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FOREWORD

This report was prepared by the Air Force Flight Dynamics Labor-
atory, Wright-Patterson Air Force Base, Ohio , under work unit number
19870250.

The investigator and author of this report was Dr. Peter S. Maybeck,
who, during the period of investi gation , was employed at the Flight

Dynam ics Laboratory, in the Control Elements Branch of its Flight Con-
trol Division . The report covers work performed from January 1972 to

July 1973.
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SECTION I

• BACKGROUND AND OBJECTIVES

1. THE CONCEPT OF FUNCTIONAL REDUNDANCY

• A hi gh degree of reliability in control data instrumentati on is

vital to the mission of USAF , and this objective is typically accom-

pli shed by compar ing the outputs of redundant system components . How-

ever , the weight , volume , and cost penalties of such equipment redun-

dancy can be substantial.

Data systems already onboard the aircraft - the a i r data computer ,

inertial system (•free or aided), at titude and headi ng reference system,

and the rate gyros and accelerometers of the automat i c fl ight contro l

system - provide functionally related data. This form of inherent func-

tional redundancy among sensor signals can be exploited rather than re-

sorting exclusivel y to hardware dup l ication to achieve the desired level

of data system reliability .

To date , such functiona l redundancy has not been employed in the

development of fault tolerant or high reliability systems. Instead ,

the reliability of individual system components has been improved , and

then these components are Incorporated redundantly with some form of

comparison logic to generate a reliable signal. Such comparisons re-

quire a minimum of two signals to Indicate a discrepancy, and a minimum

of three signals to determine the appropriate signal level if a dis-

crepancy does exist. Thus, for a system to operate normally in the

face of a single sensor failure , that sensor must exist in triplicate

LL• i_._ _ _ 
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so that the comparison logic can isolate (and remove) the faulty signal.

It is desirable for the more critical systems to be able to tolerate

two failures , necessitati ng another level of redundancy, or quadruplet

components. Such a level of hardware redundancy becomes prohibitive as

systems become more complex and sophisticated .

A viable alternative would be to replace some l evels of hardware

redundancy with the functional redundancy that exists among the outputs

of the different sensors in the aircraft. Thus , functi onal redundancy

is viewed as a complement to equipment redundancy for an overall system,

providing the same level of reliability with fewer components than re-

quired if subsystem outputs were not correlated with one another.

• It is also a complement to, ra ther than a rep lacemen t for , other

means of fault detection. Some types of failures are more appropri-

ately handled by these other techniques. As envisioned in this report,

the functi ona l redundancy al gori thm mig ht have an iterati on rate of ap-

proximately 5 Hz. A number of iterations might be required to declare

a failure and isolate the failed signal , result i ng i n a time period on

the order of one second before a failed signal might be removed from

the overall data system. Such a respon se time would probably not be

sufficient for safety of flight parameters . The iteration rate would

be increased; but since most signals would not require a faster re-

sponse time, the benefits would become marginal compared to the in-

crease in computer loading.

2
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Certain types of errors, such as deterministic biases and scale

factor errors, can be readily evaluated by means of filtering and com-

pensation techniques on indIvidual or redundant Identical components.

Functional redundancy might be employed in part to detect which signal

is biased out of tolerance, but estimating and compensating for the

actual bias value is achieved more easily by comparison of the signal

to that of an identical component.

Similarly, many hard failures are readily detected by built -in-

test (BIT) capabilities of individual components.

Functional redundancy is most applicable to the detection of

failures that are currently isolated by comparing signals of identical

sensors. These might be hard (or catastrophic) signal failures or

“soft~ failures in which the signal slowly drifts away from the true

parameter value. Rather than comparing duplicate signals , though , a

sensor signal is compared to an estimate of its value generated from

other functionally related signals. These functional relationships

encompass kinematic differential equations , as wel l as geometric and

aerodynamic relations that characterize aircraft motion . For example ,

an inertial system indicates angular orientation of the vehicle , while

rate gyros associated with the flight control system measure the vehicle

angular rates. A kinematic relationship exists between these quanti-

ties, and such a functional relationship allows the correlation of

data taken from the two sensor systems. 

— —~~~~~~ -- — 
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Actuall y, the pilot and crew have been required to perform such

cross correlation in verify i ng the validity of independent subsystem

measurements. However, as aircraft incorporate more sophisticated and

extensive av ionics , multipl e mode or mission capabilities , and higher

speed and meaneuverability , especially in the case of single-seat vehi-

cles , the time the crew is able to devote to such performance monitoring

becomes very restricted . Therefore, it i s essential that as much in-

formation as possi ble be automati call y digested , interpreted , and pre-

sented to the crew in a usable and concise form. Functional redundancy

can be i ncorporated into the data system design to provide such reliable

capability with a minimum of equipment duplication.

2. BASIC ALGORITHM FORMULATION

The functional relationships provide the system equations of a

model reference for the failure detection and isolation technique . The

appropriate sensor signals are used as “inputs ” to this model reference,

the functiona l relationships thereby generati ng model reference “out-

puts.” By comparing these outputs to the measured values of these

quantities , i.e., signals generated by other sensors, error s igna ls  are

produced. These are then fed back through appropriate gains so that the

model reference tracks the measurements.

When the functional relationships are linear differential equations

and the statistics of noises and uncertainties are adequately modelled

as Gaussian , the Kalman filter provides such a model reference. Moreover,

if the dynamics are nonlinear , an extended Kalman fi l ter that linearizes

about the most recent estimate of nominal parameter values can be

utilized . 4

—. —--~-~~
-.-——~

-.—
~

-- _~__.__ _.~~ .~..;__ ~ _ _ __.._ —. — -.--~ ~~.__ _.••)_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~



r ~~~~~~~~~~~ -

AFFDL-TR-76-93

t
Sensor failure detection is achieved by monitoring the individual

components of the sequence of resid uals , the in div id ual error sig nals

generated by ctifferencing a measured output and the model reference’s

best estimate of what its va l ue should be. With no sensor failures ,

this sequence of residuals should possess certain characteristics, such

as being white , zero-mean, and Gaussian . A consistent departure from

such a characterization would indicate a fault, and the specific manner

in which this departure manifests itself in the residual sequence can

be used to isolate the particular fault involved (at least partially

isolate it , if not totally).

A logical and effective means of discerning such departures would

be through the use of the statistical detection theory method of ob-

serving the magnitude of appropriately defined likelihood functions.

If the magn itude of a certain residual is consistently higher than nor-

mal , the magnitude of the l i kel i hood function also increases. When its

value surpasses some preselected threshold for acceptable behavior under

normal conditions , a fault is declared . By noting the pattern of such

threshold passings , the exact cause can (often) be deduced .

3. SYSTEMS EMPLOYED

In order to demonstrate the performance capabil ities of the func-

tional redundancy concept, the following sensor systems were considered :

(1) the inertial navigation system

(2) the attitude and heading reference system

5
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(3) the air data system

(4) the rate gyros and normal accelerometer of the automatic

flight control system.

The concept can be applied to other measurement systems as wel l ,

such as those associated with the propulsion system or external naviga-

tion aids. However, the scope of thi s work was confined to the above

systems to yield a concerted effort in an area partially investigated by

a previous study [0].

There are eighteen (18) individual signals to be utilized in the

functional redundancy algorithm . These signals would be sent to a com-

puter i nterface which would prov ide sampling and AID conversion of the

signals , yielding algorithm inputs in usable form. The individual sig-

nals from the four measurement systems are:

From the Inertial Navigation System (INS):

(1) Pi tch (o)
(2) Roll (4~)

(3) Heading (~p)

(4) Acceleration along local horizontal axis Xh (aXh)

(5) Acceleration along local horizontal axis 
~h 

(aYh )

(6) Vertical acceleration (8zh)

6
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From the Attitude and Heading Reference System (AHRS):

(1) Pitch (e ’)
(2) Roll (f ’)

(3) Heading (ip ’)

From the Air Data Computer (ADC):

• (1) Angle of attack (ci)

(2) Indicated airspeed (v 1)

(3) True airspeed (v a )

(4) Altitude (h)

(5) Altitude rate (h)

From the Automatic Flight Control System (AFCS) sensors :

(1) Pitch rate (w
i
)

(2) Roll rate (w
~
)

(3) Yaw rate (w i)
(4) Normal acceleration (at)

The three angles from the INS are available from gimbal resolvers

or from the gyros themselves; the accelerations are taken from the plat-

form accelerometers, and are thus coordinatized in local horizontal

axes. (The exact definition of Xh and ~h 
in the horizontal plane would

depend on the inertial system mechanization , and can actually be defined

for convenience since any choice would be related to what is actually

available by a simple, known rotation transformation.) The displacement

gyro assembly of the AHRS provides Its indication of the three Euler

_ 
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angles . To genera te i ts five si gnals , the ADC processes inputs from

various air data sensors: the ang le of attack probe and associated

transmi tter , the temperature probe and its transmitter , the sta ti c

pressure source, and the pitot pressure source (the latter two typically

being coupled pneumatically to the computer). Finally, the AFCS sensors

provide signals proportional to the body rates and normal acceleration

in vehicle body coor di nates.

The signals described above are the nomina l inputs to the failure

detection algorithm . It may be beneficial to input an indication of

comanded or actual control surface positions for adaptability purposes ,

as will be discussed in Section 111.7. However, the basic description

of the system will first consider only the nomina l inputs.

The measurement systems employed are found in virtually all modern

aircraft, and thus the failure detection concept is applicable to any

• particular vehicle. To assure a realistic evaluation of the technique ,

a particular aircraft was chosen to represent typical applications; the

F-4 chosen because of the relative availability of data about its per-

formance and instrumentation. A previously developed simulation model

of the F-4 vehicle and its various sensor subsystems [0] was utilized in

the f i r s t  phases of analysis. Since any simulation model is a sim-

plification of the real world environment, subsequent analysis replaced

the simulation wi th actual data recordings from test aircraft , with

simulated sensor failures added to real data . This second phase of

analysis provided as realistic a means of performance evaluation as

possible without actual sensor failures In flight. Essentially, it was

8 
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conducted to corroborate the conclusions of the analysis based on the

aircraft simulation program.

4 . MAJOR FAILURE MODES

A substantial effort was conducted previously [ ] to delineate the

major failure modes of the sensor instrumentation onboard a typical air-

craft. These modes were then included in the simulation program used to

evaluate failure detection performance (a portion of this effort includ-

ed the revision and modification of the program to provide a better sim-

ulation).

4.1 SUDDEN FAILURES WITH SUDDEN EFFECTS

Certain failures affect sensor measurements directly, so that a

sudden failure causes a sudden effect. Many failures involving the air

data system are of this type. These would include :

(1) Sudden leak in the static line: this would cause a sudden

erroneous measure of altitude , altitude rate, and indicated

airspeed, the error being detectable during any portion of

the flight regime.

(2) Sudden leak in the pitot line: indicated airspeed would

undergo a sudden change, this error being detectable at any

time.

L
_______  

- -~~~~~~~
-
~~~~~~ 

_ _ j

L_______ ______ 

— -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~
-—-

~ 
-
~~~~~

AFFDL-TR-76-93

(3) Sudden increase in noise of static pressure transducer output:

would cause noisy measurements of altitude , altitude rate, and

indicated airspeed , being detectable during any portion of

fl ight.

(4) Sudden increase in noise of pitot pressure transducer output:

= would similarly cause a noisy indicated airspeed signal , being

evident at any time.

(5) Tachometer failure : would result in the loss of altitude

rate, being detectable only when the aircraft is either as-

cending or descending .

(6) Bent angle-of-attack vane : would result in a sudden increase

in the bias of the angle-of-attack measurement, and would be

detectabl e during any flight regime; this would also adversely

affect the computed indicated airspeed generated in the fail-

ure detection algorithm .

(7) Sudden increase in noise of angle-of-attack output potentiom-

eter: angle-of-attack signal would undergo a sudden increase

in noise level , occurring during any portion of flight; this ,

too, would corrupt the computed indicated airspeed developed

in the detection algorithm .

10 
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(8) AFCS normal accelerometer pickoff failure : would imediately

affect the computed ind icated airspeed created by the model

reference of the failure detection algorithm , and this effect

should be noticeable at any time.

(9) Sudden float leak of an INS vertica l accelerometer: would

generate a sudden error in the vertical acceleration signa l ,

and a slow drifting effect on INS altitude outputs as well.

Only the vertica l accelerometer is used directly in the pre-

sent failure detection algorithm--had the INS accelerometers

been used to check the AFCS normal accelerometer , a sudden

failure of an INS accelerometer would yield a sudden error in

this signa l correlation .

4.2 SUDDEN FAILURES WITH DRIFTING EFFECTS

• Certain types of failures do not directly affect measurements , so

that their results are not sudden , but drifting, erroneous si gnal 1ev-

els. Failure modes of this form encompassed :

(1) Clogged static line to ADC: the altitude , altitude rate, and

indicated airspeed will become erroneous if the vehicle changes

altitude or airspeed (neither of which can be changed instan-

taneously, so this is in fact a dr i fting type effect).

(2) Clogged pitot line to ADC : indicated airspeed will drift off

true value if the vehicle changes airspeed .

- 
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(3) Janined angle-of-attack vane : the ADC angle-of-attack signal

will exhibit a “drifting ” type error as the true angle of

attack varies in flight. (The simulation program was incapa-

ble of producing this type of failure.)

(4) INS vertical gyro torquer failure : drifting of pitch and/or

roll attitude indications would result, eventually corrupting

all INS out puts.

(5) INS heading gyro torquer failure: heading measurement would

undergo a drift , and other INS outputs would be affected in

time .

(6) INS gyro float leak: this , or any other failure that would

cause a center of grav ity sh i ft, will result in acceleration-

induced gyro drifts; in level flight the gravity induced drift

af fects the INS hea di ng output , while during a turn both the

heading and pitch ind i cations of the INS are affected ; eventu-

all y, all INS outputs would be adversely affected .

• (7) Vertical gyro servo failure : loss of slaving causes a drift

in the AHRS roll indication , so this is detectable only during

relatively level flight , since the slaving loop is turned off

during high rate maneuvers.

(8) Directional gyro servofailure : loss of slaving yields a drift

in the AHRS heading signal during relatively level flight .

12
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(9) Failure of cutoff for vertical gyro : if the servo cutoff sys-

tem fa i ls to opera te, the AHRS bank measurement drifts when a

nongravitational acceleration is present , as during a turn .

(10) Failure of cutoff for directional gyro: similarly the AHRS

heading ind ication will drift under nongravitationa l accelera-

t ions.

(11) AFCS rate gyro failure: during a period of changing vehicle

or ientat ion, a rate gyro fa i lure (as , a pickoff failure yield-

ing no output from the gyro) will cause the rate indication to

be erroneous.

There are also dr i f ti ng fa i lures tha t cause drifti ng effec ts , but

the simulation program does not account for these modes . Nevertheless ,

the preced ing two categories of failure modes should indicate the via-

bil i ty of thi s fa ilure detect ion concept.

5. RESULTS OF PREVIOUS STUDY

A nomina l approach trajectory involving level flight , final turn ,

pitchover, and descent was utilized as a means of evaluating the per-

formance of this detection technique . First, a set of runs were con-

ducted with no failures simulated , in order to specify bounds on likeli-

hood function values under normal circumstances . These then would be

used as the thresholds beyond which a failure would be declared .

13
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Once this was accomplished , the same trajectory was flown with

failures simulated at various points. The time to detection of the

failure was then recorded , as was the time to any false alarm .

Table I, taken from the previous study [0], surmiarizes the experi-

mental results for detection of sudden failures with sudden effects.

The first column lists the type of failure simulated along with the ex-

pected failure indications. The second column denotes the portion of

the trajectory (level , turn , or descent) during which the failure oc-

curred. The third column specifies the actual means of simulating the

failures and the magnitudes of these failures. For those cases in

which different magnitudes are involved , the notation used is b

= a bias , o = the 1~ value to specify the strength of a Gaussian noise

source, and E coeff icients of gyro or accelerometer errors linear in

accelerat ion. The last two columns indicate the time to detection

and/or false alarms in seconds.

Sudden changes in bias (due to leaks) or noise level are readily

detected for static and pitot pressure sources, the detecti on being

more sensitive to altitude rate than altitude effects of such a failure

(static pressure failures did not affect indicated airspeed due to an

error in the simulation program , which has since been rectified).

Both bias and noise type failures on the angle—of-attack measure-

ment signal were detected for sufficiently large magnitude failures.

However, a false alarm on airspeed was consistently obtained . The

angle-of-attack va l ue would influence the vertical Kalman filter and

14
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TABLE I

DETE CTION OF SUDDEN FAILURES W I T H  SUDDEN EFFECTS

Time Before Detection
Failure: Erroneous Output Location * Simulation (seconds 1 False Ala rms

b~~~ b~~+ 5O ~~~~~~~~ 
- -

b b + 100 ~
- . 1. 4 ——

Massive leak in ~tat,c line: p p

A ltitude; Altitude rate Turn b~ b~ + 200 , 0.4 --

b~ + 400 0.8. 0.2 - -

b~ b~ + 800 0.2, 0.2 - -

+ 75 8.6 --

b*~~~b * + 1 5 O  1.0 --
Massive leak in pit ot line: p p

Ind icated airspeed Turn b = + 300 0.4 --

b~ b* + 600 0.2 --

b* b* + 1200 0.2 --
p p

= 50 , 1 .4 - -

Excessive noise in static - = 100 0.4 —-
pressure output altitude : Turn
Altitude rate = 200 1.3 , 0.4 — -

- = 400 0.6, 0.4 --
p

• = 800 0.4, 0.4 --

--

- - ¶ Excessive noise in pitot * 150 ——
pressure output: Indicated Turn
airspeed -; = 300 1.2 --

-* 600 0.4 --

1200 0.2 - -p

Tachometer fai lure:
Altitude rate Descent h 100 1.. - -

b b + 0.0075 =‘ Airspeed
(8.6 s)

b b + 0.0150 Airspeed
(1.2 s)

Bent angle-of-attack b = b + 0.030 Airspeed
vare : Pn9 le of att)ck Turn ‘ (0.6 5)

b = b + 0.060 1.4 Airspeed• (0.4 s)
b = b , + 0.12 0.4 Airspeed

(0.2 s)
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1 =- ~ - re
Output L i t l o  

— 
S t n u l a t t i  second Fal

- 0.0015 . - -

F 0.0151) - • — —
~~ - , -  I - =  

of a t a- Thrti Ii. 0300 4 .0  A ~~~~( 7 . 2  ~~
‘:

O l E - I ,  2 .4  A i r~ pec-d
(0 .8 ~)= 0. 103) 0.8 .01 .; - -~
(0. 0 5 ,

‘,~ r - a i  d L L e l e e o ” ,eter in - — — l  0 .2 - -
)~~ :o Ff  f a t  u - - ;

Ai r-~: eeU ~~~ = 0

rd 
= 0.0025

33 31
,a ,a = 0.005 • - .

01 acce le ro m eter f loa t  33 31
l Eak : Vertical T-jrr, 

- -acce le ra t i o n  a a - -

-

,

* Le v e l , t u n , and descent locations in the land inv approach correspond to Points 1. 2 . 3,
respect ively, i i  Fi gure 13.
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airspeed check portions of the model reference (see paragraph 2 of

Sec tion II), and so such an alarm could be expected , but after , rather

than before , the appropriate failure detection.

It was surmised in the report that the vertical acceleration errors

were not detected because the thresholds were set at too high a magni-

tude , thoug h not substantiated by further analysis.

Table II portrays the results of the experiments involving sudden

failures with drifting effects. The clogged static lin e was detected ,

but the correspond i ng pitot line failure was not. In the previous re-

port, it was suggested that this might be due to the threshold on the

indicated airspeed being set too high. This may , in fact, be the case ,

but lower ing it wou ld also tend to intens ify the phenomenon in Ta ble I

of an airspeed failure being declared before the appropriate angle-of-

attack failure being detected .

The inability of the method to detect INS gyro torque failures and

AHRS gyro servo failures was attributed to the fact that these would

cause low magnitude drifts , on the order of earth rate . No ex p lana tion

was offered for the case of loss of cutoff for the directional gyro.

