a relation. For example, the N^V 
slot <"Date Photographed"-STRING-"270CT72"> might 
be used to encode the fact that the image involved 
was photographed on 27 October 1972. 

In general, NTV slots are accessed by NAME. 
These NAMEs are uninterpreted strings which are 
chosen for their mnemonic (to the user) value. 

The TYPE describes the representation of the 

VALUE. Together, the TYPE and "»LUE provide the 

information specified by the NAME. Two major 
design decisions characterize the TYPEs used in 
NTV slots. First, there are a small number of 

basic types, including STRING, BOOLEAN, INTEGER, 
REAL, and ARRAYS of these. Second, the 
representation of each of these is of variable 
length and relatively machine independent. The 
set of available, basic types reflects our current 

desire to provide a moderate amount of descriptive 
power, without overly complicating the system at 
the level of the individual slot. On the other 
hand, the reality of many machines, with many 

different representations for even such basic data 
types, motivates the decision to allow a great 

deal of flexibility in the lengths of data items. 

Several examples of NTV 
are shown in figure 1: 

slot specifications 

<"TITLE"-STRING-"Reference Picture"> 
<,lDate Photographed"-SrRING-"270CT72"> 
<"LENS SER NO."-INTEGE'!-799648> 

<"Date Digitized"-STRING-"15JUL79"> 
<"Pixel Width in Meters"-REAL-2.50> 
<"Pixel Height in ;leters"-REAL-2.50> 
O'Major Interchanges"-ARRAY STRING- 

("Left Center", 
"Left Bottom" 

) 
> 

<"River"-STRING-"Right Top to Left Bottom"> 

Figure 1: NAME-VALUE Slot Specifications 

4.  Current and Future Uses 

The current 'ömulation of NTV slots, and our 
understanding of their usefulness in image 
understanding work, is the result of extensive 

experimentation with earlier incarnations of 
similar ideas. The next iteration of this process 
will involve basic changes in the ways that we 
deal with images and the information associated 
with them. 

1.1  RIFF 

One major example is the incorporation of NTV 
slots into our local Raster Image File Format 
(RIFF) [Selfridge and Sloan, 19791. As 
implemented in RIFF, NTV slots are simple and 
general. Any NTV slot, either constructed in a 
program or defined by a user with an interactive 
program, can be stored in image file headers with 
a simple command. Their access by NAME means that 
their order in the header is irrelevant. In 
addition, their variable VALUE size allows 
information to be stored regardless of length. 
This contrasts with other image information 

formats ([Hayes, 1975; Tamura, 19771). The 
information represented by NTV slots can be 

user-defined, and can include annotations, image 
statistics and pointers to other files 
representing image-image relationships. Their 
direct association with image files is convenient 
where one wishes to move images between components 
of a distributea system. 
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MTV slots, as used In RIFF, are not suitable 
for all classes of information. Complex 
relationships, especially betwten images and other 
kinds of information, such as symbolic ones, are 
probably best done in other representations such 
as image data-bases [Mokeown, 1976]. However, NTV 
slots do allow possible links to such alternate 
representations. 

We are currently using RIFF-NTV slots in 
several ways. General annotationr include a 
descriptive TITLE slot, far more useful for 
identification of image filej than their six 
character file name. Images which are windows of 
large files hold two slots. A WINDOW PARAMS slot 
holds the window coordinates in the larger image, 
and an ORIGINAL slot holds the name of the 
original image file. The program which acquires 
an image from our drum scanner and builds an image 
file uses RIFF-NTV slots to note the time and date 
of the digitizing session, the interpretation of 
the samples (e.g. Red, Green, Blue color 
separations vs. Grey Scale), and the TITLE. 

Another use of RIFF-NTV slots is to hold 
image statistics. These are stored with memo 
functions, functions which automatically annotate 
image headers with computed statistics. These 
include the average, minimum, maximum, and mean 
pixel values, and the standard deviation. These 
are very costly to re-compute, so storing them in 
the header using pre-defined slot NAMEs greatly 
increases their usefulness. 

Using slots as file pointers can be useful in 
many situations. They can associate derived 
images, as in the window example above. Other 
examples might include thresholded or convolved 
images. In addition, sets of images can be 
constructed by using file pointers to form linked 
lists. For example, all images derived from the 
reference pictures can be related in this way, 
allowing people and programs to access them as a 
unit. 

4.2 Image Data Bases 

We have also used a more complex scheme, 
using file pointers to make a structured data base 
of images, related in various ways by different 
kinds of pointers. An interactive "file fetcher" 
can access this structure at certain "roots" to 
locate or create new sets of images and answer 
specific queries. Such a structure may only be 
useful in a limited domain, and is limited by the 
cost of chasing pointers through many files, but 
it offers easy entry to image data base 
experimentation. This is especially important to 
us because of the multitude of machines, each with 
a different file system, involved in our work. 
The ability to have a small kernel of symbolic 
information' permanently attached to the image file 
itself has proven to be very useful. 

On the other hand, the NTV slot, as an 
Isolated unit, appears to be the right form for 
the communication of image-related imformation 
stored in a (central or distributed) large scale 
general data base which has been extended to deal 
with image data. 

U.S Image Transmission Protocols 

Recent work at Rochester has included the 
investigation of image transmission schemes which 
allow for the effective use of a distributed set 
of vastly different machines, connected by 
relatively slow communications lines [Sloan and 
Tanimoto, 1979]. This work is now ready to be 
combined with the NTV and PLITS ideas, with the 
goal of allowing a distributed community of 
processes to negotiate the amount and form of 
image data to be transmitted among themselves. 
This will be especially important in the effort to 
extend large scale data bases to include images as 
a basic data type. 

5.  Conclusions 

Image management. Including managing image 
files and additional information about images, is 
a hard problem. There are many aspects to the 
problem, including relating information to an 
image, images to each other, and images ^o 
symbolic representations of what the image 
contains. 

Likewise, there are many levels of solutions. 
RIFF is a compromise between fixed information and 
full generality. It provides ehe portability of a 
fixed format for the image and its format 
descriptors, along with a simple, general and 
flexible method of storing image-related 
information of several kinds in image headers. 

The general format of NTV slots, coupled with 
the relative independence of each slot, invites 
the development of more complex schemes. These 
include the integration of large jcale data bases 
into a truly distributed image understanding 
system, and the extension of such data bases to 
include the Image as a basic data type. 
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Abstract 

An aerial photograph of the Fort Belvoir area is used to 
illustrate representation levels of ACRONYM. Image 
observations ana organization of image features are 
described. Relations between objects in context provide 
strong conditions for searching and verification. 

ACRONYM contains a variety of spatial representations and 
it will integrate others when they are implemented. 
Figure 1 shows a diagram of levels in ACRONYM. These 
levels are: 1. The context level contains functional groups 
of objects, p.g. airport, parking lot, and residential area. 2. 
Object level includes specific objects and geu r,j objects, 
i.e. object classes. 3. Volume level is a three space level 
which contains elements such as cylinders. 4. Surface 
level is üso a three space leva the elements of which 
include planes. 5. The image structure level is a planar 
level the elements of which are two dimensional 
structures abstracted from images. 6. The image is a 
projection of a scene (two dimensional) recorded by any 
imaginf sensor. Representations at each level are shown in 
Figure ; . 

Context Level 

The context level is a graph of functional relations among 
objects. It is not clearly distinguished from th° object 
level, however there are two senses which prompt this 
distinction in name. The first sense is that everyday 
physical objects like houses, aircraft, and cars are more 
iightly defined than abstractions such as a resHentlal area 
or airfield. The second sense is that objects have 
relationships determined by a higher function. Inter-ially, 
the context level is represented in ACRONYM within the 
Object Graph, as a graph of relations among objects. 

In the standard aerial photo of Fort Belvoir, consider the 
context level. This is an area of natural terrain, 
superimposed on which are several types of cultural 
clusters, linear cultural features, and linear natural 
features. This is a low development area. The clusters 
include: a residential area at left edge, middle; another at 
center, bottom edge; numerous clearings without 
buildings and with various patterns; clusters of larger 
buildings (circular, cross shape, elongated) all of which 

are low. Cultural linear features are roads and their 
interconnection pattern to other roads and connectivity to 
building clusters. The river is an obvious natural linear 
feature. The natural terrain is wooded. 

Roads are described as a transportation network for cars 
and trucks. Types of vehicles and interconnections and 
terminations ai ? specified. Cloverleafs and crossings, 
bridges over water, typical grade limits and cut and fill 
are included. Road width is related to traffic volume. 
Building clusters are described by their connection 
pattern; the residential cluster at the left edge, middle is a 
branching linear connectio.i pattern. Typical cities have a 
grid pattern. Houses line roads at regular intervals. With 
residential buildings are playing fields, power lines, 
parks, lawns, and gardens. With individual houses are 
driveways; with multiple dwellings are parking lots. The 
number of cars or spaces for cars is a measure of people. 
With farm buildings are silos and fields. With large bodies 
of water are found boats and piers. Tanks come in clusters; 
there are relatively tall tanks on the left bank, lower 
tanks on the right bank (white) and a cluster of tanks in a 
cleared area away from the river. Streamlines near the 
river run roughly orthogonal to it. Streamlines show the 
direction of surface slope. Water is a local minimum 
height. Straight lines and regular boundaries suggest 
cultural objects. 

Object Level 

The Object Level is represented by a graph of relations 
between objects. Objects are represented by examples; 
object classes are defined by function. Objects have 
volume representations and may be defined by their 

. volumes. At this stage in ACRONYM'S development, objects 
are represented primarily by their volumes. Object classes 
may be defined secondarily by volume descriptcrs with 
more general quantification than that for specific objects. 

Water in ponds and lakes is level and often very smooth. It 
has strong specular reflection, i.e. large variation in 
reflectivity with angle. Note that water is black near the 
center of the picture and much lighter near the edges, 
Roads are made of concrete, asphalt, dirt, or grass-covered. 
Most read and streets are concrete and bright in this 
example. At bottom near the center is a cluster of houses 
with dark streets and trees along the streets. One area has 
sidewalks which appear as bright lines. 
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Houses are a typical size. This grouping may be more 
uniform than typical scenes, but houses tend to be 
clustered in similar sizes and lot sizes. Buildings 
themselves are described by their function: to enclose 
space as a shelter for some set of people or objects. Sizes 
depend on the set of people and/or objects. Structures are 
relatively modular, composed of units related to these 
functions. A tall building in an area of low concentration 
may house tall objects. There are few tall buildings in this 
example (a silo). Circular buildings are unusual in this 
example and typically. Houses have verticai walls 
usually, for structural reasons. Usually walls are planar at 
right angles. Roofs are sloping or flat depending on snow 
load. Few buildings have shell structures. Trees are 
vertical for the same reason, gravity. Trees are discrete 
objects with typical size and density dependent on species. 
Rails carry heavy objects, hence railroad bridges are 
reinforced. 

Volume Level 

Volumes are represented as part/'.'hole graphs, directed 
graphs whose nodes are generalized cylinders and whose 
arcs are attachment relations. Spheres are included. Many 
other specific prototypes are special cases of generalized 
cylinders. Other volume representations include 
three-dimensional Blum transforms, three-dimensional 
incidence matrices (e.g. unit cubes which are filled or 
empty), density distributions represented by orthogonal 
polynomial expansions, and poiyhedra. These are not used 
in ACRONYM. Numerous questions arise about 
transformations from one representation to another. 

We call this latter group non-symbolic representations; 
they either tabulate data or approximate data without 
segmentation in analogy with curve fitting jnd surface 
fitting. Symbolic representations adjoin names, relations, 
and segmentation to non-symbolic representations. Names, 
relations and segmentations are all related to task and 
scene content and reflect constraints from models and 
external knowledge. These constraints permit more 
accurate determination of task parameters than 
uninterpreted data. 

