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In this thesis, the state estimation problem of linear stochastic
systems driven simultaneously by Wiener and Poisson processes is con-
sidered. We are concerned with the case where the incident intensities
of the Poisson processes are low and the system is observed in an
additive white GCaussian noise,

The minimum mean-squared-error (MMSE) optimal filter is derived via
the Doleans-Dade and Meyer differentiation rule for discontinuous semi~
martingales and its corresponding basic filtering theorem for white
Gaussian observation noise, The nonclosedness property and performance
of the filter are investigated. The results together with the performance
of the linear optimal filtering schemes lead to the conclusion that causal
filters and noncausal linear filters are inherently unsuitable for the
state estimation for such class of systems,

A noncausal nonlinear suboptimal scheme is developed for the esti-
mation problem based on a combined estimation and detection strategy. A
first order approximation scheme {s included in the scheme to eliminate
the error propagation effects that result from the sequential structure
of the approach. The performance of the overall scheme is obtained
analytically and simulated numerically. Both results agree closely in-
dicating that there exists a A* such that {f the Poisson intensity
A€ (0,A*], the suboptimal sequential scheme performs better than the

causal optimal filter and the noncausal linear filter.
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CHAPTER 1
INTRODUCT ION
1.1 General

There are numerous physical phenomena that can be modeled as
stochastic linear systems driven simultaneously by Wiener and Poisson
processes. The Wiener driven part of the system is that part of the
system that is continuous in the stochastic sense; and the Poisson driven
part {s that responsible for the discontinuities of the system process.
An example is a man-maneuvered spacecraft. Its motion is composed
of a nominal sum of responses due to the driver's discrete application of
controls to the spacecraft and the response due to the continually vary-
ing turbulence and atmospheric perturbations. The superposition of the
responses due to the random {ncidents of control applications can be
modeled as a Poisson driven process if the control incidents arrive in
a random fashion. The response of the spacecraft due to the continually
varying turbulence and such alike can be modeled as a Wiener driven
process.

'As the indicent rate A (the intensity) of the Poisson driving process
tends to infinity, under fairly weak conditions, the linearly Poisson
driven process tends to a Gaussian process [1]. Therefore the part of
the linear system driven by Poisson processes of large intensities can

be reasonably modeled as Gauss-Markov system, namely a Wiener driven model

for the system process. Then the entire system consisting of a Poisson
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driven and a Wiener driven part reduces to a Wiener driven process in
such case. When )\ is small, as in the case of the man-maneuvered
spacecraft, the Wiener driven model is no longer a good approximation
to the Poisson driven part of the system. The system can only be
appropriately modeled as a process driven both by Wiener and Poisson
processes.

In this work, we consider the state estimation problem of such systems
observed in additive white Gaussian noise. Compared to the problem
for system driven only by Wiener processes, this has received little
attention in the literatures, although such systems arise relatively often
and naturally {n practice.

Among the common examples, stochastic control systems that are driven
in the environments of optimal control strategies typically exhibit
discontinuities and "switchings" in their trajectories, e.g.. the bang-
bang controls under some time- and energy-optimality conditions
[14-16,30]. Estimation of such stochastic systems often is necessary
in pursuit-evasion games and in tracking of maneuvering targets [31,32).

To further i{llustrate the wide application of such a class of
systems and the motivation for its estimation problem, we give the
following illustrative example. In off-ghore oil exploration, trains
of sonic waves are injected into the earth's interior underneath the
seabed; reflections of such waves are measured to estimate the physical
density of the earth's interior as a function of the depth below the

seafloor. Should there be no oil-layers within the depth of penetration

of the wave, the density i{s a stochastically continuous function.




However, in case there i{s oil underneath, it is usually in layers of
various thickness for example. Within the uncertainty of such aspects
as thickness and quality etc., each of these layers which occur at
various random spatial points, contributes a similar variational pattern
(incident response) to the density function. Hence, ’:hc density function
can be modeled as a system driven by a Poisson process with very low
spatial intensity. The uncertainties of the layers can be modeled as a
random parameter associated with each incident, called the mark of that
incident.

Another example can be seen from the following environmental problem.
A river is occasionally polluted by deposits of chemical products from
various sources along the river. The amounts of a particular chemical
that are deposited each time are independent stochastic variables with
given distributions. The chemical is dispersed in the river by diffusion
and transport and flows. The effect of such chemical to the various
biological and environmental systems in the river can be studied by
measuring continuously the concentration of the chemical and its arising
effects at various points along the river. The problem hence relies
heavily on the reconstruction or estimation of the times and amounts of
chemical and such relevant factors from the measured data. Such a
problem fits i{nto our estimation problem naturally due to the Poisson

nature of the modeled pollution deposits,




As seen from the above examples, the class of Wiener Poisson driven
systems encompasses stochastic processes with discontinuous sample paths,
unlike the Wiener driven systems that have continuous sample paths
almost surely. In the area of fractures and defects studies, and earth-
quake analysis where the estimation problem arises naturally, due to
their inherent discontinuities in the sample paths, the model becomes
conveniently applicable.

Such systems for the case of finite dimensional state model have
Markov property but in general are not Poisson, nor Gaussian except in
some particular cases [2,3,4]. Due to the non-Gaussian property and the
discontinuity of the sample paths, it takes an infinite number of its
moments (cumulants) to characterize i{ts stochastic properties completely.
This {3 manifested later in the development of the optimal filter for
such processes.

1.2, ob a nt

We consider the state estimation problem of the following system

driven simultaneously by a Wiener process and a Poi{sson process,
d:lt -dtx‘dt - a‘dwt - btdﬂt t20
which {s observed {(n white Gaussian noise, viz.
clyt - htx‘d: + d": (1.2)

where !‘ and y, are the system state and observations respectively with

assumed to be independent of [xt. t > 0). W., v, are independent

*0
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generalized Wiener processes with E(dut dﬂz') - Qtdt. and E (dv dv::) - lltdt.
Qt’ lt being positive semidefinite and positive definite respectively.
“’t is a Poisson process independent of "t and vt with known rate parameter
L L. Without loss of generality, we assume dr.' Bt’ b, and ht to be all

bounded known time-continuous functions for t > 0 with
b2 2¢,>0 t20 (1.3)

for some constants ;l' The assumption {s made to ensure the existence and
uniqueness of a solution to (1.1) and (1.3). The problem under consid-
eration {s to construct for each t 2 0, an estimate of the system state

x, on the basis of observations {y.. s<u) where u> t. When u = ¢, it

{s a filtering problem; u > t, a smoothing problem. The performance
criterion to be used {s the minimum mean-squared-error (MMSE). As A is
large, the estimation problem reduces to that of estimating a Wiener driven
system in the presence of additive white Gaussian noise. In this work, we
are mainly concerned with the case where \ is small, for which the linear
estimate may not be a: suitable. In order to avoid cumbersome algebraic
notations we restrict ourselves to the scalar case. The extension of all
the results in this work to the vector case is conceptually straight-
forward and can readily be obtained.
1.3 ) st its i
The general problem of state estimation of linear systems driven by
Wiener processes observed in additive white Gaussian noise has been treated

extensively in the past [33-36] et al. Complete solutions to various

modified filtering problems are available abundantly in the literature [33-




41). However, the general problem of state estimation of linear systems
driven by Wiener and Poisson processes in the presence of white Gaussian
noise is relatively untreated.

Linear systems excited by Potuog processes was studied recently in
the estimation problems [2,3,28]. The problem was solved by applying
results developed most recently in martingale theory ([4-8,20,42-47]. The
MMSE optimal filters in a form of an infinite set of stochastic differential
equations were derived. In the presentations of the results, the infinite
dimensionality of the optimal filters were heuristically argued to be
frreducible to finite form, Truncation approximations and the Ritz-
Galerkin approximation methods [2,3,48) were suggested to solve the set of
equations, Both (n a numerical simulation study were proved to be dis-
appointing in terms of {mprovement on performance over the Kalman filter.
Indeed, the suthor has shown that the Kalman filter which utilizes only
the first and the second order statistics, MMSE optimal for Markov-Gaussian
systems, are extremely poor in performance for systems excited by Poisson
marked processes [49,50].