Failures that produced large drifts were readily detected , expec i-

-~ ally in the case of an INS gyro float leak. A “false ” alarm of INS bank

was indicated for all of these test runs. However , a failure in one

gyro will cause erroneous output data along other gimbal axes as well ,

17
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TABLE II

DETECTION OF SUDDEN FAILURE WITH DRIFT EFFECTS

Time Before Detection
Failure : Erroneous Output Location Simulation (seconds) False Alarms

Clogged static line :
Altitude , vertical Descent = 100 1.4, 2.0 - -

velocity p

Clogged pitot line: Turn = 100 --
Indicated airspeed p

Descent i~ = 100 - -

INS vertical gyro
torquer failure: Pitch , Level = 1 -‘ - -
bank , or both

INS heading gyro
torquer failure: Heading Level = 1 - . - —

0.0025 0.6 INS bank (7.2 s)

C11 = 0.005 0.4 INS bank (5.0 s)

INS gyro float leak: Level C?i = 0.01 0.2 INS bank (3.6 s)
INS heading 

—
C11 = 0.02 0.2 INS bank (2.8 s)

= 0.04 0.2 INS bank (2.0 s)

C 11 
= 0.0012 1.2, 2.2 INS bank (4.0 5)

~?l 
= 0.0025 0.8, 1.6 INS bank (2.8 s)

INS gyro floa t leak: Turn = 0 .005 0 .4 , 1.2 INS bank (2.0 s)
INS heading, INS pitch

- INS bank (1. 4 s)
= 0.010 O . ,  1.0 Angle of

Attack (3.8 5)
Vertical
Veloc ity (8.8 s)

- INS bank (0.8 s)
= 0.020 0.2, 0.6 Angle of

Attack (2.6 s)
Vertical
Velocity (6.2 s)

Loss of cutoff for Turn a* = 100 4.8 AHRS
vertical gyro: AHRS bank V 92 Pitch (Vu s)

Loss of cutoff for Turn a~ = 100 -_

directional gyro: g
AHRS heading

Vertical gyro servo Level a~ = -l --

failure : AHRS bank

Directional gyro servo Level a~ -l --
failure: AHRS heading g

Rate gyro failure : Turn -~~~~ ~~ °r = 0 0 .6 INS heading (0.4 s)
Rate gyro INS pitch (1.2 s)

INS bank (1.2 5)

= Tg 
= -g

- ‘11 ‘33 ‘12 ~32’
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and one should expect such propagation of effects due to a failure .

Note that these “false” detections occurred after the appropriate fail-

ure indications , and that for large enough failures and time for errors

to propagate, such errors propagate into other portions of the model

reference, causing additiona l false alarms .

A rate gyro failure caused an erroneous INS heading failure declar-

ation for one algorithm iteration before the proper rate gyro failure

was ind icated . As was appropriately discussed in the previous report,

this was due to the fact that a failed rate gyro is indicated by a

F number of likelihood functions surpassing their threshold values . If

this does not occur approximately simultaneously (i.e., both within the

same al gorithm i teration period), then incorrect failure declarations

will result. “Appropriate adjustment of thresholds or provision for a

‘yellow zone’ in the detection logic ” were suggested as means of allevi-

ating this problem. The other false alarms occurred subsequent to the

proper declaration, and could probably be suppressed by appropriate

logic design.

The previous study also considered the computer requirements of the

functiona l redundancy (also denoted as “internal” redundancy ) failure

detection logic. Table III (from this earlier report) summarizes these

requirements for implementations on three representative computers ,

assuming that the algorithm would be i terated five times a second . For

a state-of-the-art computer, only 3.18 percent of real time would be

consumed by this logic. Other requirements would include :

19
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TABLE III

COMPUTER TIME REQUIREMENTS OF THE INTERNAL REDUNDA NCY METHOD

T ime Requi remen ts
~o. Requi red 

_________________ 
ps) 

__________

Operation by Method State of the Art ~(DC-l05lA SDS-920

Adds 600 1 ,200 3,600 9,600

Multiplies 320 3,200 7,320 10,240

Divides 30 360 1,500 6,720

Square roots 2 100 200 1 ,000

Trigonometry
• functions 10 500 1 ,000 5,000

Transfers
and tests 500 1 ,000 2,000 4,000

To tal t ime
taken for one
cycle 6,360 15 ,620 36,560

xS x5 x5
Time required
for fi ve cycles 31 ,800 78,100 182,800

Percentage of
real time 3.18 7.31 18.3
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( 1 ) less than 2000 words of stora ge

(2) an 18—bit or l onger wordlength

(3) nine input channels AID for attitude related quantities and

seven input channels A/D for translational motion related

quantities

(4) simple no/no-go output channel for each of the quantities

checked by the logic.

From a first-iteration cost-effectiveness analysis , it was conclud-

ed that the cos t advantage of the functional redundancy method over a

hardware redundancy approach would be substantial if the algorithm could

be implemented through time-sharing of an existing computer. If an ad-

d i t iona l com pu ter were requ i red for these calcul ati ons , the cost benefit

woul d only be marginal , but the intention is not to provide a separate

dedicated computer for this purpose.

6. OBJECTIVES OF THIS INVESTIGATION

The previous study has indicated some degree of feasibility of

using functional redundancy to detect and isolate control data sensor

failures. A major objective of this effort has been to improve the

performance capabilities of the basic concept. In other words , it is

desirable to minimize both the missed alarms and the false alarms pro-

duced by the detection logic.

Means of achieving this objective have inc l uded :

I
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(1) Formulation of a systematic means of determining appropriate

parameters for the statistical description of noises and un-

certainties corrupting sensor outputs , thereby attaining op-

timum model references ;

(2) Exploration of alternative model references, and conducting

trade-off analyses of performance improvement versus ad&i-

ti ona l compu ter loa di ng ;

(3) Development of an initialization technique that can be com-

bined with simple model references to provide overall per-

formance comparable to that of the more complex model refer-

ences ;

(4) Investigation of alternate , more systematic, means of esta b-

lishing maximum likelihood estimator thresholds for declaring

failures;

(5) Thorough analysis of likelihood function characteristics under

normal circumstances and wi th failed sensors, over the enve-

lopes of possible flight regimes , to c harac terize the spec i-

fic aspects that differentiate an “abnormal” likel i hood func-

tion from a “normal” one;

22

j4
4~4 ~~~~~~~ ~~~

~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 

--~~ r~~~~



-~~~~~ ~~~~~~~~~~~~~~~~ —

~~~~~
- -

~~~ r ‘
~~ ~~~~~~~~~~~~

‘ ____  

~~~~~~~~~~~ 
- -

AFFDL-TR-76-93

(6) Utilization of such likelihood function characterizations to

determine superior detection logic , such as establishing

“tight ” thresholds with a required number of consecutive it-

erations for which the threshold is surpassed before declara-

tion of a failure , or threshold being adaptive to amount of

maneuvering as indicated by commanded or actual control sur-

face positions;

(7) Determination of the sensitivity of detection performance to

system variations that are within acceptable tolerances (as

especially biases);

(8) Evaluation of the ability to detect sensor failures from a

signal environment generated by a real aircraft , thereby sub-

stantiating conclusions from the analysis based on the digital

simulation of aircraft and sensors.

The other major objective of this effort has been to develop the

failure detection algorithm and associated digita l program to a point

where it can be used as a systematic design tool. Its purpose would be

to aid the design of an eventua l implementation of a tuned and optimized

software package for a particular application of functional redundancy

for failure detection . To meet this objective , the digital implementa-

tion of the algorithm has been revised to provide a maximum of design

flexibility . Some of these characteristics are :
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(1) The functional redundancy failure detection subroutines can

be driven either by a simulation of a chosen aircraft and in-

strumentation or recorded data with simulated failures cor-

rupting the si gnals.

(2) The statistical description of sensor errors required for the

Kalma n filters in the algorithm can be readily altered to cor-

respond to any specified sensor systems, an d an assoc i a ted

program has been written to aid in evaluation of statistics

if they are not available from performance data or power spec-

tral density evaluations of desired sensor systems.

(3) The algorithm iteration frequency can be altered.

(4) The number of samples included in each likelihood functior L
evaluation can be set by the engineer.

(5) Strengths of “pseu dono ises ,” used to depict the uncertainty

w ith wh ic h the model references rep resent the true phys ical

i nterrelationships, can be optimized to yield the best pos-

sible tracking ability of those model references. Once the

optimum values are evaluated , these woul d be incor porated

into the onboard implementation.
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(6) For each likelihood function involved in the detection logic ,

the threshold value beyond which a failure is declared can

be changed through a data i nput to the program.

(7) Similarly, the “time to failure declaration ” parameter , spe-
cify i ng the time (or number of iteration periods ) that a

threshold must consistently be surpassed before declaring a

fa i lu re s can be redefined for each likelihood function by

means of data input.

To facilitate interpreting the influence of the various control-

la b le parame ters , a substantial number of outputs are available from a

sing le run of the com pu ter program , in both printout and plot -form .

These inclu de:

(1) For each Kalman filter incorporated in the design , the differ-

ence between a filter estimate and the “true” value of that
- 

- 
1 corresponding variable (available only when the aircraft and

instrumen ts are s imulate d , not when rea l data tapes are used)

is printed and plotted as a function of time .

(2) The above can be compared to printouts and plots of the cor-

responding standard deviation s (one sigma va l ues) generated

through the state error covariance matrix propagated by the

Kalma n f i lter.
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The pseudonoises can be adjusted until the true differences and one sig-

ma values correspond: such that 95% of the “true difference” values are

within the 2o envelope , or 99% are within a 3o envelope . For this pur-

pose, plots of the “true differences ” and lo values from a number of

simulation runs will be more useful than printouts , an d these are gen-

erated by the program.

(3) Printouts and plots of the individual likel i hood functions

u ti l i zed in the detect ion al gor i thm are generated . The p lo ts

are especially useful in discerning the salient features of

the likelihood functions under normal- and failed-sensor con-

ditions , which would be instrumental in setting threshold and

time-to-failure-declaration parameters.

(4) Printouts of threshold val ues, time-to-failure-declaration

parameters, and time and type of failure declared during a

simulated or real flight are outputted.

(5) Single likelihood function terms (N of which are added to form

the likelihood function) and corresponding squared residuals

are presented to aid the analysis of a large magnitude likel i-

hood function if and when it occurs.

(6) The minimum and maximum likel i hood function values in the

most recent N iterations , where N is adjustable, expedite

the final selection of thresholds and time-to-failure-declar-

ation values.

26
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(7 )  Periodically, all pertinent simulation (or real environment)

data is printed out in addition to the model reference and

l i kel i hood function performance da ta .

Various modes of usage of this failure detection concept were in-

vestigated. First , the types of failures more readily or appropriately

detected by other means were delineated . Thus, the eventual implementa-

tion would operate in conjunction with the initialization procedures pro-

posed in th is report , BIT , reasona b leness tests , deterministic detection

logic , and other metho ds. Fa i l ures can often be detected before bein g

completely isolated , so different means of annunciating failures were

studied . Once a failure is declared and isolated , that sensor data can

either be corrected (if possible) or removed from the data stream alto-

gether, and this aspect has also been analyzed . Finally, i f a sensor

has failed , there may be circumstances under which testing for recerti-

fication of that sensor would be warranted , so means of performing this

function were studied . The complexity of the algorithm can range from

very simple to very sophisticated , and the design philosophy of building

the simplest system that provides adequate performance for a particular

application is applied throughout.

This report attempts to demonstrate the performance capabilities

of the funct ional redundancy concept in detecting and isolating sensor

failures. Further, it depicts the manner in which this concept would

be used in conjunction with other means of detecting failures and a sys-

tematic method of reconfiguring the overall data system once failures

are detected . Once the merits of the functional redundancy concept

27
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have warran ted i ts use i n a faul t toleran t system , the design tool de-

veloped herein can be exploited . Thus , a viable , cost-effective failure

detection concept is presented , along with a means of incorporating it

into a total data system structure.

- - 
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SECTI ON I I

THEORETI CAL DEVELOPME NT

1. FUNDAMENTAL S OF KALMAN F I L T E R I N G AND LI KELIHOOD FUNCTIONS

The concept of functional redundancy as a means of detecting sensor
failures is dependent upon the usage of functional relationships among
measured quantities as the basis of a model reference. Driving such a
model with certain measured values yields model-referenced estimates of
other quantities , whose measured values are available from other sensors .

A substantial number of functional relationships which can be em-

ployed are in the form of linear differential equations driven by white
Gaussian disturbances . In this case , the Kalman filter is the appropri-

ate model reference to use. Essentially, a Kalman filter is a data pro-

cessing algorithm that generates the maximum likelihood estimate of the
state of a linear dynamic system model , conditioned on all observed data

up to the time the estimate is made. The next section describes the
fundamentals of a Kalman filter imp l emented in discrete time ; i.e.,

sampled-data measurements are made periodically and incorporated into
the filter. This is appropriate since the filter will be implemented on
a digital computer, an inherently discrete-time device.

- L
1 .

- 
- 1 .1 THE DISCRETE-TIME K.ALMAN FILTER

I

It will be assumed that modelling techniques have produced an
adequate system description in the form of a linear difference equation ,

driven by a combination of known inputs and wh i te Gaussian noise.
L inear measurements are made upon the actual system variables , and these
are corru pted by wh it e Gauss i an no i se.

Thus , the system state is described by
x (i+l) = (j+l ,j)x (i) + B(i)u(i) + G(i)w(i) (1)

and the measurement on the system at time instant i is
z( i ) = U ( i )x( i ) + v ( i ) (2)

in which are defined the vector variables

29
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x(i) = n - dimensional state vector at time instant i

u (i ) r - dimensional determini stic input

w (i) = s - dimensional driving noise

z(i) = m — dimensional measurement vector

v(i) = m - dimensional measurement noise

and the system matrices

11 (i+l ,i) = n-by-n state transition matrix

8(i) = n—by-r deterministi c input matrix

G(i) = n-by-s noise input matrix

11(1 ) = rn-by-n measurement matrix

It  will be assumed that w(i) and v(i) form independent zero mean
1

; white noise sequences , each having a Gaussian density with known co-
var iance :

E[w(i)] = 0 (3)

E[v( i )] = 0 ( 4)

T (I) =

E[w( i ) w ( j )  ] (5)
i~~~j

R(i) i = j
E [ v ( i ) v ( j )  ] = (6)

i~~~j

E[w(i)v (j)T] (7)
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~(i) is a positive semidefinite s—by-s matrix, and R(i) is a posi-
tive definite rn-by-rn matrix (all components of the measurement vector
are corrupted by white noise).

The sta te dynam i c rela ti on , (eq. 1), is valid for all time i > 0,
once an initial condition , x (O), is specified . Since this value is not
prec i sel y known , it will be modelled as a random variable with a Gauss-
ian probability density parameterized by a mean ~( O ) an d a covar i ance

~o.

For a system modelled in this manner, the Kalman filter updates the
state and error covariance estimates at a measurement sample time by

~(i) = 

~i(i) 
+ K(i){z(i) — H(i)i(i)] (8)

P(i) = M(i) — K(i)H(i)M(i) (9)

where
K(i) = M(i)HT(i)[H (i)M(i)IIT( i ) + R( i )]~ (10)

The estimates x(i) and 
~(i) are, respectively, the state estimates at

time instant i , before and after the measurement z(i) is incoroorated;
similar meaning pertains to the error covariances 11(i) and P(i), res pec-
tively.

There are alternate forms of equation (9) that are theoretically
equivalent but different computationally due to finite computer word-

• len gth. One such form would be

- 
‘ 

P(i) = [I — K(i)H (i)]M(i){I — K(i)H (i)]T + K(’)RY)KT(j) (11 )

Whereas (9) is often the small difference of large numbers (especially
if the measurements are very accurate), (11) is the sum of small , sym-
metric terms that assures positive definiteness of the resulting P(i).
Also , it is less sensitive to arithmetic truncation or small errors in
the computed value of K(i) than other update equations. However, it
requires considerably more computation , so a performance trade-off would
be necessary to determi ne if it warrants usage. Because computer memory
and time are critical , the l ower triangular form of equation (9), possi-
b ly w i th dou b le prec i s i on computa ti ons , will probably be employed .
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To propagate the estimate to the time of the next measurement
sample, the filter relations are

~(i+l) = :(i+l, i)x(i) + 1 3( i ) u ( i  ) (12)

M(i+l ) = :(i+l, i)P(i):T(I+ l ,~ ) + G(i)Q (i)G T(i) (13)

These recursive relationships are initiated from the assumed Gauss-

ian density that describes the a priori knowledge of the state:

(0) = ( 14)

P(O) = (15)

1.2 DISCRETE—TIME REPRESENTATION OF CONTINUOUS-TIME DYNAMIC SYST:~ 5

The previous section assumed a system description in the form of a

linear difference equation . On the other hand , the dynamic relation-

shi ps to be employed are differential equations. Thus, one requires a

discrete-time system model that , as seen from the periodic (sampled-

data) measurements , yields equivalent system dynamics.

Let the continuous-time model of system dynamics be

• X(t) F(t)x(t) + 8(t)u(t) + G(t)w(t) (16)

where the differential equation for the state x(-t ) is driven by known

in puts u(t) and a Gaussian white noise w (t) (such a noise does not exist

i n nature but the model is of ten adequa te) . Thi s rela tions hip coul d
also be modelled somewhat more precisely by a stochastic differential

equation , but the above relationship will be employed . Let w(t) have

mean zero and covariance Q(t), (t - T) with Q(t) chosen to duplicate the

low frequency power spectral density of the actual noise entering the

sys tern:
E{w (t)] 0 (17)

E[w(t1 )wT(t 2)] ~(t1 )~ (t1 —t 2) (18)
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Assume that at time instant i a measurement of the form equation (2) is

taken . Further assume that the input u(t) is (essentially) constant
between sample times (i.e., over a single algorithm update period).

• Under these assumptions , the values of p (i+l ,i), 8(i). and G(i)Q (i)GT(i)
required in equations (12) and (13) for propagating the state estimates
can be found by integrating [].

~~~~~
- :(t ,t 1 ) 

= F(t):(t ,t1 ) (19)

~~ D(t,t~) = 8(t) + F(t)D(t ,t1 ) (20)

~~ N(t,t~ ) = F( t ) N ( t,t~ ) + N( t ,t
~

)F T ( t ) + G( t )Q( t )G T(t) (21 )

from the initial conditions

= I (22 )

D ( t 1~~t~ ) = 0 (23)

• N(t
~
,t
~
) = 0 (24)

to the time of the nex t measuremen t, t1~ 1, and then setting

~(i+l ,i) = 

~
(t
~+1,t~

) (25)

8(i) = D (t1~ 1, t~ ) ( 2 6 )

G( i )Q( i )GT(i) = N(t
~+1,

t
~

) ( 27)

33
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These relations specify the discrete-time model that dupli cates the
dynamic behavior of a given linear , con tinuous-time system observed in
sampled data fashion.

For app l icat ions i n wh ich the samp le per iod is shor t compared to
the dynamic system ’s natural modes, first order approximations to the
solut ion of these differential equations will often suffice. These
app roxima ti ons ar e, for a sample per iod ,

~( i + l ,i )  1 + F ( t .~)tJ (28 )

8(i) B(t
~

)AT (29)

F G( i )q( i)G T (i) G(t
~

)
~

(t
~

)G T (t
~

) - T  (30)

Such an approx ima ti on woul d , however , be maintained subject to the ade-
quacy of resul ti ng f i l ter performance .

1.3 EXTENDED KALMA N FILTER FOR SYSTEM WITH NONLINEAR DYNAMICS

Suppose a system were described adequately by a nonlinear dynamic
relationship instead of a linear one: let the system state equation (1)
be replaced by

x(i+1 ) = f(x(i),u(i),w(i)] (31)

where x(i), u(i ), and w(i) assume the same meaning as in Section II ,
1 .1. For the curren t pur poses , consider a linear measurement as in
equation (2).

