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In thi s thesi~~~
’ the s ta te  estimation prob lem of linear stochastic systems

driven simultaneously by Wiener and Po isson processes ia considered , Ue-’mrf~
~~~~~~~~~~~~~ the cas e where the incident intensities of the Poisson processes
are l’~ and the system is observed in an additi ve white Gaussian noise.

The minimum mean- squared— error (?*~SE ) optimal filter is derive d via the

1 Doleans-Dade and Meyer differentiation rule for discontinuous semi—ma rtingales
and its correspondin g basic filt.ring theorem for white Gaussian observation
noise. The nonclos.dness property and performance of the filter are —a

DD . ~~ 1473 ‘~~~~~ow 0’ W0V 0$ ~~~~~~ UNCLASS IFIED O f 7 7 ~$ ( C U a? ? V ~~~~~~~~~~~~~~~~ 0~ ~~~~~ ~~AQ( r~~... bud . IIfSe)

•
1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .--~~~~~~~~ . - -—-~-—-~-- ~-- - -~ —



-

• sicueti’ C~ Ul~~Ic*iI0* ~~p iMIS P*St~1~. 0.i . ~~~~

20. ABSTRACT (continued)

investigated. The results together with the performance of the linear optimal
f iltering schemes lead to the conclusion that causal filters and noncau.a.l
linear filters ar. inherently unsuitable for the state estimation for such class
of systems .

A noncausal nonlinear suboptima l scheme is developed for the estimation
proble. based ~n a combined estimation and detection strategy . A first—order
approximat ion scheme is included in the scheme to eliminate the error propaga—

I t ion e f f e c t s  that result from the sequential structure of the approach. The
performance of the overall scheme is obtained analytically and simulated
numerically. Both results agree closely indicating that there exists a X* such
that ~f the Poisson intensity ~E(O,)~*J~ the suboptimal sequential scheme per— (
forms better than the causa l optimal filter and the noncausal linear filter.
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In this thesis , the state est imatton problem of linear stochastic

systems driven simultaneously by Wiener and Poisson processes is c on-

sidered . We are concerned with th. case where the inc ident intensities

of the Poisson processes are L~~i, and the system ii observed ~ .i an

additive whit. Gaussian noise.

The *inimum mean-squared-error ~Q~ E) optimal filter ii derived via

the Doleana-Dade and Mayer ~if~erentiation rule for discontinuous semi-

martingales and its corresponding basic filtering theorem for white

Gaussian observation noise. The nonclosedness property and performance

of the fiLter are investigated. The results together with the performance

of the linear optima l filtering schemes lead to the conc lusion that causal

filters and noncausal ltnear filters are inherently unsuitable for the

state estimat ion for such class of syste ms .

A noncausal nonlinear suboptimal scheme is developed for the est i—

~ation problem based on a co~~in.d estimation and detection strategy. A

first order approximation sc heme is included in the scheme to eliminate

t he error propagation e f fec ts  that result fr om the sequential structure

of t he approach. The performance of the overall scheme is obtained

analyt ically and simu lated numerically. Both results agree close ly in-

dicating that t here exists a ~~ such that if the Poisson intensit y

(O ,X*J , the suboptima l sequential scheme perforns better than the

causal optimal filter and the noncausal inear filter.
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CHA PTER 1

INTR(1)UCT ION

1.1 General

There are numerous phys ical phenomena that em be mode led as

st ochastic linear syste ms drive n simultaneous ly by Wiene r and Poisson

pr ocesses. The Wiener drive n part of the system is that part of the

system tha t is continuous in the stochastic sense ; and the Poisson driven

part is that responsibl, for the diacontinuities of the system process.

An examp le is a man-maneuvered spacecraft. Its motion is composed

of a nominal sum of responses due to the driver ’s discrete application of

controls to the spacecraft and the response due to the continually vary-

ing turbulence and atmospheric per turbations . The superposition of the

res ponses due to the random inc idents of control applications can be

mode led as a Poisson driven process if the control incidents arrive in

a random fashion . The response of the spacecraft due to the continually

varying turbulenc e and such alike can be modeled as a Wiener driven

process.

As the indicent rate ~ (the intensity ) of the Poisson driving process

tends to inf inity , under fairly weak conditions, the linearly Poisson

dri ven process tend. to a Gaussian process E 1 .  Therefore the part of

the linear system driven by Poisson processes of large intensities can

be r.ssonably modeled as Gauss-Markov system , namely a Wiener driven model

for the system process. Then the entire system consisting of a Poisson

_ _ _  -
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driven and a Wiener drive n part reduces to a Wiene r drive n process in

such case . When ~ is small, as in the case of the man-maneuvered

spacecraf t , the Wiener driven model is no longer a good approx imation

to the Poisson driven part of the system. Tha system can only be

ap propr iately modeled as a process dr iven both by Wiener and Poisson

process.s.

In this work, we consider the state estimation problem of such systems

ob served in additive white Gaussian noise. Compared to the problem

for sys tem driven only by Wiener processes , this has received little

sttention in the literatures , although such syste ms arise relatively often

and naturally in prac tice.

Among the cc~~on examples , stochastic control systems tha t are driven

in the environments of optima l control strategies typically exhibit

discontinuities and “avttchings” in their trajectories , e.1. the bang-

ba ng controls under some time- and energy- optimality conditions

14-16 ,30 . Estimation of such stochastic systems often is necessary

in pursuit-evasion game s and in tracking of maneuvering targets 131,32).

To further illustrat, the wide app lication of such a class of

systems and the motivation for its estimation problem , we give the

following illustrative example . in off-shore oil exploration , trai ns

of sonic waves are injected into th. earth’ s inte rior underneath the —

seabed ; re flections of such waves ar. measured to est im ate the phys ical

dens ity of the earth ’s inter ior as a function of the dep th below the

sea floor . Should there be no oil -layers within the depth of penetrat ion

of the wave , t he densi ty is a st oc hastical ly continuous functi on .

L
_ _ _  

_ __ 
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However , in case there is oil underneath, It is usual ly In layers of

various thickness for example. Within the uncertainty of such aspects

U as thickness and quality etc . ,  each of these layers which occur at

various random spatial points , contributes a s imilar variationa l pattern

inc ident response ) to the density function. Hence, the density functio.~

can be modeled as a system drive n by a Poisson process with very low

U spatial intensity. The uncertainties of the layers can be modeled as a

rando m parameter associated with each inc iden t , called the ~~~~ of tha t

inc ident.

Another exampl. can bs seen from the followtn~ environmental problem.

A river La occasional ly polluted by deposits of chem ical products fro m

various sources along the river. The amounts of a particular chemical

that are deposited each time are independent stochastic variables with

given distributions . The chemical is disp ersed in th. r ive r by di f fusion

and transpor t and f lows . The effect of such chemical to the various

biolo g ical and env ironmental systems in the rive r can be ~tudL.d by

measuri ng continuous ly the cemeantracion of the chemical arid its aris ing

ef fects  at various points along th. river. The problem hence re l ies

heavi ly on the reconstruction or esti mation of the t imes and amounts of

chem ical and such relevant factors fro. the measured data. Such a

problem f i ts in to our estimation problem naturally due to the Poisson

nature of the mode led pollution deposits.
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As seen from the above examples , the class of Wiener Poisson driven

systems enc ompasses stochastic processes with discontinuous sample paths .

unlike the Wiener driven system s that have continuous sample paths

a lmost surel y. In the area of fracture s and def ects studies , and earth-

qua~e ana lysts where the estimation problem arises naturally, due to

the ir inherent disconc tnuities in th. sample paths, the mode l becomes

conveniently applicable .

Such system.. for the case of finite dimensiona l •tat ~ model have —,

Ma r kov property but t r t  general are not Poisson , nor Gaussian except in

some particular cases ~~~~~~~ Due to the non—Gauss ian pr~’p~ rty and the

discont.nu~ ty of the samp le paths , it take s an infi r~Lte number of its

moments ~~~~ t~~ characterize its stochastic prop erties completely. - .

This is manifested later its the deveLopcs.-~t of the optima l filter for

such processes.

1.2. Pr~~~i~’n Statement

We con~ id.r the state estimation prob lem of the f~’ llowtng syst em

d riven simultaneously by a Wt ~ner  proce ss and a Pctsson process ,

d x  2
~

x
~

dt 
~ ~dW~ + b.r~ 

t � 0 ( 1.1)

which L.a observed in whit, Gaus sian noise . v iz .

dy — h x d d, (1.2)
t t t t •t

where x and y~ are th. system stat , and observation s respective ly with

x
0 
assumed to be independent of > 0). 

~~
. ‘

~~ 
are independent 
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generalized Wi ener processes with E(dW
~ 

dW
~
’) — Q

~
dt and E(d~w d’.~~) - R

~
dt ,

t ~~~~
‘ 

~~ 
bet ng positive seuiidef irute and positive def in~ :e res pect ive ly.

• ~ a Poisson process independent of W~ and with known rate parac~ ter

.. Without less ~‘f generahty, we assune 
~~

, 8~ • b
~ 

and h
~ 

t~~ be al l

• bounded known time-cont ir~uous function s f or  t > 0 with

b~ >
~~~~> 0  t > 0  (1.3)

for some constants 
~~~

. The assumption is made to ensure the existence and

uniqueness af a solutIon to (i. .i and (1.3). The problem under consid-

erat~~.n~ ~ s to conacru.. t fat each t > 0. an estimate at the system state

x
~ 

on the basis af observa tions ty 1
, a~~~~u~ where  u > t .  When u • t , it

~s a fi ltering prob lem; u > t . a smoothing problern . The performance

criterion t~~ be used is the minimt~ me an-squared-erro r (?t~ E). As ~ is

large , the estination prob lem rsdu ces to that of estimatin .g a .Iene r driven

system in the presence ~1 additive whit. Gaussian noise . In this wrsrk , w~
are mainly concerned with the case where X is s”~s . ,  tor which the linear

•5t i~ at e  av not ~e .t su~.t able . In order to avc~ c cu~~ersoss algebraic

-‘.~ ta t~ ar~s we restri ct ourselve s to the scalsr case. The extension of all

the results i r~ this work t o th e vector case is concep tua lly straight-

f orward and can readi ’.v be obtained .

3 S~~ nar’i o f I’ast M sults

The general prob lem of state estimation of linear systems driven by

W iener processes observed in additiv, white Gaussian noise has been treated

extens ive ly ~n the past L33-36 1 et al Comp lete solution s to various

mod i f ied f~ ltering problems are available abunda ntly in the literature (33-

_  
-
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.1). Howeve r , the general prob lem of state estima c~~on of linear systc~ms

~tr~ ven by ~iener and Poisson processes in the presenc e of whjtv Gaussian

:~ ‘tse is relatively untreated.

.~~~e gr  syste ma excited by Poisson processes .,as stud ied recently in

• the estimation problems [2 . 3 ,2~~). The problem was solved by applying

resu~.ts de.eloped most recently in martingale theory (.-8,20..42-.*fl. The

.~*tSE opt ima l filters in a form of an ~nfin~~e set o~ stochastic di!~fere~ tial

equat t ar.s were de rtv ~~J. In the presentat ions of the results , t~ e infinite

d t.mensionaltty of the opt —a l filters were heur lsttcally argued to be

irreduc ible to f t~~ te form. runcat ton approximations and the Rttr-

Galerkin approximation methods !2 .3.481 were suggested to solve the set of

equations . Soc~’ in a numerical s~mu1atton study were proved to be dis-

appointing in terms of improvement on perf rmanc. over the Kalman filter.

indeed , the author has shown that the Xalman fIlter which ~tiiizes only

the first and the second order s t a t i s t i c s , )
~1SE optimal for Markov-Gausstan

syst em., are ext reme ly poor in per’ormanc. f~ r systems excited by Poisson

marked processes ~~~~~~~

In different formulations , random systems that evolve with scochast.c

jt~ p processes has been extensi ve ly attended (51-5’]. The basic theoretic

propertie s of such stochastic systems were stud ied in great depth [7 .8.L 2 ,2fl .
~~

51] et a l .  Most of the works in area of estimation however centered mainly

on th. detection of jumps , sudden changes of stochastic properties of the

sys tens and on the renewa l processes associated with the point processes

i~~edded in the sy s te—c (58-67). Under differen t criteria on performance .

the appr~ .ch of c~~~ ined estimation detection sche~nes (68- 21 were suggested

f~’r estimating and detect ing the j ump processes. A good coll’ction of such

I
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coe~~ined schemes based on various cr i ter ia and structures of the problems

are available [6 8- 72 1.

Related estimation prob lems on stochast ic systems driven by gene r-

alized Poisson processes have received extensive attentions [73-76 ) et al.

In most cases , the estimation efforts were concentrated on the est imat ion

of the average Poisson intensities of the driving point processes based on

the noisy observar~.ons of the driven system..

l..~ Chapter s Review

We first derive in Chapter 2 the (M?~E) optimal filter for the problem.

The approach will be closely paral~.el to that in ~2 ,3 J ,  via th e Dolean-Dade

and ~~yer decom pos~ t ion rule for discontinuous semi-martingales and its

arresponding f i ltering theorem (-. ,5 ,6) .  The different aspects of the

f i l te r  is discussed and investtgated . Its performance is compared to that

of the linear açtLaal filter .

In Chapter 3 , we inv est igat e t he problem for the system driven on ly

by the Poisson processes i.e., • 0. Since the estimat ion problem far

the sy stem driven only by Wiene r processes has been widely studied and

developed , thIs renders a better understanding and insigh ts into the general

proble s. A subopt ia.sl sequential scheme (SSS) based on a co~~inad estimation-

dete ott o n approach is developed for this particular problem. A compensation

strat egy is adopted in the SSS to eliminate the propagati ng error due to

the sequential structure o f  the SSS. The asymptot ic performance for the

• time-invariant case Is derived and numsticattv simulated on a digital

computer.

— 

- • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In Chapter .
~~~, :he general est imation problem is c ons idered . The SSS

is modified and e*tended as a suboptim.al solution to the problem. The

different aspects ~f the SSS and its extension f~ r ather systems will be

F presented.

In Cha pt er 5 , we extend t he est imation problem of the Poisson-Wiene r

driven li.~ ear systems to a wider class of stochastic systems , namely the

conditional Gaussian systems. We derive th. basic equations and functionals

that are essent ia l  for the development of the SSS as a suboptiaal approach

to the estimation prob lem. While the derivation.s of the SSS will be

s~~ ’~~sr as those in Chapter .., we wi ll not get i.nto the detail derivations

of the SSS here.

Chapter 6 concludes this thesis wit h a su~~ary of the results and

canclusion s of the previous chapters.

•- .-— •—- --
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THE OPT LMA L F ILTER

2.1. The ~~tima l Filter

For algebr a i c simpl ic ity , we consider the scalar case of the system

slight ly modified from (1.1), given as fol low s ,

• ~‘ x~dt + 
~~

dW
~ 

+ 
~~~~ 

t > 0 (2.1)

wit h — - • t (2.2)

The princ ipal effect is a deterministic change in the mean function of

the system x~~, t > 0 which does not affect the essenc e of ‘ur problem.

The approach we use to obtain the opttm~~ filter is via the semi-

j UX.~
~n~.ariant generat ing function for x . Ln E (e ).  First apply the diffe renti-

attn rule of Dolean-Dade and )
~~~er (see Appendix A) for discontinuous semi-

sartingates to ~~~~ , putting it in the standard semi-martingale form.

Then we apply the optima l f~ itering theorem for white Gaussian observat ion

noise [2-6 ) (see Appendix ~). The differentiation rule results in

de~~~t — ~ue
u1at_dx t_ 4(~ u ) e J ’~~t d  ~ x C

, x °

~u(x + b ) j u m  jux
+ d ~ (e ~ - e - jus ~~b5) (2.3)

O < s < t

where < xC xC > is the increas ing process associated with the continuous

part of the semi-martingale x~ , t > 0 [2 ,7,8). The sumeation is carr ied out

over th ose value s of s where x jumps. Here ~ • .,‘T and u is real .  Con s ide r ing

the cont inuous part of x , we have

d < Z ~~ , X~ >
t ~

4
~~Qtdt (2.4)

and also discontinuous part , we have
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t

4 t ~(X ) • 4 s (X )d~~ — !(X
~
)d
~

. ~2.5)
0< s<t 0 

t

Substituting of (2.~’), ~~~~ into (2.3), one obtains

J LX ~ uX 
~ ~ -

~ 
j uxt

de • (J t C x e  ~(ju)
’
~2 Q ~e )dt

~uX Jux~ jubt .luXt )ubt
• ~ue 

~~~~~ 
+ e (e - ‘k) ~i~~t Xe (e -l)dt (2.6)

which is in a form such that the optimal fi’~tering theorem is readily

applied. Lat denote the onditional expectat ion of the random va riable

with respect to the growing :- fie ld generated by~~y , O ~~- $ < t). Then

applyi ng the f iltering theorem , we have

1 2 ~ 
J ub~

de • [
~

u.
~~

x
~~

e 1(ju) 3 Q ~e )dt + ~e (e - l)dt

+ h
~

fx
~
e ~~- ~~~ 

t
J~~~~[~ y - h

~
x
~
) dt (2.7)

If we substitute the cumulant generat ing function, viz.

t 1u~• • ex p ( Z C~ ~~r I (_ . 8 )
k.l t

~~ere C~~ia the k-th conditional c~~~ 1ant of x~ into ~2.7) 
1.

we obtain the following set of equations,

dC iv 
• 

~~
Ci~

dt • h
~
v ’C2~

(dy
~ 

- h
~
Ci~

dt) (2.9a) - •

dC2~ 
• 

~~~
C2~

dt + 82
Q~

dt ~ ~b~dt - h
~
v
~~

C
~~

dt (2.9b )

h~v
’C3t

(dy~ - h
~
C1~

dt)

dC~ ~~
‘
~C~~dt + \b~dt ~ h~v

1 
~~~~ CJ+l ,tCk_,+I

-1
+ h

~
v
~ 

Ck+l t (dy t - htCi~
dt) k~~3. 4 .5.... .9c )
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The conditional expectation of x~ and its varianc e denoted b y F2, are

there fore gwen by

i
t 
. C1~ (2.10)

— 
~~~ 

- C2~ (2.11)

Note that C
k 

k - 2 ,3 4 ,... are all invariant to any change in the mean
t

function of the system x c .