In different formulations, random systems that evolve with stochastic
jump processes has been extensively attended [51-57]. The basic theoretic
properties of such stochastic systems were studied in great depth [7,8,12,27)
51) et al. Most of the works in area of estimation however centered mainly
on the detection of jumps, sudden changes of stochastic properties of the
systems and on the renewal processes associated with the point processes
imbedded in the systems [58-67). Under different criteria on performance,

the approach of combined estimation detection schemes [68-72) were suggested

for estimating and detecting the jump processes. A good collection of such

4
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combined schemes based on various criteria and structures of the problems
are available [68-72].

Related estimation problems on stochastic systems driven by gener-
alized Poisson processes have received extensive attentions [73-76) et al.
In most cases, the estimation efforts were concentrated on the estimation
of the average Poisson intensities of the driving point processes based on
the noisy observations of the driven systems,

1.4 Chapters Review

We first derive in Chapter 2 the (MMSE) optimal filter for the problem.
The approach will be closely parallel to that in [2,3], via the Dolean-Dade
and Meyer decomposition rule for discontinuous semi-martingales and its
corresponding filtering theorem [4,5,6]. The different aspects of the
filter is discussed and investigated. Its performance {s compared to that
of the linear optimal filter.

In Chapter 3, we investigate the problem for the system driven only
by the Poisson processes {.e., Bt ® 0. Since the estimation problem for
the system driven only by Wiener processes has been widely studied and
developed, this renders a better understanding and insights into the general
problem. A suboptimal sequential scheme (555) based on a combined estimation-
detection approach {s developed for this particular problem. A compensation
strategy is adopted in the SSS to eliminate the propagating error due to
the sequential structure of the S55. The asymptotic performance for the

time-invariant case is derived and numerically simulated on a digital

computer,



In Chapter &4, the general estimation problem is considered. The SSS -
is modified and extended as a suboptimal solution to the problem. The 1 ;
different aspects of the SSS and {ts extension for other systems will be
presented. : ?

In Chapter 5, we extend the estimation problem of the Poisson-Wiener -3
driven linear systems to a wider class of stochastic systems, namely the
conditional Gaussian systems. We derive the basic equations and functionals { j
that are essential for the development of the SSS as a suboptimal approach
to the estimation problem. While the derivations of the S5S will be
sim’lar as those in Chapter 4, we will not get into the detail derivations !
of the SSS here.

Chapter 6 concludes this thesis with a summary of the results and

conclusions of the previous chapters.
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CHAPTER 2
THE OPTIMAL FILTER
2.1. The Optimal Filter
For algebraic simplicity, we consider the scalar case of the system

slightly modified from (l.1), given as follows,
>
dx, = ﬂtx‘dt +B‘d\lt - btnt t20 (2.1)
with Ot - T\t - At 2.2)

The principal effect is a deterministic change in the mean function of
the system ®.s ¢ > 0 which does not affect the essence of our problem.

The approach we use to obtain the optimum filter i{s via the semi-
invariant generating function for x, l.n!(eju‘). First apply the differenti-
ation rule of Dolean-Dade and Meyer (see Appendix A) for discontinuous semi-
sartingales to c"u‘ , putting it in the standard semi-martingale form.

Then we apply the optimal filtering theorem for white Gaussian observation

noise [2-6] (see Appendix B). The differentiation rule results in

del ™t o Juc""‘t-dxt_ + %(Ju)zcj"‘“d SN ’:

+4d ¢ (.ju(x. i b.) - ‘jux. - juju"h.) (2.3)
0<s<t
where < *c. x° >t is the increasing process associated with the continuous
part of the semi-martingale Rt. t >0 (2,7,8). The summation is carried out
over those values of s where X jumps. Here J = J=1 and u {s real. Considering

the continuous part of x, we have

deu’, »n* > - B:Qt‘: (2.4)

and also discontinuous part, we have

|
3
|
|
|
|
|
|
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t
4 T s ) =d [ §X )N = §(X )d7 (2.5)
°<‘E: 8- “0 s s t t

Substituting of (2.4), (2.5) into (2.3), one obtains

—(ju)zﬂzqtc ldt

jubc juxt _]ubt
(e -1) d@t + he (e -l)dt (2.6)
which i3 in a form such that the optimal filtering theorem is readily
applied. Let ‘t denote the conditional expectation of the random variable
¥, vith respect to the growing c-field generated by { y0<8 s t}. Then

applying the filtering theorem, we have

Aox, P iy e Aoy b,
de” Tm(uaxe C 420w s2qe  Cldt +he (e el
juxt : jux: ak %
- ht(xtc - x.e ]vt (dyt - htxt] dt 2.7)

I1f we substitute the cumulant generating function, viz.

/3\} gk

t
e = exp| : c . ] (2.8)
kel “t r

where th“ the k-th conditional cumulant of X, into (2.7)

we obtain the following set of equations,

=]
dCu - ﬂtcudt - h:vt th(d’t htcudt) (2.9a)

PSS RN
%, dt +B§Q‘dt + Abgdt - hivo'c) de (2.9b)

dc 2t

2t

-1
- ht': (::n(clyt - h C dt)

kel
dc, = @ c at + ao¥ae - 2ndvil £ & ¢
N t ke t 2 ¢t jal : | j+l:k-)+l

e vt ck"'l t(‘,t “h cl:‘:) k*3,4,5.... (2.9¢)

o
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The conditional expectation of x

" and its variance denoted by Pz: are
therefore given by
o e T (2.10)
P, =x -%) =c (2.11)
2t t t 2t i

Note that ckt k = 2,3,64,... are all invariant to any change in the mean
function of the system X .
From Eqs. (2.9a) and (2.9b), we see that the optimal estimate has

precisely the form of the Kalman filter, except that C is observation-

2t
dependent. The differential equation for th involves, besides lower-
order cumulants, also ck*l.t implying the optimal filter requires solving
an infinite set of simultaneous stochastic differential equations.

There are many processes in which the optimal estimates exist

in closed form. Among the common is the Gaussian case, where the

additional relation

6B e

x - thxc - 2:t (2.12)

enables us to reduce the set of Eqs. (2.9 ) into a closed system of
equations, the Kalman filter [7].
2.2 e Nonclosedness of the Optimal Filter
In order to study the property of closedness of the filter (2.8), we
define the process lt which drives the optimal filter as follows,
dI, = dy, - h X dt =dy - hC

18t (2.13)

I1f the process I: exists in a well-defined manner then it i{s the innovation

process with respect to the observation in our estimation problem [7-11].

In such case it (s a Wiener process with respect to the o-field generated




12

by [y.. 0<s < t}. Furthermore its stochastic properties are identical

to those of the Wiener process v_ in the observations. It is called an

t

innovation process because it carries and hence can generate the same
"information'" as the observations,
Note that solutions to a closed set of equations containing states

driven by Wiener processes are all sample-continuous with probability one,

provided they exist (7,8]. Hence if there exists an additional relation~

ship in our case as Eq. (2.12) in the Gaussian case, which enables us to
reduce the set of Eq. (2.9) to a closed set, the optimal estimate and its

cumslants as solutions to the reduced set of equations will be all sample-

continuous with probability one. Since the system we are estimating is

discontinuous at various random times (termed gs Markov times [7]) and the

optimal estimate being instantaneous estimate of the system should exhibit

a highly "discontinuous" sample path, we deduce that the set of Eqs. (2.9)
is not closed, containing an infinite number of equations.
Then the question of existence of an optimal estimate as solution to
such a non-closed set of equations naturally arises.
Note that to carry the same "information" as the observation y, the
g-field generated by the innovation process I has to be equal to that gener-
ated 5y the process y for all ¢, 0 <t <=, That is, if we let 3: and

’: denote the co-fields generated by x. and 0<s <t <= respectively,

by definition of the innovation process, the following must hold for all t

’:"{ 0gt<e= 2.14)

Since 5: is generated by the innovation process which is a Wiener process,

it {s continuous in t, viz.