To propagate the filter estimate to the time of the next measure-
men t sam p le , equation (12) would be replaced by -

~(j + l)  = f[~(i),u(i),QJ (32)

34 iii
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In order to propagate the covariance matrix , as in equation (13), both

~ i+1 ,i) and G(i) must be evaluated . These are obtained by linearizing
f (x, U , w) about the most recent values of x , u , and mean value of w
(the zero vector). Thus , the component in the j-th row and k-th row of
these matr ices woul d be computed as

Bf.(x,u ,w)

x x( i )
= u(i ) (33)

w = O

Bf.(x,u ,w)
G ‘i’ =
jk’ ‘

x = x( i )
= u(i) (34)

The updates at measurement times are identical to equations (8)
through (11), and the initial conditions would be given by equations
(14) and (15).

1.4 LIKELIHOOD FUNCTION STATISTICAL TESTING

The model reference (Kalman filter or other functional relationship
model reference) provides outputs in the form of estimates of the values

V 

of certain variables in the system dynamics. These estimates are com-
pared to measured values of the same quantities to create error signals.

- • Some form of test is required to deduce from the characteristics of
these error signals whether something is abnormal in the system, i.e ,
whether a failure has occurred.

Generation of a likelih ood function for the time history of each of
these error signals provides one means of making such a statistical
test. Conceptually, the N most recent error signal values are examined
to determine whether they differ significantly from a statistical de-
scription of their values , assuming no sensor failures. The number of

35
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values utilized , N, can be varied to obtain reasonable performance.
More than one would be desirable to preclude failure declarations due to
single error samples of large magnitude : consistently large errors
indicate abnormalities , whereas individual samples of large magnitude

are to be expected . Using all samples from initial time would make the

likelihood function less sensitive to sensor failures as time progressed .
Consequently, a “mov i ng w i ndow ” of the N most recent samples , where N
might be on the order of 5 to 20, will be considered .

Let e(i) be a given error si gnal at time instant i. Then the con-
ditional joint probability density function of the most recent N error

values , conditioned on previous error values , would be

p{e(i), e(i—l), . . . -
, e(i—m+l )~e(i—m ), ...e(l)]

where p [xly] is the conditional probability of the variable x, condi-

tioned on the value of y. (To be precise , a distinction should be made
between parameters used to describe a density function and actual re-
al i zed va l ues , but this will not be explicit in our notation). The
particular choice of this conditional density may not be entirely clear ,

but it is wel l motivated by estimation theory .

Bayes ’ Rule for conditional density functions states that

p[a,b~c] = p [a~b ,c1p [b~c] (35)

Applying Bayes ’ Rule to the given density function yields

p [e (i),e(i—l ),. ..,e(i—m s- l )Ie (i— m),.. .,e ( l ) ]
(36)

= p [e(i) e(i— 1),. . . ,e(1)]p [e(i—l ) , .  . . ,e(i —m-+ l ) e(i—m), . . . ,e(1 )]

Bayes ’ Rule can then be appl i ed to the rightmost density in equation
(36) to expand the result further. Iterating on this procedure yields

p [e(i ) ,e(i— 1 ) , . . . ,e(i —m+ l ) e(i—m), . . . ,e( l )]

= p [e(j)Ie(j—l),...e(l)] (37)
j= i -m+l

36
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which is the product of the conditional densities of the N most recent
error values , each conditioned on the previous time history of error
va lues .

The appropriate likelihood function for this appli cation is the
natura l logarithm of the conditiona l probability density given by equa-
tion (37):

L~(i ) = in p[e(i ) , . . .e(i—m +l ) e(i—m) , . . . ,e(1 )]

= 
-

- 
in p[e(j)~e(j—l),.. .,e(i)] (38)

j=i-m+ i

I f the error sequenc e were i n fac t a set of i ndepen dent , zero-mean ,
Gauss ian ran dom var ia bles , this expression could be written as

L (I) = i n  ~~~~~~~~~~~~~~~~~ exp [_ 
~~~ 
~~~~~ 2

( i )]  (39)
N j= i —m+ l (2-~)~/2 ‘- (j)

where c~(j) is the estimated variance of the j-th sample and ~
(j) is a

dummy variable used to define the density of e(j). Substituting the

real ized value of the N most recent e(j) values into this expression
yiel ds the l i kel i hood func ti on evaluate d for data actua l l y observed as

LN (i) 
= - ln 2u - 

~~ 
ln a(j) - Y [e2(j)/~

2(j)J (40)
j i—m +l j=i-m+l

Thus , the l i kel i hood func tion cou l d be evaluate d a pp rox ima tely as

LN ( i ) = LN(i-l ) - ~ [e
2(i)/c72(i)] + ~ [e

2(i~n1)/ci2(i~m)] (41)

This relationship could be used after the first N measuremen ts had been
made to initialize the likelihood function value.

• 37 

--~~~—•-—-- . -

~

‘

~

- r . --~~ rf.~~1 ~:. l . 1 rr F~1fl11~~ Th~~~~~~~ 
. -

~~~~~~~~~~ -~~~~~~~~~
--.-

~
- - - - ---- -



- 
- I —

~
—--:—-- —- V - - - -— - - - .-,- -:~~~:r-::~--~= - -. -•----_-- .-_ - 

~
—-- -

~~ 
— 
-‘I’

AFFDL-TR-76-93

It can be shown that, if the error sequence were actually the se-
quence of residuals from a Kalman filter whose state equations dupl i-

• cated the real system environment and whose input were a scaler mea-
• surement of the form

z( i ) = hT(i)x (i) + v(i) (42)

then the density p[e(j)~e(j-l),. . . ,e(l)] required in equation (38) is a
Gauss i an dens ity w ith mean hT(j)~(j) and variance [hT(j)M(j)h(j) +
where i(j) and M(j) have been defined previously. Thus, the e2(j) re-
quired in equation (41) is the squared residual ,

e2 ( j )  = [z(j)_h T(j)~ (j)] 2 (43)

and the l/o~(j) term is equal to

l /T 2(j) = i[hT(j)M(j)h(j) + R(j)] (44)

This quantity is available from the Kalman filter computations , as seen
from equa ti on ( 10 ) . If more than a s i ngle measuremen t were i ncor por ated
into the filter , the desired l/o2(j) terms could be evaluated as the
diagonal terms of t!!.( i )  M(j) HT(j) + R(j)]~ (thereby neglecting off-
diagonal coupling).

The assumption that the filter dynamics model duplicates the true

• system dynamics, and thus the assumption that the residual sequence is
white , zero mean, an d Gauss i an , is assuredly violated for any reasonably
dimensioned filter. However, substantial effort will be expended to
minimize this violation , thereby providing adequate performance. Simu-
lated failures involving biases , scale fac tors an d dr i f ts , as wel l as
ran dom no i se , will demonstrate how adequate the performance is.

In order to generate the likelihood functions online , the N mos t
recen t square d error s ig na l s  e2(j) and estimated variances a2(j) are
mainta ined in computer storage. As time progresses, equation (41) is
used to up date each l ik el ih ood funct ion a t eac h sam p le time . As can be
seen from either equation (40) or (41), if e2(j) becomes consistently
larger than the estimated variance, then the likelihood function will
become more and more negative. A negative threshold level that the

________- - 
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likelihood function should remain (i.e., of smaller absolute magnitude)

can be determined , and then a failure can be declared if the value goes
beyond this threshold. By controlling the threshold level , the number
(N ) of samp les compr i s i ng a l ikel ihood funct ion , and possibly the time
interva l over which the threshold is exceeded before declaring a failure ,

the num ber of false al arms and m i ssed alarms can be m in im i zed. The las t
control parameter, the time-before- failure-declaration , allows tighter
thresholds that do not cause false alarms due to transitory threshold
surpassing; this will be discussed more extensively in Section 111.2.5.

Note that the error signals that are not generated by Kalman fil-
ters also require estimated variances in the likel i hood function eval-
uation. Since dynamic propagation is not involved , these can be pro-
vided by a priori estimated values of appropriate variance magnitudes.

2. MODEL REFERENCES

This section describes the proposed functional relationships to be

employed in the detection algorithm. These will be in the form of three

sets of dynam ic rela ti ons , which will serve to develop three Kalman
— filters , and an algebraic relationship for indicated airspeed .

2.1 MODEL REFERENCE RELATING INS ATTITUDES AND AFCS BODY RATES

The Automat ic Flight Control System uses three rate gyros to mea-
sure pitch rate , roll  ra te, and yaw rate for aircraft stabilization .
This rate information is functionally related to the vehicle attitude , F

which is measured by the Inertial Naviga tion System. Let x, y, and z be

L the aircraft angular rotation rates about longitudinal (nose), la teral
(right side), and normal (underside) axes ; and ~, 0, and ~ be yaw,
pitch , and roll angles , respectively. Then , the functiona l relation-
ships are

d~i .
= w~, cos ~ - w~ sin (4~)

39
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= w> + w~ tan ~i s i n  + w~ tan cos (46)

= 

~~~ 
{w~, sin + w

~ 
cos ( 4 7 )

These equations form the basis of the mathematical model to be
employed in the AFCS-INS attitude Ka lman filter . Equation (47) is in-
determinate if the pitch , 0, is 900 (gimbal lock condition); the al gor-
i thm might be disenabled temporarily if 0 reaches the close vicinity of
this value . Let the Euler angles 0, q, and ip be the three state vari-
ables of the model :

x1 0

x x2 
= -

~ (48)

X
3

The rate gyro outputs are then the noise-computed inputs to this dynamic
system . Thus , let the rate gyro outputs be denoted as u 1, u2, and u3:

u1 wXl w1
U U2 

= 
~~~~ + W

2 
(49)

U
3 

W
~~_j w3

Thus the true rates are corru pted by the wh ite Gauss i an n oi se w , used to
model the noise and uncertainty inherent in the rate gyros. Using this
notat i on , the dynamics to be incorporated into the Kalman filter are

40
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x 1 (u 2-w2) cos x2 - (u3-w 3) sin x2

= (u 1 -w 1 ) + (u2-w2) tan x 1 sin x2

+ (u 3-w3) tan sin K 2

x —i—- {(u ~-w~) sin x2 ÷ (u3 
- w3 ) cos x2] (50)

—
3 cos x 1

or
dx(t)
—

~~~~~~

--

~~ 

= 

~ 
[x(t), u(t), w(t)] (51)

The simplest means of generating an approximately equivalent discrete-

time equation to propagate the state estimate from one sample time to

the next would be to use Euler integration:

x(i+l) f[x(i), u(i), w( i )]

= x ( i )  + T f
~
{x(i), u (i), w(i)] (52)

where T is the sample period for the algorithm update.

As pointed out in the previous report [3, the accuracy of this ap-

proximation is improved if the value of u(t) at the midpoint of an inte-

gra -tion interval were used instead of its value at the beginning of the

interval. At time instant (i+1), u(i+l ) is available as a measurement

from the rate gyros, and u(i) can be retrieved from computer storage,

and the average value 1/2 [u(i+l) + u(i)] generated and used in place of

u(i) in equation (52).

There are more accura te methods of updating nonlinear dynamic equa-

tions , but unless this technique does not yield adequate performance, it

would be best to use a simple routine that does not burden computer time

or memory .
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The attitude measurements from the INS are also corrupted by noise
and uncerta i n ti es , and thus its outputs at a given time instant i , de-
noted as z(i), are modelled as

z1 (i) 1 0 0 0(i) v 1 (i)

z(i) = z2(i) = 0 1 0 ~( i ) + v2(i)

z3(i ) 0 0 1 cC i ) v3(i ) (53)

= H x ( i )  + v ( i )

where v(i) is a zero mean , white, Gaussian noise. It is assumed to be
uncorrela ted with w(i), so that the statistics required for the Kalman
filter are given by appropriate R(i) and Q (i) matrices , the covar i an ces
of v(i) and w(i), respectively.

Thus , the overall mathematical model to be used in formulating the
Kalman filter would be as in Figure 1.

Let the actual att itude measuremen ts from the INS be denoted as
0INS (i)’ ~INS (i)’ 

and 
~INS ( i ) Generated by the Kalman filter are pre-

dictions of what these values should be, before the measurements are ac-
tua l l y taken ; le t 

~i~
j
~ ’ ~2

(i), and ~3(i) represent these values. Then
the three res iduals  of in terest are :

e1(i) 
= 0INS ( i ) - 

~1 ( i ) ( 54a)

e2(i) = 

~IN S( i ) - i2(i) (54b)

e3(i) 
= 

~INS( i ) — X 3 ( i)  (S-~c)

- 

-

~

•

- 

- 
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Figure 1. Schematic of Attitude Dynamics Model
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2.2 MODEL REFERENCE FOR AHRS ATTITUDES AND AFCS BODY RATES

The same basic model reference is used to relate the AFCS gyi-o body
rates and the attitude indication of the Attitude and Heading Reference
System . By replacing the subscripts 1 , 2, and 3 by the ind ices 4, 5,
and 6 and using the AHRS measurements to drive the filter, the residuals
that are generated are

- e4(i) 
= 

AHR S (I) 
- x4(i)

e5(i) = 

~AHRS( i) 
- 
~5(i) ( 5 5 b )

e6(i) 
= 

‘AHR S(i) 
— ~6(i) (55c)

2.3 MODEL REFERENCE FOR AIRCRAFT VERTICAL MOTION

A model reference resembling a baro -inertial altimeter can be
employed to detect failures in the altimete r , vertical velocity m di -

cation, INS vertical acceleration output, and angle-of-attack sensor.
The model reference is incorporated into a three-state Kainian filter ,

and the filter residuals are monitored to accomplish the failure de-

tection.

Fi gure 2 portrays the mathematical model upon which the Kalman
filter is based. The INS accelerometer output is modelled as the true
specific gravity plus a white Gaussian noise (the zh axis points down-

war d , thus causing the negative sign); the noise and the value of gra-
vity are subtracted from that accelerometer output to yield the “true ”

vertical acceleration. This is integrated twice to yield altitude ,

which is then put through a first order lag to model the lag between the

altimeter reading and the true altitude. The three state variables are
identified in the figure as x7 

= lagging altitude , x8 
= true altitude ,

an d x9 = true vertical velocity .

- - --- 
__ __
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The measu rements are corru pted by wh it e Gauss i an no i se, and are
comprised of z7 

= measured (lagging ) altitude from the altimeter , z8 
=

vertical veloc i ty measurement to be discussed subsequently, an d z9 =
measured vertica l velocity available from the altimeter .

Thus , the mathema tical model i s

x7 -a a 0 x7 0

x = = 0 0 1 x8 + 0 [-a~~ 
- g

0 
+ W] (56)

- - 

~~ ~ x9 L 
1 

-

A simple approximation to the equivalent discrete system for propagating

estimates between i.~pd a te times would be

x7(i+1) e~~
T (i~e~~T) T + ~ (~~ T~1) x7(i)

x8(i+l ) 
= 0 1 1 x8(i)

x9(i+l) 0 0 1 x9( i ) ( 57)

(
~

- 
~
) +~~~ (~~-e~~~)

+ 1/2 T2 [-a Zh 
- q0 + w]

— 

T 
—
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This is in the form of x (i+I ) = t’(i+l ,j) x(i) + 8(i) u (i) + G(i) w(i)
where 8(i) = G(i). As mentioned previously, by employing the average
va l ue of aZh over an interval instead of its value at the beginning of
the i n terval , i.e., replacing aZh (i) by 1/2 [aZh ( i )  + aZh(i I)] when
propagating to time instant (1+1), superior i ntegration accuracy is
obta i ned .

Two formulations of the measurement vector are possible , one com-
posed of z7 an d z8 and the other including z9 as well. The measurements

an d z9 are the altitude and vertical veloc i ty derived from the same
source, barometric altitude determ i ned from the static pressure source.
Hence, a failure in this singl e source would invalidate both signals ,
and so the fi rs t formu la t ion uses a ver ti cal velo c ity measuremen t in-
dependent of the altitude reading , z8. Thus, an incons istency between
two sources of information could be detected . The second formulation

includes both vertical veloc i ty indications: it could respond more
rapidly to pressure source failures , bu t performance was not su bstan-
tially different. Consequently, the simpler two-measurement case will
be depicted throughout the report.

The independent vertical velocity signal is obtained by means of
the equation

Ii = va (cos - .~ sin ~i 
— s i n cos cos ~

) (58)

Measure d values of pitch , 0, and roll , ~ , are ava i la ble from the INS ,
• and values for true airspeed , va~ 

and angle of attack , a, are take n
from the Air Data Computer. Under most flight regimes , the sensitivity
of the computed h to errors in V

8 
is negligible, so tha t a reasona b l eness

- 
• check on V is sufficient to ensure confidence in its contribution to

equation (58). (Logic could disenab le failure declarations for regimes

of high sensitivity to va~
) The integrity of INS pitch and roll angles

can be checked by the INS-AFCS Kalman filter portion of the detection
al gor it hm . Therefore , any discrepancy between the computed h value

• (considered a measurement) and the model reference estimate can be

attributed to a faulty angle-of-attack indication.
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Referring to Figure 2, the two formulations can be suniiiarized by

z7(i) 1 0 0 x7(i) u7(i)

z (i) = z (i) = + ( 5 j )

z9(i) -a a 0 x9(i) ~u9(i)

= H ~(i) + ~ (~Yb )

The partitioning in this equation depicts the two possible cases , ~
T

[Z
7~ 

z
8
] or zT = [z 7, z8, z9J .

It should be noted that , whether or not the measurement z9 is used
to drive the Kalman filter , the difference between the vertical velocim-
eter output, hve1~ 

and the model reference estimate of this value ,
[a (i8 - x7)], can be monitored to detect failures in the vertical ye-

locimeter itself (as distinct from a failure that would affect both the
altimeter and velocimeter ).

2.4 MODEL REFERENCE FOR INDICATED AIRSPEED AND NORMAL ACCELERATION

Erroneous AFCS norma l (body z axis) accelerometer output and faulty
indicated airspeed can be detected by means of a fourth model reference.
An independent measure of normal acceleration can be obtained from the

INS outputs of platform accelerations , axh~ 
8yh’ an d azh, an d Euler  an-

g les , ip, 0, an d 4 ,  using the relation

-
• az 

= a h ( s m n  ~ s in  ~ + cos -~ . sin cos j

+ aYh ( sin ; cos t~ + cos ~ sin sin 
~~ ) (60)

a h cos
~~~

cos u

_ _  
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The Euler ang les and 8zh have previously been tested for integrity by
the other model reference detection logics . Although the INS horizontal
accelerometers have not been explicitly verified as operating norm ally,
the previous report [3 proposed to use this functional relationship as
a means of checking the AFCS norma l accelerometer (such verification
could be performed by other means of failure detection). Once the value
of a is known to be valid, it can be used to compute an alternate
evaluation of indicated airspeed [3:

r 2rn a2
v . = I -

~~~~~ 
-- (61)

1 
~j P 0 S(C ñ+fn 

~~)

where m is the aircraft mass , is the density of air at sea level , S
is the aircraft reference area , and Cn and fn are constants such tha t
the term in parentheses is a first order approximation to the normal
force coefficient, and a is the angle of attack. Note that the angle-
of-attack value has also been verified previously. Comparing the result
of equation (61 ) with the ADS indicated airspeed allows detection of
failures in this measured value.

2.5 OTHER MODEL REFERENCES

Additional functional redundancies do exist in the variors data
systems onboard an aircraft. These were considered and rejected pre-
viously due to being

(1) infeasible or unpromising ;

(2)  no t rele vant  to the task of fl igh t sta bi l i za ti on and con trol ,
as be in g based on rad ioloca tors or other ex ternal sources of
informa ti on ; or

(3) empirical relations highly dependent upon particular aircraft .
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Other applications of the concept are feasible , as providing con-
fidence in propulsion system sensors without burdening the aircraft with
twen ty to for ty sensors per en gi ne . However , this effort will be di-
rected towards the control data instrumentation application to demon-
strate the capabilities of the technique.

2.6 FAILURE DETECTION AND ISOLATION

Using the model references discussed in the previous sections ,
failures can be detected and isolated by monitoring residuals (in the
case of the Kalman filters) or other appropriate error signals. Let
e1, e2, an d e3 be the residuals of the INS-AFCS filter , as defined by
equation (54). Similarly, let e4, e5, and e6 be the corresponding
residuals of the AHRS-AFCS filter , defined by equation (55). Further , H

le t e7, e8, an d e9 denote the residuals related to the measurements z7,
z8, an d z9 of the vertical channel filter , as described in equation
(59). (Note that e9 will be used for detection purposes whether or not
it is actually used to drive the Kalman filter .) Finally, let the error

• between computed and measured normal acceleration define e10, and the
difference between computed and measured airspeed be e11 (see equations
(60) and (61) for computation).

