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ABSTRACT

We consider the inventory control of a single item in a two echelon

system in which a warehouse (the upper echelon) supports N(N > 1) re-

tailers (the lower echelon). Customers return units in a repairable

state as well as demand units in a serviceable state at the retailer level

only. The return and demand processes are assumed to be mutually indepen-

dent. The stationary return rate is assumed to be less than the stationary

demand rate at each location so that occasional outside procurements are

necessary. The objectives of this paper are to develop a cost model of

this system given that each location follows a continuous review procurement

policy, and to incorporate the single item , single location solution me thod

of Reference 6 into an iterative algorithm which determines the policy

parameter values at each location.

1

i~• ; i~

c-ti
j~~~t,~~f 1r’~~ ~ ___________

• ‘,~
-
~_i 1 _______

I J ~vaL1 - - 1 1.  L~

• A 

~~~~~~~ - - - • —- • -~~~~~ -~~~~---~~~~~~~~ . -“-



_ _ _  T ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~ ~~~

-

~~~~~~~~~~~

—

~~~~~~~~~~

-•• - -• - -

~~~~~~ 

- 

~~~~~~~~~~~~~~~~~ 

— 
- . 

•

1. INTRODUCTION

Inventory systems with returns are systems in which there are units

returned in a repairable state, as well as demands for units in a service-

able state, where the return and demand processes are assumed to be

independent. A discussion of the contexts in which this problem arises

as well as an analysis of a single item, single location system are pre-

sented in Reference 6. The present paper extends those results to the

management of a single-item, multi-echelon inventory system consisting of

a warehouse (the upper echelon) that supports N(N > 1) retailers (the

lower echelon). In particular our objective is to develop both a model

for this problem and an algorithm for finding values for the appro-

- 

priate policy variables.

Only one previous paper has dealt with the problem of inventory sys-

tems with returns in a multi-location system. Hoadley and Heyman [3] exam-

ined a two-echelon inventory system with outside procurement, returns,

disposals, and transshipment; but their model is a one-period model, and all

of the mentioned transactions are assumed to occur instantaneously. Their

approach is not easily adaptable to the case we will examine in which repair

and procurement lead times are non-zero and the planning horizon is infinite.

The inventory system we will study is described in detail in Section 2.

In Section 3, we show how the single-location solution method presented in

Reference 6 can be used to solve for the policy parameter values of a par-

ticular cost model for this multi-echelon system. In Section 4 we conclude

with some final comments and suggestions for future research . 
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2. DESCRIPTION OF THE SYSTEM

As we have stated the inventory system we will study is a two-echelon

system. The upper echelon consists of a warehouse having both repair and

• storage facilities that support the N lower echelon retailers . The re-

tailers only have storage facilities.

All primary customer demands and returns are assumed to occur only at

the retailers . We also assume that all customer demands not immediately

satisfied are backordered, the demand and return processes are mutually

independent Poisson processes, and lateral resupply is not allowed between

retailers .

Let

A
5 

customer demand rate at retailer 5 (5 =

y. = customer return rate at retailer 5 (5 =

= constant transportation time between the warehouse and a retailer, and

T2 = constant procurement lead time for the warehouse from an outside

source.

The assumptions that transportation times are identical between the ware-

house and any of the retailers , and that customer demands and returns occur

only at the retailers are made for notational simplicity only. It will

be apparent that relaxing these assumptions poses no additional problems .

Recall that repair facilities exist only at the upper echelon. Consequent-

ly, we assume that a returned repairable unit to a retailer is immediately

sent to the warehouse from the retailer and need not go back to that same re-

tailer after it is repaired. We also assume that the repair process at the

warehouse operates as a first-come, first-served queueing system.

Since transportation times are assumed to be constant, returns of repair-
N

