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SECTION I
BACKGROUND AND OBJECTIVES

1. THE CONCEPT OF FUNCTIONAL REDUNDANCY

A high degree of reliability in control data instrumentation is
vital to the mission of USAF, and this objective is typically accom-
plished by comparing the outputs of redundant system components. How-
ever, the weight, volume, and cost penalties of such equipment redun-

dancy can be substantial.

Data systems already onboard the aircraft - the air data computer,
inertial system (free or aided), attitude and heading reference system,
and the rate gyros and accelerometers of the automatic flight control
system - provide functionally related data. This form of inherent func-
tional redundancy among sensor signals can be exploited rather than re-
sorting exclusively to hardware duplication to achieve the desired level

of data system reliability.

To date, such functional redundancy has not been employed in the
development of fault tolerant or high reliability systems. Instead,
the reliability of individual system components has been improved, and
then these components are incorporated redundantly with some form of
comparison logic to generate a reliable signal. Such comparisons re-
quire a minimum of two signals to indicate a discrepancy, and a minimum
of three signals to determine the appropriate signal level if a dis-
crepancy does exist. Thus, for a system to operate normally in the

face of a single sensor failure, that sensor must exist in triplicate

1
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so that the comparison logic can isolate (and remove) the faulty signal.
It is desirable for the more critical sysiems to be able to tolerate
two failures, necessitating another level of redundancy, or quadruplet
components. Such a level of hardware redundancy becomes prohibitive as

systems become more complex and sophisticated.

A viable alternative would be to replace some levels of hardware
redundancy with the functional redundancy that exists among the outputs
of the different sensors in the aircraft. Thus, functional redundancy
is viewed as a complement to equipment redundancy for an overall system,
providing the same level of reliability with fewer components than re-

quired if subsystem outputs were not correlated with one another.

It is also a complement to, rather than a replacement for, other
means of fault detection. Some types of failures are more appropri-
ately handled by these other techniques. As envisioned in this report,
the functional redundancy algorithm might have an iteration rate of ap- §
proximately 5 Hz. A number of iterations might be required to declare
a failure and isolate the failed signal, resulting in a time period on
the order of one second before a failed signal might be removed from
the overall data system. Such a response time would probably not be
sufficient for safety of flight parameters. The iteration rate would
be increased; but since most signals would not require a faster re-

sponse time, the benefits would become marginal compared to the in-

crease in computer loading.
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Certain types of errors, such as deterministic biases and scale
factor errors, can be readily evaluated by means of filtering and com-
pensation techniques on individual or redundant identical components.
Functional redundancy might be employed in part to detect which signal
is biased out of tolerance, but estimating and compensating for the
actual bias value is achieved more easily by comparison of the signal

to that of an identical component.

Similarly, many hard failures are readily detected by built-in-

test (BIT) capabilities of individual components.

Functional redundancy is most applicable to the detection of
failures that are currently isolated by comparing signals of identical
sensors. These might be hard (or catastrophic) signal failures or
"soft" failures in which the signal slowly drifts away from the true
parameter value. Rather than comparing duplicate signals, though, a
sensor signal is compared to an estimate of its value generated from
other functionally related signals. These functional relationships
encompass kinematic differential equations, as well as geometric and
aerodynamic relations that characterize aircraft motion. For example,
an inertial system indicates angular orientation of the vehicle, while
rate gyros associated with the flight control system measure the vehicle
angular rates. A kinematic relationship exists between these quanti-
ties, and such a functional relationship allows the correlation of

data taken from the two sensor systems.
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Actually, the pilot and crew have been required to perform such
cross correlation in verifying the validity of independent subsystem
measurements. However, as aircraft incorporate more sophisticated and
extensive avionics, multiple mode or mission capabilities, and higher

speed and meaneuverability, especially in the case of single-seat vehi-

A S e Vi it i

cles, the time the crew is able to devote to such performance monitoring
becomes very restricted. Therefore, it is essential that as much in-
formation as possible be automatically digested, interpreted, and pre-
sented to the crew in a usable and concise form. Functional redundancy
can be incorporated into the data system design to provide such reliable

capability with a minimum of equipment duplication.

2.  BASIC ALGORITHM FORMULATION

The functional relationships provide the system equations of a
model reference for the failure detection and isolation technique. The
appropriate sensor signals are used as "“inputs" to this model reference,
the functional relationships thereby generating model reference "out-
puts." By comparing these outputs to the measured values of these
quantities, i.e., signals generated by other sensors, error signals are
produced. These are then fed back through appropriate gains so that the

model reference tracks the measurements.

When the functional relationships are linear differential equations

and the statistics of noises and uncertainties are adequately modelled

as Gaussian, the Kalman filter provides such a model reference. Moreover,
if the dynamics are nonlinear, an extended Kalman filter that linearizes
about the most recent estimate of nominal parameter values can be

utilized. 4
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Sensor failure detection is achieved by monitoring the individual
components of the sequence of residuals, the individual error signals
generated by differencing a measured output and the model reference's
best estimate of what its value should be. With no sensor failures,
this sequence of residuals should possess certain characteristics, such
as being white, zero-mean, and Gaussian. A consistent departure from
such a characterization would indicate a fault, and the specific manner
in which this departure manifests itself in the residual sequence can
be used to isolate the particular fault involved (at least partially

isolate it, if not totally).

A logical and effective means of discerning such departures would
be through the use of the statistical detection theory method of ob-
serving the magnitude of appropriately defined likelihood functions.

If the magnitude of a certain residual is consistently higher than nor-
mal, the magnitude of the likelihood function also increases. When its
value surpasses some preselected threshold for acceptable behavior under
normal conditions, a fault is declared. By noting the pattern of such

threshold passings, the exact cause can (often) be deduced.

3.  SYSTEMS EMPLOYED
| In order to demonstrate the performance capabilities of the func-

tional redundancy concept, the following sensor systems were considered:

e

(1) the inertial navigation system

(2) the attitude and heading reference system
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(3) the air data system
(4) the rate gyros and normal accelerometer of the automatic

flight control system.

The concept can be applied to other measurement systems as well,
such as those associated with the propulsion system or external naviga-
tion aids. However, the scope of this work was confined to the above
systems to yield a concerted effort in an area partially investigated by

a previous study [0].

There are eighteen (18) individual signals to be utilized in the
functional redundancy algorithm. These signals would be sent to a com-
puter interface which would provide sampling and A/D conversion of the
signals, yielding algorithm inputs in usable form. The individual sig-

nals from the four measurement systems are:

From the Inertial MNavigation System (INS):
(1) Pitch (8)
(2) Roll (¢)
(3) Heading (v)
(4) Acceleration along local horizontal axis Xp (axh)

(5) Acceleration along local horizontal axis Yh (ayh)

(6) Vertical acceleration (azh)
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From the Attitude and Heading Reference System (AHRS):
(1) Pitch (')
(2) Roll (¢')
(3) Heading (y')

From the Air Data Computer (ADC):
(1) Angle of attack (a)
(2) Indicated airspeed (vi)
(3) True airspeed (va)
(4) Altitude (h)
(5) Altitude rate (h)

From the Automatic Flight Control System (AFCS) sensors:
(1) Pitch rate (wy)
(2) Roll rate (wx)
(3) Yaw rate (wz)

(4) Normal acceleration (az)

The three angles from the INS are available from g‘mbal resolvers
or from the gyros themselves; the accelerations are taken from the plat-
form accelerometers, and are thus coordinatized in local horizontal
axes. (The exact definition of Xn and Yh in the horizontal plane would
depend on the inertial system mechanization, and can actually be defined
for convenience since any choice would be related to what is actually

available by a simple, known rotation transformation.) The displacement

gyro assembly of the AHRS provides its indication of the three Euler
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angles. To generate its five signals, the ADC processes inputs from
various air data sensors: the angle of attack probe and associated
transmitter, the temperature probe and its transmitter, the static
pressure source, and the pitot pressure source (the latter two typically
being coupled pneumatically to the computer). Finally, the AFCS sensors
provide signals proportional to the body rates and normal acceleration

in vehicle body coordinates.

The signals described above are the nominal inputs to the failure
detection algorithm. It may be beneficial to input an indication of
commanded or actual control surface positions for adaptability purposes,
as will be discussed in Section III.7. However, the basic description

of the system will first consider only the nominal inputs.

The measurement systems employed are found in virtually all modern
aircraft, and thus the failure detection concept is applicable to any
particular vehicle. To assure a realistic evaluation of the technique,
a particular aircraft was chosen to represent typical applications; the
F-4 chosen because of the relative availability of data about its per-
formance and instrumentation. A previously developed simulation model
of the F-4 vehicle and its various sensor subsystems [0] was utilized in
the first phases of analysis. Since any simulation model is a sim-
plification of the real world environment, subsequent analysis replaced
the simulation with actual data recordings from test aircraft, with
simulated sensor failures added to real data. This second phase of

analysis provided as realistic a means of performance evaluation as

possible without actual sensor failures in flight. Essentially, it was
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conducted to corroborate the conclusions of the analysis based on the

aircraft simulation program.

4. MAJOR FAILURE MODES

A substantial effort was conducted previously [ ] to delineate the
major failure modes of the sensor instrumentation onboard a typical air-
craft. These modes were then included in the simulation program used to
evaluate failure detection performance (a portion of this effort includ-
ed the revision and modification of the program to provide a better sim-

ulation).

4.1 SUDDEN FAILURES WITH SUDDEN EFFECTS
Certain failures affect sensor measurements directly, so that a
sudden failure causes a sudden effect. Many failures involving the air

data system are of this type. These would include:

(1) Sudden leak in the static line: this would cause a sudden
erroneous measure of altitude, altitude rate, and indicated
airspeed, the error being detectable during any portion of

the flight regime.

(2) Sudden leak in the pitot line: indicated airspeed would

undergo a sudden change, this error being detectable at any

time.




AFFDL-TR-76-93

(3) Sudden increase in noise of static pressure transducer output:

T

would cause noisy measurements of altitude, altitude rate, and
indicated airspeed, being detectable during any portion of

flight.

(4) Sudden increase in noise of pitot pressure transducer output:
would similarly cause a noisy indicated airspeed signal, being

evident at any time.

(5) Tachometer failure: would result in the loss of altitude

rate, being detectable only when the aircraft is either as-

cending or descending.

ot aam

(6) Bent angle-of-attack vane: would result in a sudden increase
in the bias of the angle-of-attack measurement, and would be
detectable during any flight regime; this would also adversely
affect the computed indicated airspeed generated in the fail-

ure detection algorithm.

(7) Sudden increase in noise of angle-of-attack output potentiom-
eter: angle-of-attack signal would undergo a sudden increase

in noise level, occurring during any portion of flight; this,

too, would corrupt the computed indicated airspeed developed

in the detection algorithm.

10
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(8) AFCS normal accelerometer pickoff failure: would immediately
affect the computed indicated airspeed created by the model

reference of the failure detection algorithm, and this effect

should be noticeable at any time.

(9) Sudden float leak of an INS vertical accelerometer: would
generate a sudden error in the vertical acceleration signal,
and a slow drifting effect on INS altitude outputs as well.
Only the vertical accelerometer is used directly in the pre-
sent failure detection algorithm--had the INS accelerometers
been used to check the AFCS normal accelerometer, a sudden

failure of an INS accelerometer would yield a sudden error in

this signal correlation.

4.2 SUDDEN FAJLURES WITH DRIFTING EFFECTS
% Certain types of failures do not directly affect measurements, so
that their results are not sudden, but drifting, erroneous signal lev-

els. Failure modes of this form encompassed:

(1) Clogged static line to ADC: the altitude, altitude rate, and
indicated airspeed will become erroneous if the vehicle changes
altitude or airspeed (neither of which can be changed instan-

taneously, so this is in fact a drifting type effect).

(2) Clogged pitot 1ine to ADC: indicated airspeed will drift off

true value if the vehicle changes airspeed.
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(3)

(4)

(5)

(8)

Jammed angle-of-attack vane: the ADC angle-of-attack signal
will exhibit a "drifting"” type error as the true angle of
attack varies in flight. (The simulation program was incapa-

ble of producing this type of failure.)

INS vertical gyro torquer failure: drifting of pitch and/or
roll attitude indications would result, eventually corrupting

all INS outputs.

INS heading gyro torquer failure: heading measurement would
undergo a drift, and other INS outputs would be affected in

time.

INS gyro float leak: this, or any other failure that would
cause a center of gravity shift, will result in acceleration-
induced gyro drifts; in level flight the gravity induced drift
affects the INS heading output, while during a turn both the
heading and pitch indications of the INS are affected; eventu-

ally, all INS outputs would be adversely affected.

Vertical gyro servo failure: 1loss of slaving causes a drift
in the AHRS roll indication, so this is detectable only during
relatively level flight, since the slaving loop is turned off

during high rate maneuvers.

Directional gyro servofailure: 1loss of slaving yields a drift

in the AHRS heading signal during relatively level flight.

12
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(9) Failure of cutoff for vertical gyro: if the servo cutoff sys-
tem fails to operate, the AHRS bank measurement drifts when a

nongravitational acceleration is present, as during a turn.

(10) Failure of cutoff for directional gyro: similarly the AHRS
heading indication will drift under nongravitational accelera-

tions.

(11) AFCS rate gyro failure: during a period of changing vehicle
orientation, a rate gyro failure (as, a pickoff failure yield-
ing no output from the gyro) will cause the rate indication to

be erroneous.

There are also drifting failures that cause drifting effects, but
the simulation program does not account for these modes. Nevertheless,
the preceding two categories of failure modes should indicate the via-

bility of this failure detection concept.

5. RESULTS OF PREVIOUS STUDY

A nominal approach trajectory involving level flight, final turn,
pitchover, and descent was utilized as a means of evaluating the per-
formance of this detection technique. First, a set of runs were con-
ducted with no failures simulated, in order to specify bounds on likeli-

hood function values under normal circumstances. These then would be

used as the thresholds beyond which a failure would be declared.
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Once this was accomplished, the same trajectory was flown with
failures simulated at various points. The time to detection of the

failure was then recorded, as was the time to any false alarm.

Table I, taken from the previous study [0], summarizes the experi-

mental results for detection of sudden failures with sudden effects.

The first column lists the type of failure simulated along with the ex-
pected failure indications. The second column denotes the portion of
the trajectory (level, turn, or descent) during which the failure oc-
curred. The third column specifies the actual means of simulating the
failures and the magnitudes of these failures. For those cases in
which different magnitudes are involved, the notation used is b

= a bias, o = the 1o value to specify the strength of a Gaussian noise
source, and ¢ = coefficients of gyro or accelerometer errors linear in
acceleration. The last two columns indicate the time to detection

and/or false alarms in seconds.

Sudden changes in bias (due to leaks) or noise level are readily
detected for static and pitot pressure sources, the detection being
more sensitive to altitude rate than altitude effects of such a failure
(static pressure failures did not affect indicated airspeed due to an

error in the simulation program, which has since been rectified).

Both bias and noise type failures on the angle-of-attack measure-
ment signal were detected for sufficiently large magnitude failures.
However, a false alarm on airspeed was consistently obtained. The

angle-of-attack value would influence the vertical Kaiman filter and

14
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TABLE |

DETECTION OF SUDDEN FAILURES WITH SUDDEN EFFECTS

Time Before Detection
Failure: Erroneous Output | Location* Simulation (seconds ) False Alarms
= + @ w o
( bp bp 50 s
b_=b_+ 100 ©, 1.4 --
Massive leak in static line: B P
Altitude; Altitude rate Turn . bp = bp + 200 © , 0.4 --
bp = bp + 400 0.8, 10.2 --
=b. + 8 (-2, 0.2 -
bp p 00
(lb* = b* + s -
bp bp 75 8.6
b% = b* & 150 1:8 --
Massive leak in pitot line: [2 P
Indicated airspeed Turn < b; = b; + 300 0.4 --
x = b= + 600 0.2 --
bP p
*x = b* 4+ | 2 -
\ bp P 200 0.2
5. = 5 ©, 1.4 —
p 0 1
Excessive noise in static » = 100 «, 0.4 --
pressure output altitude: Turn {1} P
Altitude rate S = 200 1.3, 0.4 --
5 = 400 0.6, 0.4 --
p
a_ = 800 s O --
’p Q 0 0
% = - e
5 5
Excessive noise in pitot * = 150 @ -
pressure output: Indicated | Turn ﬁ p
airspeed ~; = 300 L () --
1* = 600 4 -
& 0
ws = 1200 0.2 --
Tachometer failure:
Altitude rate Descent { e 100 1.2 --
b =5 * 0.0075 © Airspeed
; : (8.6 s)
b = b\ + 0.0150 © Airspeed
: (1.2 s)
Bent angle-of-attack b =b + 0.030 o Airspeed
vane: Anqgle of attack Turn & t (0.6 s)
b = bu + 0.060 1.4 Airspeed
; (0.4 s)
b = b. + 0.12 0.4 Airspeed
y (0.2 s)
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TABLE 1 (Concluded)

Time Before Detection

L

Failure: Erroneous Qutput Location* Simulation [seconds) False Alarms
= 0.0075 --
= 0.0150 --

Noisy potentiometer: ]

Angle of attack Turn 0.0300 4.0 Airspeed

; (7.2's)
= 0.060 2.4 Airspeed
s (0.8 s)
= 0.120 0.8 Airspeed
3 (0.4 s)
formal accelerometer Turn i -1 9.2 --
pickoff failure:
Airspeed ey 0
|2 =72 - q.0025 bt
33 31
B~ 2% =0 oo £

INS accelerometer float 3 31

leak: Vertical Turn b Y

acceleration : = = 0.01 --

33 31
B2 =7 =00 e
33 31
B2 = 79 .9 04 =
33 31

* Level, turn, and descent locations in
respectively, in Figure 13.

the landing approach correspond to Points 1, 2, 3,
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airspeed check portions of the model reference (see paragraph 2 of
Section II), and so such an alarm could be expected, but after, rather

than before, the appropriate failure detection.