£

.=

. O e v
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lus‘-uns:-s:

0t <= (2.15)
gte ¥ el e

However 5{. generated by the observation process y which contains a

discontinuous process, is only right-continuous. With non-zero prob-

abilicy, 5{ is not continuous, i.e.

lim ) ¢ 5 for some t, 0<t<m™ (2.16)

sttt

Therefore, from the above argument and Eq. (2.15), (2.16) we establish
5185 0<t<e= @.17)

which contradicts the assumptionof the process I b;Ln; the innovation
process with respect to 5{. viz, Eq. (2.14). And, by definition of the
process 1,

s <o (2.18)
through the construction of I.

Therefore, the process I is not an innovation process and it carries
less information than the observation y. This implies the process I does
not exist, and from Eq. (2.13), it follows that it does not exist, or at
best exists in a certain stochastic limit sense, and not in the strong sense.

To summarize, the optimal estimate i{s given in terms of a set of
infinite number of differential equations. Because of the non-closedness
of the set of equations, the optimal estimate may not exist and at best
it can be represented as a limit in some stochastic sense.

The investigation of how such a limit behaves is a difficult problem
and does not bear any significance to our problem at hand. From a

practical point of view, the non-closedness of the set of equations has




made the implementation of such an estimate formidable. It should be
apparent that simple truncation of the set results in a continuous
estimate for X generally of very poor performance because it is
required to make instantaneous estimation of a discontinuous system,
Such truncation may also lead to a possibly unstable filcer,

2.3 The Optimal Filter and the Kalman Filter

We investigate the performances of the linear optimal filter, i.e.,
the Kalman filter, and the optimal filter. In particular, their asymptotic
performances when \ is small are compared.

The Kalman filter which utilizes only the first and second order

statistics can be readily obtained and {s given by

o
J‘ - ati'td: +h v B(E)(dy, - h !:dr.)

5
2 2 =12
dp(t) = (27, P(t) + b +3§Qt - hgv; ' (e)]ae

where !t and P(t) denote the Kalman estimate of the system and its
variance respectively. Notice that the variance equation is realization-
independent and can be solved ahead of time. Although the Kalman estimate
always exists as solution to the Eq. (2.19a), dy: = tht“ i{s not an
innovation process with respect to the observation since !: is not an
optimal estimate. It should be apparent that any random process with only
the same first and second moments as X, will have the same Kalman filter.

Define now
(2.20a)

'5\-

1. (2.20b)
-

1
A

where the derivative {s taken in the quadratic mean sense.




As A » 0, it can be seen easily that the optimal filter given by

Eq. (2.9) reduces to the closed form of the Kalman filter given by (2.19)

with the assumption of GCaussian initial condition of xt. We have

&, =aRk, +hv %thxt (2.21a)

2 -1x2
&, = A3, -Bﬁqt - w2viled (2.21b)

in which case

L. -‘ft
tZt

(2.22a)

= P(e) (2.22b)

and t“t -0 €20 for k=3.4,5,.... (2.22¢)

Taking derivgtives of Eq. (2.9) and using Eq. (2.22c), we have

«d T dt +hv. it (2.23a)

a0 =90, V2 Caedle

~ 2 -1 k
Che * k[dc - RV, i(:)ltutdc + bde

+h vt‘&m A k=2,3,8,... (2.23b)

Suppose we write

C..oB._ +28. +4 "zeux: + oY) (2.24a)

it e 2

. 3 ! + "!x: z'i“t + o0 %) (2.24b)

Hence, from Eq. (2.5), we have for the difference between the two estimates

&: *Gie? =R &u “Tpe) o) (2.25)

Combining E£q. (2.19) and

it

e AT DTN

(2.23), we first have
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2 -1 v
af, -2, 0 = @, - by B ©)K, - Ty, Jae

+ htvzlﬁx(t) - T, a1, (2.26)

Let us confine ourselves to investigate the asymptotic values, for t # =,
Assume there exists t' < =, such that

2 -l~
d, -hv, B()SK <0 for ¢t ¢t (2.27)

2 -1
g, - hv P(t) <K <0

which is readily satisfied by any stable systems.

Therefore from (2.25) and (2.26), we have

lim z(ift-cu) ® lim A sc'iu - Euc) + o) = o(h) (2.39)

o> t*®

Similarly, we have

4 2 2 - 2 2
e, - ¢,.)° =2 e, - T, 0% + 00 (2.30)
Al 2 ob
pplying the differentiation rule to dgt - tlk:) , we tain
v 2 2 -1 > 2
d"‘xc’tu:) - “a:"‘:"c'ix(‘”(xu'cn:) de

2 -1,.2 2
- hc"c (Px(‘) - czn

]dt
~ -1
+ “"'&: - T 0h, v (B (®) - T, lar (2.31)

Hence {f the system (2.31) is asymptotically stable

2 1L v 2 2
lim r.(it-cu) - Un VEQX, - T, 00 + 00

g™ t4w

52 2 2
= lim - E(B(t) = T, ,.] + o(A%) (2.32)
¢t i'clik(t)) ;s o




However, we also have

4@ @ - T = el niTBOIF @) - ) e

2.~ 2
+ 26 (B, (¢) ~Ez \i ]de %m

= v 172z)t onedle

2

-2b z(‘! (t) - )+h v l!(i‘- ad
§ el = Un —2 Ji“

X to lo@ - h Ve P(e))

2
s tis : tlz(elxt

[ t.(dt - u:vtLP(:))

= lim E(Pi(t) -C
c-’

Similarly,

) = lim =1 ' [htv-lt(‘ézkt)
¢ 6(dt-htv P(:)]

lim x(t

v, e

o’
3@, - hiv L!»(:))

+

Continuing the process, we deduce that as t is large

2 2 2,1y e "2".“’:
Be” Cpe)” ~ - By B (0) {kEJ 'k-—k:(-gﬁ:—))
9
where . - dt- htv:l‘l’(t)
Obsetve that the sum given by Eq. (2.35) is a convergent series, because

the ratio of the (k+ 1)st term to the k-th term is

j e

« c Ve %t l .0
(k+1)2| z:at- :':L’“”

(2.36)

uniformly as k = ® for t > t'., The behavior of the limit of the mean squared

difference (2.32) therefore depends on the behavior of b,z
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First for small b: as t +® as expected

a e, - ¢, = 0+ 0a%) (2.37)
]

In such case, the optimal filter reduces to the Kalman filter asymptotically
as A=0,

However for large bi' it {s easily deduced that

2 -12
eVt bt)z
1t

h

- 2 2 -1
:“_: !({At' zlu) - i_': = @G- heve B (®)]C

Therefore for small ) but large bz
2 2.2
E(It CR) = (\b,) large t

which is the square of the power of the Poisson driven part of

the system, Now, let us study the performance of the optimal filter in
terms of its error distribution over the Wiener d'rtven part and the Poisson
driven part., Assume further that the system is stable and has a steady

state after some time t' > 0,

From Eq. (2.23b), we have

2
t

2 -1
ZiG't - htvt Py]

-b
lim EC

-

ae) *

writing Cp ® tu - "sz: + 000
= B(e) +1C,, + 0)

For large t, we have




T
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-kbt

2 -
2(, - htvt)‘?(t)l

E(C,,) = P() + + o(A) (2.42)
The first quantity on the right side of the equation is the vcéi.ncc in
filtering the Wiener driven part {.e., the continuous part of the system.
The second quantity is that due to the filtering of the Poisson driven
part. Notice that it depends on P(t).

Comparing the error variance in filtering the Poisson driven part of

the system to its variance, we have the ratio, denoted by ¢,

-\bz -kbz
t 14
b 3 Pt
g-en 2[d=- h:": P(t)] t
(2.43)
a
t
= lim
2 =
L= d;- hcvcl!(t)
Hence when there i{s no Wiener driven part in the system,
P(r)y®m 0
making ¢ = 1 (2.44)

In fact it i{s shown by the author that for system driven only by Poisson
inputs, the steady-state error variance of the linear optimal filter is

at least as large as the variance of the system [12]. This manifests the
fact that the optimal filter and the Kalman filter, both being instantaneous
filters fail to estimate the jumps. This can also be seen by noting that

1f the system {s a fast decaying system i.e. |d;| {s large, the filter

fails to estimate the jumps, giving ¢ < 1. And the quantity in (2.43)
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hzv;l denotes the signal-to-noise ratio in the observations., As it :
increases, the error decreases., From Eq. (2.43), the ratio ¢ decreases
as P(t) increases for fixed power of the Poisson driven part. This
appears at first to be contradictary. This is due to the fact that P(t)
only increases with the power of the Wiener driven part of the system.
1f the energy of the Wiener part in the system dominates that of the e
Poisson driven part, the error made by the filter will be dominated by
the estimate error of the Wiener part, f{.e. P(t). This is a direct
consequence of the ratio of the power of the Wiener part and that of :hc.
Poisson part in the system itself. Hence in systems where the Wiener
part dominates over the Poisson part, a reasonable approximate filter
can be constructed by simply neglecting the Poisson part in the system.