From Eqs . (2.9a) and (2.9b), we see that the optima l estimate has

p recisely  the form of the Kal.man filter , except that C
2~ 

is observation-

dependent. The differential equation for C~ involves ,, besi de s lower-
t

order c umulants , also C
k+l t implying the optima l filter requires solving

an infinite set of simultaneous stochastic differential equations.

There are many processes ~ n which the optima l estimates exist

in closed form. Among the coemson is the Gauasian case , where the

additional relat ion

— 3x~x~ - 2x~ (2.12 )

enables us to reduce the set of Eqs . (2.9 ) into a closed system of

equat ions . the Kalman filter ‘J .

2.2 Th. ~4onciosedness of the ~~timal Filter

in order to study the property of closedness of the filter (2.8). we

def ine the process I~ which drive
, the optimal filter as follows ,

dy~ - h
~~~

dt • dy
~ 

- h
~

Citdt (2.13)

If the process I~ exists in a well-defined manner then it is the innovation

p rocess with respect to the observation in our estimation problem [7—il).

• In such case it is a Wiener proce ss with respect to the s-fie Ld generated

~ 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
_ ••— - • • 

-



________________ — - _
~~

_ •~
_
*

____
~• ~~~~~~~~~~~~~~~ —•——- - 

— — - ~~~~~~~~ —

by t y ,  0 < s < t3. Furthe rmore it s stochastic properties are identical

to those of the Wiene r process v~ in the observations. It is called an L
innovation process because it carries and hence can generate the same

“information ” as the observat ions.

• Note that solutions to a c losed set of equations containing states

dr iven by Wiener processes are al l  sample-continuous with probability one,

provided they exist (7 ,8]. Hence if there exists an additiona l relat ion-

ship in our case as Eq. (2. 12) in the Gaussian case , which enab les us to

reduce the set of Eq. ~2.9 )  to a c losed set , the opt imal est imate and its

cumulants as solutions to the reduced set of equations will be all sample-

continuous with probability one . S ince the system we are estimating is 
—

discontinuous at variou s random times (termed as Markov t~mes (7)) and the

optimal estimate being instantaneous est imate of the system should exhibit

a highly “discont inuous” sample path , we deduce that the set of Eqs . ~~~~

is not closed , containin g an infinite nu~~er of equations.

Then the question of existenc e of an optima l estimate as solution to

such a non-closed set of equat ions nat u ral ly arises. t .
Nota that to carry the same “information” as the observation y , the

~ -field generated by the innovation process has t o be equal to that gener-

ated b y the process y for al l  t . 0 < t < •. That is , ~f we let and

denote the i-fields gen erated by I and y 5 0 < $ < t ‘C • respectively,

by definition of the innovation process , the following must hold for a lt  t

O ’ z t < .  (2.14) 1
Since is generated by the innovat i on process wh ich is a Wiene r process ,

it is continuous in t , viz.

~~~ - ~=~~~~~~~~~~~~----~~~~~~~-‘~~~
- 

~~~~~~~~~~~~~~~ 

~~~~~~~~~~
~-
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L l.m - lim • 0 <- t < (2.15)

F s•t s.t 
—

However ~~~, generated by the observation process y which contains a

discontinuous process , .s only right-continuous. With non-zero prob-

ability, ,)~ is not continuous , i.e.

Urn ~ for some t , 0 < t ‘C (2.16)
stt

Therefore , from the above argument and Eq. 2.13), (2.16) we establish

e 0 ~ t (2.17)

which contradicts the assumption i the process I being the innovation

process with respect to~~~, viz.Eq . (2.14). And , by definition of the

process I,

(2.18)

through the construc t ion of I.

Therefore , the process I is not an innovation process and it carries

less informat ion than the observation y. This implies the process I does

not ex ist , and from Eq. (2.13), it follows that does not exist , or at

best exists in a certain stochastic limit sense , and not in the strong sense.

To s~~~ar ize , the optimal es t imate is given in terms of a set of

infinite nusd er of differential equations . Because of the non-c losedness

of the set of equations , the optimal estimate may not exist and at best

it cart be represented as a l imit in some stochastic sense.

The investigat ion of how such a limit behave s is a difficult prob lem

and doe s not bear any signifi canc e to our prob lem at hand. From a

• p ractical point of view , the non-cloaedness of the set of equations has 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • - -  -~~~ - _ _



made the imp lementation of such an estimate formidable. It should be

apparent that s imple truncation of the set resul ts in a continuous

esti mate for z~ , general y of very poor performance because it is

required to make instantaneous est imation of a discont inuous system.

Such truncation may also lead to a possib ly unstable filter.

2.3 The ~~t l.rnal Fi lter and the Kalman Titter

We investigate the performances of the linear optima l filter , i.e.,

the Ka.~ an filter , and the optimal f~ 1ter. In particular , the ir asymptotic

performances when ~, is sma ll are compared.

The Ka lman f i lter which utilizes only the first and second order

statistics can be readily ~btained and is given by

• ~~~~dt + h
~

v 1P(t ) (dv - h
~~~

dt) (2.19a)

2 — 1 2dP(t) — f 2 ~~~P ( t )  + Ab~ 3
~Q~ 

- h
~
v P t)Jdt (2.19b)

where and P(t) denote the Kalaan estimate of the syste m and its

variance respectively. Notice t hat the variance equation is realization-

independent and can be solved ahead of time. Althou gh the KaIrnan estimate

always exists as solution to the Eq. (2.19a), dy
~ 

- h
~
f

~
dt is not an

innovation process with respect to the observation since is not an

optimal estimate. It should be apparent that any random process with only

the same first and second moment s as x~ wilt  have the s~~~ Kalman fitter .

Define now

— t.i.rn. : (2.20a)
k.. 0

~ . — 1.i.m. 
~ (2.2Gb )

k k - ’ O

where the derivative is taken in the quadratic mean sense .

• • - - • • - - -—-S-- ~~~~--~~~~ - - — - -~~ - - —
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As X -. 0, it can be seen easily that the optimal filter given by

Eq. 2 .9 )  reduces to the closed form of the KaLrnan f i l ter given by (2.19)

with the assumpt ion of Gaussian initial condition of x~ . We have

• 
~ t~~tt 

+ h
~

v ’t2~
dI

~ 
(2.2 Ia)

d
~2~ 

• 
~
;
~

c2~ 
•82Q~ 

— 
~~~~~~~~ 

(2. 2lb)

in wh ich case 
—

~ tt ~~ 
(2.22a)

~2t 
a 

~~( t )  (2.22b)

and • 0 t > 0 for k .3 ,4 ,5 (2.22c)
t

Taking derivz.tiv.s of Eq. (2.9) and using Eq. (2.22c), we have

• ~‘~~1~~dt + h
t
v
~~~2At

dI
t 

(2.23a)

• 
d~~~~ • - 

~~~~~~~~~~~~~~~ 
+ b~dt

#h
~
v

+i~~~
dI
~ 

k-2 ,3,4,... (2.23b )

Suppose we write

~lt 
— 

~1t + 
~~1Xt 

+ 
~ 

+ ~~~2) (2.24.)

• 
~ 

L 
~

2 
X~~t 

+ o(X 2) (2.24b )

Henc e , from Eq. (2.5), we have for the difference between the two estimates

- c1~) 
~ &.~ 

- + oQ,) (2.25)

Comb ining Eq. (2.19) and (2.23), we first have

_ _ _ _ _ _ _ _ _ _ _  
~~. -  ~~~~~~~- -~~~~~~~~ -~~~~- •~~~-- — -



_ _  - - - 
__  _ _ _ _ _ _  •

~~~~~ 
- 

Xt~ 
• 

~~~ 
- h 2 v

~
’
~:

( t )j [
~~ 

- 
~~i,.~~

)dt

+ h
~
v
~~

[
~~

(t) - 
~2~~

]dI
~ 

(2.26)

~~t us confine ourselves to investigate the as~~ptotic value s , for t ~ ~~.

Assume there exists ~~~
‘ a such that

h
~

v
~
’P\

(t) 
~

— K~ < 0 for t > t~ (2.27)

- h~v~~~~t) < < 0 for > c ’ (2.28)

which is readily satisfied by any stable systems .

Therefore from • .~.25) and (2.26), we have

Urn E (
~

’ - s t ) • l~ -~ \ ~~~~ 
- 

~ lXt~ 
+ o(X) — o(.~) 

(2.29

t~~~~ 
•

Similarly, we have

- C i~
) 2 • ~~~~~ - E 1~~~~ 

2 .~ (2 .30)

Applying the d if fe e~it iation rule to - 

~~~~~ 
we obtain

dj
~.kt ~~~~) 2 

— 2 [  
~~~~~~~~~~~~~~~ 

_
~~i~~

)2dt

+ h
~

v
~

t IP
~

(c )  - C .
~~

Jdt

÷ 
~~~~ 

- 

~~~~~~~~~~~~~~~ 
- 

~~~~~~~ 
(2.31)

Hence if the system (2.31)  is asymptot ically stable

u n E(~ ~c • tim 
~

2E(Xx 
- )

2 
+ o(,.2 )

t •.4. t-.. - •

—h~v~~ —2 , 
El

— t im 2 - 1 EiP~ (t) — o(X ) (2.32)
• 

t~~~~~~~ 2~~~ -h~ v~ P~ (t ) )

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~~~~~ •~~~~~~~~~~~~~~~~~ • - - --~~ -~~~~~ ~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~

--
~~~

-
~~~~~~~~
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However , we also have

d (~~ tt) - t
~~~

) • 3(a~ -h
2v ~ (t)J[~

2
(t) - 

~~x~
14t

4. 2 b ( ’
~~(t) 

_
~~2~~

)dt - h v
~~~~x

- 

~~~~~~~~~~~~~~~~

2 2 -2b 2E(P ( t )  -
~~~ )

• U.n E(P (t) - C J • tim 2 
2Xt t t

2Xt 
~~~ - h~v ~~~(t ) )

2 - 1. ~2h v E (t.., )

a tim ~ ~ 
j~~t (2.33)

t-
~~~~ 4 (ç.h~~~V~~ ~~~( t ) )

Similarly ,

tim • Un -l 
2 -lt- 6 - h
~ 

V
t 
P(t)J

~~2)
3

+ 
t 

3 (2.34)
- h v P( t ) )

Continuing tht~ process, we deduce that as t is large

- a b2 v tb2
E(X

~~
- t 1,~~Y — 

~~~~~~~~ 
h2v~~~~(t)J~~[Z ~~~~ 

t~~~~__~ _)~ (2.35)

where — ~~~ h~v~~i’~t)

• 

~~~

• Obse~ v~ ~~at the sum given by Eq. (2 .35 )  is a convergent series , because

the rati o of the ( k + l ) s t  term to the k-t h tern is

2 — 1 2• h v  bk 
21 • 

~ ~
2 

~ 

-. 0 (2.36)
(k + l )  2(C - h

~
v
~
1P(t))

uniformly as k ~ • for t > t ’. The behavior of the lim it of the mean squared

difference (2.32) therefore depends on the behavior of b -.



_ _  - -•- ~~~—-—~~- -~~ - - • ~~~~-—- --•- -~~~~- - -•~ _ _ _ _ _ _ _

F~ rst for small b as t ~~~~~~, as expected

u r n  E~~~ 
- C1~ Y 

. 0 oO~~
) (2 .3~)

~ such case , the optima l filter reduces to the Ka l.man fi.t~~ asymptotically

as k ’ O .

However for large  b , it is easily deduced that 

2
- h v  b -,

lie 
~~~~~~~~~~~ ~~~~~ 

Urn - - h v ~ ’! (t)h ~~ 2.38)

Therefore ~or small but large b

I
E(Xt 

- C u e ) m 
~.b )  

large t 2.39)

which is t~~ t- square of t~ic powe r of the Poisson ~riven part of

the system. Now , let us study the performance -~i the opt~~al ~~lter in

ter ms of  t t s  error distribution over the Wiener driven part and the Poisson

driven p a r t .  Assu me further tha t the system is s ta b e and has a steady

state after some time t ’ > 0.

From Eq.  ( .23b), we have

-b 2
Lm E~~~. ) — -

~ ~ 0 2...O)
‘t 

-

WrL:~ ng 
~~ ~2t 

‘
~~2\t 

0(X )

• )(t) + 

~~~ 
+ 0(L )

For large t , we have 

~~~-~~~~~~ • - ~~~~~~~~~~~~~~~ --~~~~~~•-- ~~
• - -  - -~~~~~~~~-~~~~~ 

- -
~~~~~
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- 
~ b’

~ (C, ) — P(t )  + 
t
2 ~ 

-‘- o(X)
-t :(a

~
- h v  ~ (t)J

The first quant ity on the rtght side of the equatt on is the variance in

ft~ tertng the Wiene r dr’~.v~~ par t i.e., th e cont inuous part of the system.

The second quantity is that due t o  the filtering o~ the Poisson dr iven

part . Notice that it depends on

Comparing the error variance in filtering the Poisson driven part of

the system to its varianc e , we have the r a t fo , deno ted by C ,

-~~b

,

t~~~ 2(O~— h :
~ 

P(t )j  t

(2.43)
Ct

• tin
t~~ 

~
‘
~

_ h;v~ P(t)

Hence when there is no Wiener driven part in the system ,

• 0

making — 1 (2. ’~4)

in fact it is sham by the author that for syst e m driven on ly by Poisson

inputs , the steady-state error variance of the linear optima l fitter is

at least as large as the variance of the system (12 1 . This manifests the

tac t that the optima l filter and the Kala.an filter , both be ing instantaneou s

filters fail to estimate the jumps. This can also be seen by noting that

if the syste— ~s a fast decaying system i.e. Ia~I i~ large , the fi u ter

fa i ls to esti mate the jumps , g L-.r~ng C ‘ 1. And t~;e quantity in (2.43)
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• h~ v~
1 denotes t~~ c signal-to-noise rat io in the observations. As ~t

• increases , the error decreases. From Eq. ~.- .3),  the rat io C decreases

as ~~(t ) Lncre L~es for f ixed power of the Poisson driven part. This

• appears at first to be con tradic tary. This is due to the fact that ~~~~tj

only ncre ases wtth the power of the Wiene r ~iriven part of the system.

I f the energy of the ~..ener part in the system dominates that of the

Poisson dr ive n part , the error made by the f i l ter  w i ll be dominated by

the e s t i ~ ate err or of the ~tene r part . i .e. ~ (t). This is a direct

consequence of the ratio of the powe r of the Wiener part and that of the

Poisson part ~n t~~e sys tem i t s e l f .  Henc e ~n sysre’ ~s where the ~:ener

part dominates over the Poisson part , a reasonable approx imate filter

can be .onirr ucted by s~ -~p l-; neglectin g t h r Poisson part in the system.

:n case , the oppos .re is true , the power of the Poisson part dominatei .

both of the Kalman f i lt e r  end the opttma l filter perfor—~ -.‘ery badly as

an ins t antan eo us es t imate  of the syste m .

2.~ ~oac t % s ~ on~

In this chapter , we derfve the o~-ttma 1 filter for the problem. We

deduce that the set of equations defining the opt ima l f i l te r  is infinite

(non-closed) by arguing t’~at  there is no additi o nal relat ionship that wouid

reduce the set to a finite set. If such a relationship exists , then we are

guaranteed to have a solution in the strong sense f o r  C
1~ 

because the finite

set of equations in our case is guaranteed to have a strong solution , In such

case , th. process I defined in (2. 13) is the innovation process , and henc e a

W iene r proc ess with respect to the ~‘-field generated by the observati ons . For

a finite dimensional vector d i f fer ent ia l  equations as the reduced filter

equations driven by a Wiener process , ~e solution is always continuous with

- - - - - -• - - - - - - ------—- -—— -
-‘ - ———-‘--—.—- - --- - — — - ‘-- -• - —-—- .~~~--~~~~~—--—-— —-- ---- --— • ---- ----- •- -—- — --— -~~
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probability one. Hence we would have a continuous estimator for a dis-

~ontinuous system , contradicting the optimality assumpt ion of the estimator.

