AD=AD77 428 STANFORD UNIV CALIF STANFORD ELECTRONICS LABS
AODLIB USER'S MANUAL.(U)
AUG 79 D D HILL

UNCLASSIFIED SEL=79=027

| oF |

AD

AOTTAZH
END
DATE
FILMED
| -80
poe

F/6 9/2

DAAG20=T79=C=0047
NL

el LR T

o e

S e e

1

o0
N
-
e
O
S
-,
1=

B
e
L]
i
b
B
B
=
g

R

(
i

-

FILE_COPY

DOC

COMPUTER_SYSTEMS LABORATORY / X

. o 4—]7§\ ,‘Jgk
ﬂm ﬂfcmws LABORATORIES ~ \\Q T r@):*‘”
DEPARTMENT OF ELECTRICAL ENGINEERING >

T

ADLIB USER'S MANUAL

o ™

rﬂ:amaz
.' Ui 26 1519
Dwight D. Hill

Technical Report No. 177

: : ‘s o
August 1979 [for gy T R g

This work was supported by the Joint Services Electronics Program
under Contract DAAG29=79-C~0047.

-

r

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

. Y T T

£
T AUTHORIY K

O ACT OR GRANT NUMBE R

SEL-79-827, TR ~L 7]

REPORT DOCUMENTATION PAGE Lo ot g T
T REPORT NUMBE R 7 GOVT ACCESSION NO | 3 RECIPIENTS CATALOG NUMBER
Rechnical Report No. 177 7
4 TITLE leng Subtitie) v,.u?'?"l GF WEPORT & PERIOD COVERED
e "4 Technical Refort.
pLAm.u User's Manual 5 e 2

|

h ;’"’"’"‘ff_/ i 1 | ; ;C@Mszs-n-c-pﬁd

Computer Systems Laboratory s s gl o

Stanford University

LY

{"neh € (JZ)Ek

P PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK

J

Research Tefangle Park, NC 27709

14 MONITORING AGENCY NAME & ADDAESS (it gt from Controiling Officel

Unclassified

Stanford, CA 94305 ‘mﬁﬁ.“‘/ T3 WO OF FAGES
17 CONTROLLING OFFICE NAME AND ADDRESS]2 | MM]Q 76
Army Research Office e

SCHEDULE

18 DECLASSIFICATION DOWNGRADING

16 DISTRARUTION STATEMENT (of this report)
Reproduction in whole or in part is permitted for any purpose of the U.S.
Government .

T7 DBTRIBUTION STATEMENT (0f the sbhetract entersd in Biock 20 gifferent 1rom report)

18 SUPPLEMENTARY NOTES

19 iy WORDS (Contmvue on reverse wae f v and iy by Block Aumber)

\ simulation, PASCAL, hardware description languages, SABLE, SDL

N |

BETRACT (Comtinue on revrse side ! necessry and identify By Block Aumber!

ADLIB (A Design umr for Indicating Behavior) is a new computer
design language recently developed at Stanford. ADLIB is a superset
of PASCAL with special facilities for concurrency and interprocess
communication. It is normally used under the SABLE simulation system.

DD."X-1473 J

\

EDITION OF 1 NOV 65 1S OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dats £mersd)

332 Yoo

> e -

s

SEL 79-027

ADLIB USER'S MANUAL

Duight D. Hill

Technical Report No. 177

August 1979

Computer Systems Laboratory
Departments of
Electrical Engineering and Computer Science
Stenford University
Stanford, Californim 94305

*This work was supported by the Joint Services Electronics Program under
Contrect DAAG29-79-C-0047

i

E S E——— e e 3 S

ADLIB USER'S MANUAL

>

Duight D. Hill

Technical Report No. 177

August 1979

Computer Systems Leboratory
Departments of
Electrical Engineering and Computer Science
Stenford University
Stenford, California 94305
ABSTRACT

ADLIB (A Design Language for Indicating Behavior) is & new computer
design language recently developed at Stenford. ADLIB is & superset of
PASCAL with special facilites for concurrency and interprocess

communication. It is normally used under the SABLE simulation system.

INDEX TERMS simulation, PASCAL, harduare description languages,
SABLE. SDL

B B 28 S e rms . T

Page 3
Introduction

SABLE is & design sutomation system currently being developed at
Stenford University to support structured, multi- level simulation of
computer designs. SABLE stands for Structure And Behavior Linking
Environment., beceuse it joins information sbout the interconnectivity of
components with algorithmetic specifications of their behavior. The
user expresses interconnectivity via SDL (Structural Design Language)
(VCW77), which has facilities for defining multiple levels of physical
hierarchy. Component behavior is specified in ADLIB (A Design Language
for Indicating Behavior), which is a superset of the language PASCAL
[JK7&4]. ADLIB was designed to simplify the description of commonly used
computer components and to be compatible with SDL and SABLE. ADLIB was
never intended to be a programming lenguage compietely by itself.

This manual is divided into three parts: an introduction to ADLIB
with @& informal description of the basic features; a more detailed
discussion of the structure of an ADLIB program, including scoping rule
end contour models; and a summary of the keywords and syntax of the
language. Because documentation is widely available, this manual will
not repeat the detailed features of PASCAL. However, the basic aspects
of PASCAL will be described briefly, so that readers familiar with other
high level languages should be able to follow the discussion without too
much difficulty.

The author would like to express his thanks
to William vanCleemput, Warren Cory, Eric Slutz, Tom Blenk.
Bob Dutton, John Hennessey, and all
contributed to ADLIB.

Ann Beetem,
the other, people who have

SR el

0
&
=5
;

TABLE OF CONTENTYS

R N A s s s 2 T

CHAPTER 1:
BASICS OF ADLIB
! PURPOSE OF ADLIB .

i 1 REVIEW OF PASCAL CONSTRUCTS
& 2 ADDITIONAL ADLIB CONSTRUCTS
a 3 DESIGNING AN ADLIB PROGRAM .

T CHAPTER 2:
TYPES, NETTYPES AND TYPE CHECKING
| WHAT DOES "STRONGLY TYPED™ MEAN? .
2 TYPE CHECKING OF NEYS .
3 DATA TYPES lVA!lAILE 1" ADL!.
1 DBOOLEAN . .
e INIROER . .-, «
3 REAL S
4 ENUMERATED 1YPES g e
S SUBRANGES . s . .
2 ; ARRAYS .
8
9
1
1
1
!

RECORDS
sSer1s . .
FILES .
0 POINTERS
1 BT & xilw A e
2 REGISTER . $l A e O e
3 ANOTHER EXAMPLE: RS232 INTERFACE
CNAPYER 3t
A CONTOUR MODEL FOR ADLIB
1 CONTOUR MODELS . .
2 STRUCTURE OF AN ADLIB PROGRAH
GLOBAL IDENTIFIERS . .
NETS AND NETTYPES
CLOCKS . . .
TIMING CLAUSES .
ROUTINES .
COMPTYPE DEFINITIONS .

CHAPTER &:

ADLIB SYNTAX
1 LOW LEVEL SYNTAX ., . .
2 SUMMARY OF OPERATORS .
3 STANDARD IDENTIFIERS .
¢ RESERVED WORDS

S SYNTAX CHARTS

APPENDIX 1: ROUTINE PACKAGES
b ROPACK 5 i 4 5 4 wiwid . »
SRETERLIZATEON o & s ¢ s 5 v s
CONVERSION . . « v v v 5 » o s
ARIV”HEYIC TR e e L S G
SHIFTS ..y . »
BIT ACC!SS!NO R e
LOGICA

R e

LR T

PR DN -

2 INTRODUCTION 1O THE NEW ADLIB CONSYI“CYS ;

NNNN"NN?MNN'@NNNN
OO 08O U U B G) s

“I SIS

LR B AT R

L L e e
)
PR RUENN -

OO?OO
OB -

R ks et

& e R

U

’,.T.D’
BB

7 FORMATTED 170 . . .
B -RUDRARK v v s aivisils . we
1 SEVTING A NEW "SEED"
2 RANDOM DRAWING FUNCTIONS . .
3 DATA ANALYSIS FACILITY , ., .

APPENDIX 2: REFERENCES
APPENDIX 3: INDEX

CHAPTER 1
BASICS OF ADLIB

1.1 PURPOSE OF ADLIB

The purpose of an ADLIB description is to define the behavior of
one or more types of computer components. The SABLE system then
combines these with information that specifies the number of components
used., and the way they are connected. This topological information is
expressed in SDL. For convenience the user may generate the SDL

automatically via an interactive graphical structure editor called SUDS2
[us?91.

In ADLIB, the code that defines the behavior of one type of
component is called a gomptype. There is no way of telling from an
ADLIB source how many components of each comptype., if any, will be used
in & design. Each comptype written in ADLIB is & specification of the
input to output function of one type of component. Essentially all
information that passes through a component must go through well defined
170 interfaces called “nets."™ SABLE later connects these nets to the

nets of other components as directed by the user via SDL.

Before we enter into any explanations of ADLIB and SABLE, it might
be helpful to give & small, useless but complete example. We will
detine a tiny system consisting of a dealer and a player. the dealer
sends random integers to the player, who just receives them and writes

the results on the terminal. The ADLIB code for this looks 1ike:

!
£
i
i

BASICS OF ADLIB
PURPOSE OF ADLIB

PROGRAM exmpl;

NETTYPE
intnet =integer:

finclude rpaks.dcl !include @ file of routine declarations

COMPIYPE dealer:

OUTWARD

cordout : intnet;

VAR

i :+ integer:

BECIN

WHILE true DO BEGIN

ASSIGN rndint(1,13) T0 cardout;

HAITFOR true DllAY 1.0
END;

END;

COMPTIYPE player;
INWARD
cardin @ intnet;
BEGIN
WHILE true DO BEGIN
WAITFOR true CHECK cardin;
:aa(.ln(!tv.c-rdﬁn);
H

END;

BEGIN
END.

The structure of this systeam is shown below:

BASICS OF ADLIB Page 1-3
PURPOSE OF ADLIB

The SDL code to used describe the interconnectivity of this system is:

NAME: TEST;

TYPES :dealer.player:
dealer : joei

player : ralph;

END

;

NETSEGMENT;
3 net! = joe.cardout,ralph.cardin;
; ENDNETS:

ENDC:;

CEND:

asp o tmnE M R R R e

When this code is compiled end executed, the result is & never

ending stresm of random integers between ! and 13 (inclusive) directed

to the terminal. If the example makes sense, fine. It not, don't

worry. The remander of this paper will explein and elaborate
everything.

1.2 INTRODUCTION TO THE NEW ADLIBD CONSTRUCTS

Because ADLIB is & superset of PASCAL, it includes all of the
§ PASCAL control statements. For readers not familiar with these

statements they are summarized here.

1.2.1 Review 0f PASCAL Constructs

IF <boolean expr> THEN <Cstmt!1> ELSE <(stmt2>

which chooses between two alternative statements;

2
TR

s
~

CASE <expr> OF <value!l>:<(stmt1>
<value2>: <stmt 2>

END

0

T

which selects one of an arbitrary number of statements, (similar to,
but more powerful then a "switch®™ or “computed goto™);

5. WHILE <boolean expr> DO <stmt>
which iterates a staterent zero or more times;
&, REPEAT <stmt> UNTIL <boolean expr>

which iterates a statement one or more times:

BASICS OF ADLISB

Page 1-4
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

FOR <variable>:=<expr!1> TO0<expr2> DO <stmt)>

which repetitively executes a statement as <variable> ranges from
Cexpri> to <expr2>. (Similar to & FORTRAN DO loop.)

GOTO <label>

which transfers control to <label> unconditionaliy®.

1.2.2 Additional ADLIB Constructs

The above six constructs are useful for defining the algoritim

incorporated within a component, but are not adequate for describing

inter-component control and data flow. Therafore, tha following new

constructs have been added to ADLIB:

1.2.2.1 ASSIGN <expr> T0 <net name> <timing clause>

Assign evaluates <expr> and stores the result auway in 8 hidden

area. At » later time., this value is retrievaed and assigned to the

specified net.

Time delays may be specified in several ways depending

on the nature of the circuit (synchronous or asynchronous) and the

cebjectives of its designer. The simplest way s to define a delay

directly, as for exemple:

ASSIGN true TO out DELAY 15.3;

Fifteen and three tenths simulated time units after
the “out™ will

this

be updated to the value "true".

statement s

executed, net

Time

delays need not be constants, any real expression may be used. For

exemple, if two parullel paths exist to the same outward connection, and

either one it, then we could define the

is sufficient to drive

component's behavior as:

*This construct

is currently out of fashion.

T —

BASICS OF ADLIB
INTRODUCTION YO THE NEW ADLIB CONSTRUCTS

ASSIGN result TO out DELAY min(delay_1,delay_2)

("Min™ is a function that returns the minimum of its arguments.)