In case, the opposite i{s true, the power of the Poisson part dominates,
both of the Kalman filter and the optimal filter performs very badly as
an instantaneous estimate of the system.
2.4 Conclusions

In this chapter, we derive the optimal filter for the problem. We
deduce that the set of equations defining the optimal filter is infinite
(non-closed) by arguing that there is no additional relationship that would
reduce the set to a finite set. If such a relationship exists, then we are
guaranteed to have a solution in the strong sense for Cu because the finite
set of equations in our case is guaranteed to have a strong solution, In such
case, the process I defined in (2.13) i{s the innovation process, and hence a
Wiener process with respect to the g-field generated by the observations. For

a finite dimensional vector differential equations as the reduced filter

equations driven by a Wiener process, the solution {s always continuous with
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probability one. Hence we would have a continuous estimator for a dis-
continuous system, contradicting the optimality assumption of the estimator.

We further argued that the solution for clt does not exist in the
strong sence by showing that I in fact is not an innovation process in
our problem. The optimal filter is unrealizable and unimplementable.

For the performance of the optimal filter, we compare it with that of
the linear optimal filter, At least for the case of stable systems, the
improvement in performance of the optimal filter over the linear optimal
filter is extremely small when A is small.

We shall show that the linear optimal filters (causal and non-causal)
which utilize the first and second order statistics only, perform extremely
poorly in the estimation problem of the Poisson driven systems. Hence the

optimal filter being a causal estimator is not suitable for the state

estimation problem for Poisson driven systems,.




CHAPTER 3
ESTIMATION OF THE POISSON DRIVEN PROCESSES
3.1 General

In this chapter the optimal filter and suboptimal approximation
estimation scheme for the Poisson driven case will be considered. It ; l
can be easily seen that by setting A =0 in the optimal filter Eq. (2.9),
the problem reduces to the standard linear quadratic Gaussian problem
and the filter reduces to the standard Kalman filter which is finite
dimensional (closed). The nonclosedness of the optimal filter (2.9) arises
from the Poisson driven part of the system due to its non-Caussian property 0
and hence an infinite number of moments are required to characterize
completely the filter.

The optimal filter for the purely Poisson driven process may be ob-
tained from Eq. (2.9) by setting Btﬂo and is given as follows [2,3,28) *
1

"Cx: - ":Cu"‘ - htvc Cz:“: (3.1a)
4G = M7 C 4t + ATt « & niy? kél ™o, .. @ de
Gee ke t R
=3
+ htvt Clu-l.t“t k=2,3,4... (3.1b)

Note that the filter as in Eq. (2.9) is still infinite dimensional. The
Wiener part indeed only comes into play in the variance equation, {.e.
the c2c equation.

The problem may be generalized by including a mark process generated

by the Poisson driving input. The problem in this case i{s a modification

of (2.1) and the process is defined by




= >
dx = g xdt + bt(U)dTlt t20 (3.2a)

where U denotes the mark of the Poisson process ﬂc and is assumed to have
a known probability density £(U). By definition of the mark, the random
variable U will be generated independently according to f(U) at every
incident of the Poisson process nt' The mark can be considered as a random
parameter generated by each incident, e.g., the marks represent the random
magnitudes of the Poisson impulses.

Let the i-th incident time and mark of the Poisson process be denoted
by TyrYy respectively. Also denote the number of incidents over the semi-
closed interval ([s,t) by N(s,t) or if s=0, N(t) for simplicity.

The objective is to obtain a near-optimal estimation scheme for 't

from noisy cbservations viz.

dyc - ht*tdt + dvc (3.2b)

3.2 e Optimal Linecar Filter

As indicated in Chapter 2, the improvement of the optimal filter
(wvhich is unimplementable) over the linear optimal filter is relatively
small in terms of error variance. We establish in the section that the
linear optimal filter for the Poisson driven case with low intensity is
extremely poor. Consequently both of the Kaiman filter and the optimal
filter are unacceptable in their performances, This {is basically due
to the fact that the system process to be estimated i{s only right-continuous,
making instantaneous estimation or detection of the jumps In its sample

paths formidable.
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From Eq. (2.44), we have seen that the normalized error variance of
the optimal filter tends to unity as A * 0. Now we show that in the non-
causal linear optimal smoothing, the steady state normalized error variance
for the time invariant case also tends to unity uniformly as A - 0. This
result indicates that an improvement over the optimal linear noncasual
filter may be possible only if a time-delay is allowed in a nonlinear
filtering scheme. In order to present the derivation, the system (3.2a)
will first be reformulated and expressed as

d::t - at“cdt +ij b: (U) M(dc,du) (3.3)

where M(.) denotes the measure of the underlying Poisson marked process,.
Let ®(t,s) denote the state transition function of the homogeneous part

of the system, then

N T RS PRI 5. A £ A i O RSN P MUY (R e

[ 4
x, = O(c,O)xo - b !}0(:,:) b.(U)n(ds,dU)
Hence from Eq. (3.2b), the observations become

t
¢ r
[ ] n @, 0)b (W)N(ds,d0) (3.5)

y. = v+ h®c,0x, +
t t t 0 &)

By definition of the stochastic counting integral whose existence and

i
g
i
:
4
f
:
|
%’
I
i

uniqueness only requires the point process M to be conditional orderly
and with probability one have a finite number of points in a finite interval
(17, 18,29] which are all satisfied by our Poisson assumption of ﬂt. we
obtain the following
N(t)
E, " 0(:,0):0 - LEI g(t) -rt;u‘)
where

g(t,7iu) = $(t,7)b, (u)

d ek el e e e el el el
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which is the integrand in the integral in (3.4).

If we assume xo is known (this assumption may be removed without diffi-

culties). a new observation process z, may now be defined by

2, Sy, h&,0x, (3.8)
N(t) .
b + 151 h(:,Ti.ui) t20
N(T)
-y 151 h(t,7 5u,) 0<t<T?T (3.8b)
where
h(t,r;u) = htO(t.T)bt(u) 3.9

Equation (3.8b) follows from the causality of g and h in the integral, viz
g(t,7;u) = 0 = h(t,r;u) for e <r, (3.10)

We now examine the performance of linear optimal smoothing. The case
of finite interval and infinite interval linear smoothing are both con-
sidered. ;

For the fixed interval tn;othing over an interval of length T, the
steady state error variance for the optimal linear smoother, denoted by

< is given from (19, pp.256) as follows

2
= s |o__ @l -T
1 e zX 2
¢ =3 Loxmm . L @ dw + j-'. lece)| “ae

where L ®, are the spectral densities of x(t) and z(t) respectively, o'

x
the cross spectral density of x(t) and 2(t). G(t) is an appropriate time-

function derived from the spectral densities. Therefore

TeL Ll @|?
'r-‘-'zn{_ax(")“'.iﬂ- :.—&——%(m) dw .

g

B fe e = SO ——————




The substitution of the spectral densities with the appropriate expressions
in terms of the transforms of the incident response [l], and using the
notation
hl(e,m; 0 = E hi(e,7;0)

U
results in

o 2 - 14
. dw
T = 2“ J Llﬂ(jw ul de - 3%'f 3 3 o) Sy
- g° s ]H0e;0)]

Normalization with the signal variance which is given by

Var(x(t)) = A h (t=r, u)dr (3.11)

.- 8

finally yields

< = =

T 1 ¢ - 2 1 lﬂ‘l wiu ” r 2 -
Var(x ) 23w [Hw;0)| dw - 2= :_ ¢ bU(e-T,u)dT
E (‘1-)+la(jw |3 (3.12)

-%

The behavior of the normalized error variance as ) = 0 becomes therefore

< 2" J lu(j‘“.“)t
s = rr(; =2

a - L)
L=0 t J" hz(t;T’.a)d'

-

where the Pareseval's Theorem has been used. From Eq. (3.13) we can deduce
that the performance of the linear optimal f{lter or smoother is extremely
poor regardless of the signal-to-noise ratio and behavior of the incident

responses when 3 {s small, since the normalized variance tends to unity

yniformly as % < 0. This result is not too surprising since linear techniques

only utilize first and second order statistics, and the Poisson driven process
which is highly "discontinuous' contains considerable energy in the higher

order statistics.
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Since causal estimation for such systems is inherently of poor quality
when ) is small, the problem leads naturally to the alternative of allowing
some delay in the estimation process i.e.,, smoothing. In view of the poor
performance of the linear optimal smoothing and the nonclosedness of the
optimal estimates, a suboptimal non-linear smoothing scheme will be con-
sidered for the estimation problem. While the scheme may not perform as
well as ultimately possible, it is expected to perform better than the

optimal linear infinite-interval smoother for low enough incident rate A.