It was surmised in the report that the vertical acceleration errors
were not detected because the thresholds were set at too high a magni-

tude, though not substantiated by further analysis.

Table II portrays the results of the experiments involving sudden
failures with drifting effects. The clogged static line was detected,
but the corresponding pitot line failure was not. In the previous re-
port, it was suggested that this might be due to the threshold on the
indicated airspeed being set too high. This may, in fact, be the case,
but Towering it would also tend to intensify the phenomenon in Table I
of an airspeed failure being declared before the appropriate angle-of-

attack failure being detected.

The inability of the method to detect INS gyro torque failures and
AHRS gyro servo failures was attributed to the fact that these would
cause low magnitude drifts, on the order of earth rate. No explanation

was offered for the case of loss of cutoff for the directional gyro.

Failures that produced large drifts were readily detected, expeci-
ally in the case of an INS gyro float leak. A "false" alarm of INS bank
was indicated for all of these test runs. However, a failure in one

gyro will cause erroneous output data along other gimbal axes as well,
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TABLE 11

DETECTION OF SUDDEN FAILURE WITH DRIFT EFFECTS

Time Before Detection
Failure: Erroneous Output | Location Simulation (seconds) False Alarms
Clogged static line:
Altitude, vertical Descent t,. = 100 1.4, 2.0 --
velocity P
Clogged pitot line: Turn ™ = 100 @ --
Indicated airspeed P
Descent x; = 100 © --
INS vertical gyro
torquer failure: Pitch, Level 1,‘]3 =1 ® -
bank, or both
INS heading gyro
torquer failure: Heading | Level r,g =1 = --
i (| 29, = 0.0025 0.6 INS bank (7.2 s)
£d, = 0.005 0.4 INS bank (5.0 s)
INS gyro float leak: Level ?,?] = 0.01 0.2 INS bank (3.6 s)
INS heading X
& = 0.0 0.2 INS bank (2.8 s)
E?] = 0.04 0.2 INS bank (2.0 s)
£, = 0.0012 L i INS bank (4.0 s)
&f; = 0.0025 0.8, 1.6 INS bank (2.8 s)
INS gyro float leak: Turn E?] = 0.005 0.4, 1.2 INS bank (2.0 s)
INS heading, INS pitch
e u INS bank (1.4 s)
< £{, = 0.010 0.2, 1.0 Angle of
. Attack (3.8 s)
Vertical
Velocity (8.8 s)
< INS bank (0.8 s)
&y = 0.020 0.2, 0.6 Angle of
Attack (2.6 s)
Vertical
Velocity (6.2 s)
Loss of cutoff for Turn a; = 100 4.8 AHRS
vertical gyro: AHRS bank 9 Pitch (9.6 s)
E | Loss of cutoff for Turn ag, = 100 ® -
| directional gyro: 9
- AHRS heading
. Vertical gyro servo Level a; = -] ® --
failure: AHRS bank 92
Directional gyro servo Level ag ! © --
failure: AHRS heading 9
! Rate gyro failure: Turn AR 0.6 INS heading (0.4 s)
: Rate gyro 2 INS pitech (1.2 s)
INS bank (1.2 s)
79 =179 79 .79
Sy ® 53t St S
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and one should expect such propagation of effects due to a failure.
Note that these "false" detections occurred after the appropriate fail-
ure indications, and that for large enough failures and time for errors
to propagate, such errors propagate into other portions of the model

reference, causing additional false alarms.

A rate gyro failure caused an erroneous INS heading failure declar-
ation for one algorithm iteration before the proper rate gyro failure
was indicated. As was appropriately discussed in the previous report,
this was due to the fact that a failed rate gyro is indicated by a
number of likelihood functions surpassing their threshold values. If
this does not occur approximately simultaneously (i.e., both within the
same algorithm iteration period), then incorrect failure declarations
will result. “Appropriate adjustment of thresholds or provision for a
'yellow zone' in the detection logic" were suggested as means of allevi-
ating this problem. The other false alarms occurred subsequent to the
proper declaration, and could probably be suppressed by appropriate

logic design.

The previous study also considered the computer requirements of the
functional redundancy (also denoted as "internal" redundancy) failure
detection logic. Table III (from this earlier report) summarizes these
requirements for implementations on three representative computers,
assuming that the algorithm would be iterated five times a second. For
a state-of-the-art computer, only 3.18 percent of real time would be

consumed by this logic. Other requirements would include:
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TABLE 111
COMPUTER TIMC REQUIREMENTS OF THE INTERNAL REDUNDANCY METHOD

Time Requirements
No. Required s)
Operation by Method State of the Art 1IDC-1051A SDS-920
Adds 600 1,200 3,600 9,600 [
Multiplies 320 3,200 7,320 10,240 |
3 |
Divides 30 360 1,500 6,720 i
|
Square roots 2 100 200 1,000 %
Trigonometry
functions 10 500 1,000 5,000
Transfers
and tests 500 1,000 2,000 4,000
Total time
taken for one
cycle 6,360 15,620 36,560
x5 x5 x5
Time required
for five cycles 31,800 78,100 182,800
Percentage of
real time 3.18 7.81 18.3
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(1) 1less than 2000 words of storage

(2) an 18-bit or longer wordlength

(3) nine input channels A/D for attitude related quantities and
seven input channels A/D for translational motion related
quantities

(4) simple no/no-go output channel for each of the quantities

checked by the logic.

From a first-iteration cost-effectiveness analysis, it was conclud-
ed that the cost advantage of the functional redundancy method over a
hardware redundancy approach would be substantial if the algorithm could
be implemented through time-sharing of an existing computer. If an ad-
ditional computer were required for these calculations, the cost benefit
would only be marginal, but the intention is not to provide a separate

dedicated computer for this purpose.

6. OBJECTIVES OF THIS INVESTIGATION

The previous study has indicated some degree of feasibility of
using functional redundancy to detect and isolate control data sensor
failures. A major objective of this effort has been to improve the
performance capabilities of the basic concept. In other words, it is
desirable to minimize both the missed alarms and the false alarms pro-

duced by the detection logic.

Means of achieving this objective have included:
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(1) Formulation of a systematic means of determining appropriate
parameters for the statistical description of noises and un-
certainties corrupting sensor outputs, thereby attaining op-

timum model references;

(2) Exploration of alternative model references, and conducting
trade-off analyses of performance improvement versus addi-

tional computer loading;

(3) Development of an initialization technique that can be com-
bined with simple model references to provide overall per-
formance comparable to that of the more complex model refer-

ences;

(4) Investigation of alternate, more systematic, means of estab-
1ishing maximum 1ikelihood estimator thresholds for declaring

failures;

(5) Thorough analysis of likelihood function characteristics under
normal circumstances and with failed sensors, over the enve-
lopes of possible flight regimes, to characterize the speci-
fic aspects that differentiate an "abnormal" likelihood func-

tion from a "normal" one;

s
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(6) Utilization of such 1ikelihood function characterizations to
determine superior detection logic, such as establishing
“tight" thresholds with a required number of consecutive it-
erations for which the threshold is surpassed before declara-
tion of a failure, or threshold being adaptive to amount of
maneuvering as indicated by commanded or actual control sur-

face positions;

(7) Determination of the sensitivity of detection performance to
system variations that are within acceptable tolerances (as

especially biases);

(8) Evaluation of the ability to detect sensor failures from a
signal environment generated by a real aircraft, thereby sub-
stantiating conclusions from the analysis based on the digital

simulation of aircraft and sensors.

The other major objective of this effort has been to develop the
failure detection algorithm and associated digital program to a point
where it can be used as a systematic design tool. Its purpose would be
to aid the design of an eventual implementation of a tuned and optimized
software package for a particular application of functional redundancy
for failure detection. To meet this objective, the digital implementa-

tion of the algorithm has been revised to provide a maximum of design

flexibility. Some of these characteristics are:




T A T oy

AFFDL-TR-76-93

(1)

(2)

(5)

The functional redundancy failure detection subroutines can
be driven either by a simulation of a chosen aircraft and in-
strumentation or recorded data with simulated failures cor-

rupting the signals.

The statistical description of sensor errors required for the
Kalman filters in the algorithm can be readily altered to cor-
respond to any specified sensor systems, and an associated
program has been written to aid in evaluation of statistics
if they are not available from performance data or power spec-

tral density evaluations of desired sensor systems.

The algorithm iteration frequency can be altered.

The number of samples included in each likelihood function

evaluation can be set by the engineer.

Strengths of "pseudonoises," used to depict the uncertainty
with which the model references represent the true physical
interrelationships, can be optimized to yield the best pos-
sible tracking ability of those model references. Once the
optimum values are evaluated, these would be incorporated

into the onboard implementation.
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(6) For each likelihood function involved in the detection logic,
the threshold value beyond which a failure is declared can

be changed through a data input to the program.

(7) Similarly, the “time to failure declaration” parameter, spe-
cifying the time (or number of iteration periods) that a
threshold must consistently be surpassed before declaring a
failure, can be redefined for each likelihood function by

means of data input.

To facilitate interpreting the influence of the various control-
lable parameters, a substantial number of outputs are available from a

single run of the computer program, in both printout and plot  form.

These include:

(1) For each Kalman filter incorporated in the design, the differ-
ence between a filter estimate and the “true" value of that
corresponding variable (available only when the aircraft and
instruments are simulated, not when real data tapes are used)

is printed and plotted as a function of time.

(2) The above can be compared to printouts and plots of the cor-
responding standard deviations (one sigma values) generated

through the state error covariance matrix propagated by the

{alman filter.
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The pseudonoises can be adjusted until the true differences and one sig-
ma values correspond: such that 95% of the "true difference" values are
within the 20 envelope, or 99% are within a 3o envelope. For this pur-
pose, plots of the "true differences" and 1o values from a number of
simulation runs will be more useful than printouts, and these are gen-

erated by the program.

(3) Printouts and plots of the individual 1ikelihood functions
utilized in the detection algorithm are generated. The plots
are especially useful in discerning the salient features of
the 1ikelihood functions under normal- and failed-sensor con-
ditions, which would be instrumental in setting threshold and

time-to-failure-declaration parameters.

(4) Printouts of threshold values, time-to-failure-declaration
parameters, and time and type of failure declared during a

simulated or real flight are outputted.

(5) Single likelihood function terms (N of which are added to form
the likelihood function) and corresponding squared residuals
are presented to aid the analysis of a large magnitude likeli-

hood function if and when it occurs.

(6) The minimum and maximum likelihood function values in the
most recent N iterations, where N is adjustable, expedite

the final selection of thresholds and time-to-failure-declar-

ation values.
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(7) Periodically, all pertinent simulation (or real environment)
data is printed out in addition to the model reference and

likelihood function performance data.

Various modes of usage of this failure detection concept were in-
vestigated. First, the types of failures more readily or appropriately
detected by other means were delineated. Thus, the eventual implementa-
tion would operate in conjunction with the initialization procedures pro-
posed in this report, BIT, reasonableness tests, deterministic detection
logic, and other methods. Failures can often be detected before being
completely isolated, so different means of annunciating failures were
studied. Once a failure is declared and isolated, that sensor data can
either be corrected (if possible) or removed from the data stream alto-
gether, and this aspect has also been analyzed. Finally, if a sensor
has failed, there may be circumstances under which testing for recerti-
fication of that sensor would be warranted, so means of performing this
function were studied. The complexity of the algorithm can range from
very simple to very sophisticated, and the design philosophy of building
the simplest system that provides adequate performance for a particular

application is applied throughout.

This report attempts to demonstrate the performance capabilities
of the functional redundancy concept in detecting and isolating sensor
failures. Further, it depicts the manner in which this concept would
be used in conjunction with other means of detecting failures and a sys-
tematic method of reconfiguring the overall data system once failures

are detected. Once the merits of the functional redundancy concept

27
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have warranted its use in a fault tolerant system, the design tool de-
veloped herein can be exploited. Thus, a viable, cost-effective failure

detection concept is presented, along with a means of incorporating it

into a total data system structure.
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SECTION 11

THEORETICAL DEVELOPMENT

1. FUNDAMENTALS OF KALMAN FILTERING AND LIKELIHOQD FUNCTIONS

The concept of functional redundancy as a means of detecting sensor
failures is dependent upon the usage of functional relationships among
measured quantities as the basis of a model reference. Driving such a
model with certain measured values yields model-referenced estimates of
other quantities, whose measured values are available from other sensors.

A substantial number of functional relationships which can be em-

3 ployed are in the form of linear differential equations driven by white
Gaussian disturbances. In this case, the Kalman filter is the appropri-
ate model reference to use. Essentially, a Kalman filter is a data pro-
cessing algorithm that generates the maximum likelihood estimate of the
state of a linear dynamic system model, conditioned on all observed data

up to the time the estimate is made. The next section describes the
fundamentals of a Kalman filter implemented in discrete time; i.e.,
sampled-data measurements are made periodically and incorporated into
the filter. This is appropriate since the filter will be implemented on
a digital computer, an inherently discrete-time device.

1.1 THE DISCRETE-TIME KALMAN FILTER

It will be assumed that modelling technigues have produced an
adequate system description in the form of a linear difference equation,
driven by a combination of known inputs and white Gaussian noise.

Linear measurements are made upon the actual system variables, and these
are corrupted by white Gaussian noise.

Thus, the system state is described by

x(1+1) = 8(i+1,1)x(1) + B(i)u(i) + G(i)w(i) (1)
and the measurement on the system at time instant i is
z(i) = H(i)x(i) + v(i) (2)

in which are defined the vector variables

29
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x(i) = n - dimensional state vector at time instant i
u(i) = r - dimensional deterministic input

w(i) = s - dimensional driving noise

z(i) = m - dimensional measurement vector

v(i) = m - dimensional measurement noise

and the system matrices

2(i+1,i) = n-by-n state transition matrix
B(i) = n-by-r deterministic input matrix
G(i) = n-by-s noise input matrix
H(i) = m-by-n measurement matrix

It will be assumed that w(i) and v(i) form independent zero mean
white noise sequences, each having a Gaussian density with known co-

variance:

ELu(1)] =0 (3)

Efw(1)] = 0 (a)
Qi) 3

ELu(i)u(5)T] - { = A (5)
0 i
R(i) -

ELv(i)v(i)TT = ’ = 4 (6)
] i, )

Efw(i)y(5)T] = 0 (7)
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Q(i) is a positive semidefinite s-by-s matrix, and R(i) is a posi-
tive definite m-by-m matrix (all components of the measurement vector
are corrupted by white noise).

The state dynamic relation, (eq. 1), is valid for all time i > 0,
once an initial condition, x(0), is specified. Since this value is not
precisely known, it will be modelled as a random variable with a Rauss-
ian probability density parameterized by a mean 3(0) and a covariance

Po-

For a system modelled in this manner, the Kalman filter updates the
state and error covariance estimates at a measurement sample time by

(1) = (1) + K()[2(i) - H(D)X(i)] (8)

P(i) = M(3) - K(i)H(i)M(i) (9)
where

K(i) = MK () THGOMGDRT(E) + R(1)T7 (10)

The estimates x(i) and X(j) are, respectively, the state estimates at
time instant i, before and after the measurement z(i) is incorporated;
similar meaning pertains to the error covariances M(i) and P(i), respec-
tively.

There are alternate forms of equation (9) that are theoretically
equivalent but different computationally due to finite computer word-
length. One such form would be

Pii) = (L = KEVIHCEIIMCI)ET - K(H(i)IT + K(DR(KT(4) (1)
Whereas (9) is often the small difference of large numbers (especially
if the measurements are very accurate), (11) is the sum of small, sym-
metric terms that assures positive definiteness of the resulting P(i).
Also, it is less sensitive to arithmetic truncation or small errors in
the computed value of K(i) than other update equations. However, it
requires considerably more computation, so a performance trade-off would
be necessary to determine if it warrants usage. Because computer memory
and time are critical, the lower triangular form of equation (9), possi-
bly with double precision computations, will probably be employed.
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To propagate the estimate to the time of the next measurement
sample, the filter relations are

x(i+1) = 3(i+1,i)x(i) + B(i)u(i) (12)

M(i+1) = 5(i+1,1)P(i)2 (1+1,1) + G(1)Q(i)6' (1) (13)

These recursive relationships are initiated from the assumed Gauss-
ian density that describes the a priori knowledge of the state:

P(0) = P, (15)

1.2 DISCRETE-TIME REPRESENTATION OF CONTINUOUS-TIME DYNAMIC SYSTcMS

The previous section assumed a system description in the form of a
linear difference equation. On the other hand, the dynamic relation-
ships to be employed are differential equations. Thus, one requires a
discrete-time system model that, as seen from the periodic (sampled-
data) measurements, yields equivalent system dynamics.

Let the continuous-time model of system dynamics be
X(t) = F(t)x(t) + B(t)u(t) + G(t)u(t) (16)

& where the differential equation for the state x(t) is driven by known
| inputs u(t) and a Gaussian white noise w(t) (such a noise does not exist

& in nature but the model is often adequate). This relationship could
also be modelled somewhat more precisely by a stochastic differential
equation, but the above relationship will be employed. Let w(t) have
mean zero and covariance Q(t), (t - 1) with Q(t) chosen to duplicate the
low frequency power spectral density of the actual noise entering the
system:

R

E[w{t)] = 0 (17)

EDw(t, W' (t5)] = Q(t,)6(t;-t,) (18)
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Assume that at time instant i a measurement of the form equation (2) is
taken. Further assume that the input u(t) is (essentially) constant
between sample times (i.e., over a single algorithm update period).