We ‘irthe r argued that the solution for C
1~ 

does not exist in the

strong sence by showing that I in fact is not an innova tion process in

our problem. The opt imal filter i~i unrealizab le and unimp J em*ntable.

For the performanc e of the optimal filter , we compare it with that of

the linear opt~.-tst fi lt er. At least for the case of stable systems , the

improvement in performance of the optimal filter over the linear optima l

fi lter is extremely small when ~ is small.

We ihall show that the linear opt imal f i l te rs  causal and non-causal)

which utilize the f~.rst and second order s ta t i s t i cs  only , perform extr~~ely

poor ly in the estimation pr ob lem of the Pois son driven systems . Hence the

opt ima l fitt er be ing a causal estimator is not suitable for the state

estimation problem for Poisson driven systems .

~

-•------

~ 
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CHAFFE R 3

EST UiATI~~ OF THE POISSC*1 DRIVEN PROCESSES

3.1 ~ener al

In this chapter the optima l f i l t e r  and suboptiaa l approximation

estimation scheme ~or the Poisson driven case wilt  be considered . It

can be easily seen that by setting ~ •0 in the opt ima l filter Eq. (2.9),

t he problem reduces to the standa rd linear quadratic Gaussian probler

and the f i l ter  reduces to the standard Kalman filter which is finite

dinensiona . (closed). The non closedness of the opt .na l filter ~~~~~~~~ aris es

from the Poisson driven part of the system due to its non-Gaussian property

and hence an inf inite nu~~ er of moments are required to characterize

completely the filter.

The optima l ftlt e r for the purely Poisson driven process may be ob-

tained from Eq. (2.9) by setting ~~~ 0 end is give n as fol lows [2 ,3 ,2 &)

dC
i~ 

• C
~
C1
~
dt • h

~
v
~
’C2.dl~ 

(3. Ia)

• ~~~C~~dt + ~~~~ - ~ h v
1 : )c j +~,tCk j,,.~,tdt

-+ ht v
~~

ck÷I tdr t ~~~~~~~~~~ (3.lb)

Note that the filter as in Eq. (2.9) is still infinite d imensional. The

Wiener part indeed only comes into play in the variance equation, i.e.

the C
2~ 

equation .

The problem may be generalized by inc luding a mark process generated

by the Poisson driving input. The problem in this case is a modificatton

of (2.1) and the process is de f ined by 

— --- ~~‘-----—••----- - --- - - —- - -- .—-— -—- - — -•  -•
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dx • ~~
‘
X d t  + b

~
(lJ)d

~ 
t > 0 (3.2a)

where U dsnotes the mark of the Poisson process 
~~ 

and is assumed to have

a known probability density f(U). By definition of the mark, the r andom

variable U will be generated independently according to f(U) at every

incident of the Poisson process 
~~~~~~ 

The mark can be considered as a random

parameter generated by each inc ident , e.g., the marks represent the random

magnitudes of the Poisson impulses.

Let the i-th inc ident time and mark of the Poisson process be denoted

by -
1 ,u

1 
respectively. Also denote the nuaber of inc idents over the semi-

closed interval fs ,t) by N (s,t) or if s.0, N(t) for simplicity.

The objective is to obtain a near-opti ma l estimation scheme for

from noisy observations via.

dy
~ 

• h
~
)
~
dt + (3.2b)

3.2 The ~~t ima l Linc ar Filter

As ind icated in Chapter 2 , the improvement of the optima l filter

(which is ~nLmplementab te) over the l inear opt imal filter is relative ly

small in terms of error variance. We establish in the section that the

linear optimal fitter for the Poisson driven case vith law intensity is

extr emely poor. Consequently both of the ~alman fitter and the optimal.

f ilter are un -acceptable in their performances . This is basically due

to th e fact that the system process to be estimated is only right-continuous ,

making instantaneous estimation or detection of the j~~~s in its sa mple

pat hs formidab le .

— - - -~~ ~-~~~~-- - - — -  -~~~~
- -
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From Eq. (2.-...~ . we have seen that the normalized error variance of

the optimal filter tends to unity as X -. 0. Now we show that in the non-

causal linear optima l. smoothing , the steady state normalized error variance

for th. t i m e  invar iant case a lso tends to unity uniformly as X -, 0. This

result indicates that an improvement ove r the optimal l inear ztoncasual
‘5

fitter may be possible only if a t ime-delay ii allowed in a nonlinear

filt ering scheme. In order to present the derivation , the system (3.2a)

will first be retor~~lated and expressed as

11
• 8~x~dt + b~ (U) M(dt ,dU) (3.3)

U

— where M(.)  denotes the measure of the underly ing Po isson marked process. :
Let •(t,s) denote the state transition function of the homogeneous part

of the system , then
t .

x — •(t,O)x + •(t,s) b ( U ) M ( d s ,dU)
t 0 ,~~~-. 5 -,

Hence from Eq. t3.2b), the observations become

I
• V — h $ (t,O?x 0 + h

~~
(t ,s)b (U)M(ds .dU (3.5)

o U

By definition of the stochastic counting integral whose existenc e and

un iqueness only requires the po in t process 14 to be conditiona l orderly I
and with probability one have a finite nueber of points in a finite interva l

(17 , I S , 29) which are all satisfied by our Poisson assumption of 
~~~~~

, we 1
obtain the fol low ing

N(t)
• •(t ,0)x0 t g(t )  •1;u~ ) t > 0 (3.6)

i—i Iv h r e

• •(t.
~~
)b
~
(u) (3.~ ) 1 ~



V t
25

4*

which is the integrand in the integral in (3.4).

If we assume x0 
is known (this assump ti on may be removed without ditfi

culties), a new observation process z~ may now be defined by

z~ ~~~~ 
h
~~

(t,0)x
0 (3.8)

N(t)
— v~ + E h(t ,Tj;ui) t > 0

i—I.
N(T )

• v + ~ h (t, 4;u ) 0 < t < T (3.8b)
-
~~~~~~ t i•l

where

- h(t ,— ;u) • h
~
$(t,’f)b

~~
u) (3.9)

Equat ion (3.8b) follows from the causality of g and h in the integral , viz

- g(t ,— ;u)  • 0 • h(t ,— ;u) for t < . (3.10)

We now examine the performance of linear optima l smoothing. The case

of finite interva l and infinite interval l inear smoothing are both con-

sidered . 
-

For the fixed interval smoothing over an interval of length T, the

stead y state error variance for the opt ima l linear smoother , denoted by

is given f rom (19 , pp.256 ); as f o llows

1. • 
1 ~~~~ -T 2- 

‘T 
- 

F ~~~~~~~~ 
- F dw ~ lC(t) I dt

I where 
~~~~~

, 

~ 
are the spectral densities of x(t) and z(t ) respectiv e ly , 0~~~

the cross spectral density of x(t) and z(t). G(t) is an appropriate time-

- 

function derive d from the spectral densities. Therefore

1 i t2
• •i -~ 

(w)~
- 

~ . F _ 

- F ~~~~(u~)

f. 

~~~~~~~- — - -~~~~~~~ - -~~~~~~~~~~~~~~~~~ - - ~~~ - -
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The substitution of the spectra l. densities with the app ropriate expressions 
-

in terms of the transforms of the incident response (1], and using the I
rotation

h2 (t , ;U) • E h2 kt ,?;U)
u

resul ts in

• • 2
> _i_ 

‘LH (i~~;~ Vdw - ~~ r lHOw; u) ~ 
2

-~~ - 
~~

NormalizatIon with the signa l variance wh ich is given by

V ar (X (t)) 
~ :b

2
(t~~ ,~

)d— (3.11)

ti~ at t y  y ields

~~ ~~~~~~~ 

‘ lH ( i w ;~ )I 2dw - ~~~~~~~~~~~

(3.12 .

The behavior of the normalized error var ianc e as \ -. 0 becomes therefore

C ~~~~

> — — .1 (3.13)

~~~~ 
Var (x~ ) 

— 
,~~ -h (c; t ,u)d

where the Pareseva l ’s Theorem has been used . From Eq. (3.13) we can deduce

that the performance of the linear optima l filter or smoother is extremely

poor regard less of the signal-to-noise ratio end behavior of th. incident p
responses when 

~. 
is small , since the normalized variance tend s to unity

uniformly as -, 0. This result is not too surprising since linear techniques

only utilize first and second orde r sta tistics , and the Poisson driven process

which is h i ghly “discontinuous ” contains considerab le energy in the higher

order s ta t is t ics .

_ _ _ _ _ _  ~~~~—~- - --——- ~~
-
~~~~~~ - - ~~---  -~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~

- --- -
~~~~~ 
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Since causal estimation for such systems is inherent ly of poor quality

when ). is small , the problem leads natural l y to the alternative of allowing

some delay in the estimation process i.e., smoothing. In view of the poor

performance of the linear optima l smoothing and the nonc losedness of the

optimal estima tes , a suboptima l non-linear smoothing scheme will be con-

sidered for the estimation problem. While the scheme may not perform as

well as ultimately possible , it is expected to perform better than the

optima l linear infinite-interval smoother for low enough incident rate ~..

3.3 The Sequen tial Smoothing Scheme (SSS)

In this section , we derive a sequential smoothing strategy to the

problem gi ven by (3.2). The system to be estimated is a Poisson marked

process; henc e the kno w ledge of the realization of the Po isson dr iving

process and its associated mark process is sufficient to determine the

realization of x .

The approach to the estimation problem considered here is to first

solve the particular prob lem of estimat ing the incident process and U,

via a conèined sequential estImation and detection scheme based on the

criterion of maxi~ iai aposteriori probability (MAP). Then the estimate of

any func tion 4(t.
~~~

.U) is reconstructed suboptimally through the estimate

of and t., namely .I(t, ”~
,O). Although this approach is by no means

optima l in the sense of ?*ISE , this is nevertheless a robust alternative

whe n the optima l scheme is intractable. In the proposed sequential scheme ,

the observat ions are processed in subin tervals whose length , ~~, is chosen

such th at the probability that each component of the driving process having

two or more than two incidents within the interval is negligibly small.

—

~

-—- --

~

- - - - - -— -— —~~ ~- - -
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Each sub in terval of observations is processed to detect and estimate , if

it exists , the incident in the interva l as well as to update the estimates

of past incidents.

In order to reduce the memory requirement and computational c omplexity

of the scheme , a finite memory scheme is se lected whose memory size depends

on the marginal improvements in the performance and the desired pe rformance

relative to an infinite memory scheme . Consequent ly we choose not to update

(re-estimate) the estimates of the past incidents occurring earlier than L

subintervals away from the new intervals as shown in Fig. 1.

Note that there is a maxiimzm delay L. inherent in the structure of

the sch eme. Any estimates wi th delay longer than L~ are the same as that

with delay L~ sinc e they have been finalized . 1. usually is large and is

chosen as a tradeoff between performance and computational complexity .

Also note that the scheme structure is actuall y independent of the dealy

imposed by the origina l probl em. The delay reconstruction process is carr ied

out independent ly as the scheme sequentially updates the estimates of the

incidents.

3.3.1 preliminary Requirements for the SSS

To be able to apply the SSS described above , there are a few basic

conditions we have to sat is fy  dus to the co~~ ined nature of the detection

estimating scheme .

Let ~~~~~~ be the underlying probability spac e for our estimation

problem. Then the random processes defined in the problem statement are

all measurab le random processes in continuous t ime t E  (0 , ) .  For example ,

if 3 ii a Bore 1 set E .~~ of the real line of R
2
, 
~~ 

satisfi es 

~~~~~~ --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - - ~~~—--~~- -  1-
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E B~ E ~ X 3(0 ,~~) (3.14)

where 3(0 ,.) is a a-algebra of Borel sets on interval [0 ,~ ). That simply

says the random process 
~~ 

besides having well-defined trajectories can

always be characterized in probablistic terms.

In the SSS , in order to reconstruct a given functiona l

based on the estimate o f 
~

(U) , C(ti
~~
) has to satisfy the following

condit ion,

~~~ ,t): G(t,
~~~

(J. ) € B) E ~~x3(o,t) ~ tE (0 ,.) (3.15)

where B is a Bore l set 3 of R
1 and is a :-algebra generated by

[
~~ . 0 <  s < t ).  That is to say , vs require that G(t.

~~
) be independent

of the future of and that it can be completely and deterministically

determined by the knowledge of 0 < s < t).

To examine the conditions for recoverabUity of based on the

observation y~~, let us consider the vector case of the problem. Let

end be n- ,p- ,q-dimensiona l vectors respective ly, then Eqs. (3.4) and

(3 .5)  are st ill valid representations of these process es , viz.

t
•(t,s)b (tJ)M (ds,dU) (3.16)

0 U

I y
~ 

- b
~~

(t ,0)x o • v~ • 
‘ ‘  h

~~
(t,s)b,(U)M(ds .dU) (3.17)

where now h
~
, B

~
(U). ‘ZI(t .s) are of appropriate dimensions. to est imate

it is essential that the observat ion z~ ii a non-trivial function of all the

p c omp onents of and their corresponding mark processes. From Eq. (3.17),

it follows quite imeediate ly that z~ sa tisfiis this requirement if the

follow ing holds

—5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1
( 1) the q~~p matrix h

~
$(t ,s) b (U) contains no identit~.cal1y zero columns

almost everywhere in t > s > 0 and U.

(2) the system input n x p  matrix b 5 (U) contains no columns c ompletel y

independent of (.

Note that condition (2) can be easily satisfied with a modificati on of the

system equat ions . Since our main concern is to reconstruct it ii

already satisfied . Examining condition (I), we find that it is a con-

siderab l y relaxed condition compared to the usual requirements of controlla-

bility and observabi lity of the system in estimating a Wiener drive n system .

3.3.2 The Est imation and Detection Equations

to obtain the equations for the joint estimation and detecti on , we f i rs t

consider the simple MAP interval estimation and detection problem over an

interva l of length T . Therefore , the esti mates of the incident s and mar ts ,

denoted respectively by ,~~~, have to satisfy the following

• ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ (3.18)

where f(.) is the conditiona l density of N(~) and ,u , the vectors con-

tam ing all the incident times and marks over f0,T~.). ~~ is the c-field

generated by the observat ons ~z(t);0 < t < t). Since the dimensions of

:.~ 
depends on N ( T ) ,  t he maximizat ion can be carried out first by obtaining

the MAP estimat es of :.~ ass miing the val ue of N(T ) is ftxe d as fol lows :

max Lnf _ (N* , *,u*I?) — max{max Lnf (N*,:*,u*I?)) (3.19)N(t) ,u N*.~ *,u* 
N(T ) I.,u T

max Lnf 
T (N*,r (N*),u(N*)I~~~) (3.20)

N* N~~~~,u

where ~~N*), ~(N*) stand for the MAP estimates of ‘,u given N(T ) • N~.

I,

_ _ _ _ _ _  ~~~ - ~~-- -- - - - - - - — ~~--- - -~ - - - ~~ - — - -
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The maximization of .‘*.u* in Eq. (3 . 19 )  gives a set of equations f~ r

~~~~~~~ and u (N*) , the estimation equations . The maximizat~ on over N* ~
I-.

Eq. ~3.2O) gives the detection equations. By obtaining en expre ssion f or

tnt , which  is given as

• In?

+ Lnt (_ *I N * ’~ # Lnf(u*/N*) i~;P N ’) (3.2 1 )

and recognizing that the first quantity on the right-hand side of the

equat~on has an equivalent expression , namely the log-like lihood function

of ~~~~~~~~ which Is g ive n as

T NC 14*-5 dt~ z~ - 
~ h(t , r;u~~

)j t
c i—i

we obtain the follow ing set of equations by opt imizing ove r :*,~~.* ,

I NC!) ~h (t~
’ ,u )

-* dt~z(t) - Z h(t;a~~~~~)][ 
1 ~ ~4— Lnf (si~ ) • 0 (3.22a)

~ b i—I j

I 14(1) ~h(t; ,u )

—~~ dt (~~ t)  - t h(t ;
i ,~ j

)J [ ~~ ~ . 0 ~3.2 2b
: 0 1— :

for 1 < J S~T) end 0 
~~

- 

~~~~~~

, < . 
N(1) 

< ~ Equation (3.22) actual ly

is the necessary condition for the MAP estimates of :~ given N(T) and
a lways juarantees a set of solution. The unique ness of the solution set

doe s not p lay a role in the scheme since we have to maximize over N(T)

subsequent ly. The expression to be maximized with respect to N is obtained

by substituting the distributiona associated with the Poisson process into

Eq. (3.21, which reduces to

~~ I-
-u

—--• -— - -- —~ _ _ _ _ _ _ _
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N
J(N ) ~~ Nirt’~ + E Lnz u (

~ j ) -

i— i 
~3.23)

1 1 1
N N

+ —
~~ d t ( z ( t )  - t h~ t .~~~,u 4)j f E
f 0 j —l  ~ ~

3.3.3 Sequential Approximation Approach

The re sulting MAP scheme defin*d by the solution of (3.18) and the

maximization of (3.19) viii now be approximated by a sequential scheme.