able units to the warehouse occur as a Poisson process with rate y.~ ~ v~.:1=1
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Therefore , it is equivalent , and more convenient , to think of returns ~
- 

-

occurring only to the warehouse, and as a Poisson process with rate y
0.

We assume that retailer 5 uses an ( S. -l, S
5

) continuous review

ordering policy, i.e. a constant inventory position (net inventory plus

on-order) of S. is maintained. This implies that retailer 5 immedi-

ately orders one unit from the warehouse every time a customer demand

occurs at that retailer. Since each order placed at a retailer also re- 
—

sults in a demand being placed upon the warehouse , demands on the warehouse
N

occur as a Poisson process with rate A
0 

= ~ A..
j l ~~

[Note the importance of the assumption of following an (S.-l, S.)

policy at retailer 5. If the retailers followed (Q,r) ordering poli-

• - cies, then the time between the placing of orders upon the warehouse would

not necessarily be exponential, nor would the orders necessarily be for in-

dividual units. Thus the demand process at the warehouse would no longer

be a simple Poisson process.]

We assume that > A~ so that an occasional outside procurement

is necessary. The warehouse is assumed to follow a (Q0,r0) policy, i.e.

when its inventory position (net-inventory plus on-order plus in-repair)

falls below r
0 + 1, an order for Q0 units is placed upon an outside

procurement source. (Note that a (Q
0,
r
0
) policy is not necessarily opti-

mel for reasons discussed in Reference 6. However, we use it because

it is a simple and commonly used policy. Furthermore, as is shown in [4],

the (Q0,r0) policy performed well against other policies that were tested.)

Warehouse procurement orders are assumed to arrive at the warehouse

T2 time units after the order is placed . However , an order placed by a

retailer upon the warehouse does not necessarily arrive at the retailer 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -
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time units after it is placed . In addition to the transportation time

T1, there may be a delay due to the warehouse being out of serviceable

stock . All demands made upon the warehouse that are not immediately sat-

isfied are backordered.

A schematic representation of this system, is given by Figure 1.

Warehouse
Return rate
Demand ra te A 0
Lead Time

(Q 0 ,r0
) policy

_Reta iler ~Demand ra te A1 
.

Transportation time T1
(S1-l , S1

) policy

Figure 1. A Schematic Representation of the Multi-Echelon System 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Finally , let the system cost parameters be as follows:

= the holding cost at the warehouse-($/unit-year),

= the holding cost at retailer 5 (S/unit-year) (5 =

iT
5 

= the backorder cost at retailer j (S/unit-year ) (j  = l ,... N ) ,

and A = the fixed warehouse procurement order cost (S/order).

Given values of h. (5 = 0,... ,N ) ,  (5 = 1,... ,N), and A, all

assumed to be non-negative, the problem is to determine values for Q0, r0,

U and S. (5 = l,...,N) that will minimize the expected annual sum of order-

ing, holding, and backorder costs over all locations.

3. SOLUTION METHOD

a) Motivation For The Algorithm

We begin by summarizing the results for the single-item, single-location

• 
- problem with constant procurement lead time t , Poisson demand rate A ,

and Poisson return rate y (y < A) that are developed in reference 6.

Let

2x
— 1 2

•( x ) = — . e  ,

and

x
•(x) = f •(t)dt.

t=-~

Given ordering, holding, and backorder costs of A , h , and ;, respec-

tively, and the fact that the stationary distribution of net inventory can

be closely approximated by a normal distribution (as shown in reference 6) ,

the optimal procurement lot-size, Q*, is the Q that satisfies

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(1) 0~ — 
12(A—y)A

- - 

a ‘

-i ;r
a = (w+h) + (~ (;;};~))~

d = 
A y 

2 
- + Var [ lim(R(t ))]  + (A+y)t , and

(A -y ) t-’°°

R(t )  = the number of units in repair at time t.

The optimal reorder point, r*, satisfies

(2) r* = /~~~~÷d ~~~~~~~ - 4Q*~ c,

• where

c = + 4 + E[lim R(t ) )  — (X -~ )-r .

For the multi-echelon problem note that we do not have an explicit

value for 
~~~~
‘ 

the warehouse backorder cost. Given the interactions be-

tween the two echelons of our inventory system, the cost of a backorder at

the warehouse is an imputed one. It is measured by the effect of a back-

order at the upper echelon upon the expected performance at the lower

echelon.