Under these assumptions, the values of ¢ (i+1,i), B(i). and g(i)g(i)gT(i)
required in equations (12) and (13) for propagating the state estimates

can be found by integrating [].

g‘t' a(t,ty) = F(t)a(t,t,) (19)

d ’

gt D(t.ts) = B(t) + F(t)D(t,t,) (20) |
|

37 N(t,t;) = F(EN(t,ty) + u(t,ti)ﬁT(t) + 6(t)Q()6' (t) (21)

from the initial conditions

oltgaty) = 1 (22)
Dt;st;) = O (23)
N(t;t) = 0 (24)

to the time of the next measurement, tiere and then setting

5 i s

g('l) = _Q(t.i+]st1') (26)

G(1Q(1)6T (1) = N(ty,;0t;) (27)
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These relations specify the discrete-time model that duplicates the
dynamic behavior of a given linear, continuous-time system observed in
sampled data fashion.

For applications in which the sample period is short compared to
the dynamic system's natural modes, first order approximations to the
solution of these differential equations will often suffice. These
approximations are, for a sample period,

o(i*1,4) = L+ F(t,)aT (28)
B(1) = B(t;)aT (29)
G(1)Q(1)67(1) = G(t;)Q(t;)6" (t;)aT (30)

Such an approximation would, however, be maintained subject to the ade-
quacy of resulting filter performance.

1.3 EXTENDED KALMAN FILTER FOR SYSTEM WITH NONLINEAR DYNAMICS

Suppose a system were described adequately by a nonlinear dynamic
relationship instead of a linear one: 1let the system state equation (1)
be replaced by

x(i+1) = f(x(i),u(i),w(i)] (31)

where x(i), u(i), and w(i) assume the same meaning as in Section II,
1.1. For the current purposes, consider a linear measurement as in
equation (2).

To propagate the filter estimate to the time of the next measure-
ment sample, equation (12) would be replaced by

x(i+1) = f[x(i),u(i),0] (32)
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In order to propagate the covariance matrix, as in equation (13), both
¢ i+1,i) and G(i) must be evaluated. These are obtained by linearizing
f (x, u, w) about the most recent values of 3, u, and mean value of w
(the zero vector). Thus, the component in the j-th row and k-th row of
these matrices would be computed as

f' b ’
6., (i+1,1) = —J—*B xuw)
Jk axk o
x = x(i)
u = u(i) A%
w=0
: af . (x,u,w)
Gabi) = TR x
%= x{1)
u = u(i) i
¥ =0

The updates at measurement times are identical to equations (8)
through (11), and the initial conditions would be given by equations
(14) and (15).

1.4 LIKELIHOOD FUNCTION STATISTICAL TESTING

The model reference (Kalman filter or other functional relationship
model reference) provides outputs in the form of estimates of the values
of certain variables in the system dynamics. These estimates are com-
pared to measured values of the same quantities to create error signals.
Some form of test is required to deduce from the characteristics of
these error signals whether something is abnormal in the system, i.e,
whether a failure has occurred.

Generation of a likelihood function for the time history of each of
these error signals provides one means of making such a statistical
test. Conceptually, the N most recent error signal values are examined
to determine whether they differ significantly from a statistical de-
scription of their values, assuming no sensor failures. The number of
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values utilized, N, can be varied to obtain reasonable performance.
More than one would be desirable to preclude failure declarations due to

single error samples of large magnitude: consistently large errors
indicate abnormalities, whereas individual samples of large magnitude

are to be expected. Using all samples from initial time would make the
likelihood function less sensitive to sensor failures as time progressed.
Consequently, a "moving window" of the N most recent samples, where N
might be on the order of 5 to 20, will be considered.

Let e(i) be a given error signal at time instant i. Then the con-
ditional joint probability density function of the most recent N error
values, conditioned on previous error values, would be

ple(i), e(i-1), ..., e(i-mt1)|e(i-m), ...e(1)]

where p[x|y] is the conditional probability of the variable x, condi-
tioned on the value of y. (To be precise, a distinction should be made
between parameters used to describe a density function and actual re-
alized values, but this will not be explicit in our notation). The
particular choice of this conditional density may not be entirely clear,
but it is well motivated by estimation theory.

Bayes' Rule for conditional density functions states that

pla,blc] = pla|b,clplblc] (35)
Applying Bayes' Rule to the given density function yields
pleli),e(i-1),...,e(i-m+1)|e(i-m),...,e(1)]
(36)
= ple(i)(e(i-1),...,e(1)Iple(i-1),...,e(i-mt 1) e(i-m),...,e(1)]
Bayes' Rule can then be applied to the rightmost density in equation
(36) to expand the result further. Iterating on this procedure yields
ple(i),e(i-1),...,e(i-mt1)|e(i-m),...,e(1)]
i

= 1 ple(i)le(3-1),...e(1)] (37)
J=i-m+l
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which is the product of the conditional densities of the N most recent
error values, each conditioned on the previous time history of error
values.

The appropriate likelihood function for this application is the
natural logarithm of the conditional probability density given by equa-
tion (37):

L, (i)

In ple(i),...e(i-m¥1) e(i-m),...,e(1)]

]

- Inople(j)le(j-1),...,e(1)] (38)
j=i-m+1

If the error sequence were in fact a set of independent, zero-mean,
Gaussian random variables, this expression could be written as

; i 1 i 20
= \ _— - - = 9] 39
LN(1) i n I i exp [ 5 & (i)/ (J)] ’ (39)

where o(j) is the estimated variance of the j-th sample and £(j) is a
dummy variable used to define the density of e(j). Substituting the
realized value of the N most recent e(j) values into this expression
yields the 1likelihood function evaluated for data actually observed as
LN(i) i g In2r - _% Ino(j) - % :
J=i-m+l J

i
I [ef()/e%(3)]  (40)
=1~

m+1

Thus, the likelihood function could be evaluated approximately as

Ly(3) = Ly(i-1) - %—[ez(i)/oz(i)] N % [ez(i-m)/az(i-m)] (a1)

This relationship could be used after the first N measurements had been
made to initialize the likelihood function value.
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It can be shown that, if the error sequence were actually the se-
quence of residuals from a Kalman filter whose state equations dupli-
cated the real system environment and whose input were a scaler mea-
surement of the form

(i) = h'(i)x(i) + v(i) (42)

then the density p[e(j)|e(j-1),...,e(1)] required in equatlon (38) is a
Gaussian density with mean hT(j)Z(j) and variance [h (IM(3)h(3) + R(3)T,
where x(j) and M(j) have been defined previously. Thus, the ez(

quired in equation (41) is the squared residual,

j) re-

e?(3) = [2(3)-n(3)x(3)1? (43)
and the 1/oz(j) term is equal to
1/5%(3) = 1[N (3)M(5)h(3) + R(3)] (44)

This quantity is available from the Kalman filter computations, as seen
from equation (10). If more than a single measurement were incorporated
into the filter, the desired 1/02(j) terms could be evaluated as the
diagonal terms of [H(j) M(J) HT(J) + Bﬂj)]—] (thereby neglecting off-
diagonal coupling).

The assumption that the filter dynamics model duplicates the true
system dynamics, and thus the assumption that the residual sequence is
white, zero mean, and Gaussian, is assuredly violated for any reasonably
dimensioned filter. However, substantial effort will be expended to
minimize this violation, thereby providing adequate performance. Simu-
lated failures involving biases, scale factors and drifts, as well as
random noise, will demonstrate how adequate the performance is.

In order to generate the likelihood functions online, the N most
recent squared error signals ez(j) and estimated variances oz(j) are
maintained in computer storage. As time progresses, equation (41) is
used to update each 1ikelihood function at each sample time. As can be
seen from either equation (40) or (41), if ez(j) becomes consistently
larger than the estimated variance, then the likelihood function will
become more and more negative. A negative threshold level that the

; 38
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likelihood function should remain (i.e., of smaller absolute magnitude)
can be determined, and then a failure can be declared if the value goes
beyond this threshold. By controlling the threshold level, the number
(N) of samples comprising a likelihood function, and possibly the time
interval over which the threshold is exceeded before declaring a failure,
the number of false alarms and missed alarms can be minimized. The last
control parameter, the time-before-failure-declaration, allows tighter
thresholds that do not cause false alarms due to transitory threshold
surpassing; this will be discussed more extensively in Section I[II.2.5.

Note that the error signals that are not generated by Kalman fil-
ters also require estimated variances in the likelihood function eval-
uation. Since dynamic propagation is not involved, these can be pro-
vided by a priori estimated values of appropriate variance magnitudes.

2. MODEL REFERENCES

This section describes the proposed functional relationships to be
employed in the detection algorithm. These will be in the form of three
sets of dynamic relations, which will serve to develop three Kalman
filters, and an algebraic relationship for indicated airspeed.

2.1 MODEL REFERENCE RELATING INS ATTITUDES AND AFCS BODY RATES

The Automatic Flight Control System uses three rate gyros to mea-
sure pitch rate, roll rate, and yaw rate for aircraft stabilization.
This rate information is functionally related to the vehicle attitude,
which is measured by the Inertial Navigation System. Let x, y, and z be
the aircraft angular rotation rates about longitudinal (nose), lateral
(right side), and normal (underside) axes; and y, 6, and ¢ be yaw,
pitch, and roll angles, respectively. Then, the functional relation-
ships are

o8
@

i

= A - 1 1 .
T wy cos ¢ - w, sin | (45)

o
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a

l

# 0 sin ¢ + ¢ ;
W wy tan 4 sin W, tan ¢ cos ¢ (46)

Q.
ct

d;g = .A._‘I,_- 1 4 4
il [wy sin § + w, cos b] (47)

These equations form the basis of the mathematical model to be
employed in the AFCS-INS attitude Kalman filter. Equation (47) is in-
determinate if the pitch, 6, is 90° (gimbal lock condition); the algor-
ithm might be disenabled temporarily if 6 reaches the close vicinity of
this value. Let the Euler angles 6, ¢, and Yy be the three state vari-
ables of the model:

X.l (9]
X= 1% [ =10 (48)
X3 It

The rate gyro outputs are then the noise-computed inputs to this dynamic
system. Thus, let the rate gyro outputs be denoted as Ups Uys and u

3:
u; wx1 W,
u=u, = wy + W (49)
3 b e

Thus the true rates are corrupted by the white Gaussian noise w, used to
model the noise and uncertainty inherent in the rate gyros. Using this
notation, the dynamics to be incorporated into the Kalman filter are
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I =l

X (“2'W2) €os X, - (u3-w3) sin

>
~no

= (u]-w]) + (u2-w2) tan x, sin Xy

ala

ot
x

no

+ (u3-w3) tan x, sin Xy

[(u2-w2) sin x, + (u3 - w3) cos x2] (50)

%3
E: Lcos X,

or

dx(t)
= £ [x(0), u(t), w(t)] =

The simplest means of generating an approximately equivalent discrete-
time equation to propagate the state estimate from one sample time to
the next would be to use Euler integration:

x(i+1) = f[x(i), u(i), w(i)]

x(1) + T £ [x(i), u(i), w(i)] (52)

where T is the sample period for the algorithm update.

As pointed out in the previous report [], the accuracy of this ap-
proximation is improved if the value of u(t) at the midpoint of an inte-
gration interval were used instead of its value at the beginning of the
interval. At time instant (i+1), u(i+1) is available as a measurement
from the rate gyros, and u(i) can be retrieved from computer storage,
and the average value 1/2 [u(i+1) + u(i)] generated and used in place of
u(i) in equation (52).

There are more accurate methods of updating nonlinear dynamic equa-

tions, but unless this technique does not yield adequate performance, it
would be best to use a simple routine that does not burden computer time
or memory.
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The attitude measurements from the INS are also corrupted by noise
and uncertainties, and thus its outputs at a given time instant i, de-
noted as z(i), are modelled as

g z](i)_— v 0 0] [ey] r‘v](i)_
z(1) = 301 [0 1 0 o(i) | + | voli)
' 0 01 (i) i) (53)
L__23(1)—‘ @ 4 __f i : __v3(1 E
x H ®iy o+ Wi

where v(i) is a zero mean, white, Gaussian noise. It is assumed to be
uncorrelated with w(i), so that the statistics required for the Kalman

filter are given by appropriate R(i) and Q(i) matrices, the covariances
of v(i) and w(i), respectively.

Thus, the overall mathematical model to be used in formulating the
Kalman filter would be as in Figure 1.

Let the actual attitude measurements from the INS be denoted as

eINS(i)’ ¢INS(i)’ and wINS(i)‘ Generated by the Kalman filter are pre-
dictions of what these values should be, before the measurements are ac-

tually taken; let iﬁ(i), ié(i), and Ié(i) represent these values. Then
the three residuals of interest are:

e](i) = BINS(i) - i}(i) (54a)

es(i) = VINS(i) - ié(i) (54c)
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Figure 1.

Schematic of Attitude Dynamics Model
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2.2 MODEL REFERENCE FOR AHRS ATTITUDES AND AFCS BODY RATES

The same basic model reference is used to relate the AFCS gyro body
rates and the attitude indication of the Attitude and Heading Reference
System. By replacing the subscripts 1, 2, and 3 by the indices 4, 5,
and 6 and using the AHRS measurements to drive the filter, the residuals
that are generated are

e3(1) = Sppps (i) = Xg(1) (55a) |
e5(1) = dpprs (i) - *5(1) (55b)
e6(1) = vpurs (1) = Xg(1) (55¢)

2.3 MODEL REFERENCE FOR AIRCRAFT VERTICAL MOTION

A model reference resembling a baro-inertial altimeter can be
employed to detect failures in the altimeter, vertical velocity indi-
cation, INS vertical acceleration output, and angle-of-attack sensaor.
The model reference is incorporated into a three-state Kalman filter,
and the filter residuals are monitored to accomplish the failure de-
tection.

Figure 2 portrays the mathematical model upon which the Kalman
filter is based. The INS accelerometer output is modelled as the true
specific gravity plus a white Gaussian noise (the zh axis points down-
ward, thus causing the negative sign); the noise and the value of gra-
vity are subtracted from that accelerometer output to yield the "true"
vertical acceleration. This is integrated twice to yield altitude,
which is then put through a first order lag to model the lag between the
altimeter reading and the true altitude. The three state variables are
identified in the figure as Xy = lagging altitude, Xg = true altitude,
and Xg = true vertical velocity.
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The measurements are corrupted by white Gaussian noise, and are

comprised of z; = measured (lagging) altitude from the altimeter, zg =
vertical velocity measurement to be discussed subsequently, and zg =
measured vertical velocity available from the altimeter.

Thus, the mathematical model is

=
&

Xg

%9

= e,
-a a 0 x7—W
B =108 ] Xg
i 07 0 0_ _Xga

=

1

[-a,y - 95 + W] (56)

A simple approximation to the equivalent discrete system for propagating
estimates between update times would be

x;(i+1) ¥ ey %-(e‘aT-l)T x5 (1)
xg(i+1) | = | 0 1 ¥ xg (1)
__xg(i+1{_ 0 0 1 ) h-xg(i)_‘ (57)

e Al 1 -aT
FT(E'E)*‘?(]"’ )
a
. 172 12 [-a,, - 9, + v]
15 : =
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This is in the form of x(i+1) = ¢(i+1,i) x(i) + B(i) u(i) + G(i) w(i)
where B(i) = G(i). As mentioned previously, by employing the average
value of a,, over an interval instead of its value at the beginning of
the interval, i.e., replacing azh(i) by 1/2 [azh(i) + azh(i+1)] when
propagating to time instant (i+1), superior integration accuracy is
obtained.

Two formulations of the measurement vector are possible, one com-
posed of z, and Zg and the other including Zg as well. The measurements
z; and Zq are the altitude and vertical velocity derived from the same
b source, barometric altitude determined from the static pressure source.
Hence, a failure in this single source would invalidate both signals,
and so the first formulation uses a vertical velocity measurement in-
dependent of the altitude reading, Zg- Thus, an inconsistency between
two sources of information could be detected. The second formulation
includes both vertical velocity indications: it could respond more

rapidly to pressure source failures, but performance was not substan-
tially different. Consequently, the simpler two-measurement case will
be depicted throughout the report.

The independent vertical velocity signal is obtained by means of
the equation

h = va(cos a sin 6 - sin a cos 6 cos ¢) (58)

Measured values of pitch, 8, and roll, ¢, are available from the INS,
and values for true airspeed, Vao and angle of attack, o, are taken
from the Air Data Computer. Under most flight regimes, the sensitivity
of the computed ﬁ to errors in Ya is negligible, so that a reasonableness
check on v is sufficient to ensure confidence in its contribution to
equation (58). (Logic could disenable failure declarations for regimes
of high sensitivity to va.) The integrity of INS pitch and roll angles
can be checked by the INS-AFCS Kalman filter portion of the detection
algorithm. Therefore, any discrepancy between the computed ﬁ value
(considered a measurement) and the model reference estimate Ré can be
attributed to a faulty angle-of-attack indication.

47
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Referring to Figure 2, the two formulations can be summarized by

il [1oe 0] Bt} [utan]

1) 2 pzalidi= 10 0 1 xg(i) | + | ugli) (5%a)
G Sl

= H i} * g (59b)

The partitioning in this equation depicts the two possible cases, gT =
E o
[27, 28] or z = [27, Zg> 29].

It should be noted that, whether or not the measurement z9 is used
to drive the Kalman filter, the difference between the vertical velocim-

eter output, h_ _,, and the model reference estimate of this value,

& 3 vel
[a(x8 - x7)], can be monitored to detect failures in the vertical ve-
locimeter itself (as distinct from a failure that would affect both the

altimeter and velocimeter).