The expression in an ASSIGN statement may contain function calls.
For example. in order to describe a signal generator, it is convenient

to write:

ASSIGN sin(time*frequency) T0 signalout

This statement illustrates two other points as well. In ADLIB, the
variable “time"™ always contains the current value of the simulation
time. When the simulation begins, it is equal to 0.0. User assignment
to "time™ results in & compilation error message. Also, this statement
does not contain an explicit DELAY cleuse. The ADLIB compiler therefore
treats it as if DELAY 0.0 were specified. At first glence, zero
propagation deleay times may seen confusing, unrealistic, and potentially
hazardous. However, because of the runtime organization of SABLE, this
operation is unambiguous and useful. During simulation, SABLE cycles
between the execution of component's Sehavior descriptions and the
updat ing of the nets connecting them. First, all components are allowed
to execute. then all nets are updated, then all components are allowed
to execute again, etc. One iteration of this cycle constitutes one
gyent. It may happen that several events occur sequentially, but at the
same simulated time. If one or more components assign to @ set of nets

with a DELAY of 0.0, then all these updates will appear to occur

simultaneously.

No hazerds or races are introduced by allowing 2eroc propagation

delay, and there sre several spplications where it is in fact, necessary

and appropriate. For example, a designer may prefer to treat
combinational logic as cperating with 2ero time delay, to contrast it

with the sequential circuitry. As an extreme example of this, consider

BASICS OF ADLID Page 1-6
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

a system implemented with relays. We wish to express the idea that a
voltage propagates through the contacts of a relay immeasursbly faster
(measured in nano-seconds) than the speed at which the armaturs moves
(measured in milli-seconds). To describe a relay which operstes as a

single pole. double throw switch (like @ one bit multiplexor), we could

weite:

1F armature_position = uo THEN ASSIGN input! Y0 out
ELSE ASSIGN input2 Y0 out

In the abave example. the exasct speed of propagat ion v
incalculable and irrelevant (in fact, it would probably be lost to
round-of! error). On the opposite extreme are circuits whose output
values must be available &t precisely controlled instants, i.e.
synchronous circuits. For exemple, most micro-controllers operate at a
precisely constent speed independent of the micro-instruction mix (this
is not generally true of macro-instructions). Such controllers and any
circuitry directly connected with them are most conveniently defined in
ADLIB with the use of & CLOCK and the SYNC primitive. An ADLIB clock
may be thought of as & function that maps simulation time into positive
integers. At time 0 all clocks have velue 0. As simulation time
progresses, the clocks run through their phases repetitively:
0,1,2,5,0,1,2,3,0,1.2.5... etc. ftor & four phese clock. The pericd of
repetition is the parsmeter value specified by the user in the clock
definition statement. The value of clock "clk,” defined as:

CLOCK clk(4.0,4);
is showun in figure 1.

By use of the SYNC operator, the user cen synchronize an operation
uwith a peorticular leading edge of & clock. For exemple, a
micro-controller might have to have several control! lines ready at

precisely the leading edge of the number one phase of clock "micro_clk™.
This could be written as:

ey il

BASICS OF ADLIB Page 1-7
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

4
cix
3 et -
3 Lt & ——
1 Gusmgsio L s @ nem—
' - . - e e - 4:
L) 1] 3 - T 3 [g 8 9

TINE =)
FIZURE 1: VALUE OF CLK(4.90,4)

r 1= microstorelmicro_ip);
micro_ip := micro_ip o
ASSIGH r.carry 107 1ine! svuc micro_clk PHASE 1;
ASSIGN r.thi'(. 70 line2 SYNC -icro clk PHASE 1;
ASSIGN r.shift! T0 line3 SYNC micro_clk PHASE 1;
ASSIGN r.shift2 TO line4 SYNC micro_clk PHASE 1;
ASSIGN r.clear TO lineS SYNC micro_clik PHASE 1;
(®otc. ™)
All of the above ASSIGN statements will be effected at precisely the

seme simulated time.

The user may specify any number of independent CLOCKs, each with
their oun periods and numbers of phases. Unlike some other simulation
environments, clocks do not consume any computation resources
themselves: only when and ! & component accesses them is any
calculation performed. The user may mark one of the clocks as being the
default. This saves him or her from writing the clock's name in every
sync clause. Also, if no phase is specified, the compiler assumes that
phase 0 is intended. It is therefore quite convenient to describe
systems that maintain a single universal clock, such as a plp.lfaod

multiplier that keeps each stage in lock step with the others.

BASICS OF ADLIB Page 1-8
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

1.2.2.2 MWAITFOR <boolean expr> <control clause>

WAITFOR causes execution of a component's code to stop, and does
not allow it to continue until <boolean expr> evaluates to true. The
<control clause> may come in one of two forms. First, a <timing clause>
may be used, just like the timing clause in an ASSIGN statement. 1If a
delay cleause if used, the <boolean expr> is reevalusted periodically at

the period specified in the delay clause. For example:

WAITFOR current>0.001 DELAY sample_period;

This statement would check the value of "current™ every "semple_period"

time units, until it exceeded one milliamp.

If SYNC is specified, the <boolean expr)> is reevaluated ocach time

the specified clock goes through the specified phase. For example:

WAITFOR acknowledge=! SYNC bus_clock PHASE &;

This statement would not allow execution to continue wuntil the net
"acknouledge” was equal to ! on the leading edge of the fourth phase of

clock "bus_clock™.

Alternatively, a control clause may take the form of & list of nets
that the component s to be sensitized to. This format is called a
"check list™, because whenever one of the nets mentioned in it is
updated. the boolean expression is rechecked. By this means, it is easy
and efficient to describe asynchronous machines driven by the the nets
to which they are connected. For exemple:

WAITFOR data_rdy = | CHECK data_rdy

This statement would put the component into a passive state until the

T L

BASICS OF ADLIB Pege 1-9
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

net “data_rdy" was updated to the value !. No simulation resources are
consumed while the component is idle (there is no "busy waiting™). In
particular, it other components ASSIGN to data_rdy whatever value that
it already contains, the expression "date_rdy = 1" is not reevalusted.

This is because SABLE autometically deletes all such null updates.

1.2.2.3 Sensitize, Desensitize., and Detach

Token collectively, these provide @ facility for direct control of
the operstion of a component. They operate in & way that is similar to
WAITFOR, but st & lower level and somewhat more efficiently. Sensitize
and desensitize are predetined procedures meke & component receptive or
immune te changes on its inward nets. These procedures are always used
in conjunction with the DETACH operator, which causes execution of a
component to stop until one or more of the nets to which it is sensitive
is updated. When @n update on a sensitized net occurs, the component
will be swakened.

Because of the flexibility of the WAITFOR construct, it s
difficult to think of en application where DETACH is really more
convenient. and not merely more efficient. However, to illustrate its
use. we shall use it to describe @ finite state machine that recognizes
the bit strings consisting of 1's and €'s. The strings must match a
regular expression that begins and ends with 1, and where any 0 must be
preceeded and followed by at least one | (exsmple taken from ([KZ70]).

This machine is stimulated by a net called "input_line”, which contains

o data element “d" and & strobe field “s™. (In order to drive this
machine. it is necessary to put the deta value in the "d" field, and to
update the "s" field.) In ADLIB, one way to define the sutomaton is:

BASICS OF ADLIB Page 1-10
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

sensitizelinput_line);

1: detach; (®initial state®)
it input_line.d = 0 then goto §;

2: ('accopiinr state®™)
writeln(output, 'accept');
detach;

tf input_line.d = 0 then goto 1;
goto 2:

3: detach: (* terminal stateh)
goto 3;

When combined with the facilities available in PASCAL, the above

primitives ere adequate to encode almost any conceiveble function among

a component's nets. However. before a design language will be used, it

must be more than adequate, it must be convenient. Therefore ADLIB also
incorporates the concept of “subprocesses™ to facilitate encoding the
behavior of many common computer asctivities. Each subprocess performs a
single function and runs independently of the main body of the comptype.

There are two types of subprocesses., upon and transmit.

1.2.2.4 UPON <boolean expr> <check list> DO <Cstmt>

Upon is used to define @& set of activities to
independently of

be performed
the main sctivities of the component. Whenever a net

in <check list)> is updated, <boolesn exprd> is reevaluated. 5 NI | RS |

true, then <simi> is executed. For example:

interrupt : UPON (interrupt.priority > current)
CHECK interrupt DO

BEGIN

pushimachine_stete):

service_interrupt;

g:g(-ocﬁino_stlio)s
H

This code would check the priority level whenever the interrupt net
was updated, and service the interrupt when necessary.

B T

g U T YV T A N T e b, - . i e TR A

BASICS OF ADLIB Page 1-11
INTRODUCTION TO THE NEW ADLIB CONSTRUCTS

1.2.2.35 TRANSMIT <expr> TO <net> <timing clause>

TRANSMIT is more specialized than UPON. A trensmit subprocess
reevaluates <expr> whenever one or more of the nets in <net list> is
changed. The result is then assigned to <net neme> at the time
specified by <timing clause)>. Yransmit is very convenient for
describing co-binan;n.l circuitry. For example, & simple NAND gate can
be described with:

nand: TRANSMIT NOT(a AND b) TO ¢ CHECK a.b DELAY 15.0;

1.2.2.6 Inhibit And Permit

The name given to a subprocess may be used to control it by means
of the procedures "permit™ and "inhibit"™. All subprocesses are
initially inhibited. which means thst no external stimulus can activate
them. The main body of a component may then permit some or all of the
subprocesses to run, at which point they are ready to respond to
stimul i, Subprocesses may be inhibited at any time, which returns them
to their initial, inactive state. For example, & computer may protect a
critical region with:

inhibitlinterrupt);

write _tol(shared_data);
p.r-iT(inQ.rrupT)s

.3 DESIGNING AN ADLIB PROGRAM

To illustrate how ADLIB is used, we shall “design™ a small system
that plays Blackjeack with itself. This was inspired by @ DDL design
found in [DDL751, but is somewhat more complex and complete. The ADLIB
system consists of one or more dealers and one or more players. Nets
shall be used to represent the flow of cards from the dealers to the
players, and to coordinate their activities. To begin our design

POy ol e

T, A AP s

BASICS OF ADLIB Page 1-12
DESIGNING AN ADLIB PROGRAM

process, we first consider what data must be transmitted (suit and rank)
and what control information is needed (player is waiting for card,
dealer is waiting for player, etc.) We develop three types of nets
(nettyvpe's) that define the structure of the nets which carry
information between components, and associate an interpretation with
them. The design at this point might ba encoded as shown in figure 2.
The nettypes shown fall into two categories: structured nettypes, such
as “card_bus" and simple ones., such as “display_lights" and
"control_line™. Structured nettypes are most useful when several pieces

of information are logically affiliated but need to bhe updated and

exemined independently.

:uoguun cardgame:
Ye
suit_type = (clubs,hearts,diamonds, spades);
runh type = (eoce,two.three,four,five,six,seven,
ht.nine,ten, jack,queen.king);

nE!!v E
card_bus = RECORD

suit @ suit_type;

renk_type;

displey_lights = (hit,stand,.broke);
contrel_line = (card_rdy,card_accepted);

COMPTIYPE desler;: (* deals outl cerds®)
BEGIN
(* not yet designed®)
END:

COH;E;:E player: (®accepts cards, stands or goes broke®)
N

(% not yet designed®)
END:
BEGIN
END.
Figure 2 - Outline of Blackjeck System
The code in figure 2 specifies three nettypes but no control
protocol. We decide to use one control line between each player and the
dealer that serves it, and to alternate the value of this net between
"card_rdy" and "card_accepted”. The synchronization mechanism can then
be expressed by the code fragments shown in figure 3. The first waitfor

statement shown causes the player te wait until the card is ready, and

BASICS OF ADLIB
DESIGNING AN ADLIB PROGRAM

the second causes the dealer to wait until the player has
to do.

(® player's code ¥)

WAITFOR cntrl = cardrdy CHECK cntrl;

(* accept card¥)

ASSIGN card_accepted T0 cntrl;

(® process card, go broke, hit or stand#)

(% deoler's code W)

(® generate next card #)

(" assign nextcard to cardbus %)

ASSIGN cerd_rdy 10;

WAITFOR cntrl = cardaccepted CHECK cntrl;

Figure 3 Code fragments for Coordination

We are now ready to specify the aslgorithms used by the players and

dealers. For the purpose o[this discussion, the player just accepts

cards until it reaches its limit, tresting sces as | or 11 points as
needed. The ADLIB code for the pleyer is shown in figure 4§, end will be

referred to later.