The optimal stock level at retailer 5, S~~, is a function of the

procurement resupply time , that is ,the expected time from the placement to

receipt of an order by a retailer . This procurement resupply time is then

the transportation time T1, plus the expected delay due to the warehouse

_ _ _ _ _ _  ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
•
~~~~ 

rn p.
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— being out of serviceable stock . Clearly , costs at the lower echelon can

• be reduced by reducing the expected resupply time. This can only be ac-

complished by decreasing the expected warehouse backorders at a random

point in time, which is achieved by increasing Q
0 

and r
0 

(or both ) at the 
-

•

warehouse. This, in turn , raises holding costs at the warehouse. Thus

a tradeoff exists between costs at the upper echelon and costs at the lower

echelon. We now develop an iterative algorithm based on this trade-off

which alternates between finding stock levels for the upper and lower eche-

ions.

Suppose we are given a backorder cost for the warehouse, ir~ . Then

we can use (1) and ( 2) to find optimal values for the parameters Q0 and

r0 . These determine a ‘performance level’ B , where

B = the expected backorders at the warehouse at a random point in time.

Letting ~i and be the mean and variance, respectively, of the normal

approximation to the stationary distribution of net inventory at the ware-

house, we have

B = aq~~ -) —

Then the expected resupply time for a retailer is

(3) T = T
1 + B/ A 0,

*It is shown i~n eference 1+ that the normal distribution improves as an
approximation to the steady-state distribution of net inventory as -

~~

decreases and At increases. However, it is a good approximation in the
tail of the distribution,which is all that we require, in all cases.

i I
~~
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since the expected delay time per demand is the expected number of delays

at a random point in time divided by the demand rate. This is a direct

application of Little’s Formula L = AW. Then, using Palm ’s Theorem [1]

as an approximation, we assume the number of units in resupply at retailer

j to be Poisson distributed with mean A .T. (Palm ’s Theorem requires

the independence of resupply times , making this system analagous to an

M/G/°° queue. Resupply times in our system are not independent; consider,

for example , a demand by a retailer which cannot be immediately filled by

the warehouse. Then it is more likely that the next demand placed by a

retailer upon the warehouse also experiences a delay than if the preceding

order had been immediately satisfied.)

The use of Palm ’s Theorem to approximate the distribution of the

number of units in resupply at retailer 5 with a Poisson distribution

is discussed later. (As we will see, this approximation is good when the

expected warehouse net inventory is non-negative.)

Once we know the value of T and have the form (approximately ) of the

distribution of the number of units on-order by retailer 5 we can solve

N independent subprob lems to obtain the optimal value for S.. The sub-

problem at retailer 5 consists of finding the optimal stock level S~ ,

assuming a constant procurement resupply time of T, where T is given

by (3). This is accomplished using Lemma 1.

Lemma 1. Suppose the procurement lead time is a constant T and demand

is Poisson distributed with rate A .. Then the optimal value S’~ for an:~
(S.—l, S.) policy is the largest integer S. such that 

• - - - -- •
~~~ 

_



— 
., — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~,.-r.-., -~—- ~~‘

9

(4) P(S. ;  A .T) >

where P (x ,~i) 
rL 

p(r;p)

and p(r;ii) = e~~~-~-

The proof of Lemma 1 can be found on page 204 of Reference 2.