2.4 MODEL REFERENCE FOR INDICATED AIRSPEED AND NORMAL ACCELERATION

Erroneous AFCS normal (body z axis) accelerometer output and faulty
indicated airspeed can be detected by means of a fourth model reference.
An independent measure of normal acceleration can be obtained from the

INS outputs of platform accelerations, ans Ayp and s and Euler an-

Y
gles, Y, 6, and ¢, using the relation

o
i

" axh(sin ¢ sin ¢ + cos ¢ sin 8 cos )

+

ayh(-sin $ cos ¢ + cos ¢ sin & sin U) (60)

+ €
azh CO0S ¢ cos ©
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The Euler angles and ah have previously been tested for integrity by

the other model reference detection logics. Although the INS horizontal
accelerometers have not been explicitly verified as operating normally, |
the previous report [] proposed to use this functional relationship as ‘
a means of checking the AFCS normal accelerometer (such verification

could be performed by other means of failure detection). Once the value

of az is known to be valid, it can be used to compute an alternate

evaluation of indicated airspeed []:

2m a,
vy = e e (61)
PO S(Ch"’fn L)

where m is the aircraft mass, o is the density of air at sea level, S
is the aircraft reference area, and Cn and fn are constants such that

the term in parentheses is a first order approximation to the normal
force coefficient, and a is the angle of attack. Note that the angle-
of-attack value has also been verified previously. Comparing the result
of equation (61) with the ADS indicated airspeed allows detection of
failures in this measured value.

2.5 OTHER MODEL REFERENCES

Additional functional redundancies do exist in the variors data
systems onboard an aircraft. These were considered and rejected pre-
viously due to being

(1) 1infeasible or unpromising;

(2) not relevant to the task of flight stabilization and control,
as being based on radiolocators or other external sources of
information; or

(3) empirical relations highly dependent upon particular aircraft.

49
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Other applications of the concept are feasible, as providing con-
fidence in propulsion system sensors without burdening the aircraft with
twenty to forty sensors per engine. However, this effort will be di-
rected towards the control data instrumentation application to demon-
strate the capabilities of the technique.

2.6 FAILURE DETECTION AND ISOLATION

Using the model references discussed in the previous sections,
failures can be detected and isolated by monitoring residuals (in the
case of the Kalman filters) or other appropriate error signals. Let
es &y, and €3 be the residuals of the INS-AFCS filter, as defined by
equation (54). Similarly, let s e and ee be the corresponding
residuals of the AHRS-AFCS filter, defined by equation (55). Further,
let e €gs and eg denote the residuals related to the measurements z
g, and Zq of the vertical channel filter, as described in equation
(59). (Note that eg will be used for detection purposes whether or not
it is actually used to drive the Kalman filter.) Finally, let the error
between computed and measured normal acceleration define €10’ and the
difference between computed and measured airspeed be en (see equations
(60) and (61) for computation).

79

With these error signals defined, a particular failure can be iso-
lated by determining which errors are growing abnormally large. Table
IV depicts the isolation logic to be employed. The listing of abnormal
residual magnitude pertains to initial effects. For instance, if an INS
gyro fails, eventually all outputs of the INS will be affected. Note
that a faulty pitch rate indication cannot be distinguished from an
erroneous yaw rate measurement by this logic, but that all other fail-
ures listed can be isolated as well as detected.
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SENSOR FAILURES AND CORRESPONDING ABNORMAL ERROR SIGNALS

Type of Failure

INS Pitch Angle

INS Roll Angle

INS Yaw Angle

AHRS Pitch Angle
AHRS Ro11 Angle
AHRS Yaw Angle

AFCS Pitch Rate
AFCS Roll Rate

AFCS Yaw Rate

ADS Altitude

ADS Vertical Velocity
ADS Angle of Attack

INS Vertical Acceleration

AFCS Normal Acceleration

ADS Indicated Airspeed

e e L e

* = Valid only if €10 is not abnormally large

|
.
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2.7 MODIFICATIONS TO THE MODEL REFERENCES

Previous experimental results indicated a higher sensitivity of
this technique to failures in the form of excessive noise than to bias
shifts. Consequently, a bias estimation capability was added to the de-
tection algorithm by including biases as state variables in the Kalman
filter model references. Actually estimating the bias levels could
yield not only failure declarations due to bias shifts, but also a means
of determining how to compensate such drifts to retain accurate signal
levels.

Referring to Figures 1 and 2, the measurement corruption is mod-
elled as an additive, zero mean, white Gaussian noise, as in Figure 3a.
A similar diagram could be drawn for the dynamic driving noise W, cor-
rupting the input uj - The model references can be altered by replacing
each white noise signal with a white noise plus bias, as in Figure 3b.
Note that the bias, bi’ is obtained conceptually by passing a zero mean,
white Gaussian noise through an integrator. Instead of modelling a bias
as

b. = 0 (62)

(63)

Figure 3a. White Noise Corruption; No Bias

e a2 A
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W,

e

Figure 3b. Model Incorporating Bias

This "pseudonoise" is necessary to yield a Kalman filter that estimates
the bias values for all time. Conceptually, using equation (62) would
tell the filter mathematically that the initial value of the bias is un-
certain, but you are sure the value does not change in time. As a re-
sult, the filter will use early data to estimate biases, but then essen-
tially ignore future data (appropriately, since the filter has been
"told" the values do not change in time). Putting the noise Wpi in
says, in essence, that there is some uncertainty in the bias values for
all time of interest.

First consider the model for the vertical motion dynamics, as de-
picted in Figure 2. Neglecting the measurement Zg» add the bias states
to the input and to the two remaining measurements. The augmented sys-
tem dynamics are

['“ ool b= ! G0 ) T p= =
X5 =8 a'0 000 X5 0,000
{ i
X 001'000 01000/~ o
; | i E : oy "y X
X 000'100| |« R Y L - IR
9 : 9 i %
st ol it e b e I az (64)
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| | W
U 000Q :0 00 by 0 ;1 00 h
: |
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Note that the upper left portion of the system matrices and upper por-
tion of the vectors are the original system description, given by equa-
tion (56). Further, notice w that the bias that corrupts the input en- ‘
ters into the state dynamics, and thus there is a nonzero element in the

corresponding column of the upper right partition of F(t). Columns as-

sociated with biases that corrupt measurement variables, z;, are all

zeroes.

The associated measurement for this system description would be

; LN -
z, 100 :0 10 X5 Uy
= : +
z, 001 :0 01 Xg Uy (65)
]
*q
b
az
by,
]

As before, the first partition of these quantities is the original de-
scription, with no biases, as presented in equation (59).

A Kalman filter can be developed using this dynamics model rather
than the original three-state model. When adding state variables in
this manner, two questions must be asked. First, is the additional com-
plexity warranted by the performance capability gained? Secondly, is
the resulting system model completely observable? In other words, can
the filter see the effects of the individual states and distinguish the
difference between these effects?

To answer the second question, the F matrix in equation (64) and
the H in (65) can be used to generate the observability matrix,
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where n is the dimension of the state vector, 6 in this case. The sys-
tem model is observable if and only if the rank of this matrix equals O.
If the rank is (n-k), then there are k unobservable state variables.

When this test is conducted, it is found that only five of the six
states are observable. This is true whether Zg is included or not, and
so its inclusion would not be warranted from an observability stand-
point.

If the altimeter bias state, bh, is removed from the model, the
rank of the resulting observability matrix is still five, and thus the
model is completely observable. Thus, the filter can estimate the bias
in the vertical accelerometer and in the vertical velocity measurement,
but cannot separately identify the bias in the altimeter.

This filter formulation has been programmed and combined with the
flight simulation program. Whether the added complexity yields substan-
tial enough performance improvement to merit implementation will be dis-
cussed subsequently. However, an attractive alternative to bias estima-

tion will also be proposed, improving performance but not increasing the
state vector dimension.

A similar state augmentation technique for bias estimation can be
applied to the AFSC-INS and AFCS-AHRS Kalman filters as well. Corres-
ponding to equation (51) would be the augmented equation

dt = (67)
b(t) wy (£)

and replacing (53) would be

21) =[nin ]| L un) (68)
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Because scale factor errors appeared to be considerably more significant
than bias errors in rate gyros [ ], additional bias states were not
added to the rate gyros in the model reference. (Such states could
readily be included however.) Instead, bias states were added only to
the Euler angles in the model reference, corresponding to the outputs of
either the INS or AHRS. Thus, b is a three-dimensional vector, and fe
is not affected by b but is the original fc in equation (51). To speci-
fy the associated Kalman filter completely, a statistical description of
the initial value of b(0), and the driving noise sequence, yb(t), is
required. The bias b(0) would be assumed to be of mean zero, probably
uncorrelated with x(0) (though not necessarily), and Gaussian with known
covariance; similarly yb(t) would be white, Gaussian, zero mean, and un-

correlated with other random processes affecting the system.

These augmented filters have also been pregrammed, but are similar-
1y regarded as means of improving performance only if the alternative to
bias estimation is inadequate. Some observability difficulty would be
expected with regard to the bias added to the yaw measurement, since the
yaw state, y, does not appear explicitly in fc of equations (50) and
(51), and might be difficult to distinguish from an assumed bias in its
value. B8eing a nonlinear set of edqUations, this system description
cannot readily be examined for observability as done for the vertical
channel filter. However, by investigating the linearized perturbation
equations corresponding to equation (67), and assuming time invariance
over a period of interest, such unobservability of the bias on y does
result. This does not demonstrate unobservability in the time-varying,

nonlinear system, but does indicate a potential source of difficulty.

Thus, the augmented state vector may not include the y bias state.
56
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2.8 ADAPTATION TO FAILURES

In event of a sensor failure, it would be desirable to synthe-
size a best estimate of the parameters whose direct measurements have
been lost. Such adaptation is feasible by inhibiting the failed sig-
nals from driving the model references. In the case of the Kalman fil-
ter references, the row of H that corresponds to the failed sensor could
be set to zero and the residual not used to drive the filter. Or, the
corresponding term in the covariance matrix R could be increased appro-
priately to de-emphasize the value of a sensor reading if a "hard" fail-
ure has not occurred and there is still some limited information in the

signal.

It would be conceivable to use such a technique to synthesize the

values of

(1) any INS Euler angle
(2) any AHRS Euler angle
(3) ADS altitude, vertical velocity, or indicated airspeed

(4) AFCS normal acceleration.

It is important to know whether all states in the various Kalman
filters are observable in the event of a failed sensor being removed
from the data inputs. The rank of associated observability matrices

will indicate such capability.

57
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First consider either of the two attitude Kalman filters. As be-
fore, looking at the linearized systems indicates that a viable estimate
of the yaw angle may be difficult to obtain if the INS or AHRS yaw
signal fails. Perhaps the best procedure in such a case would be to use
the other available yaw signal (or signals if hardware redundancy is
also employed) since the filter cannot provide useful information.
However, if either the pitch or roll (or both) indications are lost, a

somewhat .degraded filter estimate of all states is still attainable.

To examine the extent of performance degradation due to removal of
failed signals, it may be useful to look at the (steady-state) value of

the information matrix, i.e., the matrix Ef] that is propagated from gf](to)

=0 [ ]. This could be accomplished by setting the appropriate term in
R to infinity or, equivalently, the corresponding term in Bf] to zero,
and directly computing gf] in the limit from an initial condition. This
technique is probably better suited to the case of linear dynamics, as

in the vertical channel filter to follow.

Now consider the vertical channel filter driven by z, and 2g- If

g5 computed vertical velocity, were removed, all states are still ob-

servable, and thus a viable estimate can be maintained. However, if 295
altitude, were lost, the observability matrix is of rank one, and only

vertical velocity is observable.

58
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If Zg the vertical velocity derived from barometric altitude, were
also used to drive the vertical channel filter, then loss of Zg would
again yield a completely observable system, as would loss of both Zg
and Zg- If z, or both z, and zg were lost, two states are observable

due to the measurement Zg.

3. OPTIMAL COMBINATION OF DATA

Conceptually, the Kalman filters employed as model references can
serve to generate optimum estimates of the model state variables. Thus,
the AFCS-INS or AFCS-AHRS filters could provide optimum estimates of the
Euler angles. In fact, an overall "optimum" estimate of Euler angles
could be generated by a larger filter that incorporated data from all
three systems: the AFCS rate gyros, the inertial system, and the atti-
tude and heading reference system. Similarly, the vertical channel fil-
ter could conceptually provide optimum estimates of altitude, lagging
altitude, and vertical velocity. By combining the information from in-
dividual data systems, an optimal estimator can increase the precision
of the data above that of any single system. Consequently, one might
propose to use the outputs of the Kalman filters as the best signals to

represent these variables.

However, the simplicity of the models employed in the filters dic-
tates against this. A truly optimum filter, incorporating as accurate
(and complex) a model of a certain dynamic phenomenon as can be developed,

will in fact yield estimates whose precision is higher than any single

data source. The design objective here has not been to develop a large
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optimal state estimator, but to generate as simple and small an esti-

mator as will provide adequate failure detection performance. Not only
are the filter dimensions low, but in the case of the two attitude fil-
ters, the nonlinear dynamic equations are propagated by a simple first

order integration technique at a rather low update rate.

Although the prospects of the filters serving as adequate data es-
timators seemed poor, tests were conducted to determine realizable per-
formance. Both the separated AFCS-INS and AFCS-AHRS attitude filters
and the combined AFCS-INS-AHRS filter were tested by means of simulated
aircraft and measurement system dynamics, as was the vertical channel
filter. The attitude results were poor, especially during any substan-
tial maneuvering, this being attributed mostly to the simplified propa-
gation of nonlinear dynamics. In fact, the problem of transient filter
response manifests itself to some degree in the failure detection logic,
but the effects can be masked by procedures to be described in the next
section. As a result of these procedures, the simple filters can serve
for the failure detection function, but the filtered estimates them-
selves are too inaccurate to use as optimal data signals. The vertical
channel filter exhibited better performance, but any avionics system in-
volving inertial and air data systems will encompass baro-inertial coup-
ling to damp the inertial vertical channel, so there is no significant

gain from using this filter to combine data from individual sensors.

It is conceivable that a data system that does in fact perform
optimal combination of information from the INS, AHRS, AFCS, and ADS

will be developed. Such a system would require more accurate models,
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accounting for biases and other phenomena not modelled herein. Update
rates and propagation (integration) technigques would require further
investigation. Practical aspects, such as the fact that the various
sensors are situated at different environments (as vibration effects),
would also have to be considered. If such an overall data system were
designed into a vehicle's avionics system, it would be ideally suited
to exploiting the concept of functional redundancy. However, this ef-
fort has been conducted without imposing the assumption that such an
avionics architecture were available: demonstration of concept feasi-
bility with a minimum of extra onboard computer loading has been a very

influential design objective.
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SECTION III
PRACTICAL APPLICATION OF THE TECHNIQUE

1.  SYSTEM DESIGN AND IMPLEMENTATION

The feasibility of using functional redundancy to detect and iso-
late control data sensor failures has been partially established in the
past [ ]. Numerous means of improving the performance capabilities of
the concept have been developed in this research, with substantial suc-
cess in minimizing the missed alarms and false alarms produced by the
detection logic. However, a mere demonstration of concept feasibility
is not as desirable or useful as such a demonstration combined with a
methodical, systematic procedure of application of the concept. This
chapter describes two principal aspects of applying the functional re-

dundancy method of failure detection to practical situations.

First of all, the development of the failure detection algorithm
and associated digital computer software into a systematic design tool
will be delineated. In so doing, the various methods used to enhance
the algorithm performance capabilities will be thoroughly discussed.
The result of these improvements is a software package with sufficient
flexibility to allow an engineer to tailor the failure detection algo-
rithm to his particular needs. Once the design has been optimized with
this tool, final implementation of the software in an onboard computer

can be conducted.
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This is the second aspect of practical application: once a tuned
design has been achieved, what mode of usage is most appropriate? As
conceived herein, functional redundancy will be used in conjunction
with other failure detection methods. Within this framework, there are
many alternative ways of declaring failures, and once a failure is de-
clared, there are numerous methods of restructuring the data systems.
The performance analysis provided by the design tool can aid the selec-
tion of the most advantageous option for a particular application.
Whether it be simple or sophisticated, the end result will be a means
of (1) detecting, (2) isolating, and (3) declaring failures, combined
with a logic for (4) reconfiguring the data system, that is effective

and efficient for on-line use.

2. USE OF DESIGN TOOL

The computer software that has been developed is in four basic
parts. First an all-digital aircraft flight simulator generates the
actual profiles to be flown. It is a complete and sophisticated simu-
lation program, encompassing not only basic flight path equations, air-
craft translational dynamics and attitude relations, but also detailed
models of atmospheric effects, winds, the vehicle's engines, aerody-
namic effects, and the flight control system employed (including its in-
fluence in generating sideslip phenomena). The extensive detail of
this simulation program provides a very accurate representation of true
flight characteristics. The output of this segment of software is the
set of "true" values of parameters to describe the aircraft operation

and the environment in which it is flying.
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These outputs then feed into the second general partition of the
software, the models of the instrumentation systems onboard the air-
craft. Included are segments that completely define the operational

characteristics of:

(1) the Air Data System (ADS),
(2) the Inertial Navigation System (INS),
(3) the Attitude Heading Reference System (AHRS), and

(4) the Automatic Flight Control System (AFCS) data sensors.

These instrumentation models include sensor dynamic characteristics and
sources of uncertainty. In all cases, the parameters that define the
instrument operation, power spectral densities of noises and/or uncer-
tainties inherent in the instruments, and signal biases can be readily
altered by means of input cards to the program. Thus, the first two
segments of the program allow the specification of any aircraft in any

environment with any complement of particular data sensor systems.

Moreover, off-nominal as well as nominal situations can be simulated, as
an F-4 with a different, more state-of-the-art INS than these aircraft
actually carry (as was actually done in the particular performance

analyses reported herein).