BASICS OF ADLIB
DESIGNING AN ADLIB PROGRAM

COMPTYPE player;

(% declare the "terminals™ of this component®)
INWARD

card : card_bus;

QUTWARD

lights : display_lights;

EXTERNAL

entrl : control_line;

;:gcclaro the storage needed by this component®)
score : 0..27;
holding_ace : boolean;
BEGIN
WHILE true DO BEGIN
holding_ace := false:
score := 03
REPEAY
REPEATY
ASSIGN hit Y0 lights;
ASSIGN card_accepted T0 cntrl;
WAITFOR cntri=card_r CHECK centrl;
IF card.rank < jack THEN score :%
score ¢ ordi(card.rank) ¢ |
(%ord returns an integer in 0..13%)
ELSE score :* score ¢ 10;
1F (card.reank>ace) AND
(NOT holding_ace)
THEN BEGIN
score :* score ¢ 10;
holding_ace: *true END:
UNTIL score > upper_limit;
IF (score > 21) AND holding_ace THEN BEGIN
score :* score ~ 10;
holding_ace :* false END:
UNTIL score > upper_limit;
IF score <= 21 THEN ASSIGN stand YO lights
ELSE ASSIGN broke T0 lights:
END:
END;

Figure &: Definition of Comptype "Player™

In order to see if comptype "player™ works properly, it s
necessary to develop & “"dealer”™ comptype to drive it. There are several
possible ways to do this, just as there are several ways to test a new
piece of hardware. In ADLIB, it is easy to write @ comptype that talks
with the terminal for interactive testing. Another possibility is to
ute @& pseudo-random number generator that will choose cards from an
infinite deck. A package of such generator routines called RNDPAK iy
available to ADLIB wusers. Finally, the designer can urite a comptype
that reads the test data from a file. Each of these approaches have

BASICS OF ADLIB Page 1-15
DESIGNING AN ADLIB PROGRAM

T e L]

vy

their own merits at different phases in the design process. Normally,
interactive testing would be used for initial debugging, large numbers

of randzm inputs for extensive testing. and prerecorded, specially

T e

selected values for production.

Having specified the behavior of comptype "player” end "dealer"™, we

are free to use as many of each as we wish in our design. The structure

of one possible cardgame is shown in figure 5.

DEALTCARD JOE
DEALER

LIGHTS

CNTRLY

CNTRL2

FIGURE S ! STRUCTURE OF A SIPPLE CARDGANE

SR

SRt 5

CHAPTER 2
TYPES, NETTYPES AND TYPE CHECKING

2.1 WHAT DOES "STRONGLY TYPED"™ MEAN?

Like its base language PASCAL, ADLIB is said to be a "strongly
typed" language [0EI78). This means that each piece of data, each
function and all parsmeters must each be declared with exactly one type.
Whenever & variable or net is used, its use must be type compatible with
its declaration. In & well-written progrem, the type of a varisble
defines the narrowest possible range of values that it may attain.
While beginning programmers may think that type checking is an arbitrary
restriction on their programming style, more experienced designers can
usually put it to very good use. Typing is essentially a way for the
designer to express his or her intentions about the way in which a piece
of data should be used. The compiler can then sutomatically detect when
those intentions are violated, which usually implies an error. In
languages that are not typeful, it is often easy to treat character
strings as reals, or integers as pointers. Even when this is done
intentionally, it is very difficult to read, understand and maintain the
resulting program. And when it s done unintentionally, chesos cen
result. For a discussion of PASCAL typing and program reliability the
reader is referred to [WN7S].

2.2 TYPE CHECKING OF NETS

The primary type checking mechanism in ADLIB is the use of nettypes
for de'ining the intended interconnection mechanism between components.

TYPES, NETTYPES AND TYPE CHECKING
TYPE CHECKING OF NETS

Page 2-2

In SABLE, the
identical

that

nettypes at each end.

nets

connect components must be declared with p

1t this is not so, an error message is

printed*. This nettype checking is considerably more thorough than 3

checks found in most register transfer language's (RTL's), where it is

only necessary that the number of bits must match. To illustrate this

difference, consider & component that produces two BCD (binary coded

decimal) digits and another that accepts eight bits of binary data.

Most RTL's would allow them to be directly connected, since 8 bits = 8

bits., Even simulation might not detect this error if the test set did

not happen to include any values greater than 9. But the ADLIB ~ SABLE

environment would detect the mismatch,

since “BCD" is not type

compatible with "binary™. Further examples of type checks will be given

later in this section.

But types should not be viewed just as a restriction. Compared

with other languages, ADLIB (like PASCAL) offers & wealth of useful new
types to choose from.

The next section illustrates a few of the ways

that o designer can take advantage of them to ~educe errors and improve
readability.

2.3 DATA TYPES AVAILABLE IN ADLIB

Because ADLIB is a suparset of PASCAL, it inherits =all of the

PASCAL type construction mechanisms. For the benefit of readers not
faniliar with PASCAL.,

these are listed here:

*Unless & special TRANSLATOR has been provided. TRANSLATORS provide the
ability to do multi-level simulation at the expense of some
(vuo*chackin? security and some loss of data precision, For a
discussion of their use, see [HDD79-1).

e s A A S 1y

R T S VU Sl O B e 3 I S . k7 ! 12\ i o ekl 1

TYPES, NETTYPES AND TYPE CHECKING Page 2-3
DATA TYPES AVAILABLE IN ADLIB

2.3.1 Boolean !

Boolean variables can attain the values true or false. (Similar to
FORTRAN's LOGICAL.) For example if "strobe" were declared to be of type

boolean we could write:

strobe := data_rdy AND (bus_clock = 3)

2.3.2 Integer

I.e. =15, or 1024,

2.3.3 Real

T.e. 3.14159 or 6.023e24

2.3.4 Enumerated Types

These allow a user to enumerate (list out) all the possible values

of & piece of data. For example:

logic_level = (low, high, unknown, high_impedance)

We have already seen several examples of ;nu-orqud types in the
cardgeme program. Enumerated types are also useful for describing the
instruction sets of machines, such as the INTEL 8008 {173):

TYPE
instruct_kind = Cirr,lrm,lmr,1ri,Imi,
inr,dcr,adr,adm, (%etc#®));
In ADLIB, one cen use & CASE statement to describe the execution of
@ machine instruction in & format very similar to ISP [BCG71]. For

example:

et A

- "

TYPES, NETTYPES AND TYPE CHECKING Page 2-4
DATA TYPES AVAILABLE IN ADLIB

FUNCTION decode : instruct_kind;
(% code omitted for brevity®)
BEGIN ("main body of program¥)
CASE decode OF
Irr 1 (¥ load reg to regh)
BEGIN (* code omitted %) END;
ret : (¥ roturn from subroutine¥)
BEGIN (¥ code omitted®) END;
(fgtch)
END:

2.3.5 Subranges

These specify that only part of & range of values s @scceptable,
for example:

register_number = 0..7

specifies not only that varisbles of type register_number sre integers,
but alse that they must lie between 0 and 7 (inclusive). Assigning a
value to @ subrange variable that is outside its range is automatically
detected. For exawple., in the ADLID blackjack machine the variable
"score™ waes declared to range over the values 0 to 27, the high value
being eaual to 16 (the Hhighest possible score before standing) ¢ 11
(value of en ace). By contrast, the DDL version merely declared the
score to be a five bit register. The ADLIB aspprosch has two advantages.
First, it allows the designer to defer any decision on the
representation of data in the early stages of design. Second, and more
importently, it encodes more information: e.g. the fact that the score
can never exceed 27. Although this is not too critical here, it is easy
to visualize spplications where the range of datea that a register holds,
it known, can be used to improve the design. For exsmple, nine ADLIB
black jack scores could safely be added in an 8-bit alu, since we know
the total cannot exceed 243. On a more practical level, it might be
useful te know not only that memory addresses in a DEC 10 are 18 bits

AR NN

TYPES, NETTYPES AND TYPE CHECKING Page 2-5
DATA TYPES AVAILABLE IN ADLIB

long, but also that they range from 16 to 262144, (since the first 16
sddresses refer {o registers).

2.35.6 Arrays

ARRAY is similar to DIMENSION in FORTRAN. For exsmple:
memory * ARRAY(0..1023) OF integer

2.3.7 Records

Records are useful for grouping related data, ss for example:
complex = RECORD
;:;}_pch.tlug;b.rQ t real;

Most register transter languages, including DDL., provide mechanisms
for making several nemes equivalent references to the same piece of
data. The usual example of this is an instruction register, where one
of the bits is given & mnemonic neme such as "I" (for Indirect) in
addition to being 1R10]. This cen make parts of a program more
readable., but can also lead to confusion when & mnemonic is referenced
for the first time several pages away from its declaration. The
strategy adopted by ADLIR s to use "verient” records for this purpose.
A variant record is essentially & single deata area that may have several
different data structure "templates” applied to it. As an example of
this. consider the four ways that one cen look at an HP 2116
instruction, as discussed in the machine manual [HP]. In ADLIB, these

alternative views would be encoded as:

i o

= Ay

TYPES, NETTYPES AND TYPE CHECKING Page 2-6
DATA TYPES AVAILABLE IN ADLIB

TYPE
instr_varient = (whole.memory_ref.register_ref,i_o);
VAR
ir : RECORD CASE instr_variant OF
whole : (ARRAYI..15) OF b
memory _ref : (indirect :
mem_instr : ARRAY(
zero : bit;
mem_oddr : ARRAY[0..9
reg_ref : (group : ARRAY(O..}
1

..

micro 1 ARRAY(O..11)
i_o : (io_group : ARRAY(OD, .3}

io_instr t ARRAY(O..S

select : ARRAY(O..5)
END:

This record informs the reader (and the compiler) that the
instruction register "ir"™ may be viewed in four different ways, but is
still in fect just one register 16 bits long. (Note that the total
number of bits in each veriant is 16.) Access to ir cen then be

performed using the mnemonic fields, e for exsmple:

ir.whole := date_bus;
or

IF ir.indirect = 1 THEN cycle := fetch:

Now the fields are closely associsted with the register, and the reader
is (hopetully) less likely to misinterpret them,

2.3.8 Sets

A SET is an area of storage that may contain from 0 to all of its
members {.0. o powersetl. Textually, setls are delimited by “(* and "%,
and facilties are provided for set intersection (AND), wunion (OR),
difference (~) membership (IN), equality ("="), size comparison ("<" and
ayny, Since sets are normally pecked into machine words, these
operations wusually run very auickly. Sets are convenient for grouping
related symbols, both visuvally for the reader and logically for

simulation. For example, in the 8008 we cen express certain fects in
machine readable form that are normally only shown on the data sheets,

T S '-;‘vz";u,\&m.rysm

t m—'»«ﬂ%

% TYPES, NETTYPES AND YYPE CHECKING Page 2-7
& DATA TYPES AVAILABLE IN ADLIB

such as:

index_instructs:={lrr,irm,lmr,iri,Imi, inr,dcr);
one_cycle_alu:=ladr,acr,sur,sbr,ndr,xrr,orr,cprl;

As an example of the use of set operators, consider the code that
describes the timing of part of the execution cycle. It might contain:

IF instruction IN one_cycle_alu THEN
WAITFOR SYNC FHASE 1;

2.3.9 Files

The ADLIB user may declare various types of FILEs to match the data
to be stored in them. Storing and retrieving that date can then be
accomplished very efficientiy. For example, it is easy to describe a

core image as:
core_image : FILE OF integer:

For convenience, special facilties are provided for resding and writing
files of text.

2.3.190 Pointers

PASCAL, (and therefore ADLIB) provides two independent areas for
storing dsta, the ordinary stack and @ heap. The hesp is sccessed only
via special pointer variables, which may in tuern point to other
pointers, wetc. This makes it convenient and efficient to develop
complex data structures. Pointers are denoted by the up arrow "t*. For
example. the data structures for describing a virtual memory system
might look like:

TYPES, NETTYPES AND TYPE CHECKING Page 2-8
DATA TYPES AVAILABLE IN ADLIB

TYPE
page = ARRAYID..511) OF integer:
page_ptir = “page; (® “™ means "pointer to™™)
page_table = ARRAY [0..255) OF RECORD
logical _address : 0..64235;
is_incore : boolean;
memory_ref : page_ptr;
END;

New elements are added to the heap by means of the "new"™ procedure.

Using this, part of the code to describe memory management might be
written:

VAR pm : pagemap;
IF NOY pmihigh_ bits].is_incore THEN new(pm.memory_ret);

This would eallocate & new page of xemory from the heap (! the

“is_incore” flag of page_map “"pa" were false.

Whereas the above types are part of both PASCAL aend ADLIB, the
following two sre available only in ADLID.
2.3.11 Bt

This is & predeclared subrange of integer. It may renge over the
values 0..1,

|
!
H
:

TYPES, NETTYPES AND TYPE CHECKING Page 2-9
DATA TYPES AVAILABLE IN ADLIB

2.3.12 Register

This i» a predeclared type that is useful for RTL descriptions.
Meny specisl routines are provided for manipulating varisbles of type
register, such as exclusive or, rotate, etc. Arithmetic may be
performed on registers in one's complement, two's complement, sign
magnitude. and unsigned formats.