With these error signals defined , a particular failure can be iso-
lated by determining which errors are growing abnormally large.. Table
IV depicts the isolation logic to be employed . The listing of abnormal
residual magnitude pertains to initia l effects. For instance , if an INS
gyro fails, eventually all outputs of the INS wil l be affected. Note
that a faulty pitch rate ind ication cannot be distinguished from an
erroneous yaw rate measurement by this logic , but that all other fail-
ures listed can be isolated as well as detected .

50 

~~~~~~~~
• - . - - -~~~~~~~~ - - _ ___  - . - - •

- --.4-—--— —~~



• •

AFFDL-TR-76-93

TABLE IV

SENSOR FAILU R E S AND CORRESPONDING ABNORMAL ERROR SIGNALS

Type ~f Failure 
_______________ — 

Error Si nal 
_________

e
1 

e
2 

e
3 

e
4 

e
5 

e
5 

e
7 

e
8 

e
9 

e 10 e 11

INS P it ch Ang l e x

INS Ro l l Angle x

IN S Ya w An g le x

AURS Pitch Angle x

Al-IRS Roll Ang le x

Al-IRS Yaw Angle x

AFCS P it ch Ra te x x x x x x

AFcS Ro ll Rate x x

AFCS Yaw Ra te x x x x x x

ADS Altitude X

ADS Vertical Velocity x

ADS Angle of Attack x

INS Vertical Acceleration ~ x x

AFCS Norma l Acce lera ti on X

ADS Ind icated Airspeed

* = Valid only if e10 is not abnormall y large

51
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2.7 MODIFI CATION S TO THE MODEL REFEREN CES

Previous experimental results indicate d a hi gher sensitivity of

this technique to failures in the form of excessive noise than to bias

shifts. Consequently, a bias estimation capability was added to the de-

tection algorithm by including biases as state variables in the Ka l man

filter model references. Actually estimating the bias levels could

yield not only failure declarations due to bias shifts , but also a means

of determining how to compensate such drifts to retain accurate signal

levels.

Referring to Figures 1 and 2, the measurement corruption is mod-

elled as an additive , zero mean , white Gaussian noise, as in Fi gure 3a.

A similar diagram could be drawn for the dynamic driving noise w 1 cor-

rupting the input u
~
. The model references can be altered by replacing

each white noise signal with a white noise plus bias , as in Fi gure 3b.

Note that the bias , b~. is obtained conceptually by passing a zero mean ,

white Gaussian noise throug h an integrator. Instead of modelling a bias

as

b 1 = O  (62)

as would seem to be appropriate , the model employed is

Wbi (63)

v i

X .  /
I -~~ LJ

Figure 3a. White Noise Corruption; No Bias

_ _ _ _ _  
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III 

~~~~~ 

~

4

x
i 

/

Figure 3b. Model Incorporating Bias

Th i s “pseudonoise ” is necessary to yield a Kalman filter that estimates

the bias vall.’es for all time . Conceptually, using equation (62) would

tel l the filter mathematically that the initial value of the bias is un-

cer ta i n , but you are sure the value does not change in time . As a re-

sul t, the filter will use early data to estimate biases , but then essen-

tially ignore future data (appropriately, since the filter has been

“told” the values do not change in time). Putting the noise Wbi in

says , i n essence , that there is some uncertainty in  the bias values for

all time of interest.

First consider the model for the vertical motion dynamics , as de-
-r p icted in Figure 2. Neglecting the measurement z~, add the bias states

to the input and to the two remaining measurements. The augmented sys-

tem dynam ics are

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

;~~~~+ 

[~~~~~~~~~~~~~~~J 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(64)

4 
- ———-— — - • ___u- 

~~~
—--—

~~. — .-- - -~~~~~~~

.- -. —-- --. .—~—-~ 
• --

~~~~~~~~ 
_.~~~~J_I

—‘ -.~~—~~-~~~~~~~~ 
~~~~~~~~~~~ —— 

— -~~~ -~—-~-~~ - -



AFFDL-TR-76-93

Note that the upper l eft portion of the system matrices and upper por-
tion of the vectors are the or igi na l system descr ip t ion , given by equa-
tion (56). Further , notice w that the bias that corrupts the input en-
ters i nto the state dynam i cs , and thus there is a nonzero eleme nt i n the
corresponding column of the upper right partition of F(t). Columns as-
sociated with biases that corrupt measurement variables , z1 , are a l l
zeroes.

The associa ted measurement for this system description would be

[z ll [ l o o ~ o l o 1  X71 Hi
[z 2~~~[oo1~ o o1 j  x8 ~~~[u2J (65)

x~

baz
bh

b1~

As before , the first partition of these quantities is the original de-
scription , with no biases , as presented in equation (59).

A Kalman fi l ter can be develo ped us i ng th i s dynam ics model ra ther
than the original three-state model . When adding state variables in

4 th i s manner , two questions must be asked . First , is the additional corn-
plexity warranted by the performance capability gained? Secondly, is
the result i ng system model comple tely observa ble? In other words , can
the f i l t e r  see the ef fects of the i ndi v id ual sta tes an d di st ingu i sh the
difference between these effects?

To answer the secon d ques ti on , the F matrix in equation (64) and
the H in (65) can be used to generate the observab il-i ty matrix ,

= [
~ 

~F
THT : : FT(n_l)HT] (66)

54
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where n is the dimension of the state vector, 6 in this case. The sys-
tem model is observable if and only if the rank of this matrix equals 0.
If the rank is (n-k), then there are k unobservable state variables .

When th i s test is conducted, it is found that only five of the six
states are observable. This is true whether z9 is included or not , and
so its inclusion would not be warranted from an observabi lity stand-
point.

If the altimeter bias state, bh. is removed from the model 1 the
rank of the resulting observability matrix is still five , and thus the
model is completely observable. Thus , the filter can estimate the bias
in the vertical accelerometer and in the vertical velocity measurement ,

but cannot separately identify the bias in the altimeter.

This filter formulation has been programmed and combined with the
flight simulation program. Whether the added complex ity yields substan-
tial enough performance improvement to merit implementation will be dis-
cussed subsequently. However, an attractive alternative to bias estima-
tion will also be proposed, improving performance but not increasing the
state vector dimension .

A similar state augmentation technique for bias estimation can be
applied to the AFSC-INS and AFCS-AHRS Kalman filters as well. Corres-
ponding to equation (51) would be the augmented equation

d 1~(t) f [x(t),b(t),u (t),w(t)]1
~~

-
~
- I  =~~~~~~~ 

I (67)
[b(t) ~~(t) j

and replacing (53) would be

1~(i)1
~(i) = [~~

] 
[~ i j~ 

v ( i )  (68)
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Because scale factor errors appeared to be considerably more significant

than bias errors in rate gyros [ ] , additional bias states were not

added to the rate gyros in the model reference. (Such states could

readily be included however.) Instead , bias states were added only to

the Euler ang les in the model reference , corresponding to the outputs of

ei ther the INS or AHRS. Thus , b is a three-dimensional vector , and

is not affected by b but is the original 
~~~~ 

in equation (51). To speci-

fy the associated Kal man filter completely, a statistical description of

the initial value of b(O), and the driving noise sequence, ~~(t), is

requ ired. The bias b(O) would be assumed to be of mean zero, probably

uncorrela ted with x(O) (though not necessarily), and Gaussian with known

covar iance; sim i lar l y ~~(t) would be white , Gauss i an , zero mean , an d un-

correlated with other random processes affecting the system.

These augmented f i l ters have also been pri’grammed , but are similar-
ly regarded as means of improving performance only if the alternative to

bias estimation is inadequate. Some observability difficulty would be

expected with regard to the bias added to the yaw measurement, since the

— yaw state, -, ,  does not appear explicitly in of equations (50) and

(51) , and m ig ht be d i f f icul t to di stin gu i sh from an assume d bi as i n it s

—

I 

value . Being a nonlinear set of e~ations , th i s system descr ip tion

cannot readily be examined for observabilit y as done for the ver tical

• channel filter. However, by investigating the linearized perturbation

equations corresponding to equation (67), and assum i ng time invariance

over a period of interest, such unobservability of the bias on ‘.p does

result. This does not demonstrate unobservability in the time-va rying ,

nonlinear system, but does indicate a potential source of difficulty .

Thus , the augmented state vector may not i nclude the ~ bias state.
56
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2.8 ADAPTATION TO FAILURES

In event of a sensor failure , it would be desirable to synthe-

size a best estima te of the parameters whose direct measurements have

been lost. Such adaptation is feasible by inhibiting the failed si g-

nals from driving the model references. In the case of the Ka l man fil-

ter references, the row of H that corresponds to the failed sensor could

be set to zero and the residual not used to drive the filter. Or , the

corresponding term in the covariance matrix R could be increased appro-

priately to de-emphasize the value of a sensor reading if a “hard’ fail-

ure has not occurred and there is still some limited information in the

signal.

It would be conceivable to use such a technique to synthesize the

values  of

(1) any INS Euler angle

(2) any AHRS Euler angle

(3) ADS altitude , vertical velocity , or indicated airspeed

(4) AFCS norma l acceleration.

I t i s i mportan t to know whether a l l  sta tes i n the var i ous Ka l ma n

filters are observable in the event of a failed sensor being removed

from the data inputs. The rank of associated observabi lity matrices

will indicate such capability.

57
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First consider either of the two attitude Kalman filters . As be-

fore , look ing at the linearized systems indicates that a viable estimate

of the yaw an gle may be d iffi cul t  to obta i n if the INS or AHRS yaw

signal fa i ls .  Perha ps the best procedure in suc h a case woul d be to u se

the other available yaw signal (or signals if hardware redundancy is

also employed ) since the filter cannot provide useful information.

However, if either the pitch or roll (or both) indications are lost , a

somewhat - degra ded f i l ter estimate of al l  states is stil l atta ina ble .

To exam ine the extent of performance degra da ti on due to removal of

failed signals , it may be useful to look at the (steady-state) va l ue of

the information matrix , i.e., the matrix that is propagated from P~~(t0)

= 0 [ ]. This could be accomplished by setting the appropriate term in

L R to infinity or, equivalently, the corresponding term in to zero,

an d di rectl y com put i ng P i n the l im i t from an i n i t ial cond iti on . Th i s

technique is probably better suited to the case of linear dynamics , as

in the vert ical channel filter to follow.

Now cons ider the vertical channel fi lter driven by z7 an d z8. If

28, computed vertical veloc i ty, were removed , al l  states are sti l l  ob-

servable, and thus a viable estimate can be maintained . However, if

altitude , were lost , the observability matrix is of rank one , an d onl y

vertical velocity is observable.

58
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If z9, the vert ical veloc ity der i ved from barometr ic al tit ude , were

also used to drive the vertical channel filter, then loss of 28 woul d

again yield a completely observable system, as would loss of both z8
and z9. If z7 or both 27 and z8 were lost, two states are observable

due to the measuremen t z8.

3. OPTIMAL COMBINATION OF DATA

Conce ptua l l y, the Kalma n fi l ters emp loyed as model references can

serve to generate optimum estimates of the model state variables. Thus ,

the AFCS- INS or AFCS-AHRS filters could provide optimum estimates of the

Euler angles. In fact, an overall “optimum ” es timate of Eu l er an gles

coul d be generated by a larger filter that incorporated data from all

three systems: the AFCS rate gyros, the inertial system, and the atti-

tude and heading reference system. Similarly, the vertical channel fil-

ter coul d conceptually provide optimum estimates of altitude, lagging

altitude , and vertical veloc i ty. By combining the information from in-

• dividual data systems, an optimal es tima tor can increase the prec is i on

of the data above that of any single system. Consequently, one might

pro pose to us e the ou tputs of the Kalma n f i l ters as the best s ignals  to

represent these var i ab les .

However , the simplicity of the models emp loyed in the filters dic-

tates against this. A truly optimum filter , incorporating as accurate

(and complex) a model of a certain dynamic phenomenon as can be developed ,

will in fact yield estima tes whose precision is higher than any single

data source. The design objective here has not been to develop a large

59
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optima l state estimator , but to generate as simple and small an esti-

mator as will provide adequate failure detection performance. Not only

are the filter dimensions low , but in the case of the two attitude fil-

ters , the nonlinear dynamic equations are propagated by a simple first

order integration technique at a rather low update rate .

Although the prospects of the filters serving as adequate data es-

• timators seemed poor , tests were conducted to determine realizable per-

formance. Both the separated AFCS- INS and AFCS -AHRS attitude filters

and the combined AFCS-INS-AHRS filter were tested by means of simulated

aircraft and measurement system dynamics , as was the vertical channel

filter. The attitude results were poor, especially during any substan-

tial maneuvering, this being attributed mostly to the simplified propa-

gation of nonlinear dynamics. In fact, the problem of transient filter

response manifests itself to some degree in the failure detection logic ,

but the effects can be masked by procedures to be described in the next

section. As a result of these procedures , the simple filters can serve

for the failure detection function , but the filtered estimates them-

selves are too inaccurate to use as optima l data signals. The vertical

channel filter exhibited better performance , but any avionics system in-

volving inertial and air data systems will encompass baro-inertia l coup-

ling to damp the inertial vertical channel , so there is no si gnificant

gain from using this filter to combine data from individual sensors.

It is conceivable that a data system that does in fact perform

optimal combination of information from the INS , Al-IRS , AFC S, an d ADS

w i l l  be develo ped. Such a system woul d requ i re more accura te models ,

60
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accounting for biases and other phenomena not modelled herein. Update

rates and propagation (integration) techniques would require further

investigation . Practical aspects , such as the fact that the various

sensors are situated at different environments (as vibration effects),

woul d also have to be considered . If suc h an overall da ta system were

designed into a vehicle ’s av i on ics system, it would be ideally suited

to exploiting the concept of functional redundancy . However, this ef-

fort has been conducted without imposing the assumption that such an

avionics architecture were available: demonstration of concept feasi-

bility with a minimum of extra onboard computer loading has been a very

influential design objective .

•

1
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• SECTION III

PRACTICAL APPLICATION OF THE TECHNIQUE

1. SYSTEM DESIGN AND IMPLEMENTATION

The feasibility of using functiona l redundancy to detect and iso-

late control data sensor fa i lures has been partia l l y estab l i shed i n the

past [ ). Numerous means of improving the performance capabilities of

the concept have been developed in this research , with substantial suc-

cess in minimizing the missed alarms and false alarms produced by the

detection log ic. However , a mere demonstration of concept feasibility

is not as desirable or useful as such a demonstration combined with a

methodi cal , systematic procedure of application of the concept. This

chapter describes two principal aspects of applying the functional re-

dundancy method of failure detection to practical situations.

F i rs t of al l , the development of the failure detection algorithm

and associated digital computer software into a systematic design tool

will be delineated. In so doing , the various methods used to enhance

the algorithm performance capabilities will be thoroughly discussed .

The resul t of these improvements is a software package with sufficient

flexibility to allow an engineer to tailor the failure detection algo-

rithm to his particular needs. Once the design has been optimized with

th i s tool , final implementation of the software in an onboard computer

can be conduc ted.
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This is the second aspect of practical application : once a tuned

design has been achieved , what mode of usage is most appropriate? As

conce i ved here i n , functional redundancy will be used in conjunction

with other failure detection methods. Within this framework, there are

man y al terna ti ve ways of declar ing fa i lur es, an d once a fa i lu re i s de-

clared , there are numerous methods of restructuring the data systems.

The performance anal ysi s prov ided by the des ig n tool can a id the selec-

ti on of the most advanta geous opt ion for a par ti cular  ap p l i ca t ion .

Whether it be simple or sophisticated , the end result will be a reans

of (1) detecting, (2) isolating , and (3) declaring failures , comHned

with a logic for (4) reconfiguring the data system , that is effective

and efficient for on-line use.

2 . USE OF DESIGN TOOL

The computer software that has been developed is in four basic

parts. First an all -digital aircraft flight simulator generates the

ac tual prof i les to be flown . It is a comp lete and soph isti cated simu-

la tion program, encompassing not only basic flight path equations , air-

craft translational dynamics and attitude relations , but also detailed

model s of atmospheric effects , winds , the veh icle ’s en gi nes , aero dy-

nam i c effects , and the flight control system employed (including its in-

fluence in generating sides lip phenomena). The extensive detail of

this simulation program provides a very accurate representation of true

flight characteristics. The output of this segment of software is the

set of “true ” values of parameters to describe the aircraft operation

and the environment in which it is flying .
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These outputs then feed into the second genera l partition of the

software , the models of the ins trumenta ti on systems on board the a ir-

craft. Included are segments that completely define the operational

charac ter ist ics of:

(1) the Air Data System (ADS),

(2) the Inertial Navigation System (INS),

(3) the Attitude Heading Reference System (AHRS), and

(4) the Automatic Fli ght Control System (AFCS) data sensors.

These i ns trumentat ion models inc lu de sensor dynam ic charac ter i s ti cs and

sources of uncertainty . In all cases, the parameters that define the

ins trument operation , power spectra l densities of noises and/or uncer-

tainties inherent in the instruments , an d sig nal bi ases can be read i ly

altered by means of input cards to the program. Thus , the first two

segments of the program allow the specification of any aircraft in any

environment wit h any comp l emen t of par ti cular  data sensor systems .

Moreover , off-nominal as well as nominal situations can be simulated , as

an F-4 with a different , more state-of-the—art INS than these a i r craf t

actually carry (as was actually done in the particular performance

anal yses reported herein).

The instrumentat ion model segment of the software performs another

function as well. By proper selection of input cards to the program,

the engineer can cause this program segment to simulate a wide variety

of instrumentation failures. The failures that are simulated duplicate

the major modes of failure described in Section 1.4.
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The third section of the software package consists of a very flexi-

‘ ble set of logic for detecting , isolating , and declaring failures and

for restructuring the data system upon failure declaration. In actual

onboard implementation of the functional redundancy concept , the soft-

ware would be simpler: the flexibility is intended to expedite initial

design procedures. Two versions of this segment have been programmed--

that encompassing the “standard” Kalman filter structures and the other

that employs the augmented filters for bias estimation as well; the

separation into two interchangeab le segments rather than one large pro-

gram with options was motivated by computer programming efficiency .

The final section provides performance eva l uation outputs in the

form of both printouts and plots of significant parameters. By monitor-

ing these out puts , the engineer c-an iterate upon a failure detection

lo gi c des ig n un ti l he conver ges u pon a f i nal imp l ementat ion w i th a per-

formance suited to his needs.

If des i red , the computer software i s rea di ly modi f ied to accommo-

date actual flight data recorded from the appropriate sensors onboard an

aircraft , rather than being driven by the simulation. Sampled data from

the ta pes of the sensor out puts would be rea d in to computer loca ti ons

from wh ich the third and fourth software segments , the detecti on log ic

and performance evaluation segments, are driven . (A portion of the

performance evaluation segment is inhibited since the “true” values of

flight variables are not separable from the data - this will be de-

veloped further in paragraph 2.3 of this section . Sensor failures can
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still be simulated by generating the sensor output signal variations due

to a failure (generated by two runs of the overall simulation program ,

one without failures and the second identical to the first, but with a

failure simulated - the sensor outputs are then differenced to obtain a

time history of the desired signal variation) and adding this to the

real data samples. p
The follow ing section will discuss the methodical design procedure

made available by this design tool , along with associated concepts and
-~

software.

2.1 BASIS OF COMPARISON

The ini t i al computer runs are conducte d w it h no simula ted fa i lures

and sensor biases set to zero. For the current investigation , a nom i nal

trajectory was chosen to be a simulated approach trajectory flown by an

F-4, composed of a period of l evel flight followed by a coordinated fi-

nal turn and then a pitchover and descent to touchdown . This choice was

made to compare performance results to those of the previous investiga-

t ion , and there is nothing inherent in the software to constrain atten-

tion to only this trajectory.

There are a number of reasons for such a set of computer runs.