Surface Level 

Symbolic surface represer tations are built with ribbon 
elements. Non-symbolic surface representations are also 
included at the surface level. Surfaces are embedded in 
three-dimensional space. Ribbons 5re generalized 
cylinders restricted to surfaces. Ribbons are closely 
connected to surface splines. Surface splines art piecewise 
surfaces made of elements which are usually polynomial 
with specified continuity conditions at their seams. For 
txample, a spline may have continuous tangent plane and 
continuous curvatures at its seams. Typically splines are 
non-symbolic in the sense above; their seams are assumed 
arbitrary independent of the data (e.g. on a fixed grid) or 
supplied by the user. However, we are interested in 
non-uniform continuity conditions along seams which 
are determined from the data. That is, we <ue interested In 
splines with discontinuities in position and tangent plane 
over some seams and with continuous tang 'nt plans and 
curvature along other seams. These are like cardboard and 
rubber cutouts superimposed to cover the scene. Little 

work is done in numerical analysis on free knots or seams. 
This segmentation problem is inherent in sr°ne analysis. 
Well-founded solutions or ad hoc sr'utions contribute to 
symbolic surface description. 

Stereo and ranging devices produce tables in the form of 
surface maps of range vs azimuth and elevation angles or 
surface maps of elevation vs x and y camera coordinates. 
Stereo also may produce segmented symbolic boundary 
information superimposed on suiface maps; boundary 
information includes high accuracy estimates of depth 
and slope discontinuities. Motion also produces surface 
information given an interpretation of corresponding 
surface featur in terms of rigid body motion or 
articulated rigid ,.ody motion. Object motion is equivalent 
to obseiver motion if the background is ignored. 

Prominent surface elements in this image are roads, 
which are regular, constant width, mostly bright ribbons. 
In some places they involve cuts or fills which show up as 
bright irregular areas. Excavation shows un M Bright 
areas. Fields are approximately rectangular with linear 
texture. Tsrrain is represented as ribbon surfaces 
particularly at ridge lines or strear lines. Streams show 
up as irregular dark linear features. Wooded areas nave 
dot patterns oi inlividual trees. Tanks show appear as 
circular areas with shadows. The water surface and road 
surface are good places to find shadows, e.g. bridges and 
trees. 

Image Structure Level 

Image structurps are built up from images. Images are 
embedded in two dimensions, usually the plane or 'he 
unit sphere. The lowest level of representation involves 
edge elements called edgels which are local 
discontinuities of the intensity surface, defined over 
small neighborhoods. Extended boundaries of the 
intensity surface are constructed from edgels. 
Intersections of boundaries at vertices and closed region 
boundaries are formed from extended boundaries. Ribbons 
are useful descriptors for both closed regions and open 
boundary configurations. They provide a useful sense of 
locality which is stronger than topological connectedness. 
Regions and open boundaries are grouped into texture 
regions. These operations define a hieraichy of levels. 
Vertices of curves and terminations of curves are special 
points which may be grouped into curves. Regions or 
segments of region boundaries may be grouped into 
curves, or grouped into regions. Texture regions may be 
grouped in the same way into curves or into texture 
super-regions. 

Linear features appear strongly. There are both regular 
linear features and irregular ones. At the level of 
connected curves and intersecting curves, most of the 
roads and streets are delineated. The road through the 
residential area in left, middle part of the picture is quite 
regular but broken, a dotted line boundary. Small linear 
features of large buildings also appear. Even smaller 
features like houses prove on closer examination to have 
straight line edges. However, curves from roads, parking 
lots and large buildings provide most of the low level 
coi.text. Homogeneous regions which we recognize as 
clearings, water, and roads also delineate areas of interest. 
Regular   features   are   of   special   interest   for  cultural 
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i'eaturas. 

Linear features and dot features are grouped into 
structures and textures. For example, clusters of houses 
are homogeneous in size, oiientation, and relative vectors. 
They are structured along large linear features. Larger 
buildings have similar structure. 

Although buildings are regular and can be distinguished 
by form and textural relations, in this image a lot of work 
is necessary to cover the whole image at a resolution 
sufficient to distinguish potential buildings from trees to 
take a closer look. Consequently, depending on the task, 
buildings are likely to be isolated by looking along roads 
or in clearings. A typical task is to find tall buildings. The 
low level context of roads is enough to make a linear 
search restricted to roads. 

Much interpretation in that image is made possible by 
shadows. These are useful where shadow edges are 
extended and approximately parallel to the edge casting 
the shadow, as in the bridges. Also, where shadow regions 
are adjacent to shadow casting structures, as with houses, 
tanks, and trees there is little trouble in associating 
shadows with objects. 

There is a dark irregular patch with a sort of triangle in 
the center. It appears to be a marking. What is it? 

Tasks     are     represented     as     functions     to     restrict 
quantification of object descriptors. Count all oil tanks 
with volume v>vO becomes: 
Cardinality {x|xoil_ tanksvolume(x))vO}. 
Measure total volume of all oil tanks becomes; 
Sum{volumeCx)<-x|xoil tank} 
in an informal notation. Sequences contain an indexing 
parameter which may be an integer, time, distance, angle, 
or other; they relate to a physical parameter, typically 
time or distance, by means of a generating function which 
may involve other parameters such as velocity. Sequences 
may be synchronized at points with other sequences. 

Information comes in at all levels. The information must 
be integrated by forming correspondences within levels 
and by mappin« between levels. 
Identification/interpretation is at the volume level, based 
on rorrespondences at all levels. We believe that 
form=f unction arguments connect the volume level fairly 
directly to object interpretations. Most signal information 
enters at image level and surface level. Signal information 
includes reflected intensity for a variety of spectral 
components, range, and Doppler information. Low level 
symbol descriptors obtained from signals include edges, 
ribbons, and stereo depth maps, which provide 
information at the image leve' and surface level. 

Generalized cylinders correspond to stacking volume 
elements like slices of bread. Ribbon surfaces correspond 
xo stacking surface elements. Generalized cylinders are 
represented by a cross section translated along a space 
curva called the spine. The cross section is transfoimed by 
a sweeping rule and there are terminations at either end 
of the generalized cylinder. Generalized cylinders are 
determined by the principle of generalized translational 
invariance. 

We aim to represent elements by mathematical entities 
and to relate these entities by maps within levels and 
between levels. Several of the levels correspond to entities 
of three dimensions (volumes), two dimensions (surfaces), 
one dimension (curves), and zero dimensions (points) 
embedded in spaces of three dimensions, two dimensions 
and one dimension. We have maps which decrease 
dimension (projections) and maps which raise dimension 
(sweeping oiierations). 

Our work has been based on the following paradigm. 
Descriptions are made of geometrical entities formed by 
two processes: a. grouping by a few geometric relational 
operations which are more or less independent of the 
entity and which are common to all levels; these grouping 
operations correspond to neighborhoods of approximately 
uniform shape, elongated narrow neigborhoods in all 
directions corresponding to longitudinal projection, and 
transverse projection [Nevatia and Bmford]; b. 
discrimination by tight constraints which are specific to 
the geometrical entity. 

In the ACRONYM diagram we show models at each level of 
the hierarchy. There are models with various degrees of 
gene -ality at each level. In the most specific cases we may 
predict intensities at the pixel level of the image. In a 
general case wo use models for edges in a small 
neighborhood. That is, even in a general case, we have 
local models for what we expect to see, even at the image 
level. As mentioned above, at other levels models include: 
extended curves, segmented curves, planar ribbons, ribbon 
surfaces, and generalized cylinders. Because of 
computational limits and information limits we have 
limits on perception. Computational limits imply that we 
compute only the simplest few of the enormously many 
possible functions on an image. Information limits imply 
that we can consider only relatively simple underlying 
object interpretations for observations. These models 
represent a commitment or preconception to perceive 
what we can within those limits. Observations are 
represented as instantiations of these models. 

Generalized cylinders 

Generalized cylinders were initially intended for use in 
visual interpretation of complex objects as a means for a 
natural semantics for part/whole segmentation. The idea 
of a segmentation is not new, but the choice of primitive 
element determines whether the resulting segmentation 
into parts is useful. Some requirements of adequate 
representations were described in [Thomas and Binford]. 
The design criteria which led to the formulation of 
generalized cones were: 

The rapresentation should be locally generated, that 
is primitiver should be generated from local primitives, I 
see no way of generalizing an enumeration: cube, sphere, 
cylinder of globally specified forms. A visual sy :em 
which is conceptually adequate must deal with a 
potentially very large set of objects, including a large set 
which may never be seen. The part/whole segmentation 
describes one form of generation, but the primitives 
which go into the part/whole description must be locally 
generated. 

Parts should be defined by continuity. A surface is not 
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a part in a "natural semantics", since a cube has six 
surfaces, yet a cube is thought of by most as a single part. 
If we define parts by surface continuity, then only 
separate objects are parts, and a man standing on a floor is 
not separate from the floor. If, on the other hand, we 
define parts by surface tangent plane continuity, then a 
cube has six "parts". 

Primitive parts should be generated from elements 
which are disjoint and for which a small, finite set 
gives a good approximation. In the Blum transform 
[Blunij which is a covering by a minimal set of maximal 
interiov dis'ics, the elements are overlapping circles, i.e. 
not disjoint. In the Fourier representation, a few 
eigenfunctions used to construct forms are an overlapping 
set. This requirement follows from the intuitive clarity of 
di-goint elements in description and as an aid in 
segmentation. The covering by a finite set implies that the 
element- are volumes. 

Generalized cylinders have nothing to do with symmetry 
or with elongation. They were defined by generalized 
translational in variance. A coin is a fine generalized 
cylinder. However, description techniques are better for 
elongated generalized cylinders. [Nevatia and Blnfcrd 77]. 

Each representation introduces a sense of similarity 
which is natural in the representation. Generalized 
cylinders were introduced in order to represent locally 
generated constructions from fundamental geometrical 
operations. Generalized        translation        invariance 
characterized constructions based on translations [Binford 
1971]. Generalized cylinders were to be augmented by 
spheres which characterize constructions based on 
rotations. One interpretation of the phrase "natural 
semantic" interpretation is in terms of these fundamental 
operations. Another is in terms of mechanical construction 
operations, which include fabrication operations (milling 
= translation and turning = rotation, exl/usion = 
translation) and assembly operations (insertion, and 
screwing). 

We first used generalized cylinder representations in 
vision in interpreting parts of objects [Agin 1972, Agin 
and Binford 1973], then in interpreting structured objects 
and recognizing them [Nevatia 1974, Nevatia and Binford 
1977]. Several issues were addressed. The first issue was 
recognizing objects from a very large visual memory. Hew 
do we relate an observed description to a subclass of 
previously constructed descriptions? This Wds addressed 
through indexing into a visual memory structured on the 
basis of an attachment hierarchy. The second issue was 
obtaining generalized cylinder descriptions from surface 
information. This was done through several variations of 
implementation of local translational Invariance. 
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AIM-173, 1972. 
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Representation"; Conf on Computer Graphics and Image 
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Stanford AI Lab Memo A1M-282, CS-560,, July 1976. 

[Thomcs and Binford 1974] A.J.Thomas and T. 0. Binford; 
"Information Processing Analysis of Visual 
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It was recognized at once that the representation offered 
very compact models of complex objects, suitable for 
graphics and manufacturing applications. A system for 
object modeling and graphics in terms of generalized 
cylinders was built [Miyamoto and Binford 1975]. 
Generalized cylinders were used in predicting curves in 
images for Verification Vision [Bolles 1976], and in a 
planning system for automating screw insertion in 
mechanical assembly [Taylor 1976]. 
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Figure 1: ACRONYM diagram 
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INTRODUCTION MODEL REPRESENTATION 

The choice of a symbolic representation is 
intimately related to the use of this 
representation for the set of chosen 
applications. It is believed by many that there 
exist representations that are useful for a 
"general" vision system, i.e. one able to 
perform a variety of tasks, comparable in range 
to human performance. In this paper, we 
describe our representations that were primarily 
designed for the application of image to map 
correspondence. However, we believe many of the 
representations, particularly the ones at the 
lower levels, have general utility, in the sense 
of being useful for other tasks. 

We restrict our presentation to include 
only those representations that either exist in 
our current implementations or are planned 
extensions of these representations. Thus, the 
described representations do not necessarily 
reflect our view of how the human visual system 
works or how a "general" image understanding 
system might work. The described 
representations may lack many components 
desirable for a general system, either because 
these components are not useful for the current 
applications, or because the representations are 
not computable (due to lack of data or of a 
computing algorithm). For example, we are not 
using a representation for the range 
information, such as a 2 1/2-D sketch, because 
range is only marginally useful for high 
altitude aerial images and techniques for 
extracting it from a single image are not 
adequately developed. 