In the scheme , we sequentially process the observations in subinte rvals

eac h of length .1, which is chosen such that the probability of having two

or more inc idents in each ~nterva 1 is negligibly small. Hence , we choose

.1 such that

~ 1 (3.24)

The observat~~n over the k
th 

subthterval ((k-1)A ,kA) is used to f ina l iz e

the estimates of the inc idents prior to (k-L)A. We define the new infor-

mat t -’n car rying observation ~ (t ,k) with the removal of the final ized

estimates by

~(t,k) • z (t) - h(t .j iG t ). t E ((k-L)~~,kA) (3.25)

This new observation in (3.25) will be used in the MAP equations (3.18)

and (3.19) to yie ld the approximate sequential estimation-detection scheme.

The equations to be satisfie d by the unfina l ized MAP estimates ‘,u in the

interval ( (k-L ,~~,k.~) when the ktt~ sub interval is observed , are obtaine d

from (3.22) and (3.25 and may be written as

1 N(k~ ) ~h(t,~ ,~~~

—~ dt (~~(t.K) - Z ~~~~~~~~ )j(—~~. 
-~ -~ J

i N((k-L)A)~~1 
i U~

• ~~~~— Lnf (~~ ) • 0 (3.26a)

----

~

— - -

~

--

~

-

~

— -  - —---~~~~~~~ — - ~~~~~ - —--— - - - ~~~~~ —-— - - - - - - ~~~~~~~~~ - -—--~~~-- - - - - _ _
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k2. N(kà) ~h(t,C )

dr fy~t ,k~ - h (c ;~~~.G , )J ( ~~ ~ ) • 0 (3 .26b)
f (k-L).~ N ((k-L)A)+l j

9
for N(~~- L ..>+ . j

(k-L)A 
~~ s((k-L)~ )+1 

< 

~ j  J+ 1 ‘~~~N (~~ ) < 
~~~~ U

These equations are to be solved for fixed N (k.A) (whose values will, be

liscussed in the sequel) and then the proper choice of N(k.~~. the estimate

of ~~~~ shou ld be made. The estimate *0.l of N k..) is made by maximizing

the following expression which ~s obtained directl y from (3.23) over the

al ue of N.

• NLr~’ + Ln f u(~j
) + —

~j 
dt(~~ t ,k)

o

N N
- t h(t ; 1.~~~) J t  h~ t ;  ,

~~ )J (3.21)
~

Note that the detection is carried out sequentiall y with the asst~~ cion

of Eq. t 3 . 2 . . j ,  which limits the va lue s of N~ c_ .j for the maximization to a

set of 3 values as fo ’ l o w c :

(1) I f  an incident was detected in the previous interva l [(k-2).~,(k-l)A)

N (k~) € f N( (k-1)A), n( (k—1)~~) ‘1 , n((k-l)A ) + l~ (3 .28a~

The thi rd value is included in case that the previously detected incident

has been a f a ls~ detection .

(2) Similarly , if no incident was detected in the previous interva l

((x-2~~.,(k—l).l), then N(k.l) is limited to the set .

N(k~l E ~N (k- l )A ) N ((k-l)~~4l , N((k-1)~ )+2~ (3.28b) 

~~~~~-- -- ~~



-
~ 

~~~~~~~~~~~~~~ _ _ _ _ _  

where the l.~t value account s for the possibility of a miss in the earlier

sub interva l. Note also that for each value of N (k.A). it is required to

solve a set of equations (3.26) for the est imates ~ (N) , ~i(N). However ,

these sets of equations are uncoupled to each other and can be solved in

parallel. Since all of the incidents except the new incident (if it exists )

have all , been previously evaluated , iterative perturbation methods may be

emp loyed to solve them.

The set of va lues for N(k~) can obviously be increased to include more

values to cove r the possibility of m.altiple wrong detections in previous

subthtervals .

3.4 Performance of the SSS -

3.4.1 Asymptotic Performance of the SSS

The ana lysis ~f the performance of the seq uential approximation scheme

is quit. involved; exact analyt ic results are rather comp lex to obtain.

We consider only the scaler time -in~ariant case and derive the asymptotic

performance of the scheme as the intensity tend s to zero. For comparison

purpose , we express the performance in terms of the error variance of the

est imate of the system state normalized by the variance of the state

(average power).

~~en t he intensity is small , the est imation error resulti ng from the

scheme can be modeled as Poisson filtered process , with each error inc ident

response as a result of the detection and estimation over each •ub interva i .

Since we at e making estimation and detection for every subinterval , the

intensity of t he driving process is 1 .~.. Therefore the estimation error ,

denoted by W (c) can be represented as

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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t
W(t) • c(t~:,V) ~ (dc ,dV) (3.29)

v o
where (t;~ ,V) is th. inc ident response of the average error made according

to the result of the detection indicated by the mark V . and is the

measure of the underlying error driving provess with intensity 1/. .

Define the mark V as folIos

V • indicating a miss  in the detection

V • d 11 indicating a correct detection of an inc ident
(3.30)

• d~1 i nd ica t ing  a false alarm

V • d~~ indicating a correct detection of no incident

Henc e , the distribution of the mark is given by

p(V • d ,0) — zp
10

(.~.)

p(V — d 11) • ~ (l - p 10~~)) (3.31)
p(V • d01) (l-a)p~ 1(~

l)

p (V • d~~) • (la)(t-p 01(~ ))

where p01(A), p 10~ .) denote the probability of a f3lse alarm and a miss  in

th e detection over an interva l of length ~~ .

Note t hat with this model ,

1 ( t  — ;d~~) • 0 (3.32)

5 (t ;d01 ) E h 2(t; ,U) (3.33)

The variance of W (t) is therefore

Va r (W(t)) — ~ c 2(t 0;V)dt (3.34)
V O

• ~ _ c 2 (t 0;V)dt (3.35) 

~~~~~~ -— -~ -~~~~~~~~~~~ ~~— _ - - ~~~~- -_
~ 
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The substitution of Eq. (3.31) into (3.34) yields

Var (W(t)) — ~p ( . ~) c 2 ( t : d )dt

+ 1..~ ( 1 - p10(A)j a (t ,0;d
11 )dt

0

~ dt(p 10(~ )c 2 (t ,0;d 10) -p 01(.~)c
2(t,0;d01)J) (3.36)

which after normalization by Var(X(t)) given in (3.11), become s in the

limit as ‘. ‘O,

lim Var (V(t)) Urn ~0L X~ • 37
~~~0 Var (X(t)) X-’0 ~ ~ pole) (3. )

where p01(’) is now the probability of wrong detec tion in a semi-infinite

interval. The probability of false alarm , p01(A) is given by (see (12 j )

po1 (.) • er f (  ~~~~~~~ + ) (3.38)
,de~

where
> —

~~ E ~ h~ (t ;0 ,U)dt (3.39)

~ U 0

In fact when a. is smal l , we have

A ‘A’ 
- 

~~ (t;0,d 11)dt
_____ 

Var -~Wkt)) < ~OL~ ‘ 
+ 

~,
. 0 (3.40)

— Var(X(t)) — I ~ 2- - 
I E h (t ;0 ,U)dt -

1U 0 j

Hence , we expect the normalized error var iance to approac h p01r)/r, as

-. 0. Furthermore it increases linearly as \ with slop.

E h2(t;0,U)dt
U 0  

~~~- -- ~~~~~~~~~~~~~~~~~~~~ _ _



which is expected to be very small when the signal-to-noise ratio is

reasonab ly high , i.e. when

‘ 12(t O d )dt <‘C E , h2(t;0,U)dt (3.41)
0 U 0

Consequently the normalized variance is approximately p01(A)fO when ~. is

smelt.
Ver (W(t)) ~ ~Qj(A ) (3 42)Var(X(t)) ~

In view of the fact that the normalized variance of the error resulted from

the linear optimal f i l te r  tends t o  unity reg ar dles s of the s~igna1-co-nojse

rat io and behavior of the incident responses , the scheme performs extreme ly

we lt over the linear optima l filt er , s inc e under norma l conditions of

signal-to-no ise rat io

p
0t
(.
~’)

<‘C 1 (3.43)

when X is small. The resu lts imp ly that there exists a rate X~ > 0  such

that for ~ E (0,.*) the suboptimel nonltheer scheme performs better than

the optimal Linear noncausal scheme . j
h4.2 Performance Simulation of the SSS

The sequential scheme w as simal ated on a digital computer; ui each

case , it was don e ove r a total length of time to inc lude 20 incidents . I
The performance in terms of normalized error variance w as plotted against

t he intensity ranging from 0 to 2. L. was chossn to be 4 and 0 • 0.15.

The syst em state was reconstructed w ith delay of 2.

I

11
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The computed performance , Eq. (3.42) was plotted as a continuous
gr aph ~n each case and the simulated performance for different values

of i,. were plotted as points with appropriate notations. For comparison

purposes , the computed normalized steady state error variance of the linear

optimal filter (LOF ) was larger than 0.90 in all the cases over the range

— 0 to 2. Several examples were cons idered as follows :

Ex amp le 1: ~(t) • -2x(t) + U’~- (t ) x(0) • 0

z(t) • x(t) + v (t)

Hence h(t; ,U) •

N( t ) 
2y(t) — E u1e 

( t -  ) t > 0
i—I

The mark U is assumed to be Gaussian with variance S and three possible

cases for the mean : (i) 5 (ii) 7 (iii) 10 (see Fig. 2).

Examp le II: i(t) • L (t) x(O) • 0

z(t) • x(t) + v(t)

The inc ident response is a step function indicated by .(.),

•

Again , U is Gaussian with varianc e 5 and mean taking one of three values:

(i) 5 (ii) 7 (iLL) 10 (see Fig. 3).

Examp le III : The inc ident response is a rectangular function ,

h(t , ;U)  • U (s- (t-’) -

We inc lude two cases Lu ’ 0.2 and 0.S with same Gaussian U as above (see

7j$. ).
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Example IV: The incident response is assumed to be a ramp function of

sl op U.

• U(t- )

Again , U is Gaussian with variance 5 and mean (i) 40 (ii) 100 (iii) 200

(see Fig. 5).

To investiga te the effect of increasing the nu~~er of values in the

set ~N(kA)i for max imizat ion i.e. allowing delay detection , th. case in

Example IV was reconsidered and compared to the case when one more value

of N(kA ) in the detection was allowed. The results are shown in Fig. 6.

The s imulation agrees extremely closely with the approximate expression

for the performance whefl X is small. And as Fig. 6 indicates , the per-

formance of the scheme improve s cons iderably if we inc rease the set of

values for N(k~) in the detections.

3.5 Conclusion

In th is chapter , we have developed and examined a sequential esti-

mation-detection scheme as an approximate solution to the state estimation

problem. Its asymptot ic performance has been derived and shown by digital

simulations to be an extremely good indicator of the true performance when

the intensity is small. Henc e , under the situat ion of reasonable signal-

to-noise ratio (SNR ) in the observations , the scheme performs considerab ly

better than in the ?O’~ E sense , the linear optima l filters when X is small.

Indeed the asymptot ic performance of the linear optimal t~i1ter is extremely

disappointing , regard less of the SNR or how the inc ident responses behave.

Notice that the SSS performs reasonably well for both stable and

unstable systems under norma l signal -to-noise environments as indicated

~
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in al l  the examples (see Fi8s. 2-6). In fact is some cases , it works

better for unstab le systems than for the stable case as examp le I and

LI show. As indicated in example IV and Pig. 6, the performance of the

SSS can be further improved by an additiona l delay irs the reconstruction 
- 

-

process.

As we al low more computational capacity in the sequential scheme ,

choosing L and increasing the set of va lue s for ~(k~) in the detection ,

the scheme becomes MAP optLmal . Hence in many prac t ical cases , it may

indeed be close to the optimal ? 15E scheme .
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CHAPTER 4

STATE EST BIATI(~ OF THE W I.EHER-POlSSOt~ DRIVEN LINEAR SYSTEM

.1 GeneraL

- We now address ourselves to the general estimation problem stated in

cha pter 1. As in chapter 3, we allow an additional uncertainty in the

system by introduc ing a mark process excited by the Poisson process as

fo l l ows —

• C~x~dt + 
~~~~ 

+ bt (U)d ’
~ 

(...lI )

where U is the mark process associated with the Poisson process i~~ and is

- asssxsed to have known statistics , i.e. probability density f
u
(u). Again

the objective s to deve lop an estimat ion scheme with delay (smoothing) for

- 
f rom observat ions , v iz.,

- dy
~ 

- h
~

X
~
dt + dv (4.lb)

irs this chap ter , we deve lop a subopttnsa i sequent ial scheme (55$) as

the one L~s chapter 3 for Poisson driven systems . The scheme is a modification

- of the one considered earlier , and consists of performing detection and

- est imation of the Poisson inc idents in a sequence of small subin tervals ,

- The reconstruction of the syste. state wi1~ be obtained from the

est imates of the Poisson inc ident process followed by a smoothing filter.

- 
The estimation and detection of the Poisson incidents are performed us ing

the MAP criterion as in Chapter 3 , wh ile the smoothing filter employs the

.‘CISE criterion. Basically the only difference in the SSS for the process

(4 ,1) from that in chapter 3 is that in the reconstruction process we apply

the PIISE smoothing to the Wiene r driven part of the system whereas in 

~~~~~~ —- — -~~ - --—--—- - -~ - — -~~~ -~~ -~~ -~~~~~- ~~~-~~--~~ _ _
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chapter 3 the reconstruction is purely deterministic once the estimation

and detection of the Poisson process is finalized .

~.ae to the sequential structure of the SSS , the errors arising from

any deviat ions in the estimation and detection of will tend to propagate

and accwm .slate . A compensat i on approach will be inc luded in the SSS to

eliminate the error propagation effect . The numerical algorithms in the

.~ptimizat~ or& procedures and the solut ion of the equat ions in the SSS are

Jiscussed and presented in an algorithmic ~~~~ The asymptotic performance

for the t t ne- inva r~~ a~~t ~ase ~or small intensity is derived analyticaUv

and sL~~ tated nume r~ cal y.

4.2 Sing le Interval Suboptirsa~ Smoothir.,~

The system given by Eq. .4.1) ii by assumption a measurab le process of

the Wiener input process and the Poisson input process together with the

initia l (random) conditions. Zt the Poisson Input is given , and the init ial

condttions are Gaussian , the system process can be easily shown to be

conditionally Gau ssian (7 J . This conditiona l Gaussian pr-~’t~rty enables us

to obtain an optimal estimate in closed form if the Poisson process is

known. Since the system is driven irsearly and ~ndependent iy by the two

input processes , that opt imal est i mate is in fac t the optimal *1St est imate

of the Wiener driven part o~ the system , and irs our case is Just the Ka lman

filter.

le t  the conditional fi tered and s~*,othed es tima te s of the system X~
ove r the interva l (0 ,1) be denoted by m~ and m

~,1 
resp ective ly , i.e.

~ E (X~~f~ , 
~..) 

0 < t < 1 (4.2)

~ ~~~~~~~ ~~,.
‘) 0 < t C (4.3)

- 
- - - -
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where in our notation , ~ denotes the o’-field generated by ~~~~~~~ O < t< s1.