3.3 The Saggcntial Smoothing Scheme (SSS)

In this section, we derive a sequ;ncial smoothing strategy to the
problem given by (3.2). The system to be estimated is a Poisson marked
process; hence the knowledge of the realization of the Poisson driving
process ﬁt and its associated mark process is sufficient to determine the
realization of AL

The approach to the estimation problem considered here i{s to first
solve the particular problem of estimating the incident process ﬂt and U,
via a combined sequential estimation and detection scheme based on the
criterion of maximum aposteriori probability (MAP). Then the estimate of

any func:ton'i(:,ﬂt,U) is reconstructed suboptimally through the estimate

of T, and U, nu-nly'J(t.it.O). Although this approach is by no means
optimal in the sense of MMSE, this i{s nevertheless a robust alternative
when the optimal scheme {s intractable. In the proposed sequential scheme,
the observations are processed in subintervals whose length, 4, is chosen

such that the probability that each component of the driving process having

two or more than two incidents within the interval is negligibly small.
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Each subinterval of observations is processed to detect and estimate, if
it exists, the incident in the interval as well as to update the estimates
of past incidents.

In order to reduce the memory requirement and computational complexity
of the scheme, a finite memory scheme is selected whose memory size depends
on the marginal improvements in the performance and the desired performance
relative to an infinite memory scheme. Consequently we choose not to update
(re-estimate) thoicstinntcl of the past incidents occurring earlier than L
subintervals away tfom the new intervals as shown in Fig. l.

Note that there is a maximum delay LA inherent in the structure of
the scheme. Any estimates with delay longer than L4 are the same as that
with delay 1A since they have been finalized. L usually is large and is
chosen as a tradeoff between performance and computational complexity.

Also note that the scheme structure is actually independent of the dealy
imposed by the original problem. The delay reconstruction process is carried
out independently as the scheme sequentially updates the estimates of the
incidents.

3.3.1 Preliminary Requirements for the SSS

To be able to apply the S5S described above, there are a few basic
conditions we have to satisfy due to the combined nature of the detection
estimating scheme.

Let (,%,P) be the underlying probability space for our estimation
problem. Then the random processes defined in the problem statement are

all measurable random processes in continuous time t € [0,®), For example,

if B is a Borel set € Z of the real line of Rl. n: satisfies
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{ (w,0) : ﬂt(m) € B} € 5 x B(0,®) (3.14)

where J(0,») is a g-algebra of Borel sets on interval [0,®). That simply

says the random process ﬂt besides having well-defined trajectories can
always be characterized in probablistic terms.

In the SSS, in order to recomstruct a given functional G(t.ﬂt(U))

based on the estimate of ﬁt(u). c(t,ﬂt) has to satisfy the following

condition,

(@& GEN, @) € B} € $/x8(0,c) ¥ c€(0,m) @.19)

where B is a Borel set € & of R1 and ;2 is a ¢-algebra generated by
{ﬂ.. 0<s<t)l. That is to say, we require that G(t.ﬁt) be independent :
of the future of “: and that it can be completely and deterministically
determined by the knowledge of [ﬂ': 0<s <t}

To examine the conditions for recoverability of ﬂt Sulnd on the
observation y:. let us consider the vector case of the problem. Let X, i
ﬂt and ¥, be a-,p-,q-dimensional vectors respectively, then Eqs. (3.4) and

(3.5) are still valid representations of these processes, viz,

¢ i

x, = &(t,00x,+ [ [ ®(t,5)b (U)M(ds,dV) (3.16) %
ov

ta

z Sy, - b B(E,00%; = v, = ! 6 b &(c,s)b_(U)M(ds,dv) @17 i

where now h:' nt(u). @(t,s) are of appropriate dimensions. To estimate ﬂt.

it is essential that the observation z, is a non-trivial function of all the :

p components of ﬂt and their corresponding mark processes. From Eq. (3.17),

satisfies this requirement if the

it follows quite immediately that z,

following holds
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(1) the qXp matrix ht¢(t,s)b‘(U) contains no identitically zero columns
almost everywhere int > s > 0 and U.
(2) the system input nX p matrix b. (U) contains no columns completely
independent of U.
Note that condition (2) can be easily satisfied with a modification of the
system equations. Since our main concern is to reconstruct xt, it is
already satisfied. Examining condition (1), we find that it is a con-
siderably relaxed condition compared to the usual requirements of controlla-
bility and observability of the system in estimating a Wiener driven system.
3.3.2 The Estimation and Detection Equations
To obtain the equations for the joint estimation and detection, we first
consider the simple MAP interval estimation and detection problem over an
interval of length T. Therefore, the estimates of the incidents and marks,

denoted respectively by 7,u, have to satisfy the following

Lnfna).:.g(ﬂ.l»gbr) - N'n:;: . "“‘u('r)',l,g("*'l*'-‘i"‘l’;) (3.18)

where £(-) is the conditional density of N(T) and T,u, the vectors con-
taining all the incident times and marks over [0,T4). 5; is the o-field
generated by the observations [z(t);0 <t < T}. Since the dimensions of
I,u depends on N(T), the maximization can be carried out first by obtaining

the MAP estimates of T,u assuming the value of N(T) is fixed as follows:

max Anf (N*.?_*,g_*lf;) = max{max Inf (R*.;*.g*li;)} (3:.19)

x*’,*’ut R(T)I.'E n*'.r.'“* Na)nlig

= max lafy gy, (T OM UM (0,200

where £(N*), G(N*) stand for the MAP estimates of 7,u given N(T) = N%.
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The maximization of g% ,u* in Eq. (3.19) gives a set of equations for

i(N*) and Q(N*). the estimation equations. The maximization over N* in

Eq. (3.20) gives the detection equations. By obtaining an expression for

Inf, which is given as

‘n!N(T),I,E("":"!"’zT) = inP({ lt;0_<_t. <T}l:_t_2t.u*)

+ Inf(s%| N%) + faf (u%/N*) + LInP(N*)  (3.21)

and recognizing that the first quantity on the right-hand side of the
equation has an equivalent expression, namely the log-likelihood function

of T u* which is given as

z N* N*

l ¢
= ldefz, - T h(e,"HuM][ L h(c,7FeD))
= 1 Gt BN o ok L 7%

we obtain the following set of equations by optimizing over T* uw,

T N(T) dhie;?, ,u)
ot 5 4 & 2 R
=g de[z(e) 1x.:lh(:. (9011 —;;j—-‘—-—‘-—; . 2y Inf@y) =0 (3.220)

2 N(T) 3h(t; ,0.)
L[ odefae) - T beesF, 601 ——d—] =0 (3.225)
o* %0 =] i1 L

for 1 € J S N(T) and 0 < BT < ?2 ene R ,N(T) < T. Equation (3.22) actually

is the necessary condition for the MAP estimates of T ,u given N(T) and

alwvays zuarantees a set of solution. The uniqueness of the solution set

does not play a role in the scheme since we have to maximize over N(T)

subsequently. The expression to be maximized with respect to N is obtained

by substituting the distributions associated with the Poisson process into

Eq. (3.21) which reduces to
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a N .
J(N) = Nioh + L lntu(u

)
{el i

(3.23)