Let K ( S ,T) be the expected annual holding and backorder costs at
- J 3

retailer 5 when the constant inventory position is S. and the constant

procurement lead time is T. As can be shown (see Reference 2)

(5) K.(S.,T) = (1r +h . ) [X .TP(S.— l; X .T) — S.P(S.; A .T)]  + h .[S .- A .T].
3 3  3 3  3 — 3  3 3 — 3  3 3 3  3

F~r a fixed value of T (and therefore of B) we define the minimum total

expected costs at the lower echelon, K~(B ) ,  as

N
(6) K~ (B ) = ~

j=1 ~

where K .( ,~
) is given by (5), T is given by ( 3) ,  and S~ satisfies

£
(4) .  Given a current value of B = b , dK (B )  

will be our current
B b

estimate of ir,,~~, since it measures the marginal effect of a warehouse back-

order on the expected total lower echelon cost. It is easy to show that

dK (B) ~~~~~ 

~ 
[(

~~.+ h .)X .P(S~ ; A .T) — h A .].
• dB A

0 j=1 ~ 1

b ) The Algorithm

Before presenting its details we will give a brief overview of the 

_ _ _  

-j
________ _~~.~~~_ _ _  &— ___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - - —•~~ 
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algorithm’s steps. The algorithm begins assuming a value for ir
0 

is

available. Given this value, the optimal values for and r0 for this

single location problem with returns are found using (1) and (2). This

solution determines a performance level B = b, and therefore an expected

resupply time of T for the lower echelon. Given this value of T, op-

timal stock levels are determined for each retailer, and we can find

the total expected cost for the lower echelon. A new estimate is obtE ined

for 
~ 

(
~ 

dK~(B)~~~~) and the cycle repeats until convergence occurs.

Next, let i~~(B) be the minimum total of expected warehouse order-

ing and holding costs that can be achieved given that the expected ware-

house backorders is B.

We state two lemmas without proof.

Lemma 2. K
U(B) is convex decreasing in B.

Lemma 3. Let T be a constant resupply time. If the optimal stock levels

S. (5 = 1,... ,N) are continuous rather than integer-valued , then K~ (B)

is a concave increasing function of B, where B = A
0
(T-T

1
).

The proof of these lemmas, which involve nothing more than applying the chain

rule to take derivatives , may be found in Reference 4.

Figure 2 represents a typical graphing of 1(~ (B )  and Ku(B )  against

B. The objective is to minimize K~(B) + 1(
’1(B) with respect to B. We

observed in all test cases that under the conditions of Lemma 3, KU(B ) +

K~(B) was convex in B. Therefore, the minimum cost will occur where
dK~ (B ) 

- dKu(B )
dB - dB
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h.
(4) P(S .; A .T) >

where P(x ,~’) 
rL 

p(r;p)

and p(r ;~i) = e ’~L~-

The proof of Lemma 1 can be found on page 204 of Reference 2.

Let K ( S ,T) be the expected annual holding and backorder costs at
3 3

retailer 5 when the constant inventory position is S. and the constant

procurement lead time is T. As can be shown (see Reference 2)

— (5) K.(S.,T) = (.+h.)[A.TP(S.—l; A .T) — S.P(S .; A.T)] + h.[S.- A .T].
J 3 3 3  I 3 3  3 3 3  1

For a fixed value of T ( and therefore of B) we define the minimum total

expected costs at the lower echelon , K~(B ) ,  as

N
(6) K~ (B) = ~

5=1 ~

where K.( ,- ) is given by ( 5) ,  T is given by (3) ,  and S~ satisfies
I £

(4). Given a current value of B = b, 
dK (B) will be our current

B b
estimate of its , since it measures the marginal effect of a warehouse back-

order on the expected total lower echelon cost. It is easy to show that

NdK (B) 
= ~ [(~~÷ h.)A ~P(S~; A .T) — h A .].dB A

0 j=l ~ ~ ~ ~

-
• b) The Algorithm

Before presenting its details we will give a brief overview of the

_ _ _  _ _ _ _ _ _  _ _ _
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Figure 2. Minimum Upper and Lower Echelon Cost Functions Vs. B.