Note that and m
t/I 

are not the filtered and smoothed estimates of the

system but rather , the pseudo-estimates based on the given knowledge of the

Poisson input 
~~~~~ 

The Poisson input can be specified over [0,1) by giving

the nu~~er of inc idents over the interval and the incident t imes and marks.

To indicate the dependence on N (0 ,T) (N(T) for abort) and (z,u)  of

and m
~i1, 

we use the explicit notation

,u) 0 < t < 1 (4.4)

at,T - m
~,1

(N (I), L.& . 0 < t < 1 (4.5)

With these notations, a likelihood function of observed in white Gaussian

noise , denoted by LRfm
~

J , can be constructed using th. concept of estimator-

correlator recei ver (lO ,ll J et at.

LR(m
~
(N(T),’!’,u)J • exp( a

~
y
~

dt f m~dt~ (4.6)

Hence for the MAP estimate of ET), u and :. we have

• La LR(m
~~

(N , . u ]  + £nf
N(T) ~

(N.:
~~.) (4.7)

where (. ,.,.) is the aprior i probability of NCr) and .u.

Therefo re the MAP estimate of N(T) and :.~ 
denoted by fi and j ,~ satisfy

the following ,

• max J ( t 4*,~~*,u*J (4 . 8)

Not ice that the dimension of ,u is N. The max imization can be done by

ass~~ing the value of N and maximizing with respect to ‘ ,u first. Therefore ,

-a

~

-

~

- -—- -..

~ 

- - - - - - — - - - - ----— — -—— ~~~- -~----- - - - -_ - - - - -_ —_-  
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L

J ( R ,~~~~~, Ci)  • max max ~i J [ N *,~~*,u*fl (4.9a)
N t t u~

• max J (N*, N* t , u(N*) 1 (4.9b)

Although Nt can take up any positive integer value , large value s of ~~*

can be neglected in the maximization by an appropriate choice of the length

of the interval t. The aposterior i probability of N(T) is uniformly

continuou s with respect to its apriori probability, which can be made

arbitrarily small with the choice of the time interval , Hence the maxi-

mization can be done over a set of finite element s, N” • 0 l.2,...K Ii
neglecting value s higher than K.

Aft er the MAP estimates of N and :~a 
are dete rmined , the estimates

of the system can be readily determined in a suboptima l fashion by sub-

stitucing the estimates of ,u ,N in the expressions for mc and m
~,1 

(4 .~.

and 4.S) (see Fig. ‘ .

From Eq. (4 .1), we have
II

• •(t,0)X0 • •(t )B dW ‘
~~ (t s)b (U)d~

’ (4.10)

~f ~~~(U), 0 s < t~~ is known , the system is , in e f fec t , a Wiener driven

process. The last term of the equation Just give s the system a different J
mean function . Man e we can write at foLlows,

t -~~

m
c • •(c ,s)b

5
(U) d”5 (4.11)

A C I
where is the estimate of the Wiene r driven part , and is given by its

Kalman filter I
1
1

- -_—~ 
_
~~~~~~~~— - - — ----~ 

-
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— + P~ h~v~~ (~~ - Is
t 

‘$(t )b U)~~ - h
ti) 

> 0 (4.12a)

— 2C~P~ +
~~~ Q~ 

+ h~v
1
P~ t 

> 0 (4.12b)

with 
‘

After some algebraic manipulat ions, we have equ ivalen t ly ,

mc • + X~ + ‘
~~ (t )b (~i)~~ (4 .13)

• + p % v ~~ (~ - h X 0] (4.14)

1 2 1 :  d , (4.lSa)

N (t)
Z g~ (’ ;u ) (4.lSb )

i—I

where ~ (t,u) is the state transition function of the homogeneous part of

the filter in Eq. (4.12) and g~ C’~~;u~ )Y i sat i s fy  the causality condition

by definition of the integral (4.15), i.e.

— 0 Y t C ‘

~~~~ 

Yj (4.16)

Similarly, we have

t ,~~N( t )
0

- 
•(t ,s)b5 (~

)d’
5 — t &~~ri

;u
~~

) (4 .17)
o i—I

Note that in Eq. (4.13), is the only term on the right side of the

eq uation that does not depend on the realizat ion of it is the only

term that depend s on the observa tion in fact. The remaining two terms

depend only on the realization of and not ,, they are completely deter-

mined by the knowledge of N (t). :~~• 

- - ~~~~~~~~~~~~~ - -~~~~~~~~
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The smoothed pseudo-est imate mC,T can be rea d i ly cons truc ted f rom

and is given as follows (7 ,9,12] (see a lso Fig. 7)

N (T ) 
0• ~~~ 

~~~~~~~ 

g
~
(.i,ui) 

(4.18)

where

Xt/T •~~t~t/T 
+ ( P ~)~~ (X ,1 

- (4 .19a)

~t/T 
- 2~C ~~~~~~~~~~~~ 

~c
11 

- 32Q (4.19b )

with 
~T/T 

• p
,t • (4.19c)

The substitution of Eqs. (4.13-4.17) into Eq. (4 .7) yields an equivalent

expri~ssion for the MAP maximization which can be expressed as

T N 0• dc( X~ + t g~~~~ iu~ )] (- X
~ 

-

0 i—I

- 

. 1 1 
+ 

~~ 
g~ C’ 1.u~ ) J 2 4. N m . ’

tel

t Is
— dt~ t (g~~ ’~~,u~)

0 tal

N )
(.. - - 

~ t (g~ ç~~,u~) + g~ (” 1,,u~ )] ~ ‘ NLnX (4.20)

i—I

This expression can be fu rther si mplified into

r
I 11

J.1j5, , u) — : dtj ( t $
~
(‘j~

u
i)J (z~ 

— t g ( .~~1u~ )~~ + NLr~L (4.21)

~ 
i_i i—I

-I

wher e .

g~~( . u)  ‘
~ g~~(1’ ,u)  + g~~( ,u)  <4 .2_ )  L

+ (4.23)
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Note that 3 • 0 wh’-n N - 0. Also (4.21) is in the conventional form of

the likelihood function where is the observation of the signa l

N
t C 1

,u~ ) in the presence of white Gaussian noise.
1.1

To st .~~ arize this section , we have obtained the general equations for

the proposed smoothiflg scheme . The crucial step is to isolate the parts

of the system which depend solely on the realization of ‘
~~

(U) .  They ar e

f~naIly reconstructed through the detection and estimation of the inc ident s

of the process 
~
(U). The other part of the system is estimated using a

~*(SE optimal filter which most importantly has a closed form. Notice that

the linearity of the system model is not required for obtaining the ~4SE

closed filter . It only requires that the system conditional on the a-field

gtve s rise to an opt imal filter of the closed type ; in our case the

system is conditionally Gaussian with respect to hence give s rise to a

closed opt imal filter , the Kalman filter.

a .) Sequent ial Stnoothin~ and Its N~m~er i ca l A1g~orithm

In this section , we consider a sequential smoothing scheme approxi-

mately implement the scheme proposed in 4• 2~~ Such a sequential scheme

w ill iaake the implementation in real t ime feas ible , and of fers  the advantages

of sequentia l iterative progranmiing for the c omputations.

In the scheme , observations in subinterva ls , each of duration .~. are

processed sequent ially to estimate Poisson inc ident s in that new subinterval

and also update those in the past (or part of the past). Then the system

stat e is reconstructed subject to the permissible delay based on these

est imates and the estimate of the non-Poisson driven part of the system.

—-- ---— - —~~~~~~- - —- -~~-— -- -- -~~--- -
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The approach for obtaining the estimates of the incidents is similar

to that in the previou s chapter. Basicall y, upon receiving a new sub-

interva l of observations, the problem of a single interval smoothing as

in the last section has to be solved . Although there are some nice

properties arising from the sequential structure of the scheme the major

component of the scheme lies in the maximization of the expression in

Eq. (4.21).

Note that the expression to be maximized does not have a second

derivatLve with respect to ,u , since it involve s the derivatives of

which contains white-noise components. Hence , second order iterative

numerical tec hnique s for optimization do not apply.

Another point to note in the maximization is that the rn~ ber of

incidents , i.e. the dimension of :.~ 
incre ases as the length of smoothiig

interva l increases b y ~ each time. Hence a robust approximation approach

which requires up-dat ing only part of the previous estimates is considered.

In order to develop the algorithm , we shall asstm~e that we have the

estimates of the number of inc idents and their times and marks to t ime

t—r u~, denoted by N(n~), (nA). u(nA) respective ly . Then we add as new

sub interva l of observation s of Length ~~, where ~ is to be so chosen , as to

satis fy

• ~

i.e., the probability of having more than one incident in the new sub-

interva l is negligib ly small. Hence the number of incidents up t.. t .nA

can take on two va lues , namely

N (nà ) and N(n~) + 1 (.a .24)

-l 
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Therefore expression (4.21) only needs to be maximized for two sets of

-((n+1)A), which can be done independently. Note that the entrees of

the vectors 1~,u have been all or all-but-one estimated previously using

the data up to t—n.~. Although they have to be updated since more data has

been cons idered , their estimates can serve as an approximate point in an

iterative algorithm for the new estimates. There are quite a few iterative

techniques that are applicable to the maximization. Among the available,

we choose an approach that does not require taking any derivatives and

converge s at a relative ly fast speed.

4.3.1 Numerical Iterative Algorithm

The iterative algorithm consists of f irst determining for any given

iterated point a direction along wh ich the max imization of I can be done,

then the scalar maximization is done by some effic ient search procedures.

More p rec i se ly, if we let be the k-th approximation point to the optimal

:* which lies in some N-dimensiona l Euc l idean space E5, the new approxi-

mation point will be given as

;k+L -k - —k+l N
— 

- + ~ 4 ~ ,dt E (4.25)

where d is the chosen direction for maximization of I and ~ is the max i-

mization constant that gives the isaxiazam I subject to the constraint that

the ordered incident times must satisfy

0 <  < ~~~~~~~ < n~ i -2 ,3-N (4.26)

Actually constraint (6.26) g ves the range for 3 in the optimization, since

< 
31 (f1 

i—2- --N - -

--

~

-

~

—-- —--~~~~~~—--. - -—~~ --- -~~~~~~~~
- -~~~~~~~~~~~~ - - —--
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we have

+ &d~~ 1 < .r~ +

- - which results in

i~ -T
I. i-l 

d > d
— 

d~
_d
~_ 1 ‘ i—i j

(4.27)
I r — ~L i—I
!¼\ 

d
i
_d

j t  , i-I j

i — 1 ,2 ,...,N+ 1.

U We take ~~~~~~~~~ 0, d0 -d~~ 1 - 0 and • nc., and without loss of general ity

we assume d
1

> 0 , we have

,k+L 
-- -.

- 
~~~~~ d 

i-I 
~ ~ 3 < mm d 

i_ l ) < 
d 

1 (4 .28)
1 i i-i i i i—i i 1

d~ _ 1<d 1 d i_ i>d i

which is the feasible range of ~ for the maximization search procedure.

Mathematically, if the iterative maximization algorithm is denoted

by A, it can be represented as

A • M D  (4.29)

where D • EN .4 E
2N 

is a point-to-set mapping that determines a direction

for maximization for the objective function I; and H • E2N . E
N is a point-

— to-set mapping that gives a better approximation point for the maximization

r given the direction and the iterativi point .

We choose the Golden-Section Search for H and the Conjugate Direction s

Tec hnique for D . The convergence of algorithm A solely depends on the

closedness of H and D. For our choic e of H and D, it can be shown easily

both closed and hence conve rgent procedures [13 ,14].

7

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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~~e to the unimodal property of J in the mean sense , the Go lden

Section Search procedure is ~ very efficient , convergent search technique

over the feasible range of ~~~. It does not require any derivative s of the

objective function 3, avoiding the analytic difficulty of taking derivatives 
-

of white noises.

The conjugate directions usually defined with respect to a quadratic

function are a set of directions such that maximizing in each of the

directions w i ’..l give the maximum of the quadratic function . In E
1~, there

are N such directions in the set. The generation of such directions for a

g~ ven quadratic fot -m does not require taking derivatives and for max imization,

the order of the direction s maximized is itmnaterial. Hence the algorithm

converges within N steps in case of maximizing a quadratic func tion.

Note that our objective function J to be maximized is In general non-

quadratic . Generation of such a set of conjugate directions is impossible.

Nevertheless , we exploit a quadratic approximation to J without explicit ly

calculat ing the Hessian matrix, which in our case is not well defined due

to the white processes involved. We iteratively generate a set of conjugate

directions which gives a better optimization to J. With several iterations ,

the requisite information about the Hessian is deve loped. The overall

procedure can be thought of as generating conjugate directions to a quadrat ic

that approximates 3. Since the algorithm for the procedure is closed (13],

the overall scheme is convergent .

For the details of the complete maximization scheme see Append ix C.

For our choice of ~., the length of the subintervel , at most there is

only one inc ident time that has never been estimated , the rest are all clos e

to the optimal value maximizing .1. The numer ical procedures shou ld conver ge

ext reme ly fast within a few iterations. 

— - -~~~~~~~~~~~~ -- - --— --~~~~~~~~~~~~~~ -rn- ~~~~~~~~~~--— - -—- - -~~~~~~~~~ - -~~~ - -~~~~~~~~~- - -- 
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4.3.2 Sequential Approximations -

The computational complexity and hence the efficiency and ra te of

convergence in the algorithm depend heavily on the number of incident

times to be estimated . To overcome the computational difficulties , the

following approximat ions can be made to enhance the speed of the overall

scheme

(1.) Updat ing or re-estimating the recent incident times only. In

the sequential scheme, upon receiving the ~~~ subinterval of observations ,

the smoothing is performed such that the estimates of the incidents prior

to the (n-k+1)-th subiaterval are all. finalized , i.e. they are not re-

estimated. More precisely, the expression for I Eq. (4.21) is approximated

in the following manner ,

nA N N
JnA [N. , uJ • dt~. E g

~
r
~
,u

1))(z~ 
-~~ t ~~~~~~~~~ + Nm ).

o i—i i—i

n~ N ((n-K)A) N
— dt( s~r~.

u
~
) + t

0

N((n-K)A) N
(z
~ 

- t g(! ,u )  - £
i—I.

+ [N((n-K)A) + N - N ( ( n - K ) A) J  ~~~~~ (4.30)

ii 
~~~ 

for L — l ,2---N((n-K)A) are all finalized and not estimated again,

than an approximate expression ~ can be formed

nA
• dtf t ~~~~~~~~~~~~ 

- + ?lLnA. (4.31)
(n—K)A i.l i.l 

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - - - -~~~ ~~~- - —
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where ~ • N(n.~) - N((n-K)A ) (4 .31.)

(4 31b)
t L+Nt(n-K)A)

o •u (4 3 1c)
i i.$((n-K).~)

N((n-K)A)
and 

~~ 
- g

~
(
~j.

u
i
) (4 .3W )

i— I.

Notice that expression j in (-..31) ~.a in the same form as I in (- .21). The

difference is that the number of unknowns i’s , ~~ ‘ s now I s less than

‘~~
‘s , u~ ’s by exactly 2N ((n—K~2.). Indeed the expected number of unknowns

in ~ is 2K(-.L) which s small since ~~~ is small..

(1) Shorteiung the interva l of integral In .1 Eq. (4.21) by increas ing

the ~ wer ii~ it of the integral , p laci-g al the weight of the observat ion

in the shortened interval for the estimation . If the interva l for the

integration in the expression of I is (0 ,ri..e), it can be shortened to

(l’~~,n1.) where M ~ s a parameter to be determined . Combining approximation I

and II, we can wr ite the ex p re ss ion f~ r I as

N
— -

~~~~~ t g
t

( 
j

.U
j
)

~~~~
z
t 

- t g~ (~~ .~~ )) (4.32)
(i—K+M ).l. 1.1 i—i

Note that in .4 .3 1). aU the ~~‘s ar e within the interval of the integral ,

and in (4.32) some of than are not but their inc ident responses are .

While both approximation I and I: reduce the c omputational complexity

and enhance the speed of the process , they are different in nature . The

application of one or both and subsequently the choice of K and M depend

on the tradeoff of various aspects as availabil ity of computational facili~ tes ,

nt erica~ Operations , speed and desired performance of the overall scheme.

I 

---~~~~~ -~~~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



6 1

Basically, for stable system, especiall y tho se of large negati ve

eLg enva lu~s , Approximation I is a robus t choice sinc e new observations

are unlikely to improve very ~ich the estimates of thes incidents

occurr ing in the remote past. For unstable systems , Approxtmation II

nevertheless is a good alternative in reducing the computationa l burden.

In that case the incidents in the past , are still being re—estimated

but based primarily on their effect on the recent observations. Si.~ch a

we ighting of Latter observations is consistent with the unstable nature

of the inc ident responses.

~~~ Asy~~,tot ic performance of the SSS

Since the general performance of the SSS is difficult to derive ,

we consider only the time-invariant case and derive the asy~~cotic per-

formance of the scheme as the intensity tends to zero.

From Eq. (~..t9) which give s the estimates of the syst em , the estimation

err or resulting fr~~ the overa ll scheme can be expressed as a sum of

two error;: one from th. estimates of the Poisson driven part and one from

the smoothing of the conditional Wiene r driven part of the system. The

smoother X given in Eq. (4 .12) is derive d conditionally on the ass~~~dt I  ~

knowled ge of 
~

(U). i ,e , due to the l inearity of the smoother , i ts  error

can be expressed as a sun of an .
~
-free term and an 

~~
_dependent term.

Theref o re we have

0 < t < T  (4 .33)

where and denote the 
~~

-free and 
~~
dependent term of the smoothing

er ro r  o~ the Wiener driven part of the system ; e~ denot es the error of the

estimate of the Poisson driven part. Sinc e the conditional estimate 
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L
with respect to ~ ~~~~~~~ it can be shown easily from Eq. (...12) that

(4 34 )

wh ich i~ the variance of the cond itiona l smoother given in Eq. (‘ .18). In

fac t it is tha t var iance one would obtain in smoothing the Wiener driven -~ -

part of the system using an MMSE optimal smoother. %~ te that the estimate

is conditional on ~~~~~~, but the variance P ,~ 
is independent of

When the i n t e n s i t y  \ is small , the estimation error resulting from the

scheme -an be modeled as a Poisson filtered proce ss f l ,S O J ,  with each

inc ident resp onsc as a result of the detec tirn and estimation over each

subinterva l of Length _ . Henc. the Poisson filtered process driving the

error process of the ~~~~~ has an intensity of 1,.?.. V
C~~~~n~ ng Eqs. (.4.33) and ~.o.3..), we have

t
• PC + (~~t;:,V~ • e(t ;:,V)r(dc,dV) t 

.- T (4.35)
C . . -.

Here c (t , ::V) and e~ t . : ;V) are the average error response made according

t .~ the resu lt ,t the detect ion indicated by the -ar ’
~ V~ and ~ is the measure

of the underlying error drivIng process with intensity I.