Fi rst of a l l , the entire nominal trajectory is flown and appropriate

data is stored to provide realistic values for aircraft and logic pa-

rameters at various selected points along the trajectory. These can

then serve to initialize the simulation of shorter trajectory segments ,

on the order of 10 to 30 seconds of flight time , durin g which failures
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or other phenomena can be simulated . In the tests conducted in this in-

vestigation , three such segments were chosen : one in level flight , one

for the duration of the turn , and the last during descent. Thus, the

particular types of flight environment deemed to be critical to perfor-

mance evaluat ions can be simulated realistically with only small amounts

of require d computer t ime .

Another reason for a set of trajectories with no simulated failures

or sensor biases i s to al low “tuning ” of the filters embodied in the de-

tection logic. Means of obtaining good statistical data about sensor

performance characteristics will be discussed in paragraph 2.2 which

follows . Such information is required to establish the covariance ma-

tr ices Q, R, and that define the Kalman filters . However, even wi th

good statistical data about the sensors , establishing appropriate covar-

iances is an i terative process. Consider either of the two attitude

filters : the ~ matrix embodies not only the uncertainty in the rate

gyro out pu ts, but also the uncerta inty contr ib uted by us in g a very s im-

ple mathematical model to represent a complex dynamical relationship.

Consequentl y , it is necessary to vary these covariance matrices until

desirable fi l ter performance is obtained.

In practice , this tuning is achieved by making repeated runs of

a nominal trajectory while changing only the filter covariances from

one run to the next. Then the filter ’s eva l uations of the standard

deviations in its own state estimates are obtained by taking the square

root of each diagona l term of the propagated error covariance P. These
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are then compared to the observed time history of the components

- 
~~~~~~~~ 

where ~ is the filter estimate of the state and is the

“true ” value of the state variables as generated by the simulation por-

tion of the software. If approximately 70’ of the time history of each

separa te componen t of (~~~ 
- X

t
) is within the propagated standard devia-

ti on va l ue from zero , or if about 95~ are within two times this value ,

then the filter is fairly well “tuned .” Typically, the elements of Q

especially have to be increased over sensor statistics magnitudes to

preclude a substantial underestimate of error standard deviations by

the filters. Paragraph 2.3 of this section will describe the capabil-

ities of the current software to facilitate this timing.

Sensitivity of this tuning to sensor biases that are within tol-

erances may also be cons idered dur i ng thi s tun ing. As a result , the

magn i tudes of the noise covariances may be increased. Or , the tuning

based on zero biases might be maintained and the thresholds in the de-

tec ti on lo gic adjusted to accommodate the in-tolerance bias effects.

These initial data runs generate plots of time histories of each

in d ivi dual l ike l i hood function used in the fa i lure detecti on lo gi c .
-

• 

- Thus , the ir charac ter under norma l con dit ions can be inves tig ated. By

simulating all of the pertinent aircraft flight profile and in-toler-

ance system var iat ions , a complete analysis of likelihood function maxi-

mum magnitudes and transient characteristics under normal operation can

be atta ined . Th is serves as one bas is of sett i ng the thresholds an d

time-before-failure-declaration parameters , to be discussed subsequently.
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2.2 ESTABLISHING SENSOR STATISTICS

Obtaining statistical information about the error characteristics

of sensors from their manufacturers or users is , i n genera l , very d i ff i-

cult. Consequently, th is i nforma ti on , which is required not only to de-

sign the filters of the failure detection algorithm but also to generate

a rea l istic s imula ti on for performance anal yses , often must be generated

by the system designer. There are standard techniques available that

facilitate the evaluation of reasonable variance values for noise ~nd

uncertainty phenomena that corrupt sensor outputs . For instance , power

spectral density analysis of signals can be used to verify the form

error models in the simulation as wel l as determine appropriate noise

levels to drive the models. For the simplified models in the Kalman

filters of a true va l ue being corrupted by a white Gaussian noise, the

strength of the noise can be set so as to duplicate the low frequency

power spectral density value .

A data reduction program has been developed to perform a statisti-

cal analys is of a sequence of data samples , cons isting of evaluations

of the mean and var iance of a set of samples and a test for the white-

ness of the sequence. There are three prima ry applications for it

with regard to functional redundancy logic design and imp l ementa tion:

(1) A sensor, or a number of identical sensors, can be tested

under controlled conditions so that the true value of the variable

being measured is known. Then , based on the assumption inherent in the

detection logic filters of the instrument being adequately modelled as

69
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generating the true value corrupted by wh i te Gaussian noise (and possi-

bly a constant bias that can be subtracted out), a valid variance level

for that corrupting noise can be established .

(2) Again under controlled (laboratory) conditions, the more com-

plex simulation models can be validated and good model parameters at-

tained. Conceptually, an (extended) Kalman filter would be developed

about a given dynamics model of each measuring device , real sensor da ta

would be used to drive the filter , and the mean , var iance, and whiteness

of the resulting residual sequence tested. Iterations of this hypothe-

sis testing would yield the final simulation model specification.

(3) Another application will be discussed further in paragraph

2.8 of this section , namely tha t of prefli ght initialization. Again ,

under conditions that allow true values of measured variables to be

known exactly, the sensor systems would be operated and the appropriate

values of R , ~~ , an d coul d be estab l i shed before each opera ti onal

usag e of the f i l ters . Th is woul d a l low a daptat ion to compone nt var ia-

tions. Moreover , by estimating the mean value of a signal whose appro-

priate value is known (since the true variable value that the si gnal

• represents is known), the bias in the signal can be estimated and corn-

pensated.

The data reduction program operates in the following manner.

First one establishes a known steady-state va l ue of what the particular

instrument should be measuring , and runs the sensor in this steady-state

condition (or possibly lets the variable assume a known nominal function

of time). This data is assumed to be in sampled data form, using a

fixed sample rate.
70
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Once this data is generated , an even i n teger N i s chosen as the
num ber of samp les over which the mean an d var i anc e of the sequenc e can
be assumed to remain essentially constant . A sliding arc of N samp les
at a time is then used to estimate the mean and variance evaluated at
the time of the middle sample in the sliding arc . In other words , to
determine the mean and variance values for time instant i , the data
samples from instant (i - l/2N) through instant (i + l/2N - 1) would be
used , a total of N samples at a time. This N-sample arc is allowed to
“slide ” one sample period at a time , generating a sequence of mean and

variance values . No evaluations are made for i such that (I - 1/2 N) 1
or (1 + l/2N - 1) (total number of data samples). Thus , for data sam-
ples x (l), x(2), ..., the mean evaluated for instant i , denoted as m(i),
is

m( i ) = 
~
- 

- 

x(j) (69)

J = 1 — ~ 111

= m( i-l) + ~~
- [x(i+~n-l )-x(i-~in-l)] (70)

and the associated variance , v(i), woul d be ca lcula ted as

i +~~~~1- I
v(i) = ~~

-
~
-

~
- 

~~ [x(j) - m(i)]2 (71)

j i ~~
j
~

• If the appropriate “flag ” parameter is set in the data reduction
program input , it will also perform a Q-test to determine whether the

• - sequence of data samp les i s a white sequence or not. Such i n forma ti on
is useful in verifying the adequacy of assumed models. The manner in

wh ich the Q-test indicates the whiteness of a sequence , or the degree to
which i ts consecutive values are not correlated with one another , is
descr i bed in Reference t
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2.3 SOFTWARE INPUTS AND OUTPUTS

The applicability of the software package as a design tool is a
function of the flexibility provided in both input controls and avail-
able performance analysis outputs . First the si gnificant inputs will be
considered , including control over the inputs to the error detection
logic:

(1) aircraft and trajectory simul ation

(2) sensor error model parameters

(3) random number generators

(4) failure simulations

(5) replacement of simulated data with rea l data recorded in
fli ght test, and control over the detection log ic itself

(6) dimension of filters employed (inclusion or exclusion of

bias estimation)

(7) the statistical descri ption of sensor errors embodied in
the filters

(8) the strengths of “pseudoncises ” added to the Kalman fil-
ter system models to depict the uncertainty in the accur-
acy of the models  themselves

(9} the number of samples included in each likelih ood func-
tion evaluation

(10) the threshold for each likelihood function in the failure
detect ion lo gi c

(1 1 ) the “ti me-to-failure-declaration ” assoc iated w i th eac h
likelihood function in the detection logic

(12) the algorithm iteration rate.
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The first five i tems (except for the third ) have been discussed
previously in Section 111 .2, and are reiterated here to emphasize the
ease of altering these control inputs. Any aircraft configuration , with
any complemc-nt of particular sensor systems , can be flown on any spe-
cified trajectory through various environmen ts. Data collected from
these first computer runs serve to initializ e the simulation at various
poin ts of interest along the trajectory . Shorter trajectory segments
are then flown from these points , with any of an array of failures and
in-tolerance system variations simulated during the shorter segments of
flight profile (the specificati on and length of which are also under
complete control of the designer ).

The third item listed requires further elaboration. The simul ation
(or real data driving inputs) entail a specification of detection log ic
performance for a single set of sensor data . It is not a covariance
type analysis in which a statisti cal description of expected performance
over an ensemble of flights is 9enerated in a single computer run. Ra-
ther , because nonlinearities in simulation models preclude such an anal-
ysis , Monte Carlo runs must be generated in order to assume a statisti-

cally significant specification of system performance. Uncertainties
and noise phenomena are simulated by means of random number generators
and appropriate wei ghting to generate white Gaussian sequences of values .
By controlling the initial value from which the random number generators
start , different sequences of values are generated so as to share iden-
tical statistics , thereby allowing Monte Carlo runs of the same nominal

situation to be made. The software has been written so that, unl ess
otherwise specified , the initial value in the noise generators is always

the same for the start of any data run; this is to allow comparison of

performance over simulations which are known to be exactly the same ex-

cept for some controlled parameter, as the incor pora tion of exclus ion of
a sensor failure . However , by making the multiple passes over the
same trajectory in a single data run , the ran dom num ber generators are

r~r~ rn1Jed so that a Monte Carlo set of runs is -in fact generated .
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The first two facets of detection logic control have already been
discussed . As mentioned previ ously, two separate software packages have
been developed , one with bias estimation and the other without. For any
particular application, trade-off analyses of performance improvement
versus additional computer loading caused by bias estimation should
probably be conducted . However, due to factors to be discussed further
in Section 111.2.8, the simpler version will most likely be preferable.
Unless otherwise noted , this report will be portraying the performance
of this version .

Section 111.2.2 discussed some methods of developing a good sta-
tistical description of the sensors that drive the detection logic
filters in an actual implementati on . This would be the first step in
setting the values of Q and R in these filters.

Howeve r, such evaluations of ~ and R are generally underestimates
of values that will provide the best filter performance. This is true
because the assumed models in the filters are extremely simple , and some
account for the misrepresentation by these models of true sensor per-
formance must be made. Consequently, “pseu dono ises ” are added to the
Kalman filter models to express this uncertainty. These “pseudonoises ”
are typically added to the models at the same locations as the “noises ”
w an d v en ter, so that the essential result is to alter the entries of Q
and R matrices. Thus , if 

~ SEN SOR and 
~ SEN SOR depict the noise covari-

ance generated to describe the sensor statistics , the actual Q an d P to
be employed in the filter are

= fl-SENSOR + 
~ADJ (7 2 )

= 

~-SENSOR 
+ 

~-ADJ ( 73 )
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Here an d are ma tr i ces that a re adjus ted to ena b le the f i l ters

to achieve good P values (this determi nation is aided by the software

outputs) and thus track adequately. Repeated runs are made while alter-

ing 
~~DJ and ~ADJ unt il good filter performance is attained . The soft-

ware ma inta ins a separat i on of 
~SENS OR and 

~SENSOR from the total ~ and

P for convenience. By so doing , the best estimates of sensor statistics

are ava i la ble for referenc e, an d the ad di t i onal adjustmen t requ i red due

to model uncertainty can be explicitly displayed and compared to the

sensor statistics.

Section 11.1.4 described the application of likelihood function

statistical testing to the detection of sensor failures . It was shown

that the appropriate likelihood functions for the detection logic are

generated approximately as an N-step sum of terms of the form

{-l/2[e2(i)/a 2(i)]} where e (i) is the observed filter residual at time

instant i corresponding to the variable of interest, and 02(1) is the

filter ’s estimate of what the variance of this residual error should be

if there are no sensor failures. (Thus, the ability of the filters to

ac hi eve good P va l ues w i l l  be instrumental in ac hi ev i ng v i able detect ion

logic performance as well as good filter tracking performance.) In

other wor ds , the N mos t recen t res id ual error s i gnal values are used to

stat i sticall y test the hypothes i s that no fa i lures have occurred . If

the errors are consistently larger than anticipated under the no failure

hypothes i s, then the l i kel i hoo d funct ion magn it ude w i l l  grow a bnormall y

large.

The value of N is a design variable. Very small va l ues are avoided

since individua l error samples of large magnitude are expected even

under normal conditions. On the other hand , very large va l ues should be
75
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avoided because sensitivity to actua l sensor failures would then be re-

c~uced substantially. Furthermore , the N most recent samples of data

must be maintained in storage, so large N is avoided from a considera-

tion of memory and computational loading of the onboard computer. This

investigation has demonstrated that a choice of N between 5 and 20

yields good performance.

— Initially, failures were declared when the likelihood function mag-

nitude surpassed a threshold that represented the largest magnitude at-

tained under any normal operational condition . This threshold value for

each likelihood function can be altered by data input to the software

package. However , analysis of the results indicated that this procedure

resulted in rather high threshold magnitudes. Certain types of nianeu-

vers would generate large transient magnitudes with no failures simu-

la te d , especially in the attitude filters . Using these magnitudes to

set threshold values inhibited failure detection during straight and

l evel flig ht , the type of flight regime that composed the majority of

time spent in the air. Consequently, it is useful to specify both a

threshold value and a parameter to indicate the time (or number of

al gorithm iteration periods) that the threshold must be consistently

surpassed before a failure is declared . Such a “time-to-failure-declar-

ation” parameter -is also a control variable set by control data input

for each l ikelihood function individually. This will be discussed

further in Section 111.2 .5.

The al gorithm i terat ion ra te, or data sample rate, is also a design

parameter. In this i nvestigation , a sample period of 0.2 seconds was

found to yield adequate performance without overburdening the computer
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capabilities in any way . Longer samp le periods tended to have unaccept-

ably long mean times to detection of failures and poor state estimate

p ro pagati on i n the f i l ters between sam p le ti mes , especially in the case

of the attitude filters using a first order integration of nonlinear

equa ti ons . On t he ot her extreme , shorter sample periods tended to yield

superior performance but the advantage gained was questionable compared

to the additional computer loading .

The outputs of the software package contribute significantly to its

poten ti al use as a des ig n tool . A sing le run of the p rogram can gener-

ate a substantial amount of printout and plot data (using contro l input

cards to determine how much is actually provided), including:

(1) For each state variable in the Kalman filters , t he value  of

(
~~

- x
~
)

(2) The corresponding error standard deviations as estimated by

the f i l t e r s

(3) The values of ~ an d P , an d i an d M, as well as z and u for
• each Kalman filter

(4) For the attitude filters, the optima l estimate x obtained by

combining the two individual fi l ters, the correspond ing values

of (i - x
~

) and P , and obtained by combining only INS and

AHRS data

(5) Indi v idua l l i ke li hood f u n c t i o ns

___—-
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(6) Threshol d values and time-to-failure -declaration parameters

for each likelihood function

(7) Time and type of failures declared during the run

(8) Single likelihood function terms and corresponding squared re-

siduals and estimated residual error covariances

(9) The minimum and maximum values attained by each likel i hood

funct ion i n the mos t recen t N iterations

(10) Period ically, all pertinent simulation parameters or real

env i ronmen t data .

The first two outputs facilitate the setting of and 
~ADJ of

equations (72) and (73). For a given state variable x, x is the fi lter

estimate of its value and x~ is the “ true ” value as provided by the sim-

ulat ion . (Note again that x~ is not available when real data tapes sup-

- 

• 

plant the simulations of aircraft and sensors.) The difference
• 

(~~~ 
- xt ) is then printed out every iteration , and a plot of its values

over the entire test trajectory is generated as well. This can then be

compared to printouts and plots of the corresponding standard deviations

(lo values) as estimated by the Kalman filters . In fact, these are

simply the square roots of the diagonal terms of the propagated error

covarlance matrix , P. To “tune” the filters , the pseudonoise strengths

are adjusted until the (x - x
~
) sequence and the standard deviations

correspond such that 952~ of the true error sequence lies within the 2ci
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-

envelope generated by the standard deviation . In practice, this tuning

is accomplished more easily w ith plots of (~~~ 
- xt ) and the 2o envelope

than with digita l printout , so suc h plo ts are produced by the software.

The third set of outputs allows an evaluation of the filter state

estimation capability . Both the estimates just before and just after

incorporation of a measurement are included to portray the separate ef-

fects of time propagation of the state estimate and updates at measure-

ment times. In the case of the attitude filters , this is especially

valuable for determining the adequacy of the simple integration algo-

rithm for propagation: if i is consistently poor and ~ substantially

better , then some alterat ion of the f i l ter propa gat ion techn ique is ad-

v isable, whether it be a higher order integration technique, or the

simple method applied iteratively to partitions of the time interval

between measurements , or a smaller overall sample period .

With regard to the fourth set of outputs , each of the two att i tu de

filters generates optima l estimates of the Euler angles . Denote the

output of the filter driven by AFCS rate gyros and the INS as and
• 

~INS ’ 
and similarly let the outputs of the filter driven by the AFCS

rate gyros and AHRS be 
~~HR5 

and 
~~HR S If reasonable state estimation

performance were achieved , i t  would be valuable to calculate an “over-

all-optimal” state est imate , 
~OVERALL’ that combined the data from a l l

three sensor systems. Its value would be computed as

~~VER A LL = - 

~~HRS ] [~INS ~1NS 
+ 
~~HRS ~~HRS] 

(74)
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This could be approximated (with substantial decrease in computer loading )
on a component-by-component basis as

- • -i 
X IN S~ 

XAH R S
XOV ERALL = 

~ + L 
+

~ IN S~ “AHR Si~

= 

~ INS~~ ~AHRS~ 
[PAHR S ~IN S 1 

+ 
~IF4s~ 

XAHRSj] 
(75)

The overall error convariance would be calculated as

— l
- [p -l 

+ ~
, -11 (76)

—OVERALL - 

L -INS --AHRS j

Comparing the lo values from this 
~ovERALL 

an d the sequence of 
~ OV ER A LL

- x
~
) would then indicate the state estimation capability of this corn-

bined estimate .

However , the state estimation performance of the 3-dimensional
attitude filters is poor because of simplified propagation models within

• the filters . Therefore, suc h an “overall-o ptimal” estimate is not
warranted . If a more sophisticated propagation model were incorporated ,

th i s woul d be a v ia ble conce pt. Such a soph i sticated model wou l d be of
h ig her d imens ion t han three , so equat ions (74 ) and (7 6) would be corn-
putationally burdensome . One could then utilize the approximation of
equation (75) or use the relationships

~~VERALL = 

~IN S + 
~~~~ [ZAHRS - 

~ ~INS] 
(77)

~
o 

= p-INS H
T 

N 

~IN S 
~~

- 
+ -~AHR S~ 

(78)

~.OVERALL 
= 

~INS - 

~o ~ p-INS 
(79)
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where the invers e in equation (78) is a (3 x 3) matrix inversion. That
these equations dupli cate equation s (74) and (76) can be proven by meth-ods presented in Reference { J.

The var i a b l e 
~~~~~~~~~ 

mentioned in the fourth set of outputs is the
wei ghted average of the measurements taken from the INS and AHRS:

1 -l - l 1~~~~~~ 1 - 1 -l 1

~~VG [R INs + 
~~HRS j { ~INS ~~I~~

-
~S 

+ 

~ HRS ?~HRsj (80)

If and 
~~HRS are diagonal matrices (as they often are), then a

rela tionship simjldr to ( 7 5 )  would be exact , rather than an approxima-
t ion:

ZAVG 
= 

~~~~~~~~~~~~~~~~~~~~~~~~~~ [R AHRS 2INS + R
INS ZAHR S ] (81)

Such an evaluat ion would be a best estimate of the Euler angles based on
both INS and Al-IRS data , usefu l in the event tha t a failure were to
affect the AFCS rate gyros.