2.3.13 Another Example: RS232 Interisce

One can combine enumerated types with records to create e vary
strong, specific definition of en interface. For example, consider the
RS232 connection standard. Most RTL's would merely specify it as a 2%
bit connection, which could be written in ADLIB as:

RS232 = ARRAY [1..25] OF bit:

However, this would not make best use of the fecilities aeavaileble. In
ADLIB, it would be better to write:

TYPE \

wideran = (neg_12V,pos_12V);

aroundn = (zero);

ETIYPE

RS232 = RECORD
fg9 : grounded; (®frame ground®)
td : widerange; (®transmit data®)
rd : widerange: (*received data®)
ris : widerange;: (* request 1o send®)
(% otc. ™)
END;

It the net "tiy!l_line"” were declared to be of nettype RS232, then the
compiler would asccept

ASSIGN neg_12V TO tty!_line.td;

but would flag as an error:

ASSIGN 0 TO tty!_line.terminel_rdy;

TYPES, NEVYIYPES AND TYPE CHECKING
DATA TYPES AVAILABLE IN ADLIB

because of type incompatibility.

e

CHAPTER 3
A CONTOUR MODEL FOR ADLIB

The chapter is intended to be an informal but unambiguous
definition of the behavior of systems specified in ADLIB and SDL, and
simulated under SABLE. The definition consists of three parts: a
static contour model for ADLIB programs, a dynamic contour mode! for
their execution under SABLE, and a simulation structure that defines the
the various ADLIB primitives. For readers unfamiliar with contour
models, an introductory tutorial is available in [JBJ71]. Also of
interest is SIMULA Pegin [BOM?3) which is tuned to SIMULAG7, and OREGANO
[BD71). However, the basic principles of contour models are fairly

simple, and this description will avoid the more complex issues.

3.1 CONTOUR MODELS

A contour model uses rectangles to represent scopes of program
fdentifiers &3 defined by the user. A static contour mode] represents
the way in which these scopes are nested in the source program, e.9.
procedures within procedures, global and local variables etc. Such a
drawing can be used to answer aquestions about identifier visibility,
naming conflicts, and data hiding. The set of identifiers visible at
any point in the model is determined by examining each enclosing contour
in turn. Identifiers inside of non-nested contours cen be sccessed only
through "access pointers™ (ap's) that link one scope with another.

Access pointers are used extensively in SIMULA 67 to perform a “remote

g i

WED0Ud E170v NV 30 13000 EN0.LNOD D14WiS T IuNDI4

*TCIdALAN0D S3dALdu0d 13dA4du03

Tt UEINLINOY 23INILIN0H 1INIiN0N

L Hwarw L]
tTTEMQID 23012 X072
SIEviewn

SIdALLIN

$3dAd

SiNVISNOD

$13an

i Sl IR, SR MR T P

PR B M Alwndd 3Z14I5%3530 IZILISNDS

L

R s ik e, i

,g‘
|
]

P A o VI A G ST L M N T 0 e i Ll S Pt 450 5 oA 02

:oaggagvaoggfgl FOR ADLIB Page 3-2
access,”™ which is where one process reaches into another and may
directly alter internal attributes of it, This facility is not
available to the ADLIB user directly because it invites hard-to-detect
side effects and bad code structuring.

5.2 STRUCTURE OF AN ADLIB PROGRAM

The static contour model for an ADLIB program is illustrated in
figure 1.

3.2.1 Global Identifiers

The model shown in figure | is not much different from the contour
model of a PASCAL program. In the upper left hand corner of each
rectangle appear the user defined labels, constants, and types and also
the wuser declared variables®. In addition, more rectangles may appear

within a rectangle representing nested scopes.

In the outermost contour is the predeclared variable “time" which
represents the simulation time. User assignment to this variable is
illegal and is detected at during compilation. Contour 2 in figure ! is
the global level for the user. In it are found the user's global
Iabels, constants, types, nettypes clocks, variables, routines** and
cowptypes. The meanings of labels, constent and type definitions, are
unchanged from PASCAL. There is also an algorithm associsted with this

*In this report, items that do not consume storage at runtime are said
to be "defined”, and items that do are said to be “declared". in
particular, items that are defined do nnt appesr inside of contours in
the dynemic models.

®%¥Throughout this paper, the word "routine™ is taken to wmean procedure
or function.

!
!
]
:

A CONTOUR MODEL FOR ADLIB Page 3-3
STRUCTURE OF AN ADLIB PROGRAM

contour that could be called the "main body" of the program which can be
used for initialization of the global variables, resetting files and
such, This main body may not contain any ADLIBR control primitives such
as detach or waitfor, and may not access any component or net. During
the execution of the program's main body, time and all clocks are
identically zero. This code block may call global routines that call
further routines recursively, just like the main body of an ordinary

PASCAL program.

The inclusion of global variables into ADLIB is & concession to
practicality and user convenience. Ideally, & design should not have
any, since they might represent inter- component connections that have
no physical correspondence. However, there are alsoc many applications
for global variables that do not violate the intended structure of
SABLE. For example, data collection and interpretation can be
simplitied if each component calls & routine that accepts intermediate
results and stores them susy in a global area for later snalysis. On
the other hand, global variables should not be used for intercomponent
communication, This is what nets are intended for, just as parameters
are intended for communicating with routines. It may be possible to
detect such clandestine component interaction during compilation and
prohibit it, just as there have been proposals to ensure that routines
have no side effects. However, such mechanisms can generally be
dafeated and are invariably unpopular with programmers. The decision of

how to use global variables is therefore left to the user.

3.2.2 Nets And Nettypes

Nettype definitions are similiar to type definitions, except that
they inform the compiler that it must be prepared to handle nets of this
type. Nets are a concept that is unigue to ADLIB, similiar to but not

the same as ordinary progrem verisbles. Nets are allocated in &

W -~

MR

S o - i . .

A CONTOUR MODEL FOR ADLIB Page 3-4
STRUCTURE OF AN ADLIB PROGRAM

different way from variables, and are interconnected with other
components and with the simulation support system. The various nettypes
thus define the ways that the components are able tc interact. The
importance of this for error detection and verification is discussed in
[HDD79~-1]. During simulation, the support system generates new data
items of the various nettypes, compares them, does assignments to them,
and dynamically regenerates the storage alloted to them. Nettypes (as
opposed to ordinary types) must be used whenever nets are declared
inside comptypes or are used as parametirs to routines. Functions may
not return nets, and nets may not appea on the left side of assignment
(":=") statements. To update & net, the ASSIGN statement and the
TRANSMIT subprocess facilities are provided. (This is somewhat like
SIMULA 67, where updating & pointer requires a special syntex.) Any
expression assigned to or compared with a net must be type compatible
with the nettype of the net. Within a comptype, two types or nettypes

are compatible if they are subranges of the same base type%s¥s,

Whenever a net appears where an expression is called for, the
current value of the net s wused, in the same way that a program
variable normally refects its value. When a net is used as the subject
of an assign or transmit statement, its reference value is used. When a
net is declared as & yar parsmeter to & routine (i.e. the keyword var
is used in the parameter declaration), the routine may gssiagn to it. If
the net is not marked as yar. then the routine may access, but not
update the value of the net.

%% This is not true in connections between components, because SABLE
considers each nettype to be incompatible with all the other nettypes.

IR —————

A CONTOUR MODEL FOR ADLIB Page 3-5
STRUCTURE OF AN ADLIB PROGRAM

3.2.3 Clocks

Following the nettype definitions, an ADLIB program may contain one
or more clock definitions. These create functions that map the

simulation time to an unsigned integer. Their syntax is:

CLOCK <clockname> (<period> , <numphases>) | DEFAULY) ;

Symbolically, the function is:

<clkname> ==

(time/(<period>/<numphases>)) MOD <numphases>

A clock function may be invoked anywhere that a varisble integer

expression is allowed. Clocks may also be used in timing clauses, which

are explained in the next section.

3.2.4 Timing Clauses

Timing clauses may be used in assign, transmit and waitfor

statementy throughout an ADLIB program. A timing clause yields a time

value at gach evaluation. This time value is used in various ways as

described later. There are two forms of timing clause: sync and delay.

3.2.4.1 SYNC

The syntax for & sync timing clause is:
SYNC [<clock name> [PHASE <integer phase number)]]
If <clock name> is omitted the clock marked "default™ is used. 1f phase

is omitted, phase 0 is assumed. The value returned by this sync timing

clause is the next time when the specified clock will go through the

A R R

L RN PRGOS O M 2

AN A M e vt - 25

A CONTOUR MODEL FOR ADLIB
STRUCTURE OF AN ADLIB PROGRAM
specified phase. Symbolically, this can be written as:
SYNC <cleck name> FHASE <integer phase number> ==

min ((t' : real | (t* > time) AND
<clockname>{t') = dinteger phase number))

3.2.4.2 DELAY
The other timing expression used in ADLIB is the delay clause which
has the syntax:
DELAY <real delay time>
This evaluates

timea ¢ <real delay time)>

3.2.5 Routines

Global routines are represented as in PASCAL and may include more
routines nested within themselves. These routines may be freaely called
from inside any comptype, and may contain assign statements to net
parameters. However, routines may not contain waitfor or detach

statements. This restriction allows an enormous asimplification and

acceleratiohvo! the runtime support, because it sharply reduces the need

for dynamic storage reclamation ("garbage collection™) found in some
simulation languages, (for exemple SIMULA 67). Since ADLIB provides
other facilities such as subprocesses and better interprocess
communication, it it hoped this restriction will not be overly

constraining.

3.2.6 Comptype Definitions

Following the global routine definition section is the "raison
d'etre” for the whole ADLIB pisgrem, the component type definitions
(comptypes). These are the only part of an ADLIB program visible to
SABLE. Comptypes are similiar to routine definitions in that they

ROUTINEL ROUTINEZ

ROUTINED...

SURPROCTSS! SUBPROCESS2

SUBPROCESSD...

(RAIN BODY OF COWPTVPL)

FIGURE 31 STATIC CONTOUR MODEL OF A COMPTYPL

. Ak

;,m&ﬁ&&%ﬁﬁﬁﬁﬁﬁﬁk‘

R

4 A

o

.

A CONTOUR MODEL FOR ADLIB Page 3-7
STRUCTURE OF AN ADLIB PROGRAM

define algorithms for data manipulation. In fact, some functional

simulation systems such as BUILD (LT79) use ordinary routine definitions

to describe the behavior of components. However, it was felt that this

was too inconvienent for the user, and in many ceses, the resulting

routine was not easily readable. Therefore, ADLIB provides several

soocln! features for defining comptypes. The structure of a comptype

definition is outlined in figure 3, and it includes parameters.

defaults, net declarations, labels, constents, types, verisbles,

routines, subprocesses and the "main body"™ of the comptype.

3.2.6.1 The Heading 0f A Comptype

A comptype's parometers are similiar to those of a routine,

except
that they may be set only in the structure definition language. For
exemple. a comptype "nandgate™ might have & parameter “"riset ime™. This

would ensble many instances of the nendgate to be allocated by SABLE,

with each one potentially having & different risetime. This is simpler

and more efticient than requiring separate models for each. The default
section, which follows immediately after the parsmeter list, may be used

to specify defsult values for any or all of the parameters. The

parameters listed in the default section do not have to be in the some

order as in the parameter list. All parsmeters to compiypes sre

considered call by value, end pointer, file, and structured data types
are prohibited.

3.2.6.2 Net Declarations In A Comptype

Following the parameter default section is the declaration of the

nets used by the comptype. These act as the interfece between the

component and its environment. Nets must be mearked as one of the

following: INWARD (receive data only), QUTHARD (transmit date only),

- -

$EENTORE SO LE b e
EXTERNAL (both receive and transmit) or INTERNAL (receive and transmit
but only within the component). It is illegal to assign or transmit to
an inward net, or to access the value of an outward net. In addition it
is illegal to sensitize an outward net, or to place an outward net in a
check list. The intention here is to ensure that information never
flows from & net marked outward or to a net merked inward. If both

forms of access are needed the net should be marked external.