Define the mark V in a simi .ar fashion as in Chapter 3,

V • d 1~ 
indicati~ g a miss in the detect ion

V — d 11 indicating a correct detection of an incident

V — d01 indicating a fa lse alarm

V • d~~ indicat ing a correct detection of no incident 

~~—-~ - — - -
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•
~~ 1

The distribution of the mark is given by

L P(V - d 10
)

P(V • d l~ 
•

-~ 1 
(4.36 )

P(V • d01) • (l—O)p01(A)

P(V • d~~ ) — ( l— 3) ( 1 - p01 (A))

where p01(.) and p10ç~) denote the probability of a false alarm and a

.. miss in the detection . Hence the variance of &~~, denote d by Var
~~~
) is

- given as fo l lows

Var~~ • pC + $ E [e(t;0,V) e(t;O ,V)32dtt CiT —
- V 0

• 

~~~~~~~~~~ 

+ E ~
T
Ie (t;o,v) e(t;O,V))

2 dt for t < T (4.37)
V 0

- 

The substitut ion of Eq. (4 .36 ) into (4. 3~ yields

Var
~~~
) 
~~ t T  • ~ (Op10(~) (e (t ;o ,d 10) + e (t;,O,d 10)]

2 dt

1 2• °(1— p 10(A)) ~e (C ;0,d 11) + e(t;0,d11)J d t
0
I

+ (1-O)p01(A) Ie (t;0,d01) + e(t;0 ,d01)J dt (4.38)
0

Note that ye have only three terms in Eq. (4.38) because in case of a

correct detect ion of no incident (V • d~~ ), t he re is no 
~
.dependen t

error , i.e.

e(t;o,a~,) • e (t;0,d~~) • 0 (4.39)

Assuming that the average error made by a correct detection is relatively

small , s ince ~ <~C

t

_ _ _ _ _ _ _ _ _ _ _ _
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Var
~
t
~~
) - p

,,~~ 

)~ ) fe (t,0,d01) + e(t,0,d01)) dt for t < 1 (4.40)
0

For the time-invariant case i.e. the system function and observations are

not time dependent , from the definition of e and e , we deduce easily f r om

Eqs. ..l5). (‘.16) and ~..L7) that

L

e(t;0,d01) - E g~ (0 ,L7 ) - ube t 
(4.41a)

U

c (t;O ,d01) • E 8 2Q(PC)
_ l ‘ ds.exp (a ~ B

Z
Q~P

C )~~ J f t _ s j ~ .

1’ 5 

t
• £ ~- 5

’Q(P’)~~~j exp(~. 8
2
Q(P

C
)
_ l

J I t_ u J )
e 0

ds •xpt (a_ P~h2 v
_ L ) (u_ s ))g O (0 ,tJ) (4 .w lb)

• (~be ’t ) [  ~~~~~~ 
1 - 

3
2Q(~ c
)

l 
e~~~~

2
~~~

t ~%2 .l +52QP~~t 
(.4.42~ Ih v  (g Qp C 

+ P h v )

where denotes th. mean o f t~. F.n- comparison purposes , let us normalize

bot h side; of Eq. ~..40) with the variance of the Poisson driven part of

the system which is given as ( I ~

Var (X~) — k Lg~ (0)j
2dt

2• ). (e(t;0 ,d01)j dt (.4..43
0

Therefore f rom Eqs. (4.40) and ( ....4) ) , the error variance in estimat ing

th e Poisson driven part of the syst normalized to the varianc e of that

part is

I

- ~~~~~--~~~-- -— - ---
-- --~~~~~~~~ -- -- .-

—~~~~~~~--~~~~~~~~~~~~~~~~ --
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n A Var ()
~~~ -Var

~~~
) • nVar (X

~
)

1 2

) 
~ ~e (~~0,d0~ ) + e(t;0,d01)J 

dt

• (  J (4.44)
k. 3 1

[e (t;0,d01)J ’dt
: 1  0

As \ tends to zero , .~. 4 and 1 ‘ therefore
* 

I

p 
~~ • 

(e (t;o ,d01) +e (t;0,d01fl 2dt
l im Var~~~ ) • h a  ~~ U

~ ~~~~~~ 
1 2dt
0

I
-~ (e + e ) 24t

P01~ r) ~ t t
• lim (4.45)

2 
dt-

0

The probability of vr n.g detection in an interval of length T ,P 01 Ct), s

given by (see (0 ,l2J )

Poi (T) • erfc ( Ln (11°) ÷$ . i  (4 .46 )

where i~E1 is the normalized energy of th. signa l for detection , and is

easily bounded f or our sequential schem. by

1 2
> v ‘ 

+

0

2
— v~ 

-

‘ (e
~ 
‘ g

~) dt (4.47)
0

r
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I
Thetefore , the asymptot.. performance of our scheme in terms of the

normalized error variance is, from Eqs. *4.34) to (4.47) (

-

, 

~E
2 + e )2dt

~~ 
Var~~~) • ~ u r n  erfc ( 0,1

~~~ ) 
+ (4 .4 8>

-~ re 2 dt
5 

t

Note that in arriving at Eq. (4.48), we have invoked no assumption on the

stability of the system. For stable system where the system matrix has all

the poles on the left-half plane , or in the scatar case a < 0, all the

quant ti e s on the rIght side of ~q. ...8) can be shown to be bounded and

hence the asymptot ic limit as I 4 . a lways exist. Since ii a - 0,

dt • ; erfcl _
~~~~) 

- • . ~~ 
. (4 .49)

0 E

Now , at fir st glance the term

+ e )2dt

appears t be possibly unbounded , since e
t (Eq. (

4.42) contains an exponential

term exp ((a - B2QP 1

)t], which c-an stiU be unst able , i.e. a + 32Q~C 1 
> 0.

However . thlq is the eig envalue of the non-c ausal smoother through which e
t

s generated . Here , even for the case a + ~2
Q~c l 

> 0, e
~ 

is still always

bounded due to the end-poth t condition , 2.
~IT t , of the smoother . For

unstable system , a > 0. and the limit of the error variance becomes

I
— 

‘

~~~~~~~ + e )~dt
• ‘tio’ ~E1 b ~

tim Va r (f~~) • liz erfc l ~L 
— — - J (4.50)

dt
~ C

0

- -- - -~~~~~~~~ -- ~~ -- 
_ ____
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Using an exponential bound for erfc (.) and substituting Eq. (4.47) into

*4.50), we have

I

-L r
tim Var~e~ ) < liz ex p(- 

~j  
(
~~ +g~ )2dt) 0~

X~~0 I•.e 0 .. t

0
Appl ication of the L’ap ital’ s rule for the limit consecutively yie lds

2(1 +~1 ~
liz Var(~~

’) < lia • 0 (4.51)
T~~~ e~~ exp (!.~_ ( e~~+g~)

2dt)

The result in Eq. *4.51) is not coo surprising bec ause in detecting a

signal with increas ing power over s semi-infinite interva l , the s ignal-to-

noise ratio goes to infinity rendering correct detection and subsequently

prec ise estimation with probabi l ity one.

Hence in our sequent ial approx imation scheme , for unstable systems ,

it is better to seep estimating al l the prev ious inc.idents. It shou ld be

noted that in Approx imation II , the error re sulting from the finalized

est imaCe~ of the incident s will , propagate thus degrad ing the performance

of the scheme .

An equalizing approach to eliminate the growing error propagation

is dcv. loped in the next section . With this additiona l procedure, the

instability of the system in many cases while not giving rise to a

unstable error propagation from the finalized estimates can in effect

improve t he estimation and detection performance if the system state

contains sufficiently arge energy in the estimation and detection interval.

—---- - -- - -- -  - _ - -- _ _  _ _ _ _ _ _ _ _
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~.5 The Error Propa&acion and Compensat ion Approach

In this section , we examine the effect of the error due to the

deviation of the finalized estimates of the inc idents on subsequent

estimations and detections in the sequential scheme . Due to the sequent ial

st ructure of the scheme , the error arising from the finalized estimates

will e~~ibit a propagat ion ef fec t  on latter estimates and detections ,

degrad ing the overall performance of the scheme. This is especially the

case when the approximations (I) and (II) of Section 4.2 are adopted .

For an unstable system , the errors indtviduai~ y grow ~~~~ time and

tend to accumu late and ‘ropagate through the subsequent intervals. For

stable systems , a sLag le error tend s to fad e out w~th time . But the

propagation effect due to it is quite nominal to continue for a relatively

ic~der durati on because of its generating phenomenon . If the time for

the resultant propagation effect to fade is long enough , the errors will

accumulate and reac h a perpetua l propagation effect.

Altho ugh our approx imate expression for the asymptotic performance for

k ~ 0 derived in section .~~ is quite acceptab le , it is intuitively clear

that th e error propagation effect w i l l  dras tt ca ll y degrad e the performance

as ‘
~. incr eases from 0.

Her e we propose a rather simple and robust approach to overcome the

effect sequentially by a compensating scheme . More precise ly , it will

estimate the error due to the previous finalized estimate ove r the interval

over which the estimat ion and detection of the inc idents are being processed .

By Caking away the error s due to the finalized estimates sequentially , the

propagation effec t is eliminated , end sequentially we have a new smooth ing

prob ’rn ove r a new single interva l of length ~~ each time .

- - - - - - - -—— - --- _ - - - - -
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4.5.1 Error Pattern

To investigate the error propagat ing pattern in the SSS , let us

assume that we have just applied the scheme over the interval [0 ,K.~) and

obtained the estimates 
~~~ 

and the estimate of the system state based on

the observations over (0 ,KA). Now we finalize the incident over [0,A)

(asstma d exists) and take in a new sub interval of observation of length

— A ; app ly the scheme and obtain another set of estimates ~ over the new

interval j.~,(K+l ).~).

It should be clear that even if we consider the entire interval

(0,(K~- t)A) for the SSS. the estimates of the incidtnts and their marks

should be mor e or less as ,u. espec ially the ones occurred at earlier

time. In a lot of cases , the est imates of the early incidents and marks

are identicall y the same , since the additional sub interva l of observation

of length A is unlike ly to improve those estimates. Hence it is quite safe

to assume for al l prac tical purpose that over the sub interva l [A ,2A),

( , u)  ( , u) (4.52)

Indeed from Eq. (4.21), we see that (“ ,u) has to satisfy the following

N (kA )
dt~ z~ - 

~~ g~ (~~~u~): ~~ _ 
‘ • 0 (4 53a)

0 i•l 2

. 
110th) . ~~~~~~~~~ ~

— dt
~
z
~ i.l 

g
~
(
~~
.’~~
): 

~
‘2 

+ 
~~~ 

Lnfu(U2) 0 (4.53b )

1, 

~~~ - _~~~~~~ - -~~~~~~~ --- ,- - -~~~~~~~-—---- - -- -- ~~~~~~~~~~~ - - -~~~ - ----~~~~~~~~~~ ~~~
- -

~~~~~~~~~~--~~~~~~~~
- -  
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In par t icu la r , we have from causality of g,

2.1 
- ~g (‘2,u2 ) L

dt
~
,z
~ 

- gt
( l~

uL) - g
t(2,ui)i 

t~~, 
~~~ 

(4.54*)
2

~ u )

~~
dttz

~ 
- g

~ r1,u1
) - ~~~~2 .u2

)’~ 
t 2  2 

+ 

~~~ 
Lnf

~
(u

2
) • 0

(4.54b)

where ~ and 
~ 

are two const ants and should be closed to zero. Similarly

~or th. estimates 2 , u2, denoting the estimates of inc ident in ~.1,2A), we

have

- 
dCii

~ 
- g~(2*u2)) ~~~~ • ~~ _ 

-_ 0 (4.SSa)

A 2

2.1 
~~~~~~~ “ 

—

- g~(.2,u2)) 

~~2 
~ ‘ 

~~~ ~~ U~~2
> — — 0 (4.SSb )

where ~• and are two constants close to zero. But L~— z
~ 

_ g
~

( i.ui)

from Eq. (4.3ld). Hence we have

2’- ~~ r )
dttz~ 

- g
~

( 1,u.) - 

~t~~ 2”~2~~ 

t ~~~~~
‘ 2 — ~~.. — 0 (4.56*)

2.1 ~
g 

~~~~ 
—

dt (z
~ 

- g
~
(1,u1) 

- 2 u2 fl 
— 

t~~ 2 
+ 

~~~~~~~ 
Lnfu(~2

) 
~~ U 

0 (4.56b)

A 2 2

Comparing Eq. (4.54) and Eq. (4 .56 ), we assume that 2 . u2 are close to

2,u2 
for all practical purposes.

Note that the two sets of estimates of incidents and marks over the
F-,

subin terval (A ,2.1) are very close does not imply that we do not have errors

0’~~

___________________________  
- -—~~~~~ 
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in the estimates. It simply says that ove r the intervals [0,KA) and

T [1,(K+t)A), the MAP estimates of the inc idents and marks over f .1,2A) are

-
~~ very close. Actually , the uncertainty of the incidents and marks is

distributed in an MAP fashion over the estimates of the incidents in the

entire interval. Finaliz . ‘
~
g the first estimate or not does not affect

very much the estimate of th. inc ident right after it since they have been

estimated together and shared the uncertainty accordingly .

Hence finalization of estimates of incidents and marks does not affect

much the subsequent estimation and detection of incident right after it

prov ided K is reasonably large. Nevertheless , the finalizat ion of estimates

of an incident does introduce an error function into the subsequent sub-

interva l s. With the reconstruction scheme of using a filter (4.12) and a

- - 
smoothe r (4.19), the resu ltant error can be sufficiently large that shou ld

- . not be neglected with the consideration that it would propagate and

per petuate into the subsequent intervals.

IMlike the case that the finalized estimate s does not affect too much

of the detection and estimation of its ismiediately subsequent incident ,

the error arisin g from a finalized estimate of an incident affects most

the reconstruction of the system state over its iimnediately subsequent sub -

interval in the SSS. In the reconstruction process , the smoother (4.19) can

— be regarded as a filter driven backward in time over [.1,1(A) by the filter

f (4.12) output , which in turn is driven by the entire error function over

1 

(.1,K~). Hence , the error over (A ,2A) is a resu l t of a cascaded system of

filt ers , both of which in effect are driven by the error function arising

from the finalized estimate through a time-interval of (A,EA). 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —  ~~~~~ - - —-~~-~~ -~~~- - - - -~~~-
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Let us denote the error from the finalized estimate by r
~~
(.0,u0)

where 0, u0 are the finalized estimates.

Hence

and r
~
C’0,u0) - 0 —~ 

> t (4.57)

Recal l that ;(t ,s) is the state transition matrix of the filter (4.12);

and Let us denote the same for smoother (4.19) by ~%(t~s).

From Eqs .i.e .12), t4.l9), the resultant error w~ due to r
~
(1’0,u0) can

be easil y derived and is given as follows

w~~~0,u0) 
a 
~(t,(K+ l).1)b (k+ 

l)A ,A)r.(~0, u0)

0

(K+ I )A
-

t

( K+ L ). 1  a
- ~(t,~ )dc ~

t A

A < t < (K+1)A (4.58)

However , before the estimates 0, u0 are finalized , a simi lar error due to

the deviations of these estimates also exists over (0 ,1(A) through the

reconstruction process. Denoting this error function by w~ (— 0,u0), we

have a similar expression for it as fol l ows , 
-~~~

w~ (.0,u0) 
. t ,~~)~~ (KA ,’r0

) r_ ( -0, u0) 
L

ri
+ 

,~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r
a

( 0,u0)
~~ 

L

- -- ~(t ,a)~p~(:, 
~~ 

r ( 01u0)da
t 0

a

~ ~(t,a)dc : ~~~~~~ 
r ( ,u )du 0 < t < KA (4.59)u O O  

~~~~~~~~~~~~ - - --~~ -- - --~~~~~~~- ~~~~-—- - - ---- ~~~~~~~~~~~~~~~ 
_
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Not ice that w~ (~0,u0) and w~ (r 09
..a
0
) are both zero identically if

r
~
(0~

u
0
) is zero.

4.5.2 Compensation Approach to Eliminate Error Propagation

In th is section we develop a robust compensation scheme to eliminate

the error propagat ion effect in the SSS. Based on the results in 4.41

about the error patterns , we like to assess the error due to the finalized

estimate of the incident in a sequential manner.

*Let us denote the reconstructed estimates of the system state and

over (A ,2.1) respective ly from the two sets of inc ident estimates (I,u)

and (j.~). Hence from previous discussions and results (4.52) (4.58) and

(4.59),

(~~~~~ 
- 1~) w~ (”0,u0

) - w~ (’0,u0) A < t < 2A (4.60)

— Note that 
~~~~~

‘ 

~~ 
are just the sequential reconstructed system states , and

are most read ily availab le in the SSS process. Equation (4.60) simp ly say s

by comparing the reconstructed system state over a subinterva l sequentially ,

we can approximately compute the error due to the finalized estimates

sequent I.e fly.

It should be noted that in arriving Eq. (4.60). we have on ly assumed

that an additional subinterval observation of length A cannot improve much

about the estimates in rsmotely e a r ly  subintervals. The information of the

error arising from the finalized estimate is gained by the sequential re-

construction proces s: it is over the same additional subinterval of length

A that the information is gained , but that subinterval is about 2KA afar.

for unstable systems in which case error tends to grow with time, a small

interva l of observa tions w ill give cons iderable informa tion when is far

away.