Our presentation is divided in model 
representations and image descriptions. The 
model representations are currently input by an 
interactive system, but they could be derived 
from a map or an image. Ttie image descriptions 
are computed automatically, but future 
implementations may provide for interactive 
control or editing. The two representations 
essentially share the same elements. The 
differences are primarily in that the model 
representations are ideal cases of computed 
image descriptions. Also, the image 
descriptions contain results of computations at 
intermediate levels that are not necessarily 
meaningful at the level of model representation. 

We are using a relational graph structure 
(also called a semantic network) for the basis 
of our high level image and model 
representation. Semantic networks ar used by 
many others in image understanding and 
artificial intelligence, and all are similar 
structures except in certain details. The nodes 
in the network represent elements in the model 
such as lines, regions, objects of various 
kinds, and groups of objects. The arcs in the 
graph correspond to relations between elements. 
There are several different relations which are 
used including neighbors, relative positions, 
nearby, part of, one of. The type of relations 
which are possible for an element depends on the 
type of element. The nodes contain the 
descriptive information about the particular 
element with the actual information depending on 
the type. Some of the descriptive feature 
values may not be known for all model elements. 
The absence of these descriptor values must be 
handled by later processing systems and should 
not adversely affect later results. 

Certain metric properties and relations 
have the same meaning ror all types of nodes. 
Information on the position of an object in the 
scene is very important and is expressed in 
öeveral ways. Locations of the centroid of 
individual elements in the model are expressed 
relative to the position of the entire model, 
which is stored in a node corresponding to the 
entire scene. Scale information is also kept to 
convert model units (or image units) to ordinary 
measurements (meters or miles). Distances 
between two objects (e.g. 2 km South and 3 km 
West) may be given as a relation between the two 
objects but such relations are used only when 
the spacing between the two objects is very 
important for the location of one (or both) of 
them. Such distances maybe computed for other 
pairs of objects when necessary from their 
absolute positions. Size and positions can also 
be given in this form except that the values are 
multiples of the size of the other object - e.g. 
twice as Isrge, or one object diameter West. 
Geometric relations also provide significant 
descriptive information. Adjacent elements ere 
related by the "neighbor" relation, and objects 
which are close but not necessarily touching are 
related by the "nearby" relation.  Relative 
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positions  are indicated by above/below, to 
left/right, North/South, etc. 

Lines and Linear Features 

Linear features are those which can be 
represented by straight linea of some width, or 
a sequence of straight lines. These actually 
correspond to roads, airport runways, narrow 
rivers, canals, etc. The descriptors which are 
used include length, width, orientation 
(direction), position of the center and the end 
points, and color (bright or dark). The 
relations include the simple relations of 
neighbors, nearby, and relative position. Other 
relations which may involve lines will be 
covered in the discussion of objects. 

Reg ions 

The region features are the simple objects 
which are not represented by lines. Objects may 
also be represented by a combination of regions 
as described in the next section. The 
descriptors for regions are the same as for 
lines with some additions: area, perimeter, 
color (actual intensity values for each input 
band and other color transformations, computed 
as the average over the entire region), texture 
(either structural or pointwise computations), 
and shape (crude measures which give general 
descriptions and generalized cones for more 
precise description;; when possible) . The 
relations involving regions are the same as 
those involving lines. 

Objects 

The region and line elements are sufficient 
for describing simple objects composed of a 
single part. We use these simple elements as a 
basis for descriptions of other, more complex, 
objects. Objects can be generic or specific, 
and simple or complex. 

Generic objects are used to group similar 
objects into one class. These ate implemented 
using the relations: "One-of" to denote an 
object in a class, and "Is-A" to indicate the 
generic class of an object. Note that these 
relations are inverses and indicate the same 
relation. Generic objects are used to ease the 
description procedure by providing one set of 
descriptors for all common object classes such 
an roads, rivers, urban areas, rural areas, etc. 
TViese descriptors are used when none are 
provided for the individual object, so that the 
descriptor values can be changed for individual 
objects which have a different appearance. 
Other relations are generally not meaningful for 
generic objects. 

Simple objects are represented as groups of 
regions and lines (or other simple objects) 
using ancestor and descendant ("Part-of") 
relations to indicate the major object or 
subparts. The descendants of an object are the 
subparts of the object and this relationship is 
labelled part-of. The  descriptor values which 

are associated with objects of this type are 
used to indicate features of the object as a 
whole - position, size, orientation. When these 
features are given the corresponding descriptors 
of the subparts are taken relative to the value 
for the entire object. 

Complex objects are represented by their 
parts and relations between them, as for the 
entire model. The parts may be simple objects 
or other complex objects. The simple objects 
are represented by one of the above described 
means. As example, an airport would be 
described by its runways, taxiways, and their 
geometrical relationships. A runway is a simple 
object and is represented as a line 
corresponding to its medial axis (this is a very 
simple case of the generalized cone 
representation). The geometrical relations arc 
given by the intersections of the runways and 
the angles between them. 

Example 

Figure 2 shows part of the model containing 
some of the major features and their relations 
for the image shown in Figure 1 (a complete 
model would be too large and complex to 
illustrate in a figure). In Figure 2, the IS-A 
arc connects specific objects to generic 
objects, North-of and West-of indicate relative 
positions, and part-of should be interpreted as 
the pointed node is a part of the other node. 
Figure 3 shows the details of the node 
corresponding to the south portion of the river. 
Note that some of the descriptive properties are 
attached to this node, while the others are 
inferred from the node being a water area having 
some generic properties. 

IMAGE DESCRIPTIONS 

The current symbolic representation of 
images is in the same format as the models 
described above. This common description method 
has meant that descriptive features which re 
used in the model must bo computable from the 
given images. Also this means that there must 
be precise algorithmic descriptions of the 
meaning of the relations and features, 
major difference is that, initially, 
collections of the basic elements are 
available. Grouping elements into objects 
labeling these objects is performed by various 
matching procedures and is a major goal of the 
image understanding system. The labels are 
implemented as pointers to the model description 
(i.e., relations between elements in otherwise 
separate descriptions), or by adding new 
elements to the image representation to collect 
the object parts together. The image 
representation is generated automatically, so 
the region type elements come from our region 
based segmentation system amd the line type 
elements come from the linear feature analysis 
system. The machine segmentation, and hence the 
resulting descriptions, are  likely  to  be 

One 
the 
not 
and 
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different from the human segmentation used for 
model generation. The image description also 
contains descriptors necessary to recover the 
low level representations of each of the 
elements, i.e. pointers of the binary mask;3 for 
regions and to the piecewise linear 

approximation for line like objects. 

The lower level representation of regions 
in the image is as a binary mask which indicates 
which points are in the particular region. Only 
the minimum enclosing rectangle is stored since 
image offsets are maintained with all image and 
the data is packed 1 bit per image point. These 
masks are already small and we require efficient 
access to both interior points and boundaries so 
that no attempt has been made to encode these 
masks in any way. 

At the high level, lines are represented ty 
a piecewise-linear approximation and road-like 
structures by their medial axis. The 
intermediate descriptions generated in the 
process of computing these descriptions are also 
available and possibly useful for feedback from 
higher level processing. The important 
intermediate level representations are: 

1. Local edge magnitudes and directions, stored 
as image arrays. 

2. "P" and "S" arrays, containing the 
predecessor and successor information 
respectively for each edge. As this information 
is iconic, it may be useful for determining 
proximity of lines. 

Understanding Workshop, 
197Ö, pp. 73-78. 

Pittsburgh, Pa., Nov. 

2. R. Nevatia and K. Price, "locating 
Structures in Aerial Images," Proceedings of 
ARPA Image Understanding Workshop, Palo Alto, 
Ca., October 1977. 

3. K.R. Babu, "Structural Object Recognition in 
Aerial Images," in Semi-Annual Technical Report, 
USCIPI 91Ü, R. Nevatia and A.A. Sawchuk, 
Editors, September 1979. 

3. Lines represented as a list of edge points 
(rather than by piecewise-linear 
approximations). 

Details of the steps in line finding were 
presented previously in [1]. 

APPITCATIONS 

We have applied our representation to road 
finding [1], locating desired structures in 
aerial images using map information [2], and are 
designing a system for recognition of complex 
objects (see 131). The choice of our 
representations was guided by these tasks, but 
we believe them to be useful for other 
applications as well. 

REFERENCES 
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Figure 1.  Digitized version of DMA sample image. 
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Figure 2.  Partial model description for the 
image in Fig. 1 in terms of a 
semantic network. 
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PROGRESS IN IMAGE UNDERSTANDING RESEARCH AT USC 

Ramakant Nevatia 
Alexander A. Sawchuk 

Image Processing Institute 
University of Southern California 

Los Angeles, California 90007 

Brief summaries of our recent work and of 
previously developed techniques that may be 
suitable for use in a demonstration system are 
provided in this paper. 

RECENT RESULTS 

In the past six months, research at USC has 
been directed at the various levels of an Image 
Understanding system. Only a brief summary is 
provided here; more details may be found in [1], 

Fast Convolution 

In the past, Abramatic, Lee and Pratt have 
investigated convol ji-ion with large kernels by 
using a series of small generating kernels for 
lower computational cost and possible 
implementation in inexpensive hardware. Many of 
these results were presented in a previous 
report [2]. In recent work, progress has been 
made in approximating filters by the use of 
singular value decomposition. 

Texture Analysis 

We have had several parallel efforts for 
texture analysis. In theoretical work, Ashjari 
and Pratt have examined the behavior of singular 
values of a random texture field. The singular 
values are believed to be useful texture 
discriminants. Garber has investigated the use 
of a mathematical model for analysis and for 
synthesis of texture. An example of such 
synthesis is shown in Fig. 1. Figure 1(a) shows 
a real raffia image which is used to estimate 
the parameter of the texture field modelled as a 
Markovian process. Figure 1(b) shows a 
synthesized raffia texture. The example shown 
is for a binary image, but the technique has 
been extended to grey level images. 

Laws has devised texture measures computed 
by small (3x3 or 5x5) filter masks. Tne 
classification results appear to be better than 
for the to more expensive grey level 
co-occurrence matrix based methods. These 
measures and results are described in detail in 
a separate paper in these proceedings [3). 

Taking a structural approach to texture, 
Nevatia,  Price  and  Vilnrotter  previously 

described a technique for generating description 
of regular textures based on analysis of 
micro-edges 14]. Further progress has been made 
in automating the extraction of texture 
descriptions from analysis of edge repetition 
counts (or co-occurrences). An example of the 
types of descriptions obtained for a sample of 
raffia (similar to, but the same as in Fig. 1) 
are shown in Fig. 2. 

Matching 

At the top level of an Image Understanding 
system, image descriptions need to be matched 
with stored models for object recognition, 
change detection, map updating, etc. 
Previously, we have described a system to match 
symbolic maps with image descriptions for 
locating certain desired structures, e.g. 
airports in aerial images [5]. This system has 
been modified to incorporate various 
improvements of the lower level processing. In 
another project, we are designing a matching 
system for recognition of structured objects, 
with initial focus on recognition of airports. 

PREVIOUS SIGNIFICANT RESULTS 

In this section, we summarize previous 
results which are believed to be relatively 
robust and to be considered for inclusion in a 
demonstration system. It should be noted that 
even when the techniques have been tested on a 
large number of images, their performance for 
particular applications, e.g. DMA applications, 
remains to be evaluated. 

Linear Feature Extraction 

We have developed a technique for linear 
feature extraction that operates by deleting 
edges using small masks, thinning the resulting 
edges, and linking them to give boundary 
segments [6]. Linear feature are important for 
man-made and natural objects. Our technique has 
been applied to the detection of objects such as 
roads and airport runways, but is not specially 
designed for detection of such features. This 
technique is also being used at Hughes Research 
Laboratories and by T. Binford at Stanford 
University for other applications. 