The instrumentation model segment of the software performs another

function as well. By proper selection of input cards to the program,
the engineer can cause this program segment to simulate a wide variety
of instrumentation failures. The failures that are simulated duplicate

the major modes of failure described in Section I.4.
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The third section of the software package consists of a very flexi-
ble set of logic for detecting, isolating, and declaring failures and
for restructuring the data system upon failure declaration. In actual
onboard implementation of the functional redundancy concept, the soft-

ware would be simpler: the flexibility is intended to expedite initial

design procedures. Two versions of this segment have been programmed--
that encompassing the "standard" Kalman filter structures and the other
that employs the augmented filters for bias estimation as well; the

separation into two interchangeable segments rather than one large pro-

gram with options was motivated by computer programming efficiency.

The final section provides performance evaluation outputs in the
form of both printouts and plots of significant parameters. By monitor-
ing these outputs, the engineer can iterate upon a failure detection
logic design until he converges upon a final implementation with a per-

formance suited to his needs.

If desired, the computer software is readily modified to accommo-
date actual flight data recorded from the appropriate sensors onboard an
aircraft, rather than being driven by the simulation. Sampled data from
the tapes of the sensor outputs would be read into computer locations
from which the third and fourth software segments, the detection logic
and performance evaluation segments, are driven. (A portion of the
performance evaluation segment is inhibited since the "true" values of

flight variables are not separable from the data - this will be de-

veloped further in paragraph 2.3 of this section. Sensor failures can
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still be simulated by generating the sensor output signal variations due
to a failure (generated by two runs of the overall simulation program,
one without failures and the second identical to the first, but with a
failure simulated - the sensor outputs are then differenced to obtain a
time history of the desired signal variation) and adding this to the

real data samples.

The following section will discuss the methodical design procedure
made available by this design tool, along with associated concepts and

software.

2.1 BASIS OF COMPARISON

The initial computer runs are conducted with no simulated failures
and sensor biases set to zero. For the current investigation, a nominal
trajectory was chosen to be a simulated approach trajectory flown by an
F-4, composed of a period of level flight followed by a coordinated fi-
nal turn and then a pitchover and descent to touchdown. This choice was
made to compare performance results to those of the previous investiga-
tion, and there is nothing inherent in the software to constrain atten-

tion to only this trajectory.

There are a number of reasons for such a set of computer runs.
First of all, the entire nominal trajectory is flown and appropriate
data is stored to provide realistic values for aircraft and logic pa-
rameters at various selected points along the trajectory. These can
then serve to initialize the simulation of shorter trajectory segments,

on the order of 10 to 30 seconds of flight time, during which failures
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or other phenomena can be simulated. In the tests conducted in this in-
vestigation, three such segments were chosen: one in level flight, one
for the duration of the turn, and the last during descent. Thus, the
particular types of flight environment deemed to be critical to perfor-
mance evaluations can be simulated realistically with only small amounts

of required computer time.

Another reason for a set of trajectories with no simulated failures
or sensor biases is to allow "tuning" of the filters embodied in the de-
tection logic. Means of obtaining good statistical data about sensor
performance characteristics will be discussed in paragraph 2.2 which
follows. Such information is required to establish the covariance ma-
trices Q, R, and go that define the Kalman filters. However, even with
good statistical data about the sensors, establishing appropriate covar-
iances is an iterative process. Consider either of the two attitude
filters: the Q matrix embodies not only the uncertainty in the rate
gyro outputs, but also the uncertainty contributed by using a very sim-
ple mathematical model to represent a complex dynamical relationship.
Consequently, it is necessary to vary these covariance matrices until

desirable filter performance is obtained.

In practice, this tuning is achieved by making repeated runs of
a nominal trajectory while changing only the filter covariances from
one run to the next. Then the filter's evaluations of the standard

deviations in its own state estimates are obtained by taking the square

root of each diagonal term of the propagated error covariance P. These
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are then compared to the observed time history of the components

(x - X¢)» where x is the filter estimate of the state and x; is the
“"true" value of the state variables as generated by the simulation por-
tion of the software. If approximately 70% of the time history of each
separate component of (2_- 51) is within the propagated standard devia-
tion value from zero, or if about 957 are within two times this value,
then the filter is fairly well "tuned." Typically, the elements of Q
especially have to be increased over sensor statistics magnitudes to
preclude a substantial underestimate of error standard deviations by

E | the filters. Paragraph 2.3 of this section will describe the capabil-

ities of the current software to facilitate this timing.

Sensitivity of this tuning to sensor biases that are within tol-

erances may also be considered during this tuning. As a result, the

magnitudes of the noise covariances may be increased. Or, the tuning

based on zero biases might be maintained and the thresholds in the de-

tection Togic adjusted to accommodate the in-tolerance bias effects.

These initial data runs generate plots of time histories of each
individual likelihood function used in the failure detection logic.
Thus, their character under normal conditions can be investigated. By

simulating all of the pertinent aircraft flight profile and in-toler-

ance system variations, a complete analysis of 1likelihood function maxi-
mum magnitudes and transient characteristics under normal operation can
be attained. This serves as one basis of setting the thresholds and

time-before-failure-declaration parameters, to be discussed subsequently.
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2.2 ESTABLISHING SENSOR STATISTICS

Obtaining statistical information about the error characteristics
of sensors from their manufacturers or users is, in general, very diffi-
cult. Consequently, this information, which is required not only to de-
sign the filters of the failure detection algorithm but also to generate
a realistic simulation for performance analyses, often must be generated

by the system designer. There are standard techniques available that

facilitate the evaluation of reasonable variance values for noise and
uncertainty phenomena that corrupt sensor outputs. For instance, power
spectral density analysis of signals can be used to verify the form
error models in the simulation as well as determine appropriate noise
levels to drive the models. For the simplified models in the Kalman
filters of a true value being corrupted by a white Gaussian noise, the
strength of the noise can be set so as to duplicate the low frequency

power spectral density value.

A data reduction program has been developed to perform a statisti-
cal analysis of a sequence of data samples, consisting of evaluations
of the mean and variance of a set of samples and a test for the white-
ness of the sequence. There are three primary applications for it

with regard to functional redundancy logic design and implementation:

i (1) A sensor, or a number of identical sensors, can be tested
under controlled conditions so that the true value of the variable
being measured is known. Then, based on the assumption inherent in the

detection logic filters of the instrument being adequately modelled as
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generating the true value corrupted by white Gaussian noise (and possi-

bly a constant bias that can be subtracted out), a valid variance level

for that corrupting noise can be established.

(2) Again under controlled (laboratory) conditions, the more com-
plex simulation models can be validated and good model parameters at-
tained. Conceptually, an (extended) Kalman filter would be developed
about a given dynamics model of each measuring device, real sensor data
would be used to drive the filter, and the mean, variance, and whiteness
of the resulting residual sequence tested. Iterations of this hypothe-

sis testing would yield the final simulation model specification.

(3) Another application will be discussed further in paragraph
2.8 of this section, namely that of preflight initialization. Again,
under conditions that allow true values of measured variables to be
known exactly, the sensor systems would be operated and the appropriate
values of R, Q, and Eo could be established before each operational
usage of the filters. This would allow adaptation to component varia-
tions. Moreover, by estimating the mean value of a signal whose appro-
priate value is known (since the true variable value that the signal
represents is known), the bias in the signal can be estimated and com-

pensated.

The data reduction program operates in the following manner.
First one establishes a known steady-state value of what the particular
instrument should be measuring, and runs the sensor in this steady-state
condition (or possibly lets the variable assume a known nominal function
of time). This data is assumed to be in sampled data form, using a

fixed sample rate.
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Once this data is generated, an even integer N is chosen as the
number of samples over which the mean and variance of the sequence can
be assumed to remain essentially constant. A sliding arc of N samples
at a time is then used to estimate the mean and variance evaluated at
the time of the middle sample in the sliding arc. In other words, to
determine the mean and variance values for time instant i, the data
samples from instant (i - 1/2N) through instant (i + 1/2N - 1) would be
used, a total of N samples at a time. This N-sample arc is allowed to
"slide" one sample period at a time, generating a sequence of mean and

v(i) =

variance values. No evaluations are made for i such that (i - 1/2 N) 1

i or (i +1/2N - 1) (total number of data samples). Thus, for data sam-
f ples x(1), x(2), ..., the mean evaluated for instant i, denoted as m(i),
is

i=pm-1

m(i) = - x(J) (69)
o 1

J=i-5m

= m{i-1) + + [x(i+dm-1)-x(i-3m-1)] (70)
N 2 2

and the associated variance, v(i), would be calculated as

i+%m—l

R e ()

If the appropriate "flag" parameter is set in the data reduction
program input, it will also perform a Q-test to determine whether the
sequence of data samples is a white sequence or not. Such information
is useful in verifying the adequacy of assumed models. The manner in
which the Q-test indicates the whiteness of a sequence, or the degree to
which its consecutive values are not correlated with one another, is
described in Reference [ ].

N




AFFDL-TR-76-93

2.3 SOFTWARE INPUTS AND OUTPUTS

The applicability of the software package as a design tool is a
function of the flexibility provided in both input controls and avail-
able performance analysis outputs. First the significant inputs will be
considered, including control over the inputs to the error detection
logic:

(1) aircraft and trajectory simulation
% (2) sensor error model parameters
f (3) random number generators

(4) failure simulations

(5) replacement of simulated data with real data recorded in
flight test, and control over the detection logic itself

(6) dimension of filters employed (inclusion or exclusion of
bias estimation)

(7) the statistical description of sensor errors embodied in
the filters

(8) the strengths of "pseudoncises" added to the Kalman fil-
ter system models to depict the uncertainty in the accur-
acy of the models themselves

(9) the number of samples included in each likelihood func-
tion evaluation

(10) the threshold for each likelihood function in the failure
detection logic

(11) the "time-to-failure-declaration" associated with each
Tikelihood function in the detection logic

(12) the algorithm iteration rate.
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The first five items (except for the third) have been discussed
previously in Section IlI.2, and are reiterated here to emphasize the
ease of altering these control inputs. Any aircraft configuration, with
any complement of particular sensor systems, can be flown on any spe-
cified trajectory through various environments. Data collected from
these first computer runs serve to initialize the simulation at various
points of interest along the trajectory. Shorter trajectory segments
are then flown from these points, with any of an array of failures and
in-tolerance system variations simulated during the shorter segments of
flight profile (the specification and length of which are also under
complete control of the designer).

The third item listed requires further elaboration. The simulation
(or real data driving inputs) entail a specification of detection logic
performance for a single set of sensor data. It is not a covariance
type analysis in which a statistical description of expected performance
over an ensemble of flights is generated in a single computer run. Ra-
ther, because nonlinearities in simulation models preclude such an anal-
ysis, Monte Carlo runs must be generated in order to assume a statisti-
cally significant specification of system performance. Uncertainties
and noise phenomena are simulated by means of random number generators

and appropriate weighting to generate white Gaussian sequences of values.

By controlling the initial value from which the random number generators
start, different sequences of values are generated so as to share iden-
tical statistics, thereby allowing Monte Carlo runs of the same nominal
situation to be made. The software has been written so that, unless
otherwise specified, the initial value in the noise generators is always
the same for the start of any data run; this is to allow comparison of
performance over simulations which are known to be exactly the same ex-
cept for some controlied parameter, as the incorporation of exclusion of
a sensor failure. However, by making the muitiple passes over the

same trajectory in a single data run, the random number generators are
controlled so that a Monte Carlo set of runs is in fact generated.
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g The first two facets of detection logic control have already been
discussed. As mentioned previously, two separate software packages have
F been developed, one with bias estimation and the other without. For any
- particular application, trade-off analyses of performance improvement
versus additional computer loading caused by bias estimation should
probably be conducted. However, due to factors to be discussed further
in Section I11.2.8, the simpler version will most likely be preferable.
Unless otherwise noted, this report will be portraying the performance
of this version.

S ol Jacoiah s dl

Section III.2.2 discussed some methods of developing a good sta-
tistical description of the sensors that drive the detection logic
filters in an actual implementation. This would be the first step in
setting the values of Q and R in these filters.

However, such evaluations of Q and R are generally underestimates
of values that will provide the best filter performance. This is true
because the assumed models in the filters are extremely simple, and some
account for the misrepresentation by these models of true sensor per-
formance must be made. Consequently, "pseudonoises" are added to the
Kalman filter models to express this uncertainty. These "pseudoncises"
are typically added to the models at the same locations as the "noises"
w and v enter, so that the essential result is to alter the entries of Q
and R matrices. Thus, if Q-SENSOR and R SENSOR depict the noise covari-
ance generated to describe the sensor statistics, the actual Q and R to
be employed in the filter are

Q = Qensor * apg (72)

i
el

R = Reensor * Rapy (73)
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Here QADJ and BADJ are matrices that are adjusted to enable the filters

to achieve good P values (this determination is aided by the software

outputs) and thus track adequately. Repeated runs are made while alter-
ing gADJ and BADJ until good filter performance is attained. The soft-
ware maintains a separation of Qerycop @M Repnogp from the total Q and

R for convenience. By so doing, the best estimates of sensor statistics
are available for reference, and the additional adjustment required due
to model uncertainty can be explicitly displayed and compared to the

sensor statistics.

Section I1.1.4 described the application of 1ikelihood function
statistical testing to the detection of sensor failures. It was shown
that the appropriate likelihood functions for the detection logic are
generated approximately as an N-step sum of terms of the form
(-1/2[e%(1)/6°(1)1} where e(i) is the observed filter residual at time
instant i corresponding to the variable of interest, and 02(1) is the
filter's estimate of what the variance of this residual error should be
if there are no sensor failures. (Thus, the ability of the filters to
achieve good P values will be instrumental in achieving viable detection
logic performance as well as good filter tracking performance.) In
other words, the N most recent residual error signal values are used to
statistically test the hypothesis that no failures have occurred. If
the errors are consistently larger than anticipated under the no failure
hypothesis, then the likelihood function magnitude will grow abnormally

large.

The value of N is a design variable. Very small values are avoided
since individual error samples of large magnitude are expected even

under normal conditions. On the other hand, very large values should be
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avoided because sensitivity to actual sensor failures would then be re-

cduced substantially. Furthermore, the N most recent samples of data
must be maintained in storage, so large N is avoided from a considera-
tion of memory and computational loading of the onboard computer. This
investigation has demonstrated that a choice of N between 5 and 20

yields good performance.

Initially, failures were declared when the likelihood function mag-
nitude surpassed a threshold that represented the largest magnitude at-

tained under any normal operational condition. This threshold value for

each likelihood function can be altered by data input to the software
package. However, analysis of the results indicated that this procedure
resulted in rather high threshold magnitudes. Certain types of maneu-
vers would generate large transient magnitudes with no failures simu-
lated, especially in the attitude filters. Using these magnitudes to
set threshold values inhibited failure detection during straight and
level flight, the type of flight regime that composed the majority of
time spent in the air. Consequently, it is useful to specify both a
threshold value and a parameter to indicate the time (or number of
algorithm iteration periods) that the threshold must be consistently
surpassed before a failure is declared. Such a "time-to-failure-declar-
ation" parameter is also a control variable set by control data input
for each likelihood function individually. This will be discussed

further in Section III.2.5.

The algorithm iteration rate, or data sample rate, is also a design
parameter. In this investigation, a sample period of 0.2 seconds was
found to yield adequate performance without overburdening the computer
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capabilities in any way. Longer sample periods tended to have unaccept-
ably long mean times to detection of failures and poor state estimate
propagation in the filters between sample times, especially in the case
of the attitude filters using a first order integration of nonlinear
equations. On the other extreme, shorter sample periods tended to yield
superior performance but the advantage gained was questionable compared

to the additional computer loading.

The outputs of the software package contribute significantly to its
potential use as a design tool. A single run of the program can gener-
ate a substantial amount of printout and plot data (using control input

cards to determine how much is actually provided), including:

(1) For each state variable in the Kalman filters, the value of

(x - Xg)

(2) The corresponding error standard deviations as estimated by

the filters

(3) The values of x and P, and X and M, as well as z and u for

each Kalman filter

(4) For the attitude filters, the optimal estimate i_obtained by
combining the two individual filters, the corresponding values
of (x - 5{) and P, and z,,. obtained by combining only INS and
AHRS data

(5) Individual likelihood functions
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(6) Threshold values and time-to-failure-declaration parameters

for each likelihood function
(7) Time and type of failures declared during the run

(8) Single likelihood function terms and corresponding squared re-

siduals and estimated residual error covariances

(9) The minimum and maximum values attained by each 1ikelihood

function in the most recent N iterations

(10) Periodically, all pertinent simulation parameters or real
environment data.

The first two outputs facilitate the setting of gADJ and of

Rapy
equations (72) and (73). For a given state variable x, X is the filter
estimate of its value and Xy is the "true" value as provided by the sim-
ulation. (Note again that Xy is not available when real data tapes sup-
plant the simulations of aircraft and sensors.) The difference

(2 - xt) is then printed out every iteration, and a plot of its values
over the entire test trajectory is generated as well. This can then be
compared to printouts and plots of the corresponding standard deviations
(1o values) as estimated by the Kalman filters. In fact, these are
simply the square roots of the diagonal terms of the propagated error
covariance matrix, P. To "tune" the filters, the pseudonoise strengths

are adjusted until the (; - Xt) sequence and the standard deviations

correspond such that 95% of the true error sequence lies within the 20
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envelope generated by the standard deviation. In practice, this tuning
is accomplished more easily with plots of (§ - xt) and the 20 envelope

than with digital printout, so such plots are produced by the software.

The third set of outputs allows an evaluation of the filter state
estimation capability. Both the estimates just before and just after
incorporation of a measurement are included to portray the separate ef-
fects of time propagation of the state estimate and updates at measure-
ment times. In the case of the attitude filters, this is especially
valuable for determining the adequacy of the simple integration algo-
rithm for propagation: 1if X is consistently poor and g'substantially
better, then some alteration of the filter propagation technique is ad-
visable, whether it be a higher order integration technique, or the
simple method applied iteratively to partitions of the time interval

between measurements, or a smaller overall sample period.