The fifth set of outputs are printouts and plots of the likeli hood
function values over a given computer run . Especiall y useful are the
plots of the indi vidual likelih ood functions, since the stead -state and
trans ien t charac ter i s ti cs of those func ti ons w i l l  be of u tmos t impor-
tance in the declaration of failed sensors . The disting uishing aspects
between t he li k el ihoo d func ti ons resu l ti ng from norma l opera ti on an d
those genera ted when a fa i lure  has occurred can be more rea di ly dis-
cerned from time plots than from data printout. In fact, it was the useof these p lo ts tha t enabled th i s inves ti ga ti on to improve the fa i lure
detection capabi lities of the functiona l redundancy method so markedly.
Understanding the dynamic characteristics of the likelihood functions
suggested the incorporation of “time-to-failure_declaration ” parame ters
in conjunction with thresholds for each likel i hood function , both of
which are also printed outputs of the software package.
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Besides outputting the individ ual likelihood functions (each of

which is an N-step sum), the software also prints out the value of the

indi v idual terms tha t compromi se t he l ik el i hoo d funct ions , i.e., terms

of the form {-l/2[e2(i)/a2(i)]}. Also printed are the individual values

• of e2(i), the squared value of the observed residual , and of o2(i), the

• variance of the res id ual sequence as propagated by the fi l ter it self .

If and when large magnitude likelihood functions or other off-nominal

character istics occur , then these outputs aid the analysis of their

generation.

The final selection of appropriate values for the thresholds and

time-to—failure-detection parameters for each likelihood function is

exped ited by observing the minimum and maximum likelihood function mag-

nitude in the last I i terations , where I is an adjustabl e integer. Here

I is actually a proposed value for the number of algorithm iterations

before a failure is declared . By looking at both no-failure and sensor

failure test cases, the threshold and I values can be chosen so that

( ideall y ) no norma l operation will cause the likelihood function to ex-

ceed the threshold for I consecutive iterations , while (ideally)-al l ap-

propriate failure cases will cause this threshold to be surpassed for at

least I i terations consecutively.

The periodic display of all pertinent simulation or real environ-

mental data , in addition to model reference and likelihood function per-

formance information , is performed for convenience of the user. Whether

or not this display is made, and its frequency of occurrence, can be

controlled .
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2.4 FILTER TUNING

As described previously, the Kalma n fi l ters are tuned by adjusting

and until the sequence of (~~~ 
- 

~~~~~
) values in each filter cor-

relat es well with the standard deviations propagated in the filter P ma-

trices during a set of Monte barb runs . This adjustment is an iter-

ative trial and error process , but some guidance can be suggested for

the procedure .

F i rs t of a l l , the sequence of d i fferences between the s imulated

output of any sensor and the simulated “true” value of the variable

should be analyzed to verify that the established va l ues of 
~SENSOR 

and

~SENSOR 
correlate reasonably. If real data is used instead of simulated

data, some calibration period or other similar condition will provide

sensor output during which time the true value of the measured parameter

is known , and a similar procedure can be followed .

If the P matrix underestimates the error statistics , especially dur-

ing periods of significant maneuvering, i.e., in a transient manner , the

values of rather than should be increased. Thus, if the error

in the roll estimate exceeds the level predicted by P for a time inter-

val after a roll maneuver , then the corresponding element in would

be increased to show a decreased confidence in the ability of the filter

dynamic model to represent the physical situation adequately. This ad-

justment should be coordinated with the effects on the appropriate like-

l ihood function plots. This sensitivity to trajectory dynamics is

treated more fully in paragraph 2.6 of this section .
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In the case of the two attitude filters , each driven by the same

rate gyro information , if the characteristics with which ? misrepresents

the true error covariance are very similar in the two filters , then ad- 
-;

justruent of 
~~~~~~~~~ 

is appropriate . However , if only one P misrepresents

the error covariance si gnificantly, then its associated should be

compensated.

2.5 THRESHOLDS AND TIME-TO-FAILURE-DECLARATION PARAMETEkS

Standard procedure for setting thresholds for likel i hood function

hypothesis testing would be to conduct a number of trials with no fail-

ures and determine the larges t magnitude attained by each of the likeli-

hood functions. Then a series of failure runs would be made , and the

minimum magnitudes of likelihood functions that are expected to demon-

strate a sensitivity to a certain failure are recorded . If a region of

uncertainty is thereby established , i.e., if there exist some likelihood

function magnitudes below the largest magnitude achieved with no fail-

ures while above the smallest magnitudes atta i ned with pertinen t fail-

ures , then some compromise is necessary . It might be appropriate to

set the threshold so as to p reclu de eith er false  alarms or m i ssed

alarms (not both), or to choose a threshold level between these two ex-

tremes and accept some percentage of both missed alarms and false alarms .

Cons id era ble ef for t was ex pende d i n an attem pt to make thresnol d

setti ng more method ical , rather than simply looking at highest likel i-

hood va l ues attained under normal conditions and the lowest attai ned

under fa i le d cond it ions . What resul ted was a means of predi ct in g the

probability of detection and probability of missed alarm when a sensor

84
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failed , as a function of the threshold setting. Similarly, the proba-

bilities of no alarm or a false alarm when a failure did not actually
occur could also be calculated as a function of threshold level .

Such a description of the probability of the detection logic sig-
nalling a failure is developed in the following manner. A failure is
declared if the likelihood function becomes more negative than some
threshold level ; i.e., if

L
N
(i) < -T (82)

where T is the magnitude of the threshold and LN (i) is approximated as
(see Section 11.1.4):

L,~(i) 
~ 

~ [e
2(j)/~

2
(j)] (83)

j=i-m -’- l

When a Kalman filter model reference is used , e(j) is one of the filter
residuals and o2(j) is the filter ’s estimate of the variance of tha t re-
s id ual  er ror , as given in equations (43) and (44’. Thus a failure is
declared if:

~ [e
2(j)/o2(j)] > 2T (84)

j= i-m+l

First consider the simplest case of N = 1 . Then equation (84) relates
that a failure is declared if

e( i )~ > ~I~i o (i) (85)

Now assume that the actua l residuals , under either no-failure or failed

- 

- 

cond itions, can be described (or at least approximated ) statistically by
a Gaussian density with mean b(i) and variance a~(i). Then the proba-

bility of declaring a failure is the shaded area in Figure 4. If this

plot is normalized by using o~ as a scaling factor, as in Figure 4, then

the probability of declaring a failure can be computed fr~m uni t  normal
dens ity tables for selected numerical values for (bkt) and (1�T a/or ) .
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Fi gure 4a. Probability of Failure Declaration
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Figure 4b. Normalized Density
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It is then possible to plot the probability of declaring a failure as a

function of b/a te for different values of the normal ized threshold

This is presented in Figure 5, for normalized threshold

values of 0.5, 1, 1.5 , 2, and 3. Also plotted on this figure is the

locus of probabilities of declaring a fai lure when the actual mean of

the residual density , b, assumes the critical value for failure declar-

ation, ~‘~T a. (Note that an actua l failure would probably cause b to be

greater than this va lue or causes a
~ 

to be very large.)

Referring back to Figure 4a , another useful means of presenting

this data would be to plot probabilities of failure declaration as a

function of 
~ 

b 
~~~

• This is possible , since = (b/o t )/ (/TF
~ 

a/at )

and is depicted in Figure 6. Here, the locus of b = a is along the

vertical line at —p---- = 1.
I2T a

For N greater than one , a similar procedure would be used . Assume

that the filter estimate of variance does not change significantly in N

sample periods , that the N residuals are each described by a Gaussian

density with mean b and variance a~ as before, and that the N values

formed by subtracting b from each residual are uncorrelated . Then a

parallel development is possible, except that the probability density of

a Gaussian random variable is replaced wi th the density of a chi vari-

able with N degrees of freedom [Ref. 4]. For each value of N, a plot

similar to Figure 5 can be developed .
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Thus , a more complete knowledge of system performance can be at-

tained by predicting the probabilities of detected failures , false

alarms , and missed alarms. To this point , however, an essentially

static analysis of the likelihood function value has been employed to

establish a single criterion for declaring a failure--that of surpassing

a selected threshold value .

Another al ternative avails i tself when the dynamic characteristics

of likel ihood function values are investigated . Such analysis is

greatly aided by the time plots of likelihood functions generated by

the software package. Certain trends, trans ients , and other character-

istics become evident in these plots which serve to differentiate be-

tween no-failure and fa i led sensor ci rcumstances .

One significant discernible characteristic is the sensitivity of

certain likelihood functions to rapid changes in aircraft orientation .

Ininediately followin g a rapid roll to initiate a turn , the likelihood

funct ions corres pondi ng to the roll Euler ang le undergo a transient

growth in magnitude with rapid decay. (The length of time for recovery

from the transient is a function of N , the number of t imes any gi ven re-

si dual will be maintained in the likelihood function evaluation.) If

such transients could be masked out, the thresholds for declar ing fail-

ures can be set substantiall y tighter, wh ile simultaneously minimizing

the probability of declaring false alarms . This is true because the

standard techniques of threshold setting would record the peaks of

these transient magnitudes as levels above which the threshold should be

set to preclude false alarms. Actually, the typical likel i hood function

magnitudes are substantially lower than these peaks. If the transients
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coul d be recogn i zed and removed, the maximum likel i hood function magni-

tude under normal cond it ions , other than rapid transients , and thus an

appropriate threshold level for preventing false alarms , would be sig-

nif icantly lowe r than ac hi eved by the standa rd approach.

One means of maskin g out these transients is through use of time-

to-failure declaration parameters. Suppose it is known that transients

occurring dur ing normal operation will surpass a certain threshold level

but will rapidly return below that level , wh i le any pert i nent fa i lure

will cause the likelihood function to surpass the level and remain above

it . Then it is possible to establish a failure detection criterion of

the form , “If the likelihoo d function passes a given threshold level and

remains above it for a specified period of time (or number of algorithm
i terations), then a failure i s declared.”

Setting these thresholds and time-to-failure-declaration parameters

must be done in a coordinated fashion. If a long time-to-failure-

declaration parameter were chosen, a tight threshold could be chosen

with few false or missed alarms , but at the expense of a delay in de-

d aring real failures. On the other hand , if a very short time-to-

failure-declaration parameter were chosen , the ambiguity between like-

lihood function transients and behavior due to real failures would not

be substantially decreased. Consequently, a trade-off must be conducted

and the best pair of values (of a threshold and time-to-failure-declar-

ation parameter) for each likelihood achieved after some iterative

search. Note that, for a l ikelihood function that does not exhibit such

transient behav ior, only a threshold val ue is required .
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2.6 SENSITIVITY TO AIRCRAFT MANEUVERS

The sensi ti v i ty of cer tain li kel ihood functions to a i rcraft maneu-

vers was ment ioned as the prima ry motivation for the time-to-failure

declarat ion parameters . In th i s sec ti on, an ela bora ti on of th i s sens i-

tivit y will be made , indi cat i ng causes , means of al lev iat ion, and ef-

fects upon failure detection philosop hy.

Figure 7 is a typical plot of the likelihood function corresponding

to the roll Euler angle in the AFCS-INS Kalman filter in a no-failure

simulation run . The two transient dips occur at the times when the air-

craft first rolls to initiate a turn and then again when it rolls to re-

sume stra ight—and—level flight. It is noted that the likelihood func-

tion empl oyed was a 10-step sum of terms (i.e, N = 10), and that both

the rate of recovery from such transients and the ratio of transient

peak va l ue to “normal ” likelihood function value are a function of N.

Dur ing the turn itself, the likelihood function returns to a “norma l”

magnitude; it is only the rolHng maneuvers themselves that generate the

- . . trans i ent behav ior .

- - This behavior can be attr i bu ted to the inability of the firs t order

- 1  integra t ion of simplified nonflnear equations to model adequately the

true dynamics of a rapid change in aircraft orientation . Therefore,

some means of reduc i ng the effec t would be:

(1) ~niprov ing the dynamics model, at the expense of higher dimen-

siona l sta te vectors in the Filters and computer loading;
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(2) improving the means of integration : higher order techniques ,

smaller iterat ion periods , etc ., but again at the expense of

computer load ing;

(3) increasing the driving noise covariance ~ in the f i lters be-

yond the value which yields good filter performance in a less

maneuvering flight mode to indicate reduced confidence in the

model emp loyed; but, this would tend to decrease detection

sensitivity for such conservative flight modes .

For a feasible onboard implementation , the simplest algorithm that

yields suitable performance would be most preferable, so items (1) and

(2) above would require substantial performance improvement to be war-

ranted, as they do entail signif icant increases in computer time and

memory. With regard to (1), (2), and (3), the sim ple model is in fact

adequate for a more benign flight regime, and shoul d be exploited if

possible.

The detection thresholds should probably be set as tightly as pos-

sible to the likel i hood function values achieved in normal straight and

level fl ight. This is the flight regime that composes the vast majority

of time in the air. Also, it is the regime that is best modelled by the

simplified dynamics models embodied in the filters , so the validity of

detection is greatest for this regime as well.

If this philosophy is accepted, some account ing must be made for

the transients incurred . One method might be to declare a potential

failure , remove the sensor from the filter inputs (especially if the 

- . 
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fil ter can operate without it), but allow imediate recertification of

the sensor. Besides causing nuisance alarms , this technique would re-

sult in the loss of some va l uable data before recertifiction if a fail-

ure did not really occur.

Another method would be to use the time-to-failure-declaration pa-

rameter concept as described in the last section. This is a rather sim-

ple and effective solution to the problem , but does suffer from causing

some delay in declaration of actual failures . Such a del ay would result

not only in use of bad data by the aircraft control system, but might

also cause filter performance to diverge beyond the point of recovery

once the bad data were removed from its input channels.

If the time-to-failure-declaration parameter concept is not ade-

quate, making the failure detection logic adaptable to the amount and

type of maneuvering might be considered . By monitoring control surfaces

such as ailerons , or commands sent to these control surfaces by the

pilot and autopilot, the detection logic could know when high rol l rates

or other transient-inducing phenomena were going to occur. Under “nor-

mal” flight conditions , the logic would employ the appropriately tig ht

thresholds. When informed of such transient-inducing phenomena , it

could

(1) simply nullify any failure declarations due to threshold pas-

sage until the phenomena terminated (as, until high roll rates

are no longer sensed or commanded),

~~~ (2) invoke higher magnitude thresholds until the phenomena termi-

nated, or
95
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(3) invoke the additiona l time-to-failure declaration criterion

besides threshold passage during this time period .

It should be mentioned that one reason for conducting flight tests

to generate rea l data is to corroborate the characteristics of Figure 7.

There was some quest ion about the realism of roll angle values generated

by the simulation program during a roll maneuver. Although the same ba-

sic trend of this figure is anticipated , the exact character of the

transients may well be less pronounced using real data . Nevertheless ,

this effort has assumed that the simulation Is valid in order to conduct

performance analyses (subject to revision if necessary).

2.7 SENSITIVITY TO INSTRUMENT BIASES

Sensitivity of performance to in-tolerance instrument biases is an

important concern . Therefore, twenty-four separate biases are individu-

all y adjustable in the design tool-performance analysis program package.

H, These are the separate biases on the:

(1) three Euler angle outputs of the INS

(2) three accelerometers of the INS

(3) three gyros of the INS

(4) three Euler angle outputs of the AFIRS

(5) two axes of the vertical gyro of the AHRS

(6) directiona l gyro of the AHRS

(7) compass of the AFIRS

(8) normal accelerometer of the AFCS

(9) three rate gyros of the AFCS

(10) statIc pressure s igna l of the ADS

-

~~~~ ~~~~~ 
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I
(11) pitot pressure signa l of the ADS

(12) angle of attack output of the ADS

(13) total temperature output of the ADS .

Both statistical and noise case descriptions of these biases were

developed for the equipment used in the F-4. With these values , real-

istic effects due to in-tolerance sensor biases could be analyzed by the

software package . Computer runs were conducted with all biases zeroed

except for one (to study sensitivity of performance to individual biases),

and all set to representative va l ues (to investi gate combined effects).

By determining which individual bias variations cause the most degrada-

ti on i n performance , one can specify which sensors must have the tight-

est bias drift characteristics for utilization in the integrated data

sys tem.

2.8 PREFLI GHT INITIALIZATION

A data reduction program capable of efficient calculation of the

mean , var iance , and wh iteness of a sequence of sampled data si gnal

values was descr ibed earlier in para gra ph 2.2 of thi s sec ti on . One

application of this program would be for preflight initialization. As

env isioned here, a standard test computer program could be implemented

in ground support equipment (or possibly onboard ) to produce good ini-

ti al i zat i on before each fl ight of the ve hi cle.

F i rst of all , by running the sensor systems in a preflight test

when the true values of measure d parameters are ava i la b le , the computed

mean of signa l values can be used to estimate the biases in the m di-

vidua l sensors. From analysis of sensor performance data it can be seen
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that typically the turnon-to-turnon nonrepeatability -is considerably

greater than instrument bias drift generated during the mission flight

period. Thus, if the biases were estimated each time the instruments

were turned on, then these bias estimates would be valid for the endur-

ance of the mission . Such compensation would improve sensor system

performances, decrease concern about sensitivity of detection to biases ,

increase the adequacy of the simple dynamic models in the filters , and

substantially reduce the need of adding on-line bias estimation capabil-

ity to these filters.

Furthermore, the estimation of variance could be exploited as well.

The 
~sENsOR’ ~SENSOR’ 

and P values embodied in the Kalman fi lter~ are

established by statistica l testing of representative instruments . Pre-

flight analysis of sensors could determine if the particular sensors on-

board the aircraft perform in the same manner as the “population statis-

tics ” woul d indicate . In other words , val id values of 
~SENSOR ’ ~SENSOR’

and could be obta i ned for each individual aircraft ’s compl emen t of

instrumentation. In addition to this fine tuning to particular sensors ,

such anal ysis performed routinely on the same aircraft over a period of

— time could indicate aging and other performance trends of the instru-

ments onboard .

3. MODES OF USAGE

Once the functional redundancy logic has been develo ped with the

ai d of the design tool , onboard implementation can be considered . This

logi c i s not meant to be a detec ti on system unto i tsel f, but par t of an

i ntegrated fa i lure detect i on sys tem, as described in the next paragraph

(3.1). Section 3.2 subsequently considers the various appropriate means
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of decla ring fai lures with the functional redundancy logic. Then Sec-

tion 3.3 investigates how the data system might adapt and reconfigure

itself, once a failure has been declared. As will become apparent, the

choices made here can yield implementations that range -from very simple

to very sophisticated .

3.1 INTEGRATED FAILURE DETECTION SYSTEM

As mentioned in the beginning paragraphs of Section 1, the func-

tional redundancy concept is meant to complement , rather than totally

rep lace , other means of sensor failure detection. By being used in

Conjunction with hardware redundancy, deterministic tests, built-in-test

(BIT) ,  and ground support methods , an efficient, integrated , failure

detection system can be achieved.

Functional redundancy is not the most appropriate technique for the

entire failure detection system. For instance, BIT and reasona bleness

tests can readily detect many hard failures with very little computa-

tion. On-line estimation and compensation of biases and scale factor

errors are more easily achieved by hardware redundancy, though func-

tiona l redundancy can provide an “extra voter ” in the origina l detec-

tion . Also, because of the response time of the logic , func ti onal

redundancy woul d probably not be the sole means of detect ing fa i lures of

sensors that are critical to safety of flight.

However , functiona l redundancy does provide a substantial contri-

bution to such an integrated failure detection system. It significantly

reduces the required hardware redundancy for attaining “two-fail--operate”

capabilities or other similar degrees of reliability . By correlating

data from different types of data sensors, it removes the need for a

proliferation of identical sensors onboard an aircraft.

99

-~
-
~~

--
~~~~— U— —— ________ a