150 

Image to Map Correspondence 

This  technique  has   been   described 

previously [51, and is POtentially ^o S 

irs ^^ s^san^r H^ 
the basic'matchirvg technique is srrnple   and ^ 
performance   on a larger set of ^ages with wel 
defined   goals   needs    to   be   evaluated.       Our 
Scffiy    uses     the    above   described    Uner 
feature extraction technique and    the   Ohlander 
Reddy-Price segmentor developed at CMU. 

Texture Measures 

We have develop a nunber of texture 
measures in the past [3,7]. These ^^^ 
been tested primarily on natural textures in 
ÄzWbun [81. ^y should be effective 
in classification of materials in aerial images 
nd Iso possibly for im^e ^^ 

However, their performance on range of textures 
*r materials encountered in aerial images used 
for map-making  remains to be tested. 
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b)   Synthesized  Raffia   Texture. 
a)   Raffia  Image 

Figure  1.     A raffia  image and  synthesized texture. 
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DARK OBJECT DESCRIPTIONS 

HORIZONTAL SCAN DIRECTION 

THERE IS STRONG EVIDENCE OF PERIODICITY WITH ELEMENT SPACING 11.00000 

THERE IS STRONG EVIDENCE OF PERIODICITY WITH ELEMENT SPACING 12.00000 

THERE IS WEAK EVIDENCE OF ELEMENT SIZE 10.00000 
WITH STRONG SUPPORT FOR ELEMENT SPACING 11.00000 

4 5 DEGREE SCAN DIRECTION 

NO EVIDENCE OF PERIODICITY OR PREDOMINANT ELEMENT SIZE 

VERTICAL SCAN DIRECTION 

THERE IS VERY STRONG EVIDENCE OF PERIODICITY WITH ELEMENT SPACING B.Ü0O00O 

THERE IS STRONG EVIDENCE OF ELEMENT SIZE 2.000000 
WITH STRONG SUPPORT FOR ELEMENT SPACING 8.000000 

135 DEGREE SCAN DIRECTION 

NO EVIDENCE OF PERIODICITY OR PREDOMINANT ELEMENT SIZE 

LIGHT OBJECT DESCRIPTIONS 

HORIZONTAL SCAN DIRECTION 

NO EVIDENCE OF PERIODICITY 
MODERATE EVIDENCE OF ELEMENT SIZE OF 2.000000 

4 5 DEGREE SCAN DIRECTION 

NO EVIDENCE OF PERIODICITY OR PREDOMINANT ELEMENT SIZE 

VERTICAL SCAN DIRECTION 

THERE IS STRONG EVIDENCE OF PERIODICITY WITH ELEMENT SPACING 8.000000 

THERE IS STRONG EVIDENCE OF ELEMENT SIZE 6.0 00 000 
WITH STRONG SUPPORT FOR ELEMENT SPACING 8.000000 

135 DEGREE SCAN DIRECTION 

NO EVIDENCE DP PERIODICITY OR PREDOMINANT ELEMENT SIZE 

Figure 2.  Structural machine description of a raffia texture. 
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THE ÜR1 IMACR UNDERSTANDING PFJGfiAM 

By M. A. Fisohler 
(Principel Inveatigator) 

SRI International 
Menlo Park, California 

INTRODUCTION 

Research at SRI International under the ARPA 
Image Understanding Program was initiated to 
investigate ways in which diverse sources of 
knowledge might be brought to bear on the problem 
of analyzing and interpreting aerial images.  The 
initial phase of research was exploratory and 
identified various means for exploiting knowledge 
in processing aerial photographs for such military 
applications as cartography, intelligence, weanon 
guidance, and targeting.  A key concept is the'use 
of a generalized digital map to guide the process 
of image analysis.  The results of this earlier 
work were integrated in an interactive computer 
system called "Hawkeye" [l].  This system provides 
basic facilities necessary for a wide range of 
tasks in cartography and photo interpretation, and 
it provides a framework within which other 
applications can be readily demonstrated. 

Research has recently been focused on 
development of a program capable of expert 
performance in a specific task domain--road 
monitoring.  This work, now reaching a test and 
evaluation phase, is described in the following 
section, "The SRI Road Expert." 

We are currently initiating major efforts in 
two new directions.  The first is in support of a 
joint ARPA/DMA program to provide a framework for 
demonstrating the applicability of image 
understanding research (from throughout the entire 
IU community) to military problems in general, and 
to the problems of automated cartography in 
particular.  Our plans for this effort are 
described later in this paper. 

The second effort is to broaden the scope and 
generality of our current work concerned with 
analyzing aerial imagery-specifically in the areas 
01 5-D terrain understanding, perceptual reasoning, 
and image description and matching.  A neparate 
research program (described in the last section of 
this paper), jointly supported by ;RPA and NSF 
will augment these investigations by attempting to 
clarify the computational principles underlying the 
early stages of visual processing in men and 
machines. 

THE SRI ROAD EXPERT 

The primary objective of our research 
concerned with development of the SRI Road Etpert 
is to build a computer system that "understands" 
the nature of roads and road events.  It is 
intended to be capable of performing such tasks as: 

(1) Finding roads in aerial imagery. 

(2) Distinguishing vehicles on roads from 
shadows, signposts, road markings, etc. 

(3) Comparing multiple images and symbolic 
information pertaining to the same road 
segment, and deciding whether significant 
changes have ocoured. 

The system should be capable of performing the 
above tasks, even when the roads are partially 
occluded by clouds or terrain features, are viewed 
from arbitrary angles and distances, or pass 
through a variety of terrains. 

The general approach and details of technical 
progress on developing the components of the Road 
Expert are contained in References [2-6].     We are 
currently integrating these separate components 
into a coherent system that facilitates testing and 
evaluation and will be in a form suitable for 
transfer to the ARPA/DMA Integrated Demonstration 
System ( testbed").  Plans for the Road Expert 
Demonstration System, expected to be completed 
early in 1980, are presented below. 

The Road Expert Demonstration System 

Given an image and a description of the 
approximate circumstances under which it was taken, 
tue road expert determines a precise geometric 
correspondence between the picture and a model of 
the world, uses this correspondence to predict the 
positions of the roads to be monitored, scans along 
the roads for possible vehicles, and classifies the 
vehicles on the basis of their size, shape, and 
shadow structure. 

Initialization Procedure 

The user can select one of more than 20 
currently available pictures from our library or 
provide one of his own; the picture will then be 
scanned ("on-line") by a TV camera, which digitizes 
a 512 x 512 portion of it.  To test performance 
under adversity, the user can superimpose clouds 
and their shadows on the scanned image.  Clouds are 
added by digitizing a portion of a cloud picture 
and can be interactively positioned in any desired 
location in the test image. 
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The required description of the test picture 

includes the following information: 

* The date and time the picture was taken 

* The internal geometry of the camera that 

took it 

* An estimate of the camera's position and 
orientation when the pic ".ure was taken 

* An estimate of the uncertainties associated 
with the estimates of the camera's position 

and orientation 

In a real application the internal camera 

model would be known a priori, and the rest of the 
information would be obtained directly from the 

platform's navigation system (e.g., inertial 
navigation).  In the context of the demonstration 
system, the user has to supply this information or 
compute it using interactive aids included in the 
system.  The date and time the picture was acquired 

is known (or has been estimated from shadow 
information) for all the images in our data base. 
The ii.'ernal camera parameters (such as focal 
length) are either known or are computed as part of 
the image-to-data-basc correspondence process (see 
below).  External camera parameters (position and 
orientation, in world coordinates) have been 
precomputed for all images in the library and 
stored in the system's data base.  We allow the 
user to perturb these estimates and to specify 
uncertainties in order to simulate the effects of 

navigation errors on system performance. 

Scale factors and displacements associated 

with image digitization, which would be known :n an 
operational setting, are obtained by an interactive 

procedure requiring the user to select 
corresponding points on a contact print of the 
original image (which is mounted of an xy 
digitizing tablet) and on the digitized image 
(which is displayed on a television screen). 

Analysis 

The first task in the analysis is to improve 
the estimates of the camera's real-world location 

and orientation.  The system uses the initial 
parameter values to predict 1 mdmarks that are 
likely to appear in the pictire.  According to a 
preplanned strategy, the system tries to locate the 
linear landmarks first and compute an improved set 
of parameters.  The new parameter values are used 

to find point landmarks, and a final set of 
parameter values are computed on the basis of all 

the located landmarks. 

Given the new improved set of camera parameter 

values, the system constructs a display that shows 

the predicted positions of the roads to be 
monitored.  These predictions are used to guide ttie 
road tracker, which scans the roads for possible 
vehicles.  The road tracker marks each candidate 
(road anomaly) or the display and passes it to the 
vehicle recognition subsystem for analysis. 

The recognition subsystem first tries to 

determine if the candidate is a road marking, a 
cloud, a shadow, or a vehicle.  A candidate is 

declared to be a road marking if it occurs at the 
position of a known marking.  A candidate is 
declared to be a clou,; if it is one of the 
brightest regions in the picture, relatively large, 

and has a low internal brightness variance.  If a 
candidate is one of the darkest regions in the 
picture and it extends to the side of the road on 
which the sun is located, it is assumed to be the 

shadow of a tall object off the road.  If the 
candidate is not one of the above, has the right 
size and shape, and has a shadow that is consistent 
with the sun's location, it is called a vehicle. 
Tf a candidate does not satisfy any of these 
descriptions, it is labeled as an unrecognized 

anomaly. 

All steps in the above demonstration sequence 

are accompanied by appropriate displays, and 
facilities exist for user interrogation of system- 

produced intermediate results. 

THE ARiVDMA INTEGRATED 
DEMONSTRATION SYSTEM ("TE3TBED") 

ARPA and DMA have jointly agreed to establish 
an integrated demonstration system ("testbed ), 
„ith SRI as the integrating contractor.  The 
system, which is to he located at SRI. is intended 
to be used for demonstrating and evaluating the 
applicability of IU research to cartography.  lor 
this purpose it will have a user interface that 
simulates the environment of a cartographic work 

station, consisting of a computer with CRT 
terminal, an image display with track ball, and a 
digitizing tablet. With the exception of image 
digitization, which for most purposes will be 
performed off-line by DMA, the system will support 
all major steps in map making with a continuously 

evolving degree of automation. 

Initially the system will allow interactive 

creation and editing of digital maps in a fashion 

similar to Hawkeye [l].  Existing maps, for 
example, con be overlaid on new imagery, edited, 
and extended, using a variety of interactive aids 
for tracing linear features and modeling objects. 
The system will also allow remote execution (over 
the ARPANET", of automated and semi-autom»ted 
techniques developed by IU contractors.  Those 
techniques whose utility and reliability justify 
tighter integration will then be incorporated into 

the system. 

The system will also be usable as e research 
facility, providing the III and DMA communities with 
access to the most advanced tools available.  This, 
plus the existence of compatibility standards lor 
programs and data, will encourage building upon the 
work of others, allowing rore ambitious projects to 
be undertaken.  Furthe-   e, the availability of 

common data sets will   •-te more systematic 

evaluation of competine  ichniques. 

The above objectives share the requirement for 

a very flexible architecture so that contributions 

developed in a diverse community ca . be fully 
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utilized.  Integration support must be provided for 
a wide range of contributions, from primitive image 
processing techniques (e.g., an edge follower) to 
stand-alone subsystems (e.g., an expert system for 
terrain modeling).  Language and operating sjstem 
support must be sufficiently broad to encompass 
programs running under the multitude of systems 
used throughout the community.  These systems can 
be expected to change continuously during the 

testbed's lifetime. 

To meet these requirements, the system will be 
configured as a library of application modules that 
accepts input and deposits results in a shared 
global data base.  For normal research and 
development, modules can be directly controlled in 
an interactive environment via the keyboard and 
graphical devices.  For demonstrations a front-end 
process is interposed, simulating the environment 
of a cartographic work station similar to Hawkeye. 
This interface facilitates communication with the 

system via menus (e.g., ZOG) or limited natural 
language (e.g., LIFER, RITA) and includes a "help" 
facility. 