3.2.6.3 Internal! Nets

INTERNAL nets may be examined and manipulsted by a component just
like external ones. However, internal nets are part of the behavior
specification only, and do not appear in any structural description.
They @are wusetul to help specify the behavior of a component with
inertial delays or other internal timing characteristics. For exemple.
consider a combinational circuit that implements the function “(a%h)ec"
by means of & 2-inpul AND gate and a 2-input OR gate. It the exact
input to output timing relation were important, an internal net might be
used to help code this circuit's behavior., In ADLIB, this could be done
as in Figure &,

COMNPIYPE cowbin;
INWARD

a.b,c : boolnetl:
QUTUARD

d : boolnet;
INTERNAL

x : boolnet;

SUBFROCESS
endgate : TRANSMIY (& AND b) 10 x DELAY 15.0;
orgate : TRANSMIT (x OR ¢) T0 d DELAY 14.0;

BEGIN
permit(andgate):
permit{orgate);
END;

Figure &
Combinat ional Logic: D=C(A%B)4C

it e i Y i e

-
A CONTOUR MODEL FOR ADLI® Page 3-9
STRUCTURE OF AN ADLIB PROGRAM
The internal net x represents the intermediate value (a¥*b). The

transmit subprocess "andgate” causes the value of a*b to be transfered
to net x with a delay of 15 time units. The expression "a AND b" s
reevaluated whenever net @ or net b is updated, and if & new result is
obtained & net update takes place. The “orgate™ subprocess operates
asynchronousiy so that whenever x or ¢ is updated, an assignment is made
to net d. The overall result is that & change in nets a or b is
reflected at net d after 29 iime units, while a change in net ¢ is

reflected after only 14 time units,

Labels. constants, types. vaeriasbles and routines in comptypes are
unchanged from PASCAL, and again these routines may be nested
arbitrarily. Following the normal scoping rules, routines have access

to wall the identifiers inside the comptype, and to all those defined at
the global level.

3.2.6.4 Subprocesses

The next part of a comptype definition s the subprocess
declaration section. Subprocesses are like "little components™ that run
autonomously from the main component body, but under its control. They
might be wused, for exemple, to describe the direct memory access
channels in an IBM 370. Their purpose is to simplify the code in the
main body of the comptype by taking care of secondary functions.
Because the suborocesses are wmatching for interrupts and other low level
activities, the the main body of & comptype can concentrate on the high
level supervisory tasks of the component, resulting in & less cluttered
end easier to read piece of code. Subprocesses sre less powerful than
the main body of the comptype for two reasons: they execute a fixed
algorithm to completion each time they are activated, and the criterion

for their activation is fixed at compile time, unlike the main body of

the comptype which may be stimulated in different ways at different

A CONTOUR MODEL FOR ADLIB Page 3-10
STRUCTURE OF AN ADLIB PROGRAM
points in its execution. Subprocesses may be controlled by the
predefined procedures

inhibit(<subprocess name>)

and

permit(<subprocess named>)
The former disables a subprocess from running, and the latter enables it
to run. These procedure calls wmay appear anyuhere inside a comptype

definition, and do not need to textually follow the subprocess named in
them.

3.2.6.5 The Main Body 0f A Comptype

The main body of the comptype describes the fundamental activities
of that type of component. In addition to sssigning new values to nets,
and permitting and inhibiting subprocesses, the main body may also place
itself into @ wait state. where it stays until some stimulus is received

or some condition is met.

A complete and unembiguous definition of these and all ADLIB

primitives in terms of denctational semantics will be availabie in
[HDD?79-2) .

NETERIR

D R

g

PR RIS P

3
1

i e A e A S o A

CHAPTER 4
ADLIB SYNTAX

This summary of ADLIB syntax is derived from the appendices of the

PASCAL User's Manual and Report [JK72), with the additional ADLIB
constructs included where necessary.

4.1 LOW LEVEL SYNTAX

The basic format of ADLIS progrems {s patterned closely after

PASCAL. MHowever a few points of clarification and difference exist.

1. Identifiers may include the underscore "_", and the use of upper or

lower case characters is insignificant,

2. In order to shorten the code, reduce programmer effort, and
eliminate transcription errors, & user may "include™ files into his

or her ADLIB source. The syntax is (starting in column 1):

finclude filename

"Filename™ must be a valid, unambiguous file neme. It syntax may

depend on the operating system employed.

3. Comments are delimited by "(*" and "#)" and may be nested to any

depth, In addition, & second comment convention is supported. Any
text betwesen an exclamation point, "', and the end of @ source 1|ine
is ignored. The exclamation point is ignored inside @ (% %) pair,

and the symbols (® and %) are ignored between an exclemstion point

end the end of & line. The following is therefore syntatically

|
1
|
|
|
|
|

ADLIB SYNTAX Page 4-2
LOW LEVEL SYNTAX

correct:

(®this comment is

gurborcl notice exclamation is ignored

here ")

x :% ! but not here, so (¥ is ineflective

17.2 (% more comment®) ;! again is effective
and is syntactically equivalent to:

x 1% 12.2;

In order to pass though the porser., comptype nemes end net names
must be valid ADLIB identifiers. But this cen lead to conflicts
since designers usually prefer to use names meaningful to their
application. For example, one could not define a comptype named
"and"™ or & net named "in" because these conflict with reserved words.
To remedy this situation, ADLIB allows a programmer to specify a
second name for comptypes, nets and parameters to comptypes. This
name is specified immedistely after the vaiid ADLIB name and is
enclosed by double guotes. SABLE will see only the name enclosed in

quotes. For example:

complype andgate “and"(propdelay “"delay™ :
real);

inward
innet "in"™ : boclinet:
(8 otcH)

ADLIB SYNTAX

P 4-3
SUMMARY OF OPERATORS e

4.2 SUMMARY OF OPERATORS

An asterisk indicates those that are in ADLIB, but not PASCAL.

operator operation operand result

--------------- - - - -

ASSIGN® net assignment expression.net,
timing clause

1= assignment eny type
except file

s R e

arithmetic:
*lunary) identity integer same &8s
or real operand

om g

P

~(unary) sign inversion

addition
subtraction
multiplication

. pe

) integer integer integer
Z division

3 modulus integer

g real division integer real

) or real

5 relational

i = equality scalar,string, boolesn
: <O inequal ity set or pointer

< less then scalar or string
> greater than

<= less or equal scaler or string
g
set inclusion set

>= greater or scalar or string

equal -or-
set inclusion

set membership

set

in

logical:

scalar, and set

i oot negation boolean
1 er dtszunc!(on
and conjunction
setl:
. union any set type T T
- set difference

. intersection

ADLIB SYNTAX
STANDARD IDENTIFIERS

4.3 STANDARD IDENTIFIERS

The following are the standard, predefined identifiers in ADLIB. A
user is free to wuse redefine any of them, and implementors are at
liberty to include additiconal predefined constants, types, variables,
and routines wherever they might be useful. An asterisk indicates those
that are in ADLIB, but not PASCAL.

Constants:

false, true, maxint

Types:

bit®, boolean, char, integer, real, register®, text
Files:

input, output

Functions:

abs, arcten, chr, cos, eof, eoln, exp. In, odd, ord, pred,

round, sin, sqr, sqrt, succ, time®, trunc

Procedures:

desensitize®, detach®, get, inhibit®, new, pack, page., permit¥,

put, read, readln, reset, rewrite, sensitize®, stopsim®,

unpack, write, writeln

ADLIB SYNTAX
RESERVED WORDS

4.4 RESERVED WORDS

An asterisk indicates those that are in ADLIB, but not PASCAL.
plus sign indicates DECI0 pascal extension.

%,,.
=
gﬁw

ADLIB SYNTAX
SYNTAX CHARTS

4.5 SYNTAX CHARTS

These charts were automatically drawn by a program called Syndia,

using a BNF- like notation ftor input. Documentation on Syndia is
available in ICWE?9-2).

Field ident, net ident, type ident. subprocess ident, clock
ident, nettype ident, constant ident, and variable ident are all

syntactically equivalent to ident.

>

UNSIGNED INTEGER

UNSIGNED CONSTANT

LABEL DEFINITIONS

4

NETTVPE DEF INITIONS

CONSTANT DEF INITIONS

FIELD LIST

&
— % () t@—mm-]——,___.

R

i TSR RATRY

AT

TYPE DEFINITIONS

(IYPE) | IDENT }—e() | TYPE | 0

UARIARLE DECLARATIONS

D T}
!

o)

SINPLE EXPRESSION

e R R T T

90k, AAB IR

CLOCK DEFINITIONS

(B0 3

NT ol REAL CONSTANT Jol |, Yol UNSTGNED INT @]}O‘

EXPRESSTION
5 SPRLSsIoN b ()] SIPPLE EAPRESSION pprr oo am
—e(D—
L—.@M..l
el 1)
& &
TINING CLAUSE
o DELay > - SS10M } -

Lo

r @——mmj—j
@JI

CHECK LIST
(G)- (TR -
STATEPENT

CORPOUND STATEMENT

G (‘-{E%:‘r) ~«(E2) -

2 S St

PR

; — o S A A
A P RS R ﬁwwﬂ“ﬁy?gmﬁxw*ﬁ AN R

PARAMETER LIST

ROUTINE DEFINITIONS

S

SUFPROCESS DECLARATIONS

e (TRANGAL T) ————+{ EXPRESSION }—y——ef CHECK_LIST }——)

TRANSAIT SUBPROCESS

L—m}———m

UPON SURPROCESS

TN

D[BRSO |y o{ G LTS1 }— -0 FRT }— D~

~={TInin clause -

NET REFERENCES

r-ymt«.ﬁgﬁh‘@‘;ﬁ‘f{m{s’:"f,‘@j.

"

) Y

CORPTYPE DEFINITIONS

@ems0——men

o

C——mwm_mm-

-
C——wzmmm& (GO DEFINITIONS }_.__.

(——-—ﬁm -

NS

- "

NN 502375 M AR 9 ey e

APPENDIX A
ROUTINE PACKAGES

A major goal of ADLID wes that the language itself should remain
small but be easily extensible by the user or implementor. This is done
by adding new data types and new routines. Note that this does not
imply any syntax chenges or extensions, end does not require the user to
learn about features not relevant to his or her own ares of work (i.e.

® vuser can not “trip over™ an extension that he or she was not sware
of.)

In particular, t1wo fairly large packages of routines are avasilable
to the ADLINS progrommer: Rgpack, which provides bit manipulation
focilities not directly available in PASCAL or ADLIB; and Rndpak, which
provides a set of rendom number generastors with various distributions.
It the implementor did not predeclare them, then the user must declare
them in his or her source program in order to access them. The gasiest
way to do this if with an "include™ statement, i.e.:

finclude rpaks.dcl

The file "rpaks.dcl™ is sssumed to contain the routine headers of all

the procedures and functions listed below. Note that all rgpack

routines start with the letters "rq" and all rndpek routines start with
the letters "rnd". This should help svoid neming conflicts.

ROUTINE PACKAGES
RGPACK

A.' RGPACK

This set of routines is intended to be used with PASCAL and ADLIB
programs for describing the bit manipulation features of computers.
This has the capability of performing many common hardware manipulations
not ordinarily available in higher level languages, such as exclusive
or., rotate, etc. They make use of the type "register™ and "bit", both
of which are type compatible to "integer™.

Register = integer

bit = 0..1

There is no difference betueen register values and integers for
positive values. Negative values are stored in the appropriate format
for the negative encoding selected, i.e. one or two's complement, sign
magnitude, or unsigned. Registers are stored in one machine word (1like

integers) and bits to the left of the most significant bit are always 0.

The routines ere listed below by class.

A1t Initiaslization
PROCEDURE rgsetup(leastsig, mostsig, format : integer);

Rgsetup must be called prior to calling any other rgpack routine

(except the /0 routines). The first two arguments specify the bit

nurber of the least and most significant bits. The third argument

specifies the forrmat of negative numbers.
two's complement - 0
one's complement - |
sign magnitude w-g
unsigned 3
For evxample, to describe an HP2IMX computer one would call

rgsetupl(0,15,0). Unfortunately, the current implementation supports no

T A T R S R

R 2 NN L AL SO 78

ROUTINE PACKAGES Page A-3
RGPACK

more than 34 bits, since it uses ordinary DECSYSTEM-10 PASCAL arithmetic
operators, and must avoid machine interrupts on addition.

A.1.2 Conversion
2. FUNCTION rgtoregli : integer): register;

Rgtoreg accepts an integer and converts it te register format, An

error message will be printed if i is out of range.
3. FUNCTION rgtoint(r : register): integer:

Rgtoint converts a register to integer format.

A.1.5 Arithmetic

The following routines perform most of the common computer
arithematic operations in the various formats specified in rgsetup. Two
of the routines, rgadd and rgsub also effect bits internal to rgpack
itself, so that the user can easily determine if the last addition or

subtraction caused an overflow or carry.
§. FUNCTION rgaddl(argl, arg2 : register) : register;

Rgadds adds it two arguments and returns the result, truncated to
the number of bits in registers. It sets the overflow if the result is
too big for the number of bits, and the carry flag if there was a carry
out of the highest position. Note that such & carry does not

necessarily imply that the result was too large for the specified word
size.