—.- —.— 

~~~~~~~~~~~ .
~~

. -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~
... -

~~ 
.. l___._~.

AFFDL -TR-76-93

3.2 MEANS OF DECLARING FAILURES

In the simplest form , a failure is declared if a likelihood func-

tion surpasses a given threshold (which may or may not be adaptively set

to aircraft maneuvering). For some likelihood functions, time-to-

failure-declaration parameters are also incorporated into the criterion

for failure declaration . However , there are certain additional aspects

of fa i l u r e declarat ion that shoul d be cons id ered.

If a time-to-failure-declaration parameter is used with a certain

thresh ol d for fa i lure detec tion , it may be desirable to be able to de-

tect obvious failures without the inherent delay caused by tha t param-

eter . For tha t reason , a second , larger threshold might be established

such that i f the l i kel i hood funct ion sur passes both thres holds , then a

fa i lure i s declare d immedi atel y. Such a mul ti ple threshol d coul d be

used to discriminate between hard failures (in which no useful data

woul d be expected) and soft failures (which could result in degraded

sensor performance, but some useful informa tion st i ll is expec ted to be

ava ilable from the sensor). This discrimination capability might war-

rant di fferent data system adapta ti ons to hard and soft fa i lures , as

discussed in the next section .

Mul tiple thresholds might also be used to advantage in another way .

A smaller threshold mi ght be established and time beyond that threshold

recorded as an indication of a sensor starting to go out of tolerance ,

or degrade in some other manner , without actuall y failing. Such a test

coul d be conducted with ground equipment rather than on-line at all

times.
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By referring to Table IV in Section 11.2.6 , it can be seen that

failure isolation is dependent upon which of the ten likelihood func-

ti ons are beyond thres hol d value . Certa i n fa i lures affec t a s i ng le

likelihood function while other failures affect a number of them. Thus ,

if a fa i lure  that affected two or more l ikel ih ood funct ions were to

occur , an d the t hreshol ds were passed at sl ig htl y di f ferent times , it is

possible to mistakenly declare a failure that affects the single like-

lihood function that surpasses its threshold first. For that reason , it
Ic A

m ig ht be advan tageous to s ig nal an alarm that some fa i lure has occurre d ,

giving the possible failures. The probability that the failure is

ac tual ly one that affects multiple likelihood functions can be deter-

mined by monitoring the magnitudes of the other likel i hood functions.

If they are of normal magn i tude, the failure that affects only one

likel ihood func tion can be declared. However , i f they too are above

norma l magnitude, failure isolation might be delayed for one or a few

al gor i t hm iterations , to be more sure of what failure did in fact occur.

In the interim period , the most likely failure might be displayed , or

all prssible failures shown with an indication of the most probable one,

or no indication made other than a signal that some failure has occurred.

- 1
3.3 LOGIC ADAPTATION TO FAILED SENSORS

If a sensor has failed , its inputs to the detection logic would be

removed , as described in Section 11.2.8. The theoretical question of

observability of the resulting filter models when various sensors have

been removed was i nvestigated . It was also mentioned that such degraded

model references could provide estimated values of INS or AHRS Euler

angles , AFCS norma l acceleration, or ADS al titude , vertical veloc ity or

indicated airspeed.

L 
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Removal of sensor signals from the rate gyros to the attitude

Kalman filters , or from the INS vertical accelerometer to the vertical

filter , precludes the operation of those filters . Unless a hard failure

were to occur , a degraded performance mode could be attempted by in-

creas ing the appropriate elements of the ~ matrices in the filters and

accepting the poor data. This form of adaptation is included in the

software package, as well as remova l of fa i led sensors from filter input

channels.

If soft failures can be distinguished from hard failures , as men-

tioned in the previous section with regard to multipl e thresholds , then

“failed” sensors need not be removed from the data system. A hard fail-

ure woul d result in sensor signal removal , w i th zero ing of the appropri-

ate H matrix elements . However, a soft failure coul d be handled by in-

creasing the magnitude of the appropriate element in the R covariance

matrix. Additionally, if the failure can be identified as a stable

sh i ft i n sensor output, rather than more random fluctuations , then some

attempt at compensation of the soft failure might be conducted (using

other means than functional redundancy to achieve the compensation).

However the log ic adapts to the fa i led sensor , there will be a

certain period of time required for the model references and likelihood

funct ions to recover to “normal” (but degraded) performance. For this

reason , when a failure does occur , the ability to declare other failures

should be temporarily inhibited so as not to generate many false alarms .

An indication could be sent to the pilot to inform him of the extent of

degraded sensor systems , degraded failure detection abil ity , and reduced

mission capabilities that result.
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Once a sensor has been declared as having failed , it may be useful

to monitor it for possible recertification. Especially in the case of

sof t, stable failures , as biases whose values could be estimated by

other means and then compensated, such recertification may be warranted .

This would , however , add to the complexity of the detection logic.

There are a variety of means of declaring failures and adapting the

logic to those failures . For any gi ven appl icat ion, a trade—off of corn-

plexity versus performance gain would be required before deciding upon

the eventual mode of usage of the functional redundancy failure detec-

tion concept.
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SECTION IV

EXPERIMENTAL RESULTS

1. EXPERIMENTS CONDUCTED

This section presents the results of an extensive series of per-

formance analys i s s imulat ions conduc ted to demons trate the capabi liti es

of the funct iona l redundancy failure detection algorithm. It will be

seen that the feasibility and efficiency of the algorithm has , in fact,

been verified .

By first generating all required initial conditions through a long

trajectory simulati on , three evaluation trajectory segments were estab-

lished : a straight-and-level flight segment , a trajectory composed of a

rol l into a coordindted turn followed by another roll to resume stra i ght-

and-level flight , and a pitchove r and descent. As mentioned previously,

th is simulation was “flown ” by an F-4 with a full complement of par-

t icular sensors normall y carried onboard such an a i rc ra ft, except that

the INS charac ter i st ics were modif ied to be more representa ti ve of

state-of-the-art technology.

-

- First of all, a Monte Carlo set of runs was performed in order to

establish a basis of comparison . Two different sets of Monte Carlo runs

were actually conducted , one set in which instrument biases were allowed

to assume various representative values and another set in which all

biases were zeroed. The latter set is used later in the bias sensitiv-

ity tests. During these first test runs , the filters were tuned to the

straight-and-level flight profile. Section 2 delineates these results .
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Monte Carlo runs of the same trajector y se gments were then con-

ducted , but with individual sensor failures be i ng simulated . Both types

of Mon te Carlo runs , with zeroed biases and representative bias values ,

were used . The resul t i ng li kel ihood function p lots then allowe d evalu-

at i on of the var ious means of declar i ng fa i lures , as seen in Section 3.

S i nce one prob lem was the sens iti v ity to ra pid roll rates , an in-

ves tigat ion i nto alter i ng the fi lter dr i v i ng no i se covar iances (
~

) to
tune the filters to an environment of hi gher roll rates was made. Th i s

detunes the filter somewhat in the straight-and-level regime . The ef-

fectiveness of the ~ var iance to reduce maneuver sens i t i v ity i s p re-

sented i n Section 4.

Sect ion 5 then presents the sens i t i v i ty to instrument bi ases .

Monte Carlo runs w i th all bi ases set to zero but one were performe d for

each bias in turn . To make the effects of the biases pronounced , each

one being tested was set at the worst case level (or 2o value if a

statistica l description of bias characteristics was available for a

particular sensor ).

Section 6 descri bes the verification of the simulated data results

by data tapes acquired through flight test recordings. Due to some ex-

tenua ting c i rcumstances , the f l i ght tests have been delayed for 21

months , and so the actual data is not available at the time of this

writing . However, the tests are scheduled and this substantiation is

expected w i thin the near future.
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2. BASELINE OF PERFORMANCE - 110 FAILURES

Monte Carlo simulations were conducted over the three evaluation

trajectory segments without any failures being simulated . Figure 8 pre-

sents plots of the ten likelihood functions for the three trajectory

segments under the conditions of zeroed instrument biases . The labels

in this figure are used throughout thi s sect ion : INS 1, 2, and 3 are

the pitch , roll , and yaw l ikel i hood functions for the INS-AFCS filter;

AHRS 1, 2, and 3 are similarly pitch , roll , and yaw likel ihood functions

for the AHRS-AFCS filter; VERT 1 , 2, and 3 are lagging altitude, inde-

pendent vertical velocity (used to check angle of attack), and vertical

velocity likelihood functions of the vertical filter; and VIAS is the

indicated a irspeed likelihood funct ion. These labels correspond to e1
through e9, and e11-, respectively, 0-f Table IV in Section 11.2.6.

Variation of these instrument biases did not substantially increase the

magnitude of any likelihood function except the one corresponding to in-

dicated airspeed (labelled VMS in the plots). In fact, some effort was

made to inc lude in Figure 8 plots of large magnitude likelihood func-

tions from the various Monte Carlo runs . Maximum magnitudes atta ined by

the ten l i kel i hood functions on the three trajectories (denoted as

“level ,” “turn ,” and “descent”) are given in Table V. This table in-

clu des nonzero bias runs as well as zero bias runs. With zero biases ,

after a rapid transient from an initial va l ue of -195 as in Figure 8,

the max imums attained by the VIAS (indicated airspeed ) likelihood func-

tion were -10 in l evel flight, -20 in the turn , and -8 in descent. Note

that this original value of -195 was due to the initial conditions being

established with a trajectory in which instrument biases were allowed to

assume representative nonzero values . These are substantially lower
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TABLE V

LARGEST LIKELIHOOD FUNCTION VALUES WITH NO FAILURES

LIKELIHOOD . FtJNCTION LEVEL TURN DESCENT

INS 1 - 4.2 - 20.4 - 6.9
INS 2 - 5.7 -1650 — 11.9
INS 3 - 5.8 - 96 - 5.6

AHRS 1 - 9.0 - 36 - 15.7
AHRS 2 - 5.1 -1185 - 8.6
AHRS 3 - 11.1 - 145 - 6.1

VERT 1 - 13.3 - 14.5 - 14.0
VERT 2 - 1.1 - 5.2 - 4.7
VERT 3 - 2.8 - 2.7 - 2.5

VIAS -230 - 430 -195

I
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than the -230, -430, and -195, respectively, in the table. Another ,

l ess pronounced , effect was that the VERT 2 (independent vertical ye-

locity ) achieved maximum s of -1 .1, -1.5 , and -1.8 in the level , turn ,

and descent phases with no biases simulated , as compared with the -11.1 ,

-5.2, and -4.7 listed in the table. Other than these cases, the biases

had only a marginal effect on the likelihood function magnitudes or dy-

namic cha racteristics.

The variation of the roll channel likelihood functions of both at-

titude filters under the influence of rapid roll ,- tes jr the turn is

especially noteworthy . A variation of greater ttlà fl two orders of magni-

tude in these likelihood functions is exhibited in both Fi gure 8 and

Table V. By far , this is the greatest senS it iv i~ v of the various like-

lihood functions to aircraft maneuvering, and therefore it has received

intense attention in this effort.

• 3. FAILURE DETECTION CAPABILITY

This section will describe the results of Monte Carlo runs to veri-

fy and improve the performance reported in Tables I and II of Section 1 .

• To provide a means of direct comparison , the data will be pres:~nted in

the same order as in those two tables. Where si gnificant improvement

was required and/or achieved , a more detailed accounting of these re-

sults will be made.

3.1 SUDDEN FAILURES WITH SUDDEN EFFECTS

First, the study of sudden failures with sudden effects . the con-

tent of Table r, will be presented.
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Mass ive  leak in static line: During the turn segment , static line

leaks of varying degrees were simulated , with such a failure being de-

tected by the altitude (VERT 1; e7), vertical velocity (VERT 3; e9), and

indicated airspeed (VMS ; e11 ) likelihood functions surpassing their

thresholds. The performance of Table I was achieved , with the smallest

lea k simulation being within the region such that in-tolerance instru-

ment biases prec l uded detection in many runs. With more massive leaks

(i.e., adding more than 50 to the simulated sensor bias), detection was

possible and occurred more rapidly with increasing leak magnitude . The

“higher sensitivity ” to vertical velocity than altitude exhibited it-

self in the vertical veloc i ty likelihood function rapidly attaining a

value in excess of norma l and remaining there , whereas the altitude like-

lihood function grew more slowly, but continued such growth to surpass

the threshold by a greater percentage eventually. Thus , as i n Ta b le I ,

the vertical velocity was signalled in error on the first iteration of

the algor i thm after the leak was s imula ted , while the altitude failure

required four iterations. Note tha t, due to simulation errors in the

previous work , the indicated airspeed was not affected by stat ic line

errors. For the strongest leak simulated (adding 500 to the sensor

bias), the altitude likelihood function exceeded its norma l peak value

by about 7 , the vertical velocity by about 4.5 , and the indicated air-

speed by about 1100.

Some difficulty with the airspeed (VIAS ) likelihood function

growing large was experienced , but this was attributed to other instru-

ment biases. Thus, these were not false alarms caused by the simulated

line leak.
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Mass i ve lea kj~~pitot_li ne: T he performan ce of Ta b le I was ac hi ev ed

when instrument biases were zeroed , but some difficulty was experienced

when other instrument biases were allowed to affect the system . The in-

dicated airspeed (VIAS ) likelihood function repeatedly demonstrated such

performance .

Excessive noise in static pressure output: The altitude (VERT 1),

vertical velocity (VERT 3), and indicated airspeed (VIAS ) likelihood

functions signalled such a static pressure sensor failure , with similar

trends as in Ta b le I. For the lar ges t no i se power s i mulate d , VERT 1

attained approximately -31 (as compared to -14.5 as listed in Table V

for the greatest value under no-fail conditions), VERT 3 achieved about

-28 (compared to -2.7) and VIAS achieved -1500 (compared to -430).

This is seen in Figure 9, typical plots of VERT 1 and VERT 2 under con—

dition s of their largest failures.

• The VERT 2 l ikelihood function magnitude grew somewhat, though not

as severely as VERT 1 and VERT 3 or enough to surpass threshold. This

can be attributed to the vertical filter being degraded by continued

use of a fai led signal.

Excessive noise fr i pitot pressure output: As indicated in Table I,

for large enough no i s e  corrupt i on, a fa i lure is declared by the airspeed

(VIAS ) l ikelihood function exceeding threshold. For o = 600, the value

grows to about -750, and for = 1200 it grows to -1800 then oscillate s

back to -600, both of these being considerably beyond the -430 value in
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Table V under no-fail conditions , and especially beyond -20 under no-

fail conditions and no instrument biases (as mentioned in Section IV.2).

Figure 10 portrays the VIAS likelihood function for a run with

= 1200.

Tachometer _failure : When the tachometer failed in descent, the

vertical veloc i ty likelihood function si gnalled a failure , usually after

a bou t one secon d , with the function approximatel y doubling its “no rmal

operat ion max imum ” value after two seconds.

Bent angle-of-attack vane: Similar to the indicated performance in

Ta b le I, for the low values of additional bias used to simulate the bent

angle-o f-attack vane, the results did not consistentl y put the VERT 2

l ikelihood function level beyond the va l ue of -5.2 shown in Table V.

However , when 0.06 was added to b , the value grew to -6 in approxi-

ma tely two seconds , and rema i ned at that leve l. For an addi t ional bi as

of 0.12, the level grew to -36 in about two seconds , as shown in Fi gure

lla . Unl i ke the results in Ta b le I, the indicated airspeed likelihood

function did not in general grow beyond the -430 level of Table V , al-
• 4

, 
thoug h it di d usually grow beyond the zero bias level of -20.

As might be ex pected, the other es timates i n the vert ical filter

were degraded somewha t due to incorporation of faulty data , and so

VERT 1 and VERT 3 di d in fact grow in magnitude . However, as seen i n

Figures llb and llc , these two likel i hood functions underwent growth

substantially lower than the correspond i ng likelihood function. Thus,

any potential false alarm from their growth could probably be precluded

by removing the failed signal from the f ilter .
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Th i s id ea was tes ted , and Fi gure 12 p resen ts the con fi rma ti on ob-

tam ed . By removing the failed signal , the VERT 1 and VERT 3 likelihood

functions do -in fact recover to levels that do not elicit false alarms .

Noisy an.g]e-of-attack potentiometer: Again performance similar to

that of Table I was achieved except that indicated airspeed did not con-

sistently register false alarms . When the noise variance was set to

a = 0.06, the VERT 2 likel i hood function grew to about -25 in about two

seconds (compared to the -5.2 of Table V), and then oscillated at values

ranging between -15 and -27 typically. Under this magnitude of failure ,

the VERT I and VERT 3 likelihood functions did not generally show growth

levels to potent ial false alarms .

When the noise variance was increased to a = 0.12, the resultscx
were well represented by the plots of Figure 13. Plot a shows the

VERT 2 l ikelihood function clearly surpassing its maximum normal value

(-5.2), but both VERT 1 and VERT 3 in plots b and c surpass their max-

iniurn normal values (—4.5 and -2.8, respectively) as well. Again the

influence of removing the failed signal upon failure declaration was

investigated, and again the VERT 1 and VERT 3 likel ihood functions

recovered to behavior that remained subthreshold.

norma l accelerometer pickoff failure: The airspeed (VIAS ) likel i-

hood function quickly detected this failure , as shown by a typical plot

of its value in Figure 14.
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INS vertical accelerometer float lea k: This failure was reported

as undetectable in Table I from previous investigations. However , for

the accelerometer scale factor error = = 0.02 and above , detec-

tion was achieved in the experiments conducted for this effort. Fi gure

15 portrays a typical result for a scale factor error of 0.04, in which

VERT 1 , VERT 2, and VERT 3 all clearly surpass their no-failure maximums

of -14.5, -5.2 and -2.8, respectively. Times of passa~e of these thresh-

olds were not always identical , so that checking other likelihood function

values when one surpassed its threshold (to determine the probability of

their thresholds being surpassed soon) would be required to preclude

false alarms .

3.2 SUDDEN FAILURES WITH DRIFTIN G EFFECT S

• As in the previous section , the study of sudden failures with

drifting effects will be presented in the same order as Table II so that

a direct comparison is readily discernible.

Clogged static line: This failure was detected by both altitude

(VERT 1) and vertical velocity (VERT 3) exceeding the no-failure maximum

values. As i n Ta ble I, the altitude likel i hood function indicated the

• failure before the vertical velocity likelihood function did.

Clogged p itot line: With instrument biases allowed to assume dif-

ferent representative values , this failure could not be discerned con-

sistently, as ind i ca ted i n Ta ble I. However , if a comparison is made

between the Monte Carlo runs with no failures and zeroed instrument bi-

ases , and similar runs with no biases but the clogged pitot line siniu-
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lated , then the failure is detectable. Figure 8 presented plots of the

VIAS l ikelihood function : in all cases , it converged to magnitudes be-

low -20 in the turn segment and -8 in descent. Note that the original

• higher values in these plots were due to the initial conditions being

established with a trajectory in which instrument biases assumed repre-

sentative values.

Figure 16 presents the indicated airspeed (VIAS) likelihood func-

tion for the case of zero instrument biases and a clogged pitot line .

Plot a corresponds to a turn segment , and the likelihood function grows

to a value of about -35 (beyond the no-failure maximum of -20). Simi-

larly, plot b corresponds to the descent , and the detectability here is

more pronounced : not only is the no-failure maximum value of -8 sur-

passed , but the growth trend is consistent. In this latter case , the

failure would be detected even if the -195 threshold of Table V for

descent conditions , or the overall threshold of -430, were used. Nev-

ertheless , its speed of detection would be much improved if instrument

biases were compensated in prefl i ght as suggested in Section III (allow-

ing a tighter threshold to be used). In fact, such compensation would

• be requisite for the detection of a clogged pitot line during the turn

se gment i n mos t of the Monte Carlo runs , though not for detection in

• descent.

INS vertical gyro torguer failure: This failure in level flig ht

woul d be expected to affect the INS pitch and roll (INS 1 and INS 2)

likelihood functions. Figure 17 p resen ts rep resen ta ti ve p lo ts of these
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two functions. These two graphs do exceed the no-fail maximums achieved

i n level fl i ght (INS 1 reaches about -7.5 compared to -4.2 with no fail-

ures , and INS 2 reaches approximately -8 compared to -5.7). However ,

the INS 2 does not ex ceed the cons id era bly lar ger max imums ob tained i n

turns (-20.4 and -1650, respectively). Thus , i t can be conclu ded that

this failure is detectable only if threshold levels set adaptively to

aircraft maneuvering were used . If such adaptive thresholds were used ,

a threshold appropriate to level flight would be tight enough that such

a fa i lure coul d be detected , but only while the aircraft were actually

flying straight and level .

INS heading gyro torque failure: No discernible effects on the INS

yaw (INS 3) li kel ihood function were cause d by this fa i lure .

INS gyro float leak (level flight ): Even the smallest simulated

leaks had profound effects on the INS—AFCS attitude filter likelihood

funct ions. Figure 18 presents the three likelihood functions (INS 1 ,

INS 2, INS 3) for an example run of this case, i.e., 0.0025. The

achieved values of -13, -90, and -800 far surpass the no-fail level

fli ght maximums of -4.2, -5.7, and -5.8 in Table V. Note that, as ex-

pected , the yaw l ikelihood function (INS 3) exhibits the strongest ef-

fect due to the failure , but that the failure does not affect the entire

INS performance.

For larger values of float leak magnitude , the INS perfo rmance deg-

radation is sufficient to affect the vertical filter likel i hood functions

through the influence of the INS vertical accelerometer. For instance ,

150

• - , - —5- ____

5- 
- I — J



r~~
r - - -‘  -- --- 5— ------5— •;;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~-- ~~~~• - • .w-~
-__ - _ :—-5-- ---- -

~~~~ 

—_~~-w, - ------

-‘ AFFDL-TR -76-93

CD

L

~~~~~~~~~~~~~~~~~

I

~~~~~~~~~~~~~~~

:

~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~

4-,

U-

C)
>
C)
-J

- 9  -~~

(0a)
-J
4.)