L ¥ }oanid o
+ .-2. dt(g(t) - 2 : h(c;?j.uj)][

N
T h(e;%,,0)])
. =1 i1

i=]

3.3.3 Sequential Approximation Approach

The resulting MAP scheme defined by the solution of (3.18) and the
maximization of (3.19) will now be approximated by a sequential scheme.
In the scheme, we sequentially process the observations in subintervals
each of length &, which i{s chosen such that the probability of having two

or more incidents in each interval is negligibly small. Hence, we choose

4 such that

s 8a < (3.24)
The observation over the k‘h subinterval [(k-1)4,kd) is used to finalize
the estimates of the incidents prior to (k-L)A. We define the new infor-

mation carrying observation y(t,k) with the removal of the finalized

estimates by
, N((k-L)8) |
y(t,k) =z2(t) - L h(t;7.,u,), t € [(k-L)a,kd) (3.25)
i=]

This new observation in (3.25) will be used in the MAP equations (3.18)

and (3.19) to yield the approximate sequential estimation-detection scheme.
The equations to be satisfied by the unfinalized MAP estimates i.i in the
interval {(k-L)d,kd) when the kth subinterval i{s observed, are obtained

from (3.22) and (3.25) and may be written as

kA N(kd) (e ,0))
1 " - A

R de (¥ (e k) - L aesif, e )ll—sg-‘—“-l
o? Th-1)8 feN((k-1)a)#1 @+ 1% 3

. g%; Int(@,) = 0 (3.26a)




3%
K N(kd) dh(e;? ,0))
Y P A
3 de [y (e, k) - T h(t;?,,0 )1(—-5--'—1-1 -0 (3.26b)
o (-L)8 N((k-L)a)+1 i"1 Yy

for N((k-L)A)+1 < § < N(kd)

(k-L)A < 7 <y

N((k-L)8)+1 S ann % T’ 41 kd.

<.. "u(kA) <

These equations are to be solved for fixed N(kd) (whose values will be
discussed in the sequel) and then the proper choice of ﬁ(kA). the estimate
of N(ki) should be made. The estimate (ki) of N(ki) is made by maximizing
the following expression which is obtained directly from (3.23) over the

value of N,

N kA
I ) = Nioh + T tnt @) + Lz ( de (5 (¢, k)
{oN ((k-L)A)+1 o® &-L)a
l “ - N -~ -~
LaN ((k-1)A)+1 JN( (k-L)8)+1

Note that the detection i{s carried out sequentially with the assumption
of Eq. (3.24), which limits the values of N(ki) for the maximization to a

set of 3 values as follows:

(1) If an incident was detected in the previous interval [(k-2)&,(k-1)3)
N(d) € [N((k-1)8), n((k=1)8)+1, n((k=1)8)+1} (3.284)

The third value is included in case that the previously detected incident
has been a false detection.
(2) Similarly, if no incident was detected in the previous interval

[(k=2)8,(k=1)4), then N(ki) i{s limited to the set.

N(kd) € {N((k-1)8) N((k=1)a+1, N((k-1)d)+2} (3.28b)
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where the last value accounts for the possibility of a miss in the earlier

subinterval, Note also that for each value of N(k&), it is required to
solve a set of equations (3.26) for the estimates £ (N), U(N). However,
these sets of equations are uncoupled to each other and can be solved in
parallel. Since all of the incidents except the new incident (if it exists)
have all been previously evaluated, iterative perturbation methods may be
employed to solve them.

The set of values for N(k&) can obviously be increased to include more
values to cover the possibility of multiple wrong detections in previous
subintervals.

3.4 Performance of the SSS

3.4.1 Asymptotic Performance of the SS§

The analysis of the performance of the sequential approximation scheme

is quite involved; exact analytic results are rather complex to obtain.
We consider only the scalar time-invariant case and derive the asymptotic
performance of the scheme as the {ntensity tends to zero. For comparison
purpose, we express the performance in terms of the error variance of the
estimate of the system state normalized by the variance of the state
(average power).

when the intensity is ﬁll, the estimation error resulting from the
scheme can be modeled as Poisson filtered process, with each error incident
response as a result of the detection and estimation over each subinterval.
Since we are making estimation and detection for every subinterval, the

intensity of the driving process is 1/4. Therefore the estimation error,

denoted by W(t) can be representad as




t 8

W) = €(t;o,V) M(de,dv) (3.29)

P
v
v

o

B

where ¢ (t;o,V) i{s the incident response of the average error made according
to the result of the detection indicated by the mark V, and 7 is the
measure of the underlying error driving provess with intensity 1/4.

Define the mark V as follos

Ved indicating a miss in the detection

10
Ved indicating a correct detection of an incident
11
; (3.30)
Ve dOl indicating a false alarm
Ved indicating a correct detection of no incident

Hence, the distribution of the mark is given by
PV = d,4) =ap (@)
p(vV = du) =a(l °Pm(5)) a1
p(V - 401) - (H’)Pm(d)
p(V = doo) - (10)(1‘9“(6))
wvhere pm(A). pm(m denote the probability of a false alarm and a miss in
the detection over an interval of length 4.
Note that with this model,
e i) =0 (3.32)
00

¢ 7idg) = E W (im0 (3.33)
v

The variance of W(t) is therefore

-
var(w(e)) = + £ [ ed(x 0;vyae (3.34)
v

1
<
.355.(=mw« (3.39)
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The substitution of Eq. (3.31) into (3.34) yields

A r. 2 .
Var(W(t)) = 3 {py, (&) | €7 (£,0;d, )de
0

™ 2
+ M(L-p 0(8)] | €7(e,05d;,)dt
0

» 2 2
+ A4 'é dep,o@)e7(x,05d, ) - py, (B)e (:,o;dm)]] (3.36)

wvhich after normalization by Var(X(t)) given in (3.11), becomes in the

limit as A -0,

s var@(e)) . 1ta P01 © =1

A=0 Var(X(t))  A=0 a a 901(‘) (3.37)

where pme') {s now the probability of wrong detection in a semi-infinite

interval. The probability of false alarm, pm(A) is given by (see [12])

JE,
Pop (&) = erf( 4aQl/e) —-2-‘-’- ) (3.38)
e
4
where
L it
E, 2 5 E h7(;0,u)de (3.39)
¢ Up
In fact when A (s small, we have
T 2
¢ (t;0,d,,)dt
@) Pay (B) 11
PQI Var (W(t)) 01 - A <
e TR 7 3y g oy B (2.59)

E [ 0% (e;0,0)de
Uo

Hence, we expect the normalized error variance to approach po‘(‘)la as

L= 0. Furthermore it increases linearly as )\ with slope
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which is expected to be very small when the signal-to-noise ratio is

reasonably high, i.e, when

- ©
[ e?(2i0,d, e << & [ nd(e;0,u)de (3.4
0 Vo

Consequently the normalized variance is approximately pm(A)/a when A s
et varw(e)) . Porca)
Var (X(¢)) o i (3.42)
In view of the fact that the normalized variance of the error resulted from
the linear optimal filter tends to unity regardless of chcwsiml;co-mlac
ratio and behavior of the incident responses, the scheme perto;ic extremely
well over the linear optimal filter, since under normal conditions of
signal-to-noise ratio
-P-gg:-(d—) << 1 (3.43)
vhen I {s small. The results imply that there exists a rate i >0 such
that for i € (0,,*] the suboptimal nonlinear scheme performs better than
the optimal linear noncausal scheme.
3:4.2 Performance Simulation of the $S§
The sequential scheme was simulated on a digital computer; in each
case, it was done over a total length of time to include 20 incidents.
The performance in terms of normalized error variance was plotted against
the intensity ranging from O to 2. L was chosen to be &4 and @ = 0.15.

The system state was reconstructed with delay of 2.

el e e e eed bed e
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The computed performance, Eq. (3.42) was plotted as a continuous
graph in each case and the simulated performance for different values
of X were plotted as points with appropriate notations. For comparison
purposes, the computed normalized steady state error variance of the linear
optimal filter (LOF) was larger than 0.90 in all the cases over the range

A =0 to 2. Several examples were considered as follows:

Example I: x(t) = =2x(t) + UN(e) x(0) = 0
z(t) = x(t) + v(r)
Hence h(t;7,U) = u.-Z(c-?)
N(t) g
y@i~ § gat 0 €20
(=]

The mark U is assumed to be Gaussian with variance 5 and three possible

cases for the mean: (i) 5 (ii) 7 (iii) 10 (see Fig. 2).