FUNCTION rgsublaerg!, arg2 : register) : register;

ROUTINE PACKAGES Page A-4
RGPACK

Rgsub returns arg! - arg2 and sets the overflow and carry flags.

FUNCTION rgovrflow: bit;

Rgovrflow returns a one if the overflow flag is set, otherwise
zero.

FUNCTION rgcarry: bit;

Rgcarry returns & one if the carry flag is set, otherwise zero.

A.1.& Shifts

8. FUNCTION rgshift(source : register: amount : integer): register;

Rgshift returns its argument shifted the specified number of bit

positions. (Positive is towerd most significant bit.) Padding is with
zeros.

v

FUNCTION

register;

rgrotate(source : register: amount integer) s

Rgrotate returns its argument roteted the specified number of bit
positions. (Positive is toward most significant bit.)

FUNCTION

carry:bit):register:

rgrotlong(source:register; emount: integer; VAR

Rgrotlong is similisr to rarotate except that an extra bit,
specified by the user, is included in the rotation.

11. FUNCTION

rgarshift(source : register; amount t ‘nteger):

register:

S

Rgarshift returns its argument shifted the specified number of it
positions, (Positive is toward most significant bit.) The arithmetic
sign of negative numbers is extended in right shifts.

—

&
4
b
E
4

ROUTINE PACKAGES Page A-5
RGPACK

12. FUNCTION revtranslate(res : integer) : integer:

begin if resdmsbpos then res := msbpos - | glse if res >
basewordminus! then res := basewordsize;

A.1.5 Bit Accessing
13. FUNCTION rgbit(r:register; pos : integer) : bit;

Rgbit returns the bit located at position “pos™, relative to the
least and most significant bits specified in setup. For example, if
msbnum = 16 and lsbnum = | then rgbit(6,3) will return the third bit
from the right (lsb) side, which is 1, since 6§ is represented as
0000000000000110 in binary.

14, FUNCTION rgbitset(r:register; pos : integer; newval : bit)

register;

Rgbit sets the bit located at position "pos™, relative to the least
and most sianificant bits specified in setup to "newval" and returns the

result,
15. FUNCTION rgfield(r:register; left,right : integer) : register;

Rgfield returns the bits located between position "left"™ and
"right™, relative to the least and most significant bits specified in
setup. For example, if msbnum = 16 and lsbnum = | then rgfield(6,4,2)
will return 3 (01! in binary.)

16. FUNCTION rgfidset(r:register; left,right : integer; newval

register):register;

Rgfldset sets the bits located betwsen and including positions

"left” and "right", to "newval™, and returns the results.

ROUTINE PACKAGES
RGPACK

17. FUNCTION rgfdri(rg : register) : integer;

Rgfdr! finds the rightmost | in a register, and returns its
position in the coordinates used at setup time. If no one is found,
bit number of the bit to the left of the most significant bit

returned.
18. FUNCTION rgfdrO(rg : register) : integer;

Rgfdr0 finds the righmost 0 in & register, and returns its
position in the coordinates used at setup time. If no one is found,
bit number of the bit to the left of the most significant bit

returned.
19. FUNCTION rgfdli(rg : register) : integer;

Rgfdl! finds the leftmost ' in & register, and returns its bit
position in the coordinates used at setup time. If no one is found, the

bit number of the bit to the right of the least significant bit s

returned.
20. FUNCTION rgfdl0(rg : register) : integer;

Rgfdl0 finds the leftmost 0 in @ register, and returns its bit
position in the coordinaotes used at setup time. If no zero is found,

the bit number of the bit to the right of the least significant bit is
returned.

A.1.6 Llogical

21. FUNCTION rgand(arg),arg2 : register) : register;

Rgand returns the bitwise AND of its arguments.

ROUTINE PACKAGES Page A-7
RGPACK

22. FUNCTION rgnand(arg!,arg2 : ragister) : register;
Rgnand returns the bitwise NAND of its arguments.
23. FUNCTION rginv(urg!: register) : register;
Rginv returns the bitwise INVERSION of its argument.
24, FUNCTION rgorlargl,arg2 : register) : register;
Rgor returns the bitwise OR of its arguments.
25. FUNCYION rgnortarg!,arg? : register) : register;
Rgnor returns the bitwise NOR of its arguments.
26. FUNCTION rgxor(arg!,arg ; register) : register;
Rgxor returns the bitwise EXCLUSIVE OR of its arguments.
27. FUNCTION rgnxor(arg!.arg2 : register) : register:

Rgnxor returns the bitwise inversion of the EXCLUSIVE OR of its

arguments, (which is also called the equivalence relation.)

A.1'.7 Formatted 170
28. FUNCTION rgrdocti{VAR ¢ : text) : integer;

Rgrdoct reads a [(signed] octal number from the specified file and
returns it as an integer. This cen be assigned directly to a variable
of type register, if desired.

29. FUNCTION rgrdhex(VAR f : text) : integer:

Rardoct reads an [signed] hexadecimal number from the specified
file end returns it as an integer. This con be sssigned directly to @
variable of type register, if desired.

ROUTINE PACKAGES
RGPACK

Page A-8

30. FUNCTION rgrdbin(VAR f : text) : integer:

Rgrdoct reads an [signedl binary number from the specified file and

returns it as an integer. This can be assigned directly to a variable 5

of type register, if desired.

31. PROCEDURE rgutoct(VAR f:text; i,width : integer):;

Rguwtoct writes i into file f as an octal number padded on the left

with blanks so that "width" characters are printed. MNax width=40.

32. PROCEDURE rgutbin(VAR f:text; i,width : integer);

Rgutbin writes i into file f as a binary number padded on the left

with blanks so that "width™ characters are printed. Max width=40,

33. PROCEDURE rguthex(VAR f:text; i,width : integer);

Rgwthex writes i into fiie f &3 a hexadecimal number padded on the

left with blanks so that "width" characters are printed. Max width=z40.

A.2 RNDPACK

Rndpack is & set of fairly random number generators useful for

stochastic simulations.

They are listed below.

A.2.1 Setting A New "Seed"

PROCEDURE rndset(newseed : integer);

Rndset resets the internal random number generator mechanism

according

using "newseed”. It is only necessary to call rndset if
multiple simulation runs are to be performed using different “"random™

inputs.

oY e e e

ROUTINE PACKAGES
ACK

A Page A-9
.f ’ RNDP

A.2.2 Random Drawing Functions

2. FUNCTION rnddt : real;

Rnd0!1 produces a random number between 0.0 and 1.0 by using one

random number generator to scramble the results of another, thereby
lowering the autocorrelation.

3.

FUNCTION rndnexp(lambda : real) : real;

Rndnexp returns & number drawn from the negative exponential

distribution with mean and stendard deviation 1.0/lambda (lamba must be
positive).

FUNCTION rnderlang(lambda : real; k : integer) : real;

Rndelrang returns a number drawn from the Erlang distribution with
mean (1/lamba) and standard deviation 1/(sqrt(k)¥*lambda). (Minimum k=1,
higher k makes for a tighter distribution.)

9.

FUNCTION rndnormal(mean, variance : real) : rceal;

fndnormal returns a number drawn from the Normel distribution with

the mean and variance specitfied. The distribution is approximated by
summing 36 uniformly distributed random values.

6. FUNCTION rndintllow, high : integer) : integer;

Rndint produces an integer evenly distributed among the numbers
from low to and including high.

7. FUNCYION rnddrawip : raal) : boolean;

Rnddraw returns true with probability p.

IR —————— T

ROUTINE PACKAGES
RNDPACK

A.2.3 Data Anaiysis Facility
8. FUNCYION rnduniform(low, high : real) : real;

Rnduniform produces a random real number uniformly distributed
betueen low eand high., (Note that the probability of returning & value

exactly equal to low or high is vanishingly small.)
PROCEDURE rndhistol(data : real: command : integer);

Rndhisto collects, aenalyzes and plots & rendom veriable. It
produces a histogram asutomatically scaled to the width of the paper.
Maximum number of bins= 200. Its “commands™ are as follows:

reset all tallies, end data values

set high limit to "data™(default = 10,

set low limit to “data"(default = ~-10.

set number of bins to "dota"(default =

eccept "data™ as 8 point to be plotted

plot results in file "output™

plot results ot tity

set peper width to "dete"(default = 79 columns)
reset all parameters to default values

The print out includes: the number of points, the value of the highest

and lowest points. the number of points out of range high and low (if
any), the meen, varisnce., sum, standard deviation, sum of squares. and
the suto covariance end sutocorrelation of adjacent terms. The

following trivial program showus an example of its use:

prograw x;

var | : integer;

function rnderleng(lasbde : reel; k : integer) : real; extern;
procedure rndhisto(data : real; command : integer) extern:
begin

for i+ 1= | to 1000 do rndhistolrnderlang(3.0,4),4);
rndhisto(0.0.5);

end.

This produces the output shown:

ROUTINE PACKAGES
RNDPACK

~9.50000
~8.50000
~7.50000
~6.50000
~5.50000
~4.50000
~3.50000
~2.50000
-1.50000
~5.00000E-01
S.00000E-01
.50000
.50000

B s b ek e o e Y

S LA

DA PRGN -

1000 LOWVAL= 1. 826466932E-01
HIGHVALUE= 1.178417652E+0)

! POINT(S) WERE TOO HIGH 0 POINT(S) WERE TOO LOW
MEAN= 2.976368099 VARIANCE= 2.365632474

SUM= 2. 976368099E+03

SUMSQ= 1. 122203394E404 SUM PROD= 8.854801416E+03
STD DEV= 1.538061276

AUTO COVARIANCE=-6.792426109€-03
AUTOCORRELATION=-2.871293902E-03

The code for this routine is not very complicated, so the user may wish
to copy it and modify it faor his or her own special spplication.

APPENDIX B
REFERENCES

In addition to those references specifically sited in this menual,
some additional works in the areas of language, simulation, and design

automation are included here for the interested reader.

[AM77] Abramovici, M., M.A. Brever, K. Kumar, “Concurrent Fault

Simulation and Functional Level Modeling.™ Prog, 14th Design Automastion
Confgrance. New Orleans, 1977,pp. 128-137.

[BD71) Berry, D., "Introduction to Oregano,” Sigplan Notices. Feb.
1971, pp. 17,

IBCGY1) Bell, C. 6., A. Newell, Computer Structures: Readings end
Exprples: McGraw Hill, New York, 1971, pp. 22-33.

[BGM73] Birtwistle, G. M., 0-J Dahl, B. Myhrhaug, K. Nygeerd, SIMULA
REGIN. Averbach Publishers, Inc., Philadelphia, Pa. 1973.

IC5G76] Chappell, S.6., P.R, Menon, J.F. Pellegrin, A, Schowe.
"Functional Simulation in the Lamp System,” Proceedings of the 13th

Desian Automation Conference. Sen Francisco, 1976, pp 42-47.

[CY74] Chu, Yaohan, "Intreducing CDL,"™ Computer. December, 1974,

ICHD74] Coplaner, H. D., and J. A. Jenhu, "Top Down Approsch to LSI
System Design.™ Compyuter Design Vel. 13, No. 8, Aug 1974, pp.

fe

REFERENCES Page B~2

1643-148.

[CNE?9) Cory, M. i 0 R. Duley, NW. M. vanCleemput, An

Introduction te 1the DDL-P Language. Computer Systems Lab. Technical
Report No., 163, Stanford University, Stanford, Ca. March 1979,

ICWE?9-2) Cory, W. E., Syndis User's Guide Systems Lab. Technical
Report No. 176, Stanford University, Stanford, Ca. August 1979,

ID0J70) Dahl, 0. J.. B. Myhrhaug end K. Nygeard, Simula Common Base
Llenauage. Norwegian Computing Center, Oslo, Publication §-22, Oct.
1970.

IDDL?S) Dietmeyer., D. Lo Znndd -, R, Duley, "Register Transfer

Languages and Their Translation.” in Digital Svatem Design Automation.
edited by M. A Breuer, Computer Science Press, Inc., MWoodlend Hills,
Co.., 1975, pp 117-218.

IFD78) Ferrari, Domenico, (Compyter Svatems Performance Evaluation.

Prentice~ Hill, Inc. Englewcod Cliffs, New Jorsey, 1978.

IGRIY7] Gardner, Robert I., "Multi-level Modeling in SARA,™ Prec. of

Symooaium on Design Automstion and MNigcroprocessers. Palo Alte, Feb.
26-25. 1977, pp. 63-67.

[HP] Mewlett-Packard, A Pocket Guide 1o Hewlett-Packard Computers. Palo
Alto, Ca.

INPB77) Hansen. Per Brinch, Ihe Architecture of Congurrent Progrems.
Prentice-Nall, Englewood Clitts., New Jersey, 1977.