The application modules each perform a well- 
defined high- or low-level task.  Modules are 
independently compiled so each can be implemented 

in different languages and can reside on different 
processors.  Modules interact with each other by 
neaae of a standard interfacing mechanism, 

resembling a procedure call.  Details of how 
control is actually passed will, of course, vary, 
depending upon the level of module integration 
(same address space, same processor, or remote 
processor). 

Most data interactions between modules will be 
affected by accessing the shared data base. 
Modules operate on common data from the data base 
and deposit their results back into the data base, 
where they will be available for display or 
subsequent processing by other modules.  The data 
base thus acts like a blackboard for interprocess 
c.mmunication in a fashion similar to Hearsay II 

[7]. 
The data base is accessed via a uniform query 

language.  This enforces compatibility and 
maintains integrity without constraining a module's 
internal representation.  Modules need not know the 
source of the data they use nor who will use their 
results.  For example, a program that needs the 
locations of edges in image X will look in the data 
base; if they are not there, then the program 
requests the use of an edge-locator module which 
will deposit results, tagged as "edges for image X" 
in the data base, where they will remain available 
for future use.  The data base is thus the key to 
modularity in a large integrated system. 

The VAX 11/780 has been selected as the main 
testbed raacnine.  All tightly integrated parts of 
the system will be resident there.  All other IU 
machines will be viewed uniformly as remote ARPANET 
hosts, including SRI's KL-10.  However, the SRI KL 
will have a high-speed channel to the VAX via a 
shared disk, eo application modules running there 
will incur minimal overhead. 

SRI will build a core system on the VAX.  It 
will include a data base and some general system 
utilities, such as display servers, data base 
manager, work station front end, and an ARPANET 

gateway. 

Development of application modules will 
proceed in parallel at all IU sites.  Each site 
will maintain local copies of relevant parts of the 
official data base (e.g., imagery) needed to 
develop and demonstrate their routines.  Each site 
will also be able to call remotely resident modules 

over the network, using the gateway mechanism. 

SRI will use the ARPANET to exercise 
application modules in the context of the core 
system.  As utility and performance justify, 
modules will be imported to run at SRI on our KL or 
VAX.  As the final demonstration takes form, 
critical modules may be receded to integrate 
efficiently with the core VAX environment. 

Our time schedule is to complete definition of 
the system by the end of this year, du the detailed 
design and construction of the core system in 1980, 

integrate application modules provided by the IU 
community in 1981, and evaluate and possibly extend 

the system in 1982. 

RESEARCH INTO COMPUTATIONAL PRINCIPLES OF VISION 

A major thrust of basic vision research at 
SRI, now jointly supported by ARPA and NSF, is to 
understand the computational principles underlying 
early stages of visual processing in men and 
machines.  Our previous research strongly suggested 
that an important function of early vision is the 
transformation of gray-level information in the 
input image into an intermediate level of 
representation that describes the intrinsic 
characteristics (e.g., depth, orientation, 
reflectance, color, incident illumination, and so 
on) of the three-dimensional surface element 
visible at each point in the image [8].  Such 
characteristics are important in their own right 

(e.g., for describing terrain surfaces) and are 
also fundamental to higher levels of perception 
(such as object recognition). 

The central problem in recovering intrinsic 
surface characteristics is that the needed 
information is confounded in the single value of 

light intensity available at each point in the 
image.  Recovery thus lepends upon constraints 
derived from assumptions about the nature of the 
scene and the physics of the imaging process (e.g., 
surfaces are smooth and are viewed from a general 
position). There are many techniques for 
recovering particular types of information, given 

certain specific circumstances; an important part 
of the recovery process is to decide which 
techniques are applicable in which areas of the 
image and how to integrate the results to obtain a 
consistent overall interpretation.  A theoratical 
model for simultaneously recovering orientation, 
reflectance, and illumiration images from a single 
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monochrome  image  was  developed  and   is  currently 
being  implemented. gently 
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J^ Model Refinement 

1.1,   Constraint  Networks 
Description 

and Procedural 

One important goal of the Rochester Vision 
Project is to investigate a generalized 

i epresentation of complex objects by semantic 
networks. In our formulation these include 
procedural invocation in which an executive 
procedure chooses worker procedures to perform a 
job not just on the basis of input/output behavior 
(as traditional pattern-directed invocation does), 
but also taking into account cost/benefit 
estimates and perhaps other information as well. 
This scheme is motivated by the desire to have the 
advantages of declarative knowledge about what is 
doable (the descriptions) along with the 
advantages of procedural knowledge about how to do 

it (the workers). The declarative, descriptive 
component will allow conviences such as the 

modular addition of procedural knowledge. The 
main research issue is to decide what exactly 
needs to be known about worker procedures, and how 
to express that in a useful and uniform manner. 

This must also be coordinated with the use of 
relational constraints [Russell and Brown, 1978]. 
A recent paper at Rochester exploring aspects of 
these issues is [Lantz, Ballard, and Brown, 1978]. 

1.2.  Decision Theory 

The use of decision theory not only as an 
abstract model of intelligent perception but as a 

practical tool to maximize computational 
benefit/cost is being investigated in the context 
of procedural invocation. This work continues in 
the tradition of Belles, Sproull, and Garvey, and 
ultimately we hope to extend some of their results 
to deal with formal problems that more closely 

approximate the sorts of vision problems 
encountered in our particular applications. 

Ballard (see Section 8) uses decision theory 
techniques to choose the most economical method 
(assuring adequate accuracy) of locating 
anatomical structures in large-format Images. 

2.  Noise-Resistant Feature Detection 

Work has bee.i underway at Rochester for 

several years on developing techniques for 
reliably detecting specific visual features, even 

in the presence of considerable noise. Our work 
has been based on generalizations of the Hough 

technique, which accumulates evidence for straight 
lines at various slope and intercept values using 

an accumulator array. For s&.ne time, we have been 
successfully employing extended Hough techniques 
to locate second-order curves like elliptical 
sections and circles. In the last six months we 
have been able to extend these techniques to 
handle a broad class of features [Ballard, 1979a]. 
There is reason to believe that these 
noise-resistant feature identification methods can 
be combined with our constraint graph techniques 
(of. Section 1) to yield a robust and general 

analyzer for industrial site images. 

3. Application in Aerial Image Analysis 

The three-level organization of image 

analysis (strategist, executive, worker) and a 
further exploration of useful procedural 
description mechanisms were first applied to 
photointerpretation work in [Lantz et al. , 1978]. 
The object is to use the sorts of knowledge-based 
inferencing used by skilled photointerpreters, 

along with models inspired by photointerpretation 
keys for identifying small industries, to do 
reliable and flexible identification of a few 
types of small industrial installations. 

A second phase of experimentation was based 
on the analysis of selected industrial sites using 

locally acquired aerial imagery. We have now 
acquired and digitized a sample image from the 

Defense Mapping Agency and are working on the 
structure of our third generation system. The 
current plan is to rely heavily on the general 
techniques described in Sections 1 and 2 above. 

4. Image Encoding and Transmission 

1.1  Hierarchical Image Encodings 

Communication of images, nnd information 
about images is an important part of any image 
understanding project. We have been investigating 

the use of various hierarchical image encodings. 
One of the image transmission schemes we have 

investigated is closely related to "pyramid" data 
structures. We have demonstrated that high 

resolution raster images can be effectively 
transmitted over relatively low-bandwidth lines by 
sending a series of low resolution approximations, 
which converge to the final image [Sloan and 
Tanimoto, 1978]. 
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4.2    Composition and Re-interpretation of Images 

It  is often convenient to  specify an  image  in 

table" supplied with our Gnnnea GMR-26 display 
S L anTBrown. ^791. These teohnlque «re 

currently being used ^ overlay map feau es o 
.«rial imaaes display three-dimensional surtaces 
ufder Tuie"; varying lighting conditions, and 
show short,  repetitive motion sequences. 

5.     Component  Building 

5.1.     Hardware 

The Grinnell GMR-26 display device is 
ruu  interfaced    to    an     Eclipse    computer,   and has 

scanner is on site and interfaced to ^e Vision 
Eclipse. The fast (50KB) link to the PDP-KL10 has 
been completed  and  is operating well. 

Both Eclipse computers are fully «°""8ured 
and nave been running effectively wit or 
distributed    system    software. &      VAX      "^ 
(purchased with non-DOD funds) ^operating and 
„ill be integrated into the local network We are 
acquiring terminals and investigating how to meet 
our everyday computing needs by commercial, 
nome-built. or combination intelligent terminal 

systems. 

5.2.     Software 

Advanced system software support is "OW used 
routinely, and more is under development. 
Comlunicaüons protocols and distributed computing 
nackages [Feldman, 1978; Sheimnger and Sabbah, 
197?; Selfridge, 1979: Sloan. 1978] have been 
developed to allow access to the GMR-26 hro.gh 
the local ALTO computers or the remote POP"^' ^ 
achieve reliable transmission between distnbi.tert 
processes, to produce graphics and halftone Images 
on ALTO screens from the PDP-10, and to allow file 
Transfer and telnet to the Arpanet. "Chester 
the RIG message is the lingua franca that allows 
processes on remote machines to command the 
GMR-26, perform file manipulations, and other 
operat ons. Some of our work has been utilized by 
other    mage  understanding groups, most  extensively 

at SRI. We are actively engaged m ^operative 
efforts with other DARPA contractors to develop a 
general  and flexible set of software tools. 

A comprehensive library of vision routines 
[Sloan. 1977-78] has been developed, central^f' 
documented, and incorporated into the NEXUS 
system. They allow interactive users a wide range 
of image-processing and display (graphics 
halftone! color and BW TV) capabilities. A 
p o ram to acquire images from the Optronic 
scanner and package them according to °ur Raster 
Image File Format [Selfridge and Sloan. 1979J has 
been developed  and  is in routine use. 

6.     Motion  Understanding 

Understanding motion Picturef„ ha3 K1 ^^ 
presented an unusually difficult problem to 
computer vision efforts. The compelling gestalt 
induced in humans by moving objects is not well 
understood. and so there is little ^verage on the 
immediate problems resulting from the ^rge mass 
of data in multi-frame images We b gan on a 
pared-down version of the prooiem 
nevertheless offers an iff esti"8 *et f 
perceptual phenomena to model. The domain is 
multi-frame images of animal ™f"onl Initial 
research is being carried out on sequential images 
of points of light attached to Joint». U 
detailed progress report is presented in these 
Proceedings.) 

7.     Texture 

Textural areas can be thought of as those 
parts of an image where segmentation based on 
^rlal similarity measures fails. Meaningfu 
analysis of textured areas must include 
discrimination between different textures and 
detection of parts of the same texture The 

similarity of textures which are ^""oal except 
for a scale change, a rotation, or a different 
range of intensities must be recognized. 

We approach the texture problem oy dividing 
texture regions into meaningful sub-elements o 
similar intensity sample points. then using 
rotaUon- and scale-invariant shape measures to 

characterize these regions and "-^ determini J 
soatial relationships among our sub-elements. By 
us ng decision tree program structure easily 
discriminated textures are separated quickly and 
more complex textural structure is ^tracted only 
when necessary [Maleson, Brown, and Feldman, 

19771. 

3.  Applications in Blomedicine 

chest 
an 

The model-directed finding of ribs in 
radiographs [Ballard, 19781 Pr°vldef,. Q 

UlustraUon of the use of the Rochester Vision 
System, incorporating procedure d^cripUon^ 
utility measures, and tops-down, m°del-directed 
perception. The object here is to cope with large 
amounL of possibly low-quality data withou un ue 
processing time by depending on a declarative 
model      of      anatomical       structures. described 
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procedural knowledge about how to locate them, and 
an executive which uses decision theory to control 
the image-understanding process. A prototype 
complete analysis  system  is now being  developed. 

A novel and uniform method of describing 
arbitrary functions on the unit sphere (which 
define "museum-viewable" «.-olumes) is under 
investigation, with immediate application to 
anatomical structures [Schudy and Dallard, 1979]. 
The idea is related to the well-known Fourier 
descriptions of two-dimensional shape. Volumes 
are modelled and described as the leading 
coefficients in certain spherical harmonic 
expansions of the volume functions. This method 
also allows least squared error fitting of volumes 
in coefficient space, which interfaces nicely with 
routines which locate the three-dimensional 
boundaries of volumes  in image data. 