As was shown, it is easy to find the optimal stock levels S*, using

Lemma 1. Using these stock levels we find K~ (B )  for a fixed value of

B. Finding K
u
(B) directly as a function of B is extremely difficult.

Thus, it is necessary to search for this value of B at which the two

curves in Figure 2 have tangents with slopes of opposite sign. The slope

of K~(B) at this optimal value of B is the imputed warehouse backorder

— cost , ir~ . Suppose we originally had this value of and solved the ware-

house problem (using (1) and (2)). The optimal value of B for this problem

would be the same value of B that minimizes Kt(B ) +

The first few steps of the algorithm are illustrated in Figure 3. The

algorithm begins by setting it~ = max (n .). This is an upper bound
I

on the optimal value of it
0

, since this value implies that a backorder

at the warehouse always results in a backorder at the retailer with the

largest backorder cost. Then Q0 and r
0 

are found using this upper bound

on This determines a value of B ( say B = b
1

) (and therefore of T)

which is a lower bound on the optimal value of B (and therefore of T).

These computations yield point ® on the upper echelor cost curve in

Figure 3. 

~~—S-~~~_ — _ •
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Using this lower bound on the optimal value of T, we find a lower

bound estimate of 5* (5 = 1,... ,N) which determines a value K~(b ) ,

point ~~ in Figure 3. Next we set ~~ = 
dK (B )~ Since Ki(B )

is concave in B, and since we have a lower bound estimate of the op-

timal B, the new estimate of it
0 

is an upper bound on the optimal value

of 1r
~~
; but, it is smaller than the previous estimate. Using this new

estimate of ir
e
, B will increase to a value, say b2, as a result of

resolving for Q0 and r0 using (1) and (2). These calculations produce
b

point (~) in Figure 3. The procedure continues by letting T = T + 
_~a

and finding K t(b 2 ), which leads to point (~). The algorithm continues

in this manner until convergence occurs.

:

~~~~~~~~~~~~~~~~~~~:IIII 
B

b
1
b
2

Figure 3. First Steps of Algorithm

The algorithm we have described can formally be stated as follows:

b... A - .  - —_•- —---
~~

-— -• —
~~ ~~~

—---
~~~~

---- •—-— — — --—-- -- ----——- -----———--- -- —--—-- — -
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Algorithm

Step 0) Let 1r
0 

= max (I !~~) .

5 1 ,... ,N

Step 1) Given ire, solve for Q0, r0 
using Equations (1) and (2 )  and

determine the corresponding value of B, say b.

Step 2) Let T = T
1 

+ b/A 0 ; find the S~ using Equation (4) .

Step 3) Using these S!, find 
dK~(B) evaluated at B = b, using

Equation (7); let assume this value, and return to Step

1) unless the stock levels and costs have converged sufficiently.

That the algorithm converges can be observed by considering the

problem as the following constrained optimization problem:

N
mm KU (B )  + ~ K

5
(S~,T)B>0 j1

s.t. B A Ø (T - T
1
). (P1)

If we let ir~ be the Lagrange multiplier for the constraint in

problem P1 (i.e. it is the imputed cost of a warehouse backorder), the

above problem may be reformulated as the following optimization problem:

N
~~ mm K’~(B ) + K (S*,T) + ir

0
(B — A

0
(T-T1)]. (P2)

T>O B>O 5=1

I

I I - - - •- --- •_-• -———-- -----— —--_- --— - - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5--- -
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The optimality conditions for this problem are

N
~ K (S*,T)}

dT 0 0

~~dB 0~~

and

(10) B — A
0
(T—T

1
) = 0.

N
Since K 1(B ) wa~ defined to be equal to 

~5=1 ~

N N
~ K (5*j~)} d{ ~ K.(S*,T)}

dK (B) 
— j 1  . dT - 5 l  ~ . ..i ~. —dB - dT - 

dT A
0 

- ~~

Thus from (9) and (11) we see that

dKL(B) 
- - 

dK’~(B) =
dB 

- dB

In Step 2) of the algorithm , condition (10) is maintained , while

condition (11) is not. The value of B, determined by the values of

Q0 and r0 in the previous step, establishes the value of T1. However ,

the slopes of the two curves KZ(B) and K”(B) are not necessarily of

opposite sign at this value of B.