B SR e
LSRR

R
PR 3

AN A ST O Rl BTy

b AL G b i AN

REFERENCES Page B-3

{HDD79-1) Hill, Dwight D. aend W. M. vanCleemput, "SABLE : A Tool for
Generating Structured, Multi-level Simulations”, Proceedings of the 1979
Resign Automation Conference. San Diego, Ca.

[HDD79-21 Will, D.D.. Mylti-level Simyletor for Computer Aided Desian.
Ph. D. Thesis, Center For Integrated Systems, Stanford U., 1979.

[HFJ73) Hill, Frederick J. and Gerald R, Peterson, Digital Syatem
Harchwere Qrgenizetion and Desiqn, John Wiley and Sons, 1973,

[173] Intel, 8008 8 Bit Parallel CPU Users Manual. Senta Clers, Ca,
1973,

[JK74) Jensen, K. and N. Wirth, Pascal User Manual and Rsport.
Springer-Verlag,New York, 1974,

(JBJ71] Johnston, John B.. "The Contour Model of Block Structured
Processes.”™ Siaplan Notices. Feb. 1971, pp. 55.

[XPJ69) Kiviat, P.J., R. Villenueva, and H. Markowitz, The SIMSCRIPY

11 Proare=ming Language. Prentice Hall, Inc., Englewocod Cliffs, N.J.
19469,

[KZ70] Kohavi, Zvi. Switghing snd Finite Automats Ihepory., McGraw- MHill

Book Company, San Francisco, Ca., 1970.

fLY79) Llenglet, T., private communication, Burroughs Corporation,
Mission Viejo, Ca. 1979,

ILF75] Losleben, P., Desian Yalidetion in Hisrarchical Svstems. Prec
12th Design Automation Conference, Boston, 1975, pp. &31-438.

T TS

REFERENCES Page B-4

[MMH75] MacDougall, M.H., "System Level Simulation,”™ in Digital System

Desian Automation., edited by M. A Breuer, Computer Science Press, Inc..
Woodland Hills, 1975, pp. 35-62.

[MB77] Magnhagen. Bengt, Probability Based Verificmtion of Iime Margins
in Digital Designs. Department of Electrical Engineering, Linkoping

University, Linkoping Sweden.

(MUTM78] McWilliams, T .M, and L. c. Widdoes, SCALD: Strugtured

Computer-Aided Loqic Design. Digital Systems Lab. Tech Report No. 152,
Stenford U., March 1978,

[NRA78) Newton. R. A., lhe Simulation of LSI1 Circuits, University of
Cal.., Berkeley., Memo No. UCB/ERL M28/52, July 1978.

IDEI78) Organick, Elliott 1., A.1. Forsythe, R.P. Plummer, Preogremming
Lanquage Structures. Academic Press, San Francisco. 1978,

[RJ?7] Robmer, J. "SSH Simulateur de Systems Hierarchises,” Proc. Jl0th

Annyal Simuletion Symposium, 1977, pp. 109-127. 1Inc., Woodland Hills.
1975, po. 117-218.

IRCWI5) Rose, C.W., and M. Albarran, "Modeling end Design Desscription
of MHierarchical Hardware / Software Systems,™ Proc, 12th Desian
Automation Conference. Boston, 1975, pp. &21-430.

[TM78) Tokoro. M., M. Sato, M. Ishigami, E. Tamura., 7. Ishimitsu, M.
Ohara. A Fodule Level Simylation lechnioue for Svstems Composed of LSI's
end MS1's. Proc. 15th Design Automation Conference, Las Vegas, 1978,
pp. $18-427.

REFERENCES Page B-5

[US79] Utt, Steve. SUDS2 User's Guide. Department of Electrical
Engineering, Stanford University, Stanford, Ca. 1979.

[VCWM?7] vanCleemput, W.M., "An Hierarchical Language for the

Structural Description of Digital Systems.,™ Prog., 14th Design
Auytomation Conference., New Orleans, 1977, pp. 377-385.

[WP76) Wilcox, P., and H. Rombeek. "F/LOGIC - An Interactive Fault and

legic Simulator for Digital Circuits,” Progc, 13th Desiagn Aytomation
Conference. Son Francisco, 1976, pp. 68-73.

[WN7S] Wirth, Niklaus, "An Assessment of the Progremming Language

PASCAL™, JEEE Irensections of Softwere Enginesring, Vol SE 1, 2, June
1975,

e e

APPENDIX C
INDEX

iy . LA el e R M e e S e LN

Agones polinters . i o« o s soue i 3St
L o B e I e R e R B

Bed . R R e e a
llach]-ch N gl e el e e

Gheek 118t o .o

|

Clock . . A A o T L
Coabtnational cireui‘ry o e e S
DHIAPRE <5 h e T e e g
Coemptype
defoults . . | R RN R e e e A
net declaration . . RS T e T
PUECERBLETS . o L hih e e e e XY
Corputed goto . AW R g g e
Contour WOUBIS . . « v . ook w8
| e G FRE Rl C ol e LG b
Delay . 3 RN O s L T L T
3 Desensitize . N AT R e T
4 s AR R SIS el TR R
: L P G S s S N e e [

Event (Onfor-al) o e e

1
5
9
9
4
b at Yl
External . . T e I R et a1 g
Finite state machine 1-9
PRNGEIORS " "1 o g e e
Global identiflers ¢ s v . ¥-2
Global variables S L
Ibm 360 channels . . < v 2 wie 3=
L SRS G e R RS e s 17 1 D o
; ol e R O S A e SR, Y
i Eonabeel 5l o o alvieiw 3=Y
BRAS & i ol e e e e e
Nettype . . o R g g
Nettype eo-oo(ibtllty o e e
PRSIORNE L e PR |k #
T R S R e |
Fascal

CBW . o i w e RS
i | R e e P

.
.

- -
]

et

INDEX

goto
Y&
repeat
while
Permit .
Fhase

Random

Relay

Rout ines
restrictions
scopes . .

SCoPDR . n .
Sensitize . .
Signal ’onor.tor
Sieulad? « . ..
Subprocess . .
Suds2 . .
Switch .

Sync

Testing

Time . & o
Timing clauses
Transmit . :

Upon

Wait state .
Waitfor

Zero time delay

. e e e e -
$ 48 4559
-

1
OO O

- - — L
e
o
-
-
)
-

Page C-2

T R A A i e N A A S P A A T A AN S WA

JSEP REPORTS DISTRIBUTION LIST

Department of Defense

Director

National Security Agency
Attn: Dr. T. J. Beahn
Fort George G, Meade
Maryland 20755

Defense Documentation Center (12)
Attn: DDC-TCA (Mrs. V. Caponio)
Cameron Station

Alexandria, Virginia 22314

Dr. George Gamota

Acting Assistant for Research

Deputy Under Secretary of Defense
for Research and Engineering
(Research & Advanced Technology)

Room 3D1079, The Pentagon

Washington, D. C. 20301

Mr, Leonard R. Welsberg

Office of the Under Secretary of Def,

for Research & Engineering/EPS
Reom 3D1079, The Pentagon
Washington, D. C, 20301

Defense Advanced Research
Projects Agency

Attn: Dr, R, Reynolds

1400 Wilson Boulevard

Arlington, Virginia 22209

Department of the Army

Commandant

US Army Air Defense School
Attn: ATSAD-T-CSM

Fort Bliss. Texas 79916

Commander

US Army Armament R & D Command
Attn: DRDAR-RD

Dover, New Jersey 07801

Commander

US Army Ballistics Research Lab,
Attn: DRXRD-BAD

Aberdeen Proving Ground
Aberdeen, Maryland 21005

Commandant

US Army Command & General Staff College

Attn: Acquisitions, Lib., Div,
Fort Leavenworth, Kansas 66027

Commander

US Army Communication Command
ATTN: CC-OPS-PD

Fort Huachuca, Arizona 85613

Commander

US Army Materials and Mechanics
Research Center

Attn: Chief, Materials Sci, Div.

Watertown, Massachusetts 02172

Commander

US Army Material Development and
Readiness Command

Attn: Technical Library, Rm. 78 3%

5001 Eisenhower Avenue

Alexandria, Virginia 22333

Commander

US Army Missile R & D Command
Attn: Chief, Document Section
Redstone Arsenal, Alabams 35809

Commander

US Army Satellite Communications Agency

Fort Monmouth, New Jersey 07703

Commander

US Army Security Agency
Attn: TARD-T

Arlington Hall Station
Arlington, Virginia 22212

Project Manager

Army Tactical Data Systems

EAl Building

West Long Branch, New Jersey 07764

Commander

Atmospheric Sciences Lab, (ERADCOM)
Attn: DRSEL~-BL-DD

White Sands Missile Range

New Mexico 88002

NOTE: One (1) copy to each addressee unless otherwise indicated.

N

-

osteeny

Director
US Army Electronics R & D Command
Night Vision & Electro-Optics Labs
Attn: Dr., Ray Balcerak

Fort Belvoir, Virginia 22060

Commander

US Army Communications R & D Command
Attn: DRDCO-COM-C (Dr. H, S. Bennett)
Fort Monmouth, New Jersey 07703

Commander

US Army Research Office

Attn: DRXRO-MA (Dr. Paul Boggs)

P, O, Box 12211

Research Triangle Park, N, C. 27709

Commander

US Army Missile R & D Command
Physical Sciences Directorate

Attn: DRDMI-TRD (Dr, Charles Bowden)
Redstone Arsenal, Alabama 35809

Director

TRI-TAC

Attn: TT-AD (Mrs, Briller)

Fort Monmouth, New Jersey 07703

Commander

US Army Missile R & D Command
Advanced Sensors Directorate

Attn: DRDMI-TER (Dr., Don Burlage)
Redstone Arsenal, Alabama 35809

Commander

US Army Electronics R & D Command
Night Vision & Electro-Optics Labs
Attn: DELNV (Dr, Rudolf G. Buser)
Fort Monmouth, New Jersey 07703

Director

US Army Electronics R & D Command
Night Vision & Electro-Optics Labs
Attn: Mr, John Dehne

Fort Belvoir, Virginia 22060

Director

US Army Electronics R & D Command
Night Vision & Electro-Optics Labs
Attn: Dr. William Ealy

Fort Belvoir, Virginia 22080

Director
US Army Electronics R & D Command
Attn: DELEW (Electronic Warfare Lab,) 7
White Sands Missile Range]
New Mexico 88002

Executive Secretary, TAC/JSEP

US Army Research Office

P. 0. Box 12211

Research Triangle Park, N, C, 27709

Commander

US Army Missile R & D Command
Physical Sciences Directorate
Attn: DRDMI-TER (Dr. M. D, Fahey)
Redstone Arsenal, Alabama 35809

Commander

US Army Missile R & D Command
Physical Sciences Directorate

Attn: DRDMI-TRO (Dr. W, L. Gamble)
Redstone Arsenal, Alabama 35809

Commander

White Sands Missile Range

Attn: STEWS-ID~SR (Dr. A. L. Gilbert)
White Sands Missile Range v
New Mexico 88002

Project Manager
Ballistic Missile Defense Program Off,
Attn: DACS-DMP (Mr. A, Gold)
1300 wWilson Blvd.