Applications of generalized cylinders [Agin, 
1972] previously have been limited to simple cross 
sections. We use B-splines as an embedding for 
generalized cylinders [Shani, 19791. This allows 
an efficient realization of the original notion of 
generalized cylinders as arbitrary cross sections 
about a space curve. 
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MIT IMAGE UNDERSTANDING TECHNIQUES 

Patrick H. Winston 

The Artificial Intelligence Laboratory 

Massachusetts Institute of Technology 

In the November, I97S Proceedings, uie reviewed the overall 

program, briefly explaining our approach, stating the objectives, 

and citing the fundamental tools. Then we summarized the results 

obtained through an enumeration of representative individual 

efforts. 

In the April, IV19 Proceedings, we concentrated on Horn's group's 

worn on hill shading and atmospheric modeling and on Marr's 

group's discoveries about texture and about zero crossings, with 

particular emphasis on stereo. 

Here we confine ourselves to a brief enumeration of those 

techniques that are most ready for testbed experiments, ignoring 

all work that is further up the research and development pipeline. 

All things listed have been described at length in previous 

workshop proceedings. 

Shaded linages using Reflectance Maps 

Shaded images give a good, immediate impression of jUrface 

topography They are, however, expensive to make v/hen Hone 

by a human artist with an air brush. 

The solution is to make synthetic images using a reflectance map 

to capture and tabulate the constraint that determines image 

intensity from sun position, viewer position, surface orientation, 

and surface material. The steps are as follows: 

* Use a terrain model to compute local normals. 

* Use the local normals to find the proper intensity in 

the reflectance map. Use a reflectance map that best 

matches the surface material if the image is to be 

realistic or use one that gives the best depth impression 

if the image is to be used as a map overlay. 

necessary reflectance map can be computed from the 

bidirectional reflectance distribution function (BRDF) using 

techniques described by Horn and Sjp'jerg in the November, 

1978 Proceedings 

Image Registration using Synthetic Images 

Ground control points or other sharply defined features may not 

be available for registering images with terrain models or with 

one another 

One alternative to the use of ground control points is to match 

the given image against a synfhtic image made from the terrain 

model.  The steps are as follows: 

* Make a syntheiic image using the terrain model. 

* Blur both the synthetic image and the real image. 

* Correlate the two images. Find values for 

transformation parameters that give correlation 

maxima. The blurring is necessary to eliminate 

confusing secondary peaks in the correlations. 

* Repeat with less and less blurring using accumulated 

results to limit the search domain. 

Subpixel accuracy has been obtained in registering a sample 

image Figure I illustrates the reduction of images that is one of 

the key steps in the process. 

This basic technique was described by Horn and Bachman in 

the October, 1977 Proceedings Since that time, improvements 

have made it possible to deal with six degrees of freedom, not 

just the four worked with originally. 

This subject was dealt with at length In Horn's article in the 

April, 1979 Proceedings   Among other things, he reviews the 

important hill-shading work going back to the maps of Lenardo 

da Vinci drawn in 1502 and Lri03 He also points out that the 

Uestriping Satellite Images 

Before registration and other image-oriented operations can 

proceed, it is necessary to do quite a lot to clean up and 

transform the raw satellite image.  Getting rid of the stripes that 
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Figure I Registering images with digital terrain models requires 
matching blurred images first. These blurred images are called 
reduced images 
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Figure 2: Satplllte images typically have unacceptable striping 
effects.  Destriping can be done using histogram comparisons. 
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are the result of using six independent sensors is a prominent 
example. This can be done by assuming that all six sensors see 
the same distribution of intensity values and then using the 

following steps: 

* Make histograms of the intensities seen by each 
individual sensor and a general histogram of the 

intensities of all sensors together. 

* Create a correction table for the output of each 
individual sensor by appropriately comparing Its 

histogram with that of the general histogram. 

Figure 2 shows an Image before and after destrlping. The 
reproduction of these proceedings may not be adequate to show 

the severe striping in the unprocessed image. 

This technique was describe In detail by Horn and Woodham In 

the May, 1978 Proceedings. 

Ground-cover Analysis using Albedo Images 

The amount of light reflected by a surface is influenced by the 
material It is made of and by its orientation. Consequently, 
multispectral pattern-recognition methods do not work well in 

hilly terrain where the varying orientation Is a factor. 

The solution to the problem Is to compute an albtdo image in 
which only surface material influences intensity. An albedo 

image is computed as follows; 

* Compute a synthetic Image using a terrain model. 
Assume the same sun position that applies to the real 

image to be analyzed. 

* Register the synthetic Image with the real Image. Use 

Horn's registration method. 

* Divide the intensity at each point In the real image by 
the corresponding, predicted Intensity in the synthetic 

Image. 

The result Is a flattened image. Figure 3 illustrates. Such 
images are ready for study in an interactive environment with a 
human interpreter. Further work Is underway to Improve albedo 

images by using atmospheric models to create better synthetic 

images. 

Our plan is to describe this work In the next volume of the 

proceedings 

Depth Mapping using Stereo 

Stereo image analysis is surprisingly hard. Straightforward 

correlation of images is difficult for two reasons; fir«, 
appearance is strongly influenced by viewing angle; and second, 

correlation requires enormous computation. 

One solution is to use uro-cmsing stereo. This Involves 
matching zero-crossings In image derivatives. The steps are as 

follows 

* Blur the image by convolution with a Gaussian filter. 
The most blurred image starts the process by giving 
rough results that are sharpened by two or three 

less-blurred images later. 

* Apply a Laplacian operation. 

* Find zero-crossings it, the result. Theory hints, 
curiously, that the image can be recovered from the 
zero crossings. Here, they serve to find and pinpoint 

edges. 

* Match the zero crossings in one image with those in 
the other Match closest zero crossings that cross in the 

same direction. 

* Repeat using less blurring. Use results accumulated so 
far to limit the search for matching zero crossings. 

Figure 4 illustrates the process 

This work was described in detail by Crimson and Marr In the 
April 1979 Proceedings. Crimson is working on the difficult 
problem of interpolating the depth for areas between 

zero-crossing contours 
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Synthetic image with cast shadows. 
Destriped, rectified LANDSAT imaqe. 

Simple albedo image -- real/synthetic. Improved albedo image -- atmospheric modelling 

-_ \.. _ -^ 
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Ftgure 4: Random-dot stereo pairs provide a hard challenge for 
stereo algorithms The three elevation maps show the progress 
of the depth computation starting with the course match using 
the must blurred image pair 

" 

^ 



1G5 

Berthold K. P Horn and Brett L Bachman, "Using Synthetic 
Images to Register Real Images with Surface Models," October, 

1977 Proceedings Image Understanding Workshop. Also 
A1M-437, The Artificial Intelligence Laboratory, Massachusetts 
Institute of Technology, Cambridge, Massachusetts, 1977 Also in 

CACM. November, 1978. 

Berthold K P Horn and Robert W. SJoberg, "Calculating the 

Reflectance Map," November, 1978 Proceedings: Image 

Understanding Workshop Also AIM-495, The Artificial 
Intelligence Laboratory. Massachusetts Institute of Technology, 
Cimbridge, Massachusetts, 1978 Aho in Applied Optics, June, 

1979 

Berthold K. P Horn and Robert J. Woodham, "Destriping 
Satellite Images," May, 1978 Proceedings: Image Understanding 
Workshop. Also AIM-467, The Artificial Intelligence 

Laboratory, Massachusetts Institute of Technology, Cambridge, 

Massachusetts 1978 Also to appear in CGIP. 



166 

U1AGE UNDERSTANDING USING OVERLAYS 
Project Status Report 

1 April-30 September 1979 

Computer Vision Laboratory 
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Azrlel Rosenfeld, Principal Investigator 

ABSTRACT 

Current activities on the project are reviewed 
under the following headings: 

1) Image modelling and preprocessing 
2) Edge detection and linking 
3) Segmentation 
4) Texture analysis 
5) Shape analysis and matching 
6) Hierarchical region representation 

Some other related work at the Compuuer Vision 
Laboratory is also briefly mentioned. 

1.  INTRODUCTION 

This project is concerned with the study of 
advanced techniques for the analysis of recon- 
naissance imagery.  It is being conducted under 
Contract DAAG-53-76C-0138 (DARPA Order 3206), 
monitored by the U.S. Army Night Vision Laboratory, 
Ft. Belvoir, VA (Dr. George Jones).  The Westing- 
house Systems Development Division, as a subcor- 
tractor, is investigating hardware implementation 
of the techniques being developed by Maryland, 
particularly in the area of relaxation; their 
efforts are reviewed in separate quarterly reports. 

The current phase of the project is concerned 
with the development and application of advanced 
techniques for image processing, feature detection, 
segmentation, texture and shape analysis, and 
region representation.  These aspects are reviewed 
in the following sections.  This report deals 
primarily with the work done during the past six 
months; activities during earJier periods were re- 
viewed in previous reports [1-4].  Some of the 
topics are discussed only briefly, since they are 
treated in greater detail in other papers in these 
Proceedings. 

2.  IMAGE MODELLING AND PREPROCESSING 

Image models 

Many types of statistical models for images 
have been developed; they Include random field and 
time series models, as well as models for region 

shapes in terms of border or run sequences.  An 
NSF/ONR sponsored Workshop on Image Modelling was 
organized and held in August 1979; over 25 papers 
were presented on various aspects of image model- 
ling.  Under an AFOSR grant, research is being con- 
ducted on a class of "mosaic" image models based 
on random geometric processes, as well as on the 
problem of neighborhood selection in time series 
and random field models. 

The last status report briefly reviewed some 
of the basic types of mosaic models and their p- o- 
perties, and also reported on some preliminary 
studies in fitting such models to real textures. 
During the current reporting period, further 
studies on mosaic model fitting were coreucted [5]. 
Six cell structure models were used: the checker- 
board, hexagonal, triangular, Poisson line, occu- 
pancy, and Delaunay models.  Some experiments were 
also carried out using coverage or "bombing" 
models, but the fits obtained were much poorer than 
those of the cell structure models. 

The models were fitted to samples of seven 
textures: three geological terrain types on a 
LANDSAT image (Pennsylvanian sandstone and shale, 
Mississippian limestone and shale, and Lower Penn- 
sylvanian shale) and four textures from Brolatz's 
album (grass, raffia, sand, and wool).  These 
textures were chosen because they have been used 
in earlier texture classification experiments by 
various investigators.  "Patches", or primitive 
elements, were extracted from each texture using 
an edge-based method (see Section 5).  Smal] 
patches (having less than 13 pixels) were discarded 
to reduce noise. 

For each of the models, the expected petch 
area and patch perimeter can hi  derived ^s func- 
tions of a parameter representing the ''density" of 
the mosaic.  By adjusting this parar^ter, wt can 
fit the expected area to the obseived area for a 
given texture sample.  The difference between the 
expected and observed perimeters can then b? used 
as a measure of how well the model fits the tex- 
ture.  Conversely, we can adjust the parameter to 
make the expected and observed perimeters agree, 
and then use the difference between the axpected 
and observed areas as a measure of the fit. 

Table 1 shows the fits obtained in this way 
for the six models and for several samples of each 
of the seven textures.  It is seen that: 

/ 
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a) For most of Lhe textures, there is a con- 
sistently best fitting model 

b) This best model is usually the same whether 
the area or perimeter is used for fitting 
the model 

c) The goodness of lit of the various models 
to a given texture usually spans a wid» 
range; the best model often fits substan- 
tially better than the next best one. 

The mosaic models used in these experiments 
were chosen because they are mathematically trac- 
table (so that quantities such as the expected 
area and perimeter can be computed for them.), not 
because we consider them to be realistic models 
for natural textures.  Nevertheless, the results 
of our model fitting experiments indicate that some 
of these models provide good predictions of the 
properties of real, textures.  Thus mosaic models 
seem to be a useful addition to the repertoire of 
mathematical tools for image and texture modelling. 