- - - - -
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For our compensation purposes , let us consider the first order eftçct

c ompensation only (higher order compensation can easily be extended). Since

by definition , the error function

‘ - 0  0
- g

~
t ø,u0

) (4.61)

wh ich can be expressed as follow s

- [g~ C’01 u0) g~(0,u0)]

. ! -
~~~~

— g~r0,u0)](.1’0) + 0(AT 0)

— (~~~
_ g~~~0,u0)J (Au 0

) — Q(Au
0
) (4.62)

Putting Eq. (4.6~ ) into Eq. y 4. SS) ,  (4.59) and (4.6C1 we have a relation-

ship which ..a- be algebraically represented as

- X~ ) ~ 0,u0
)(.1) w

~
C’o,uo

)(.1uo) (4.63)

where and ‘ are the appropriate express~. ns. A simple computation

method to e-;aluate ~.1” )  and .1u) is

2 ’ 2.1
- ~~)dt • ( A )  ~~

‘(‘0,u0
)dt + ~.1u) ~~(‘0,u0)dt 4.64a)

and similarly we have —

2.1k 2 2 
2.1 ,,~~

- ~
) dt  — (A ) v~ 0, u0)dt

2.1 —

~ (.1 )(Au) ç(-0
u
0) ~~0,u0

)dt

+ (.1u)2 
2A
~~~~~~~~~dt (4.64b) 

-- -~~~~~~~~~~~~ ---~~~~~~~—~~--  ~~~--- - ~~~~~~~~~~~~~~~~~~~~ ~~ - .-—- - - - - -~~~~ --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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rh. two Eqs . (4 .64a) and (4.64b) can determine the approximate value s of

~
.l) and (Au) and hence the error function from the ti rt a liz ed estimate

To s~~~arize the compensation approach , we have developed a scheme to

learn about the error func t ions from the finalized estimates of incidents

sequentially. The learning is done through the str ucture of the re-

construct.on process which utilizes in effec t an interval of 2KA long.

By compensati ng the error function approximately in a sequent ia l fashion in

the SSS , the error propagating effect can be eliminated or at least

d i.entshed c~ n sider ab Ly . For un stable system s , a length of 2K.1 is suffic ient

to give a lot of information about the error functions, one would deduce

that the compensation approach works even bett er than it would in a stab le

system.

.6 performance Simul ati ons of the SSS

The sequential scheme was simulated on a digital computer to obtain

samples of its perf orma nce in the state estimation prob lem. In each cast ,

the simulat ion was den. by f i rst  allowing the scheme to run for a t ime

interva l t o  Lnc lude 0 inc idents. Then the performanc e was c omputed ove r

the subsequent interva l of duration 30/I., which on the average would al ow

about 30 Po~ sson incidents. For comparison purposes , the time scale were

chosen so that in each case ~ was equal to one . We chose o — 0,13 , and the

ength for the integral (K.~~ • 4. The system state was recons t ructed with

delay of 2.

In each example , the sample performance will be presented in form of

three graph s p tter over a time ;~ te rva I of length 30. The first graph 

--- ~~— ----~~~~~~ - -  ~~~~ - -
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wilL indicate the normalized error variance derived analyt icall y t .~~~.

Var(t~ ). The second graph wil~i give the simulated perform ance in terms of

the normaLiz~~ error variance of the SSS without the o—pe nsation strategy .

Th. third will give that simulated performance of the SSS with the conzpen-

cation strategy .

Severa l examples wire considered as follows :

Example I: *(t) • -‘x(t) + • 17(t), x(0) • 0

y(t) • x (t) — v c )

The m ar k  V is assumed to be Gaussian with variance 3 and ~wan • a 3 (b) 7.

(See Figs. 8a and 8b.)

Example 1 :  ~~~~t) • ~x (t) 2W~ + 1 ( t)  xi.0 • 0

y(t) — x~t) + v (t )

The mark 1 is assumed to be Gaussian with varianc e S and mean • (s) 5 (b) 7.

Se. Figs . 9a and 9b.)

Example ~~I: ~~ ( t )  a 3x(t~ + ~~~~t )  ~~~(t); x(0) • 0

y(t) ~ x(t) + V ( t)

(For results , see Fig. 10.) -

From the simulation study . the results indicated that the sequential

app”oximat ton scheme i~ d exhibit an error propagation phenomenon both for

stable and unstable systems . In cases of unstable systems as Examp le Ii

and III had indicated , the propagating errors could build up to grea t

magnitudes s.versly degrading the overall performance of the SSS. (See

Figs . 9a~ 9b and 10.) The results in .11 the examples confirmed the ability

of eliminating most of the propagating errors of the c ompensatic’n strategy .

In the case of an unstable system , the adoption of th is c oepen~ation approach
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could La effect comptete1v eliminate the error propagation effect despite

that the compensation was only a first order approximation scheme .

~~~~~ Conc lusion

In this chapter , we developed a suboptima l sequential scheme for the

estimat ion problem of the Poisson-Wiener driven systems . Lt was a simi lar

scheme to that devel -~ped in thapter 3 for the pure ly Poisson driven system .

The SSS 3i ffe red from the previous scheme inly in that the reconstruction

was performed on a ?*~SE optima l smoother while in Chapter 3 the recon-

s t r u ct  iOn was derernt.,Lstjc after the estimate of the Potsaon process was

determined. Here we also inc uded a first order approximation strategy

in the sequential scheme to  suppress the error propagati on effect that

steme d ~~~ the finalized estimates of incidents.

La the numerical simulation study , the ability of nullifying the

propagating errors in th. sequential scheme in the compensation approach

was confirmed . Hence with the compensation strategy inc luded , the SSS

would perforz well as the analytic results predicted . 

-

- 
-
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CHAPTER 5

EXTENSION OF THE SUBOF~IMAL SEQUVrr LA L SCHEME (SSS)

As it has been indicated in the derivat ions of the SSS in previous

chapters , the key requirement for appl~.cab i1ity of th. scheme is the

existence of a closed (finite dimensional) ?Q(SE optimal filter for the

pseudo-estimates of the system state conditional on the c-field generated

by the Poisson-marked process. Furthermore , the corresponding likelihood

func t~ on for the Poisson-marked process must exist , so that the detection.

and estimations of the process can be performed using the MAP criterion.

In this chapter , we shall consider the state estimation problem for

a c lass  of system ., namely the class of conthtional Gaussian systems ,

which readily satisfy the two requirements above. As we have developed

the SSS to quite an extent in previous two chapters , here we deri ve only

the closed f i lters for the pseudo-estimates t ogether with an expression

for the likelihood function for this class of systems . It shou ld be

obvious that with these results , the SSS for the estimat ion prob lem can

be readily ~btained using the similar approach as before.

In order to state the system in precise terms , the notation x • (x
~
,Y
~
)

will be used to denote the random process x
~

( ) ,  measurable with respect

to Y~. Let (c.,~~,p) be the (complete) probability space as given, with a

nondecreasing right continuous family of sub—a-algebras ( ) ,  0 < t < T.

The system considered in this chapter can be re pr e sen ted by
2

dx
c 

a 
~~1(t , ,y) + ..2(t,y)x~ Jdt +~~ 31(t.Y)

dW~(t) (5.1)
is’

+ 3
0

t ,U~d

-I
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and is observed through the following process ,

2
dy
~ 
• (C.

1
(t,y) + C.

2
(t ,y)x

~
Jdt + E ~~(t,y)dW~(t) (5.2)

i.l

Here 
~i

(t .~
). 3t

(t .~
). 

~ i
(t .

~
). £i(t.~

). i— 1,2 ar e (measu rab le) func t ionals ,

assumed to be non-anticipative (i.e. .b~- measurable where is the a-algebra

in the space C_
i. 
of the continuous functions ~ • [~ 5 i,s < ’r1, generated by the

function. ~~~~~~, s <c). And 33(t,
U) is assumed to  be a measu rable function in

t ime and the mark U driven by the Poisson-marked process —

It should be clear  that the random process is characterized by the Poisson

incident times and the correspond ing mark u. ?~ote that the system (5.1)

to be estimated can depend on the entire history of the observed process.

In order for the system given in (5.1) to be conditional Gaussian , the

follow ing relations have to be satisfied (7 ,8,22 ,23 ) ,

(1) for each ~E C
~~

. with probability one

T 2 
-C t ~~~~~~
‘
~~~

(t
~~~~~~~~~1 + ~~~~~~~ ÷~~~~~~~~t ,~~~) ~~‘~~t ,~ )J +3~,- t ,C)~ dt <~~~ (5.3)

~~~i.A

~ 
2 2(2) [ 
~ 

c~.~(t.~ )J dt < (5.-’)
i—I

Ln f £ (t ,~~~) > C > 0 1.1,2 (3.5)
‘c c i i

~ -r 0 < t < t

(3) For any 
~.:Ec , j  t ,z fl

1
- £~~(t~~~)j ’  < 1

1 ~

‘ 

R
, 

- ;5~
2
dK(.) + - (5.6) 

1

0

— - - —

~ 
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~~ (t ,~ ) < L1 
‘ 2  

+ L2 (1+~~~) (5.7)

where K(s) is a nondecreasing right continuous function, 0 < K(s) < I.

(4) T
E1
~
.
2(c ,

~
)x
~
!dt < (5.8)

0

0~~~c < T  (5.9)

PC t ,~ )m~dt < • 1 (5.1Oa )

where a
t 

— ~~~~~~~~~~ (5.lOb ) —

In Eqs. (5.1) and (5.2) we also assume that • (W
1(t).~~ ). V2

are independent Wiener process es and the random initial conditions x0 and

are independent of W
1 and U2.

The system with the observations satisfy ing (5.1) and (5.2) is

conditionally Gaussian if with probability one the conditional distribution

F (a) - P(x
0 

< a Iy 0) is Gaussian. That is ,y0

~~~~~~~~~ 

~~~~~~ ~~~ 
— 
~~~ ~~ ~o’ 

-- ~ ~~~~~~~~~~~~~~~~~~~~~ (5.11)
0 a

is Gauss ian almo st surely, (7 , 8 , 22 ,23J for any t and 0 < < t
1
...t < t.

The cl ass of conditional Gaussian processes similar to that given in

(5.1) without the presence of the Poisson process ~~ — 
~~~~~~~~~~~~~~~ 

was first

formulated and investigated by Liptser (22 ] and subs equent ly was used for

the optimal nonlinear f iltering prob lems (7 ,8,22).  For this class of

processes , the ~*~SE optimal filters were closed due to the conditiona l

-u
-

~
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Gaussianness of the processes. (See Appendix D.) It should be emphas ized

that the Kalman filter is an optimal filter of a particular case of (5.1)

when ~ is absent . When the system processes are Gauss ian , the optimal

tilter as a result is linear , however in the cond it~.ona11y Gaussian case

the optimal filter is , in general , nonlinear (23—26].

Using the optima l filters derived for this c las s of conditional Gaussian

pr cesses , the pseudo-est imate for x a ~~~~~~~ 0 K 
~ < T and its conditional

variance denoted respectively by the at and P~ can be easily shown to

satisfy the following, (Appendix D)

a
t 

+ m~ (5.12)

suc h chat

— 0 0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~dm • (a1(t , .y) + (t.y)m
~
]dt + 

~ 2 2

(dy e -
~~~~~

1
(t ,

’
,;f) + ,(t,)m ~) ~

.
i
(t ,y

~
!
o
(t ,U)d

~~
] (5.13a)

3
1
(t,y)~’2(t

,y)+Pe
1
(t ,y) 2

• 2a
2
(t ,y ) P

~ 
..Y (t,y) ..?~~t ,y) - ( 

£2
(t ,y) I (5.l3b )

with initial conditions

a0 — E x 0:y0) (5.14a)

— E ( ( x~ - a
0)

2
~y0] (5.14b )

and

— .,
‘
~~~(t .s) 8

0~
s.t.)d

1 
(5.15)

1•}
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where •y
(ti l) is the state transition function of the system (5.1) given

the observation.. 
~~ 

v <t~ . • in this case is a functional of y —

since from Eq. (5.1), the system function a2 is a functional of y.
Hence we have a finite dimensional !$ISE opt imal filter for the pseudo-

F 
est imate of x • 

~~~~~~ 
conditiona l on the c-algebra generated by f l— ~~~~~

In order to derive the equations for the detection and estimation of the

Poisson incidents and their corresponding marks, we shall obtain the

likelihood function for 0 < t < T~ . It should be obvious that -~nce

this is obtained , the incidents and their marks can be substituted it’.

the function in the plac e of 0 < t .
~ t) ,  so that an expression for the

aposteriort probability of the incident s and marks can be obtained. Hence

from now on , the equations containing are understood to be functions of

the Poisson incidents and marks.

App ly ir~ the estimator-correlator principle , th~’ likelihood function

fot 0 < t < T), denoted by 
~~ 

can be obtained and 1. given by

(22 ,23], (see Appendix 0 a lso)

T~~1(s,y) +e
2

(s ,y)m (y,)~~
• exp( - 2 2 ] dy

~ &
1

(s ,y) +&
2

(s ,y)

I 
[C.

1
(s ,y) +e,(s,y)m5(y,~ ))

2

+ 2 .~ 2 2 ds 3 (5.16)
0 ~ 1

(s ,y) +~~2 (s ,y)

where vs denote the dependence of on y, by m
~
(y,fl). Hence an equivalent

expression for the aposteriori probability density for 0 ~~ t < T) can

be obtained and is given by 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~ - -  -- -~~~ --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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T ~
‘ (s y)  m (ye ” )

~~rJ — - — dy
o 1(s ,y) ~ 2 (s p y )

~
.
1 (s ,v)~~,(s,y)m (.y,~~

) ~C,(s ,y,m (y.~~)J
2

+ 2 
—

~~~~ 

+ j d s
o £~~(s 1y) £

2~ s ,y £j(S~Y + ~~ (s ,y)

+ Ln 
~~~~ 

(5~~7)

where we denote the aprior i probabi~~ ty  density of ~~~~~~ 0 t < tI by

Note that for our case f
1~

’,) i~ a wei. defined prob ab i l i t y  density .

jinc. is a sep a r a ble process ~2 7 J .  in fact , when 0 ‘ t < T~ is

exp licitl y expre ssed in terms of the incidents and mark s , is just

• function of the joint probabiiity density of the na r ka and the joint

prob ability density of the in. idents over tO , .

Stat1ar~ y as in Chapters 3 and ‘
, the max iMxation of .Lr fl viii give

the MAP estimates of the inc idents and the,r zarks. For the reconstruction

of the system , the opt ima l *ISE ~~c~ ther will be used and can be repre-

sented as fol.ow s :,23] (see also Append ix D)

~~~~~ 
- ~~~(c ,y) ‘ 02 (t ,y)m~,1Jdt

+ 3(t,i P ~~ (m~ ~

. a~1.1~Jdt

• ~~
* b)( t ,y) $ ‘p’)  ~~t.v)(dy~~- ~~~~~~~~~~~~~~~~~~~~~~ (3.18.)

~t ;I  • 2~0(t,y) 3(t ,y ) P
~~ 3P ~ ,t 

3(t ,y) (S. iBb )

with i nit i a l  condition s

~T/ r - (5.19.)

and 
— (5.19b )
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Here th~ notat i~ns we use are as fo l low s

+ 
2
(t,y~~2

(t,y) (5.20)

and
• ~.~ (c ,y )  — ç~ *&)(t,y)(~ *~~)~~ (t,y)C1

(t,y) (5.21)

~(t,y) — ~~*3(t ,y)  - (i9 *S)
2

(t , v~~(~ *&)~~ (t ,y) (5.22)

The reconstruction of the system state x • ~~~~~~ can be achieved by

0 1

~tfT (3.23)

where is given in Eq. (5 . 15) .

to s~~~arize this chapter , we have extended our or iginal estiaatton

prob lem to a general class oi conditiona l Gaussian processes. As a result ,

the SSS can be st~ ila rly developed as a neat-opt imal scheme to the problem.

Mere we have derived all the basic equations, expressions for the c~~~in.d

estimat ion detection scheme. The sequential suboptimal scheme (SSS) can

be easily derived based on these equations and expressions . Whi le  this is

conc.ptually straightforward and highly para lle l to the algorithm in Chapter

, th. detail deve lopment of the sequ.ntia~ scheme is omitted here. The

procedures and squat icna in the SSS are similar to those in Chapter 4.

In fact the estimation problems in Chapter 3 and L. are part icular cases of

th e one considered here .

-
~~~



CHA PTER 6

SUP*~ARY AND C~~4CL.USI0NS

In thts thesis , the problem of ~tace estimation for the linear

Poisson-Wiener driven systems with low Poisson intensity was considered .

The ~ttSE optima l f~~.ter was first obtained via the Dolean-Dade and Meyer

differentiation ruie for discontinuous sent-martingales, and the basic

filtering theorem for white Gauss tan observation noise . The optima l filter

obtained was not c~osed in the sense that it was the solution ~t a set of

an infinite nuaber of stochastLc differential equations , unlike the Gaussian

cas. where an additional relationship of i~ s m~~ents reduced the set of

equations to a tin~ t e  dimensional set,result ing in the classical Ka lman

filter.

The nonclosedness of the optima l filter for our problem was proved

with th. following two arguments:

(1) ~f a similar relationship existed to reduce the infinite set

of equations to a finite set , then the solutions to the set of equations

were guaranteed to exist and furthermore were unique , henc e thc pro- isa

I ~~~~~ def ine d by dl a d y
t 

- h
~
Ct~

dt was an innovat ion process and

therefore a Wiene r proce9s. Therefor e the estimator of the system st~~e

being the solution to a finite set of equations driven by a Wiener process

would have to be continuous with probability one. Since the system be ing

estimated vas d iscontinuous with  non-zero p r o b a b i l i t y ,  the optf.aality of

the estimator , was contradicted . We hence c onc luded that there was no

such relati onship that would reduce the infinite act of equation~i to a

finite set , so that the opt ima l filter was not f i n i t e  d imensional.