In Step 3) and then Step 1) the reverse is true . In using the

value of d K ( B)~ as the warehouse backorder cost , condition (1].) is 

~~~~~ - •---
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maintained , while condition (10) is not .

However, since the value of B is monotonically increasing (and

it
0 

is monotonically decreasing) with every iteration of the algorithm,

the value of B converges on that value such that both (10) and (11 )

are satisfied. The value of it
0 

converges to the optimal value of the

Lagrange multiplier in Problem (P1). An example showing the results

of- applying the algorithm are given in Table 1.

Two complications, however, occurred in a few of the 50 test cases

that were run. Recall, first, that Lemma 3 states that K~(B) is con-

cave increasing if the stock levels 
9 

are allowed to vary continuously.

Actally, Lemma 1 is used to find an integer value of J~. For fixed

values of 
9 

(5 = 1,... ,N ) ,  Kt(B) is actually locally convex in B

almost everywhere and not concave, even if the ‘general shape’ of the

curve is still concave. A true representation of the curve K 1(B) is

given by Figure 4. Thus when restricting ourselves to integer values

for the 9, an overestimate rather than an underestimate of in

Step 3) of the algorithm is possible. Even so , convergence to the correct

value of 1r0 (and of B) is still to be expected . This overestimation

of did occur in a few of the test cases .

In general, the optimal values of Q
~ , r0 and S

5 
( 5 = 1,.. .,N)

were found after only three iterations of the algorithm. This occurred

in 48 of the 50 test cases . The curve K~(B) is very flat compared to

• 
~~~~ so that convergence to the correct value of occurs quickly.

Recall that we noted earlier that K~(B) + K”(B) was convex for all of

the 50 test problems. The reason this occurred was because K t(B), al- 
•

though concave , is almost linear.
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Table 1

An Example of Algorithm Intermediate Results

N = 5, A 0 20 , y
0 8, c —15 , d = 1-0 , A 20 , = 1

= 1, it
5 

= 10, (j =l ,...,5), h0 = .6

A1 = 2 , A 2 = 3, A 3 = 4 , A 4 = 5, A 5 
= 6

Iteration # Q0 
r~ B T S~~( j l ,...,5)

1 10.00 14 20 .124 1.01 4 5 7 8 9

• 2 0.59 21 4 3.708 1.19 5 6 8 9 11

3 0.45 22 4 3.791 1.19 5 6 8 9 11

4 0.44 22 4 3.791 1.19 5 6 8 9 11

K 
£
( B)

— _ _ _ _ _ _ _ _ _ _

Figure 4. The ‘True’ Shape of K 2(B )

H 
_ _  

_ _S ~~~~~~~ ~~~~~ —~~--~I- - -
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c) Testing the Poisson Assumption

Recall that in the development of the algorithm we approximated

the distribution of the number of units in resupply at retailer

j (5 = 1,... ,N ) with a Poisson random variable with mean A
5
T. To

test th is approximation , we derived an expression for R
5
(t), the

number of units in resupply at retailer 5, for a special case , namely

one in which the repair facility at the warehouse behaves as an M/D/o’

queueing system. The derivation was similar to ones given in References

5 and 7~ the details may be found in Reference 4.

Using this exact distribution of R.(t) the assumption that

R~(t )  is Poisson with mean X~ T was tested . As was found in Reference 7 ,
J I

the results indicate that the Poisson assumption (i.e. the assumption

that resupply times are virtually independent) improves as the expected

warehouse backorders , or the probability of delay at the warehouse ,

decreases . In particular , the Poisson assumption was found to be good

as long as the expected value of net inventory at the warehouse at a

random point in time is greater than zero. This will, of course, be the

case for a reasonably large ratio of backorder to holding costs.