Preprocessing techniques 

During the previous reporting periods, compa- 
rative  tests were conducted on a variety of noise 
cleaning techniques, primarily based on iterated 
local operations, and a number of new techniques 
of this type were developed.  Some further varia- 
tions are currently under study.  All of these 
methods assume that the ideal image is piecewise 
constant;  the general idea is to average each 
pixel with a subset of its neighbors, namely those 
which appear to belong to the same region as the 
pixel.  When such methods are applied to a noisy 
image, the peaks on its histogram tend to become 
mu-h sharper, implying that the gray level varia- 
bility in the regions has been reduced. A two- 
level method has also been developed in which link 
strengths are computed between each pixel and its 
neighbors, and smoothing is done by local averaging 
in which the weight given to each neighbor depends 
on its link strength; both the local averaging and 
the link strength computation are iterated.  When 
this method is used, the image histogram tends to 
become spike-like. 

A class of "probability transforms" of images 
has been defined [6].  The basic idea is as fol- 
lows: One or more local properties (e.g., gray 
level, gradient magnitude, etc.) are measured for 
each pixel.  We take the frequencies of occurrence 
of the property values as estimates of their pro- 
babilities, and the joint or conditional frequen- 
cies of occurrence of pairs of values as estimates 
of the joint or conditional probabilities.  For 
each pixel, we can display its probability with 
respect to any given property, or its joint or 
conditional probability with respect to any given 
pair of properties, as a gray level.  Some of the 
results seem to be useful in enhancing subtle pro- 
perties of the original image, as Figure 1 illu- 
strates.  Haralick, who first defined the joint 
gray level probability transform, suggests that it 
may be useful in texture analysis  These trans- 
forms tend to be quite sensitive to poise; but as 

mentioned in an earlier report, they may also be 
useful in connection with noise clean! g. 

3.  EDGE DETECTION AND LINKING 

Cultural features  such as roads and buildings 
on aerial photographs usually have relatively 
sharp edges that are piecewise straight or smooth 
and that occur in antiparallel pairs, i.e., with 
their dark sides or light sides facing one another. 
Thus a useful approach to the extraction of such 
features is to detect edge segments and link them 
into groups based on relationships of collinearity, 
good continuation, and (anti-) parallelness. Such 
an approach will be described in a separate paper 

In these Proceedings [7].  In this section we 
briefly discuss some of the motivations that under- 

lie this approach. 

Ideally, one might want to use knowledge about 
the properties of the features at every stage of 
the extraction process.  However, at the initial 
stage of this process, much of this knowledge is 
simply not useful.  When examining individual 
pixels and their neighborhoods, i, is not usually 
possible to decide whether a pixel is on (the edge 
of) a road or building, unless roads and buildings 
have distinctive gray levels (or colors) or con- 
trasts.  Similarly, the relationships among indi- 
vidual pixels do not provide much information about 
whether they are parts of roads or buildings, since 
these features can have a variety of sizes and 
shapes, and even if we assume that a pixel belongs 
to a feature, we do not know to what part of the 
feature it belongs.  Thus at the pixel level it is 
more appropriate to use "local" knowledge about 
primitive entities such as edges, lines, corners, 
etc., as they occur in the features of interest, 
rather than attempting to use knowledge about the 
features themselves.  The result of processing at 
this level might thus be a set of edge segments, 

line segments, etc. 

A somewhat higher level of knowledge can be 
used in defining groups of these segments.  Here 
one can emply "semilocal" information about primi- 
tive shape properties such as straightness and 
parallelism; but it is still difficult to use 
global shape informatior, or information as to how 
features interact with one another, at the segment 
level, since the positions of the segments within 
the features are not generally known.  Thus an 
appropriate goal at this s age might be the ex- 
traction of "subfeatures" or "feature segments", 
e.g. by linking collinear groups of line segments, 
or groups of edge segments that form an anti- 
paraliel strip.  Further grouping of the feature 
segments into features can then be carried out; 
at this stage, it should be possible to make 
effective use of global Information. 

An approach to cultural feature extraction, 
based on these stages, is described in [7], where 
we discuss the methods used at each stage and give 

-  
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preliminary examples of results ootalned at the 

first two stages. 

4.  SEGMENTATION 

Thresholding 

If we use a regio;i-based, rather than edge- 
based, approach to feature extiaction, then a com- 
mon Initial step is to classify the image pixels 
based on thair gray levels (or colors)—i.e., to 
threshold the image.  Many methods have been sug- 
gested for choosing the threshold.  One possibility 
is to use one-dimensional versions of standard 
clustering algorithms.  For example [8], the well- 

knoun ISO^XTA algorith..., as applied to the 
thresholding problem, might operate as follows: 
(a) start with an arbitrary threshold; (b) compute 
the mean gray levels of the resulting two sets of 
pixels; (c) pick a new threshold midway between 
these means; repeat steps (b-c).  It can be shown 
that this process always converges, and that it 
yields good thresholds for images that do contain 
two populations of pixels. More generally, the 
process can be used to classify the pixels into any 
specified number of classes, i.e., to requantize 
the image into a given number of gray levels. 

In the previous status report, an application 
of relaxation to thresholding was described.  Ini- 
tial "light" and "dark" probabilities are assigned 
to each pixel based on its gray level, and these 
nrobabilities are then iteratively adjusted based 
on the probabilities at neighboring pixels, with 
light reinforcing light and dark dark. Within a few 
iterations, the histogram of probabilities (which 
can be displayed as gray levels) begins to turn 
into two spikes at the ends of the gray scale. 
Thl" method assumes that the. two desired classes 
are 'light" and "dark"; we now describe an alter- 
native approach in which any desired gray level 
classes can be used.  Hero the initial probabili- 
ties are determined by fitting a sum ut standard 
distributions, e.g. Gaussians, to the image's 
histogram, where each Gaussian defines a gray level 
class.  Bayes' theorem can then be used to deter- 
mine the probability that a given gray level be- 
longs to each of the classes, and these initial 
probabilities are then iteratively adjusted as 
before.  Figure ?. shows an example of the applica- 

tion of this method to a FLIR image of a tank; 
here there are two classes, and the results are 
displayed by representing the class probabilities 
as positions along the grayscale.  Note that even 
the initial probabilities, when displayed in this 

way, give rise to two peaks at the ends of the 
grayscale, with very little between them; thus 
very little remains to be donr on the subsequent 

iterations. 

Blob detection 

An approach to blob detection using relaxation 
was described in the previous status report [9] ; 
it used two interacting relaxation processes, one 
dealing with light and dark probabilities, the 
other with edge and no-edge probabilities, and gave 
better, results than ,:ould be obtained using either 
process alone.  A more detailed description of 
this work appears in [10].  Another possible 
source of information relevant to blob detection 
might be "interior" and "exterior" probabilities, 
initially set to .5 except adjacent to borders, 
where the interior probability Is higher on the 
concave side of a curved border segment, and the 
exterior probability is higher on the convex side. 
An interior/exterior relaxation process was imple- 

mented in [10] in the binary case, where the 
object/background bordprs are known; under this 
process, the interior probabilities go to 1 inside 
the object and the exterior probabilities go to 1 
outside it, even if initially these probabilities 

have the wrong relative sizes due to the presence 
of concavities in the border.  Generalizations of 
the interior/exterior process to unsegmented 
images are currently under investigation.  One pos- 
sibility is to compute a gradient direction at 
each point, and to estimate the curvature at a 
point by the rate of change of this direction; if 
desired, the resulting interior/exterior probabi- 
lities can be "attenuated" (i.e., moved closer to 
.5) if the gradient magnitude is small. An even 
simpler possibility is to use the numbers of 
neighbors of a point that are lighter (darker) 
than the point as a basis for defining "curvature" 

at the point. 

In the previous status report it was suggested 
that multiple-resolution ("pyramid") array repre- 
sentations could provide a basis for introducing 
simple types oT size and shape information into 
the segmentation process.  For example, blobs 
become local features ("spots") at some level of 
the pyramid; thus if a spot is detected, we can 
adjust the parameters of the full-resolution seg- 

mentation processes in that vicinity so as to 
favor extraction of the spot.  A simple version of 
this idea has been implemented [11], and is de- 
scribed in a separate paper in these Proceedings. 

Basically, when a spot is detected, a local 
threshold is chosen midway becween th; average 
gray levels of the center and sjiroand regions of 
the spot detector; this threshold extracts the 
spot very well.  Planned extensions o£ this ap- 
proach will employ other types of detectors, and 
will allow the results to influence the segmen- 

tation process in additional ways. 

5. TEXTURE ANALYSIS 

Texture plays an important role in the classi- 
fication of terrain and land use types on aerial 
photographs and remote sensor imagery, particular- 
ly if uiultispectral information is not available. 
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Several texture analysis efforts are currently In 
progress; one of them, involving second-order gray 
level statistics computed at points defined by 
characteristic local property values, was described 
in the previous status report.  Some rf the current 
work is described in a separate paper in these 
Proceedings [12]; it deals with cooperative compu- 
tational methods in texture analysis, in connection 
with the adjustment ol' texture feature values as 
well as the extraction of texture primitives.  The 
main lines of investigation are briefly summarized 
in the following paragraphs. 

In the absence of color information, sets of 
local property values can sometimes be used as 
features for pixel classification.  However, these 
values tend to be quite variable; for example, even 
in a "busy" region, local busyness measures do not 
have uniformly high values.  Iterative smoothing 
methods, or relaxation methods, can be applied to 
the values to make them more consistent.  Similar 
remarks apply to textural properties computed for 
windows of an image; one wants to use small windows 
in order to make it less likely that a window over- 
laps two differently textured regions, but for 
small -jindows the property values are quite vari- 
able.  Here again, iterative smoothing methods can 
be used to reduce the variability, resulting in 
reliable classification even for small windows. 
Further work along these linos is planned, invol- 
ving comparisons among windows of different sizes. 

Several simple methods of extracting texture 
primitives from an image have been investigated, 
including thresholding at a percentile, adaptive 
requantization (converting the Image's histogram 
into a small set of spikes), and the SUPERSLICE 
segmentation algorithm.  The resulting primitives 
are generally not "clean", but statistics computed 
from them (area, perimeter, elongatedness, etc., 
as well as second-order statistics computed for 
neighboring pairs of primitives) are nevertheless 
useful for texture classification.  Much "cleaner" 
primitives can be obtained using an edge-based 
approach [13], in which primitives are detected as 
clusters of antiparallel edge pairs.  This approach 
can be modelled in several ways, e.3. using 
"dlpoles" of varying length and orientation, and 
detecting clusters of dipole responses; these 
responses can be based on the gradient magnitudes 
and directions at the two ends of each dipole, 
rather than requiring decisions to be made as to 
whether or not edges are present.  Another approach 
is to use simple spot (or streak) detectors to 
detect the positions of texture primitives; the 
primitives can then be extracted by local segmenta- 
tion techniques such as that described in the pre- 
ceding section. 

6.  SHAPE ANALYSIS AND MATCHING 

A relaxation-based approach to shape analysis 
and matching was described in the previous status 
report, and has now been documented in greater 
detail in two technical reports [14,15]. The first 

phase of this work [14] dealt with single, isolated 
shapes, and -"jdressed the problem of matching a 
shape to a model in cases where the shape cannot 
be unambiguously segmented.  The approach taken 
was to represent the ambiguous segmentation as a 
graph in which the nodes are the segments, and 
the arcs link pairs of segments that are consecu- 
tive along the border.  The nodes are then probabi- 
listically classified as being various parts 
referred to by the model—e.g., nose, wings, and 
tail, ir an aii-plan°.  Relaxation is used to adjust 
these probabilities; this greatly reduces the ambi- 
guity of the graph, and allows matches to the model 
(i.e., cycles consisting of the proper sequences 
of parts) to be found quickly. 

In [15], this approach is extended to handle 
sets of touching shapes.  Here the (ambiguous) 
segments are linked based on proximity and conti- 
nuation relationships; in other words, the rela- 
tionship of consecutivity is now also treated as 
ambiguous (e.g., when two shapes touch, it may not 
be obvious how to pair up the border segments at 
the point of contact).  Paths in the resulting 
graph are probabilistically classified as being 
parts of the shape, and relaxation is applied to 
increase the probabilities of classifications 
that support one another  In this case too, the 
relaxation process results in a high degree of 
disambiguation.  An example, involving four touch- 
ing airplane shapes, is shown in Figure 3. 