-,‘
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(2) By the definition of an innovation process , the information

gener ated by it had to be equa l to that generated by the observations .

That is to say , the two cr- algebras generated by the innovet ion process

and the observations individually had to be equa l for all t , 0 c t c — .

However y - (,y~~~~~~~) being an observat ion process of a discontinuou s system

in white Gaussian noise was discont inuous with non-zero probability,

imply ing that was only right-continuous with non-zero prob ability. In

order for a Y~-measurabte process to be an innovation process , its a-

a lgebra was nece ssar ily eq ual to and hence left discont inuous with non-

zero prob ability. This contradicted the intrinsic property of an innovation

process being a Wiener process havin g all the stochastic propert ies as the

white Gaussian observation noise and its :-.a~gebra was cont inuous with

probability one . Therefore , for our estimation problem , there was no

measurab le innovation procees,wh ich explained why the optima l filter

dr iven by the process I performed so poorly. The definition of I implies

that it is not an innovation process only if the estimator C1~ does not

exist in the strong sense as a solution to the set of equation.. Hence

the set of equations must be infinite , otherwise Cit would exist as a

strong solution.

Therefore, the optima l filter was physically unimpl.mentab le. Never-

theless it. performance was investigated and compar ed to that of the linear

optima l fitter , the Ka lma n filter. When the Poisson intensity was low ,

the improvement over the Ka l.aan fitter i.aa negligibly small. Due to the

fact that the linear optimal schemes only utilized the first and second

order statistics its performance was quite poor. With the result that the

optimal filter performance was still unacceptable , we therefore concluded 

~~~~~~~~~-. --- -—- - -~~~~~~~~~~~~~~~~ —- -- ~~~~~~
--—- -
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that causal filtering was inherent ly unsuitable for the state estimation

of the Wiener-Poisson driven systems . Since the linear optimal. non-causal

filter also exhibited poor performance , and the optima l non-causal schemes

were phys~c al ty  unimp tementable, we investigated nonlinear noncausal

suboptima l schemes.

In this work, a sequent ial suboptima l scheme (SSS) to th. estimation

prob lem was developed. Basically it detected and estimated the Poisson

driving process using an MAP criterion , and then reconstructed the entire

system state using a ~ (SE optiina noncausal filter. In the numerical

procedures for optimization , the SSS uti’~ized numerical algorithms that

did not require differentiation of functions containing white processes

and henc e avoided the problem of il -deftned derivatives.

In Chapter 3 , the estimation problem for the purely Poisson driven

system was cons idered . The SSS was deve loped as a sequential suboptimat

scheme . The asymptotic performance of the SSS as tr~ Poisson intensity

goes to zero was analy ’t~ ca liy derived and numerically sümilated on a

digital computer. Both results agreed extremely close l y indicating that

the SSS performs very we ll and that there exists a ~ *)‘ 0, such that for

the PoUson intensity 1. E (0,~ *~ the SSS pertor~is better than any causal

filter ing schemes and any non-causal linear schemes.

In Ch apter 4, the SSS was developed for the Poisson-Wiener driven

system. A sequential c ompe nsation scheme was included in the scheme to

eliminate the error propagation effects which arose due to the sequential

structure of the approach . It was found that the propagati ng errors which

stensn d from the finalized estimate . of the Poisson driving process did

—I 
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not strongly affect the iumediate subsequent detection and estimation

of incidents , but affected to a great extent the performance of the

reconstruction of the entire system state. The sequential compensation

strategy consisted of sequentia lly comparing a subthterval of the re-

constructed state of the system to assess the propagating error and then

compensating it with a first order approximation scheme to eliminate the

propagat ing errors. In a atmierical similation study , the SSS was shown

to perform basically as predicted by the analytical results. With the

compensation strategy added , the overall performance improved in general

ve ry l i t t l e , only that the error propagation effect was mostly eliminated.

In Q%apter 5, we extended the state estimation problem of the original

systems to a large r class of systems, n l y  a class of conditiona l Gaussian

systems. This class included a wide variet y of physical systems and

random phenomena. Howeve r each mssèer of this class gave rise to a ~*(SE

optimal filter of finite d imensions for its pseudo-est~mates , i .e. the

estimates of the system state conditional on the information of the under-

lying Poisson driving process . This property enabled us to apply the

pr inciple of the 555 to the eatimation prob lem. For the Poisson-Wiener

driven linear system , which was a particular case of the conditional

Gaussian systems , the *$E optimal f i l ters  for its pseudo-estimates were

L inear. However, in general the P*(SE optimal fi l ters for such c lass of

systems were non-linear.

For future consideration s , the estimat ion problem is to extend to

lar ger -class of stochastic systems . Suboptimal scheme s then may have to

be modified and extended to solve such problems and further improve

performances. F ina l ly ,  the contro l asp ects of the estimati on problem

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—----=~~~~ - _ -- --—---- - - .--— --
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have to be examined to great extent since estimation and control dually

arise natural~v and interact in a coupling fashion that the two problems

have to be investigated together.

Another aspect of the •stimat ioi problem that is important and

practical in nature is when the stochastic system is excited by Wiener

and Poisson white processes nonlinearly . Analysis of these systems have

to be carried through to great depth. Approximation scheme as suboptima l

strateg y to the prob lem may have to be developed both analytically and

numerical Ly. 

—~~--— - - ~~~-~~~ -~~~~~~~~~~~~~ ~~~~~~— — - ~~--—~~~~~~~~~~~~ -— ~~~~~~~-
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APPENDIX A: Doleans-Dade and Meyer Differential Rule for Discontinuous
Semi-Martingales [2 ,19 et al .J

Let be an n-dimensional vector-valued , discon t inuous semi-

mar t inga le , and let : be a twice different iable function defined on ~~

Then the process :(X~) is also a semt-mar tingale , such that

dQ
~ 

• 
~~

‘(X
~~~

)dX
~ 

+ trf.~~~(X )d < Xc,X
C
~~ J

+ dt t (~~(X5 ) - ~ (X ) - Ø~ (X
5

) (X -x5 ) ) :
t o~~s~~t 5 5

Here 
~~ 

ii the gradient of the function :, : its Jacob ian , wh ile is

the cont inuous part of X , and the stmm~ation is carried out over those

values ot s where X jumps. < N ,N >  in the notation of Wong (203 is the

increasing process associated with the continuous martingsle or semi-

martingale N. Note that th is expression reduces to the ordinary Ito

differential rule when the process is continuous. 

-~~~~ --~~~~~~~~~~~~~~ -—--~~~ -~~ - -~~~~~~~~~~~ -- 



~ 

~~~~ —~~~~~~—~~~~— ~~~~~~~ - - - -~~~ 

96

APPENDIX B: Fund amental F i l te r ing  Theorem for White Gaussian (~~servation
Noise (2-7)

tat %,  t > be the vector-valued semi-mart ingale defined by

dQ~ . R
~

dt .e d1i~

where H isavecto r-valued martingale with respect to a growing family  of

a-f i elds  
~~~

. t > and R i.s a process that is adapted to ~ . Let further-

more the vector value d process ‘fe , ~ > t o be the semi-nsartin.gale defined

by

dY t - H
~

dt dW
t 

t >

where H is another vector-valued process tha t  is adapted to ~~~, and W is

vector-valued Broimian motion and a mart ingale with respect to ~, such that

E (dW
~ 
dW~) • V(t )d t . The prime denotes the transpose , and V ( t )  > 0, t > t

0
.

Define ~~~~~~, t > t 0, as the growing family of c-fie lds generated by ‘1, and

mss~~e the notation

~

Then, the process t > t o sat isfies the following equat ion , —

d~~ • ft
~
dt + (%H~ - + 

~~~~~~ 

V
1
(t)

[dY e 
— H

~
dtJ, t >

Here

C ~~~~~~~~ W >
t dt t

Mt 
is th. continuous part of the martingale N. If and N

2 
are two vector

valued continuou s martingales or semi-martingales , < M1, M2 
> is a matrix

—— -— ——

~

--

~ 
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• stochastic process, the (i j)-th element of which is given by < M1~~,M~~ >

which is given as follows

< M
1~~. ~~ 

> i< Mj j +N2j~ 
M

1~~ + M
2~ > - <  M~~~M1~ 

> - < N2 j ’N2 j >)

in the notat ion of Wong. 

- - - - -- --
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APPENDIX C: Numerical Al gorithm Map A - N *D [13 ,14 cc al.]

For the algorith ms in the form of an algorithmic map A as

A . M * D

roughly , after the map D determines a direction , the map N maximizes the

objectiv, function J in that direction. We choose N to be the Golden- 
- - 

-

Section Search D, the conjugate-direction method. The algorithmic con-

verg ence of A depend s on the closedness of the point-to-set map A which

follows from the closednes s of N and D.

(1) GoLden-Section Search ($)

The procedures start with a feasib le interva l 1 — 1~Q,8 iJ containing

the optimal point — . Then, given an in te rva

~~k 8
k

3

k+l k+L k+L -

containing - . they determine ~ ~~ 
J also contain~ng , such that

i~~~c :
‘
~. The Golden-Section search is for J concave . It requires use

of the Fibonacci fraction s

F 1 
• ~ ~ 0.38

and 
• 

2 
• - F1 ~ 0.62

Observe that F~ • (F2)
2. Given an interval I . 

~~~~~ 
of length (B

1
$

0
)

the next interva l Is selected as follows . Let

+ F1(Ø 1-80)

and 

+ F
2(~ 1-80) ~l F1~~ 1-80)

be points on the interval 
- 

-

F
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f J (~~) 
> J t ~ j). the new interva l is (8~~8~ J

If J(8~~) < the new in terva l is

U — J(Bj). the new in te rva l  is either (S 0.B~~J or

We are assured by the concavi ty or ( local)  concavity that the optimal point

f in on the result ing interval .  It should be clear that the algorithm is

closed . Before we stat . the conjugate-direcc~ on method (D) , let us introduce

a procedure of s imple maximization , a spacer step.

(2) Spacer Steps

In optimizing it), ~~ EN , it is important to have a step such as that

used above which , given a nonoptima l point ,
k generates a point ~~~~ for

which

> JQ
k)

We call this step a space step. The spacer step must also possess one other

property, shou ld be a solut ion , then the spacer step much indicate this

f a c t .  Thua the spacer step must determine whether :
k 

is optimal , and U

is not optima], it must calculate a bet ter  point . For our purpose we

choose the cyc lic-coordinate-ascent method , as it avoids calculation of

de r ivat ives , and is quite simple to implement .

The cyc l ic-coordinate-ascent method opt imizes cyclically in each of

the coordinat e directions. For example in g~ , the coordinate directions

are

(o
c
1
. O~ c

2 — l
~ 

and c
3 .IO

Oj 
“4

- - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
— -
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(3) Con~u~ .its-D tre tton Method (D

Basi~~ 11y the conjugate-directions of a quadratic function p in

are a set of N direction s ~ E
N such that optimization in each of these

direction s once ønly w~ L1 eith.r find the maximum or reveal p to be

unbounded above . Al so the order o~ the directions optimized is i.muateria]. —

Since our objective function J is not quadratic ~n general , we shall

nevertheless using this method for optimizat i on of J exploiting a quadratic

approximation to J.

~t Generating conjugat. directions ~or quadratic p EE N
:

tat  d . P .. . J
r 

r < N be conjugate. Suppose — ‘ and “ maximize

p i~ two different manifolds containing ~~~~ .d and p — ’) -

4 . . .d ,d
I .. r v-e l

where d —ri]

are c o n j u g a t e .  Thus , given r conjugate d i r e c t i o n s  ~ < N , another

con juga te  d ir e ct ~ on s generated .

( i i )  Conjugate -d i r ec t i ons  for j E  E~ we shalt develop an algorithm

which attempts to caiculate conjugate directions for .1. The

procedure can be thought of as calculating conjugate directions

to a quadratic that approximates .1. The quadrat ic approximation

notion is thus being utilized .

N directions viii be always used . Initiall y these Start out

be ing N arbitrary direct Ions ~~~~ ... d~~. At the end of

iter ation oni , th e direction d~ is deleted , the direc tions

d~ , t• 1,2 ... N-I are determined by d~~ 1 
• d~ for  i .2 ,...N,

and by making d~ a new direc tion conjugate to The procedure

continues in the manner.
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Initial Step An initial point :~ 
and N directions d~~. 1 a 1,2... N

are given with d~ ~ 0. Fir i .t ,2 ... N c a l cu l a t e

.°
1EMt~

,d ’), t.e. by the Golden-s ection search.

~~~ ~~+2 ~~~~~~~~~ 

and set k • 1.

Iteration k • and d~~, 1.1,... N are given

(a) Spacer step on yie lding :~
(b) For 1.1 ,2 , ... N calculate :~+ 1 E N ( ~~~, d~~)

(C) Set

k k k-iA •~~‘
~4+1 —t~+l N+2

and calculate

—N+2 
E N ~~~ 1’ 4N+l~

(4) Set 4
k..l. 

• 4+1 i • 1,2 ... N
Go to iteration k with k+1 replac tng k. Stop the procedure

wheneve r the spacer step ~n determines that

is a so lu t ion .
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APPEN D IX ~): Conditionsi ‘~a~es.a P~ocesses

Let an unobservab le process x • ~~~~~~~ 
and an observable process

y • ( y ,~~~ ) be pr cesses of the -.1.ttuston type with t
dx

~ ~~~~~, ~t ,y)  . , ~ t .y,y)dt + s 1 ~ .y ~lw 1 ~t )

+ .~ ,(t ,y )d W 2
( t)  ( D. 1

Jv
~ 

• ~C.
1

(t .y)  + •.~ 1~ t .yx ~ Jdt • £ t , y h i W ,~~t )

• ~~ (t.y~d~~ (t) (D.2)

where s~~e assi.~ pt ions and 4 e f t h i t t~~~ s of the pr ocesses involved in the

equations are sadi as Eqs. (5.)) to (5.10).

We have the following result. ~7,8,2l- 5)

~J) If the conditiona l distrIbut ion F (a) • 
~
(X
O 

L a~y
0
)dy Is Gaussian ,

then the random pr ocess  x — (x
~
.f
~
) is conditional Gaussian a1.osc

surely. That Is , for any t and 0 - t
0 
< --- t ~ - t , the

condttiona i 4.stributton s

F~ t~~ O -- ~~~~) • P(z~ < -- ~ ~~ Y~) (D.3)
0 0 n

~ ausstan .

(2) Let • be anoth.r process satisfies

dy t • £
1~

t ,j)dW1
(t) . ~ ,(t3~)dW 2 (t)  (t).6)

and Let and .~v- be two measures corresponding to the processes y

and y defined by Eqs. (D.2) and (D.4).

Then ~ is equivalent to i.e.

(D.S) ) I -.
and the density

• _
~~~Y~ (t ,y) (D .6)  

~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~ 
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L 
is given by

t 7
1

(s .y) 4. .~
‘
2
(s ,y) m ( y)

~~~Y) • expt - ( ., j dy~
o &~~(s ,y)  + ~~ (s ,y)

1 (01(s ,y) +a
2
(sy) m (yfl

2

- 2 2 ds~ (D.’)

~ &
1(s

,y) .1
2
(s,y)

where m~~~y )  • (D.8)

(3) The estimate of x and its variance denoted by m~ and P~ 
satisfy

dm
~ 

• (C1(t
,y) .eQ

2~
t ,y )sJ dt

.. P~~,(t,y)
+ — 

~~ 

- j dy
~ 

— (a’1t t , y )  _
~~

‘i~~
t ,y)m

~ J dt) (D.9)

~~~&(t.y) +P~
a’
2
(t,y )1

2

• 2a
2
(t ,y)P~~+S*~~(t ,y) - 

£ &(t v ’I (D.10)

subject to the conditions

— E(x
0hr0) (D.11)

P0 
• E((x

0
.m
0)

2
~y0J (0.12)

(4) And the smoothed estimate

• E(x~~~~)

and its variance denoted by 
~c/r 

satisfy

I
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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• (..~1~ t ,y)  + 

~
,(t.y)m

~~
.,J dt + .!(t

~
y)P

~
’(m

~
_ m

~/T
Jdt

+ $ *&(t ,y)(b *&)~~ (t ,y)~dy - [01
(t,y) eC

2 (t,y)s
t,TJd t) (0.13)

• 2~~’9t,y) + 3(t,y)P
~
’J 

~~~ 
- ~~(t ,y) (D.14 )

where

~ *b it ,y) 
a $

1
(t .y~~~1

(t , y ,  +

and

~
‘
~t ~ • a’1 (t ,y) - ~~ *&) (C ,y)  ~ *b)

1
(t y)Q (t  ,y)

3(t , y)  — 3~~
.
~(t ,y) - (~~*&)

2(t,y)~~~*~~)~~ (t ,y) 

~~~~~~~~~~~~~~ -~~- -~~ -
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