Arlington, Virginis 22209

Commander

US Army Communications R & D Command
Attn: CENTACS (Dr. D, Haratz)

Fort Monmouth, New Jersey 07703

Commander

Harry Diamond Laboratories
Attn: Mr., John E, Rosenberg
2800 Powder Mill Road
Adelphi, Maryland 20783

HQDA (DAMA-ARZ-A)
Washington, D, C, 20310

Commander

US Army Electronics R & D Command
Attn: DELET~E (Dr. J. A. Kohn)
Fort Monmouth, New Jersey 07703

e

Commander

US Army Electronics Techn, & Dev., Lab,
Attn: DELET-EN (Dr, S. Kroenenberg)
Fort Monmouth, New Jersey 07703

Commander

US Army Communications R & D Command
Attn: CENTACS (Mr. R, Kulinyi)
Fort Monmouth, New Jersey 07703

Commander

US Army Communications R & D Command
Attn: DRDCO-TCS~BG (Dr, E. Lieblein)
Fort Monmouth, New Jersey 07703

Commander

US Army Electronics Techn, & Dev, Lab,
Attn: DELET-MM (Mr. N, Lipetz)

Fort Monmouth, New Jersey 07703

Director

US Army Electronics R & D Command
Night Vision & Electro-Optics Labs
Attn: Dr. Randy Longshore

Fort Belvoir, Virginia 22060

Commander

US Army Electronics R & D Command
Attn: DRDEL-CT (Dr. W, S. McAfee)
2800 Powder Mill Road

Adelphi, Maryland 20783

Commander

US Army Research Office

Attn: DRXRO-EL (Dr. J. Mink)

P. 0, Box 12211

Research Triangle Park, N. C. 27709

Director

US Army Electronics R & D Command
Night Vision Laboratory

Attn: DELNV

Fort Belvolir, Virginia 22060

Col. Robert Noce

Senfor Standardization Representative
US Army Standardization Group, Canada
Canadian Force Headquarters

Ottawa, Ontario, Canada KIA K2

Commander

Harry Diamond Laboratories
Attn: Dr. R, Oswald, Jr,
2800 Powder Mill Road
Adelphi, Maryland 20783

e R S RPN £ 55

Commander

US Army Communications R & D Command
Attn: CENTACS (Dr. D. C, Pearce)
Fort Monmouth, New Jersey 07703

Director

US Army Electronics R & D Command
Night Vision & Electro-Optics Labs
Attn: DELNV-ED (Dr. John Pollard)
Fort Belvoir, Virginia 22060

Commander

US Army Research Office

Attn: DRXRO-EL (Dr., W, A. Sander)
P. 0. Box 12211

Research Triangle Park, N. C. 27709

Commander

US Army Communications R & D Command
Attn: DRDCO-COM-RH-1 (Dr, F. Schwering)
Fort Monmouth, New Jersey 07703

Commander

US Army Electronics Techn. & Dev. Lab,
Attn: DELETI (Dr. C. G. Thornton)
Fort Monmouth, New Jersey 07703

US Army Research Office (3)

Attn: Library

P. 0. Box 12211

Research Triangle Park, N. C. 27709

Director

Division of Neuropsychiatry
Walter Reed Army Inst, of Research
Washington, D, C, 20012

Commander

USA ARRADCOM

Attn: DRDAR-SCF-~CC (Dr. N, Coleman)
Dover. New Jersey 07801

Director

US Army Signals Warfare lab.
Attn: DELSW~0S

Vint Hill Parms Station
Warrenton, Virginia 22186

Department of the Air Force

Mr., Robert Barrett
RADC/ES
Hanscom AFB, Massachusetts 01731

Dr., Carl E,
AFWL (ES)

Dr, E. Champagne
AFAL/DH

Dr, R, P, Dolan
RADC /ESR

Mr, W, Edwards
AFAL/DH

Kirtland AFB, New Mexico 87117

Wright-Patterson AFB, Ohio 45433

Hanscom AFB, Massachusetts 01731

Wright-Patterson AFB, Ohio 45433

Mr. R. D.
AFAL/DHR

Larson

Wright-Patterson AFB, Ohio 45433

Dr. Edward Altshuler
RADC/EEP

Hanscom AFB, Massachusetts 01731

Mr, John Mottsmith (MCI)
HQ ESD (AFSC)

Hanscom AFB, Massachusetts 01731

Dr. Richard Picard
RADC/ETSL

Hanscom AFB, Massachusetts 01731

Professor R, E. Fontana

AFIT/ENE

Dr. Alan Garscadden
AFAPL/POD

USAF European Off.
Attn: Major J. Gorrell
Box 14

FPO, New York 09510

LTC Richard J. Gowen

USAF Academy, Colorado 80840

Mr. Murray Kesselman (1SCA)
Rome Air Development Center
Griffiss AFB, New York 13441

Dr., G. Knausenberger

Alr Force Member, TAC
i Air Force Office of Scientific
j Research, (AFSC) AFSOR/NE
Bolling Air Force Base, D. C.

Col. R, V., Gomez

Air Force Member, TAC

Alr Force Office of Scientific
Research, (AFSC) AFSOR/NE

Bolling Air Force Base,k D, C,

Wright-Patterson AFB, Ohio 45433

Wright-Patterson AFB, Ohio 45433

Head, Dept. of Electrical Engineering

of Aerosp. Res.

Department of Electrical Engineering

20332

20332

Dr, J. Ryles
Chief Scientist

AFAL/CA

Wright-Patterson AFB, Ohio

Dr. Allan Schell
RADC/EE

NMr. H. E, Webb, Jr. (ISCP)
Rome Air Development Center
Griffiss AFB, New York 13441

Dr. R. Kelley

Air Force Office of Scientific
Research, (AFSC) AFOSR/NP

Bolling Air Force Base, D, C,

LTC G. McKemie

Alr Force Office of Scientific
Research, (AFSC) AFOSR/NM

Bolling Air Force Base, D, C.

Department of the Navy

Office of Naval Research
Attn: Codes 220/221

800 North Quincy Street
Arlington, Virginia 22217

Office of Naval Research
Attn: Code 427

800 North Quincy Street
Arlington, Virginia 22217

Hanscom AFB, Msssachusetts 01731

NP A s SIS e P T 8§ A 5

A R S A0 % b,

Office of Naval Research
Attn: Code 432

800 North Quincy Street
Arlington, Virginia 22217

Naval Research Laboratory

Attn: Code 1405, Dr, §. Teitler
4555 Overlook Avenue, S W,
Washington, D. C. 20375

Naval Research Laboratory

Attn: Code 2627 Mrs., D, Folen
4555 Overlook Avenue, S W,
Washington, D, C, 20378

Naval Research Laboratory
Attn: Code 5200, A, Brodzinsky
4555 Overlook Avenue, 8. W,
Washington, D, C. 20378 °

Naval Research Laboratory
Attn: Code 5210, J, E. Davey
4555 Overlook Avenue, S. W,
Washington, D, C. 20378

Naval Research lLaboratory

Attn: Code 3270, B. D. McCombe
4555 Overlook Avenue, S W,
¥ashington, D. C. 20378

¥eval Research Laboratory
Attn: Code 5403, J. E, Shore
4555 Overlook Avenue, S W,
Washington, D, C. 20378

Naval Research Laborstory

Attn: Codes 5464/5410, J. R, Davis
4555 Overlook Avenue, S W,
Washington, D. C, 20375

Naval Research Laboratory
Attn: Code 5510, W. L. Faust
4555 Overlook Avenue, S W,
Washington, D. C. 20375

Naval Research Laboratory
Attn: Code 7701, J. D. Brown
4555 Overlook Avenue, S W,
Washington, D. C. 20375

o T S T O A 0, IS At e

Director

Office of Naval Research
Branch Office

495 Summer Street

Boston, Massachusetts 02210

Director

Office of Naval Research
New York Area Office

715 Broadway, 5th Floor
New York, New York 10003

Director

Office of Naval Research
Branch Office

536 South Clark Street

Chicago, Illinois 60605

Director

Office of Naval Research
Branch Office

1030 Esst Green Street

Pasadena, Californie 91101

Office of Naval Resesrch

San Francisco Area Office

760 Market Street, Room 447

San Francisco, California 94102

Naval Surface Weapons Center
Attn: Technical Library
Code DX-21

Dahlgren, Virginia 22448

Pr. J. R. Mills, Jr.

Naval Surface Weapons Center
Code IF

Dahlgren, Virginia 22448

Naval Air Development Center
Attn: Code 01, Dr, R. Lobb
Johnsville

Warminster, Pennsylvania 18974

Naval Air Development Center
Attn: Code 202, T, Shopple
Johnsville

Warminster, Pennsylvania 18974

Naval Air Development Center
Technical Library

Johnsville

¥Warminster, Pennsylvania 18974

b TR

e

L .

Dr, Gernot M. R, Winkler
Director, Time Service

US Naval Observatory

Mass., Avenue at 34th Str., N. W,
wWashington, D, C. 20390

Dr. G. Gould

Technical Director

Naval Coastal Systems Laboratory
Panama City, Florids 3240)

Dr. W, A, VonWinkle

Associate Technical Dir., for Techn,

Naval Underwater Systems Center
New lLondon, Connecticut 06320

Naval Underwater Systems Center
Attn: J, Merrill
Nesport, Rhode Island 02840

Technical Director
Naval Underwater Systems Center
New London, Connecticut 06320

Naval Research Laboratory
Underwater Sound Reference Div,
Technicsl Library

P. 0. Box 8337

Orlando, Florida 32808

Naval Ocean Systems Center
Attn: Code 01, M. L. Blood
San Diego, California 92152

Naval Ocean Systems Center
Attn: Code 015, P, C. Fletcher
San Diego, California 92152

Naval Ocean Systems Center
Attn: Code 9102, ¥, J. Dejks
San Diego, Californis 921352

Naval 'Ocnn Systems Center
Attn: Code 922, H, H. Wieder
Sen Diego, Californis 92152

Naval Ocean Systems Center
Attn: Code 532, J, H. Richter
San Diego, California 92152

Naval Weapons Center
Attn: Code 601, F. C. Essig
China Lake, California 93555

Naval Wespons Center
Attn: Code 5515, M, H, Ritchie
China Lake, California 93558

Donald E, Kirk

Professor & Chairman, Elec. Engin.
Sp-304

Naval Postgraduate School
Monterey, California 938940

Mr. J. C, French

National Bureau of Standards
Electronics Technology Division
Washington, D, C. 20234

Harris B, Stone

Office of Research, Development,
Test & Evaluation

NOP-887

The Pentagon, Room 5D760

Washington, D. C, 20350

Dr. A. L. Slafkosky

Code RD-1}

Headquarters Marine Corps
Washington, D, C. 20380

Dr. H. J. Mueller

Naval Alr Systems Command

Code 310, JP M

141)1 Jefferson Davis Hwy,

Arlington, Virginis 20360

Nr. larry Susney

Neval Electronics Systems Command
Code O3RN, NC #%

2511 Jefferson Davis Hwy,
Arlington, Virginia 20360

Navel Seaq Systems Command
Attn: Code 03C, J. H. Huth
NC #3

2531 Jefferson Davis Hwy.
Arlington, Virginia 20362

Officer in Charge
Attn: Code 522 1, Technical Library
Carderock Laboratory
David Taylor Naval Ship Research
& Development Center
Bethesda, Maryland 20084

R

G e

T SN

N A R S b N

?
£
f

Officer in Charge

Attn: Code 18, G. H. Gleissner

Carderock Laboratory

David Taylor Naval Ship Research
& Development Center

Bethesda, Maryland 20084

Naval Surface Weapons Center

Attn: Code WX~40, Technicsl Library
White Qak

Stlver Spring, Maryland 20910

Naval Surface Weapons Center

Attn: Code WR-303, R. S, Allgstier
White Oak

Silver Spring, Marylend 20910

Naval Surface Weapons Center
Attn: Code WR-34, H. R. Riedl
White Oak

Stlver Spring. Maryland 20910

Other Government gom ies

Dr, Howard W, Etzel

Deputy Director

Division of Materials Research
National Science Foundation
1800 G Street

Washington, D. C. 20330

Mr, J. C. French

National Bureau of Standards
Electronics Technology Division
¥ashington, D, C. 20234

Dr. Jay Harris

Program Director

Devices and Waves Program
National Science Foundation
1800 G Street

¥ashington, D, C. 20850

Los Alamos Scientific Laboratory
Attn: Reports Librsry

P. O, Box 1663

Los Alamos, New Mexico 87544

Dr. Dean Mitchell

Program Director, Solid-State Physics
Division of Materisls Research
National Science Foundation

1800 G Street

Washington, D, C, 20550

Mr, F. C, Schwenk, RD-T
National Aeronsutics & Space Admin,
Washington, D, C. 20546

M, Zane Thornton

Deputy Director, Institute for
Computer Sciences & Technology

Nationsl Bureau of Standards

Washington, D. C, 20234

Head

Electrical Sciences &k Analysis Sec.
National Science Foundation

1800 G Street, N. W,

Washington, D, C, 20550

Non-Government Aionc ies

Director

Columbia Radiation Laboratory
Columbia University

S38 West 120th Street

New York, New York 10027

Director

Coordinated Science Laborstory
University of Il1linois

Urbana, Illinois 61801

Director

Division of Engineering &
Applied Physics

Harvard University

Plerce Hall

Cambridge. Massachusetts 02138

Director
Electronics Research Center
The University of Texas

Director

Electronics Research laboratory
University of California
Berkeley California 94720

Director

Electronics Sciences Laboratory
Untiversity of Southern California
Los Angeles, Californis 90007

Director

Microwave Research Institute
Polytechnic Institute of New York
333 Jay Street

grookliyn, New York 1120]

Director

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Director

Stanford Electronics Laboratory
Stanford University
Stanford, California S4305
Director

Stanford Ginzton Laboratory
Stanford University
Stanford, California 94305

pr. Lester Eastman

School of Electrical Engineering
Cornell University
Ithaca, New York 14850

Chairman

Department of Electrical Engineering
Georgia Institute of Technology
Atlants, 'Gcor'u 30332

Dr. Carlton Walter
ElectroScience Laboratory
The Ohio State University
Columbus, Ohjo 43212

Dr. Richard Saeks

Department of Electrical Engineering
Texas Tech University

Lubbock, Texas 79409

Dr. Roy Gould

Executive Officer for Applied Physics
California Institute of Technology
Pasadena, California 91125