With regard to the fourth set of outputs, each of the two attitude
filters generates optimal estimates of the Euler angles. ODenote the
output of the filter driven by AFCS rate gyros and the INS as XINS and
EINS’ and similarly let the outputs of the filter driven by the AFCS
rate gyros and AHRS be gAHRS and EAHRS' If reasonable state estimation
performance were achieved, it would be valuable to calculate an "over-

all-optimal"” state estimate, gOVERALL’ that combined the data from all

three sensor systems. Its value would be computed as

1
- % - ry a4 1 -
XOVERALL [?-ms - Paurs ] [-”-le XIns * Panrs 5AHRS] il
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This could be approximated (with substantial decrease in computer loading) 3
on a component-by-component basis as

Chas 2t Saa o bt ge o

X X
ey A s R

i 2
AHRSii

X =
OVERALL .
i | nleh B INS; 5

. PINS;;  PAHRS;;

] 5
= -|p X + P X (75)
pINsii+ PAHRSii [ AHRSii INSi INSii AHRSiJ

L an b ok

The overall error convariance would be calculated as
-1

b i 76
PoveraLL [RINS * Pars ] s
Comparing the 1o values from this PoveraLL @nd the sequence of (5OVERALL

- 5t) would then indicate the state estimation capability of this com-
bined estimate.

However, the state estimation performance of the 3-dimensional
attitude filters is poor because of simplified propagation models within
the filters. Therefore, such an "overall-optimal" estimate is not
warranted. If a more sophisticated propagation model were incorporated,
this would be a viable concept. Such a sophisticated model would be of
higher dimension than three, so equations (74) and (76) would be com-
putationally burdensome. One could then utilize the approximation of
equation (75) or use the relationships

XoveratL = Xns * %o [ZAHRS ¢ ﬂ-ims] (77)
. T T -1

K= B i 18 By I * Ryyel s

PoveraLL = Eins = Ko B Pyxs e3)
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where the inverse in equation (78) is a (3 x 3) matrix inversion. That
these equations duplicate equations (74) and (76) can be proven by meth-
ods presented in Reference i

The variable Zpv6 mentioned in the fourth set of outputs is the
weighted average of the measurements taken from the INS and AHRS:

o
4 =1 -1 -1 _ =
26 [RINS * Ranrs J { RIS Zins * Rayps ZAHRSJ (80)

If &INS and EAHRS are diagonal matrices (as they often are), then a

relationship similar to (75) would be exact, rather than an approxima-
tion:

o

z = —5—— | R z + R z (81)
AVGi RINSH«“RAHRSﬁ [- AHRSii INSi INSii AHRSi J
Such an evaluation would be a best estimate of the Euler angles based on

both INS and AHRS data, useful in the event that a failure were to
affect the AFCS rate gyros.

The fifth set of outputs are printouts and plots of the likelihood
function values over a given computer run. Especially useful are the
plots of the individual Tikelihood functions, since the stead, -state and
transient characteristics of those functions will be of utmost impor -
tance in the declaration of failed sensors. The distinguishing aspects
between the likelihood functions resulting from normal operation and
those generated when a failure has occurred can be more readily dis-
cerned from time plots than from data printout. In fact, it was the use
of these plots that enabled this investigation to improve the failure
detection capabilities of the functional redundancy method so markedly.
Understanding the dynamic characteristics of the likelihood functions
suggested the incorporation of "time-to-failure-declaration" parameters
in conjunction with thresholds for each likelihood function, both of
which are also printed outputs of the software package.
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Besides outputting the individual likelihood functions (each of
which is an N-step sum), the software also prints out the value of the
individual terms that compromise the likelihood functions, i.e., terms
of the form {-1/2[e2(i)/02(i)]}. Also printed are the individual values
of ez(i), the squared value of the observed residual, and of 02(1), the
variance of the residual sequence as propagated by the filter itself.

If and when large magnitude likelihood functions or other off-nominal
characteristics occur, then these outputs aid the analysis of their

generation.

The final selection of appropriate values for the thresholds and
time-to-failure-detection parameters for each likelihood function is
expedited by observing the minimum and maximum likelihood function mag-
nitude in the last I iterations, where [ is an adjustable integer. Here
I is actually a proposed value for the number of algorithm iterations
before a failure is declared. By looking at both no-failure and sensor
failure test cases, the threshold and I values can be chosen so that
(ideally) no normal operation will cause the 1ikelihood function to ex-
ceed the threshold for I consecutive iterations, while (ideally)-all ap-
propriate failure cases will cause this threshold to be surpassed for at

least I iterations consecutively.

The periodic display of all pertinent simulation or real environ-
mental data, in addition to model reference and 1ikelihood function per-
formance information, is performed for convenience of the user. Whether

or not this display is made, and its frequency of occurrence, can be

controlled.
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2.4 FILTER TUNING

As described previously, the Kalman filters are tuned by adjusting
QADJ and BADJ until the sequence of (g - 5{) values in each filter cor-
relates well with the standard deviations propagated in the filter P ma-
trices during a set of Monte Carlo runs. This adjustment is an iter-
ative trial and error process, but some guidance can be suggested for

the procedure.

First of all, the sequence of differences between the simulated
output of any sensor and the simulated "true" value of the variable
should be analyzed to verify that the established values of QSENSOR and
BSENSOR correlate reasonably. If real data is used instead of simulated
data, some calibration period or other similar condition will provide
sensor output during which time the true value of the measured parameter

is known, and a similar procedure can be followed.

If the P matrix underestimates the error statistics, especially dur-
ing periods of significant maneuvering, i.e., in a transient manner, the
values of gADJ rather than BADJ should be increased. Thus, if the error
in the roll estimate exceeds the level predicted by P for a time inter-
val after a roll maneuver, then the corresponding eiement in QADJ would
be increased to show a decreased confidence in the ability of the filter
dynamic model to represent the physical situation adequately. This ad-
justment should be coordinated with the effects on the appropriate like-
1ihood function plots. This sensitivity to trajectory dynamics is

treated more fully in paragraph 2.6 of this section.
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In the case of the two attitude filters, each driven by the same
rate gyro information, if the characteristics with which P misrepresents
the true error covariance are very similar in the two filters, then ad-
justment of QADJ is appropriate. However, if only one P misrepresents
the error covariance significantly, then its associated BADJ should be

compensated.

2.5 THRESHOLDS AND TIME-TO-FAILURE-DECLARATION PARAMETEKS

Standard procedure for setting thresholds for likelihood function
hypothesis testing would be to conduct a number of trials with no fail-
ures and determine the largest magnitude attained by each of the likeli-
hood functions. Then a series of failure runs would be made, and the
minimum magnitudes of likelihood functions that are expected to demon-
strate a sensitivity to a certain failure are recorded. If a region of
uncertainty is thereby established, i.e., if there exist some likelihood
function magnitudes below the largest magnitude achieved with no fail-
ures while above the smallest magnitudes attained with pertinent fail-
ures, then some compromise is necessary. It might be appropriate to
set the threshold so as to preclude either false alarms or missed
alarms (not both), or to choose a threshold level between these two ex-

tremes and accept some percentage of both missed alarms and false alarms.

Considerable effort was expended in an attempt to make thresnold
setting more methodical, rather than simply looking at highest likeli-
hood values attained under normal conditions and the lowest attained

under failed conditions. What resulted was a means of predicting the

probability of detection and probability of missed alarm when a sensor

A, it i e
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failed, as a function of the threshold setting. Similarly, the proba-
bilities of no alarm or a false alarm when a failure did not actually
occur could also be calculated as a function of threshold level.

Such a description of the probability of the detection logic sig-
nalling a failure is developed in the following manner. A failure is
declared if the likelihood function becomes more negative than some
threshold level; i.e., if

LN(1) < =T (82)

where T is the magnitude of the threshold and LN(i) is approximated as
(see Section I11.1.4):

~o| —

e o
L‘l(1) & / {"

2 &r.
) [e (3)/o (J)] l (83)
Jj=i-m+)
When a Kalman filter model reference is used, e(j) is one of the filter
residuals and oz(j) is the filter's estimate of the variance of that re-
sidual error, as given in equations (43) and (44,. Thus a failure is
declared if:

! gt

L [Pt s (84)
j=i-m+1
First consider the simplest case of N = 1. Then equation (84) relates
that a failure is declared if

le(i)] > V2T o(i) (85)

Now assume that the actual residuals, under either no-failure or failed
conditions, can be described (or at least approximated) statistically by
a Gaussian density with mean b(i) and variance o%(i). Then the proba-
bility of declaring a failure is the shaded area in Figure 4. If this
plot is normalized by using oy as a scaling factor, as in Figure 4, then
the probability of declaring a failure can be computed from unit normal
density tables for selected numerical values for (b/ct) and (/2T c/ot).
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Figure 4a. Probability of Failure Declaration

BBBBBBBBBBB

2

-V2T g -V2T g
Oy (“

Figure 4b. Normalized Density
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It is then possible to plot the probability of declaring a failure as a
function of b/ot’ for different values of the normalized threshold

VT c/ot. This is presented in Figure 5, for normalized threshold
values of 0.5, 1, 1.5, 2, and 3. Also plotted on this figure is the
locus of probabilities of declaring a failure when the actual mean of
the residual density, b, assumes the critical value for failure declar-
ation, V2T o. (Note that an actual failure would probably cause b to be

greater than this value or causes 0y to be very large.)

Referring back to Figure 4a, another useful means of presenting

this data would be to plot probabilities of failure declaration as a

function of ( b ). This is possible, since = (b/ot)/(/§T o/ot)

/2T o 2T o
and is depicted in Figure 6. Here, the locus of b = /2T ¢ is along the
vertical line at _E_ = 1.
veT o

For N greater than one, a similar procedure would be used. Assume
that the filter estimate of variance does not change significantly in N

sample periods, that the N residuals are each described by a Gaussian

2
t

formed by subtracting b from each residual are uncorrelated. Then a

density with mean b and variance o, as before, and that the N .values
parallel development is possible, except that the probability density of
a Gaussian random variable is replaced with the density of a chi vari-
able with N degrees of freedom [Ref. 4]. For each value of N, a plot

similar to Figure 5 can be developed.
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Thus, a more complete knowledge of system performance can be at-
tained by predicting the probabilities of detected failures, false
alarms, and missed alarms. To this point, however, an essentially
static analysis of the likelihood function value has been employed to
establish a single criterion for declaring a failure--that of surpassing

a selected threshold value.

Another alternative avails itself when the dynamic characteristics
of likelihood function values are investigated. Such analysis is
greatly aided by the time plots of likelihood functions generated by
the software package. Certain trends, transients, and other character-
istics become evident in these plots which serve to differentiate be-

tween no-failure and failed sensor circumstances.

One significant discernible characteristic is the sensitivity of
certain likelihood functions to rapid changes in aircraft orientation.
Immediately following a rapid roll to initiate a turn, the likelihood
functions corresponding to the roll Euler angle undergo a transient
growth in magnitude with rapid decay. (The length of time for recovery
from the transient is a function of N, the number of times any given re-
sidual will be maintained in the likelihood function evaluation.) If
such transients could be masked out, the thresholds for declaring fail-
ures can be set substantially tighter, while simultaneously minimizing
the probability of declaring false alarms. This is true because the
standard techniques of threshold setting would record the peaks of
these transient magnitudes as levels above which the threshold should be

set to preclude false alarms. Actually, the typical likelihood function

magnitudes are substantially lower than these peaks. If the transients
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E ¢ could be recognized and removed, the maximum likelihood function magni-
] g tude under normal conditions, other than rapid transients, and thus an
appropriate threshold level for preventing false alarms, would be sig- g

nificantly lower than achieved by the standard approach.

One means of masking out these transients is through use of time-
to-failure declaration parameters. Suppose it is known that transients i f

occurring during normal operation will surpass a certain threshold level

but will rapidly return below that level, while any pertinent failure
will cause the likelihood function to surpass the level and remain above
it. Then it is possible to establish a failure detection criterion of
the form, "If the 1ikelihood function passes a given threshold level and
remains above it for a specified period of time (or number of algorithm

iterations), then a failure is declared."

Setting these thresholds and time-to-failure-declaration parameters
must be done in a coordinated fashion. If a long time-to-failure-

declaration parameter were chosen, a tight threshold could be chosen

with few false or missed alarms, but at the expense of a delay in de-
claring real failures. On the other hand, if a very short time-to-
failure-declaration parameter were chosen, the ambiguity between like-
1ihood function transients and behavior due to real failures would not
be substantially decreased. Consequently, a trade-off must be conducted
and the best pair of values (of a threshold and time-to-failure-declar-
ation parameter) for each likelihood achieved after some iterative
search. Note that, for a 1ikelihood function that does not exhibit such

transient behavior, only a threshold value is required.
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2.6 SENSITIVITY TO AIRCRAFT MANEUVERS

The sensitivity of certain likelihood functions to aircraft maneu-
vers was mentioned as the primary motivation for the time-to-failure
declaration parameters. In this section, an elaboration of this sensi-
tivity will be made, indicating causes, means of alleviation, and ef-

fects upon failure detection philosophy.

Figure 7 is a typical plot of the likelihood function corresponding
to the roll Euler angle in the AFCS-INS Kalman filter in a no-failure
simulation run. The two transient dips occur at the times when the air-
craft first rolls to initiate a turn and then again when it rolls to re-
sume straight-and-level flight. It is noted that the likelihood func-
tion employed was a 10-step sum of terms (i.e, N = 10), and that both
the rate of recovery from such transients and the ratio of transient
peak value to "normal" likelihood function value are a function of N.
During the turn itself, the likelihood function returns to a "normal"
magnitude; it is only the roliing maneuvers themselves that generate the

transient behavior.

This behavior can be attributed to the inability of the first order

integration of simplified nonlinear equations to model adequately the
true dynamics of a rapid change in aircraft orientation. Therefore,

some means of reducing the effect would be:

(1) improving the dynamics model, at the expense of higher dimen-

sional state vectors in the filters and computer ioading;
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(2) improving the means of integration: higher order techniques,
smaller iteration periods, etc., but again at the expense of

computer loading;

(3) 1increasing the driving noise covariance Q in the filters be-
yond the value which yields good filter performance in a less
maneuvering flight mode to indicate reduced confidence in the
model employed; but, this would tend to decrease detection

sensitivity for such conservative flight modes.

For a feasible onboard implementation, the simplest algorithm that
yields suitable performance would be most preferable, so items (1) and
(2) above would require substantial performance improvement to be war-
F ranted, as they do entail significant increases in computer time and
memory. With regard to (1), (2), and (3), the simple model is in fact
adequate for a more benign flight regime, and should be exploited if

possible.

The detection thresholds should probably be set as tightly as pos-

sible to the likelihood function values achieved in normal straight and

level flight. This is the flight regime that composes the vast majority

{ of time in the air. Alsu, it is the regime that is best modelled by the
simplified dynamics models embodied in the filters, so the validity of |

4 detection is greatest for this regime as well.

If this philosophy is accepted, some accounting must be made for
the transients incurred. One method might be to declare a potential

failure, remove the sensor from the filter inputs (especially if the
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filter can operate without it), but allow immediate recertification of
the sensor. Besides causing nuisance alarms, this technique would re-
sult in the loss of some valuable data before recertifiction if a fail-

ure did not really occur.

Another method would be to use the time-to-failure-declaration pa-
rameter concept as described in the last section. This is a rather sim-
ple and effective solution to the problem, but does suffer from causing
some delay in declaration of actual failures. Such a delay would result
not only in use of bad data by the aircraft control system, but might
also cause filter performance to diverge beyond the point of recovery

once the bad data were removed from its input channels.

If the time-to-failure-declaration parameter concept is not ade-
quate, making the failure detection logic adaptable to the amount and
type of maneuvering might be considered. By monitoring control surfaces
such as ailerons, or commands sent to these control surfaces by the
pilot and autopilot, the detection logic could know when high roll rates
or other transient-inducing phenomena were going to occur. Under "“nor-
mal" flight conditions, the logic would employ the appropriately tight
thresholds. When informed of such transient-inducing phenomena, it

could

(1) simply nullify any failure declarations due to threshold pas-
sage until the phenomena terminated (as, until high roll rates

are no longer sensed or commanded),
(2) invoke higher magnitude thresholds until the phenomena termi-

nated, or
95
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(3) invoke the additional time-to-failure declaration criterion

besides threshold passage during this time period.

It should be mentioned that one reason for conducting flight tests
to generate real data is to corroborate the characteristics of Figure 7.
There was some question about the realism of roll angle values generated
by the simulation program during a roll maneuver. Although the same ba-
sic trend of this figure is anticipated, the exact character of the
.transients may well be less pronounced using real data. Nevertheless,
this effort has assumed that the simulation is valid in order to conduct

performance analyses (subject to revision if necessary).

2.7 SENSITIVITY TO INSTRUMENT BIASES

Sensitivity of performance to in-tolerance instrument biases is an
important concern. Therefore, twenty-four separate biases are individu-
ally adjustable in the design tool-performance analysis program package.

These are the separate biases on the:

(1) three Euler angle outputs of the INS

(2) three accelerometers of the INS

(3) three gyros of the INS

(4) three Euler angle outputs of the AHRS

(5) two axes of the vertical gyro of the AHRS
(6) directional gyro of the AHRS

(7) compass of the AHRS

(8) normal accelerometer of the AFCS

(9) three rate gyros of the AFCS

(10) static pressure signal of the ADS

e |
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(11) pitot pressure signal of the ADS
(12) angle of attack output of the ADS

(13) total temperature output of the ADS.