Further extensions to the approach are needed 
to handle shapes with missing parts.  An extension 
to hierarchical shape models (e.g., decomposing 
the nose, wings, and tail into subparts) would 
also be desirable. 

Methods of shape segmentation are also under 
study.  The segmentations used in the studies 
described above are based on detection of curva- 
ture extrema on the border; thus these segments- 
tions are based on relatively local evidence.  A 
more global approach to shape segmentation in- 
volves finding arcs for which a given function has 
a locally extremal value.  For example, if the 
function is arc length divided by chord length, 
it should have a maximum when the chord just cuts 
across the base of a protrusion or Intrusion.  A 
number of such functions are being investigated; 
a report on their properties and their usefulness 
for shape segmentation is in preparation. 

7.  HIERARCHICAL REGION REPRESENTATION 

Extensive studies have been conducted on the 
use of quadtree structures as representations of 
binary images.  A separate paper reviewing this 
work appears elsewhere in these Proceedings [16]. 
Ten technical reports [17-26] have been issued on 
this work, in addition to the two reports issued 
during the last reporting period. 
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The quadtree '■^presentation of a 2n-by-2n bi- 

nary array Is constructed as follows: If the array 
consists entirely of 1's or 0's, Its tree consists 
of a single "black" or "white" node, respectively. 
Otherwise, we subdivide the array into quadrants, 
and represent it by a "gray" node having four 
descendants corresponding to the quadrants.  The 
process is then repeated for each quadrant—i.e., 
if it consists entirely of 1's or O's, it is re- 
presented by a black or white node, ar.d if not, it 
is represented by a gray node having four descen- 
dants corresponding to Its subquadrants.  This 
process is Iterated until no further subdivisions 
into quadrants are necessary.  The result is a 
tree whose root node corresponds to the entire 
array and whose leaf nodes correspond to blocks 
consisting entirely of 1's or 0's.  Each leaf 
node is black or white, and each gray (non-leaf) 
node has four descendants. 

This representation can be generalized to non- 
binary Images; here a quadrant is subdivided unless 
its pixels all have the same value.  However, the 
representation is economical only for images com- 
posed of large regions of constant value; if many 
gray levels are possible, this is unlikely. 

being studied.  Techniques for image segmentation 
based on multiple-resolution operations are also 
under investigation, and a combination of the two 
approaches is planned.  This work also has obvious 
applications to the image analysis tasks with which 
the present project is concerned. 

b) Under N3F grant MCS-77-18719, a transpor- 
table Fortran-based image processing software 
system has been designed.  This work supplements 
the ongoing development of utility software within 
the Laboratory; see [27] for documentation of a 
collection of this software. 

c) Under AFOSR grant AFUSR-77-3271, In addi- 
tion to research on image modeling, extensive 
studies are being conducted on the theory of cellu- 
lar processors, both array- and graph-structured, 
having either fixed or reconfigurable structures. 
As an outgrowth of this work, a cellular processor 
consisting of several hundred microprocessors is 
being designed.  The proposed design is described 
in a separate paper in these Proceedings [28] . 

Efficient algorithms have been designed for 
converting between quadtrees and other representa- 
tions, and for computing various properties cf an 
image diiectly from its quadtree.  These algorithms 
typically operate by traversing the tree; their 
execution time depends on the number of tree nodes, 
and not on the sizes of the blocks that these nodes 
represent, so that for compact quadtrees they are 
very fast.  An overview of these algorithms is 
given in a separate paper in these Proceedins [16]. 

They Include: performing Boolean operations on 
binary images represented by quadtrees [23]; com- 
puting moments [23]; computing perimeter [17]; 
labelling connected components [IB]; computing the 
genus [22]; computing a form of city block or 
chessboard distance from each black node to the 
nearest white node [24,25]; and determining a quad- 
tree 'Wdial axis transformation" based on this 
distance [26] .  Other algorithms .eal with effi- 
cient bottom-up quadtree construction [20], and 
with conversion between run length and quadtree 
representations [29,21], as well as with conversion 
between quadtrees and border codes (reported 
prevloufly).  Experimental studies are in progress 
on the use of quadtrees to define approximations 
to binary images, and on the accuracy of estimating 
shape properties from these approximations; this 
work will be the subject of a subsequent report. 
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Table 1.  Errors in fitting six cell structure models to samples of seven textures. 

0 = Checkerboard,  H ■ hexagonal,   T = tiiangular 

P ■ Poisson line,  0 ■ occupancy,   D = Delaunay 

For each texture, the odd-numbered rows show errors in perimeter when the predicted 
and observed cases are matched;  the even-numbered rows show area errors when perimeters 
are matched.  Each pair of rows represents a different texture sample; there are three 
samples each of wool, raffia, sand, and grass, and four samples each of the three geo- 
logical terrain textures. 
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a) Original picture (three chromosomes) 
b) 3x3 local average 
c) Roberts gradient magnitude 
d) Laplacian magnitude 

(e-h)  First-order probability transforms of (a-d); 
The probability of the value at each point 
is rescaled and displayed as a gray level. 

*»>-■ 

.j&tfJi^...jfcjx'. 

»»Wiwg 
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(1-Ö  Joint probability transforms for gray level 
and four properties.  The joint probability 
of the gray level and property value at each 
point is rescaled and displayed as a gray 
level.  The properties are 

i) Laplacian magnitude 
j) Roberts gradient magnitude 
k) 3x3 local average gray level 
O gray level of right-hand neighbor 

(m-p)  Conditional probability transforms for the 
same four properties.  The conditional 
probability of the property value given the 
gray l?vel at each point is rescaled and 
displayed as a gray level. 

Figure 1.  A set of "probability transforms". 
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(a) 
(b) 

(c-e) 

(f) 

The original picture (a tank on a FLIR image) and its histogram. 
Result of fitting a sum of two Gaussians to the histogram, computing the probability that each 
gray level belongs to the two classes, and displaying the probability of membership in the lighter 
class (rescaled) as a gray level.  The resulting histogram (of rescaled probabilities) 
now has two predominant spikes at the end of the scale, even before relaxation is applied. 
Results of three iterations of relaxation applied to (b).  The first iteration eliminates nearly 

all of the intermediate values; there Is little change after this iteration. 

Plot of the histogram, showing the two-Gaussian fit. 

Figure 2.  Thresholding by Gaussian fitting and relaxation. 

   :  , 
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b. 

Iteration 0 

c. 

Iteration 1 
Iteration 2 

(a) 

(b) 

(c-d) 

Input:  three touching airplane shapes 

Two-piece approximating polygons for each of 53 Initial segments 

produced a unique segmentation of each plane into four parts. 

Figure 3.  Segmentation of touching shapes by relaxation. 
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IMAGE UNDERSTANDING RESEARCH AT CMU: 
A Progress Report 

Raj Reddy and lohn R, Kender 
Department of Computer Science 

Carnegie-Mellon University 
Pittsburgh, PA   15213 

INTRODUCTION 

Our research objective continues to be the 
development of image understanding techniques within the 
framework of an integrated demonstration system. This is a 
two-pronged effort: the analysis and codification o( many 
available sources of visual knowledge, and the synthesis and 
coding of a user-friendly environment. For our latest six- 
month segment we report progress in basic algarithm 
research and enhancement, In addition to the results of our 
major concentration on system develop: lent, both hardware 

and software. 

Our three task areas remain the same. We continue 
to Investigate the application of diverse knowledge-based 
techniques in the understanding of two-dimensional satellite 
images of Washington, D.C., and of three-dimensional color 
scens of downtown Pittsburgh. As before, the stress in this 
area is on cost-effectiveness. As reported below, much of 
the creation of new low-level and high-level interpretation 
techniques is done with an eye towards their eventual 
Integration into a working signal-to symbol system. 

The second task area has produced a very tangible 
result. Our concern with the development and verification 
Of suitable computer architectures for computer vision has 
resulted in a breadboard demonstration of the feasibility of 
a VLSI chip. Our other similar efforts are motivated by the 
necessity for fast and cheap image computations, in 
research as well as in aoplication domains. 

Our third area concerns the development of 
interactive aids for image processing applications. We have 
directed our work towards many of the software issues that 
such systems imply, particularly those Involving the 
management of the data base. 

What follows summarires briefly our progress this 

past half-year. 

SYSTEMS 

We are currently adapting much of the software from 
our multi-processor Image Understanding System to a DEC 
VAX running UNIX. We are augmenting this machine with a 
Grinnell display and an interface to our existing special- 
purpose median-filter TI board. (The present hardware 
configuration is being retained as a cpecialized display and 
database computer, addressable over our in-house network.) 
This is a sizable tool-building effort that includes he 
refitting of picture paging and displaying algorithms. We 
expect it will be well repaid in research efficiency, 
principally due to the virtues of shared code. In this last 
regard, we will continue to program in C until a reliable Ada 
compiler Is available. 

TASKS 

Research on more specific, task-relaied issues 
includes the following. The concentration of effort in the 
aerial imagery lask has been on the questions of symbolic 
representation of data. This work is reported in a 
companion paper (McKeown, 1979). The basic search 
strategy in the downtown Pittsburgh task has been 
redesigned, implemented, analyzed, and (favorably) 
compared with the original. Several other aspects of the 
original system are better understood and controlled) this 
work is found in a second companion paper (Smith, 1979). 
Lastly, more theoretic results have been derived from the 
shap-'-'-from-texture paradigm (Kender, 1979a). We intend to 
incorporate these new algorithms and representations into 
thei three-dimensional Pittsburgh task. Some of them "are 
outlined below. 

In representing local shape, it appears that the 
Gaussian sphere is a powerful tool. Very strong analogies 
are shown to exist among the families of constraint curves 
that are generated by the separate methods that derive 
shape from shading, from texture, and from occluding 
contours. The analogies are not only strong, they are 
exceedingly simple: in this representation, they are latitude 
or longitude lines on the (appropriately tilted) sphere. An 
elegant similarity also is found between closely-illuminated 
objects and objects viewed under perspective. Further, use 
of this representation in lieu of the gradient space allows 
extension of the method of shape-from-shading to handle 
cases wher" illumination is in front of the camera: the 
gradient space is only half the necessary space. 

In calculating local shape, several new methods neatly 
fall out from the application of the paradigm. Some of these 
are exact; others are approximate, in the sense o' function 
approxim-ition. Among the exact methods are those based 
on the assumption of equal lengths or spacings. A direct 
consequence of these (very simple) relations is the strong 
suggestion that inverse distance is a highly appropriate 
measure in dealing with three-dimensional scenes. Another 
application of the paradigm to gravity-sensitive scene 
assumptions (horizontal, veriical), shows how such 
information can be easily integrated into !he 
representational scheme. Still other applications yield 
further results (Kender, 1979b). 

In general, our hope is that all our research (and the 
research of others) can be fruitfully harmonized in our 
application vehicle. We perceive that this necessitates the 
development of an ample collection of low-level visual 
experts; shape-from-texture is one such. Each specialist 
cooperatively tontribul3s to an intermediate, symbolic data 
structure on which the higher-level knowledge-based search 
and deduction schemes depend. 

A computational organization like this articulates a 
theory of image abstraction. One graphic equivalent is the 
generation of a series of map ovei lays from an aerial view. 
In this framework, the aerial imagery task is the intelligent 
goal-driven selection and integration of many signal-driven 
representations; the goal is the overlay. 
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ARCHITECTURES 

Our speciai-purpose image processing hardware 
progresses steadily. The T^yas Instruments VLSI board has 
arrived and is being interfaced to our VAX. TI is bu !ding 
another board; this one will perform a three-by-three 
convolution at video rates. The convolution coefficients are 
programmable (Eversole, 1979). Meanwhile, Control Data is 
constructing the SPARC ultra-high speech signal processing 
computer (Allen, 1979). It is expected to arrive in January 
of 1980. Its arrival will undoubtably spark another round of 
intensive software Implementation, debugging, and 
improvement, similar to the one just reported concerning 

our VAX. 
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