A sample system showing how the Poisson approximation to R
5
(t)

improves as the warehouse ‘safety stock’ increases, is given in Figures
N

5-7. Let A~ = 
~ 

A., and let R be the constant warehouse repair
i l
i�5

time . In our example , suppose that A . = 3, A~ = 2 , 
~~ 

= 1, T
1 

= 1,

T2 = 2 , R = .6 , S
1 

= 3, and Q0 = 5. The values of r0 considered are

4,6, and 8. Table 2 shows how some of the performance measures change

with these values of r0.

—• --
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Table 2

Performance Measures as r0 
Changes

r
0 

B T R.(t) vs. Poisson Approximation

4 1.462 1.292 Figure 5

6 .732 1.146 Figure 6

1 8 .318 1.064 Figure 7

If the expected value of net inventory at the warehouse is to be

greater than zero, when Q0 is fixed at 5, then r
0 

must be at least

5 j ?~- . When r
0 

= 6, the Poisson approximation to the number of units in

resupply at base 5, R
5
(t ) ,  is already quite good. When r

0 
= 8, the

approximation is almost perfect.

Another complication that occurred in our 50 test cases was due to

the fact that the Poisson approximation to R
5
(t) underestimates the variance 

—

when B, the expected number of warehouse backorders, is large. Thus the

use of the Poisson approximation in defining K 1B) by (6) serious-

ly underestimates the true expected total cost at the lower echelon when

B is large. In a few of the test cases, low values of r0 and Q0
were assigned to the warehouse, which made its expected inventory posi-

tion less than its expected net lead time demand. This occurred because

the true lower echelon expected costs for relatively large values of

B were significantly underestimated.

One can make a simple alteration in the algorithm to alleviate this

difficulty. It is reasonable to require that the expected value of net 

,- - - - - - - -
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Figure 5: The Number of Units in Resupply at Retailer j(r0 = 4) 
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exact
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• Figure 6: The Number of Units in Resupply at Retailer j(r
0 

= 6)
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exact

— — Poisson approximation
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inventory at the warehouse at a random point in time be greater than

zero. From Equation (16) of Reference 6, we see that ~~ -
~~~ ~~~~ 

assures

us that this condition will hold . Thus, we can alter Step 3) of the

algorithm so that is set equal to the maximum of the expression

given in Step 0) of the algorithm and h
0
. This assures us of having

reasonable warehouse stock levels and of having the Poisson distribution

be a good approximation to the distribution of the number of units in

resupply at a retailer.

4. CONCLUDING COMMEN~~

We have shown how the single-location solution method of [6] may

be incorporated into an iterative algorithm for setting stock levels in

the single-item, multi-echelon inventory problem with returns. In [43

it is shown that simple alterations allow this algorithm to set

stock levels in a multi-echelon system in which repair of returned units

may also occur at the retailers. A necessary condition is that there

be a large number of retailers , so th~’t the return process at the ware-

house is well approximated by a Poisson process.

The algorithm presented may also be imbedded in a larger algorithm

which sets stock levels in an M-echelon inventory system with returns.

The only requirement would be the use of an (S-i , 5) procurement policy

at each of the lower M-1 echelon locations.

We conclude with a discussion of possible directions for future

research on the problem of inventory systems with returns. Though the

inventory models considered in this paper and in Reference 6 contain less

restrictive assumptions than those of the previous literature, many im-

portant extensions still need to be examined . For the single-location

S 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -• _—•--— —- - -_ ~•~~~~~~~~~~~—_~ -- .  

~~~~~~4k ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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problem, these include non-stationary return and demand processes , a

finite-horizon periodic review model, and a multi-item model in which

repairable units of different types ‘compete ’ for the limited repair

capacity. For the multi-echelon case, an analysis should be conducted

of the warehouse demand process when the retailers follow different

(Q , r) procurement policies, and an algorithm needs to be developed

for determining procurement policies for the warehouse and the retailers

when all locations use a periodic review policy.
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