Example II: x(t) = UN(t) x(0) = 0

z(t) = x(t) + v(t)
The incident response i{s a step function indicated by u(.),
ht;7,U) = Up(t-7)

Again, U is Gaussian with variance 5 and mean taking one of three values:

(1) 5 (41) 7 (i11) 10 (see Fig. 3).

Example III: The incident response is a rectangular functionm,
h(t,m;U) = Ufu(t=-T) = u(t-7-1)]
We include two cases L=0.2 and 0.5 with same Gaussian U as above (see

'“- 6)0
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Example IV: The incident response is assumed to be a ramp function of
slop U.

h(t,T;U) = U(e-T)
Again, U is Gaussian with variance 5 and mean (i) 40 (ii) 100 (iii) 200
(see Fig. 5).

To investigate the effect of 1ncr¢¢?1ng the number of values in the
set {N(kd)] for maximization i.e. nllouiﬁg delay detection, the case in
Example IV was reconsidered and compared to the case when one more value
of N(kd) in the detection was ullo?ed. The results are shown in Fig. 6.
The simulation agrees cxtfqnely cléccly with the approximate expression
for the performance when A is small. And as Fig. 6 indicates, the per-
formance of the scheme improves considerably if we increase the set of
values for N(k) in the detections.

3.5 Conclusion

In this chapter, we have developed and examined a sequential esti-
mation-detection scheme as an approximate solution to the state estimation
problem. Its asymptotic performance has been derived and shown by digital
simulations to be an extremely good indicator of the true performance when
the intensity i{s small. Hence, under the situation of reasonable signal-
to-noise ratio (SNR) in the observations, the scheme performs considerably
better than in the MMSE sense, the linear optimal filters when A is small.
Indeed the asymptotic performance of the linear optimal filter is extremely
disappointing, regardless of the SNR or how the incident responses behave.

Notice that the SSS performs reasonably well for both stable and

unstable systems under normal signal-to-noise environments as indicated
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in all the examples (see Figs. 2-6). In fact is some cases, it works
better for unstable systems than for the stable case as example I and
IT show. As indicated in example IV and Fig. 6, the performance of the
SSS can be further improved by an additional delay in the reconstruction
process.

As we allow more computational capacity in the sequential scheme,

choosing L * ® and increasing the set of values for N(kl) in the detection,

the scheme becomes MAP optimal. Hence in many practical cases, {t may

indeed be close to the optimal MMSE scheme.
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CHAPTER 4

STATE ESTIMATION OF THE WIENER-POISSON DRIVEN LINEAR SYSTEM
4.1 General

We now address ourselves to the general estimation problem stated in
Chapter 1. As in Chapter 3, we allow an additional uncertainty in the
system by introducing a mark process excited by the Poisson process as

follows

¢:lxt - ‘:xz‘" - Btdut - ":(U)‘mc (4.1a)

where U is the mark process associated with the Poisson process “t and is
assumed to have known statistics, {.e. probability density tu(u). Again
the objective is to develop an estimation scheme with delay (smoothing) for

xt from observations, viz.,
dyt - htxtdt - dv.'t (4.1b)

In this chapter, we develop a suboptimal sequential scheme (SSS) as
the one {n Chapter 3 for Poisson driven systems. The scheme i{s a modification
of the one considered earlier, and consists of performing detection and
estimation of the Poisson incidents in a sequence of small subintervals.
The reconstruction of the system state L will be obtained from the
estimates of the Poisson incident process followed by a smoothing filter.
The estimation and detection of the Poisson incidents are performed using
the MAP criterion as in Chapter 3, while the smoothing filter employs the
MMSE criterion. Basically the only difference in the SS5 for the process

(4.1) from that {n Chapter 3 is that i{n the reconstruction process we apply

the MMSE smoothing to the Wiener driven part of the system whereas in
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Chapter 3 the reconstruction is purely deterministic once the estimation
and detection of the Poisson process i{s finalized.

Due to the sequential structure of the SSS, the errors arising from
any deviations in the estimation and detection of ﬂ: will tend to propagate
and accumulate. A compensation approach will be included in the SSS to
eliminate the error propagation effect. The numerical algorithms in the
optimization procedures and the solution of the equations in the SSS are
discussed and presented in an algorithmic form. The asymptotic performance
for the time-invariant case for small intensity is derived analytically
and simulated numerically.

4.2 Single Interval Suboptimal Smoothing

The system given by Eq. (4.1) is by assumption a measurable process of
the Wiener input process and the Poisson input process together with the
in{t{al (random) conditions. If the Poisson input is given, and the initial
conditions are Gaussian, the system process can be easily shown to be
conditionally Gaussian (7). This conditional Gaussian property enables us
to obtain an optimal estimate in closed form if the Poisson process is
known. Since the system is driven linearly and independently by the two
input processes, that optimal estimate {s in fact the optimal MMSE estimate
of the Wiener driven part of the system, and in our case is just the Kalman
filter.

Let the conditional fiitered and smoothed estimates of the system X,

over the interval [0,T) be denoted by m and -t/ respectively, i.e.

T
a dex |9, 5 0<t<T 4.2
g~ B OKI%es T < (4.2)

L. fex, 9, 1;.‘) 0<t<T  (4.3)
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vhere in our notation, ¥ denotes the g-field generated by {gt; 0<t<s).

Note that m_ and o are not the filtered and smoothed estimates of the

t t/T
system but rather, the pseudo-estimates based on the given knowledge of the
Poisson input nt. The Poisson input can be specified over [0,T) by giving
the number of incidents over the interval and the incident times and marks.

To indicate the dependence on N[0,T) (N(T) for short) and (7,u) of

L and = /1 we use the explicit notation

m, == (NT), 1,9 0SE<T  (4.4)

":/'r - nt/.r(!i('t). T . 0OEL <Y (4.5)

with these notations, a likelihood function of =, observed in white Gaussian
noise, denoted by m(-tl. can be constructed using the concept of estimator-

correlator receiver [10,11) et al.

T
r . e W
LR(m, (N(T),7,u)] = exp( | 8.t - 3 | -td:) (%.6)
Hence for the MAP estimate of N(T), u and 7, we have

J[N.’_-g) = In m[-t v:ﬂil + Inf (ann‘_l,) (“7)

N(T) )

where (s,+,+) is the apriori probability of N(T) and Tau.

‘Nz
Therefore the MAP estimate of N(T) and 7,u denoted by N and 7, satisfy
the following,

JR,I,8) = max  J(N",1%,u") (%.8)
P-I'oa.

Notice that the dimension of 7,u is N. The maximization can be done by

assuming the value of N and maximizing with respect to 7,u first. Therefore,
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J(ﬁ-ié) = max max [J[N*'l*p_‘,{*]] (4.9a)
Nt T*,g*
= max J[N*, F(N%), G(N%)) (4.9b)
N¥

Although N* can take up any positive integer value, large values of N¥
can be neglected in the maximization by an appropriate choice of the length
of the interval T. The aposteriori probability of N(T) is uniformly
continuous with respect to its apriori probability, which can be made
arbitrarily small with the choice of the time interval. Hence the maxi-
mization can be done over a set of finite elements, N* = 0,1.2,...K
neglecting values higher than K.

After the MAP estimates of N and 7,u are determined, the estimates
of the system can be readily determined in a suboptimal fashion by sub-
stituting the estimates of T,u,N in the expressions for L and .tlT (4.4)
and (4.5) (see Fig. 7).