Ci (0
U) C

- , - — U-
U)

~~ C
~ 

5-

.

11 1

- C’.)

• I I I I I
0 CD (N CD C

(N

dl SM

151

.5- - - - • - ----— ---,-—-;. - ~;i

- .5- - - ---- -5 5- .- - -  ~~~~~~~-~~~~ -— —  
- - - -~~~~~~~~~~~~~~~~~~~ - -~~~~~- , 

-

S 
___

-5-—- —‘—
~~~~~

—
~ — ..~~~._____ -t_ — —5 ~~~~ -.- 5-~~~~~~~~ ~~~ — ._

~~~. 5- I)(~~~~~~s ~~~~~ s.*~ ~~~~~~~~~~~~~~~~~~~ 
— 

~~~~~~~~~~ ~~~~-



- ~~~— —— 
-5 ---5-- —-= - - -“-~~~~~~~~ ~~~~~~~ 

-— — --5- -—- — -5- 
~w—.- — —~

- --5

AFFDL -TR-76-93

—

-C
—I
,

~~~~~~~~~~~~~~~~~~~~~

U-

a)
>
ci)

C

(0
a)

4.-,
‘0-, C

a
——

Ci3

(‘C

-

U
‘11 5-

0
• C’

- . U-

— ( N

1 I I I
CD CD CD CD CD CD

(N .~ CD CD

~ ii

152

— - - -- --5—--  
— -- -~ -—  

5 

- 
—J - —

~~~~~
I7__

~
_________________

~~~~

- ~~~~~ -- - • _
~~~~~~ - ,__•_,_,. • • • • . •. • • • . • •• .. ~~~~~~~~~~~~~~ 

—

~~~~~~~
- - —-5 , -



-• .•— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - - 
~~~~~~~~~~~~~~ 

- ‘—- ---—‘--- - ~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

AFFDL-TR-76-93

C-

I 

-

~~~~~ 

E

101* C ~il ~;~n

153

— — -. 5  

-
,

~
- -

~~~ 

‘ -
~~~~ 

C

-- -‘ -5- ~~~~~~.- ‘ -5, -~~~~~~ .~~~~ - ~~~~~~~—5 ,,-5~~•___-54 _— —- .~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- 5- — - —

AFFDL-TR-76 -93

when ‘
l~ 

= 0.1 , VERT 1 reaches -42 in two seconds from start of the

failure , compared to its no-fail leve l f l i ght  uiaxim un i of — 13.3 , VERT 2

reaches -1.5 (compared to -1. 1) and VERT 3 reaches -10.6 (compared to

-2.8). For this reason, when c . INS failure is declared , the driv-

ing noise covar-lance in the vertical filter should be increased to a

very large number.

INS gyro float leak (turn ): In a turn , this failure again had

significant effect on the INS likelihood functions , even for the small-

est magnitude failure that was simulated . Figure 19 presents these re-

sults : pitch (INS 1) drops to -230 (versus —20.4 for no failures) and

yaw (IUS 3) to -102 (compared to a peak value of -96). Note that the

INS 3 likelihood function differs significantly from the no-failure case

during the turn : it remains at about -60 for a period of time in the

turn as opposed to returning immediately to about -10. Therefore, if a

time-to-failure-declaration parameter were used in conjunction with a

threshold value to mask out the transients due to rapid rol l rate , the
- 

i declaration of failure would be assured for INS 3 as well as INS 1.

Note that INS 2 also exhibits a likelihood function buildup during

the turn. This is to be expected since the failure will affect the

performance of all INS outputs . Fur thermore , even for the l owest niag-

-
j 

nitude failure , the INS vertical accelerometer error has caused the

vertica l filter likelihood functions to grow abnormally, as depicted in

Figure 20. As in the previous case, VERT 1 and VERT 3 espec ia1ly exceed

their no-failure maximums (-14.0 and -2.5, respectively). Thus , when an
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INS fa i lure i s sense d, either the driving noise variance for the verti-

cal filter must be increased or the failure detection based on the

vertical filter likelihood functions must be disenabi ed .

Increasing the magnitude of the failure makes the effects depicted

above more pronounced . Thus , the rapid detection in Table II is possi-

ble. (For instance, when = 0.005, INS 3 (yaw) reaches —5000 in

three secon ds ’i). The “fa lse  alarms ” reported in that table are due to

the propagation of the degraded INS performance into the VERT 2 likeli-

hood function and the entire vertica l filter.

Loss of cutoff for the ver ti cal gyro: Dur i ng a turn, such a fail-

ure shoul d be declared by the Al-IRS roll (AHRS 2) likel i hood function

surpassing threshold. With loss of good vertical gyro performance, it

would be expected that AHRS pitch (AHRS 1) would also grow . Figure 21

• presents a typical set of plots of these two likelihood functions . If a

time-to-failure-declaration parameter or some other method were used

with a threshold value to mask out normal transients in the AHRS 2

l ikelihood function , then the growth during the turn itself to a value

of about -350 would be detectable as a failure. As expected , the Al-IRS 1

l ikelihood has surpassed its no-failure maximum value of -36.

Loss of cutoff for directional gyro: No effects could be observed

in the AHRS yaw (AHRS 3) likelihood function when this failure was

simulated .
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Vertical gyro servo failure: No consistently discernible increase

in the magnitudes of the AHRS roll or pitch likelihood functions ap-

peared when this failure was simulated.

Di rectional gyro servo failure: Fi gure 22 presents a typical plot

of the AHRS heading (AHRS 3) likelihood function when this failure was

simulated during level flight. The pea k magnitude exceeds the no-

failure maximum attained in level flight (-11.1) by a factor of two and

is also greater than the descent value (-6.1). However , it does not

exceed the maximum achieved in turns (-145), so thresholds adaptive to

maneuvering , or a disenab ling of failur e declarations during turns with

the ti ghter threshold chosen , would be required for this failure to be

detected.

Rate gyro failure: Fi gure 23 presents the six likelihood functions

(INS 1 , 2, 3 and AHRS 1 , 2, 3) that together surpassing their thresholds

would indicate a pitch or yaw rate gyro failure, when in fact a yaw rate

gyro was failed during a turn . The INS 1 , INS 3 , Al-IRS 1, and AHRS 3

iikelihood functions clearly crossed their threshold values. If tran-

sients due to rapid roll rates are masked out , then the growth of INS 2

and AHRS 2 (the two rol l likelihood functions) can readily be detected

during the turn itself , INS 2 growing to about -500 and the A l-IRS 2 func-

tion t~ about -200. With six likelihood functions , the time of crossing

of thre ’~ho1d problem exists , and a check on the other likelihood func-

~ion i-jlues when the first surpass threshold will avoid false alarms due

to this problem.

164

~



• 5
~~” C ’~~~~~~~~~~~

_C
~- - - -~~- •- -

AFFDL -TR- 76-93 

- C

‘ I 

t

n su~v

165 1 -
- ‘5-- •~~~~~~~~._L •.~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~. 

5--—
~~~~~~~~~~~~~~~~~~~~~~~~ —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—

~~~~~~~ ‘~~~~~~ •— ~~~~~~~~~~~~~~~~~~~~~~



AFFDL-TR-76-93

C

C)
5- .
C

- CD

Ca
U-

C
C-
>~

a)
-

~~~~~~~~~~T

‘V>-

‘VC’-)
- I-.

U
C-.
C
C.

U-

- C.’

________  I I I I
0 

0

(N

~OL* L dl SNI

166

- - _ _  - ---~~~~~~ ---~~~~-----~~~~~

5- ~~~~~~~ • —___________ .~~~—~~~~~~~~~ —5- —- -—~~~~~~ ~~~~
-—-5--

~~~~~
• 

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~



F~~ 
c.i ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

• 

4 
AFFDL-TR-76-93

‘C

-

1

>-
F-

I
a)

- C D
0)

U-

- (N

I I I I
0 0 C C 0 0 0

Jl 5N1

167 

— --5- -• ,——~~~~~~~~~~~~~~~~

• 
5 .  

- ‘--5- •,

,

~~~~~~~~~ - • ~~~~~ __ . ) _ 5 5- .  _ • 5 -~5-~5~.-5. -5 -5-55-



~ 

T~~
’
~~ !-~~~ 

- —,~~~~~--- - . • - -5~~~~~~~~~~~ - -----5-,’-),

AFFDL -TR- 76-93

C)

/ C

/
- ‘V

/ U-

/
7 C-/

7
7 U

Z

/

/

/ W
U

U, 4.)
‘V

LU

F-
~~~~~~>-

UC.,
- (C C’.)

a)
S.

• C

(N

I I I 0
C C 0 0 C 0 0(N CD a) C (N

dl SNI

168

1 
_ _ _ _ _ _  

_ _  

1~



- - 5 -  —-5 - ---~~ ~~~~-_~~-__ ~~~~~~~~~~~~~ 5 - ’ I  

~
‘
~‘~~~ “T ~, 5- ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFFDL-TR -76-93

‘V
• 7 U-

5, - CD
— 0

5, 5.-
5, >-,
V

C)
4-,

-5, - ‘  (0

5’ C
.5, _ -

-

5, (-~ ‘V
/ >-

/ F-

// C’)

/ 
C’)

/ C)
C 1 / _ -.. 5.-

C
- 

j  / C.

U-

- (N

C 
CD

~Ot *I dl SIJHV

169

- 
‘- -

I —

— —. 5 . 5  5- —~ —~~~ -55 — ~~~~~~~~~~~~~~ 
I_•~

_ _ — — —

--5-’ 
j



____ - ~ --5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

_

~~~~~~~~~~~~~~~~~~~~~~~

‘- _‘_ —5-.,-

AFFDL-TR -76-93

CD

-

c

~~~~ -5-

U
S..
C

(ci
U..

- 0
- 0

C-

U
- 4.)
U (ci

- a )
‘V

-
F-

U

C’)

U
- C C  I.

C
0)

U-

dl

-

• 170

[5 

- - — —-5- - --- --.5- ----— , - - —
~~~~~H 

- 

-

~~~~~~~~

—

~~~~ ~~
- _~~~~~~~ _ . 5  •

a ~~~~~~ — —5, 5--- —~~~~~~~g5- - . --—5 -s-—- SSi ~~~~~~~~~ 

-

~~



AFFDL-TR-76-93

CD

-

- (N

U
I C-.
/ 

C

I -C-
I (ci/ U-/

/ 
.-

I >~I
/ U/ 4-)
7 —C

I7 U)
/ - a ) —  ~~7 U) (ci
/ >.

/ 
4-

4’-
C..,
C’)

U
CD C-.• 7 C/ C,

/

*

-

_ _ _ _ _  I I
8

~01*C dl SHHV

171

-5--—---- 5 , - .  

_
- - ~~~~~~~~~ - - .-,.

F— 
- -—  — —,- -5—  

I 
_ _ _ _ _ _ _ _ _

.1 
~~~~~~~~~ 

_
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ -— 5. 5- — —

.
— -—-.——.- ‘ -



— • ‘- 5— -.., ~~~~~~~~~~~~~~~ --5-5— .-’ — -— ~‘ ‘~~~~~~‘

Figure 24 presents a typical result of failing the roll rate gyro

in level flig ht , an experiment not reported in Table II. As expected ,

the roll likelihood functions associated wi th both attitude filters

• (INS 2 and AHRS 2) surpassed the no-failure level flight maximum values

(-4.2 and -9.0, res pec ti vel y ) . They also sur passe d the max i mum value s

attained in descent (-6.9 and -15.7), but did not exceed the thresholds

appropriate to turns (-20.4 and -36). Therefore , use of tight thres-

holds with inhibited failure declaration during turns or threshold

values set adaptively to sensed maneuvering would be required to detect

this failure.

4. LESSENIN G SENSITIVITY TO ROLL RATE

One consistent characteristic in the last section was the sensi-

tivity of the two roll angle likelihood functions (INS 2 and AHRS 2) to

rapid roll rates. The three procedures for handling the resulting

• transients were:

(1) use of the ti ghter threshold va l ues appropriate to other

flight regimes and the disenab ling of failure declarations

when ra pid roll ra tes were sense d (or comma nded )

(2) use of threshold values that would be adaptively set higher

when rapid roll rates were sensed (or commanded)

(3) use of a time-to—failure-declaration parameter in conjunction

with a tighter threshold value to “mas k ou t” the transient

effects.
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Because of the magnitude of these transient effects, an investiga-

tion was made to determ ine i f increas ing the two f i lters ’ driving noise

covariance matrix (Q) components could significantly reduce the transi-

ent ampli tudes , wh ile leaving failure characteristics unchanged (or even

enhanced ).

The f irst tes ts s imply mul tip lied the di agonal ~~ma trices by con-

stant fac tors. Th i s led to somew hat decrease d trans ient magnitudes , but

also to a decrease of likel i hood function growth due to real failures.

Subsequently, i t was reasoned that the real system model uncer-

tainty was in the rol l channel , so onl y the element in the first row and

f i rst column of the ~ matrices (corresponding to driving noise on roll

~~~~~~~~~~ rate) was increased , leav i ng the other terms unchanged . Tes ts were
• 

• 

conducted with these elements set to 2, 5, and 10 times the value that

tuned the filters to the straight-and-level flight regime . Monte Carlo

runs of turns were then made for (1) no failures simulated , (2) the yaw

rate gyro fa i led, and (3) loss of vertica l gyro cutoff. Since the two

failure cases are indicative of the decrease in transient amplitude

achieved in the no-failure case, only these plots are included here .

Fi gure 25 displays typical plots of INS 2 and Al-IRS 2 for the rate

gyro fa i lure case w i th Q11 set at twice its norma l value. The transient

• is decreased somewhat from that depicted in Figure 23, and the intermed-
• iate growth is somewhat better as well. The trends of the other four

likel ihood functions were left unchanged , and failure detection was

readily possible.
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By increasing Q11 to ten times its normal value, resul ts were such

as those displayed in Figure 26. The growth due to the actua l failure

was relat ively unchanged , bu t the transient magnitudes were reduced

markedly. As would be expected , the associated attitude filters were

simultaneously producing estimates of the error variances in their state

est imates that more closel y app rox imated the sta ti s ti cs of the ac tually

observed res iduals. However , th i s was ga i ned at the ex pense of a re-

ciprocal detuning of the filters for straight-and-level flight regime

performance.

The same trend of reducing the transient magnitude with an increase

of was also exhib i ted by the AHRS rol l (Al-IRS 2) likelihood function

for the case of loss of vertica l gyro cutoff. Thus , the f a i l u re  ch arac-

teristics were emphasized relative to these transients.

5. SENSITIVITY TO INSTRUMENT BIASES

0-f the twenty-four biases tested at their 2o level , the most cr i ti-

cal were those that affected the ind i cated airspeed (VIAS ) likelihood

funct ion, s ince it was this function alone that required biases to be

set to zero (or small values) to yield good detection performance. The

indicated airs peed quantity is generated wi th the use of static pressure

and pitot pressure, so the sensitivity of the VIAS likelihood function

to biases in these values would he important. Furthermore , the model

reference i ncorporates the normal accelerometer output and angle-of-

attack signal to generate a second computed value of indicated airspeed ,

so these sensitivities are also important.
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Figure 27 presents the typical VIAS likelihood function in the

: level , turn , and descent trajectories during simulations in which the

static pressure bias was set at its 2~ value. Similarly, Fi gure 28 por-

trays a typical example when the pitot pressure bias is similarly set.

The extreme sensitivity of likelihood function performance to these two

biases , as seen by comparing these plots to those of Figure 8, em pha-

sizes the importance of removing such biases to the greatest possible

extent during preflight, if this likelihood function of the detection

log ic is to perform properly. The angle-of—attack bias affects this

l ik el i hoo d func tion to a m i nor degree , changing its magnitude by about 5

to 10 at most when the bias is at its 2a value. It should also be noted

that the pitot pressure bias also affected the vertical filter , with the

VERT 2 likelihood function doubling its threshold in level flight.

Ot her bi as sens iti v iti es are less cri tical to per formance, and they

were also found to be less severe than the static and pitot pressure

bi as sens iti v i t i es. Biases di rec tly on the INS ou tputs cause d some

performance change. The 2o bias on INS pitch caused the corresponding

l ikelihood function to achieve maximum magnitudes of -7.5 in level

flight, -4.3 in a turn , and —8.7 in descent (compared to the values

-4.2, -2.04 and -6.9, respectively in Table V); the roll bias caused the

roll l ikelihood function to reach -9.1 in level flight (compared to -5.7

from Table V). Other bias effects in the INS , as due to gyro or ac-

celerometer biases , were negligible.

The Al-IRS biases directly on the Euler angle outputs similarly had

some effect on likelihood performance. The pitc h likel i hood function
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reached a value of -52 in a turn (compared to -36 in Table V) when a 2a

bias was simulated on the pitch output. With a similar bias on the roll

output, the rol l likel ihood function reached values of -23 in l evel

flight and -27 in descent (compared to -5.1 and -8.6, respectively in

Table V). The directional gyro bias at its 2a value causes the AHRS yaw

likel i hood function to reach -20 during level flight (compared to the

Table V value of -11 .1). Finally , the AHRS compass bias caused the AHRS

yaw likeliho od function to exhibit a constant growth characteristic, un-

like other biases which caused a more stable offset from no-failure

likel i hood function values . This is depicted in Figure 29 for the case

of the descent trajectory, in which the likel i hood function is seen to

continue a constant growth trend beyond the threshold of -6.1 from

Table V.

6. VERIFICATION OF SIMULATED DATA

In order to verify that the performance analysis conducted in this

effort truly depicts the performance to be expected in eventual imple-

mentation , data acquired from flight test aircraft will replace the air-

craft and sensor simulation portions of the software package. First a

set of no-bias , no-failure simulation runs will be conducted , and re-

cordings of all sensor outputs put on tape. Then no-bias runs with

failures will be conducted , and recordings of the sensor recordings

again collected . The difference between these and the corresponding no-

failure case sensor outputs will then form a time history of sensor

output variations due to simulated failures . Once the flight test data

tapes are obta ined , they can then be used to drive the filters , detec-

tion logic, and performance analysis segments of the software. By
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I 
/ superimposing the sensor output variations on the real data , the ability

of the failure detection logic to discern failure characteristics in a

real sensor signa l environment will be verified .
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SECTION V

CONCLUS ION

An efficient and effective means of detecting failures of data sen-

sors through functiona l redundancy has been developed and its perfor-

mance capabilities investigated. As the preceding section has demon-

strated, the failure detection power of the concept is rather extensive.

Since it allows such detection by combining data from systems already

onboard an aircraft, ft reduces the amount of hardware duplication

required to achieve a specified level of data system reliability .

Consequently, the practical implications in cost, weight, and volume

savings for future aircraft are substantial .

To aid the eventua l implementation of this concept into an inte-

• grated failure detection system, a flexible design tool has been devel-

oped. With this tool, the functional redundancy detection logic can be

readily tuned and optimi zed for any particular onboard application . The

U software package that has been developed can significantly assist the

conversion of performance potential of functional redundancy failure de-

tection into performance realization.
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