Both statistical and noise case descriptions of these biases were
developed for the equipment used in the F-4. With these values, real-
istic effects due to in-tolerance sensor biases could be analyzed by the
software package. Computer runs were conducted with all biases zeroed

except for one (to study sensitivity of performance to individual biases),

and all set to representative values (to investigate combined effects).
By determining which individual bias variations cause the most degrada-
tion in performance, one can specify which sensors must have the tight-
est bias drift characteristics for utilization in the integrated data

system.

2.8 PREFLIGHT INITIALIZATION

A data reduction program capable of efficient calculation of the
mean, variance, and whiteness of a sequence of sampled data signal
values was described earlier in paragraph 2.2 of this section. One
application of this program would be for preflight initialization. As
envisioned here, a standard test computer program could be implemented
in ground support equipment (or possibly onboard) to produce good ini-

tialization before each flight of the vehicle.

First of all, by running the sensor systems in a preflight test
when the true values of measured parameters are available, the computed
mean of signal values can be used to estimate the biases in the indi-

vidual sensors. From analysis of sensor performance data it can be seen
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that typically the turnon-to-turnon nonrepeatability is considerably

greater than instrument bias drift generated during the missicn flight

period. Thus, if the biases were estimated each time the instruments
were turned on, then these bias estimates would be valid for the endur-
ance of the mission. Such compensation would improve sensor system
performances, decrease concern about sensitivity of detection to biases,
increase the adequacy of the simple dynamic models in the filters, and
substantially reduce the need of adding on-line bias estimation capabil-

ity to these filters.

Furthermore, the estimation of variance could be exploited as well.
The Repnsor® Qspnsore 3Md P, values embodied in the Kalman filters are
established by statistical testing of representative instruments. Pre-
flight analysis of sensors could determine if the particular sensors on-
board the aircraft perform in the same manner as the "population statis-
tics" would indicate. In other words, valid values of BSENSOR’ QSENSOR’
and Bo could be obtained for each individual aircraft's compliement of
instrumentation. In addition to this fine tuning to particular sensors,
such analysis performed routinely on the same aircraft over a period of
time could indicate aging and other performance trends of the instru-

ments onboard.

3. MODES OF USAGE

Once the functional redundancy logic has been developed with the
aid of the design tool, onboard implementation can be considered. This
logic is not meant to be a detection system unto itself, but part of an

integrated failure detection system, as described in the next paragraph

(3.1). Section 3.2 subsequently considers the various appropriate means
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of declaring failures with the functional redundancy logic. Then Sec-
tion 3.3 investigates how the data system might adapt and reconfigure
itself, once a failure has been declared. As will become apparent, the
choices made here can yield implementations that range from very simple

to very sophisticated.

3.1 INTEGRATED FAILURE DETECTION SYSTEM

As mentioned in the beginning paragraphs of Section I, the func-
tional redundancy concept is meant to complement, rather than totally
replace, other means of sensor failure detection. By being used in
conjunction with hardware redundancy, deterministic tests, built-in-test
(BIT), and ground support methods, an efficient, integrated, failure

detection system can be achieved.

Functional redundancy is not the most appropriate technique for the H
entire failure detection system. For instance, BIT and reasonableness
tests can readily detect many hard failures with very little computa-
tion. On-line estimation and compensation of biases and scale factor
errors are more easily achieved by hardware redundanpy, though func-

tional redundancy can provide an "extra voter" in the original detec-

tion. Also, because of the response time of the logic, functional
redundancy would probably not be the sole means of detecting failures of

sensors that are critical to safety of flight.

However, functional redundancy does provide a substantial contri-
bution to such an integrated failure detection system. It significantly
reduces the required hardware redundancy for attaining "two-fail-operate"
capabilities or other similar degrees of reliability. By correlating
data from different types of data sensors, it removes the need for a

proliferation of identical sensors onboard an aircraft.
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3.2 MEANS OF DECLARING FAILURES

In the simplest form, a failure is declared if a likelihood func-
tion surpasses a given threshold (which may or may not be adaptively set
to aircraft maneuvering). For some likelihood functions, time-to-
failure-declaration parameters are also incorporated into the criterion
for failure declaration. However, there are certain additional aspects

of failure declaration that should be considered.

If a time-to-failure-declaration parameter is used with a certain
threshold for failure detection, it may be desirable to be able to de-
tect obvious failures without the inherent delay caused by that param-
eter. For that reason, a second, larger threshold might be established
such that if the likelihood function surpasses both thresholds, then a
failure is declared immediately. Such a multiple threshold could be
used to discriminate between hard failures (in which no useful data
would be expected) and soft failures (which could result in degraded
sensor performance, but some useful information still is expected to be
available from the sensor). This discrimination capability might war-
rant different data system adaptations to hard and soft failures, as

discussed in the next section.

Multiple thresholds might also be used to advantage in another way.
A smaller threshold might be established and time beyond that threshold
recorded as an indication of a sensor starting to go out of tolerance,
or degrade in some other manner, without actually failing. Such a test

could be conducted with ground equipment rather than on-line at all

times.
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By referring to Table IV in Section 11.2.6, it can be seen that
failure isolation is dependent upon which of the ten likelihood func-
tions are beyond threshold value. Certain failures affect a single
likelihood function while other failures affect a number of them. Thus,
if a failure that affected two or more likelihood functions were to
occur, and the thresholds were passed at slightly different times, it is
possible to mistakenly declare a failure that affects the single like-
lihood function that surpasses its threshold first. For that reason, it
might be advantageous to signal an alarm that some failure has occurred,
giving the possible failures. The probability that the failure is
actually one that affects multiple likelihood functions can be deter-
mined by monitoring the magnitudes of the other likelihood functions.

If they are of normal magnitude, the failure that affects only one
likelihood function can be declared. However, if they too are above
normal magnitude, failure isolation might be delayed for one or a few
algorithm iterations, to be more sure of what failure did in fact occur.
In the interim period, the most likely failure might be displayed, or

all pessible failures shown with an indication of the most probable one,

or no indication made other than a signal that some failure has occurred.

3.3 LOGIC ADAPTATION TO FAILED SENSORS

If a sensor has failed, its inputs to the detection logic would be
removed, as described in Section I1.2.8. The theoretical question of
observability of the resulting filter models when various sensors have
been removed was investigated. It was also mentioned that such degraded
model references could provide estimated values of INS or AHRS Euler
angles, AFCS normal acceleration, or ADS altitude, vertical velocity or
indicated airspeed.
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Removal of sensor signals from the rate gyros to the attitude
Kalman filters, or from the INS vertical accelerometer to the vertical
filter, precludes the operation of those filters. Unless a hard failure
were to occur, a degraded performance mode could be attempted by in-
creasing the appropriate elements of the Q matrices in the filters and
accepting the poor data. This form of adaptation is included in the
software package, as well as removal of failed sensors from filter input

channels.

If soft failures can be distinguished from hard failures, as men-
tioned in the previous section with regard to multiple thresholds, then
"failed" sensors need not be removed from the data system. A hard fail-
ure would result in sensor signal removal, with zeroing of the appropri-
ate H matrix elements. However, a soft failure could be handled by in-
creasing the magnitude of the appropriate element in the R covariance
matrix. Additionally, if the failure can be identified as a stable
shift in sensor output, rather than more random fluctuations, then some
attempt at compensation of the soft failure might be conducted (using

other means than functional redundancy to achieve the compensation).

However the logic adapts to the failed sensor, there will be a
certain period of time required for the model references and likelihood
functions to recover to "normal" (but degraded) performance. For this
reason, when a failure does occur, the ability to declare other failures
should be temporarily inhibited so as not to generate many false alarms.
An indication could be sent to the pilot to inform him of the extent of
degraded sensor systems, degraded failure detection ability, and reduced

mission capabilities that result.
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Once a sensor has been declared as having failed, it may be useful
to monitor it for possible recertification. Especially in the case of
soft, stable failures, as biases whose values could be estimated by
other means and then compensated, such recertification may be warranted.

This would, however, add to the complexity of the detection logic.

There are a variety of means of declaring failures and adapting the
logic to those failures. For any given application, a trade-off of com-
plexity versus performance gain would be required befofe deciding upon
the eventual mode of usage of the functional redundancy failure detec-

tion concept.
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SECTION 1V
EXPERIMENTAL RESULTS

1. EXPERIMENTS CONDUCTED

This section presents the results of an extensive series of per-

formance analysis simulations conducted to demonstrate the capabilities
of the functional redundancy failure detection algorithm. It will be

seen that the feasibility and efficiency of the algorithm has, in fact,

)k g ) e odh s Bt

been verified.

By first generating all required initial conditions through a long

trajectory simulation, three evaluation trajectory segments were estab-

lished: a straight-and-level flight segment, a trajectory composed of a
roll into a coordinated turn followed by another roll to resume straight-
and-level flight, and a pitchover and descent. As mentioned previously,
this simulation was "flown" by an F-4 with a full compliement of par-
ticular sensors normally carried onboard such an aircraft, except that

the INS characteristics were modified to be more representative of

state-of-the-art technology.

First of all, a Monte Carlo set of runs was performed in order to
establish a basis of comparison. Two different sets of Monte Carlo runs
were actually conducted, one set in which instrument biases were allowed
to assume various representative values and another set in which all
biases were zeroed. The latter set is used later in the bias sensitiv-
ity tests. During these first test runs, the filters were tuned to the

straight-and-level flight profile. Section 2 delineates these results.
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Monte Carlo runs of the same trajectory segments were then con-
ducted, but with individual sensor failures being simulated. Both types
of Monte Carlo runs, with zeroed biases and representative bias values,
were used. The resulting likelihood function plots then allowed evalu-

ation of the various means of declaring failures, as seen in Section 3.

Since one problem was the sensitivity to rapid roll rates, an in-
vestigation into altering the filter driving noise covariances (Q) to
tune the filters to an environment of higher roll rates was made. This
detunes the filter somewhat in the straight-and-level regime. The ef-
fectiveness of the Q variance to reduce maneuver sensitivity is pre-

sented in Section 4.

Section 5 then presents the sensitivity to instrument biases.
Monte Carlo runs with all biases set to zero but one were performed for
each bias in turn. To make the effects of the biases pronounced, each
one being tested was set at the worst case level (or 2o0 value if a
statistical description of bias characteristics was available for a

particular sensor).

Section 6 describes the verification of the simulated data results
by data tapes acquired through flight test recordings. Due to some ex-
tenuating circumstances, the flight tests have been delayed for 21
months, and so the actual data is not available at the time of this
writing. However, the tests are scheduled and this substantiation is

expected within the near future.
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2. BASELINE OF PERFORMANCE - 1O FAILURES

Monte Carlo simulations were conducted over the three evaluation
trajectory segments without any failures being simulated. Figure 8 pre-
sents plots of the ten likelihood functions for the three trajectory
segments under the conditions of zeroed instrument biases. The labels
in this figure are used throughout this section: INS 1, 2, and 3 are
the pitch, roll, and yaw likelihood functions for the INS-AFCS filter;
AHRS 1, 2, and 3 are similarly pitch, roll, and yaw likelihood functions
for the AHRS-AFCS filter; VERT 1, 2, and 3 are lagging altitude, inde-
pendent vertical velocity (used to check angle of attack), and vertical
velocity l1ikelihood functions of the vertical filter; and VIAS is the
indicated airspeed 1ikelihood function. These labels correspond to ey
through egs and SR respectively, of Table IV in Section I11.2.6.
Variation of these instrument biases did not substantially increase the
magnitude of any likelihood function except the one corresponding to in-
dicated airspeed (labelled VIAS in the plots). In fact, some effort was
made to include in Figure 8 plots of large magnitude likelihood func-
tions from the various Monte Carlo runs. Maximum magnitudes attained by
the ten likelihood functions on the three trajectories (denoted as
"level," "turn," and "descent") are given in Table V. This table in-
cludes nonzero bias runs as well as zero bias runs. With zero biases,
after a rapid transient from an initial value of -195 as in Figure 8,
the maximums attained by the VIAS (indicated airspeed) likelihood func-
tion were -10 in level flight, -20 in the turn, and -8 in descent. Note
that this original value of -195 was due to the initial conditions being
established with a trajectory in which instrument biases were allowed to

assume representative nonzero values. These are substantially lower
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TABLE V
LARGEST LIKELIHOOD FUNCTION VALUES WITH NO FAILURES

|
] LIKELIHOOD FUNCTION LEVEL TURN DESCENT
f INS 1 - B2 - 20.4 v B
! INS 2 5l -1650 - 11.9
; INS 3 - 5.8 - 96 . 5.6
i
I AHRS 1 - 9.0 - 36 ~ 15.7
, AHRS 2 5.1 1185 . B8
; AHRS 3 e - 145 . 61
VERT 1 - 13.3 S ThE - 14.0
VERT 2 3 15 0% . T
VERT 3 - 2.8 . i
VIAS -230 - 430 195
[
b
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1
|
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than the -230, -430, and -195, respectively, in the table. Another,

less pronounced, effect was that the VERT 2 (independent vertical ve-
locity) achieved maximums of -1.1, -1.5, and -1.8 in the level, turn,
and descent phases with no biases simulated, as compared with the -11.1,
-5.2, and -4.7 listed in the table. Other than these cases, the biases
had only a marginal effect on the likelihood function magnitudes or dy-

namic characteristics.

The variation of the roll channel likelihood functions of both at-
titude filters under the influence of rapid roll rates in the turn is
especially noteworthy. A variation of greater than two orders of magni-
tude in these likelihood functions is exhibited in both Figure 8 and
Table V. By far, this is the greatest sensitivity of the various like-
lihood functions to aircraft maneuvering, and therefore it has received

intense attention in this effort.

3.  FAILURE DETECTION CAPABILITY

This section will describe the results of Monte Carlo runs to veri-

e

fy and improve the performance reported in Tables I and II of Section I.

To provide a means of direct comparison, the data will be presznted in

3 the same order as in those two tables. Where significant improvement
was required and/or achieved, a more detailed accounting of these re-

| sults will be made.

3.1 SUDDEN FAILURES WITH SUDDEN EFFECTS

First, the study of sudden failures with sudden effects, the con-

tent of Table I, will be presented.

| 124

|

B A 100 N A e T P e P




AFFDL-TR-76-93

Massive leak in static line: During tne turn segment, static line

leaks of varying degrees were simulated, with such a failure being de-
tected by the altitude (VERT 1; e7), vertical velocity (VERT 3; eg), and
indicated airspeed (VIAS; e]]) likelihood functions surpassing their
thresholds. The performance of Table I was achieved, with the smallest
leak simulation being within the region such that in-tolerance instru-
ment biases precluded detection in many runs. With more massive leaks
(i.e., adding more than 50 to the simulated sensor bias), detection was
possible and occurred more rapidly with increasing leak magnitude. The
"higher sensitivity" to vertical velocity than altitude exhibited it-
self in the vertical velocity likelihood function rapidly attaining a
value in excess of normal and remaining there, whereas the altitude like-
1ihood function grew more slowly, but continued such growth to surpass
the threshold by a greater percentage eventually. Thus, as in Table I,
the vertical velocity was signalled in error on the first iteration of
the algorithm after the leak was simulated, while the altitude failure
required four iterations. Note that, due to simulation errors in the
previous work, the indicated airspeed was not affected by static line
errors. For the strongest leak simulated (adding 500 to the sensor
bias), the altitude likelihood function exceeded its normal peak value
by about 7, the vertical velocity by about 4.5, and the indicated air-

speed by about 1100.

Some difficulty with the airspeed (VIAS) likelihood function
growing large was experienced, but this was attributed to other instru-
ment biases. Thus, these were not false alarms caused by the simulated

line leak.
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Massive leak in pitot line: The performance of Table I was achieved

when instrument biases were zeroed, but some difficulty was experienced
when other instrument biases were allowed to affect the system. The in-
dicated airspeed (VIAS) likelihood function repeatedly demonstrated such

performance.

Excessive noise in static pressure output: The altitude (VERT 1),

vertical velocity (VERT 3), and indicated airspeed (VIAS) 1likelihood
functions signalled such a static pressure sensor failure, with similar
trends as in Table I. For the largest noise power simulated, VERT 1
attained approximately -31 (as compared to -14.5 as listed in Table V
for the greatest value under no-fail conditions), VERT 3 achieved about
-28 (compared to -2.7) and VIAS achieved -1500 (compared to -430).

This is seen in Figure 9, typical plots of VERT 1 and VERT 2 under con-

ditions of their largest failures.

The VERT 2 likelihood function magnitude grew somewhat, though not
as severely as VERT 1 and VERT 3 or enough to surpass threshold. This
can be attributed to the vertical filter being degraded by continued

use of a failed signal.

Excessive noise in pitot pressure output: As indicated in Table I,

for large enough noise corruption, a failure is declared by the airspeed

(VIAS) likelihood function exceeding threshold. For 0; = 600, the value

grows to about -750, and for c; = 1200 it grows to -1800 then oscillates

back to -600, both of these being considerably beyond the -430 value in
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Table V under no-fail conditions, and especially beyond -20 under no-
fail conditions and no instrument biases (as mentioned in Section IV.2).
Figure 10 portrays the VIAS likelihood function for a run with 0;

= 1200.

Tachometer failure: When the tachometer failed in descent, the

vertical velocity likelihood function signalled a failure, usually after
about one second, with the function approximately doubling its "normal

operation maximum" value after two seconds.

Bent angle-of-attack vane: Similar to the indicated performance in

Table I, for the low values of additional bias used to simulate the bent
angle-of-attack vane, the results did not consistently put the VERT 2
likelihood function level beyond the value of -5.2 shown in Table V.
However, when 0.06 was added to ba, the value grew to -6 in approxi-
mately two seconds, and remained at that level. For an additional bias
of 0.12, the level grew to -36 in about two seconds, as shown in Figure
11a. Unlike the results in Table I, the indicated airspeed 1likelihood
function did not in general grow beyond the -430 level of Table V, al-

though it did usually grow beyond the zera bias level of -20.