From Eq. (4.1), we have

t t
X, = ®c,0x, + {) ®(t,0)B dW + ‘b ®(t,8)b (U)dN, (4.10)

1f [n‘(U). 0 < s <t) is known, the system is, in effect, a Wiener driven
process. The last term of the equation just gives the system a different

mean function. Hente we can write m, at follows,

= t
o, = x: + ®(c,8)b (V) N (4.11)

where xg is the estimate of the Wiener driven part, and i{s given by its

Kalman filter

i i i
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[ 4
e o c ¢ -1 i ¢ _ . 8C >
Rc 4}2: P N {9t b, 3 O(t.s)b.(U)dﬁ. htxt} t>0 (4.12a)
€ = 222° T t> 0 (4.12b)
t - % G Bl - - ?
ag & ¢
with X = X, , Py = By

After some algebraic manipulations, we have equivalently,

¢
«ex%+xlet
‘t xt + Xt + 6 Q(t,l)b.(U)dﬂ. (4.13)
and
20 _ =0 -1, =0
X, =a.x + P:.ht"r. (yy - bX.] (4.14)
sl _ of o 2 -1
xt - 6 Q(t,s)b.(U) { : Q(t.u)huvu Pudul dﬂ. (4.15a)
a ¥®)
o 11_:1 8, (T iuy) (4.15b)

where @(t,u) i{s the state transition function of the homogeneous part of
the filter in Eq. (4.12) and .:(vi;ut)v i satisfy the causality condition
by definition of the integral (4.15), {.e.

1 : -
't(?L'ui) 0 | e 3 - Yl Vi (4.16)

Similarly, we have

t N(t) 0
[ o, e, & £ gle 5u) @.17)
0 {=]

Note that in Eq. (4.13), i‘O is the only term on the right side of the
equation that does not depend on the realization of 71‘; it 1{s the only
term that depends on the observation it in fact. The remaining two terms

depend only on the realization of T‘t and not ¥_, they are completely deter-

t.

mined by the knowledge of N(t), T,u.
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The smoothed pseudo-estimate m, /p CO0 be readily constructed from

ﬁ: and is given as follows [7,9,12] (see also Fig. 7

M E

o " Xt :1 ‘:("v“ ) (4.18) It
where

i¢

X p * 9k +32Qt(r )y (x;/r %51 (4.19a)

i' - 20d, +32Qt(9) ] p‘” ,siqt @.19%)

< < c ¢
with &r/‘r - &[. PT/T - PT (6.19¢) |

The substitution of Eqs. (4.13-4.17) into Eq. (4.7) yields an equivalent

expression for the MAP maximization which can be expressed as

‘..T a 0 e
3. (N,Tul = [ de(X; + t1: RIETRICE SRR
0
T N
f dt:(x1 T 30(’ .ut)lz + Nink
6 t {wl il 4

B 0 ¢

% ! 1 0 k
K 121(“0""*) + 8, (T u)] )+ Nimk (4.20)

This expression can be further simplified into 5

T | N N )
~ L i
JpOhL,w) o ] def[ T 8, Toupl(z, - 3L zt(vl.ut)lj + Ninh (4.2D)
0 i=1 i=]
where |
8, & g0 ,0) 4 glw (%.22)
g 8y, + & (%.23) i
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Note that J = 0 when N = 0. Also (4.21) is in the conventional form of

the likelihood function where z, is the observation of the signal
N

p 8, (*i.ui) in the presence of white Caussian noise.

i To summarize this section, we have obtained the general equations for
the proposed smoothing scheme. The crucial step is to isolate the parts
of the system which depend solely on the realization of '~'lt (U). They are
finally reconstructed through the detection and estimation of the incidents
of the process ‘:2:(13). The other part of the system is estimated using a
MMSE optimal filter which most importantly has a closed form. Notice that
the linearity of the system model is not required for obtaining the MMSE

closed filter. It only requires that the system conditional on the g-field

5: gives rise to an optimal filter of the closed type; in our case the

-
system is conditionally Gaussian with respect to St‘ hence gives rise to a

closed optimal filter, the Kalman filter.

4.3 Sequential Smoothing and Its Numerical Algorithm

In this section, we consider a sequential smoothing scheme approxi-
mately implement the scheme proposed in 4.2. Such a sequential scheme
will make the implementation in real time feasible, and offers the advantages
of sequential iterative programming for the computations.

In the scheme, observations in subintervals, each of duration & are
processed sequentially to estimate Poisson incidents in that new subinterval
and also update those in the past (or part of the past). Then the system
state is reconstructed subject to the permissible delay based on these

estimates and the estimate of the non-Poisson driven part of the system.
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The approach for obtaining the estimates of the incidents is similar
to that in the previous chapter. Basically, upon receiving a new sub-
interval of observations, the problem of a single interval smoothing as
in the last section has to be solved. Although there are some nice
properties arising from the sequential structure of the scheme the major
component of the scheme lies in the maximization of the expression in
Eq. (4.21).

Note that the expression to be maximized does not have a second

derivative with respect to T,u, since it involves the derivatives of 2

t
which contains white-noise components. Hence, second order iterative

numerical techniques for optimization do not apply.

Another point to note in the maximization is that the number of
incidents, i.e. the dimension of 7,u increases as the length of smoothing
interval increases by 4 each time. Hence a robust approximation approach
which requires up-dating only part of the previous estimates is considered.

In order to develop the algorithm, we shall assume that we have the
estimates of the number of incidents and their times and marks to time
t=nld, denoted by N(nd), T(nd), u(nd) respectively. Then we add as new
subinterval of observations of length 4, where 4 is to be so chosen, as to
satisfy

M= a<< ]
i.e., the probability of having more than one incident in the new sub-
interval is negligibly small. Hence the number of incidents up tu t=nd

can take on two values, namely

N(nd) and N(nd) +1
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Therefore expression (4.21) only needs to be maximized for two sets of
z((n+1)4), which can be done independently. Note that the entrees of

the vectors T,u have been all or all-but-one estimated previously using

p—

the data up to t=ni., Although they have to be updated since more data has

been considered, their estimates can serve as an approximate point in an
iterative algorithm for the new estimates. There are quite a few iterative
techniques that are applicable to the maximization. Among the available,
we choose an approach that does not require taking any derivatives and
converges at a relatively fast speed.

4.3.1 Numerical Iterative Algorithm

The i{terative algorithm consists of first determining for any given
iterated point a direction along which the maximization of J can be done,
then the scalar maximization is done by some efficient search procedures.
More precisely, if we let f} be the k-th approximation point to the optimal
T* which lies in some N-dimensional Euclidean space EN, the new approxi-

mation point ik+1 will be given as

N

$**1 aex (4.25)

where d is the chosen direction for maximization of J and & is the maxi-
mization constant that gives the maximum J subject to the constraint that

the ordered incident times must satisfy
BT VR {=2,3-N (4.26) i
Actually constraint (4.26) gives the range for & in the optimization, since

~k+l ?k#l
i

{=2--=N :%
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we have
k -~ T
?1-1 + adi-l < T‘ + ad1
which results in
T,-T
r/ Zﬁ_zill , Wy B
=2 "d41 i-1 g
a " %.27)
T,
1 o %1 ™%
N\ 1 i'l '

’.-1,2,....“‘0'1.

~k+1 ~k+1
We take P 0, dO"dN+l 0 and Tuel * nd, and without loss of generality
we assume d1 > 0, we have
':+1 T4 a0y W W '?:+1
e < max ( E——-:;—-) <a < min ( 3-—-:3-) < 3 (4.28)
1 i =11 i &5 W | 1
>
b TR deei™ Y

which is the feasible range of & for the maximization search procedure.

Mathematically, if the iterative maximization algorithm {s denoted
by A, it can be represented as

A = MeD (4.29)

wvhere D = !N g Ez" is a point-to-set mapping that determines a direction
for maximization for the objective function J; and M = BZN ot Eu is a point-
to-set mapping that gives a better approximation point for the nnxilizattoﬁ
given the direction and the iterative point.

We choose the Golden-Section Search for M and the Conjugate Directions
Technique for D. The convergence of algorithm A solely depends on the

closedness of M and D. For our choice of M and D, it can be shown easily

both closed and hence convergent procedures ([13,14].
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Due to the unimodal property of J in the mean sense, the Golden

Section Search procedure is a very efficient, convergent search technique

over the feasible range of &. It does not require any derivatives of the
objective function J, avoiding the analytic difficulty of taking derivatives
of white noises.

The conjugate directions usually defined with respect to a quadratic
function are a set of directions such that maximizing in each of the
directions will give the maximum of the quadratic function. In !N. there
are N such directions in the set. The generation of such directions for a
given quadratic form does not require taking derivatives and for maximizationm,
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