As might be expected, the other estimates in the vertical filter
were degraded somewhat due to incorporation of faulty data, and so
VERT 1 and VERT 3 did in fact grow in magnitude. However, as seen in
Figures 11b and 11c, these two likelihood functions underwent growth
substantially lower than the corresponding likelihood function. Thus,

any potential false alarm from their growth could probably be precluded

by removing the failed signal from the filter.
129
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This idea was tested, and Figure 12 presents the confirmation ob-
tained. By removing the failed signal, the VERT 1 and VERT 3 likelihood

functions do in fact recover to levels that do not elicit false alarms.

Noisy angle-of-attack potentiometer: Again performance similar to

that of Table I was achieved except that indicated airspeed did not con-
sistently register false alarms. When the noise variance was set to

I 0.06, the VERT 2 likelihood function grew to about -25 in about two
seconds (compared to the -5.2 of Table V), and then oscillated at values
ranging between -15 and -27 typically. Under this magnitude of failure,
the VERT 1 and VERT 3 likelihood functions did not generally show growth

levels to potential false alarms.

When the noise variance was increased to i 0.12, the results
were well represented by the plots of Figure 13. Plot a shows the
VERT 2 1ikelihood function clearly surpassing its maximum normal value
(-5.2), but both VERT 1 and VERT 3 in plots b and ¢ surpass their max-
imum normal values (-4.5 and -2.8, respectively) as well. Again the
influence of removing the failed signal upon failure declaration was
investigated, and again the VERT 1 and VERT 3 likelihood functions

recovered to behavior that remained subthreshold.

Mormal accelerometer pickoff failure: The airspeed (VIAS) 1ikeli-

hood function quickly detected this failure, as shown by a typical plot

of its value in Figure 14.
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INS vertical accelerometer float leak: This failure was reported

as undetectable in Table I from previous investigations. However, for

a:

the accelerometer scale factor error Eég = Eé] 0.02 and above, detec-

tion was achieved in the experiments conducted for this effort. Figure
15 portrays a typical result for a scale factor error of 0.04, in which

VERT 1, VERT 2, and VERT 3 all clearly surpass their no-failure maximums

of -14.5, -5.2 and -2.8, respectively. Times of passaye of these thresh-
olds were not always identical, so that checking other likelihood function
values when one surpassed its threshold (to determine the probability of
their thresholds being surpassed soon) would be required to preclude

false alarms.

3.2 SUDDEN FAILURES WITH DRIFTING EFFECTS
As in the previous section, the study of sudden failures with
drifting effects will be presented in the same order as Table II so that

a direct comparison is readily discernible.

Clogged static line: This failure was detected by both altitude

(VERT 1) and vertical velocity (VERT 3) exceeding the no-failure maximum
values. As in Table I, the altitude likelihood function indicated the

failure before the vertical velocity likelihood function did.

Clogged pitot line: With instrument biases allowed to assume dif-

ferent representative values, this failure could not be discerned con-
sistently, as indicated in Table I. However, if a comparison is made
between the Monte Carlo runs with no failures and zeroed instrument bi-

ases, and similar runs with no biases but the clogged pitot line simu-
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lated, then the failure is detectable. Fiqgure 8 presented plots of the
VIAS likelihood function: in all cases, it converged to magnitudes be-
low -20 in the turn segment and -8 in descent. Note that the original
higher values in these plots were due to the initial conditions being
established with a trajectory in which instrument biases assumed repre-

sentative values.

Figure 16 presents the indicated airspeed (VIAS) likelihood func-
tion for the case of zero instrument biases and a clogged pitot line.
Plot a corresponds to a turn segment, and the likelihood function grows
to a value of about -35 (beyond the no-failure maximum of -20). Simi-
larly, plot b corresponds to the descent, and the detectability here is

more pronounced: not only is the no-failure maximum value of -8 sur-

passed, but the growth trend is consistent. In this latter case, the
failure would be detected even if the -195 threshold of Table V for
descent conditions, or the overall threshold of -430, were used. Nev-
ertheless, its speed of detection would be much improved if inustrument
biases were compensated in preflight as suggested in Section III (allow-
ing a tighter threshold to be used). In fact, such compensation would
be requisite for the detection of a clogged pitot 1ine during the turn

segment in most of the Monte Carlo runs, though not for detection in

descent.

INS vertical gyro torquer failure: This failure in level flight

would be expected to affect the INS pitch and roll (INS 1 and INS 2)

likelihood functions. Figure 17 presents representative plots of these
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two functions. These two graphs do exceed the no-fail maximums achieved

in level flight (INS 1 reaches about -7.5 compared to -4.2 with no fail-
ures, and INS 2 reaches approximately -8 compared to -5.7). However,
the INS 2 does not exceed the considerably larger maximums obtained in
turns (-20.4 and -1650, respectively). Thus, it can be concluded that
this failure is detectable only if threshold levels set adaptively to
aircraft maneuvering were used. If such adaptive thresholds were used,
a threshold appropriate to level flight would be tight enough that such
a failure could be detected, but only while the aircraft were actually

flying straight and level.

INS heading gyro torque failure: No discernible effects on the INS

yaw (INS 3) likelihood function were caused by this failure.

INS gyro float leak (level flight): Even the smallest simulated

leaks had profound effects on the INS-AFCS attitude filter likelihood
functions. Figure 18 presents the three likelihood functions (INS 1,
INS 2, INS 3) for an example run of this case, i.e., E}? = 0.0025. The
achieved values of -13, -90, and -800 far surpass the no-fail level
flight maximums of -4.2, -5.7, and -5.8 in Table V. Note that, as ex-
pected, the yaw likelihood function (INS 3) exhibits the strongest ef-
fect due to the failure, but that the failure does not affect the entire

INS performance.

For larger values of float leak magnitude, the INS performance deg-
radation is sufficient to affect the vertical filter likelihood functions

through the influence of the INS vertical accelerometer. For instance,
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when f]? = 0.1, VERT 1 reaches -42 in two seconds from start of the
failure, compared to its no-fail level flight maximum of -13.3, VERT 2
reaches -1.5 (compared to -1.1) and VERT 3 reaches -10.6 (compared to
-2.8). For this reason, when su INS failure is declared, the driv-
ing noise covariance in the vertical filter should be increased to a

very large number.

INS gyro float leak (turn): In a turn, this failure again had

significant effect on the INS likelihood functions, even for the small-
est magnitude failure that was simulated. Figure 19 presents these re-
sults: pitch (INS 1) drops to -230 (versus -20.4 for no failures) and
yaw (INS 3) to -102 (compared to a peak value of -96). Note that the
INS 3 tikelihood function differs significantly from the no-failure case
during the turn: it remains at about -60 for a period of time in the
turn as opposed to returning immediately to about -10. Therefore, if a
time-to-failure-declaration parameter were used in conjunction with a
threshold value to mask out the transients due to rapid roll rate, the

declaration of failure would be assured for INS 3 as well as INS 1.

Note that INS 2 also exhibits a likelihood function buildup during
the turn. This is to be expected since the failure will affect the
performance of all INS outputs. Furthermore, even for the lowest mag-
nitude failure, the INS vertical accelerometer error has caused the
vertical filter 1likelihood functions to grow abnormally, as depicted in
Figure 20. As in the previous case, VERT 1 and VERT 3 especially exceed

their no-failure maximums (-14.0 and -2.5, respectively). Thus, when an
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INS failure is sensed, either the driving noise variance for the verti-
cal filter must be increased or the failure detection based on the

vertical filter likelihood functions must be disenabied.

Increasing the magnitude of the failure makes the effects depicted
above more pronounced. Thus, the rapid detection in Table II 1is possi-
ble. (For instance, when E&? = 0.005, INS 3 (yaw) reaches -5000 in
three seconds!). The “false alarms" reported in that table are due to
the propagation of the degraded INS performance into the VERT 2 likeli-

hood function and the entire vertical filter.

Loss of cutoff for the vertical gyro: During a turn, such a fail-

ure should be declared by the AHRS roll (AHRS 2) likelihood function
surpassing threshold. With loss of good vertical gyro performance, it
would be expected that AHRS pitch (AHRS 1) would also grow. Figure 21
presents a typical set of plots of these two likelihood functions. If a
time-to-failure-declaration parameter or some other method were used
with a threshold value to mask out normal transients in the AHRS 2
likelihood function, then the growth during the turn itself to a value
of about -350 would be detectable as a failure. As expected, the AHRS 1

likelihood has surpassed its no-failure maximum value of -36.

Loss of cutoff for directional gyro: No effects could be observed

in the AHRS yaw (AHRS 3) likelihood function when this failure was

simulated.
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Vertical gyro servo failure: No consistently discernible increase

in the magnitudes of the AHRS roll or pitch likelihood functions ap-

peared wihen this failure was simulated.

Directional gyro servo failure: Figure 22 presents a typical plot

of the AHRS heading (AHRS 3) likelihood function when this failure was
simulated during level flight. The peak magnitude exceeds the no-
failure maximum attained in level flight (-11.1) by a factor of two and
is also greater than the descent value (-6.1). However, it does not
exceed the maximum achieved in turns (-145), so thresholds adaptive to
maneuvering, or a disenabiing of failure declarations during turns with
the tighter threshold chosen, would be required for this failure to be

detected.

Rate gyro failure: Figure 23 presents the six likelihood functions

(INS 1, 2, 3 and AHRS 1, 2, 3) that together surpassing their thresholds
would indicate a pitch or yaw rate gyro failure, when in fact a yaw rate
gyro was failed during a turn. The INS 1, INS 3, AHRS 1, and AHRS 3
Tikelihood functions clearly crossed their threshold values. If tran-
sients due to rapid roll rates are masked out, then the growth of INS 2
and AHRS 2 (the two roll iike]iﬁood functions) can readily be detected
during the turn itself, INS 2 growing to about -500 and the AHRS 2 func-
tion to about -200. With six likelihood functions, the time of crossing
of threshold probiem exists, and a check on the other likelihood func-
tion values when the first surpass threshold will avoid false alarms due

to this problem.
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Figure 24 presents a typical result of failing the roll rate gyro
in level flight, an experiment not reported in Table II. As expected,
the roll likelihood functions associated with both attitude filters
(INS 2 and AHRS 2) surpassed the no-failure level flight maximum values
(-4.2 and -9.0, respectively). They also surpassed the maximum values
attained in descent (-6.9 and -15.7), but did not exceed the thresholds
appropriate to turns (-20.4 and -36). Therefore, use of tight thres-
holds with inhibited failure declaration during turns or threshold
values set adaptively to sensed maneuvering would be required to detect

this failure.

4.  LESSENING SENSITIVITY TO ROLL RATE

One consistent characteristic in the last section was the sensi-
tivity of the two roll angle likelihood functions (INS 2 and AHRS 2) to
rapid roll rates. The three procedures for handling the resulting

transients were:

(1) wuse of the tighter threshold values appropriate to other
flight regimes and the disenabling of failure declarations

when rapid roll rates were sensed (or commanded)

(2) wuse of threshold values that would be adaptively set higher

when rapid roll rates were sensed (or commanded)

(3) wuse of a time-to-failure-declaration parameter in conjunction
with a tighter threshold value to "mask out" the transient

effects.
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Because of the magnitude of these transient effects, an investiga-
tion was made to determine if increasing the two filters' driving noise
covariance matrix (Q) components could significantly reduce the transi-
ent amplitudes, while leaving failure characteristics unchanged (or even

enhanced).

The first tests simply multiplied the diagonal Q matrices by con-
stant factors. This led to somewhat decreased transient magnitudes, but

also to a decrease of likelihood function growth due to real failures.

Subsequently, it was reasoned that the real system model uncer-
tainty was in the roll channel, so only the element in the first row and
first column of the Q matrices {corresponding to driving noise on roll
rate) was increased, leaving the other terms unchanged. Tests were
conducted with these elements set to 2, 5, and 10 times the value that
tuned the filters to the straight-and-level flight regime. Monte Carlo
runs of turns were then made for (1) no failures simulated, (2) the yaw
rate gyro failed, and (3) loss of vertical gyro cutoff. Since the two
failure cases are indicative of the decrease in transient amplitude

achieved in the no-failure case, only these plots are included here.

Figure 25 displays typical plots of INS 2 and AHRS 2 for the rate
gyro failure case with Q]] set at twice its normal value. The transient
is decreased somewhat from that depicted in Figure 23, and the intermed-
jate growth is somewhat better as well. The trends of the other four
likelihood functions were left unchanged, and failure detection was

readily possible.
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By increasing QH to ten times its normal value, results were such

as those displayed in Figure 26. The growth due to the actual failure

¥
)
{
e — e gl R e g g g J

was relatively unchanged, but the transient magnitudes were reduced
markedly. As would be expected, the associated attitude filters were
simultaneously producing estimates of the error variances in their state
estimates that more closely approximated the statistics of the actually
: observed residuals. However, this was gained at the expense of a re-
| ciprocal detuning of the filters for straight-and-level flight regime

E
§ performance.
:

The same trend of reducing the transient magnitude with an increase
of Q]] was also exhibited by the AHRS roll (AHRS 2) likelihood function

for the case of loss of vertical gyro cutoff. Thus, the failure charac-

teristics were emphasized relative to these transients.

5.  SENSITIVITY TO INSTRUMENT BIASES
0f the twenty-four biases tested at their 20 level, the most criti-

cal were those that affected the indicated airspeed (VIAS) likelihood

function, since it was this function alone that required biases to be
set to zero (or small values) to yield good detection performance. The
indicated airspeed quantity is generated with the use of static pressure
and pitot pressure, so the sensitivity of the VIAS likelihood function
to biases in these values would be important. Furthermore, the model
reference incorporates the normal accelerometer output and angle-of-
attack signal to generate a second computed value of indicated airspeed,

so these sensitivities are also important.
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Figure 27 presents the typical VIAS likelihood function in the
level, turn, and descent trajectories during simulations in which the
static pressure bias was set at its 20 value. Similarly, Figure 28 por-
trays a typical example when the pitot pressure bias is similarly set.
The extreme sensitivity of likelihood function performance to these two
biases, as seen by comparing these plots to those of Figure &, empha-
sizes the importance of removing such biases to the greatest possible
extent during preflight, if this likelihood function of the detection
logic is to perform properly. The angle-of-attack bias affects this
likelihood function to a minor degree, changing its magnitude by about 5
to 10 at most when the bias is at its 20 value. It should also be noted
that the pitot pressure bias also affected the vertical filter, with the

VERT 2 1ikelihood function doubling its threshold in level flight.

Other bias sensitivities are less critical to performance, and they
were also found to be less severe than the static and pitot pressure
bias sensitivities. Biases directly on the INS outputs caused some
performance change. The 20 bias on INS pitch caused the corresponding
likelihood function to achieve maximum magnitudes of -7.5 in level
flight, -4.3 in a turn, and -8.7 in descent (compared to the values
-4.2, -2.04 and -6.9, respectively in Table V); the roll bias caused the
roll likelihood function to reach -9.1 in level flight (compared to -5.7
from Table V). Other bias effects in the INS, as due to gyro or ac-

celerometer biases, were negligible.

The AHRS biases directly on the Euler angle outputs similarly had

some effect on 1ikelihood performance. The pitch likelihood function
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reached a value of -52 in a turn (compared to -36 in Table V) when a 20
bias was simulated on the pitch output. With a similar bias on the roll
output, the roll likelihood function reached values of -23 in level
flight and -27 in descent (compared to -5.1 and -8.6, respectively in
Table V). The directional gyro bias at its 20 value causes the AHRS yaw
likelihood function to reach -20 during level flight (compared to the
Table V value of -11.1). Finally, the AHRS compass bias caused the AHRS
yaw likelihood function to exhibit a constant growth characteristic, un-
Tike other biases which caused a more stable offset from no-failure
likelihood function values. This is depicted in Figure 29 for the case
of the descent trajectory, in which the 1ikelihood function is seen to
continue a constant growth trend beyond the threshold of -6.1 from

Table V.

6. VERIFICATION OF SIMULATED DATA

In order to verify that the performance analysis conducted in this
effort truly depicts the performance to be expected in eventual imple-
mentation, data acquired from flight test aircraft will replace the air-
craft and sensor simulation portions of the software package. First a
set of no-bias, no-failure simulation runs will be conducted, and re-
cordings of all sensor outputs put on tape. Then no-bias runs with
failures will be conducted, and recordings of the sensor recordings
again collected. The difference between these and the corresponding no-
failure case sensor outputs will then form a time history of sensor
output variations due to simulated failures. Once the flight test data
tapes are obtained, they can then be used to drive the filters, detec-

tion logic, and performance analysis segments of the software. By
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/ superimposing the seansor output variations on the real data, the ability
of the failure detection logic to discern failure characteristics in a

real sensor signal environment will be verified.
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SECTION V
CONCLUSION

An efficient and effective means of detecting failures of data sen-
sors through functional redundancy has been developed and its perfor-
mance capabilities investigated. As the preceding section has demon-
strated, the failure detection power of the concept is rather extensive.
Since it allows such detection by combining data from systems already
onboard an aircraft, it reduces the amount of hardware duplication
required to achieve a specified level of data system reliability.
Consequently, the practical implications in cost, weight, and volume

savings for future aircraft are substantial.

To aid the eventual implementation of this concept into an inte-
grated failure detection system, a flexible design tool has been devel-
oped. With this tool, the functional redundancy detection logic can be
re&dily tuned and optimized for any particular onboérd application. The
software package that has been developed can significantly assist the
conversion of pgrformance potential of functional redundancy failure de-

tection into performance realization.
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